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IAbstract

An experiment was performed in which executable assertions were

used in conjunction with search techniques in order to test a computer

program automatically. The program chosen for the experiment computes a

position on an orbit from the description of the orbit and the desired

point.

Errors were inserted in the program randomly using an error

generation method based on published data defining common error types.

Assertions were written for the program and it was tested using two

different techniques. The first divided up the range of the input

variables and selected test cases from within the subranges. In this

way a "grid" of test values was constructed over the program's input

space.

The second used a search algorithm from optimization theory. This

I entailed using the assertions to define an error function and then

maximizing its value. The program was then tested by varying only a

limited number of the input variables and a second time by varying alli
of them. The results indicate that this search testing technique was as

effective as the grid testing technique in locating errors and was more

efficient. In addition, the search testing technique located critical

input values which helped in writing correct assertions.I
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I INTRODUCTION

Although Dijkstra's famous comment on testing, that it will never

show the absence of bugs, only their presence, is undoubtedly true,

U testing is still the method most used for showing the correctness of

software. if testing is to be used, ways must be found to make it more

efficient and effective.II

A paper by Alberts presents data indicating that testing and

validation efforts account for approximately 50Z of the cost of develop-

ing a software system, where development includes the typical phases of

conceptual design, requirements analysis, development, and operational

use. This cost includes those as',ociated with locating the errors,

correcting the errors (which may include redesign), and checking that

the corrections have removed the cause of the error. The testing

process is a very labor-intensive activity, as is any aspect of software

development. If methods could be found to automate the testing process,

the cost of developing software could be reduced.

1.1 PROBLEMS WITH TESTING

Two of the many problems involved in testing software are (1) how

to develop test cases which identify errors and (2) how to check the

results from these test cases. Before software testing can be automated

and its cost reduced, these two problems must be solved.

Many methods have been pi-oposed for identifying test cases which

will show that a program performs correctly or indicate the errors which
are present in the program. For examples of these methods see Howden2

D. S. Alberts, "The Economics of Software Quality Assurance" in AFIPS
Conference Proceedings: 1976 National Computer Conference, Vol. 45,
AFIPS Press, 11ontvale, N.J. pp. 433-442.

2W. E. Howden, "Theoretical and Empirical Studies in Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE-4, July 1978.
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and Gannon. Basically, the problem is one of complexity. For most

programs, the number of different combinations of input values is

practically infinite. Therefore, using exhaustive testing to show that

a program works correctly is an impossible task.

Given the fact that programs cannot be tested by trying all test

cases, what are the alternatives? Boundary value testing, path testing,

and symbolic execution2 have been some of the suggested solutions. The

key problem is finding test cases which detect the errors present in the

software. At present, there are no methods for deriving test cases with

this property although many studies of the types of errors commonly

found in software have been undertaken.
3 5

The second problem has to do with checking whether a test has hbeen

successful. Even if there were a method for selecting test cases which

was able to identify specific errors in a program, the process of

evaluating whether or not the program ran successfully is a manual one.

The output from the program must be compared with the expected results.

For large programs composed of many functions this is a very time-

consuming task.

1.2 A PROPOSED SOLUTION

From the above discussion, it is evident that automating the

testing of computer programs requires finding methods for developing

IC. Gannon, "Error Detection Using Path Testing and Static Analysis,"
Computer, Vol. 12, August 1979.

2 L. A. Clarke, "A System to Generate Test Data and Symbolically Execute

Programs," IEEE Transactions on Software Engineering, Vol. SE-2, Sep-
tember 1970.

3T. A. Thayer et al., Software Reliability Study, TRW Defense and Space
Systems Group, RADC-TR-76-238, Redondo Beach, Calif., August 1976.

4 J. J. Fries, Software Error Data Acquisition, Boeing Aerospace Company,
RADC-TR-77-130, Seattle, Washington, April 1977.

5Verification and Validation for Terminal Defense Program Software: The
Development of a Software Error Theory to Classify and Detect Software
Errors, Logicon HR-74012, May 1974.
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effective test cases as well as methods for efficiently evaluating the

results of using them. A method for solving these problems has been

developed that combines the use of search algorithms from operations

research with executable assertions from software verification research.

Finding the maximum or minimum value of a function of several

variables each subject to some set of constraints is a common problem in

operations research. Minimizing the cost of constructing a building

given the choice of using brick, wood, and adobe materials in different

proportions typifies problems of this sort. Many methods have been

developed for solving such problems, for example, see Denn. One of the

simplest is to define the parameter of interest (e.g., cost) as a

function of the possible alternatives (e.g. brick, wood, adobe). The

problem then is to find a minimum value of the function defined by the

values of the alternatives (variables). Figure 1.1 illustrates this

for two variables, brick and wood. The cost function defines a surface,

with "hills" (maximums) and "valleys" (minimums).

The goal is to find a point on this surface which is a minimum

(in the example of building cost). This point corresponds to a particu-

lar set of values of the alternatives or variables. Finding such a

minimum value requires that this surface be searched. There are many

methods for traversing the surface according to some search heuristic

J (for example, in the direction nf the gradient) until a solution is

found.

The problem of evaluating the results limits the application of

these techniques to the testing of computer programs. That is, in

operations research, we are usually trying to maximize or minimize the

1M. M. Denn, Optimization by Variational Methods, New York, McGraw-Hill,

1969.

1-3
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AMOUNT
OF WOOD

AMOUNT
OF BRICK

Figure 1.1. Cost as a Function of Building Material

value of one variable, whereas in software testing we are usually trying

to compare the value of many output variables with their expected

values.

The solution to this problem has been found in "executable

assertions," a technique developed for proving software correct and for

checking it while it is running. Assertions are comments added to a

program which specify how the program is to behave. They may specify a

range of values for a variable, the relation the values of two or more

variables have to each other or compare the state of a present computa-

tion to that of a past computation. Figure 1.2 shows an example of

two assertions that specifies the range of values that the variable

VALUE can assume.

To make an assertion "executable," we merely translate it into

machine language. Then while the program is running, the assertion can

1-4
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I
ASSERT (VALUE .GE. 0.0)

ASSERT (VALUE .LE. TWOPI)

Figure 1.2. Examples of Assertions

be evaluated. As in the case of a logical function, the assertion has a

value of true or false. If the value of an assertion becomes false at

any point in the execution of a program, then this can be reported as

any other error message.

1.3 COMBINING ASSERTIONS AND SEARCH ALGORITHMS

Assertions give us a method for evaluating whether a program has

run correctly without looking at all of its output. If the assertions

are written correctly and they completely specify the algorithm, then

the correctness of the program can be determined while the program is

running. This is not to say that writing assertions to accomplish this

is easy; a comprehensive and complete set of assertions for a program is

difficult to develop. But if it can be done, then the problem of

examining the output of a program to determine whether it executed a

test case correctly has been solved.

Since using assertions means that we no longer have to examine the

output of a program, the automated testing of computer programs becomes

possible--provided we can automate the selection of test cases. If we

can transform the output from the assertions into a function, we can

utilize the search techniques from operations research to locate errors.

The basic idea is this: The function we define is the number of

assertions that become false during the execution of a particular test

case. The independent variables are the values of the input variables

of the program. The search technique will be used to find the values of

I
1-5
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the input variables for which the maximum number of assertions are

violated. The function relating the number of assertions violated to

the values of the input variables is called the "error function," and

the surface that it describes is called the "error space."

If the search algorithm is to perform correctly, the error

function must (1) not define a flat (uniform) surface and (2) not be

discontinuous (have spikes) at any points. A previous experiment,

investigated the error function for a scheduling program. It was found

that the error function for this program was neither uniform nor

discontinuous. In a second experiment, described below, we have

attempted to show that this is also true for another program "seeded"

with several types of errors. We have also attempted to determine the

efficiency of the search technique in locating these errors relative to

other types of testing methods.

1.4 OVERVIEW OF THE EXPERIMENT

The experiment was to select a program, add assertions to it, and

seed it with errors from a list of typical software errors. The

location of the errors was determined randomly. Each of the errors was

inserted in the program one at a time and the program was then tested by

systematically choosing combinations of values for the input parameters.

This testing was done automatically by a program which varied the input

parameters over the required values. After this, the program was tested

by the search routine, first by allowing the search algorithm to vary

the same variables that were varied in the first tests, and then

allowing it to vary all of the input variables.

1.5 THE PROGRAM

The program selected takes an orbit described by six independent

parameters (longitude of the ascending node, inclination of the orbit

J. Benson, A Preliminary Experiment in Automated Software Testing, Gen-

eral Research Corporation TM-2308, February 1980.

1-6



plane, angle of the perigee, eccentricity, time at perigee, and semi-

major axis) and converts this description into a state vector represen-

tation of a point on the orbit (time, postion, velocity, and accelera-

tion). The point is determined by the values of two other parameters.

The range of values of one of these parameters is dependent upon the

other. In all, there are ten input parameters, seven of which are

independent of the others.

1.6 THE SEARCH ROUTINE

The search routine chosen for the experiment was one developed by

Box called complex search. This algorithm constructs a hypertriangle,

or complex, of the values of the function from several tests and then

rotates, shrinks, expands, and projects the complex in order to locate a

value which is larger (in the case of finding the maximum) than the

worst point currently in the complex. The worst point is then replaced

by the new point and the process continued until no further progress can

be made.

1.7 THE TEST DRIVER

Several programs were also written in order to support the testing

and make it as automatic as possible: (1) A test driver, which handled

the selection of the testing method to be used and read in an initial

test case was written, (2) a set of subroutines which implemented the

constraints among the input variables used in generating new valoes for

the search routine, and (3) a set of routines to count the number of

assertions violated in each test and print the results.

1.8 THE ASSERTIONS

Assertions added to the program were of three types: (1) those

that described ranges of variable values, (2) those that described the

relationship between values of variables, and (3) those which kept track

of the history of the computation. Two routines were also written which

included assertions to check the values of the input variables and the

1M. J. Box, "A New Method of Constrained Optimization and Comparison
with Other Methods," Computer Journal, Vol. 8, 1965.

I
1-7



correctness of the results. These routines were invoked at the begin-

ning of the test program and at the end of the test program.

1.9 SELECTING ERRORS

Certain categories of errors were selected from a list of common

software errors. Errors of these types were inserted into the test

program by randomly selecting sites (statements in the program) where

the particular type of error could occur.

1.10 TESTING TECHNIQUES

The program was then tested by inserting one error at a time.

First, the program was tested by taking combinations of values from

three input variables. The permissible input range of each of the

variables was divided up into equal subranges so that a reasonable

number of test cases could be performed. Test values for each variable

were selected by choosing the end-points of each subrange. The program

was then tested using the selected values for the three input variables.

First, the values of two of the three variables were fixed at a value

selected from their range of test values. Then, a test was run for each

of the test values of the third variable. The value of the third

variable was then fixed, and the first variable was varied over its set

of test values. After this, the values of the first and third varilble

were fixed and the second variable was varied. The testing continued

until all combinations of the test values for the three varibles had

been used. In this way a "grid" over the input space was obtained. The

values of the variables which caused assertions to be violated and the

number of assertions violated were recorded.

