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Abstract

An experiment was performed in which executable assertions were
used in conjunction with search techniques in order to test a computer
program automatically. The program chosen for the experiment computes a
position on an orbit from the description of the orbit and the desired

point.

Errors were inserted in the program randomly using an error
generation method based on published data defining common error types.
Assertions were written for the program and it was tested using two
different techniques. The first divided up the range of the input
variables and selected test cases from within the subranges. In this
way a "grid” of test values was constructed over the program's input

space.

The second used a search algorithm from optimization theory. This
entailed using the assertions to define an error function and then
maximizing its value. The program was then tested by varying only a
limited number of the input variables and a second time by varying all
of them. The results indicate that this search testing technique was as
effective as the grid testing technique in locating errors and was more
efficient. 1In addition, the search testing technique located critical

input values which helped in writing correct assertions.
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1 INTRODUCTION

Although Di jkstra's famous comment on testing, that it will never
show the absence of bugs, only their presence, is undoubtedly true,
testing is still the method most used for showing the correctness of

software. 1if testing is to be used, ways must be found to make it more

efficient and effective.

A paper by Alberts1 presents data indicating that testing and
validation efforts account for approximately 504 of the cost of develop-
ing a software system, where development includes the typical phases of
conceptual design, requirements analysis, development, and operational
use. This cost includes those associated with locating the errors,
correcting the errors (which may include redesign), and checking that
the corrections have removed the cause of the error. The testing
process is a very labor-intensive activity, as is any aspect of software
development. If methods could be found to automate the testing process,

the cost of developing software could be reduced.

1.1 PROBLEMS WITH TESTING

Two of the many problems involved in testing software are (1) how
to develop test cases which identify errors and (2) how to check the
results from these test cases. Before software testing can be automated

and its cost reduced, these two problems must be solved.

Many methods have been pioposed for identifying test cases which
will show that a program performs correctly or indicate the errors which

2
are present in the program. For examples of these methods see Howden

1D. S. Alberts, "The Economics of Software Quality Assurance" in AFIPS

Conference Proceedings: 1976 National Computer Conference, Vol. 45,
AFIPS Press, Montvale, N.J. pp. 433-442,

2w. E. Howden, "Theoretical and Empirical Studies in Program Testing,”

IEEE Transactions on Software Engineering, Vol. SE-4, July 1978.
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and Gannonl- Basically, the problem is one of complexity. For most
programs, the number of different combinations of input values is
practically infinite. Therefore, using exhaustive testing to show that

a program works correctly is an impossible task.

Given the fact that programs cannot be tested by trying all test
cases, what are the alternatives? Boundary value testing, path testing,
and symbolic execution2 have been some of the suggested solutions. The
key problem is finding test cases which detect the errors present in the
software. At present, there are no methods for deriving test cases with
this property although many studies of the types of errors commonly

found in software have been undertaken.3_

The second problem has to do with checking whether a test has bheen
successful. Even if there were a method for selecting test cases which
was able to identify specific errors in a program, the process of
evaluating whether or not the program ran successfully is a manual one.
The output from the program must be compared with the expected results.
For large programs composed of many functions this is a very time-

consuming task.

1.2 A PROPOSED SOLUTION
From the above discussion, it is evident that automating the

testing of computer programs requires finding methods for developing

1C. Gannon, "Error Detection Using Path Testing and Static Analysis,”
Computer, Vol. 12, August 1979.

2L. A. Clarke, "A System to Generate Test Data and Symbolically Execute

Programs,” IEEE Transactions on Software Engineering, Vol. SE-2, Sep-
tember 1970.

3T. A. Thayer et al., Software Reliability Study, TRW Defense and Space
Systems Group, RADC-TR-76-238, Redondo Beach, Calif., August 1976.

4M. J. Fries, Software Error Data Acquisition, Boeing Aerospace Company,

RADC-TR-77-130, Seattle, Washington, April 1977.

5Verification and Validation for Terminal Defense Program Software: The
Development of a Software Error Theory to Classify and Detect Software
Errors, Logicon HR-74012, May 1974,
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effective test cases as well as methods for efficiently evaluating the
results of using them. A method for solving these problems has been
developed that combines the use of search algorithms from operations

research with executable assertions from software verification research.

Finding the maximum or minimum value of a function of several
variables each subject to some set of constraints is a common problem in
operations research. Minimizing the cost of constructing a building
given the choice of using brick, wood, and adobe materials in different
proportions typifies problems of this sort. Many methods have been
developed for solving such problems, for example, see Denn.1 One of the
simplest is to define the parameter of interest (e.g., cost) as a
function of the possible alternatives (e.g. brick, wood, adobe). The
problem then is to find a minimum value of the function defined by the
values of the alternatives (variables). Figure 1.1 illustrates this
for two variables, brick and wood. The cost function defines a surface,

with "hills" (maximums) and “valleys" (minimums).

The goal is to find a point on this surface which is a minimum
(in the example of building cost). This point corresponds to a particu-
lar set of values of the alternatives or variables. Finding such a
minimum value requires that this surface be searched. There are many
methods for traversing the surface according to some search heuristic
(for example, in the directicn ~f the gradient) until a solution is

found.

The problem of evaluating the results limits the application of
these techniques to the testing of computer programs. That is, in

operations research, we are usually trying to maximize or minimize the

IM. M. Denn, Optimization by Variational Methods, New York, McGraw-Hill,

1969.
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Figure 1l.1. Cost as a Function of Building Material

value of one variable, whereas in software testing we are usually trying
to compare the value of many output variables with their expected

values.

The solution to this problem has been found in “executable
assertions,” a technique developed for proving software correct and for
checking it while it 1is running. Assertions are comments added to a
program which specify how the program is to behave. They may specify a
range of values for a variable, the relation the values of two or more
variables have to each other or compare the state of a present computa-
tion to that of a past computation. Figure 1.2 shows an example of
two assertions that specifies the range of values that the variable

VALUE can assume.

To make an assertion "executable,” we merely translate it into

machine language. Then while the program is running, the assertion can

1-4
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ASSERT (VALUE .GE. 0.0)
ASSERT (VALUE .LE. TWOPIL)

Figure 1.2. Examples of Assertions

be evaluated. As in the case of a logical function, the assertion has a

value of true or false. If the value of an assertion becomes false at

any point in the execution of a program, then this can be reported as

any other error message.

1.3 COMBINING ASSERTIONS AND SEARCH ALGORITHMS

Assertions give us a method for evaluating whether a program has
run correctly without looking at all of its output. If the assertions
are written correctly and they completely specify the algorithm, then
the correctness of the program can be determined while the program is
running. This is not to say that writing assertions to accomplish this
is easy; a comprehensive and complete set of assertions for a program is
difficult to develop. But if it can be done, then the problem of
examining the output of a program to determine whether it executed a

test case correctly has been solved.

Since using assertions means that we no longer have to examine the

output of a program, the automated testing of computer programs becomes

possible-—provided we can automate the selection of test cases. If we

can transform the output from the assertions into a function, we can

utilize the search techniques from operations research to locate errors.

The basic idea is this: The function we define is the number of
assertions that become false during the execution of a particular test
case. The independent variables are the values of the input variables '

of the program. The search technique will be used to find the values of

1-5
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the input variables for which the maximum number of assertions are
violated. The function relating the number of assertions violated to
the values of the input variables is called the “error function,” and

the surface that it describes is called the "error space.”

If the search algorithm 1is to perform correctly, the error
function must (1) not define a flat (uniform) surface and (2) not be
discontinuous (have spikes) at any points. A previous experiment,1
investigated the error function for a scheduling program. It was found
that the error function for this program was neither uniform nor
discontinuous. In a second experiment, described below, we have
attempted to show that this is also true for another program “seeded”
with several types of errors. We have also attempted to determine the
efficiency of the search technique in locating these errors relative to

other types of testing methods.

l.4 OVERVIEW OF THE EXPERIMENT

The experiment was to select a program, add assertions to it, and
seed it with errors from a list of typical software errors. The
location of the errors was determined randomly. Each of the errors was
inserted in the program one at a time and the program was then tested by
systematically choosing combinations of values for the input parameters.
This testing was done automatically by a program which varied the input
parameters over the required values. After this, the program was tested
by the search routine, first by allowing the search algorithm to vary
the same variables that were varied in the first tests, and then

allowing it to vary all of the input variables.

1.5 THE PROGRAM
The program selected takes an orbit described by six independent

parameters (longitude of the ascending node, inclination of the orbit

1J. Benson, A Preliminary Experiment in Automated Software Testing, Gen-
eral Research Corporation TM-2308, February 1980.
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plane, angle of the perigee, eccentricity, time at perigee, and semi-
major axis) and converts this description into a state vector represen-
tation of a point on the orbit (time, postion, velocity, and accelera-
tion). The point is determined by the values of two other parameters.
The range of values of one of these parameters is dependent upon the
other. In all, there are ten input parameters, seven of which are

independent of the others.

1.6 THE SEARCH ROUTINE

The search routine chosen for the experiment was one developed by
BOXl called complex search. This algorithm constructs a hypertriangle,
or complex, of the values of the function from several tests and then
rotates, shrinks, expands, and projects the complex in order to locate a
value which 1is larger (in the case of finding the maximum) than the
worst point currently in the complex. The worst point is then replaced
by the new point and the process continued until no further progress can

be made.

1.7 THE TEST DRIVER

Several programs were also written in order to support the testing
and make it as automatic as possible: (1) A test driver, which handled
the selection of the testing method to be used and read in an initial
test case was written, (2) a set of subroutines which implemented the
constraints among the input variables used in generating new values for
the search routine, and (3) a set of routines to count the number of

assertions violated in each test and print the results.

1.8 THE ASSERTIONS

Assertions added to the program were of three types: (1) those
that described ranges of variable values, (2) those that described the
relationship between values of variables, and (3) those which kept track
of the history of the computation. Two routines were also written which

included assertions to check the values of the input variables and the

1M. J. Box, "A New Method of Constrained Optimization and Comparison

with Other Methods," Computer Journal, Vol. 8, 1965.
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correctness of the results. These routines were invoked at the begin-

ning of the test program and at the end of the test program.

1.9 SELECTING ERRORS

Certain categories of errors were selected from a list of common
software errors. Errors of these types were inserted into the test
program by randomly selecting sites (statements in the program) where

the particular type of error could occur.

1.10 TESTING TECHNIQUES

The program was then tested by inserting one error at a time.
First, the program was tested by taking combinations of values from
three input variables. The permissible input range of each of the
variables was divided up into equal subranges so that a reasonable
number of test cases could be performed. Test values for each variable
were selected by choosing the end-points of each subrange. The program
was then tested using the selected values for the three input variables.
First, the values of two of the three variables were fixed at a value
selected from their range of test values. Then, a test was run for each
of the test values of the third variable. The value of the third
variable was then fixed, and the first variable was varied over its set
of test values. After this, the values of the first and third variable
were fixed and the second variable was varied. The testing continued
until all combinations of the test values for the three varibles had
been used. In this way a "grid"” over the input space was obtained. The
values of the variables which caused assertions to be violated and the

number of assertions violated were recorded.

A majority of the errors (15 out of 24) were not detected by the
original assertions for a number of reasons. Two of the errors were not
detected since they occurred only if another error had occurred pre-
viously during program execution, For other errors, it was found to be

very difficult to write assertions that would detect them. Finally,

R hatitadis —0 =2 e £
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eight of the errors were not detected simply because the program did not
contain enough assertions. In order to investigate the performance of
the search algorithm, new assertions were added to the program and the
grid tests were run again. Errors which were not detected in this
second set of tests were removed from the list of errors used in the

experiment.

Next, the errors were again inserted one at a time and the search
routine was allowed to vary only the variables which were varied in the
grid tests, The number of assertions violated and the input values

which caused the violations were recorded.

Finally, the errors were again used one at a time; but this time
the search routine was allowed to vary any of the seven independent
variables in order to locate a maximum. Again, the assertiomns violated

and the input values which caused the violations were recorded.

1.11 RESULTS

The results from the grid tests demonstrated the effectiveness of
the assertions in detecting the errors. Table 1.1 shows the results
of these tests. Of the original 24 errors, nine (thirty-eight percent)
were detected by the original assertions, and eight (thirty-three
percent) were detected by the assertions that were added. (The seven
errors, twenty-nine percent, which could not be detected by assertions,

were not tested).

The relative effectiveness of the search testing methods versus
the grid testing method is summarized in Table 1.2. (In this table, and
those following, the "error number” column refers to a unique number

assigned to each error by the error generation method discussed in Sec.

