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Abstract

The techniques peculiar to dynamic progrming have found a variety

of successful applications in the theory and practice of modern control.

Successes in the theory and practice of signal and Image processing are

less numerous and prominent, but they do exist. In this paper we sound

a call for renewed attention to the potential of dynamic programing

for solving knotty nonlinear filtering problems in signal and image

processing, and outline successes we have recently enjoyed in nonlinear

frequency tracking and random boundary estimation in noisy black and

white images. Two classical results, the fast Fourier transform (FFT)

and Levinson's recursion for determining autoregressive parameters, are

treated in the context of dynamic programming simply to reinforce our

view that many of the algorithms we take for granted, and which were

derived without recourse to dynamic programming, can be nicely interpreted

as dynamic programming algorithms.
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I. Introduction

In a recent paper, Willsky [1 staked out some of the cor-n ground

upon which specialists in control and signal processing stand. A 1974

paper by Kailath [21 achieved a similar rapprochement between the classi-

cal frequency domain techniques associated with Wiener filtering and

signal processing, and the time domain techniques associated

with Kalman filtering and modern control. Such efforts have kindled

interest in further exploring the territory common to the respective

communities for the adventure and profit that is in it.

In this paper it is our aim to further stimulate this interest by

showing that dynamic programming, a fundamental technique in control
q

theory since Bellman's introduction and advocacy of it in the mid-1950's,

can be of considerably more value in signal and image processing than

has generally been recognized. This is not to say others have not

recognized the potential of dynamic programming and exploited its tech-

niques to solve interesting signal processing problems. We mention in

particular Viterbi's dynamic programming algorithm for decoding convolu-

tional code sequences [3], Cahn's dynamic programming algorithm for FM

demodulation [4], and Forney's discussion of the Viterbi algorithm and

other inference problems on finite-state Markov sequences that can be

solved with the techniques of dynamic programming [5].

In the sections to follow we re-derive classical algorithms in

discrete Fourier analysis and linear prediction using the principle of

dynamic programming. We than present two new dynamic programming

algorithms. One is for nonlinear frequency tracking and the other is

for edge detection in noisy black and white images.

The organization is as follows. In Section II we use dynamic
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programming arguments to re-derive the Goertzel and decimation-In-frequency

FFT algorithms for efficiently computing the DFT. In Section IV we discuss

the connections between control, detection, estimation, and prediction of

autoregressive sequences observed in additive noise. We highlight the

central role played by the so-called normal equations and re-derive the

Levinson algorithm for recursively solving them in O(N2 ) operations.

Sections V and VI contain the new results. In Section V we derive a

dynamic programming algorithm for tracking a frequency sequence in additive

noise. This is a rather classical nonlinear filtering problem. The results of

Section VI show how dynamic programming may be used to derive a new algo-

rithm for estimating local segments of object boundaries in noisy black

and white images.

I.
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II. A Dynamic Programing Formalism

Traditionally, dynamic programing has been used to find "optimum"

solutions to multi-stage decision problems. An "optimum" solution has

generally been one that maximizes or minimizes a performance or cost

functional. When the multi-stage decision problem is cast in a prob-

abilistic framework the cost functional is typically a multivariable

likelihood function or some monotone function of it.

Here is a formalism that is rich enough to embrace most of the

"signal-in-noise" problems encountered in signal and image processing.

Let {Xk}m denote a process with state variable representation

xk+1 - fk(xkuk)

Yk = gk (x k
)

Here fk and gk may be random functions; the sequence {uk I is a parameter,

decision, or control sequence that may be functionally dependent on the

measurement sequence {yk ). The range spaces for the state Xk, the param-

eter Uk, and the measurement yk are respectively X, U, Y. These spaces

may be finite, countable, or noncountable. When the spaces X and U are

countable then their respective elements may be placed in one-to-one

correspondence with the integers and the formalism of Markov chain theory

may be mined. Even though the states of X may appear pretty uninteresting

(the integers 0,1,2,...,), the mapping gk may be chosen so that the signal

component of gk(.) generates characters ck that are of great interest. The

idea is simply to let a Markov chain control the dynamical state of the

problem and reserve the role of character generation for the observation

I. mechanism gk(-). This point is illustrated in Figure 1.

As an example of character generation, consider the frequency tracking

problem to follow in Section V. The state xk evolves according to the model

1:.,.
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XkN -x (k-)N +kN kN {

x k ' Xk(modN ) ; xk E{O ,...Q-1}I

where {v kNI is a sequence of iid random variables.