A majority of the errors (15 out of 24) were not detected by the

original assertions for a number of reasons. Two of the errors were not

detected since they occurred only if another error had occurred pre-

viously during program execution. For other errors, it was found to be

very difficult to write assertions that would detect them. Finally,

1-8
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eight of the errors were not detected simply because the program did not

contain enough assertions. In order to investigate the performance of

the search algorithm, new assertions were added to the program and the

grid tests were run again. Errors which were not detected in this

second set of tests were removed from the list of errors used in the

experiment.

Next, the errors were again inserted one at a time and the search

routine was allowed to vary only the variables which were varied in the

grid tests. The number of assertions violated and the input values

which caused the violations were recorded.

Finally, the errors were again used one at a time; but this time

the search routine was allowed to vary any of the seven independent

variables in order to locate a maximum. Again, the assertions violated

and the input values which caused the violations were recorded.

1.11 RESULTS

The results from the grid tests demonstrated the effectiveness of

the assertions in detecting the errors. Table 1.1 shows the results

of these tests. Of the original 24 errors, nine (thirty-eight percent)

were detected by the original assertions, and eight (thirty-three

percent) were detected by the assertions that were added. (The seven

errors, twcnty-nine percent, which could not be detected by assertions,

were not tested).

The relative effectiveness of the search testing methods versus

the grid testing method is summarized in Table 1.2. (In this table, and

those following, the "error number" column refers to a unique number

assigned to each error by the error generation method discussed in Sec.

4.) In one case, the grid technique caused an assertion violation which

1-9
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TABLE 1.1

RESULTS FROM GRID TESTS

Number Percentage

Errors Detected by

Original Assertions 9 38

Errors Detected by
Added Assertions 8 33

Errors Not Detected
by Assertions 7 29

Total 24 100

TABLE 1.2

EFFECTIVENESS OF SECOND TESTING TECHNIQUES

Number of Assertion Violations
Detected by Testing Technique

3-Variable All-Variable
Grid Search Search

s 14 1 2 3

e 28 1 0 0
z 47 2 2 1

0
o74 7 7 8

1-10w



neither search technique caused. In another case, the search technique

using all variables was not able to cause an assertion violation that

was caused by the grid techaique and the search varying three variables.

On the other hand, the search technique using all variables was able to

cause an assertion violation which neither the grid technique nor the

search using three variables was able to cause. Finally, in one case

the search technique using three variables caused an assertion violation

that the grid technique did not cause while the search using all

variables caused another assertion violation in addition to the one

discovered by the search using three variables. In all other tests,

each of the methods caused the same assertions to be violated.

The efficiency of the search technique was not measured directly,

but an estimate of the behavior of the all-variable search technique in

relation to the grid technique can be given. Except for error 52, which

required 683 tests, the grid technique required 317 tests. In the case

of the search method which varied all input variables, Table 1.3 shows,

for each error, the number of the test in which the first assertion

violation was detected. In all, fifteen of the seventeen detectable

errors were detected by the seventh test in the search.

O
1-11
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TABLE 1. 3

DETECTION OF ASSERTION VIOLATIONS BY SEARCH METHOD

Error Test Number of First
Number Assertion Violation

1 5
3 2

13 7

14 5

28 *

31 4

37 5

41 3

47 57

48 3

52 3

54 3

56 5

57 7

64 2

67 5

74 2

*No assertion violations detected.

1-12
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2 THE TEST PROGRAM

The program selected for testing is one of a number of subroutines

in a program library called TRAID. This set of programs is used to

compute solutions to orbital mechanics problems. The particular

program, ORBP, was written in 1968 and has been used extensively since
that time. It has undergone several revisions. The function of the

program is to take as input an orbit described by a set of eight

parameters or orbital elements (only six of which are independent), and

produce from this set a state vector representation of a point on the

orbit. The state vector includes the time, position, velocity and

acceleration in three dimensions. The particular point on the orbit is

specified by a parameter (MODE), which, in conjunction with another

parameter (VALUE), allows the state vector describing the point to be

computed. (For a simple discussion of the methods for describing orbits
2

see Macko. 2 ) The orbital element vector is shown in Table 2.1 along

TABLE 2.1

ORB ITAL ELEMENT VECTOR PARAMETERS

Parameter Range

1. Longitude of the ascending node 0 to 2n

2. Inclination of the orbit plane 0 to Tr

3. Angle of the perigee 0 to 27

4. Semi-latus rectum dependent

5. Eccentricity (E) 0.1 to 0.9

6. Time at perigee 0 to period

7. Period divided by 27 dependent

8. Semi-major axis (A) 6,375,180 to
35,861,000 meters

1T. Plambeck, The Compleat Traidsman, General Research Corporation
IM-711/2, revised edition, September 1969.

2 S. J. Macko, Satellite Tracking, John F. Rider Publisher, Inc., New

York, 1962.

i 2-1
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with the ranges of each independent parameter as used to test the

program. The letters E and A are used to indicate the eccentricity and

semi-major axis respectively.

An orbit is described by the following eight parameters: (1)

longitude of the ascending node, (2) inclination of the orbit plane, (3)

argument (angle) of the perigee, (4) semi-latus rectum, (5) eccentri-

city, (6) time at perigee, (7) period divided by two pi, and (8) the

semi-major axis. Of these eight paramenters, the semi-latus rectum and

the period are dependent upon the others; they are included in the

vector only to simplify the calculations. The way in which these

parameters are calculated from the others is shown in Fig. 2.1.

The output state vector is shown in Table 2.2. It includes the

time at the point on the orbit, and the position, velocity and acceler-

ation in three dimensions. These last parameters are given in a

coordinate system relative to the center of the earth.

Semi-latus rectum = A * (I - E2 )

where

A - semi-major axis

E - eccentricity

Period = (A * A/GCON) * 2r

where

GCON = gravitational constant = 3.9857 x 1014

Figure 2.1. Calculation of Dependent Orbital Parameters

2-2

.1 ~ .,..



TABLE 2.2

STATE VECTOR PARAMETERS

Parameter

1. Time

2. X-coordinate

3. Y-coordinate

4. Z-coordinate

5. X-velocity

6. Y-velocity

7. Z-velocity

8. X-acceleration

9. Y-acceleration

10. Z-acceleration

Together, the parameters MODE and VALUE specify a point on the

orbit. The possible values of the mode parameter and the corresponding

ranges of the value parameter are shown in Table 2.3. The mode

parameter directs ORBP to perform one of six possible computations to

locate a point on the orbit specified by the orbital element vector.

The MODE parameter indicates how the VALUE parameter is to be inter-

preted. That is, the value parameter is only a number, the MODE para-

meter indicates what that number stands for. For example, MODE could

indicate the time at the desired point, and therefore VALUE could assume

any value between 0 and the period of the orbit. The six possible modes

are: (I) angle of the point from the perigee point, (2) radius in the

increasing direction (i.e., toward apogee), (3) radius in the decreasing

direction (toward perigee), (4) time, (5) altitude in the increasing

direction, and (6) altitude in the decreasing direction.

According to the values of MODE and VALUE, ORBP calculates a state

vector using the orbital element vector. The calculations for altitude

and radius are performed using the same code. This is done by addingI
2-3

! 
,



TABLE 2.3
MODE AND VALUE PARAMETERS

Mode Meaning of Value Range of Value

0 Angle from perigee 0 to 2!

1 Increasing radius Rmi to R
mn max

2 Decreasing radius Rmin to Rma x

3 Time 0 to Period

4 Increasing altitude Alt . to Alt
mln max

5 Decreasing altitude Altmin to Altmax

the radius of the earth to VALUE if it corresponds to an altitude (MODE

equal 4 or 5). (See Fig. 2.2.) The point on the orbit is found by

computing the angle between the point and the perigee and the radius

from the focus of the orbit (the center of the earth) to the point. The

only locp in the program occurs when MODE indicates that VALUE is to be

interpreted as time. In this case, an iterative algorithm is used to

calculate the angle of the point from the perigee.

2.1 THE SEARC1 ROUTINE

The search routine selected for the experiment was one invented by
1

Box, called complex search. It is a method for solving for the maximum

or minimum of a nonlinear function. The independent values of the

function may be limited by nonlinear inequality constraints. The

independent values of the function along with the function value define

a space. The set of values of the function define a hyperplane in the

'Box, op. cit.

2-4



* I

Radius = A * (1 - E)

where

A = semi-latus rectum

E = eccentricity

Altitude = radius - RBODY

where

RBODY = radius of earth 6,375,180 meters

Figure 2.2. Calculating Radius and Altitude

space. This hyperplane can then be expanded or contracted to find an

extremum of the function. The hyperplane is called a "complex."

The technique is as follows. Choose a set of values of the

independent variables at random (subject to constraints) and determine

the value of the function from these values. The independent values and

the function value define a point on the complex. Define other points

in the same way until there is one more point than the number of

independent variables in the function. Then replace the point with the

worst function value with a new point. The new point is found by

constructing the line formed by the rejected point and the centroid of

the remaining points. A set of coefficients is then calculated to

determine the exact location of the new point. These coefficients

determine the degree of reflection, expansion, shrinkage, contraction,

and rotation to be applied in forming the new set of points. New points

are selected for the complex using the above technique until a solution

is found. This technique is somewhat immune to irregularities (hills

and valleys) in the surface being searched.

22-5
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The search program was adapted from an implementation by Cooper
1

which was used during the Adaptive Testing Experiment. In general, the

function may have many independent variables. In order for the search
routine to function correctly, there must be one more point in the com-

plex than there are independent variables in the function. For example,

if the function has two independent variables, then the complex would

have three vertices. That is, it would be a triangle. The coordinates

of each vertex would be the values of the independent variables and the

value of the function. For a function of two variables x and y, each

complex point would have the coordinates x,Y1,f(x,Y I) as shown in Fig.

2.3.

f(x,y)

f(xl' Yl)

X1, Y1, f(xl' Yl)

Figure 2.3. Coordinates of the Vertices of a Complex

'D. W. Cooper, Adaptive Learning Requirements and Critical Issues, Gen-

eral Research Corporation CR-4-708, January 1977.
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The constraints were computed by a subroutine written especially

for the test program. They included ranges of variables and relation-

ships between the variables. Examples of the latter constraints include

the relationship between the semi-major axis and the semi-latus rectum

of the orbit (shown in Fig. 2.1) and the valid range of the VALUE param-

eter for different values of the MODE parameter (shown in Table 2.3).

An input parameter selects which independent variables are to be

varied by the search algorithm. This was used in the experiment to vary

only three of the independent variables in one test and all of the

independent variables in the other test.

The termination condition for the search routine is determined by

another input parameter. This parameter is a maximum function value

which when found, reinitializes the search. When a set of input values

has been found which causes this number of assertion violations, the

maximum function value is increased by one and the search is begun again

for this new value. If the new maximum value is not found, then the

algorithm continues searching until one-hundred tests of the test

program have been run.

After constructing the complex, the search routine finds the worst

point (minimum function value over all points in the complex) and tries

to replace it with a point with a larger function value (assuming the

maximum of the function is being sought). It does this by applying the

operations of reflection, expansion, centroid substitution, contraction,

shrinkage, and rotation to the complex in that order. In order to

illustrate each of these operations, Fig. 2.4 shows the effect of each

of these operations on a triangle. In "reflection" the new point is

found by reflecting the old point through the centroid of the complex.