4,) 1In one case, the grid technique caused an assertion violation which

1-9
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TABLE 1.1
RESULTS FROM GRID TESTS

Number Percentage

Errors Detected by

Original Assertions 9 38
Errors Detected by

Added Assertions 8 33
Errors Not Detected

by Assertions 7 29
Total 24 100

TABLE 1.2

EFFECTIVENESS OF SECOND TESTING TECHNIQUES

Number of Assertion Violations
Detected by Testing Technique

3-Variable All-Variable
Grid Search Search
w14 1 2 3
2
g 28 1 0 (4]
= 47 2 2 1
o
K 74 7 7 8
£




neither search technique caused. 1In another case, the search technique
using all variables was not able to cause an assertion violation that
was caused by the grid techmique and the search varying three variables.
On the other hand, the search technique using all variables was able to
cduse an assertion violation which neither the grid technique nor the
search using three variables was able to cause. Finally, in one case
the search technique using three variables caused an assertion violation
that the grid technique did not cause while the search using all
variables caused another assertion violation in addition to the one
discovered by the search using three variables. In all other tests,

each of the methods caused the same assertions to be violated.

The efficiency of the search technique was not measured directly,
but an estimate of the behavior of the all-variable search technique in
relation to the grid technique can be given. Except for error 52, which
required 683 tests, the grid technique required 317 tests. In the case
of the search method which varied all input variables, Table 1.3 shows,
for each error, the number of the test in which the first assertion
violation was detected. In all, fifteen of the seventeen detectable

errors were detected by the seventh test in the search.
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TABLE 1.3
DETECTION OF ASSERTION VIOLATIONS BY SEARCH METHOD

Error Test Number of First
Number Assertion Violation

1

3
13
14
28
31
37
41
47
48
52
54
56
57
64
67
74
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*No assertion violations detected.




PO o0 oy

2 e

2 THE TEST PROGRAM

f The program selected for testing is one of a number of subroutines
| in a program library called TRALD.l This set of programs is used to
compute solutions to orbital mechanics problems. The particular
{ program, ORBP, was written in 1968 and has been used extensively since

that time. It has undergone several revisions. The function of the

program is to take as input an orbit described by a set of eight

parameters or orbital elements (only six of which are independent), and

produce from this set a state vector representation of a point on the
orbit. The state vector includes the time, position, velocity and
acceleration in three dimensions. The particular point on the orbit is
specified by a parameter (MODE), which, in conjunction with another
parameter (VALUE), allows the state vector describing the point to be
computed. (For a simple discussion of the methods for describing orbits

‘see MaCkO-z) The orbital element vector is shown in Table 2.1 along

TABLE 2.1
ORBITAL ELEMENT VECTOR PARAMETERS

Parameter Range
1. Longitude of the ascending node 0 to 2m
2. Inclination of the orbit plane Otonm
3. Angle of the perigee 0 to 27
4, Semi-latus rectum dependent
5. Eccentricity (E) 0.1 to 0.9
6. Time at perigee 0 to period
7. Period divided by 2 dependent
8. Semi-major axis (A) 6,375,180 to

35,861,000 meters

lT. Plambeck, The Compleat Traidsman, General Research Corporation

IM-711/2, revised edition, September 1969.

' 2S. J. Macko, Satellite Tracking, John F. Rider Publisher, Inc., New
York, 1962.




with the ranges of each independent parameter as used to test the

program. The letters E and A are used to indicate the eccentricity and

semi-major axis respectively.

An orbit is described by the following eight parameters: (1)
longitude of the ascending node, (2) inclination of the orbit plane, (3)
argument (angle) of the perigee, (4) semi-latus rectum, (5) eccentri-
city, (6) time at perigee, (7) period divided by two pi, and (8) the
semi-major axis. Of these eight paramenters, the semi~latus rectum and
the period are dependent upon the others; they are included in the
vector only to simplify the calculations. The way in which these

parameters are calculated from the others is shown in Fig. 2.1.

The output state vector is shown in Table 2.2. It includes the
time at the point on the orbit, and the position, velocity and acceler-
ation in three dimensions. These last parameters are given in a

coordinate system relative to the center of the earth.

Semi-latus rectum = A * (1 - EZ)
where

A = semi-major axis

E = eccentricity

Period = (A * A/GCON) * 27

where

GCON = gravitational constant = 3.9857 x 1014

Figure 2.1. Calculation of Dependent Orbital Parameters
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TABLE 2.2
STATE VECTOR PARAMETERS

Parameter

Time

X-coordinate

Y-coordinate

Z-coordinate

X-velocity

Y-velocity

Z-velocity

X~acceleration

.

O 0 N 0N W N

Y-acceleration

p—
leo]

Z-acceleration

Together, the parameters MODE and VALUE specify a point on the
orbit. The possible values of the mode parameter and the corresponding
ranges of the value parameter are shown in Table 2.3, The mode
parameter directs ORBP to perform one of six possible computations to
locate a point on the orbit specified by the orbital element vector.
The MODE parameter indicates how the VALUE parameter is to be inter-
preted. That is, the value parameter is only a number, the MODE para-
meter indicates what that number stands for. For example, MODE could
indicate the time at the desired point, and therefore VALUE could assume
any value between 0 and the period of the orbit. The six possible modes
are: (1) angle of the point from the perigee point, (2) radius in the
increasing direction (i.e., toward apogee), (3) radius in the decreasing
direction (toward perigee), (4) time, (5) altitude in the increasing

direction, and (6) altitude in the decreasing direction.
According to the values of MODE and VALUE, ORBP calculates a state

vector using the orbital element vector. The calculations for altitude

and radius are performed using the same code. This is done by adding

2-3
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TABLE 2.3
MODE AND VALUE PARAMETERS

Mode Meaning of Value Range of Value
0 Angle from perigee 0 to 27
1 Increasing radius R to R
min max
2 Decreasing radius R to R
min max
3 Time 0 to Period
4 Increasing altitude Alt ., to Alt
min max
5 Decreasing altitude Alt , to Alt
min max

the radius of the earth to VALUE if it corresponds to an altitude (MODE
equal 4 or 5). (See Fig. 2.2.) The point on the orbit is found by
computing the angle between the point and the perigee and the radius
from the focus of the orbit (the center of the earth) to the point. The
only locp in the program occurs when MODE indicates that VALUE is to be
interpreted as time. In this case, an iterative algorithm is used to

calculate the angle of the point from the perigee.

2.1 THE SEARCH ROUTINE

The search routine selected for the experiment was one invented by
Box,l called complex search. It is a method for solving for the maximum
or minimum of a nonlinear function. The independent values of the
function may be limited by nonlinear 1inequality constraints. The
independent values of the function along with the function value define

a space. The set of values of the function define a hyperplame in the

1Box, op. cit.




Radius = A * (1 - E)

ff where §
A = semi~latus rectum ]
E = eccentricity
Altitude = radius - RBODY 1:
where ;
: RBODY = radius of earth = 6,375,180 meters Q

11 Figure 2.2. Calculating Radius and Altitude

L{ space. This hyperplane can then be expanded or contracted to find an

P extremum of the function. The hyperplane is called a "complex.”

bt e L A AN M .1 T3

‘ The technique is as follows. Choose a set of values of the

independent variables at random (subject to constraints) and determine

PR,

the value of the function from these values. The independent values and
} the function value define a point on the complex. Define other points
‘ l in the same way until there is one more point than the number of
5 independent variables in the function. Then replace the point with the
worst function value with a new point. The new point is found by
constructing the line formed by the rejected point and the centroid of
the remaining points. A set of coefficients is then calculated to
determine the exact location of the new point. These coefficients

determine the degree of reflection, expansion, shrinkage, contraction,

L ot Sne

and rotation to be applied in forming the new set of points. New points

are selected for the complex using the above technique until a solution

is found. This technique is somewhat immune to irregularities (hills

and valleys) in the surface being searched.

2-5
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The search program was adapted from an implementation by Cooper
which was used during the Adaptive Testing Experiment-1 In general, the
function may have many independent variables. In order for the search
routine to function correctly, there must be one more point in the com-
plex than there are independent variables in the function. For example,
if the function has two independent variables, then the complex would
have three vertices. That is, it would be a triangle. The coordinates
of each vertex would be the values of the independent variables and the
value of the function. For a function of two variables x and y, each

complex point would have the coordinates xl,yl,f(xl,yl) as shown in Fig.

2.3.

t(x,y) 2
s
f(X1, Y‘]) Z.
L
X1, Y1, f(x9, ¥9)
Ly
T /I — \
|/
|//

Figure 2.3. Coordinates of the Vertices of a Complex

lD. W. Cooper, Adaptive Learning Requirements and Critical Issues, Gen-
eral Research Corporation CR-4-708, January 1977.

R A T




The constraints were computed by a subroutine written especially
for the test program. They included ranges of variables and relation-
ships between the variables. Examples of the latter constraints include
the relationship between the semi-major axis and the semi-latus rectum
of the orbit (shown in Fig. 2.1) and the valid range of the VALUE param-

eter for different values of the MODE parameter (shown in Table 2.3).

An input parameter selects which independent variables are to be
varied by the search algorithm. This was used in the experiment to vary

only three of the independent variables in one test and all of the

independent variables in the other test.

The termination condition for the search routine is determined by

E: another input parameter. This parameter is a maximum function value
ﬁ which when found, reinitializes the search. When a set of input values

has been found which causes this number of assertion violations, the

8 | maximum function value is increased by one and the search is begun again
for this new value. If the new maximum value is not found, then the
i algorithm continues searching until one-hundred tests of the test

*
program have been run.

After constructing the complex, the search routine finds the worst

point (minimum function value over all points in the complex) and tries

b to replace it with a point with a larger function value (assuming the
maximum of the function is being sought). It does this by applying the
3 operations of reflection, expansion, centroid substitution, contraction,
& shrinkage, and rotation to the complex in that order. In order to
illustrate each of these operations, Fig. 2.4 shows the effect of each

; of these operations on a triangle. In "reflection” the new point is

found by reflecting the old point through the centroid of the complex.

*gbte that the "test number” column in Table 1.3 refers to the number of

) tests or runs of the test program (ORBP), not the search program. One

' run of the search program corresponds to at least 100 runs of the test
program.

-
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REFLECTION

AN-56483

EXPANSION

CENTROID

SUBSTITUTION

CONTRACTION

SHRINKAGE

\ ROTATION

Figure 2.4. Complex Transformations
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That is, the new point and the old point lie on a line through the
centroid. The new point and the old point are each the same distance
from the centroid. In "expansion,” the distance of the new point from
the centroid is greater than the distance from the old point to the
centroid. In centroid substitution, the worst point is replaced by the
centroid of the complex. “Contraction” reduces the distance from the
new point to the centroid to be less than the distance from the old
point to the centroid. “Shrinkage,” instead of reflecting through the
centroid of the complex, uses the point defined by the largest function
value as the reflection point. Finally, "rotation” rotates the complex
about the centroid in order to locate a new point. The cycle of
operations continues until a maximum value is found or one-hundred tests

have been run.

2.2 TEST DRIVER

A test driver was written to interface the search routine with the
test program and initialize the test. The test driver determines which
testing technique will be used: grid, search varying three variables,
or search varying all variables. It initializes the values of all vari-
ables needed to conduct the test and reads in the basic set of crbital
parameters which are common to all tests. It reads the values of the
variables to be varied and their ranges and, for the grid test, divides
the ranges up into intervals and selects a set of values for each vari-
able corresponding to this division. It also calculates the dependent
orbital paramenters (semi-latus rectum and period divided by 27) and

runs the grid tests. The search routine itself runs the search tests.

Other routines detect when assertions are violated, count the
number of assertions violated in each of the tests, print a table of the
assertions violated by test and record and print other information. The
test program runs with other routines from the TRAID library which it

uses to perform certain computations and input, output and formatting

operations.

IETRIRE . UIESCONS NN,




3 THE ASSERTIONS

Assertions are statements added to a program to describe the

intent of the program, the relationships which must hold between the
variables in the program, the rules by which the variables can be
accessed, and other information about the program which cannot be
expressed in the programming language. In short, assertions are a way
in which to state a program's specifications. They are useful in
program verification, in consistency checking, and for reporting

unexpected behavior while the program is being tested.

When assertions are translated into executable code by a compiler
or preprocessor, they are called "executable assertions.” Executable
assertions placed at the beginning of the program are called "initial

assertions,” those placed at the end of the program are called "final
assertions,” and those placed within the program are called "inter-
mediate assertions.” Initial assertions describe the conditions that
must be satisfied when the program is entered. These conditions can be
the values of certain variables, their ranges, or the relationship
between the value of one vriable and the value of another (for example
that X is greater than Y). Final assertions describe the result that
the program is to compute-—the range of values of the results and the
relationships that must hold between any of the resultant variables.
Intermediate assertions are used to describe the values that variables
can assume and the relationship between these values and the values of
other program variables at intermediate points in the program. They may

also be used to specify the computational steps that a program must

perform in response to the value of a particular logical expression.

Almost any condition or specification can be expressed using
executable assertions. An executable assertion is a logical expression
which, if evaluated to false, signals the violation of a specifiction.

When the program is executed, the logical expression in an assertion is

evaluated when the assertion 1is reached. If it 1is false, an error




i message 1s printed, the assertion that was violated is recorded and a

recovery routine (if specified in the assertion) is executed.