Thus as k runs from 0 to K, xk rests in state m for N steps, Jumps to

state n where it rests for N steps and so forth. This is illustrated

in Figure 2. The character generation is defined by

gk(xk) - e

So, while the state rests in state m for N steps, the sequence of charac-

ters is a rotating sequence of phasors as illustrated in Figure 2.

Now consider a finite version of the process {xk }:-

." (xo'xl'....xN)

= FN(XN-lU N-)

NU , (u 0 , .. uN)

NyS . (yO'yl ... yN)

Typically one wants to maximize a performance criterion

LN(X N,uN ,Y N)

with respect to U, subject to constraints CN(X ,uN ) = 0. Call

N(XjNYN) the maximum. When LN obeys a recursion of the form

L ( 0,NxyN) = _ U(XN N-l'Y ) + P I

,u ,I N N'NYN'

then dynamic programming comes to the fore and the solution 6 may be

generated recursively as the limit of the following sequence of solu-

tions:

n=S (un-l,yn) , nl,2,...,N

a Thus the central theme is to imbed the solution to an N stage problem

in a sequence of simpler K stage problems. When the underlying state

and parameter spaces are finite, the solution algorithm is finite-

dimensional and implementable on a digital computer. When they are
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uncountable, but the function L is quadratic, then it is still often

possible to find a closed form recursive solution that may be pro-

grammed.

A very large class of problems may be formulated as above. Two

particularly noteworthy examples are the linear discrete-time quadratic

regulator problem in deterministic and stochastic control, and Harkov

chain sequence estimation in additive noise. On the other hand there

are a great number of problems that admit dynamic programing solutions,

but which are not naturally formulated in the style above. The FFT and

Levinson algorithms discussed in Sections III and IV are well-known

recursive problem solutions that have been derived without relying on a

maximization argument.

One of the points we wish to make is the following: recognizing

that a solution is a limit of a sequence of approximants that may be

recursively computed is perhaps more fundamental than the search for a

corresponding optimization problem. The chief value of an optimization

formulation is that it often simplifies the search for the recursive

solution algorithm.

I.

'-



III. Dynamic Programming, the DFT, and the FFT

The DFT certainly constitutes one of the cornerstones of modern

Fourier analysis. Its uses range over the entire spectrum (so to speak)

of signal processing applications. The DFT is a mapping, DFT:{x )N-1
n0

N-1 N-i -
{X m} , that takes the sequence {x n I into the sequence (Xm0

according to the rule

N-1
X = E x p n  

, m=0,1,...,N-l
m k-O nN

wN = e-j2w/N

Noting that 4 mN = 1 Vm, we may write X as follows:
N in

N-1
Xm = E X nwN

n=O

This calculation may be viewed as the limit of the following sequence

of imbedded approximations:

~k-i

X(k) X W-m(k
- n)

Sn=O N

Note X (k) obeys the following recursion:
m

x(k+l) = w-m xW + w-mx.k

x( N) -- X ; xw-mm m m 0 N

This is the so-called Goertzel algorithm for obtaining the mth DFT

variable, Xm , as the output of a digital filter excited by the sequence

{xn} N-1. The output of the filter is read at time k=N. See Figure 3.

Dynamic Programming and the Decimation-in-frequency FFT

The Goertzel algorithm is a nice dynamic programming-like solution

for the DFT. However it is not efficient. Let's see if we can improve

upon it. Consider X(k) for even frequency indices m-2r:m
I" in

'i



7

(k). k- w;2r(k-n)x2r Z; x nW k-1,2,...,N

n_0

k-i.k E xW-r (k-n)

n n N/2

For k even (say k-2s),

x(2s )  2s-1 -~r(2s-n)
2r -- E x n"wN/2

n=O N/

s-i -r(2s-n) 2s-1 -r(2s-n)= ExW + Ex
nEO n WN/2 xn "N/2

n~s

-rs -rs(s-n) -
= WN/2 n N/2 + E xz+s N/2

n=0 Z=O
=rs X~(s) + Y(s)

• N/22r r

22r
Thib shows that the 2s-point DFT approximant xAs myb otiedfo

two s-point approximants. By choosing s=N/2 and continuing backwards

in this way (for odd sub-indices, as well) one arrives at a backward

dynamic programming derivation of the decimation-in-frequency FFT. See

Figure 4 for an elementary representation of a 4-point decimation in

frequency FFT.