Note that the "test number" column in Table 1.3 refers to the number of

tests or runs of the test program (ORBP), not the search program. One
run of the search program corresponds to at least 100 runs of the test
program.i
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REFLECTION

/I EXPANSION

CENTROID
SUBSTITUTION

CONTRACTION

SHRINKAGE

ROTATION

Figure 2.4. Complex Transformations

2-8



That is, the new point and the old point lie on a line through the

centroid. The new point and the old point are each the same distance

from the centroid. In "expansion," the distance of the new point from

the centroid is greater than the distance from the old point to the

centroid. In centroid substitution, the worst point is replaced by the

centroid of the complex. "Contraction" reduces the distance from the

new point to the centroid to be less than the distance from the old I
point to the centroid. "Shrinkage," instead of reflecting through the

centroid of the complex, uses the point defined by the largest function

value as the reflection point. Finally, "rotation" rotates the complex

about the centroid in order to locate a new point. The cycle of

operations continues until a maximum value is found or one-hundred tests

have been run.

2.2 TEST DRIVER

A test driver was written to interface the search routine with the

test program and initialize the test. The test driver determines which

testing technique will be used: grid, search varying three variables,

or search varying all variables. It initializes the values of all vari-

ables needed to conduct the test and reads in the basic set of orbital

parameters which are common to all tests. It reads the values of the

variables to be varied and their ranges and, for the grid test, divides

the ranges up into intervals and selects a set of values for each vari-

able corresponding to this division. It also calculates the dependent

orbital paramenters (semi-latus rectum and period divided by 27) and

runs the grid tests. The search routine itself runs the search tests.

Other routines detect when assertions are violated, count the

number of assertions violated in each of the tests, print a table of the

assertions violated by test and record and print other information. The

test program runs with other routines from the TRAID library which it

uses to perform certain computations and input, output and formatting

operations.

2-9
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3 THE ASSERTIONS

Assertions are statements added to a program to describe the

intent of the program, the relationships which must hold between the

variables in the program, the rules by which the variables can be

accessed, and other information about the program which cannot be

expressed in the programming language. In short, assertions are a way

in which to state a program's specifications. They are useful in

program verification, in consistency checking, and for reporting

unexpected behavior while the program is being tested.

When assertions are translated into executable code by a compiler

or preprocessor, they are called "executable assertions." Executable

assertions placed at the beginning of the program are called "initial

assertions," those placed at the end of the program are called "final

assertions," and those placed within the program are called "inter-

mediate assertions." Initial assertions describe the conditions that

must be satisfied when the program is entered. These conditions can be

the values of certain variables, their ranges, or the relationship

between the value of one vriable and the value of another (for example

that X is greater than Y). Final assertions describe the result that

the program is to compute--the range of values of the results and the

relationships that must hold between any of the resultant variables.

Intermediate assertions are used to describe the values that variables

can assume and the relationship between these values and the values of

other program variables at intermediate points in the program. They may

also be used to specify the computational steps that a program must

perform in response to the value of a particular logical expression.

Almost any condition or specification can be expressed using

executable assertions. An executable assertion is a logical expression

which, if evaluated to false, signals the violation of a specifiction.

When the program is executed, the logical expression in an assertion is

evaluated when the assertion is reached. If it is false, an error

3-1

~ ~ .-



message is printed, the assertion that was violated is recorded and a

recovery routine (if specified in the assertion) is executed.

The assertions written for the test program, ORBP, describe three

kinds of specifications: (I) the ranges of variables, (2) the rela-

tionships among variables, and (3) the history of the computation. For

example, the assertions shown in Fig. 3.1 define the range of the

parameter VALUE when it is interpreted as the angle between a point and

the perigee. An example of the second type of assertion is shown in

Fig. 3.2. Here VALUE is interpreted as the radius of the orbit.

Therefore, its value must have a particular relation to the value of the

semi-major axis, A , and the eccentricty of the orbit, E. The final

type of assertion is used to keep track of the iterative computation of

the angle from perigee when VALUE is interpreted as the time at which a

point on the orbit is reached. The computation proceeds in two dif-

ferent ways depending on whether the number of iterations is even or

odd. The code segment which performs this computation is shown in Fig.

3.3. The computation is limited in the number of iterations it is to

perform. This is verified by adding the variable MTRY to the code to

count the number of iterations and an assertion to test its value. This

also helps identify errors which cause the computation to be performed

out of sequence.

The assertions for the test program were organized in the follow-

ing way. Initial assertions were gathered together in a logical

function INPCHK which was invoked by the initial assertion

INITIAL ( INPCHK(MODE, VALU, ORBEL, STATE) )

which is the first assertion in the test program. This assertion shows

that assertions can contain calls to logical functions, that is func-

tions whose value evaluates to true or false. INPCHK contains assert-

ions which check the ranges of the input variables to ORBP, verify the
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I ASSERT (VALUE .GE. 0.0)

I ASSERT (VALUE .LE. TWOPI)

Figure 23. 1. An Example of Range Assertions

ASER (VLEG.( I10-E
ASSERT (VALUE .E. (A * (1.0 + E)))

Figure 3.2. An Example of Relationship Assertions

T = VALUE

EAl =FM

NTRY =-1

41 CONTINUE

j MTRY = NTRY

MTRY = NTRY + 1

IF (NTRY .EQ. 20) GO TO 250

EA =FM + E * SIN (EAl)

IF (ABS (EA1-EA) .LE. EMISS) GO TO 42I IF (MOD (NTRY,2) .EQ. 1) 45, 46

45 CONTINUE

I EAl = FA2 - (EAl-EA2)**2/(EA+EA2-2.*EAl)

ASSERT ( MTRY .LT. NTRY)

I GO TO 41

I46 EA2 = EAl

EAl = EA

ASSERT (MTRY .LT. NTRY)

GO To 41

Figure 3.3. An Example of History Assertions
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relationships that must hold among these variables and verifies that the

orbit defined by the orbital element vector is an ellipse.

The output assertions for ORBP were written in the same way. A

logical function OUTCHK was written which was invoked by the assertion

FINAL ( OUTCHK(MODE, VALU, ORBEL, STATE) )

just before ORBP was exited. The function OUTCHK checked the output of

the test program by comparing the representation of the orbit in terms

of the state vector which was calculated, to the representation of the

orbit as input to ORBP in the orbital element vector. It does this by

recalculating the orbital element vector from the state representation

of the point on the orbit. The code and assertions for OUTCHK are shown

in Appendix A.

Other assertions were added directly to the test program to check

the ranges of variables, the relationships between their values and the

order of the computation. These assertions were derived from document-

ation provided with the program and from equations from the theory of

orbital mechanics. The listings of these three programs are included in

Appendix A.

The assertions for ORBP were not all written at one time. In

fact, the combination of existing assertions and the search algorithm

made the creation of new assertions an iterative process. As more was

learned about the behavior of the program through the testing process,

better, more precise assertions could be written about it.

Assertions were first written from information gained by reading

the program and its documentation and by studying the equations of

orbital mechanics. However, the first set of grid tests identified a

number of errors which could not be detected using assertions and a
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number of errors which were not detected by the assertions already in

the code. Therefore, the results from these tests were used to write

more precise assertions which could detect these errors. No new

assertions were added to the code after the first set of grid tests

although a number of assertions were changed. This is discussed more in

the results section below.

i 3-
i
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4 THE ERRORS

Errors were generated for the test program using a procedure

developed by Brooks. A complete description of the method can be found

in Cannon, Brooks and Meeson. The method uses error types and frequen-
2

cies from a previous study to randomly select a set of errors to be

"seeded" in the program. The error types from Project 5 of this study

were used in the experiment. These error types or categories arp shown

in Table 4.1.

Not all of the categories were chosen for use in the experiment.

Operation errors, other errors, documentation errors, and problem report

rejection errors were not included because they did not include errors

which were detectable while running the program. The experiment was

specifically concerned with detecting run-time errors. Data input

errors and data output errors were not included because the test program

does not include any input or output statements of any consequence other

than error messages. Data definition errors (which have to do with

subscript referencing) were not included since explicit, constant

subscripts were used to access arrays in the test program. Finally,

data base errors were not included since the test program does not

access a defined data base.

The remaining categories (computational errors, logic errors, data

handling errors, and interface errors) were used to generate errors for

ORBP. Table 4.2 shows (1) the percent of errors found in each category

by the original study, (2) the percent of errors in each category when

only these categories are considered, (3) the number of errors and the

percent of errors in each category which were used in the study, and (4)

1C. Cannon, R. N. Meeson, and N. B. Brooks, An Experimental Evaluation

of Software Testing, General Research Corporation CR-l-854, MIay 1979.

2 Thayer et al., op. cit.

I
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TABLE 4.1

ERROR TYPES USED IN EXPERIMENT

PROJECT 5 ERROR CATEGORIES

Applicable to

Experiment

A000 COMPUTATIONAL ERRORS /

A_100 Incorrect operand in equation /
A200 Incorrect use of parenthesis /
A_300 Sign convention error
A_400 Units or data conversion error /
A 500 Computation produces over/under flow /
A_600 Incorrect/inaccurate equation used/wrong I

sequence
A 700 Precision loss due to mixed mode /
A_800 Missing computation /
A_900 Rounding or truncation error /

B_000 LOGIC ERRORS

B_100 Incorrect operand in logical expression /
B_200 Logic activities out of sequence /
B_300 Wrong variable being checked /
B_400 Missing logic or condition tests /
B_500 Too many/few statements in loop
B_600 Loop iterated incorrect number of times

(including endless loop)
B 700 Duplicate logic V

C_000 DATA INPUT ERRORS

C_100 Invalid input read from correct data file
C_200 Input read from incorrect data file
C_300 Incorrect input format
C_400 Incorrect format statement referenced
C-500 End of file encountered prematurely
C600 End of file missing

D_000 DATA HANDLING ERRORS

D_050 Data file not rewound before reading
D_100 Data initialization not done /
D_200 Data initialization done improperly /
D 300 Variable used as a flag or index not set /

properly
D_400 Variable referred to by the wrong name I
D_500 Bit manipulation done incorrectly
D_600 Incorrect variable type
D_700 Data packing/unpacking error
D 800 Sort error
D_900 Subscripting error

4-2
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Table 4.1 (cont.)

PROJECT 5 ERROR CATEGORIES 
Applicable to

Experiment

E 000 DATA OUTPUT ERRORS

E 100 Data written on wrong file

E_200 Data written according to the wrong format
statement

E 300 Data written in wrong format
E 400 Data written with wrong carriage control

E_500 Incomplete or missing output
E_600 Output field size too small

E_700 Line count or page eject problem

E800 Output garbled or misleading

F_000 INTERFACE ERRORS

F_100 Wrong subroutine called V/
F 200 Call to subroutine not made or made in V

wrong place

F_300 Subroutine arguments not consistent in V
type, units, order, etc.