The assertions written for the test program, ORBP, describe thre;
‘f kinds of specifications: (1) the ranges of variables, (2) the rela-

tionships among variables, and (3) the history of the computation. For

example, the assertions shown in Fig. 3.1 define the range of the
' parameter VALUE when it is interpreted as the angle between a point and 1
the perigee. An example of the second type of assertion is shown in ﬁ
Fig. 3.2. Here VALUE is interpreted as the radius of the orbit.

Therefore, its value must have a particular relation to the value of the

semi-major axis, A , and the eccentricty of the orbit, E. The final

i| type of assertion is used to keep track of the jiterative computation of
the angle from perigee when VALUE is interpreted as the time at which a

wi point on the orbit is reached. The computation proceeds in two dif-
ferent ways depending on whether the number of iterations is even or
. | odd. The code segment which performs this computation is shown in Fig.
-i 3.3. The computation is limited in the number of iterations it is to
perform. This is verified by adding the variable MTRY to the code to

count the number of iterations and an assertion to test its value. This

also helps identify errors which cause the computation to be performed

out of sequence.

The assertions for the test program were organized in the follow—
ing way. Initial assertions were gathered together in a 1logical
p: function INPCHK which was invoked by the initial assertion

INITIAL ( INPCHK(MODE, VALU, ORBEL, STATE) )

which is the first assertion in the test program. This assertion shows
that assertions can contain calls to logical functions, that is func-

tions whose value evaluates to true or false. INPCHK contains assert-

ions which check the ranges of the input variables to ORBP, verify the #
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ASSERT (VALUE .GE. 0.0)

ASSERT (VALUE .LE. TWOPL)

Figure 3.1. An Example of Range Assertions

ASSERT (VALUE .GE. (A * (1.0 - E) ) )

ook

ASSERT (VALUE .LE. (A * (1.0 +E) ) )

e

Figure 3.2. An Example of Relationship Assertions

T = VALUE
EAl = FM
NTRY = -1
41 CONTINUE

MTRY = NTRY
MTRY = NTRY + 1
IF (NTRY .EQ. 20) GO TO 250
EA = FM + E * SIN (EAL)
IF (ABS (EAl1-EA) .LE. EMISS) GO TO 42
IF (MOD (NTRY,2) .EQ. 1) 45, 46

45 CONTINUE
EAl = EA2 - (EAl-EA2)**2/(EA+EA2-2.*EAl)
ASSERT ( MTRY .LT. NTRY )
GO TO 41

46 EA2 = EAl
EAl = EA
ASSERT (MTRY .LT. NTRY )
GO TO 41

Figure 3.3. An Example of History Assertions
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relationships that must hold among these variables and verifies that the
orbit defined by the orbital element vector is an ellipse.

The output assertions for ORBP were written in the same way. A

logical function OUTCHK was written which was invoked by the assertion
FINAL ( OUTCHK(MODE, VALU, ORBEL, STATE) )

just before ORBP was exited. The function OUTCHK checked the output of
the test program by comparing the representation of the orbit in terms
of the state vector which was calculated, to the representation of the
orbit as input to ORBP in the orbital element vector. It does this by
recalculating the orbital element vector from the state representation

of the point on the orbit. The code and assertions for OUTCHK are shown

in Appendix A.

Other assertions were added directly to the test program to check
the ranges of variables, the relationships between their values and the
order of the computation. These assertions were derived from document-
ation provided with the program and from equations from the theory of
orbital mechanics. The listings of these three programs are included in

Appendix A.

The assertions for ORBP were not all written at one time. In
fact, the combination of existing assertions and the search algorithm
made the creation of new assertions an iterative process. As more was
learned about the behavior of the program through the testing process,

better, more precise assertions could be written about it.

Assertions were first written from information gained by reading
the program and its documentation and by studying the equaticns of
orbital mechanics. However, the first set of grid tests identified a

number of errors which could not be detected using assertions and a
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number of errors which were not detected by the assertions already in
the code. Therefore, the results from these tests were used to write
more precise assertions which could detect these errors. No new
assertions were added to the code after the first set of grid tests
although a number of assertions were changed. This is discussed more in

the results section below.




4 THE ERRORS

Errors were pgenerated for the test program using a procedure
developed by Brooks. A complete description of the method can be found
in Gannon, Brooks and Meeson.1 The method uses error types and frequen-
cies from a previous study2 to randomly select a set of errors to be
"seeded” in the program. The error types from Project 5 of this study

were used in the experiment. These error types or categories are shown
in Table 4.1.

Not all of the categories were chosen for use in the experiment.
Operation errors, other errors, documentation errors, and problem report
rejection errors were not included because they did not include errors
which were detectable while running the program. The experiment was
specifically concerned with detecting run-time errors. Data input
errors and data output errors were not included because the test program
does not include any input or output statements of any consequence other
than error messages. Data definition errors (which have to do with
subscript referencing) were not included since explicit, constant
subscripts were used to access arrays in the test program. Finally,
data base errors were not included since the test program does not

access a defined data base.

The remaining categories (computational errors, logic errors, data
handling errors, and interface errors) were used to generate errors for
ORBP. Table 4.2 shows (1) the percent of errors found in each category
by the original study, (2) the percent of errors in each category when
only these categories are considered, (3) the number of errors and the

percent of errors in each category which were used in the study, and (4)

lC. Gannon, R. N. Meeson, and N. B. Brooks, An Experimental Evaluation

of Software Testing, General Research Corporation CR-1-854, May 1979.

2Thayer et al., op. cit,
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TABLE 4.1
ERROR TYPES USED IN EXPERIMENT

PROJECT 5 ERROR CATEGORIES

Applicable to

Experiment
A_000 COMPUTATIONAL ERRORS 4
A_100 Incorrect operand in equation "4
A 200 Incorrect use of parenthesis /
A_300 Sign convention error %
A_400 Units or data conversion error 4
A_500 Computation produces over/under flow /
A 600 Incorrect/inaccurate equation used/wrong Y
sequence
A_700 Precision loss due to mixed mode v/
A_800 Missing computation v
A 900 Rounding or truncation error 4
B_000 LOGIC ERRORS 4
B_100 Incorrect operand in logical expression v
B_200 Logic activities out of sequence 4
B_300 Wrong variable being checked v
B_400 Missing logic or condition tests Y/
B_500 Too many/few statements in loop
B_600 Loop iterated incorrect number of times
(including endless loop)
B_700 Duplicate logic /
C_000 DATA INPUT ERRORS
C_100 Invalid input read from correct data file
C_200 Input read from incorrect data file
C_300 Incorrect input format
C_400 Incorrect format statement referenced
C-500 End of file encountered prematurely
C_600 End of file missing
D_000 DATA HANDLING ERRORS /
D_050 Data file not rewound before reading
D_100 Data initialization not done ‘ /
D_200 Data initialization done improperly /
D 300 Variable used as a flag or index not set v
properly
D_400 Variable referred to by the wrong name v
D_500 Bit manipulation done incorrectly
D_600 Incorrect variable type /
D_700 Data packing/unpacking error
D_800 Sort error
D_900 Subscripting error
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Table 4.1 (cont.)

Vi e

PROJECT 5 ERROR CATEGORIES
Applicable to
a Experiment
E_000 DATA OUTPUT ERRORS
E_100 Data written on wrong file é
E_200 Data written according to the wrong format
statement §
E_300 Data written in wrong format :
E 400 Data written with wrong carriage control
E 500 Incomplete or missing output .
E 600 Output field size too small ;
E_700 Line count or page eject problem
E 800 Output garbled or misleading
]
F_000 INTERFACE ERRORS %
F_100 Wrong subroutine called 4 .
F_200 Call to subroutine not made or made in v i
wrong place r
F_300 { Subroutine arguments not consistent in v {
type, units, order, etc. }
F_400 Subroutine called is nonexistent
F_500 | Software/data base interface error
F 600 ; Software user interface error
F 700 | Software/software interface error v
! ;
! i
G_000 ! DATA DEFINITION ERRORS
- f
l G_100 E Data not properly defined/dimensioned
! G_200 | Data referenced out of bounds
! G_300 ! Data being referenced at incorrect locatiowu
! G 400 | Data pointers not incremented properly
1 s 1
)
H 000 : DATA BASE ERRORS
i
H 100 | Data not initialized in data base
H 200 I Data initialized to incorrect value
H_300 | Data units are incorrect
I_000 OPERATION ERRORS
I 100 Operating system error (vendor supplied)
I 200 Hardware error
1 300 Operator error
I 400 Test execution error
I_500 User misunderstanding/error
1 600 Configuration control error
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Table 4.1 (cont.)

.r..r..v....,.;.r.‘.*_.,..4,....._.,.<_<_.v~m_,....,-_—._‘..‘.‘.w
k]

PROJECT 5 ERROR CATEGORIES ‘
Applicable to 3
Experiment
J_000 OTHER
J_100 Time limit exceeded
J 200 Core storage limit exceeded
§ J 300 Output line limit exceeded
: J 400 Compilation error
‘ J 500 Code or design inefficient/not necessary
L J 600 User/programmer requested enhancement
r J_700 Design nonresponsive to requirements
i J 800 Code delivery or redelivery
; ‘ J 900 Software not compatible with project ;
5 standards i-
-
E' K_000 DOCUMENTATION ERRORS ]
3 i
K_100 User manual |
K 200 Interface specification
K 300 Design specification
K _400 Requirements specification
K 500 Test documentation
X0000 PROBLEM REPORT REJECTION . 3
X0001 No problem ]
X0002 Void/withdrawn I
X0003 Out of scope - not part of approved design ;
X0004 Dupiicates another problem report i
X0005 Deferred 4
¥
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the number of errors and percent of errors in each category which were

successfully detected by assertions (see results section).

In the original study, no attempt was made to match the error type
or category to a specific statement type in the program. In generating
errors for the experiment, statement types and other descriptive
information about the test program were generated automatically using an
automated program verification system, SQLAB.I The statement types were

then matched against errors using the method outlined below.

4.1 THE ERROR SEEDING METHOD

The errors were generated in the following way. First, each
statement in the test program was classified by type. Then a table
matching the error categories to statement types was constructed. This
is shown in Table 4,3. The set of statement types found in the test
program was then added to the error-category/statement~type table. This
gave a list of available error sites in the test program with associated
error categories. From this list of available error sites, potential
error sites were randomly selected and matched with the error sub-

categories by a previously written computer program.

From the 1list of potential sites and associated error subcate-
gories, errors were developed. The error site was first checked to be
sure that the error sub-category was appropriate for the site. For
example, if error type A200 (incorrect use of parenthesis) is selected
as a subcategory, the statement must contain parentheses in order to

include this error.

As each error was constructed, it was included in an “error
packet” containing an error number, a comment which identified the error

subcategory, and the code which altered the original code of the test

program in order to produce the error. Since the test program was

d 1S. H. Saib, "Application of the Software Quality Laboratory,” Vol. 2 of

Infotech State of the Art Report, Software Testing, Infotech Interna-
tional, Ltd., Maidenhead, Berkshire, England, 1979, pp. 231-243.
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stored on a program library maintained by CDC UPDA’I‘El (a batch’ source

text editor), the error packets could easily be inserted into the test

program. Figure 4.1 shows an example of an error packet.

Next the error packets were inserted into the test program and the
program was compiled and run. This was done to insure that the errors
were not detected by the FORTRAN compiler, the loader or the run-time
error routines of the operating system. In this way, twenty-four errors
were developed for use during the testing. Table 4.4 shows each of

these errors by number, the error subcategory to which it belongs and a

short description of the subcategory.

Seven of the errors generated were eliminated from the testing
during the grid tests since they could not be detected using assertions.

This is discussed in Sec. 6.1.