A more classical dynamic programming derivation would proceed from

the minimization of the quadratic form

N-i N-i j 21M
QN -E Ixn  X2

n- m-C mn=O =

with respect to X IN-1
mO0

I.

1*



IV. Detection, Estimation, and Control Structures

in the AR(N) Case: Kalman Filters, Levinson

Recursions, and Dynamic Programming

Autoregressive (AR) models for signals, states, and data play a

starring role in many areas of signal processing and control. By

appropriately selecting model parameters (and order) one can model

the covariance structure and spectral characteristics of more general

models. The so-called normal equations for identifying AR parameters

are elegant and easily solved with recursions of the Levinson-type.

In this section we tie up control, prediction, detection, and

estimation in the special case where we are dealing with a zero-mean,

wide-sense stationary, scalar autoregressive time series. The usual

state-variable and matrix block diagrams give way to scalar variables

and digital filter blocks of moving average filters. The normal equa-

tions are high-lighted and dynamic programming is used to derive the

famous Levinson recursions.

Models

Let {xk } denote a scalar zero-mean, wide-sense stationary autore-

gressive sequence that obeys the recursion

N
xk a n n + wk V k

n=l

w sequence of i.i.d. N(O,o 2) r.v.s.
n w

It is easy to see that the covariance sequence {rm}wo, rm = rm associ-

ated with the sequence fxk)obeys the recursion

N 2r = a r + 2 6 ,m01..

m nE n m-n w m

From here one may write out the so-called normal equations:
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r 0  r, r N-1 a l" r 1

r1  r 0  r1 ... rN 2  a2 - 2

N rr

rN 1 r1 r0 N rN

NIf the {a n} are known these equations are used to solve for the {r n

[6]. Conversely, if the frn are known, these equations are used to
nO0

solve for the {an}I .
n 1V

In much of what follows we will assume the sequence {xkJ is observed

in zero-mean additive WGN:

Zk X k+nk Vk
2

nk  sequence of i.i.d. N(O,a ) r.v.s.
k n

The companion form state model for all of this follows:

1k+I = A Xk + bUk

Zk = C'Xk

xk-N+l 0 0

Xk= A= I , b=C= , Uk--Wk+lx 01

S aN N-i" ao

Noisy Prediction and the Kalman Predictor

The stationary Kalman one-step predictor for the noisily observed

AR(N) sequence is

Xk+l = A Xk + K(zk-Xk)

Xk = CXk

where

K - APC(C'PC + a2)-l
n

- [klk 2, .... kN] (i)

1*
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P = (A-KC )P(A-KC) + a2 KK' + a 2 bb' (2)
n w

The Kalman prediction sequence {+i} for iz k+ 1 can be interpreted

as the output of an ARMA(N,N-1) filter, driven by the prediction error

sequence {VkZk-xkI or an ARMA(N,N-1) filter driven by the observation

sequence {z k. The resulting filter equations are

N N
Xk+l =  ai X k+l i + g ilk+li

i=lil

or

N N
X k+I = (a i-gi)xk+l-i + E gi Zk+l-i (3)

i=l i=l

where the coefficients, gi, can be defined by the characteristic

polynomial A(A) of (A-KC'):

N + N-
A(X) = X + E (gi-ai)ANi

i=l

See Figure 5 for a block diagram of this predictor. Note that the
N

noise-free MA predictor filter, P(z) = a z -
, is preserved

n1 n

in the feedback loop, but that the residual sequence vk=Zk-Xk is now
N

weighted with a feedforward MA filter, Q(z) = 
-n

n=1

Why is the noisy Kalman predictor ARMA and not MA? The answer is

that {Zk}, a noisy version of an AR signal process, obeys an ARMA(N,N)

difference equation. As an AR(N) model has an MA(N-l) predictor, it is

at least logical (if not intuitive) that an ARMA(N,N) process has an

ARMA(N,N-l) predictor.