F400 Subroutine called is nonexistent

F_500 Software/data base interface error
F 600 Software user interface error

F 700 Software/software interface error

G 000 DATA DEFINITION ERRORS

G 100 Data not properly defined/dimensioned

G 200 Data referenced out of bounds
G300 Data being referenced at incorrect locatio.
G400 Data pointers not incremented properly

H 000 DATA BASE ERRORS

H_1O0 Data not initialized in data base

H200 Data initialized to incorrect value

H-300 Data units are incorrect

1_000 OPERATION ERRORS

1100 Operating system error (vendor supplied)
1_200 Hardware error

1_300 Operator error

1_400 Test execution error
1 500 User misunderstanding/error
1 600 Configuration control error

4-3
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Table 4.1 (cont.)

PROJECT 5 ERROR CATEGORIES

Applicable to
Experiment

J 000 OTHER

J 100 Time limit exceeded
J_200 Core storage limit exceeded
J 300 Output line limit exceeded
J 400 Compilation error
J_500 Code or design inefficient/not necessary
J 600 User/programmer requested enhancement
J 700 Design nonresponsive to requirements
J 800 Code delivery or redelivery

J_900 Software not compatible with project
standards

K_000 DOCUMENTATION ERRORS

K_100 User manual
K_200 Interface specification
K_300 Design specification
K_400 Requirements specification
K_500 Test documentation

X0000 PROBLEM REPORT REJECTION

XO001 No problem
X0002 Void/withdrawn
X0003 Out of scope - not part of approved design
X0004 Dupiicates another problem report
X0005 Deferred

4-4
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the number of errors and percent of errors in each category which were

successfully detected by assertions (see results section).

In the original study, no attempt was made to match the error type

or category to a specific statement type in the program. In generating

errors for the experiment, statement types and other descriptive

information about the test program were generated automatically using an
I

automated program verification system, SQLAB. The statement types were

then matched against errors using the method outlined below.I4.1 THE ERROR SEEDING METHOD
The errors were generated in the following way. First, each

statement in the test program was classified by type. Then a table

matching the error categories to statement types was constructed. This

is shown in Table 4.3. The set of statement types found in the test

program was then added to the error-category/statement-type table. This

gave a list of available error sites in the test program with associated

error categories. From this list of available error sites, potential

error sites were randomly selected and matched with the error sub-

categories by a previously written computer program.

From the list of potential sites and associated error subcate-

gories, errors were developed. The error site was first checked to be

sure that the error sub-category was appropriate for the site. For

example, if error type A200 (incorrect use of parenthesis) is selected

as a subcategory, the statement must contain parentheses in order to

include this error.

As each error was constructed, it was included in an "error

packet" containing an error number, a comment which identified the error

subcategory, and the code which altered the original code of the test

program in order to produce the error. Since the test program was

1S. H. Saib, "Application of the Software Quality Laboratory," Vol. 2 of

Infotech State of the Art Report, Software Testing, Infotech Interna-
tional, Ltd., Maidenhead, Berkshire, England, 1979, pp. 231-243.
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stored on a program library maintained by CDC UPDATE (a batch source

text editor), the error packets could easily be inserted into the test

program. Figure 4.1 shows an example of an error packet.

Next the error packets were inserted into the test program and the

program was compiled and run. This was done to insure that the errors

were not detected by the FORTRAN compiler, the loader or the run-time

error routines of the operating system. In this way, twenty-four errors

were developed for use during the testing. Table 4.4 shows each of

these errors by number, the error subcategory to which it belongs and a

short description of the subcategory.

Seven of the errors generated were eliminated from the testing

during the grid tests since they could not be detected using assertions.

This is discussed in Sec. 6.1.

*IDENT 13

*DELETE ORBP.63

C AIO

VALUE = VALU-RBODY

Figure 4.1. An Error Packet

'UPDATE Reference Manual, Control Data Corporation, Arden Hills, Minn.,
1975.
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TABLE 4.4

ERRORS USED IN THE EXPERIMENT

Error
Number Category Description

1 A200 incorrect use of parenthesis

3 A300 sign convention error

8 A600 incorrect/inaccurate equation
used/wrong sequence

13 AIO incorrect operand in equation

14 A800 missing computation

28 B400 missing logic or condition tests

31 B400 missing logic or condition tests 

36 B200 logic activities out of sequence
37 B200 logic activities out of sequence

40 B300 wrong variable being checked

41 D200 data initialization done improperly

46 DIOO data initialization not done

47 D1O0 data initialization not done

48 D400 variable referred to by the wrong name

52 D_,00 incorrect variable type

54 D600 incorrect variable type

55 D600 incorrect variable type

56 D400 variable referred to by the wrong name

57 D300 variable used as a flag or index not set

properly

62 F1O0 wrong subroutine called

64 F100 wrong subroutine called

67 F700 software/software interface error

74 F200 call to subroutine not made
or made in wrong place

77 F700 software/software interface error

I

I
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5 THE EXPERIMENT

The errors were inserted into the test program one at a time.

First, grid tests were performed to identify any errors which could not

be detected by assertions or errors for which other assertions had to be

written. After the former errors were eliminated from consideration and

assertions were added to the code to detect the latter, the grid tests

were performed again. The results from these tests were used as a

baseline by which to evaluate the search technique. A set of assertions

which were violated when the test program was run using the grid test

method was associated with each error. After the grid tests were run,

the search algorithm was used to test the program by varying only three

of the maximum of eight variable parameters. Finally, the search

algorithm was allowed to vary all of the parameters.

Recall that of the eight parameters in the orbital element vector,

only six of these are independent. The independent variables are: (1)

longitude of the ascending node, (2) inclination of the orbit plane, (3)

argument (angle) of the perigee, (4) eccentricity, (5) time at perigee,

and (6) semi-major axis. These parameters along with MODE and VALUE

were the parameters which could be varied by the test driver. For each

of the tests, a standard orbit was used as a basic test case. The

parameters of the orbit are shown in Table 5.1. The parameters which

were n6 t being varied in a test remained fixed at these values.

5.1 GRID TESTS

For the grid tests, three variables were varied, MODE, VALUE, and

the eccentricity of the orbit. The tests were performed in the follow-

ing way. The standard orbit was input to the test driver program. The

test driver then varied the values of the parameters and ran tests of

ORBP. The data collection routines recorded the number of assertions

violated in each test along with the values of the input variables.

I
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TABLE 5.1

STANDARD ORBITAL PARAMETERS

Parameter Value

Longitude of the ascending node

Inclination of the orbit plane 7T/2

Angle of the perigee /2

Eccentricity 0.1

Time at perigee 0

Semi-major axis 10000

The parameter values were varied in the following way. The value

of the eccentricity of the orbit was varied from 0. 1 to 0.9 in steps of

0.2. (The range and step size of any variable can be varied by the test

driver program.) The value of the mode was then varied from 0 to 5.

For each value of MODE, the corresponding VALUE parameter was varied

over its range from minimum to maximum such that eleven VALUEs were

generated for each value of MODE. The range of the VALUE parameter for

each value of the MODE parameter is shown in Table 2.3. in this way, a

coarse "grid" was drawn over the input space of the program for three

variables. The values of the variables determine points in the grid and

were used as input values to the program during this series of tests.

For error number 52, the time at perigee had to be varied instead

of the eccentricity in order for the assertions to detect the error.

This parameter was varied from 0 to the period in order to generate

eleven test values.

5-2
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5.2 SEARCH VARYING THREE PARAMETERS

In the second part of the experiment the search routine was used

to detect the errors. Again the standard orbit was used as a basis for

the testing. It was input to the test driver and the search routine was

allowed to vary the values of MODE, VALUE and the eccentricity of the

orbit (time at perigee in the case of error 52) in order to locate the

error in the test program. All other input parameters to ORBP remained

constant. T e testing was done by inserting the errors in the test

program one at a time. For each error, the assertions violated were

recorded along with the values of the parameters.

The search routine was allowed to run until it found the number of

assertion violations preset by an input parameter. When this number of

assertion violations was detected, it was increased by one and the

search algorithm tried to locate a combination of input values which

caused the new number of assertions to be violated. In this way, the

search algorithm was directed to locate values of the input parameters

which ciused the maximum number of assertions to be violated. The

search routine stopped if it had not located this number of errors in

one hundred more tests.

5.3 SEARCH VARYING ALL PARAMETERS

For the final stage of the experiment, the search routine was

allowed to vary all of the input parameters in order to locate assertion

violations. Again, the standard orbit was used as a starting test case.

j In addition to this set of input data, the search routine chose random

values for the parameters until eleven test cases were identified. A

test case consisted of the orbital element vector and the MODE and VALUE

parameters. This is one more test case than the number of variables in

the input space of the test program and is the number of function values

required to construct the complex. The number of assertions violated

for each test case was determined by running the test program.

I
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ti The search continued by varying the input parameters according to

the search algorithm until a preset number of assertions was violated.

As in the previous search tests, when this occurred the number was

increased by one and the search continued in order to locate a new test

case which violated this new number of assertions. If the new number of

assertions were not violated in any test after one hundred tests, the

search was stopped. Each one of the errors was tested in this way.

Figures 5.1 to 5.5 show some of the output produced by the search

program when run with error number 13. Figure 5.1 shows a template for

interpreting the output. Error information produced in response to the

violation of an assertion appears first, as shown by error 9 in Fig.

5.2; or there may be none, as in test 6. Next, the test number and the

action performed by the search routine in selecting the new point is

printed. The possible search actions are shown in Table 5.2. The

values of MODE, the orbital parameters and VALUE are then printed.

Finally, the "performance value," the number of assertions violated in

the test is printed.

Figure 5.2 shows the tests used to initialize the complex, that is

those which determine the vertices of the complex by obtaining eleven

values of the error function. Tests 7 and 9 have already caused

assertions to be violated. Note that all the orbital elements, MODE and

VALUE are being varied.

Figure 5.3 shows tests in the middle of the testing cycle. The

search routine is applying appropriate transformations, rotation,

reflection, centroid substitution and contraction in order to remove the

worst point from the complex and locate a point where the maximum number

of assertions are violated. Note that not all search actions are tried

(e.g., expansion, shrinkage), since other parameters of the complex and

error function determine which transformations are applied. In Fig. 5.3

tests 44, 45 and 47 located new input values which caused assertions to

be violated, whereas test 46 did not.

5-4
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Error information from assertions

Test Number Search Action

Worst Point Orbital Elements

Mode Longitude of Inclination Angle of Semi-
Ascending Node of the Orbit Perigee latus
(Radians) Plane (Radians) Rectum

(Radians) (Meters)

Eccentricity Time at Period/2n Semi- Value
Perigee (Seconds/ major

(Seconds) Radian) Axis

(Meters)

Performance Value = Number of assertion violations

Figure 5.1. Search Program Output Template

TABLE 5.2

POSSIBLE SEARCH ACTIONS

Search Action Meaning

INITIAL Initialize Complex

REFLECT Reflection

EXPAND Expansion

CENTROID Centroid Substitution

CONTRACT Contraction

SHRINK Shrinkage

ROTATE Rotation

RE-INITIAL Re-initialize Complex

I
5-5
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..*e**e*** FINAL REPORT ***s***=*

8RUN INPUTI INPUT2 $FALSE NDIFFERENT MODE VALUE
ASSERTION ASSERTION

7 .7526 0. 2 2 4 2477545.659

9 ,6048 0. 2 2 5 9849931.060

12 .2700 0. 2 2 4 1395b923.49

13 ,9000 0. 1 1 5 243e9119.03

24 .2899 0. 2 2 4 8871067.739

25 .3679 0. 2 2 5 1760571.330

30 .2910 0. 2 2 5 20758872.74

34 .7346 0. 1 1 4 22330022.80

35 *1852 0. 2 2 5 27n15515.91

37 .3555 0. 2 2 4 19513234.41

44 .6973 0. 2 2 4 4044234.171

45 .6235 0. 2 2 5 0.