*IDENT 13
*DELETE ORBP.63
C Al00
VALUE = VALU-RBODY

Figure 4.1. An Error Packet

1UPDA’I‘E Reference Manual, Control Data Corporation, Arden Hills, Minm.,

1975.
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TABLE 4.4
ERRORS USED IN THE EXPERIMENT

Ervor
Number Category Description
1 A200 incorrect use of parenthesis
A300 sign convention error

8 A600 incorrect/inaccurate equation
used/wrong sequence

13 Al100 incorrect operand in equation

14 A800 missing computation

28 B400 missing logic or condition tests

31 B40O missing logic or condition tests

36 B200 logic activities out of sequence

37 B200 logic activities out of sequence

40 B300 wrong variable being checked

41 D200 data initialization done improperly

46 D100 data initialization not done

47 D100 data initialization not done

48 D400 variable referred to by the wrong name

52 D00 incorrect variable type

54 D600 incorrect variable type

55 D600 incorrect variable type

56 D400 variable referred to by the wrong name

57 D300 variable used as a flag or index not set
properly

62 F100 wrong subroutine called

64 F100 wrong subroutine called

67 F700 software/software interface error

74 F200 call to subroutine not made
or made in wrong place

77 F700 software/software interface error

4~9
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! 5 THE EXPERIMENT

The errors were inserted into the test program one at a time.
! First, grid tests were performed to identify any errors which could not
& be detected by assertions or errors for which other assertions had to be

written. After the former errors were eliminated from consideration and

assertions were added to the code to detect the latter, the grid tests

were performed again. The results from these tests were used as a

baseline by which to evaluate the search technique. A set of assertions

which were violated when the test program was run using the grid test é
method was associated with each error. After the grid tests were run, é
the search algorithm was used to test the program by varying only three }
of the maximum of eight variable parameters. Finally, the search ?
algorithm was allowed to vary all of the parameters. %

J

3 Recall that of the eight parameters in the orbital element vector,
. only six of these are independent. The independent variables are: (1)

I longitude of the ascending node, (2) inclination of the orbit plane, (3)

argument (angle) of the perigee, (4) eccentricity, (5) time at perigee,
i and (6) semi-major axis. These parameters along with MODE and VALUE
were the parameters which could be varied by the test driver. For each
of the tests, a standard orbit was used as a basic test case. The
parameters of the orbit are shown in Table 5.1. The parameters which

were not being varied in a test remained fixed at these values.

o

5.1 GRID TESTS

For the grid tests, three variables were varied, MODE, VALUE, and
the eccentricity of the orbit. The tests were performed in the follow~
ing way. The standard orbit was input to the test driver program. The

4 test driver then varied the values of the paramcters and ran tests of

ORBP. The data collection routines recorded the number of assertions

violated in each test along with the values of the input variables.

Lo

-
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TABLE 5.1
STANDARD ORBITAL PARAMETERS

Parameter Value
Longitude of the ascending node n
Inclination of the orbit plane m/2
Angle of the perigee n/2
Eccentricity 0.1
Time at perigee 0
Semi-major axis 10000

The parameter values were varied in the following way. The value
of the eccentricity of the orbit was varied from 0.1 to 0.9 in steps of
0.2. (The range and step size of any variable can be varied by the test
driver program.) The value of the mode was then varied from 0 to 5.
For each value of MODE, the corresponding VALUE parameter was varied
over its range from minimum to maximum such that eleven VALUEs were
generated for each value of MODE. The range of the VALUE parameter for
each value of the MODE parameter is shown in Table 2.3, in this way, a
coarse "grid” was drawn over the input space of the program for three
variables. The values of the variables determine points in the grid and

were used as input values to the program during this series of tests.

For error number 52, the time at perigee had to be varied instead
of the eccentricity in order for the assertions to detect the error.
This parameter was varied from O to the period in order to generate

eleven test values.
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5.2 SEARCH VARYING THREE PARAMETERS

In the second part of the experiment the search routine was used
to detect the errors. Again the standard orbit was used as a basis for
the testing. It was input to the test driver and the search routine was
allowed to vary the values of MODE, VALUE and the eccentricity of the
orbit (time at perigee in the case of error 52) in order to locate the
error in the test program. All other input parameters to ORBP remained
constant. T e testing was done by inserting the errors in the test
program one at a time. For each error, the assertions violated were

recorded along with the values of the parameters.

The search routine was allowed to run until it found the number of
assertion violations preset by an input parameter. When this number of
assertion violations was detected, it was 1increased by one and the
search algorithm tried to locate a combination of input values which
caused the new number of assertions to be violated. In this way, the
search algorithm was directed to locate values of the input parameters
which caused the maximum number of assertions to be violated. The
search routine stopped if it had not located this number of errors in

one hundred more tests.

5.3  SEARCH VARYING ALL PARAMETERS

For the final stage of the experiment, the search routine was
allowed to vary all of the input parameters in order to locate assertion
violations. Again, the standard orbit was used as a starting test case.
In addition to this set of input data, the search routine chose random
values for the parameters until eleven test cases were identified. A
test case consisted of the orbital element vector and the MODE and VALUE
parameters. This is one more test case than the number of variables in

the input space of the test program and is the number of function values

required to construct the complex. The number of assertions violated

for each test case was determined by running the test program.




The search continued by varying the input parameters according to
the search algorithm until a preset number of assertions was violated.
As in the previous search tests, when this occurred the number was
increased by one and the search continued in order to locate a new test
case which violated this new number of assertions. If the new number of
assertions were not violated in any test after one hundred tests, the

search was stopped. Each one of the errors was tested in this way.

Figures 5.1 to 5.5 show some of the output produced by the search

program when run with error number 13. Figure 5.1 shows a template for

interpreting the output. Error information produced in response to the

violation of an assertion appears first, as shown by error 9 in Fig.

5.2; or there may be none, as in test 6. Next, the test number and the
action performed by the search routine in selecting the new point is
printed. The possible search actions are shown in Table 5.2. The
values of MODE, the orbital parameters and VALUE are then printed.

Finally, the "performance value,” the number of assertions violated in
the test is printed.

Figure 5.2 shows the tests used to initialize the complex, that is
those which determine the vertices of the complex by obtaining eleven
values of the error function. Tests 7 and 9 have already caused

assertions to be violated. Note that all the orbital elements, MODE and
VALUE are being varied.

Figure 5.3 shows tests in the middle of the testing cycle. The
search routine is applying appropriate transformations, rotation,
reflection, centroid substitution and contraction in order to remove the
worst point from the complex and locate a point where the maximum number
of assertions are violated. Note that not all search actions are tried
(e.g., expansion, shrinkage), since other parameters of the complex and
error function determine which transformations are applied. In Fig. 5.3

tests 44, 45 and 47 located new input values which caused assertions to
be violated, whereas test 46 did not.

5-4




t Error information from assertions

! Test Number Search Action

i Worst Point Orbital Elements

Mode Longitude of Inclination Angle of Semi-
Ascending Node of the Orbit Perigee latus
(Radians) Plane (Radians) Rectum
(Radians) (Meters)
Eccentricity Time at Period/2nm Semi~ Value
Perigee (Seconds/ major
(Seconds) Radian) Axis
(Meters)

Performance Value = Number of assertion violations

Figure 5.1. Search Program Output Template

TABLE 5.2
POSSIBLE SEARCH ACTIONS

Search Action Meaning
INITIAL Initialize Complex
' REFLECT Reflection
g EXPAND Expansion
E CENTROID Centroid Substitution
g CONTRACT Contraction
? SHRINK Shrinkage
ROTATE Rotation
RE-INITIAL Re-initialize Complex
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#RUN INPUTI INPUT2 #FALSE #DIFFERENT MODE VALUE
ASSERTION ASSERTION

247754%,659
9649931,060
139%54923,49
24389119,03
8871067,739
1760571,330
20756872.74
22330022,80
27015515,91
19513234,41
404u234,171

«7526
,6048
.21700
,5000
.2899
L3879
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<7346
18952
«3555
«6973
. 6239
+5881
«9000
e 7234
+9000
L7234
«7053
6261
7474
6471
8071
6769
«1774
+5000
7228
.9000
«1557
5503
«3530
24855
L8433
5648
«7040
.6108
« 25954
5489
w4019
.1000

0.
4533190,345

0.
453%5190,345
5737662.000
7402021 ,345

0.
4533190,345
o.
4S33190,345
Q.
4533190,345
23124989,06
1435222,244
5588024 ,749
1635816.,571
6107643,223
§951144,293
8025393,.758
11674092,79
188608%7,79
11115483,73
14588170,.76
17226371,.99
3876077.474
1116171%,66
7518896,567
7331062,939
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INPUTL = ORBIT(6) INPUT2 = INPUTS =

¥OCULE STuTH TYPE FAILURESs

ORBP 109 ASSERT 34
QUTCHK 142 ASSERT 38

¢ HOW MANY RUNS EACH ASSERTION FAILED IN 102 RUNS

Figure 5.5. Summary of Search Testing for Error 13
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Figure 5.4 shows a later stage in the search testing. Here almost

every test results in some assertions being violated.

Figure 5.5 is a summary of the results of the search testing for
error number 13, Only the tests in which assertions were violated are
shown. The summary shows for each test (1) the number of assertions
violated, (2) the number of different assertions violated, and (3) the
values of MODE and VALUE. (The INPUT! and INPUT2 columns are used for
the grid testing.) The figure also shows the progress of the search
routine during the testing. At the beginning of the testing, assertions
were violated only every few tests. At the end of the testing, almost
every test resulted in assertions being violated. Finally, the locatisn

of the assertions that were violated and the number of times that they

were violated are printed.

l
1
#
1
!




——

6 RESULTS OF THE EXPERIMENT

Four major results were found from the experiments: (1) the
original set of grid tests found that a number of the errors could not
be detected through the use of assertions, (2) the search tests located
assertion violations for two errors which the grid tests did not

discover but there were two errors for which the grid tests found

assertion violations where the search tests did not, (3) the search

tests were more efficient than the grid tests in locating assertion

violations, and (4) the search tests discovered a number of boundary

conditions which caused assertion violations.

6.1 ERROR DETECTION USING ASSERTIONS

Of the twenty~four errors originally used for the testing, only
nine (37.5%4) of these errors were detected by the first assertions
placed in the code. By adding more assertions to the test program,
eight more errors were detected (33.34). The remaining seven errors
(29.2%4) could not be detected by placing assertions in ORBP. Table 6.1
lists these errors along with their categories, short descriptions and

the reason they could not be detected by assertions.

Two of the errors could not be detected by the test method because
they occurred only after another error had occurred first. Another
error occurred only if values of the input parameters were out of range,
a possible source of error, but not one considered in the experiment.

Three of the errors could be detected by static analysis techniques such
as variable initialization checks, parameter checks and cross-references
but are less easily detected using assertions. These errors cannot be
easily caught by assertions because of the limits placed on the as-

sertions by the semantics of the programming language. For example,
there is no way to state in an assertion that a variable has been
initialized to a particular value other than by stating that the
variable has that wvalue. If the value happens to be zero, and the

compiler assigns this value to the variable automatically, then there is
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no way to write an assertion that states that the variable was initial-
ized. Stated another way, we can write an assertion which states that a
variable is equal to a certain value, but not that it has been initial-
ized. Similarly, it is difficult for an assertion to state that a
subroutine call has a certain number of parameters, or that a variable
is spelled correctly. Since assertiouns are written using the constructs
of the programming language, they cannot state things about the program

that cannot be stated in the programming language.

The other error which was not used caused a run—time error to
occur in a library routine. This could be detected in the library
routine by an assertion, but not in the test routine. Again, the
specific error indicates the limited power of assertions. In this case,
a REAL variable was declared as INTEGER. There is no way using assert-
ions to state that the type of a variable is REAL. Again, this error

might have been located by a static analysis check for invalid parameter

types.

6.2 EFFECTIVENESS OF THE SEARCH TECHNIQUES

For most errors, the search technique (using three parameters and
all parameters) identified the same assertion violations as the grid
testing technique. In four cases (errors 14, 28, 47, and 74), however,
this did not occur. For two of the errors (28 and 47), the search
technique did not identify as many assertion violations as the grid
technique. In the other two cases (errors 14 and 74), the search
technique identified assertion violations that were not detected in the

grid tests.

In error 28, a statement is deleted which tests for a zero

divisor. The sequence of code and the assertion that is violated is

shown in Fig. 6.1. The statement

IF(X2 .LE. 0) GOTO 48

6-3
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5 42 X2 = 1. + COS (EA)
Q =PI
IF (X2 .LE.0.) GO TO 48
ASSERT ( X2 .GT. 0.0 )
X1 = SQRT ( (1. + E) / (1.-E) ) * SIN (EA)
Q = 2. * ATAN2 (X1, X2)
48 CONTINUE

Figure 6.1. Error 28

- which was deleted to cause the error, is used to prevent a zero divisor

in the call to the arctangent subroutine. The documentation with this b

system support routine states that the sum of the parameters (X1 and XZ)

o b

squared must not be equal to zero, and that the arctangent of Xl divided
by X, is computed (see Fig. 6.2). An assertion violation is detected by
the grid test for this error but by neither of the search tests (three-
parameter or all-parameter). The reason for this is that the grid test
uses values for the time paramenter which locate the point on the orbit
w as being at apogee whereas neither of the search tests used this value.
! For the apogee point, the value of the angle EA becomes equal to PI and
the value of X2 becomes 0 (see Fig. 6.3). No run-time error was

detected by the arctangent routine for this value.

Error 47 1is the deletion of a data statement. This statement
initializes the value of the error tolerance for the iterative computa-
tion of the angle from perigee when the VALUE parameter indicates time.

% The statement which this effects and the assertions violated are shown

in Fig. 6.4. Since the FORTRAN compiler initializes all variables to
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sl w2

Y = ATAN2 (x] , X.)