The Noise Free Predictor (c2 . 0)
n

The prediction vector Rkconsists of the terms
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Eixk_*l/zkl. Zk 2....

Ex.kl/zkzk_2,•••

E[xlk/k_,.zk_2 ... 3

When 2.0, then zk - xk V k and

E Xk n / zk n , Zk n l •-1 ...

- E[xk-/xkn.... xk_. , n-l,2,...

So in this case the prediction vector is

'k-N+l

'k-N+2
Xk4.

xkl

xik/k-I
L :

It follows that P, the covariance E( k-Xl[k-Xk]" 'a

P =(4)

• 0

Calculating K by substituting (4) into (1), we find that A(X) AN

and hence giai. This implies, as one would expect, that the prediction

filter (3) reduces to the purely moving average relation

N
Xk+l = E ai Zk+li

i-i

Minimum Variance Control

One of the simplest control strategies is minimum variance regula-

tion where one desires to minimize the variance of the AR(N) output

sequence {Xk}, and force E(xk)=O. The well known separation principle

1*i
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allows one to generate a feedback control strategy assuming noisefree

measurements, i.e. nk-O, and then use the same strategy in the noisy

case but with the Kalman filter estimates {xk} replacing the actual

filter outputs {Xk}.

Assume then we have the system

N
Xk~ aixki + v-uxk - E l~_ + wk + k
i-l

where {v } is our feedback control sequence. We would like to minimize

2 NE(xk) - E( E a i Xk-i +'wk + Vk)
iml

N N
SE(w k + 2wkvk + 2wk( E aixk-i + (vk + E aixk-i) 2 )

- E(w2) + 2E(WkVklVk)E(vk)

N N 2
+ 2E(wk( E aiXk-i)) + E((vk +-E a k-i)"

iml iml

Since {w k is uncorrelated with txk-i}, i>l, and since E(wkVklvk) -0,

it is clear that E(xk) is minimized by choosing

vk -ta xk- i

This control is illustrated in Figure 5 as a feedback loop running

up the left side of the figure. The feedback loop to the top COMPUTE

box shows how X would be used for minimum variance control in the noisy

case.

Detection and the Likelihood Ratio

Consider the hypothesis test H0 vs. HI with

H0 : zk f k ,kOl,...,K

H1 Zk - xk + nk ' k'0,1,...,K

This test is equivalent to the test H 0 vs. HI where

I.'
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: 0) Z N(0'a2

: VW N(Opoa) ; pO : variance of

andy -zk - is the innovations sequence in the Kalman filter. The
k

log-likelihood ratio for this problem is (7]

1 K 2 1 K 2
LR-K- O2 E v k + 2 E Zk

k-0 a k=0

Thus the statistics Ev2 and Ez2 are sufficient and the log-likelihood

ratio may be computed as in Figure 5.

The Normal Equations are Fundamental

It should be clear from Figure 5 that the AR coefficients 
{an} N
nl1

characterizing the sequence {xkl are fundamental to the implementation

of control, prediction, and detection algorithms on noisily observed AR

sequences. Unfortunately, sequences rarely come tagged with their corre-

sponding AR parameters. More typically finite records of them come to

us and we estimate a covariance function (or power spectrum), often by

FFT-ing, squaring and windowing, and inverse FFT-ing. These estimates

may then be used to solve for the coefficients [a N from the normal
nl

equations

I0 "  N-1Ia 1 - 1

r r . a r (4)

Ths~1 0 2.iN-1 r 0 a, rN

This makes the normal equations fundamental and arouses our interest in

efficient ways of solving them. The derivation that follows was moti-

vated by Bellman's discussion in [8].