47 *5851 0, 2 2 4 4533190.345

49 ,9000 0. 2 2 5 0.

51 .7234 0. 2 2 4 4533190.345

53 ,9000 0. 2 2 5 5737662.000

55 .7234 0. 2 2 4 7402021.345

63 ,7U53 0. 2 2 5 0.

65 ,6261 0. 2 2 4 4533190.345

73 .7474 0, 2 2 5 0.

75 .6471 0. 2 2 4 4533190.345

83 8071 0. 2 d 5 0.

85 .6769 0. 2 2 4 4533190.345

86 .1774 0. 1 1 4 23124989.06

87 .9100 0. 2 2 5 1415222.244

89 .7228 0. 2 2 4 5588024.749

90 *9000 0. 2 2 5 1939616.571

91 .1557 0. 2 2 4 6107643.223

92 .5503 0, 2 2 4 99 1144.293

93 e3530 0. 2 2 4 8029393.758

94 .4955 0. 2 2 4 11674092.79

95 .8433 0, 1 1 5 188608t7.79

96 .5648 0. 2 2 4 111154P3.73

97 .7040 0. 1 1 4 14988170.76

98 .6108 0. 1 1 4 1722b371.99

99 .2554 0. 2 2 5 3876077.474

100 .5485 0. 2 2 4 11161715,66

101 .4019 0. 2 2 5 7518896.567

102 .1000 0. 2 2 5 7331062,939

INPUTI ORBIT(6) INPUT2 INPUT3

OCULE S7T4'T TYPE FAILURES*

GRBP 109 ASSERT 34

0UTCHK 142 ASSERT 38

H HOW MANY RUNS EACH ASSERTION FAILED IN 102 RUNS

Figure 5.5. Summary of Search Testing for Error 13
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Figure 5.4 shows a later stage in the search testing. Here almost

every test results in some assertions being violated.

Figure 5.5 is a summary of the results of the search testing for

error number 13. Only the tests in which assertions were violated are

shown. The summary shows for each test (1) the number of assertions

violated, (2) the number of different assertions violated, and (3) the

values of MODE and VALUE. (The INPUTi and INPUT2 columns are used for

the grid testing.) The figure also shows the progress of the search

routine during the testing. At the beginning of the testing, assertions

were violated only every few tests. At the end of the testing, almost

every test resulted in assertions being violated. Finally, the location

of the assertions that were violated and the number of times that they

were violated are printed.

I

5-10

* * * . t " ' , : IL , , *' . .



I
6 RESULTS OF THE EXPERIMENT

Four major results were found from the experiments: (1) the

original set of grid tests found that a number of the errors could not

be detected through the use of assertions, (2) the search tests located

assertion violations for two errors which the grid tests did not

discover but there were two errors for which the grid tests found

assertion violations where the search tests did not, (3) the search

tests were more efficient than the grid tests in locating assertion

violations, and (4) the search tests discovered a number of boundary

conditions which caused assertion violations.

6.1 ERROR DETECTION USING ASSERTIONS

Of the twenty-four errors originally used for the testing, only

nine (37.5/) of these errors were detected by the first assertions

placed in the code. By adding more assertions to the test program,

eight more errors were detected (33.3/). The remaining seven errors

(29.2/) could not be detected by placing assertions in ORBP. Table 6.1

lists these errors along with their categories, short descriptions and

the reason they could not be detected by assertions.

Two of the errors could not be detected by the test method because

they occurred only after another error had occurred first. Another

error occurred only if values of the input parameters were out of range,

a possible source of error, but not one considered in the experiment.

Three of the errors could be detected by static analysis techniques such

as variable initialization checks, parameter checks and cross-references

but are less easily detected using assertions. These errors cannot be

easily caught by assertions because of the limits placed on the as-

sertions by the semantics of the programming language. For example,

there is no way to state in an assertion that a variable has been

initialized to a particular value other than by stating that the

variable has that value. If the value happens to be zero, and the

compiler assigns this value to the variable automatically, then there is

6-1
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no way to write an assertion that states that the variable was initial-

ized. Stated another way, we can write an assertion which states that a

variable is equal to a certain value, but not that it has been initial-

ized. Similarly, it is difficult for an assertion to state that a

subroutine call has a certain number of parameters, or that a variable

is spelled correctly. Since assertions are written using the constructs

of the programming language, they cannot state things about the program

that cannot be stated in the programming language.

The other error which was not used caused a run-time error to

occur in a library routine. This could be detected in the library

routine by an assertion, but not in the test routine. Again, the

specific error indicates the limited power of assertions. In this case,

a REAL variable was declared as INTEGER. There is no way using assert-

ions to state that the type of a variable is REAL. Again, this error

might have been located by a static analysis check for invalid parameter

types.

6.2 EFFECTIVENESS OF THE SEARCH TECHNIQUES

For most errors, the search technique (using three parameters and

all parameters) identified the same assertion violations as the grid

testing technique. In four cases (errors 14, 28, 47, and 74), however,

this did not occur. For two of the errors (28 and 47), the search

technique did not identify as many assertion violations as the grid

technique. In the other two cases (errors 14 and 74), the search

technique identified assertion violations that were not detected in the

grid tests.

In error 28, a statement is deleted which tests for a zero

divisor. The sequence of code and the assertion that is violated is

shown in Fig. 6.1. The statement

IF(X2 .LE. 0) GOTO 48

i
6-3



42 X2 = 1. + COS (EA)

Q = Pl

IF (X2 .LE.O.) GO TO 48

ASSERT ( X2 .GT. 0.0 )

Xl = SQRT ( (1. + E) / (l.-E) ) * SIN (EA)

Q = 2. * ATAN2 (Xl, X2)

48 CONTINUE

Figure 6.1. Error 28

which was deleted to cause the error, is used to prevent a zero divisor

in the call to the arctangent subroutine. The documentation with this

system support routine states that the sum of the parameters (X1 and X2 )

squared must not be equal to zero, and that the arctangent of X1 divided

by X2 is computed (see Fig. 6.2). An assertion violation is detected by

the grid test for this error but by neither of the search tests (three-

parameter or all-parameter). The reason for this is that the grid test

uses values for the time paramenter which locate the point on the orbit

as being at apogee whereas neither of the search tests used this value.

For the apogee point, the value of the angle EA becomes equal to PI and

the value of X2 becomes 0 (see Fig. 6.3). No run-time error was

detected by the arctangent routine for this value.

Error 47 is the deletion of a data statement. This statement

initializes the value of the error tolerance for the iterative computa-

tion of the angle from perigee when the VALUE parameter indicates time.

The statement which this effects and the assertions violated are shown

in Fig. 6.4. Since the FORTRAN compiler initializes all variables to

6-4



Y=ATAN2 (X, X)2

Function: Computes arctangent of X /X
1 2

Constraint: X 2 +X2 0 0
I ?

Figure b.2. Aretangent Function

Statement

X2 = 1. + COS (EA)

for EA = f

X2 = 1. + COS (rt)

X2 = 1. + (-1)

X2 = 0

Figure b. 3. Value of Divisor at 7T

Data statement deleted

DATA EMISS / 1.E-7I

Loop exit statement

IF ( ABS (EAl-EA) .LE. EMISS) GO TO 42

Assertions violated

ASSERT (ABS (EA-EAl) /(EAl-EA2) .LT. 1.0)

ASSERT (ABS (EA+EA2 -2.0 *EAl) .GT. 0.0)

Figure 6.4. Error 47

6-5
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zero, this variable is by default initialized to zero also. This

changes the termination condition of the loop so that it only ends if

the value of EA equals the value of EAI. Again, both assertions will be

violated only if the computation is being performed for a particular

point on the orbit, apogee. In this case, both the grid test and the

search using three-parameters found values of the input parameters which

violated both assertions. The all-parameter search did not locate a

value which violated the second assertion.

Error 14 is caused by the deletion of a statement. In this case

however, the three-parameter search found one more assertion violation

( 2 ) than the grid test technique ( I ), and the all-parameter search

found one more assertion violation than the three-parameter search

( 3 ). Figure 6.5 shows the sequence of statements and the assertions

associated with this error. By removing the statement

Q = ACOS (QPRIME)

error 14 causes the value of Q to be undefined. This error is detected

by the assertions in the OUTCHK routine when the orbits described by the

Code Segment

QPRIME = ADIV(P-R, R*E)

Q = ACOS (QPRIME)

Assertions violated

ASSERT ( RELERR(A, ORBIT(9) ) .GE. - EPS )

ASSERT (RELERR(A, ORBIT(9) ) .LE. EPS)

ASSERT (OE(4) .LE. TWOPI + TWOPI)

Figure 6.5. Error 14

6-6
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I
I

initial orbital parameters and the state vector representation are com-
pared. The grid test technique located values in the input space which

caused the first assertion to be violated. That is, the semi-major axes

of tle two orbits did not agree. The three parameter search located

other values for which this was also true and caused the second asser-

tion to be violated. The all-parameter search, since it also varied the

value of the argument of the perigee in the orbit element vector, was

able to locatc values in the input space which caused the third asser-

tion to he violated.

Error 74 is caused by the deletion of a call to a subroutine which

copies the input orbital element vector to another array. Assertions

were written to compare the values of these two arrays after the point

of the call in the code. The grid test technique and the three-param-

eter search detected assertion violations for all of the variables in

the orbital element vector except one. This value was equal to 0 in the

,riginaL orbital element description and was not varied by the two test

methods. Since the FORTRAN compiler initialized the values of the

receiving array to zero, the fact that this variable was not copied was

not detected. When the all-parameter search was allowed to vary this

parameter, the assertion violation for this parameter occurred also.

I Figure h.6 shows the code and assertions for this error.

Table 6.2 summarizes the results for these errors, showing the

error number and the number of assertion violations detected by each of

* the three testing methods.

6.3 EFFICIENCY OF THE SEARCH METHOD

Data which could be used to measure the efficiency of the search

methods relative to the grid testing method were not collected during

the experiment. However, a rough estimate of the relative efficiencies

of the two methods is shown in Table 6.3. Except in the case of error

52, in which it took b83 tests to perform the entire grid test, all of

the errors required 317 tests. Table 6.3 shows for each error, the

I
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Statement

CALL XMIT (8,ORBEL(2),OE(2))

Assertions violated

ASSERT ( OE(2) .EQ. ORBEL(2) )

ASSERT ( OE(3) .EQ. ORBEL(3) )

ASSERT ( OE(4) .EQ. ORBEL(4))

ASSERT ( OE(5) .EQ. ORBEL(5) )

ASSERT ( OE(6) .EQ. ORBEL(6) )

ASSERT ( OE(7) .EQ. ORBEL(7) )

ASSERT ( OE(8) .EQ. ORBEL(8) )

ASSERT ( OE(9) .EQ. ORBEL(9))

Figure 6.6. Error 74

TABLE 6.2

ASSERTION VIOLATIONS DETECTED BY EACH TESTING METHOD

Error Number of Invalid Assertions
Number Detected by Testing Technique

3-Variable All-Variable
Grid Search Search

14 1 2 3

28 1 0 0

47 2 2 1

74 7 7 8
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TABLE 6.3

FIRST ASSERTION VIOLATIONS DETECTED BY ALL-VARIABLE SEARCH

Error Test Number of First

Number Assertion Violation

1 5

3 2

13 7

14 5

28 *

31 4

37 5

41 3

47 57

48 3

52 3

54 3

56 5

57 7

64 2

67 5

74 2

*No assertion violations detected

i
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number of the test in which the all-parameter search testing technique

detected the first assertion violation. This table shows that for 15 of

the 17 errors the all-parameter search technique detected the first

assertion violation on or before the seventh test.