2

Function: Computes arctangent of XI/XZ

Constraint: Xl2 + X,)2 #0

Figure 6.2. Arctangent Function

Statement
X2 = 1. + COS (EA)
for EA =
X2 =1, + COS (m)
X2 = 1. + (-1)
X2 =0

Figure 6.3. Value of Divisor at 7

Data statement deleted

DATA EMISS / 1.E-7 /

Loop exit statement

IF ( ABS (EAl-EA) .LE. EMISS) GO TO 42

Assertions violated

ASSERT ( ABS (EA-EAl) / (EA1-EA2) .LT. 1.0)
ASSERT ( ABS (EA+EA2 - 2.0 *EAl) .GT. 0.0)

Figure 6.4. Error 47
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zero, this variable 1is by default initialized to zero also. This
changes the termination condition of the loop so that it only ends 1{f
the value of EA equals the value of EAl. Again, both assertions will be

violated only 1if the computation is being performed for a particular

point on the orbit, apogee. In this case, both the grid test and the

search using three-parameters found values of the input parameters which

1
violated both assertions. The all-parameter search did not locate a &
value which violated the second assertion. 1

Error 14 is caused by the deletion of a statement. In this case .?

however, the three—parameter search found one more assertion violation
( 2 ) than the grid test technique ( | ), and the all-parameter search
found one more assertion violation than the three-parameter search
( 3 ). Figure 6.5 shows the sequence of statements and the assertlons

associated with this error. By removing the statement

Q = ACOS (QPRIME)

i error l4 causes the value of Q to be undefined. This error is detected

merwuss 3oy wr e

by the assertions in the OUTCHK routine when the orbits described by the

~

EETI T

Code Segment

QPRIME = ADIV(P-R, R*E)
Q = ACOS (QPRIME)

Assertions violated

: ASSERT ( RELERR(A, ORBIT(9) ) .GE. - EPS )
ASSERT (RELERR(A, ORBIT(9) ) .LE. EPS)
! ASSERT (OE(4) .LE. TWOPI + TWOPI)

A g Ko

Figure 6.5, Error 14
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& initial orbital parameters and the state vector representation are com-
pared. The grid test technique located values in the input space which i

caused the first assertion to be violated. That is, the semi-major axes

) of the two orbits did not agree. The three parameter search located
' other values for which this was also true and caused the second asser-
tion to be violated. The all-parameter search, since it also varied the
value of the argument of the perigee in the orbit element vector, was
able to locate values in the input space which caused the third asser-

tion to be violated.

Error 74 is caused by the deletion of a call to a subroutine which

copies the input orbital element vector to another array. Assertions

were written to compare the values of these two arrays after the point

of the call in the code. The grid test technique and the three-param-

1 eter search detected assertion violatioms for all of the variables in
the orbital element vector except one. This value was equal to O in the {
; eriginal orbital element description and was not varied by the two test
b | ' methods. Since the FORTRAN compiler initialized the values of the
receiving array to zero, the fact that this variable was not copied was g
not detected. When the all-parameter search was allowed to vary this '
parameter, the assertion violation for this parameter occurred also. i

Figure 6.6 shows the code and assertions for this error.

——— ~— —
I

Table 6.2 summarizes the results for these errors, showing the

error number and the number of assertion violations detected by each of

l the three testing methods.

b3 EFFICIENCY OF THE SEARCH METHOD

Data which could be used to measure the efficiency of the search
methods relative to the grid testing method were not collected during
the experiment. However, a4 rough estimate of the relative efficiencies

of the two methods is shown in Table 6.3. Except in the case of error

the errors required 317 tests. Table 6.3 shows for each error, the

) l 52, in which it took 683 tests to perform the entire grid test, all of
6-7
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Statement

CALL XMIT (8,0RBEL(2),0E(2))

Assertions violated

ASSERT ( OE(2) .EQ. ORBEL(2)
ASSERT ( OE(3) .EQ. ORBEL(3)
ASSERT ( OE(4) .EQ. ORBEL(4)
ASSERT ( OE(5) .EQ. ORBEL(5)
ASSERT ( OE(6) .EQ. ORBEL(6)
ASSERT ( OE(7) .EQ. ORBEL(7)
ASSERT ( OE(8) .EQ. ORBEL(8)
ASSERT ( OE(9) .EQ. ORBEL(9)

L N . ™ I W NP N W

Figure 6.6. Error 74

TABLE 6.2
ASSERTION VIOLATIONS DETECTED BY EACH TESTING METHOD

e g e e
- " " TRt

. S
-

e

Error Number of Invalid Assertions '
j Number Detected by Testing Technique :
§ 3-Variable All-Variable !
Grid Search Search
14 1 2 3
i
! 28 1 0 0
{
i 47 2 2 1
)
! 74 7 7 8




TABLE 6.3
FIRST ASSERTION VIOLATIONS DETECTED BY ALL-VARIABLE SEARCH

- Error Test Number of First
Number Assertion Violation

» 1
‘ 3
13
r 14
’ 28
' 31
37
! 41
47 5
48
52
54
56
57
64
67
74

NN N T W W W N W * U NN W

fag

*No assertion violations detected




number of the test in which the all-parameter search testing technique
detected the first assertion violation. This table shows that for 15 of
the 17 errors the all-parameter search technique detected the first

assertion violation on or before the seventh test.

6.4 SPECIAL CASES

During the experiment a number of assertions were revised. These

assertions were changed because of the results from the search tests.
In three cases, the search technique discovered input values for which
assertions were violated. 1In each case it was later discovered that the
' assertions were incorrect. These special values were not discovered by
the grid testing technique. This illustrates one important result of
{ the testing method, that the development of assertions and the testing
occur as a coupled iterative process. The original assertions help to ]
locate errors, the search technique locates new assertion violations

i which are either errors in the software or in the assertions. Through-

out the testing process, the accuracy of the assertions was improved

along with the ability to detect errors.

The first assertion which was discovered as being incorrect was
one which checks the value of the angle from perigee (FM) computed from
the time (VALUE), time at perigee (TP) and period (PP). The code, the

original assertion and the corrected assertion are shown in Fig. 6.7.

! This assertion violation was found by the all-parameter search by
varying the time at perigee (TP). This caused the value of the angle
from perigree to become negative. The time at perigree had not been

varied by either of the other two test methods.

The second incorrect assertion was found by the three-parameter
search method. This assertion violation was due to the nature of the
orbital descriptions and the inherent inaccuracy of the calulations. 1In
the orbital descriptions, a value of 27 is equivalent to 0, or stated

another way, an orbit which begins at perigee angle equal to 0, is again
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Original Code and Assertions
FM = (VALUE -TP) / PP
ASSERT ( FM .GE. 0.0)
ASSERT ( FM _LE. TWOPI +EPS)

Revised Code and Assertion

FM = (VALUE -TP) / PP
ASSERT ( ABS(FM) .LE. TWOPI + EPS)

Figure 6.7. First Incorrect Assertion

at perigee when the angle is 2w . To further compound the problem,
inaccuracies in the machine representation of values and errors accumu-
lated over the computation give rise to situations in which the value of
variables 1is very close to 2% but not exactly 27 ., Therefore the

assertions which check these conditions must take this into account.

The problem hecomes evident when checking the output from the test
program. It is necessary to determine if the point described by the
state vector is on the part of the orbit where the radius is increasing
or the part where the radius in decreasing. (See Fig. 6.8.) This

result is compared with the value of the MODE parameter when the VALUE

parameter is interpreted as radius (MODE equal to 1 or 2) or altitude

(MODE equal to 4 or 5).
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DECREASING RADIUS

AN-564582

PERIGEE APOGEE
POINT POINT

\

INCREASING RADIUS

Figure 6.8, Increasing and Decreasing Radii

The point can be located on the increasing (M=1) or decreasing
(M=2) radius by comparing the time at apogee (TA), the time at perigee
(TP), and the time given in the state vector (TS). This is done in the
code seqment in Fig. 6.9. In order to make this calculation correctly,
it is not only necessary to correct for the fact that 0 equals 27 but
also for the case in which the calculations give results very close to

thesze values. These corrections are also shown in Fig. 6.10.

Another interesting result revealed by this assertion was that the
calculation of the state vector time (TS) was not corrected to be less
than or equal to the period. This 1is a quirk of an algorithm in a
support routine and was not revealed by the documentation. Again, the
search routine identified input values which caused these assertions to
be violated. It is difficult to see how test cases could have been

constructed to illustrate these errors.
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1F (TP .EQ. 0.0 )

If (TS .GE. TP .AND. TS .LE. TA) b
M= 1 H

ELSE !
M =2

ENDIF ]

ORIF ( TA .EQ. 0.0 )
IF (TS .GT. TA .AND. TS .LT. TP)

M= 1 .
T[ ELSE _5
k M= 2 E
[' ENDIF ]

ORIF ( TP .GT. TA )
IF ( TS .GT. TA .AND. TS .LT. TP ) )

M=2
ELSE

M=1
ENDIF

ELSE
IF (TS .GE. TP .AND. TS .LE. TA)

M= 1
ELSE
| M= 2
{ ENDIF
3 ENDTF

Figure 6.9. Code to Locate Point on Radius




Corrections for time greater than period

: TP = AMOD(ORBIT(7), PERIOD)
;! TA = AMOD(TP+ORBIT(8)*PI, PERIOD)
’ TS = AMOD (STATE(1l), PERIOD )

Corrections for time close to period

L' IF ( PERIOD - TP .LE. DELTAT )

- TP = 0.0

ENDIF

IF ( PERIOD - TA .LE. DELTAT )
TA = 0.0

ENDIF

IF ( PERIOD - TS .LE. DELTAT )
TS = 0.0

ENDIF

Assertion to check MODE
IF ( TS .NE. TA) .AND. (TS .NE. TP) )
ASSERT ( MODE .EQ. M)
END IF

Figure 6.10. Checking the Value of the MODE Parameter

——
2




The  tinal assertion inconsistency also had to do with errors
accunulated over computations and the fact that O is equal to 21 . This
error drose in checking the angle from perigee, which is calculated when
MODE equals U, 'he angle from perigee is calculated from the input
orbital elements and the radius. The radius can be calculated from the
output state vector representation. This calculated value is then
compared with the original value as input to ORBP in the VALUE param-
eter. The code to calculate the angle from perigee and the modified
assertions are shown in Fig. 6.11l. These assertions take into account
that the calculated value may differ slightly from the original value
and that O and 2~ are equivalent. This inconsistency was discoverd by

the all-parameter search technique.

Code Segment

Q

0

(ORSBIT(5) / R -~ 1.0 ) / ORBIT(6)
(ACOS ( Q)

Corrections for angle near 27

IF ( ABS(TWOPI-Q) .LE. DTHETA )
O = TWOPI

ENDIF

IF ( ABS(TWOPI-VALUE) .LE. DTHETA )
VALUE = TWOPI

FNDI¥

Assertions Violated
ASSERT (AMOD(Q,TWOPI) .GE, AMOD (VALUE , TWOP1)-DTHETA)

ASSERT (AMOD(Q,TWOPI) .LE. AMOD(VALUE,TWOPI)+DTHETA)

Figure 6.11. Checking the Angle from Perigree
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7 DISCUSSION

The results trom the experiment show that it is possible to detect
errors automatically using assertions and search techniques. The major
limitation ot the technique as we see it is the difficulty in writing
the assertions. The number of assertions which need to be written, the
conditions they should describe and where they should be placed are all
questions which are difficult to answer. In addition, the assertions
are difficult to write and the task of writing them is not pleasant. On
the other hand, the search testing technique aids in the refinement of

the assertions.

Unfortunately, our results have also shown the limitations of
assertions. There is sometimes no way to easily express exactly what is
wanted by using the current semantics. In some cases, it seems that

other techniques are more suited to detecting certain types of errors.

One may also argue with the technique of "error seeding,” but we
believe it to be a very effective way in which to control some of the
problems in an experiment such as this. Using programs from actual
development efforts containing unknown errors would introduce factors
intuv the experiment which could not be controlled. Interpreting the

results of such an experiment would therefore be more difficult.

Equating assertion violations with errors is also a point which
may be argued. [n this experiment, it was assumed that once an assert-
ion violatior was detected, the error would become self-evident. This
is obviously not the case. This will be true only if assertions are
placed in the correct spot and describe the nature of the error. Again,
only further experimentation can determine how useful the technique is

at locating errors.

The wiy in which the error function was constructed to allow the

be used can also be questioned. Simply summing the

7-1
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number of assertions to determine the value of the function is a crude

technique. The search technique 1is thereby driven to select input
values which maximize the number of assertions violated. We have found
some evidence to indicate that errors are not randomly distributed; that
they occur in groups. Therefore, searching for maximums of the error
function should locate most of the errors in a program. However, this
is still a crude method. We are investigating a method which takes the
content of the assertions into account in generating new input values.
This technique is taken from artificial intelligence research and will
be the basis for further experiments.

In addition to the new experiments described above, we also
believe that the techniques need to be applied to cases where mcre than
one error occurs in the software, and to types of programs other than
arithmetic computations (e.g. compilers). The efficiency of the tech-

nique relative to other types of testing should also be investigated.

We believe that the experiment successfully demonstrated the value
of the search testing method. We were able to locate errors in a
program automatically and relieved ourselves of the necessity of
inventing test cases. In addition, the technique identified errors in
our conception of the operation of the program as embedded in the

assertions.