Dynamic Programming and Levinson's Algorithm

Rewrite the normal equations as

-2

... .... ..
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N
E a N r = rn  n-1,2,...,N

These equations characterize the {a mIl that minimize the quadratic form

N 
N N

QN = ro - 2 E a r + E E L m r' n-mlmr-i m-l nl

The minimum is

NNN N
QN(rl,...,rN) = r0 - N a rm  (4b)

m-i m

Assuming the normal equations to be non-singular, we may write

NN Na= £ r , mfl .. 5
m mn nffi)

N N N N
QN(rl, .,rN) - ro - E r S r (6)

M-1 n-fl

Write out QN( as follows:

N-i N-i N-i

QN(rl .. rN) : r0 -2 E amrm -2aNrN + E E a m art r m-nj
in1 m1 n1 n r-

N-1 2
+ 2 Z araiN r IN-ml + aNr 0

2
- a N r - 2a nr + QN (r-arN ....,rN-Nrl)

So the minimization of QN(rl,...,r)N with respect to [am}N leads to

QN(rl,...,rN) mn QN(rl,....,rM)
{am

ml1
2- min[Nro -2aNrN + m-n 1 Q NN-(ri-NrN,..)]

ml
2 N-i

- min[aN 0r -2aNrN + QNI(rl-aNr_ (7)
an

This equation contains the essence of dynamic programming and the

1*... ...i '= ... .. . . .i ... I .. . . ...... ...
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N-i N-i N-i

principle of optimality: Once the {a are found, QNl may be
N-i N-i

constructed and aN found as a function of ro,rN and {aN,...,N_ ). One

continues in this way. At each step of the way the minimization problem

on QN-1 ( ) is quadratic.

Let's use (6) in the RHA of (7):
N 2
QN(rl,...,rN) min[NrO -2aNrN + r0aN

N-1 N-1
- ~ C-a r)N-i-E E (r m-aN r N-m)S mn (rn-N Nn)]

mrl n=l

2 N-1 N-1 N-2in{(SN-I
=mn{a°(r 0 - E r N-mSmn rN-n)
N mnl nNl

N-i N-I
2 aN(rN - E r Z SN I rm--l mn-al m Nn

+N-1
QN-I (rl....rN-l)

It follows easily that the minimizing value of aN is

N-I N-I N-I
r N E E r S r -

N m=l n=l m mn -n
aN N-i N-i N-1

- E N-m mn rN-n

mi n=l

Use (5) in the numerator to get

N-i N-i
rN - Z a rN n

N n=In-i n N-n
SN-i N-i N-i

r0 - E Z rNmSmn rNn

m=l n=l

Let's call

I.Ni l

C- rn-i SN -1 , n=1,2,..,N-n M- 7rN-m mn "'

and see if we can find a recursion for it. In the meantime

| .. . -. . . ..I. . l
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N-1N N-1

N - in N-n
a N-i (8)

-Z C N -0n1n rN-n
n-i

Note

N2  N-1 N-1N (r - T CN-I -2(rN N-I
0 n N-n N rnNn ni n=1

N-iN-
N N-i N N-i

N(r - E n rN-n) -2N(rN - E a ri,)
n=l n

N N-i N-i
-aN N E a n r N-)

So we have this recursion for the minimum prediction error:

N-i N-i
NN-1 N N-1N-1r-~

QN(rl,..,r N) = QNI(rl,....rN-l) -aN(rN - a nirN)
n-i

Now use (4b) to get

N N-I N-IN N-i N N N-I
a- E a mr m=r r m NrN+ ni NaN N-nm=1 M=In=1

Or

N-i N-iN N-I N
a r m E (a -aN aN )rmrn- m m-i 

N N:
Thus from the recusion on QN we get this recursion for the a m

N N-i N N-i
im m N N-m '

NOur one remaining problem is C Write it asn

, N
N N
C m mn r +i-n

n-l

Thus CN must be the solution ofm

hi
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N N
S1 C n-l,2,...,N-i (9)

It therefore satisfies a recursion just like a
N. In fact (9) is just

(4a) with the RHS vector turned upside down. By the symmetry of

R = {rim nl}' this simply turns the solution vector {a
N upside down.

Thus

CN N m-l,2,...,NCm aN+l~h ,

and we are done.