6.4 SPECIAL CASES

During the experiment a number of assertions were revised. These

assertions were changed because of the results from the search tests.

In three cases, the search technique discovered input values for which

assertions were violated. In each case it was later discovered that the

assertions were incorrect. These special values were not discovered by

the grid testing technique. This illustrates one important result of

the testing method, that the development of assertions and the testing

occur as a coupled iterative process. The original assertions help to

locate errors, the search technique locates new assertion violations

which are either errors in the software or in the assertions. Through-

out the testing process, the accuracy of the assertions was improved

along with the ability to detect errors.

The first assertion which was discovered as being incorrect was

one which checks the value of the angle from perigee (FM) computed from

the time (VALUE), time at perigee (TP) and period (PP). The code, the

original assertion and the corrected assertion are shown in Fig. 6.7.

This assertion violation was found by the all-parameter search by

varying the time at perigee (TP). This caused the value of the angle

from perigree to become negative. The time at perigree had not been

varied by either of the other two test methods.

The second incorrect assertion was found by the three-parameter

search method. This assertion violation was due to the nature of the

orbital descriptions and the inherent inaccuracy of the calulations. In

the orbital descriptions, a value of 2Tr is equivalent to 0, or stated

another way, an orbit which begins at perigee angle equal to 0, is again
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1
I

Original Code and Assertions

FM = (VALUE -TP) / PP

ASSERT ( FM .GE. 0.0)

ASSERT ( FM .LE. TWOPI +EPS)

Revised Code and Assertion

FM = (VALUE -TP) / PP

ASSERT ( ABS(FM) .LE. TWOPI + EPS)

Figure 6.7. First Incorrect Assertion

at perigee when the angle is 21T . To further compound the problem,

inaccuracies in the machine representation of values and errors accumu-

lated over the computation give rise to situations in which the value of

variables is very close to 2' but not exactly 27- Therefore the

assertions which check these conditions must take this into account.

The problem becomes evident when checking the output from the test

program. It is necessary to determine if the point described by the

state vector is on the part of the orbit where the radius is increasing

or the part where the radius in decreasing. (See Fig. 6.8.) This

result is compared with the value of the MODE parameter when the VALUE

parameter is interpreted as radius (MODE equal to I or 2) or altitude

(MODE equal to 4 or 5).
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DECREASING RADIUS

PERIGEE .FOCUS APOGEE
POINT POINT

INCREASING RADIUS

Figure 6.8. Increasing and Decreasing Radii

The point can be located on the increasing (M=1) or decreasing

(M-2) radius by comparing the time at apogee (TA), the time at perigee

(TP), and the time given in the state vector (TS). This is done in the

code seqment in Fig. 6.9. In order to make this calculation correctly,

it is not only necessary to correct for the fact that 0 equals 2- but

also for the case in which the calculations give results very close to

these values. These corrections are also shown in Fig. 6.10.

Another interesting result revealed by this assertion was that the

calculation of the state vector time (TS) was not corrected to be less

than or equal to the period. This is a quirk of an algorithm in a

support routine and was not revealed by the documentation. Again, the

search routine identified input values which caused these assertions to

be violated. It is difficult to see how test cases could have been

constructed to illustrate these errors.
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IF (TP F.EQ. 0.0)

IF (TS GCE. TP .AND. TS .LE. TA)

ELSE

M~ 2

END IF

ORlF ( TA *EQ. 0.0)

IF (TS .CT. TA .AND. TS .LT. TP)

ELSE

M=2

ENDIF

ORlF ( TP .GT. TA)

IF ( TS .GT. TA .AND. TS .LT. TP)

M =2

ELSE

M= 1

END IF

ELSE

IF (TS .GE. TP .AND. TS .LE. TA)

M=1

ELSE

M= 2

END IF

ENDIF

Figure 6.9. Code to Locate Point on Radius
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Corrections for time greater than period

TP = AMOD(ORBIT(7), PERIOD)
TA = AMOD(TP+ORBIT(8)*PI, PERIOD)
TS = AMOD (STATE(l), PERIOD )

Corrections for time close to period

IF ( PERIOD - TP .LE. DELTAT )
TP = 0.0

ENDIF
IF ( PERIOD - TA .LE. DELTAT )

TA = 0.0

ENDIF
IF ( PERIOD - TS .LE. DELTAT )

TS= 0.0
ENDIF

Assertion to check MODE
IF ( TS .NE. TA) .AND. (TS .NE. TP) )

ASSERT C MODE .EQ. M )
END IF

Figure 6.10. Checking the Value of the MODE Parameter
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Tet L,,),, assertioii inconsistency also had to do with errors

ZaCC UnoLa ed OVer 20111 tUtat ions and thu fac t that 0 is equal to 27, This

error arose in, checking the angle from perigee, which is calculated when

MODE equals (0. The anigi fromn perigee is calculated from the input

orbi Ldi lements ind the raditis. 'te radius can be calculated from the

oult puit stait - vec tor represen tat ion. Thi s calculated value is then

compared with the original value as input to ORBP in the VALUE param-

eter. The code to calculate the angle from perigee and the modified

assertions are shown in Fig. 6. 11. These assertions take into account

that the calculated value may differ slightly from the original value

and that 0 and 2~ are: equivalent. This inconsistency was discoverd by2

the all-paratm.eter search technique.

Code Segment

Q = (OR"IT(5) /R - 1.0 )/ORBIT(6)

= (ACOS ( Q

Correct ions for angle near 2iT

IF ( ABS(TWOPI-Q) .LE. DTHETA)
Q = TVOP I

END IF
IF ( ABS (TWOPI-VALUE) .LE. DTHETA)

VALUE = TWOPI
F. 111 )I F

Assert ions Violated

ASSERT (AMOD(Q,TWOPI) .GE. AMOD(VALUE,TOPI)-DTHETA)

ASSERT (AMOD(Q,TWOPI) .LE. AMOD(VALUE,TWOPI)+DT4ETA)

Figure 6.11. Checking the Angle from Perigree

6-1 5
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/ DISCUSSION

The results from the experiment show that it is possible to detect

errors automatically using assertions and search techniques. The major

limitation ot the technique as we see it is the difficulty in writing

the assertions. The number of assertions which need to be written, the

conditions they should describe and where they should be placed are all

questions which are difficult to answer. In addition, the assertions

are difficult to write and the task of writing them is not pleasant. On

the other hand, the search testing technique aids in the refinement of

the assertions.

Unfortunately, our results have also shown the limitations of

assertions. There is sometimes no way to easily express exactly what is

wanted by using the current semantics. In some cases, it seems that

other techniques are more suited to detecting certain types of errors.

One may also argue with the technique of "error seeding," but we

believe it to be a very effective way in which to control some of the

problems in an experiment such as this. Using programs from actual

development efforts containing unknown errors would introduce factors

into the experiment which could not be controlled. Interpreting the

results of uch an experiment would therefore be more difficult.

Equating assertion violations with errors is also a point which

may be argued. In this experiment, it was assumed that once an assert-

ion violation was detected, the error would become self-evident. This

is obviously not the case. This will be true only if assertions are

placed in thc correct spot and describe the nature of the error. Again,

only further experimentation can determine how useful the technique is

at locating errors.

The way in which the error function was constructed to allow the

rch rout ine tc: be used can also be questioned. Simply sumnming the
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number of assertions to determine the value of the function is a crude

technique. The search technique is thereby driven to select input

values which maximize the number of assertions violated. We have found

some evidence to indicate that errors are not randomly distributed; that

they occur in groups. Therefore, searching for maximums of the error

function should locate most of the errors in a program. However, this

is still a crude method. We are investigating a method which takes the

content of the assertions into account in generating new input values.

This technique is taken from artificial intelligence research and will

be the basis for further experiments.

In addition to the new experiments described above, we also

believe that the techniques need to be applied to cases where more than

one error occurs in the software, and to types of programs other than

arithmetic computations (e.g. compilers). The efficiency of the tech-

nique relative to other types of testing should also be investigated.

We believe that the experiment successfully demonstrated the value

of the search testing method. We were able to locate errors in a

program automatically and relieved ourselves of the necessity of

inventing test cases. In addition, the technique identified errors in

our conception of the operation of the program as embedded in the

assertions.

Benson, op. cit.
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APPENDIX A

Program Listings
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S(& NEST SOURCE

I C
2 LOGICAL FUNCTION INPCHK I MODE. VALUE. ORBIT, STATE I

3 C
CASON

S CMOON INPCHK
6 CXCOM S

7 C
S C CHECK INPT ARGUMENTS FOR SUBROUTINE 9oOeP
9 C
10 C CONCEN
11 COM'ON / CONCON I

1 PI, SROs SLV SMFt SKP9 ROODY9
2 GACCs GCON, WBOODY RHOZRO TwOP|I HAFPI

12 CCOMPXG.CONCON

13 REAL OR8310)
14 INTEGER MOCE S INDICATES DATATYPE OF AVALUE9
15 REAL VALUE S ANGLE. RACIUS. TIMEo OR ALT.

16 REAL ORBIT(10) S AN ELLIPTICAL ORBIT
17 REAL STATEIoI S OUTPUT STATE VECTOR
18 C

19 C TCONST
20 CATA CPS / 1C6 /
21 CATA OELTAT / IE-2 / S ABSOLUTE TIME TOLERANCE

22 CATA OTHETA / IE5 /
23 CCOMPKf, TCOhST
24 C
25 NELRRIXTY) a ABSASSiX) - ABSIY)) / AMAX13 ABSIX)o ABSfY) I
26

27 CALL xMIT ( 109 ORBIT. OR8 1
28 INPCHK a .TRUE.
29

30 INITIAL 3 MOCC .GE. 0 AND. MODE LE. 5 1

31 FAIL I INPCHK m FALSE. I
32 C

33 CASE OF ( MOCE I

35 CASE ( 0 3 S VALUE 1S ANGLE

36 1 , INITIAL IVALUE *GE. 0i
37 1 * INITIAL I VALUE *LE. TWOPI I
38 1 FAIL ( INPCHK z *FALSE.