1Benson, op. cit.
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SE¢ NEST SOURCE

POV NOWBME N>

[l

-

. ps p P 0 B A e 0 e b g BS Do

- e e e

LOGICAL FUNCTION INPCHK ( MODE+ VALUE. QRBIT. STATE )
C
CASON
CMOON INPCHK
Cxcom s

[
c ChECK INPLT ARGUMENTS FOR SUBROUTINE @OREP&
<
[ CONCON

ComMMOr, / CONCON /

b Pl, SRDs SLVs SMFs SKP. RBODY»
2 GACCe+ GCONs WBODY: RHOZRO: TWOPIs HAFPI
CCOMPRG . CONCON

REAL ORB(10)

INTEGER  MOCE $ INDICATES ODAYATYPE OF @VALUE®
REAL VALUE $  ANGLEs RACIUS. TIMEe: OR ALT,
REAL ORB1IT(10) $ AN ELLIPTICAL ORBIT
REAL STATE(10) $  OUTPUT STATE VECTOR
4
[4 TCONST
CATA EPS / 1E=6 /
CaTa DELTAT / 1E=2 / $  ABSOLUTE TIME TOLERANCE
CATA DTHETA /7 1E-% ¢/
CCOMPKG s TCONST
c
RELERRIX+Y) = ABS(ABS(X) « ABSIY)) / AMAX1I( ABS(X)s ABS(Y) )
c
CALL xMIT ( 10+ ORBIT. ORE )
INPCHK = +TRUE
c
INITIAL ( MOLCE +6E, 0O +AND. MODE .LE. 9 )
FAIL ( INPCHK 2 oFALSE. )
4
CASE OF ( MOCE )
C »
CASE ( 0 ) $ VALUE 1S ANGLE
. INITIAL (VALUE .GE. 0)
N INITIAL t VALUE (LE, TWOPI )
« FalL ¢ INPCHK = ,FALSE. }
[ o ]
CASE ( 1+ 2) $  VALUE IS RADIUS
. A = ORBIT(9) .
¢« E = ORBIT(6)
. INITIAL ( VALUE ,GEoe A * ( 1,0 = E ) )
. INITIAL  VALUE JLEe A » ( 1,0 ¢+ E ) )
e FalL ¢ INPCHK = (FALSE,. )
[4 »
CASE ( 3 ) $ VALUE I3 TIME
+ PERIOD = ORBITI(8) * TwoPIl
. INITIAL  VALUE +6Ee 0.0 )
. INITIAL ( VALUE (LE. PERIOD + OELTAT )
o FAIL ( INPCHK = FALSE. )
C L ]
CASE ( %+ 5 ) [ VALUE I8 ALTITUDE
« A 2 ORBIT(9)
¢« E 2 ORBIT(6)
. INITIAL ¢ VALUE +GEe A ( 1,0 = € ) = RBODY )
. INITIAL ¢ VALUE LE. A » ¢ 1.0 ¢ € ) « RBODY )
.

FAIL ( INPCHK = (FALSE. )

T
Shamy =l v

LS, alid

L
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SEQ NEST SOURCL

€9 1 ¢ .
60 END CASE
&6l [
62 INVCRE 4 ELL]PSE )
63 c
[ BLOCK ( INPCHK = L FALSE. )
65 END BLCCK 3
66 BLOCK ( ELLIFSE ]
67 1 ¢ . VERIFIES THAY QRBITAL VECYOR GGREBE IS AN ELLIPTIC ORBIT
68 1 . ASSERT { CRBI(2) ,Gke 0.0 )
69 L . ASSERT ( CRBI2) +LE. TwOPI ¢ EPS )
M 1 . ASSERT ( CRB{3) +GEs 0.0 }
71 . ASSERT ( CRE(3) +LEe PI 1}
72 1 . ASSERTI(GRE(4) ,GE. G,0)
73 1 . ASSERY (CKB(4) JLE« TWOPI + EPS ) 4
7% 1 . ASSERT ( GRBI(S) +GE. ABS { ORBI9) » ( 1,0 = ORBI&) se 2 ) = EpS 1)) .
75 1 . ASSERYT ( CRB(S) LLE. ABS ( ORB(9) # { 1,0 « QRB(E) e 2 } ¢ EPS )} 4
76 1 . ASSERT | { 1.0 « ORB{i6)**2 ) LT, 1.0 ) 3
17 1 . ASSERT ( CRB(8) .Gk ORB(9) ® SQRT ( ORB(9) / GCON )} = EPS ) i
78 1 . ASSERT ( CRB(B} +LEs ORB(9) » SOGRY ( ORBI9) /s GCON ) ¢+ EP§ ) E
79 1 . ASSERT ( RELEHR(QRB(9)e*3, GCONSORBI(B)#e2) ,LE. EPS) i
et 1 o FAIL ( PRINT ELEMENTS ) 1
81 1 . ASSERT ( CRB(&) ,GT, 0.0 JAND, ORBlg) LT, 1,0 )
62 END ELOCK ;
83 BLOCK ( PRINT ELEMENTS ) 3
84 1 B WRITE (6410001 OGRB(9). GCON« ORB(S)
8% 1 1000 FORMAY ( & SEMI-MAJOR AXiS = * G20,18 /
1, ® GCON = » 624,18 7/ » PERICD /7 2 P1 = & 624.18 ) -
86 END BLOCK j
87 4
88 RETURN
69 LNG
..'0.."..“....‘..“.“‘."..‘.‘...'.‘.‘."‘.“..“.‘.‘..."‘...'.‘.‘.......‘...."'.‘.‘..‘..l ’
1
1
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SEG NEST SOURCE LOGICAL FUNCTION  OUTCHK ( MODE. VALUE, ORBIT: STAYVE ) :
1 LOGICAL FUNCTION  OUTCHK ( WODEs VALUE: ORBIT, STATE ) !
2 C :
3 CASON
! [ CHMOCN OQUTCHK
5 CXCOoM 8
(S <
? 3 CHECKS FINAL CONDITIONS FOR SUBROUTINE GORBPS
8 <
9 c CONCCA
10 CommOpy, 7 CONCCN /
1 Pl, SRCs SLV+ SNFe SKP, RBODYs
2 GACCe GCONy WBODYs RHOZRO+ TwWOPIs HAFPIX
11 CCOMPKG + CONCON
12 INTEGER MOCE ] INPUT MOCE FLAG
13 REAL VALUE s INPUT VALUE PARAMETER
14 REAL OREIT(10) s INPUT ORBITAL ELEMENT VECTOR
15 REAL STATE(10Q) OUTPUT STATE VECTOR
16 c
17 Cc TCONSTY
18 CATA EPs / 1E=6 7
19 CATA DELTAT 7 AE=2 / s ABSOLUTE YIME TOLERANCE
20 CATa OTHETA / 1€E~% /
21 CCOMPKG s TCGNST
22 < ]
23 ¢
1} o
Pt c
26 RELERR{XsY) 2 (X = Y) / ¥
27 ¢
28 QUTCHK = +TRUE.
\ 29 c
30 C VERIFY THAT THE STATE VECTOR REPRESENTS A FEASIBLE
31 < POSITION ChN THE ORBIT,
32 ¢
' 33 R = XMAG( STATE(2) ) $ R = RADIUS OF STATE VECTOR !
; 3 [ :
1 3% ASSERT ( ABS(R/ORBIT(9) o 1,0) oLE. QORBIT(G} ¢ EPS )
i 36 ASSERY { ABSIR/ORBIT(9) o 1.0) «6Es =CRBITIE) » EPS ) ‘
: 37 < SEE PAGE 75 OF NOTES
X 38 c
L) 39 V = xMAG( STATE(3) ) $ V= VELOCITY COMPONENT
: 40 AZR/ U 2,0 R e ves2 7 6CON )
: 41 Cc . SEE PAGE &1 OF NOTES
42 [ !
43 ASSERT ( RELERR(A, ORBIT(9)) +GE. =-EPS )} '
e FAIL ( SEMI-MAJOR AXIS )
45 ASSERT (RELERR(A, ORBIT(9)) ,LE. EPS)
e FAIL ( SEWMI-MAJOR AXIS ) ;
7 4
“8 6 = XMAGt STYATE(®) ) E G = ACCELERATION COMPONENT
w9 4 2
! 50 ASSERT ( G oGEe GCON 7/ R o9 2 - EPS ) S
r? 51 ASSERT ( G LEs GCON 7/ R 3¢ 2 o EPS ) &
1 52 [ 4
53 PERICD = TwgPI * ORBIT(8)
54 TP = AMOD(ORBIT(7)s PERIOO)
{ 13- TA = AMOD(TP4ORBIT(8)*Pl+ PERIOD) 8 TIME AT APOGEE N
3 %6 TS = AMOD (STATE(1), PERIOD ) &
87 IF { PERICD - TP .LE. DELTAT ) :
58 1 e TP = 0.0
A
{
i
A-4 .




' SEw NEST SOURCE LCGICAL FUMCTION  OUTCHK { MODE+ VALUE. ORRIT. STATE )
59 enOIF
60 IF « PERICO -~ TA ,LE, DELTAT )
. el 1 . Ta = 0.0
62 ENDIF
63 IF ¢ PLRIGO « TS (LE, DELTAY )
4 [T . 1s = 0.0
4 6% ENDIF
- 66 IF (1P +JEW, 0.0 )
p - 67 1 . IF (TS +GEs TP +ANDs TS +LEes TA)
66 2 . . M=z $ T ON INCREASING RADIUS
s 69 1 f ELSE
: l 70 2 . « M= 2 $ T ON DECREASING RADIUS |
71 1 « ENDIF
4 72 ORIF ( TA (EQ. 0.0 ) E
3 1 . IF (TS .GTe TA JANDs TS LY. TP)
2 . . M= 2
3 : 75 1 . ELSE
| 76 2 . . M=
' 77 1 «  ENDIF
t 76 CRIF ( TP .GT, TA ) $ T=-ZERO ON INCREASING RADIUS ?
79 1 . IF { TS 46T TA AND. TS LT, TP ) 1
80 2 . . Moz 2 $ T ON DECREASING RADIUS
5 81 1 . ELSE )
82 2 . . M=l H T ON INCREASING RaADIUS )
63 1 . ENLIF )
3 b ELSE $ T=2ERO ON DECREASING RADIUS
: 6% 1 . IF (TS .GEe« TP +AND. TS JLE. TA)
! 86 2 . « M 31 $ T ON INCREASING RADIUS 3
1 67 1 + ELSE }
1 88 2 . . M= 2 $ 7 ON DECREASING RADIUS
3 £9 1 . ENDIF
| 90 ENDIF
51 c ’
] 92 T = QRBIT(7) + ORBYIM( M, R, ORBIT(9), ORBIT(6), ORBIT(E) ) | |
E 93 ¢ CRBTIM KRETURNS TIME SINCE PERIGEE PASSAGE
! 94 [
p 55 T = AMOD(T.PERIOD)
b - 96 IF U pERICO = T LLE, DELTAT ) ’
- | 97 1 . T = 0,0 i ]
; ' 56 ENOIF ’
4 99 ASSERT ( TS .GE« T = DELTAT )
: 100 FAIL ( TIME ) . B
1 M 101 ASSERT ( TS +LE« T ¢ DELTAT ) :
] l 102 FATL ( TINE ) ;
i 103 [ ]
. 10w 4 VERIFY THAT THE MOCE ANC VALUE INPUTS ARE SATISFIED. i
105 c 3
106 CASE QF ( MOCE )
1¢7 1 € .
108 Cast ¢ 0 [ VALUE IS TRUE ANONALY
) 169 1 . @ = (ORBIT(S) / R = 1,0 ) 7 CRBIT(6) A
{ 110 1 . IF ( ABS(G) .GT, 1.0 ,AND, ABS(Q) LT, 1,0 + EPS ) t
i 1 G = SIGh(3.0s Q)
i | 111 1 e 6 =T ACOS ( Q@) §
. H 12 1 ¢ . SEE NCTES PAGE 75 i
113 1 . IF ( M ,iCe 2 ) Q = TWCPI - @
119 1 . 1F ( ABS(TWOPI-Q) JLE. DYHETA ) i
s . 115 2 v+ @ = 1aCPI ¢
116 1 . ENDIF :
' 117 1 . IF  ABS(TWOPI-VALUE)  LEs DTHETA )
}
i