Summary: The Levinson recursions may now be written

N-1 N-i
rN Z an rN-n

N nul
aN= N-i

V r - E aN n rN-n
n=l

N N-l N N-Iam m  aNN N- , m-1,2,...,N-1

N N-I N ( N- N-I
QN = QN-1 aN(rN - MWa rN-m )m1l

N

Call a = a , n=I,2,...,N to have the solution to the normal equationsn n

given in (4). To get these equations into their fully modern form, one

must look at a backwards prediction.

1b

kL lI I[
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V. Frequency Tracking and Dynamic Programming

Phase and frequency tracking problems comprise some of the most

nettlesome nonlinear filtering problems in the entire realm of signal

processing and communication. A typical problem is the following:

observe the sequence {z k } with

zk sk + nk

Jw kk
S k e

Skk

and estimate the FM sequence {N k . Here sk = e is a randomly fre-

quency modulated signal. The sequence {n k } is additive noise and {wk}

is a sequence of angular frequencies. Assume nk:N(O, 2) (complex normal).isN

We wish to observe a record of data {z } and infer the most likely
kO0

sequence of frequencies, {wk}O . For our model of N kI we take each

W e{O,27/Q,...,2n(Q-l)/Q}, evolving according to
k

W kN = (k-l)N +kN

WkN+Y = £kN =0,l,...,N-l V k

A typical sequence {w k} is illustrated in Figure 5. The independent

increments sequence {kN} is a sequence of i.i.d. r.v.s. selected in such

a way that the transition probabilities

P (WkN/W (k-l)N )

correspond to our notion of physical reality. We may think of

the sequence (w kNI as a finite-state random walk on the circle with an

unusual transition probability structure. Typical trajectories for {w k

k
and {sk = e are illustrated in Figure 5

Let's organize the sequence {z k into contiguous blocks of length
N-1

N, of the form {z kN+ -=0 . See Figure 6. Recall

I.
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w

zJkN+t me kN+ (kN+Z) +

= eJWkN(kN+ ) + n k+Z

K-i N-i

Write {zk} KN  K U {Z N-1 Consider the joint density of {Zk} O
k 0 k-0

and {w ) K-1
kN} 0
K-i-N- K-

f( U {zkN+9}0 , {WkN}O)
k=O

Exploit the probabilistic structure of {zk} and {wkN} to write this as

K-1 N-i jwkN(kN+Z) 2 K-i
f(.,.) -f w 7 N z (e a n ) 7 P( kN /(k-l)N )

k=0 £=0 ZkN+k k=0

. The natural logarithm of f(.,.) is proportional to

1K-1 N-1 -jW M (kN+Z)
tnf(-,.)-2Re - N Ew ZkN+£ e

2a2 k-0 £-0
n

K-1
+ £ £n+kZ O P(kN/1 (k-l) N)

k-0
Write

I K-i -jwkNkN N-I -JWkNz
Xnf(.,.) - 2Re 2 E e E ZkN+te +

2a k-0 Z=0n

N-I
+ E nP(WkN/W(kl)N)
k-O

Let XkN(e) denote the finite Fourier transform

XkN(O) - N ZkN+t e
jet

L-0

Then the log-likelihood function may be written

-nf Re 12 E e-wkNkM XkN(OmwkN)202 k'0
,. n

N-i
+ E tnP(wkN/w(kl)N)
k-O
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Our notion of the most likely sequence 1wk I is the sequence

SkN+1 = wkN tu0,i,2,...,N-i , kaO,i,...,K-1
^ K-I

where (N I is the sequence that maximizes f(.,.). Thus we consider
kN 0

the maximization problem

1 K-I -jw kN K-imax --- Re e Xk.N(awkN) + E tnp(wkN /(kl)N)

[a K-1 a k=O k=O

Write this as

max K 1
({ kN}O -0

with r satisfying the following recursion:

1 -JwtNtN
rt = t + np (WN/W( lN) + - Re e XtN(6tikN)

n

So our maximization problem becomes

max [ max rK- 2+tnf(w(K-I)N/w(K_ 2 )N) +
K-i K-3

{WkNIK2 {"kN1 0
1N K-0-Jw(KI)N(K-I)N

+ -LRe e X (~a 2  R e (KI)N( = (KI)N)

n

This form leads to the following observation: the maximizing frequency

trajectory, call it {WkN} , passing through w(K2)N on its way to (K-I)N'

K-3must arrive at w (K-2)N along a route {kN} 0 that maximizes rK- 2 .