39 1 C
40 CASE ( 1. 2 1 S VALUE IS RADIUS

41 1 . A ORBIT1()
42 1 * C ORBIT(6)
43 1 0 INITIAL I VALUE GE. A 1 1.0 - E I)
44 1 4 INITIAL I VALUE .LE. A 0 1 1.0 * E 1 1

45 1 0 FAIL INPCHK 2 .FALSE.
'48 1 C

47 CASE 1 3 S VALUE I TIME
48 1 * PERIOD x ORBIT(S) s TwOPI
49 1 * INITIAL ( VALUE .GE. 0.0 3
50 1 * INITIAL ( VALUE ,LE. PERIOD D CELTAT I
51 1 FAIL I INPCHK • FALSE.
521
53 CASE I 4. 5 1 S VALUE IS ALTITUDE

5' 1 . A z ORBITIS9
55 1 * E z ORBITI6)
56 1 I INITIAL I VALUE .GE. A * I .0 " E I - *BOODY
57 1 * INITIAL 3 VALUE *LE. A 0 4 1.0 E E - ROODT
58 1 * FAIL I INPCHK J .FALSE. I
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SEQ NEST SOURCL

59 1 C
60 ENO CASE

bI C
62 INVCrE 4 ELLIPSE I
63 C
64 BLOCK A INPCPK .FALSE. I
65 END OLCCK

66 BLOCK i ELLI-SE
67 1 C VERIFIES TPAT ORBITAL VECTOR BoRB6 IS AN ELLIPTIC ORBIT

68 1 * ASSERT I CRB(2) .GL. 0.0 )
69 1 ASSERT I CRBI2) ,LE. T*OPI * EPS I
70 1 * ASSERT CR(3) .GE. 0.0 1
71 1 * ASSCRT ( CR813) *LL. PI
72 1 ASSERT(ORE4) *GE. 0.0)

73 1 * ASSERT (CPB(4) LE. TwiOPI + EPS
74 1, ASSERT IoRI5) *GE. AeS I ORB19) * 1 1.0 - ORB(6) so 2 - EPS )I

75 1 o ASSERT CRB(S) .LE. ABS ( ORB(9) * 4 1.0 - ORB(f) se 2 3 4 EPS )I
76 1 , ASSERT I 1.0 - ORBf1)0*2 I *LT. 1.0

77 1 ASSERT CRB(8) GL. ORB{9) o SORT I ORB(9) / GCON I - PS
78 1 * ASSERT CR6(83 *LE. CR8(9 * SORT ( OR8393 / GCON ) * (P5 )

79 1 , ASSERT RELEkRIORI9)* 3, GCON*ORBS81*e2) *LE. EPS)

t0 I * FAIL ( PRINT E.EMENTS )
61 - ASSERT ( CRB(6) ,GT. 0.0 *AND. OR8161 *LT. 1.0 1

62 END BLOCK

83 BLOCK I PRINT ELEMENTS
84 1 * WRITP (6.10001 ORB(9), GCON. CR818)

85 1 1000 , FORMATI ( SEMI-MAJOR AXIS 624.18 /
1. * 6CON * 624.18 / * PERIOD / 2 PI x 0 624.18 )

86 ENO BLOCK
87 C
88 RETURN
b9 LNG
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SIG NEST SOURCE LOGICAL FUNCTION OUTCHN 4 MOCE, VALUE, ORBIT# STATE I

I LOGICAL FUNCTION OUTCHK 4 MODE* VALUE. ORBIT, STATE 1
2 C
3 CASON
o CNOON GUTCHK
S CXCOm s
4 C
7 C CHECKS FINAL CONDITIONS FOR SUBROUTINE SORBPI
a C
9 C CONCG%

10 COmot / CONCCN /
1 P1. SRCO SLV, SNFl SKP. RBOOY
2 GACCO GCOCN WBOODY RHOZRO. TWOPIt HAFPI

11 CCOMPKG.CONCOt
12 INTEGER NOCE 5 INPUT NOCE FLAG
13 REAL VALUE S INPUT VALUE PARAMETER
14& REAL OReITIlo) s INPUT ORBITAL ELEMENT VECTOR
15 REAL STATE41O) s OUTPUT STATE VECTOR
16 C
17 C TCONST
Is GATA EPS / IE-6 /
19 CATA DELTAT / IE-2 / a ABSOLUTE TIME TOLERANCE
20 CATO OTHETA I 1E-5 /
21 CCONPKG.TCONST
22 C
23 C
24 C
25 C
26 RELERRIX.Y) 2 (X - Y) / I
27 C
28 0UTCH% 2 *TRUE.
29 C
30 C VERIFY THAT THE STATE VECTOR REPRESENTS A FEASIBLE
31 C POSITION Ch THE ORBIT.
32 C
33 R = XNAGI STATE2) s A R c RADIUS OF STATE VECTOR
34 C
35 ASSERT I ABS(R/ORBIT(9) * 1.0) *Lt. ORBIT (£ ' EPS
36 ASSERT i ABSIR/ORBIT49) * 1.0) *Gt. -ORBIT(S) - EPS
37 C SEE PAGE 75 OF NOTES
58

39 V z xmAG( STATE(S) ) a V 2 VELOCITY COMPONENT
'0 A 2 R / 2.0 - R Vse2 / GCON 1

41 C SEE PAGE 81 OF NOTES
.2 C
43 ASSERT I RELERRIA, ORBITI)) *GE. -EPS I
44 FAIL I SEMI-PAJOR AXIS )
45 ASSERT IRELERRIA, ORBIT(9)) *LE. EPS)
46 FAIL i SEPIPAJOR AXIS I
47 C
48 G 2 XKAGI STATE(S) S a • ACCELERATION COMPONENT
49 C
50 ASSERT I G .GE. GCON / R o. 2 EPS
51 ASSERT I 0 *LE. GCON / R •* 2 *EPS I
52 C
53 PERIOD 2 TWOPI s ORBIT(S)
5' TP 2 AMOO(ORBIT(7), PERIOD)
55 TA AMODO(TP4ORBIT(I).PI, PERIOD) S TIME AT APOGEE
54 IS 2 AMOD (STATE(Il. PERIOD )
57 IF I PERIOD - TP *LE. DELTAT 1
50 * TP x 0.0
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I

SEw NEST SOURCE LCGICAL FUNCTION OUTCHK I MODE. VALUE. ORRIT, STATE

59 L NOIF
60 IF I PLRICD - TA *LE. DELTAT I
t1 I TA : 0.0
62 ENoIF

65 IF i PLRIOD - TS LE. DELTAT )
E4 1 7s = 0.0
b5 ENDIF
66 IF i P E . 0.0 )
b7 1 IF (TS ,GE. TP *AND. TS *LE. TA)
6: 2 " N I s T ON INCREASING RADIUS
69 1 * ELSE
70 2 . . N 2 S T ON DECREASING RADIUS
71 1 * ENUIF
7.2 ORIF ( TA .EG. 0.0
73 1 * IF ITS .GT. TA *AND. TS *LT. TP)
74 2 . M = 2
75 1 ELSE
76 2- M =

77 1 * ENDIF
7b CRIF i IP *G. TA 3 S T-ZERO ON INCREASING RADIUS
79 1 IF I TS .6. TA .AND. TS *LT. 7P )
bO 2 = N : 2 $ T ON DECREASING RADIUS
81 1 * ELSE
62 2 = . N : 1 s 7 ON INCREASING RADIUS
63 1 - L LIF
64 ELSE S T-ZERO ON DECREASING RADIUS
61 1 * IF ITS *GE. TP *AND. TS LE. TA)
86 2 . . N z I S 7 ON INCREASING RADIUS
67 1 ELSE
68 2 . . M 2 s I ON DECREASING RADIUS

69 1 * ENDIF
9 u ENDIF

91 C
92 7 = ORBIT(7) * ORBTIMI N, R, ORBIT(9). ORBIT(6), ORBIT(S)

93 C CRBTIN RETURNS TIME SINCE PERIGEE PASSAGE
94 C
95 T Z ANOD(IPERIOD)
96 IF ( PERICO - T *LE. DELTAT I
97 1 T : 0.0
9b ENDIF
99 ASSERT ( TS ,GE. T - DELTAT I

ICO FAIL ( TIME
te1 ASSERT I TS LE. T + DELTAT

102 FAIL i TIME
1(,3 c
114 C VERIFY THAT THE MODE AND VALUE INPUTS ARE SATISFIED.

IG5 C
166 CASE OF ( MOCE)

18 CASE ( 0 $ VALUE IS TRUE ANOMALY
119 1 Q = (ORBIT51 / R - 1.0 I / ORBITI6)

110 1 IF ( ABSIG) .GT. 1.0 .AND. ABSIG) .LT. 1.0 . EPS
1. G : SIGNI1.0, Q)

II1 1 * = ACOS ( 9
.12 1 C * SEE NCTES PAGE 75
113 1 IF I M ,ZQ. 2 ) 9 a TwCPI - Q
114 1 0 IF (ABS(ThOPI-G) LE. DIHETA I
115 2 . . Q : T"CPI
116 1 ENOIF
117 1 IF (ABS(TWOPI-VALUE) .LE. DTHETA I

A
I
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SLO NEST SOURCE LOGICAL FUNCTION OU1CI41( I MODE, VALUE, ORRIT. STATEI

118 2 * . VALUE 2 Th.OPII

120 I * ASSERT IAPOODQ,TwOPII GEC. AXOO(VALU.ET6P12.OTMETA)
121 1 . FAIL I PRINT 0 VALUE)
122 1 * ASSERT IAPODIQTWDPI) .LE. ANOD(VALUE,1VOP1 IN7IETA2
123 1 * FAIL I PRINT 9 VALUEI
124 1 C
125 CASE I Is 2 1 VALUE IS RADIUS
126 1 * IF I ITS .NE- TAI *AMD. ITS *NE. 7P) 1
127 2 . ASSERT ( RODE *EQ. NI1
12a 2 * FAIL I MODE ERROR
129 1 1 NDI
130 1 ASSERT I R .6E. VALUE *EPS J
131 1 * FAIL I R VALUE
132 1 * ASSERT ( A *LE. VALUE *EPS 1
133 1 * FAIL I R VALUEI
13% 1 C
135 CASE 13 S VALUE Is TINE
136 1 C *
137 CASE 14. 5 S VALUE IS ALTITUDE
136 1 * IF I ITS .RE. TA) -AND, ITS .RE. TP) J
139 2 . * ASSERT ( RODE .EQ. P+3 I
140 2 * . FAIL fNODE ERRORI
141 1 . END IF
142 1 * ASSERT I R - RODDY *GE. VALUE -EPS

143 1 * FAIL A R RODY VALUE
*144 1 . ASSERT I R - RBODY *LE. VALUE *EPS

145 1 ; FAIL IR RODDY VALUE I
146 1 C
147 CASE ELSE

*148 1 . ASSERT * FALSE.

159 END CASE
151 C
151 C LC EINJRAI
153 1LC ( NRIEI.1000 AXV.ICS . RITS
153 1 100 WpFINT(900 S R 62418 55CN AVt 62.1. R*6O*62.1
15 100 .FRAT. O 624.18 *ORBITS2:S 24.1025 SO~*641

155 AS$ 62.8,5OCI(T9=064.6
155 C N LC
157 BLC ITN
158 1LC I TRIE,01 7.T. ERO
159 1 100 * FRNT~IeSOS 62418 To P TE241RIODPROOA62.8
15 1 EN FLCMN *TZ 2.8 X*S 64195 PROz 2.