—— ———
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’
' SLO NEST SOURCE LOGICAL FUNCTION  QUYCHK { MODEs VALUEs ORRITe STATE )
118 2 . . VALUE = TwOPl
119 1 s+ ENOIF
120 1 e ASSERT (AMOO(QTWOPI) GE. AMOO(VALUE (TWOPI)=0OTHETA)
121 1 « FAIL ( PRINT Q@ VALUE )
, 122 ) . ASSERY (AMODIQsTWOPI) JLEe AMOD(VALUE,TWOPI)+OTHETA)
3 123 1 e« FalL t PRINY @ VALUE )
124 1 € .
’ 125 CASE ( 14 2 s vALLE 1S RADIUS
126 1 o IF L (TS JNE. TA) «AND4 (TS NE« TP) )
b 127 2 « o ASSERY ( MODE +EQ. W )
128 2 e o FalL ( MOCE ERKOR )
3 129 1 « END IF
13¢ 1 ¢+ ASSERY { R ,6E., VALUE ~ EPS )
131 1 o FAIL { R VALUE ) 1
132 1 s«  ASSERT [ R +LE. VALUE + EPS )
133 1 ¢ FAIL ( R VALUE ) 4
13 1 < . E
; 135 CASE ¢ 3 ) s VALUE 1s TIME
i 136 1 ¢ . i
137 CASE ( us 5 ) $  VALUE 1§ ALTITUDE -
¢ 136 1 o IF { (TS oNE. TAJ <ANDs (TS oNE. TP} ) i
. 139 2 e o ASSERT ( NODE (EG, M¢3 )
: 140 2 . . FalL { MODE ERRGR )
A 11 1 . ENO IF
. 162 1 « ASSERY ( R = RBODY «GE. VALUE - EPS )
: 143 1 e FAlL ¢ R REODY VALUE )
. L UL o« ASSERY ( R = RBOOY «LE. VALUE + EPS )
l 148 3 « FalL ( R RBODY vALUE )
146 1 ¢ .
147 CASE ELSE
. 148 3 o ASSERY { JFALSE, )
\ 149 END CaASE
! 150 ¢
1s1 c
152 BLOCK ( SEMI-MAJOR Axls )
183 1 e WRITE(641000) Re Ve GCCN' As ORBIT(Y)
: 154 1 1000 » FCRMAT (#QR=s G24+18+ SX svy=s G24,18¢ 5X #GCONZs 624,18 /
v 1, e Aze G24,184 5X SORBIT(9)1se G24,18)
155 END 8LOCH
156 [+
157 BLOCK ( TIME )
158 1 v wRITE(641001) TS, T PERIQD
159 1 1001 , FCRMAT(e0TS=e G2u,18+ 3X ®T=e G24,18¢ 5X sPERIODZs 624.18)
160 END BLOCK
161 [
162 BLOCK ( PRINT @ VALUE )
163 1 v WRITE(641003) @y VALUE
164 1 1003 « FORMAT (200=® 624,18, 35X SVALUE=® 624,18)
169 END BLOCK
166 ¢
167 BLOCK ( MQDE ERROR )
tes 1 . WRITE (64 20041 MQDE. Me TPe TAy TSy SYATEID)
169 1 1004 . FORMAT (sONODESw IS¢ SX eMzs I% 7/ & TP3s 624,180 3X eTAzs §28,108¢
' 1. *7Sz% 624,18 /7 * VRze 624,18 )
Vi 179 ENO §LO0CK
‘ 171 ¢
172 BLOCK | R VALUE )
173 1 o WRITE (6+¢10051 R VALUE
17 3 1008 + RGRMAT(SORZ¢. 64,18, 5X+ sVALUEZs: 624,18)
17% END BLOCK
1
1;: ¢ 8LOCK ( R RBCDY VALUE )
' 178 1 o WRITE(6+1006) R=RBODY. VALUEs R+ RBOOY
179 1 1006 « FQRMAT(sOR=RBOOYz®, G24,18+ 53X, eVALUEzs, 62%.18 /
' . ¢ REZ®, G24.18, SX wRBODY=s, 624,18 )
H 180 END BLOCK
183 RETURN
162 END
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SLw MEST SOURCE

1 C
2 C
3 c/ LISY.aLl
’ “ SLBRCLTINE ©
5 CASCA
® CMCCh CRBP
? CXCOM 3
8 <
i y 4 SCLRCE CATE
‘ 10 4 SCLRCE CATE
11 4 SQURCE CATE
12 C SCURCE CATE
13 . SCURCE CATE
1 C SOURCE DATE
15 4 SOURCE CATE
1o C SCURCE CATE
17 4 SCURCE DATE
3 16 4 SOURCE CATE
’ 19 C
2¢ ¢ RETURNS
21 C
22 < MQOE -
¢3 C
2% <
Y PLY C
- 26 C
27 <
28 C
1 29 ¢ VALUE =
{ 30 [ CRuEL «
4 31 c STATE =
{ 32 C
} 33 ¢ WRITTEN
& 34 c
35 [ Coniep
36 CownCr, 7CCiC
1 Fl.
2 GACCa
. 37 CCOMPRG CCNCULN
} 38 CIvensICN OR
N 39 CULTIVALENCE
N EGUIVALENCE
“l LOS1CAL (N
] teeIcaL Ou
; w3 REAL  CRB(1
! ™ EQUIVALENCE
' WS CATA EPS
s CATa CELY
W7 CATA SP
Y} CATA  AXES
) CATA  EMISS
Y 50 c
51 RELERR (XY}
52 INITZaL o
53 C
t < ¥0GCzw0CE
’ 5% VALLEzvALY
56 IF(MOGDLTen

cman W WAR SN e

- ————

INPCHKL WODE+ VA LU+ ORBEL+ STATE ) )

REP (MODEVALUIQRBEL +STATE)

€9.1231 SLT LF ACCEL COMPOMENTS i
€9.0709 REVMCVE CALL OF RITEF

€540521 REVISE TEST FOR APQGEE/PERIGEE }E
€8.0bl4 CALL RITEF, NV CRIQ s CHECK FOR ILLEGAL RADI :
©8,0209 CONVEKT TO €DC 6400 c
67.1121 CCRRECT POTENTIAL QVERFLOW ERROR i
67.0811  ACC OPTIONAL MOCES 4,9 ;
67,0714  CALL TRAILERR IF ERRCR CCNDITION {
6640920 USE £ECC ANOMALY AS JTERATION VARJABLE 3
66+0601  USE RADIUS/ANGLE/TIME AS ITERATION vARIABLE

STATE VECTOR CF A POINT ON A KEPLER ORBIT

ELECTS SPECIFICATION OF POINT IN ORBIT

VALLE IS TRut ANOMALY

VALLE IS RaLILS (RADIyS INCREASING IN TIME)
VALUE Is Rallus {RADILs CECREASING IN TIME)
VALUE 1S TImEL AT wHICH POIANT IS REACHED
VALLE IS ALTITUDE (INCREASING IN TIME)

H VALUE 1S ALTITULE (GECREASING IN TINME)
PARAMETER valLLE SFECIFYING PCINT IN ORBIT

CRBITAL ELEMENT vECTOR

STATE VECYOR AT SPECIFIED POINT

-
-
-

S
Q
1
2
3
M

1277764

(1%4

SRD SL Vs SHF « SKP RBOOY
GCON, wWBCCOY RHOZRO TwGP1. RAFPI

BEL(1Q)+STATE(10) ¢AXES({1043)+SP(101,0E(10)
(SPI21aTHeISPIRIsRIISPIS)I1vR) (1SPLIE)VO)
(CE(S) P (OELEISEN LOELT) TPV ICELB)2WPP)IOELI) 4 A)

FChK s VERIFIES INIVIAL CONDITIONS
TChK $ VERIFIES FINAL CONDITIONS
0)
¢ CRBt1)y OEC(1) )
/ 1t=6 v/

81 / \E=2 / $ ABSOLUTE YIME YOLERANCE

/ 10%0. ¢

/ 3020, /

/ 1.E=T /

ABS (ABSIX)=ARS{Y))/ARAX)ILABSIX) 1ABS(Y))

) 60 1O 2

Y 27 Tt I 3

v
i

__‘A;Jﬁ‘h;:;}if..y
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SEQ NEST SOURCE

R Ty

SRR A

P

87 C A100
LY VALLE=VALU-REBOCY
59 ¥0O0C=K00D-3
60 2 CONTINUE
61 ASSERT ( MOOC +GE, 0 )
62 ASSERT ( MQOC +LE, 3 )
63 KOLE = MOOC ¢ 1
64 CALL xMIT(8,CRBEL(2)+0E(2)) ;
65 ASSERT ( OE(2) .EQ, ORBEL(2) ) ¢
66 FAIL ( FIX 2 )
67 ASSERT ( OE(¥) .EQ, ORBEL(3) ) i
68 FAIL ( FIX 3 ) i
65 ASSERY ( OE(4) .EQ, ORBEL(4) } :
70 FAIL ( FIX 4 ) .
71 ASSERY t OE(5) EQ, ORBEL(S) ) i
72 FAIL ( FIX 5 )
73 ASSERT { OL(6) .EQ. ORBEL(6) )
74 FAIL ( FIX 6 )
7% ASSERT ( CE(7) ,EQ. ORBEL(7) )
76 FATL ( FIX 7}
77 ASSEHT ¢ OE(8) EQ. ORBEL(8) ) 1
78 FAIL ( FIX & )
7% ASSERT ( 0€£(9) ,EQ, ORBEL(9) )
&0 FAIL ( FIX 9 ) ]
81 ASSERT ( E 6T, 0,0 ) 1
82 ASSERT ( £ LT, 1,0 )
83 IF(E.GE+1e) GO TO 250 4
e ASSERT ( KQQOE «GE, 1 )
e5 FAIL ( FIX KCCE )
86 ASSERT ( KOOE JLE, & )
87 FAIL ( FIX KGCE ) i
68 60 To (10¢20+20+30)¢K00E :
€9 [ ’!
90 4 VALLE 1S ANGLE :
91 [4
92 10 CONTINULE
93 ASSERT ( VALLE +GE, 0.0 ) "
94 ASSERT ( VALUE «LE. TWOPI )
95 INVCKE ( ELLIPSE )
96 ¢ ,
97 T = CRBTIM( MOODy VALUE. Ay Ev PP ) ¢ TP
96 ASSERT ( T .GEs 0,0 )
99 CzvaLuE
160 RzP/{1.,4€9C05(Q))
161 ASSERT (R +GE. A%{1.,0E) <« EPS)
102 ASSERT (R JLE, A®(1,04E) ¢+ EPS)
103 60 Yo 200
10% [«
165 4 VALULE IS RApIUS
166 4
107 20 CONTINUE
166 INVCKE ( ELLIPSE )
169 ASSERT ( VALLE «GE, ( A s ( 1,0 = E } )
110 ASSERT ( VALLE LE, ( A » ( 1,0 ¢+ E )} )
111 4
112 IF C VALUE LT, ( A e ( 3,0 = E ) ) ) 6OTO 2%
113 1F { VALUE ,6T. ( A ®» ( 1,0 ¢+ E ) ) ) 60TO 26
116 22 T=ORBTIMINMOOL +VALUEVALEPP)+TP
1315 ASSERT | T ,GEe 0,0 )
116 R=VALLE
A-8
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‘ 120
' 127
128
169
130
121
« 132
123
1354
134
' 13e
) 137
b
139
140
1u]
Tug
Tuy
tuw
! 145
1u4n
1.7
lag
1.9
156
151
! 1ey
1y
1%
15¢
%6
j 157

158
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el
Toe

1¢3
Teb
169

o
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284

28

4l

i s AR ST

Stw NEST SOURCE

u

I3

1

39

43

G e b BT B o, oo Fits e 0

ThIS CHANGE CURRECTS AN ERRQR wHICH OCCLRS whEN THE
RACILS 1S bLUAL TO Tht PERIGEE UISTANCE, IN TRIS
CASE, ENMKLAS ACCUMLATEL DURING THE COMPLTATION CAUSE
Tt vabue CF TrE aKLUMENT GF The ARC CGSINE FUNCTION
TC HE SLILFTLY LARGLR THAN GNE.
CPRINML = AUIVIFP-R, ReE)
IF  aBSHCPRINED 4GTe 1,0 «AND.
GPRIPE = SIGHE1.,0y WPRIME)
ASSLRY (GPRIME JGEs =140)
Fall « FHINT GFRiME )
ASSELHT ( CPRINE LLE,
£AIL ( PHRINT GCPRINE )
¢ = ACCS (WPRIME)
IF(KCCELEG.3) C=TwOP] =~ @
(RALDIUS IS CECREASING)

ABS(QPRIME) «LT. 10 ¢ EPS )

1.0 )

GO TC 2C0

vEeCw PERIGEE
T=TF
HzAe(l,~E)
=0,
»RITE (64 280 )
FLipAT tSINCCRBP HAS REPLACEDC IMPOSSIBLE RADIUS wlTH PERIGEE - ) i
wCTC 200 :
A:0vE AFCGLE
TzT10+plePP
HIAe (1.0
[
wRITE(E 281

FCRWAT (50F0QRBP HAS REPLACED IMPOSSIBLE RADIUS WITH APOGEE - )
6L 10 €00
VALLE 1S TIME
CeuTInGE
Inve<g ¢ ELLIFSE )
ASSERT ( VALLE JGE,
ASSERT ( vaLLE LLE,
FAaIt « TIME w¥ax )

0.0 )
(PPsTWCPl ¢ EPS) )

FM = ( vALUE - TP
ASSERT ( ABS(fM)
FAIL ¢ FM Max )