If it did not we could retain w(K-2)N and w(K-I)N and with a different

sequence to get a larger rK I . It is this observation that forms the

basis of forward dynamic programming.

I. Recall the WkN E{27r/Q}Qr I . This means the finite Fourier trans-

form XN(a) must only be evaluated on e=2rr/Q, r-0,1 ...,Q-1. The best
N-I

way to do this is to zero-pad {xk+Z}= to obtain a Q-point sequence
KN tO
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that can be FFT'd to get xkN(8-2wr/Q). See Figure 5. Then for each node

on Figure 5 we evaluate XkN(ew2l2r/Q), and find the best route through the

trellis with a dynamic programming algorithm. This completes our algorithm

for moderating the usual peak-picking rule on the FFT with prior informa-

tion p (wkN/w(k-l)N).

The reader is referred to [9] for a more complete discussion of a

related algorithm for nonlinear phase tracking.

I

I°

1 2
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VI. Local Boundary Estimation in

Noisy Black and White Images

In digital image processing one is interested in developing computer

algorithms which can either automatically extract information from pictures

or at least simplify the process of manually interpreting them. In either

case, a basic step involves segmenting a picture into regions with similar

features such as grey level or texture. This involves the ertimation of

region boundaries. Boundary estimation algorithms make ise of operators

which estimate short segments of boundaries using picture data in small

picture sections. Examples are simple gradient operators or the well

known Hueckel operator [tO]. An example of a local sequential estimator

which is also used for this purpose can be found in (11]. In this section

we outline a new dynamic programming algorithm for sequentially estimating

short boundary segments.

Image and Boundary Models

Let a digitized black and white image be represented by a matrix

with components gij corresponding to the grey level value of a picture

element (pixel) centered at position (i,j). The value gij will have two

components - a true picture component bij and a noise component nij so

that gij - bij + nij" A picture is assumed to consist of a single region

of grey level r in lying in a background of grey level rout, so that bij

can take on either of the two values rin or rout. The noise components

n j are assumed to be independent identically distributed Gaussian random

variables with mean zero and variance a2 .

An edge element is defined as the line segment separating two

adjacent pixels, and as shown in Figure 8 a boundary segment consists

Mof a directed sequence of edge elements {t ' As illustrated in

1 b.
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Figure 9 , we model short boundary edge sequences as being generated

sequentially by passing out of rectangular boxes Rk, kfl,2,...,N, of

size pk = kx2(K-l). Figure 10a gives an example of a boundary which

is consistent with this model while Figure 10b shows a similar but

inconsistent boundary. In the latter case the edge sequence re-enters

R4 . Although this model restricts somewhat the types of boundary

segments that can be generated, it is still very reasonable for region

boundaries with low and slowly varying curvatures such as the Cat Scan

Lung Section shown in Figure 11. The maximum rectangle size N is

assumed fixed a priori and is a function of the boundary curvature

properties for the region of interest.

Boundary segments generated by such a model are naturally represented

by a sequence of states in a Markov chain where the index parameter k

for the rectangle size Pk is also the index parameter for the Markov

process. A process state, Xk, at "time" k, k > 1, will correspond

geometrically to the end point of a boundary sequence passing out of

Rk. Figure 12 shows the state locations, xk, for k=l,2,...,5. Note

that the number of possible states at time k is I for k=l, 3 for k=2,

and 9 + 4(k-3) for k > 3.

Figure 13 contains an abstract representation of a typical realiza-

tion of the Markov process, together with a description of the picture

or character, ck, associated with each state. The observed image will

be a noise corrupted version of each such picture.

If the regions of interest have smooth, low curvature boundariesI.
then a reasonable rule for assigning transition probabilities p(Xklk_l)

is to choose p(xklxkl1) to be inversely related to the distance (measured

in edge elements) between states xk_l and xk. We must also impose the

1
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9+4 (k-3)
constraint that E p(XJlxkl) 1-

J-1 M

Using this model, a boundary edge sequence {t 1I will correspond

to a state sequence {x } N
kiV

A Dynamic Programing Algorithm for Fztimating Boundary Segments

Using the pixel data in an Nx2(N-) block, RN, we next formulate

a dynamic programming algorithm for optimally estimating edge sequences

that are generated by the previously described model. The algorithm is

optimal in the sense that it maximizes the joint likelihood of an edge

sequence through, and all the data in, the rectangle R.