Y /£ PP
WLEs TWOPL * EPS )

TovAi ¢

LALZFW™

ANTRYZ <}

CCHLTINUE

¥TRY = NTRY

LTIRY = NTRY + 1

IF(NTEY EC.20) GO TO 250

E8 = FM + £ & SIN(EAL)
IF(AES(EAL-EA) JLE. EMISS) 60 TO W2
IF(MCOANTRY W20 +EG, 1) 48,46
ConYInuE

ASSERT ( ABS(EAL - EA2 )
FAIL ( SMALL CIVISOR 1}
ASSERT ( ABS{ (EA - EA}) /

«6Ts 040 )

(EAY = EA2) ) .LT. 1.0 )

b i
IS
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SEC NEST SOULRCLE

179
178
177
178
179
180
1gl
182
163
1a%
15
lge
167
188
189
190
191
192
193
194
198
196
197
198
199
200
201
202
203
204
2G5S
206
2067
208
209
210
211
212
2313
21
219
216
217
214
219
220
221

222
223
224
22%
226
e
28
229
230
23
232
233

[a XN a¥al

46

42

LT ]

200

ASSERT ( ABS(EA4EA2~2,00EA1) «6T, 0.0 )
FAIL ( SMALL CIVISOR )
EA1ZERA2-1EAL-EA2)002/(EAVEA2=2,.9EA))
ASSERT ( NTRY LLT, NYRY )
60 To 41
EA23EA)
EAL=EA 4
ASSERT (MTRY ,LT. NIRY ) '
G0 To w1 :
X2=31,+C05(Ea)
ASSERY ( X2 +GEs 040 )
ASSERT ( X2 +LEs 240 )
C=pPI
IF(x2,LE«0,) 60 YO 4@
ASSERT t X2 +GTe 040 )
X1=SCRY((1.+E)/7 (L, ~E})SSIN(EA)
€32400TAN2(X14X2)
CONTINUE

KEPLERAS EGUATION
ASSERT ( FM «GEs EA « E ¢ SIN(EA) -~ EPS )
ASSERT (FM ,LE. EA-E*SIN(EA) ¢ EPS)
R =P / ¢ 1.0 ¢+ E * COS(Q) )
ASSERT { R (GEs A * { 1.0 » E ) « EPS )
ASSERT ( R +LEe« A % ( 1,0 ¢+ € ) # EPS )
60 1g 200

EUREKA ooee NGW SET UP ANSWER AND RETURN
VG=SCRTIGCON®PI/R
ASSERT (VG ,LE. SGRT ( ( (1,04E19GCONI /7 ((1,0~E1eA1) ¢ EPSIH
FAIL t PRINT v@ GCON A E )
ASSERT (VW .GEs SQRT | ( (1,0-E)eGCON) / ((1,0+E)*A)) « €PS)
FAIL { PRINT vC GCON A E )
VR=RegsSIN(Q)aVQ/P
Y PERIGEE
ASSERT | ABSIYR) .GE. ABS( E / (1.0 ¢+ € ) » v@ » SINIQ) ) = EPS )
Faly ¢ PRINT vA E Vo )
AT APOGEE
ASSERY ( ABS{VR) ,LE. ABS ( E / (1.,0=E ) » vQ = SINIO) } + EPS )
FAIL ( PRINT VR E V@ )
CE(4)=CE(41e8
ASSERT ( QEtY4) +GEs «PI )
FAIL ( PRINT CEY% )
ASSERT (OE(4) <LE. TWOPI « TWOPI)
FAIL ¢ PRINTY QEW )

CALL EULLANG(~1+AXESVOT40)

NCERIv = O
INVOKE { CKAXES }

CALL TRNSFM(STATE .. XES1SP,=141)
CALL GRAVISTATE+SYATL{(8))

FINAL ( OUTCHK( MODE, VALu+ ORBEL+ STATE ) )

RETURN




- N AN A YA . 182 P,

~ e = ARG Sy 7 bt o E2

Stw NESY Suunit

\ e
255 C
2o C LEHCH MESSAGE
237 4
. 218 250 LONYnut :
' 239 RRITE(61291) :
2448 2%1 FCRPAT 38nQCREP HAS FAILEC TO REACH A SOLLTION = ) ¢
241 WRITE (6ed) CE
24¢ 1 FORMAT(e CRPITAL ELEMENTS ARE®,(%G20.8))
243 BLOCK ( ELLIPSE
BT IS [ . VERIFIELS THAT CRBITAL VECTOR SCORBE IS AN ELLIPTIC QRBIT
2.5 1 . ASSERT ( CHEB(Z) Gbe 0.0 )
2ue 1 . ASSERT | QGRBYZ) JLE. TwOPl + EPS )
: 247 % . ASSERT ( ORB(3) ,GE. 0.0 )
4 ’ 2Lt 3 . ASSERT ( CRB(3I) .LE. FI ) .
; 2u9 1 B ASSERTA(CRA(4) GE. 0,0} 4
290 1 . ASSERT (CREUY) LE. TaCPl + EPS )
251 1 o FAlL t PHINT PERIGEE ANGLE ) 1
25%: 1 . ASSERT ( CRu{(S) ,6E€, AES ( ORB(9) ® ( 1,0 = ORB(6) ss 2 ) = EPS ))
‘ 253 1 . ASSERY { QRBIS) .LEs 2BS ( ORB(9) * ( 31,0 - ORB{g) s 2 ) + EPS )} 3
: 255 1 . ASSERYT ( ( 1.0 - ORBle}e®2 ) T, 1.0 )
255 ) « ASSERT { CRBI(B) ,GE., QOKB(9) ¢ SQRT ( QRB(9) / GCIN ) « EPS )
256 1 . ASSERT ( ORB(B) .LE. ORB(9) » SGRT ( ORB{9) / GCON ) + EPS ) 1
l 287 1 . ASSERT ( RELERR{ORB{9)s+3, GCON®ORB(8)ee¢2) ,LE. EPS) 3
¢ \ 258 1 «  ASSERT ( GRBIE) 4GT. De0 oAND. ORB(&) 4LT, 1.0 ) b
- 259 £20 BLUCK 4
E 2ol BLOCK ( CkAXES )
i 2rnl 1 C hd VERIFIES UIRECTICN COSINE ARRAYS
j 262 1 . INIVIAL ¢ NDERIV .GE, O +ANDs NOERIV ,LE, 2 ) '
263 1 . N = 3 o NCERIV + & E
2% 1 . CO (1 = 2s K ;
3 2% 2 c b . !
] fhe 2 . . GO « U 21 3 )
' 2v7 03 . . v ASSERT ( ABS( AXES(Ied) ) oLE. 1.0 )
268 2 . N £END CC
29 2 . . 00 ( U =24 N}
e’ 3 . . . CoT = 0.0
27y 3% B . . CC ( K = 1+« 5 )
PR » . . . OOT = DOY + AXES(I«K) ® AXES(J.K)
13 3 . . . ENCG 00
273 . . . IF (1 JEQe U}
ER LN , . . . ASSERT ( ABS{ DOT « 140 ) +LTe EPS )
F T ‘ . . (A1
l LA . . . . ASSERT ( ABS{ gOY 3 LT, EPS )
sy « . .« END IF ‘
frw 2 . . eND Lo
PV | . NG GG
261 ENG BLOCK {
’n2 C t
' 283 BLCCn { FIX 2 )
‘ , 84 1 . GEt2) = CRBEL(2) !
3 uy END BLGCK ¥
r thie C i
! ¥ ‘o7 BLOCK ( FIX 3 ) F
k L] 3 CE(3) = CRBEL(3) 1%
d ¢ r9 END BLOCK
290 C

431 BLOCK ( FIX 4 )
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SEU NEST SOURCE !

292 1 o CE(4) = CRBEL(W) ;
293 END BLOCK
M C b B
295 BLOCK ( FIX 5 ) ;
2% 1 « GE(S) = CRBEL(S) E
297 END BLOCK
298 (4 %
299 BLOCK ( FIX 6 ) _
300 1 . OE(6) = CRBEL (6} ?
3cy END BLOCK i
302 (4 !
303 BLOCK ( FIX 7 )
304 3 . CE(7) = CRBEL(T)
305 END BLOCK 3
306 4
307 BLOCK ( FIX 8 ) ;
3gs 1 e 0OL(8) = CRBEL(8)
309 END BLOCK )
310 (4
311 BLOCK ( FIX 9 )
312 1 « OQE19) = GRBEL(9) ) ;
313 END BLOCK
3le [4
31s BLOCK ( PRINY PERIGEE ANGLE )
: 316 1 o« WRITE ( 64 1000 ) ORB(Y4)
) 317 1 1000 o+ FORMAT (sARGUMENT OF THE PERIGEE 2 1 624,18 ) .
318 END BLOCK
319 c
320 BLOCK ( FIx KGBE )
! 32101 o IF ( MOCE +GEs O oAND. MODE +LEe 3 )
322 2 * + KODE = MODE + 1 ]
323 1 . ORIF ( MODE «EQs % «ORs MODE «EQ. 3 )
3ze 2 + + KODE 3 MOQE = 2 1
! 325 1 o ELSE )
326 2 e + KODE z 1 4
327 1 e END IF ;
3:8 END BLOCK !
329 ¢
330 BLOCK ( SMALL CIVISOR )
331 1 v GGgla &2
332 END BLOCK
: 333 (o
! 334 BLOCK | PRINTY V@ GCON A E )
. 315 . WRITE (6+1001) vQ. GCONy A, €
i 336 1 1001 « FORMAT ( » VA=e G24.18 / ¢ GCONZ® G24,38 / » As® G24,18 /
o 1. » ESv G24,.18 )
4 137 END BLOCK .
¥ 338 [ il
4 3319 BLOCK ( PRINT GPRIME ) ,
3 340 1 o WRITE (6,1002) QPRIME |
A 341 1 1002 « FQRMAT(e GPRINESs G24,.18) :
. w2 1 « GPRIME = SIGN (1,0+ QPRIME ) :
3 343 END BLOCK L
B 344 [ ;
¥ 345 BLOCK ( PRINT VR E VO ) §
36 1 » WRITE(641003) VRy Ev VQe @ ;
LTS Y 1003 + FCRMAT (eOVREZs 624,18, 5X+ sE3s G24.18, 5X aVOEs G26,38 / & Qae j
1. 624,18)
3u8 END BLGCK
349 c

e -

T

=& 1 gt
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SEG NEST

350
351
352
353

394
359
356
357

358
359
360
361

352
363
LT

365
356
367
368

X

-

SOURCE

BLOCK « PRINT CEY )
. WRITELE,1004) QE(4)Y @

1008 FORMAT (#QQE(4)3s 624,18, 5x *Qzs G24.18)
END gL OCK

ELOCK | TIME MAX )
. WRITE ( €+ 1005 ) VALUE« PP*TnOP1

1008 . FONMAY (e VALUEz ® 624,18+ 5X+10HPP*TWOPI= ,624.18 )
END BLOCK

BLOCK ( FM max )
. wRITE ( 6. 1006 ) FM, TwOP]

1006 FCRMAT ( » FM = &, 624,18+ 5%+ o TWOPIx ® G24.18 )
END #LOCK

BLOCK ( FN )
. WRITE(641007} FMy VALUEs» TP+ PP
1007 o FGRMAT(s0FNze, G24,18 / » VALUES®, 624,1845x, *TP=s, G2u.18, 35X.
1. spPzes G24.18)
END BLOCK

RETULRN
EAND
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The following collection of papers and reports was supported by

AFOSR contract number F49620-79-C-0115.

l.

2.

3.

5.

D. M. Andrews, Using Assertions for Adaptive Testing of Software,

presented at the International Federation of Information Processing

Society Working Conference, September 26-29, 1979, London, England.

D. Andrews and J. Benson, Using Executable Assertions for Testing,

presented at the 13th Annual Asilomar Conference on Circuits,

Systems and Devices, November 6, 1979, Pacific Grove, California.

D. Andrews and J. Benson, An Automated Program Testing Methodology

and Its Implementation, submitted to the 10th International Sym

posium on Fault-Tolerant Computing, October 1-3, 1980, Kyoto, Japan.

D. Andrews and J. Benson, Adaptive Search Techniques Applied to

Software Testing, Final Report, General Research Corporation

CR-1-925, February, 1980.

J. Benson, A Preliminary Experiment in Automated Software Testing,

General Research Corporation TM-2308, February, 1980.

D. M. Andrews and J. P. Benson, "Using Assertions to Test Computer

Programs Automatically”, to be submitted to the IEEE Transactions on

Software Engineering.
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;: The following persons participated in the research and experiments:
. 1. Dorothy M. Andrews, MSEE, University of California, Santa Barbara. Jf
; 2. Jeoffrey P. Benson, PhD., University of California, Santa Barbara.
, H
3. Nancy B. Brooks, MS, University of Illinois.
. 4, Reginald N. Meeson, MSEE, University of California, Santa Barbara.
71
5. Dennis W. Cooper, MSEE, Stanford University. Ei
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