To begin we first define the pixel data sets

Dk = {gij : pixel (i,j) '}

dk= {gij : pixel (i,j)cRk pixel (i,j) R kl1.

This implies that Dk = Dk-lUdk, Dl= empty set. This recursion is

essential. Next let ZnL(') denote a log-

likelihood function, and SN = {xk}N denote a boundary state sequence of

length N. Then ZnL(DN,SN the joint log-likelihood of a boundary state

sequence anO the picture date,nmust satisfy

ZnL(DN, SN) = ZnL(DNISN) + tnL(SN) (9)

where ZnL(SN) is the log-likellhood of the state sequence SN and

£n(DNISN) is the pixel data log-likelihood conditioned on the boundary

{t }1 described by S Since the state sequence S is a Markov chain we

can use

£nL(SN) = £nL(S N-1 + £np(xkIl'k_) (10)

9inL(S I) = ZnL(xl) =nps(xl) (11)

where P (xl) is the probability of a particular starting state x1 .

Since boundary edge sequences are prohibited from re-entering rectangles

from which they have already passed out of, we can express

-,pp
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ZnL (D NISN) - InL(D N 1 1SN- ) + 'nL(dNIxN) (12)

where tnL(dNJxN) is the log-likelihood of the data added in extending

the state sequence SN- 1 to S conditioned on the specific new

state xN* Substitution of (12) and (10) into (9) leads to the

following recursive expression for L(I)NSN):

XnL(VN,SN) - InL(DNlSNl) + Lnp(XNIxNl) + InL(dNIxN). (13)

The transition probabilities, p(xklxk-l)' can be calculated using a

distance rule such as the one discussed above, while incremental data

log-likelihoods, InL(dklxk) can be calculated by observing that the

pixel grey level values giJ are N(rino 2 ) if giJ lies inside the region

and N(ro a 2) when gJ lies outside the region. Furthermore once xk

has been specified, all pixel values giJ in dk can be associated with

pixels either inside of or outside of the region. Hence if we define

PG (x) = exp(_x2 /2o2)

21ta

we can use

9,nL(d klx k ) c ZnPG(gij-rin) + E cd nPC (j-rout)
gfJ dk gij k

(i,j) inside (i,j) outside
region region

C - E (gij-rin)2/2a
2 - E (gii-rout)2/2a

2

gij cdk Eij dk
(i,j) inside (ij) outside

region region

(14)

where C is a constant which is independent of the choice of xk.

I. Finally, a dynamic programming algorithm for estimating a state

sequence SN and hence a boundary edge sequence ft IM which maximizes

ZnL(DNSN) can be derived by observing that
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max tnL(D N SN) - max[max EnL(DNISN_1) + Inp(xNtxN_l)

xn  SN_
xn SN-i

+ InL(dIxN)1 (15)

This completes the specification of the algorithm.

9t

I.

,I*
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Figure Captions

Figure 1. States and Characters

Figure 2. Sunflowers, States, and Characters for Frequency Tracking

Figure 3. Goertzel Filter for DFT Component Xm

Figure 4. Four Point Decimation-in-Frequency FFT

Figure 5. Prediction, Detection, and Control of a Noisy AR(N) Sequence

Figure 6. Visualizing the Random Walk Frequency Trajectories

Figure 7. Date Processing and Frequency Trellis Illustrating Evolution
of Surviving Frequency Tracks

Figure 8. A Boundary Segment in Small Picture Segment

Figure 9. Example of Boundary Segment Generation

Figure lOa. Example of a Boundary Consistent with Model

Figure lOb. Example of a Boundary Inconsistent with Model

Figure 11. CAT Scan of Lung Section

Figure 12. Possible State Locations J for k1,2,...,5

Figure 13. State Transition Diagram for k=1,2,..,5 Illustrating a Set
of Characters Ck, k=l,2,...,5 for a Specific Process Realiza-
tion Xk, k=l,2,...5
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