162 BLOCK I PRINT 9 VALUE2
163 1 . ImRITE16.10031 g, VALUE
164 1 1003 . FoRPAT (tog=* 624.18, 5X OVALUEz* 624.101
165 END BLOCK
166 C
1(.7 BLOCK N ODE ERROR I
16b I . %RITE (6t 10041 NODE. N. TP# TA. T3# STATEIS)
169 1 1004 . FORINAT IONODE:. I59 5x *N:. It TPs. 624.111o SX eTAinS 624.14t

1. *75:5 624.18 jSVR:. 624.18
*170 END BLOCK

171 C
172 BLOCK I R VALUE
173 1 0 %RItE (6,10O052 It, VALUE
174 1 1005 . FORNATI.ORX., 624.18, 5X. eVALIJEas, 624.181
175 CRD BLOCK

176 C
177 BLOCK ( A ASCOT VALUE 2 AUoR9R30
178 1 * wRITE16,10061 R.RBODY* AUA 90
179 1 1006 . PORNATI.OA-ABOOr:S. 624.18. 5Xt *VALUE24, 624.18 /

1. to A*, 624.18, 5x .N8ODV:e. 624.18

180 END BLOCK
181 RETURN
162 END
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I
SE. NEST $0.RCE

2 C

C/ LIST ALL
4 5.6 RCUTINE OREP (MODEVALUQRBtL.STATE)

CASGh
S CMCN CHOP

C CxCom s

V C bC.RCE CATE 69.1231 SET LP ACCEL COMPONENTS
1 C SC;RLE CATE t9.0709 PEPCvE CALL OF RiTEF

11 C SOURCE LATE 65.0321 REVISE TEST FOR APOGEE/PERIGEE
12 C SOURCE CATL 68.0b14 CALL RITEF, NOT CRIo / CHECK FOR ILLEGAL RADI
15 * SCURCE CATE 68.0209 CCNVEHT TO CODC 6400

14 C SOuRCE DATE 67.1121 CORRECT POTENTIAL OVERFLOW ERROR
lb C SOURCE CATE 67.0811 ACC OPTIONAL POCES 4.5

1. C SOURCE CATE 67.0714 CALL TRAILERN IF ERRCR CONDITION
17 c SOURCE CATE 66.0920 USE ECC ANOMALY AS IERATION VARIABLE

lb L SOURCE CATE 66.
0
60

1  
USE RADIUS/ANGLE/TImE AS ITERATION VARIABLE

19 C
20 C RETURNS STATE VECTOR CF A POINT ON A KEPLER ORBIT

22 C MOE SELECTS SPECIFICATIOV OF POINT IN ORBIT
3 C I - VALLE Is TRUE ANOMALY

' C I - VALLE IS RALILS (RADIUS INCREASING IN TIME)
C 2 - VALUE Is RALILS IRAOILS CECREASING IN TIME)

C 3 - VALUE Is TIML AT HICH POINT IS REACHED
27 C 4 - VALUE IS ALTITUDE (INCREASING IN TIME)
28 C 5 - VALUE IS ALTITUDE (DECREASING IN TIME)
29 C VALLE PARAMETER VALUE SFECIFYING PCINT IN ORBIT
30 C ORbEL ORBITAL ELEMENT VECTOR

31 C STATE STATE VECTOR AT sPECIFIEO POINT
52 C
33 C WRITTEN 12/7/64

34 C
35 C CCNCCNI,
3b CcmkIC. /CChCCN/

1 Fl. SRD, SLV, SMF, SKP. ROODY
2 GACC. GCON, WBCCY, RhOZRO, TwOPI. HAFPI

37 CCOMPKGCChCNh
38 CIM'Et ,CN OREELTIo).STATE(IO),AXAS(lO.3),SP(10 .OE(1I0
39 EL.LIVALENCE SP lI,Tl, SPC2I.Rk.ISP)I.VR),ISJ'f).VQ)

4C EIVALENCE (CE(S),P),IOEAB),E),(OCt7)TP),IGE1B),PP), *OEi9),A)
41 LO$ICAL INFC hK S VERIFIES INITIAL CONDITIONS

42 LCGICAL OUICHK $ VERIFIES FINAL CONDITIONS
43 REAL ORB(IO)
44 EQUIVALENCE ( CR (1). OE(1)
4" CATA EPS / IE-6 /
b LATA DELTA) / kE-2 / S ABSOLUTE TIME TOLERANCE

C7 ATA SP / 10:0. /
48 CATA AXES / 30*0. /

CI CATA EMISS / 1.E-7 /

LRLERR1.Y) : ABIABSIX)-ABSiY))/AMAXI(ABS(X);ABSIYI)

i 52 INITIAL I INYPCkKI MODE, VALU, ORBEL, STATE I

55

5k #OOC:M D£C
5 VALLEzVALU

56 IF(TNOO.LT.. 60 TO 2

A7



SEQ NEST SOURCE

57 C AxO0
5b VALLE:VALU-ReOCY

59 OOC:M000-3
60 2 COlvTIhuE

61 ASSERT C MCOC .GE. 0
62 ASSERT C MCOC *LE. 3
(3 KOLE = POOC * 1
60 CALL X AITC,CRBELf2).OE2))'
65 ASSERT C OE(2) EG. ORBELM2)
66 FAIL ( FIX 2 1
67 ASSERT C OEI3 EQ. OR8EL(3)
68 FAIL C FIX 3
69 ASSERT COE41 *EQ. ORBELC4) I
70 FAIL C FIX 4 C
71 ASSERT C OEC5) EQ. ORBELCS]
72 FAIL C FIX 5 1
73 ASSERT C CE(6) .EG. OROEL(6)
74 FAIL C FIX 6
75 ASSERT CECT EQ. ORBEL7)
76 FAIL C FIX 7 C
77 ASSERT C OLM EQ. ORBELCO I
78 FAIL C FIX 8 C

79 ASSERT C OE9 Eg ORBELC9I
60 FAIL C FiX 9
61 ASSERT E *GT. 0.0 C
62 ASSERT CE LT. 1.0
83 IF(E.GE.I.) GO TO 250
E4 ASSERT C KODE *GE. I I
65 FAIL C FIX KCCi I
86 ASSERT ( KODE *LE. 4
87 FAIL C FIX KCCE I
68 6070 C10,20.2030)$KOOC
e9 C
go C VALLE IS ANGLE
91 C

92 10 CONTINUE
93 ASSERT C VALUE *GE. 0.0 C
94 ASSERT C VALUE *LE. TwOPI )
95 INVCKE C ELLIPSE I
96 C
97 T = CRBTIMC 0OOD9 VALUE, A. E. PP I * TP
96 ASSERT ( T *GEo 0.0
99 G=VALUE

1GO R=P/1.4E*COSCG))
ltO ASSERT (R *GE. A*1.0-E) o CPSC
102 ASSERT CR *LE. A*C1.0+C) 4 EPS)
103 60 TO 200
10-4 C
105 C VALUE IS RADIUS

106 C
107 20 CONTINUE

18 INVCKC C ELLIPSE C
IG9 ASSERT C VALLE *GE. C A * C 1,0 * E ) C )
110 ASSERT C VALUE *LE. C A * I 1.0 E £ I C )
11 C
112 IF VALUE LT. A 1.0 E) C I 60T 24
113 IF C vALUE .6. C A 1 C 1.0 4 E ) C C 6070 26
114 22 TORBTIM(POOC*VALUEA,EoPPITP
115 ASSERT C 7 .6E. 0,0 C
116 R:VALUE

A-8



%L'. NEST SOURCE

I 1 1 C Tf-IS Ci,'NSE CURRLCTS AN ERROR WHICH EICCLRS WHEN To.E
.0 C RACILS 1S t).UAL TO ThE PERIGEE UISTANCE. IN THIS

C CASE, L~~R CULTECURING THE COfMPLTATIrO CAUSE

I. C 1  VALuL CF7 TtE 4FIU.ENT (CF THE ARC CGSINE FUNCTION
1, C % dE SL17i-ILT LARGER T)HAN ONvE.

'4 LPRi~lL AGI'.IP-R, P*E)
IF ( US(COFHINET .GT. 1.0 .AND. ABS(QPRI4E) LT. 1.0 + EPSI

I GPHIP-E =IT(1G QPRIME)
1 '. ASSLRT (QPRI?,E .5L. -1.03

t4 AIL k FII.i 6PRiME )
ASSERTI ( I RmE .LE . 1.0 1

127 FAIL fPPINT OPRImE
1 6 =ACQS (W.PHIME)

I , " IF (1CCE.EQ.3) Q:TWOPI -Q
132 C (RAUIUS IS CECREASIN6I

1.31 GO TO 200
32 C
12.3 C t=ELC. PENIUEE
1.1. 24 7TP.1131, T4=A*1.-E)
13,, 6-0. ~ 8

28.,, j A7 (51HC0P H-AS REPLACED IMPOSSIBLE RADIUS wITH PERIGEE
13 cy CIC 200

140 C A;:UO.L APIULE
1.1 eb T=Tfl-PI*PP

13. 1.*3

14k. i.PTE(6,281I
1-,5 281 FERRAT I30-OOMP HAS REPtACEI IMPOSSIBLE RADIUS WITH APOGEE 3
146. GL TO 200

1b C VALLE IS TIME
1 .9 C
33., 30 Ecl,7ti,L'E
2151 I*.GC'f ELLIPSE

1eASSERT 3 ALLE *GE: 0;.
113 ASSERT 1 VALLE *LE.I (PPTWcPI E PS)
33.. FAIL ( TIME MOAX

i'4 !A. Ft VALUE TP3/PP
13 7 ASSERT AbS~M I*LE. TW0PI E PS I

1RFAIL FM MAX I

j '45 TRI=.l
!. ~ 41 CI.
II S TRT TRY

'IN.TRY NY I
5 IF(NT'wY.E-Q 2C) GO To 250

16" LA =FM + E * SINTEAl)
lb7 IF(AeS(EAI.EA) *LE. LMISS, GO To 42

1 6IF(RCIIISTR,2) .E,;. 11 45.,46
,b9 45 COtTINWE

C
171. ASSERT I AbSIEAl - EA2 I .6T. 0.0
172 FAIL ( SMALL OIVISOR
173 ASSERT IABSi (EA -EAO3 / EAl - A2) .0T. 1.0 1

174. C

A- 9



SEQ NEST SOURCE

175 ASSERT 4 A8SfEAELA2;2;0*EAll GT. 0.0
176 FAIL SM ALL CIVISOR
177 EAlzEA2- IEAI.EA2)..2/(EACA2-2..CAII
170 ASSERT (MIRY .0T. NYRT I
179 5O TO 41
180 46 EA2zEAI
161 EAIZEA
182 ASSERT imTRY *LT. NTRy
1
b3 60 TO 41

164 42 X2=1.+COS(EAJ
Its ASSERT X2 *GE. 0.0

186 ASSERT X2 *LE. 2.0
167 QZPI
188 IF(X2.LE.O.) GO TO 48
109 ASSERT CX2 GT7. 0.0
190 Xl=SQRI 1.EI/l1.-E))*SIN(EAI
191 QC_2,.ATAt 2(xI.x2)
192 48 CON Niu E
193 C KLPLEkiS EQUATION

194 ASSERT ( FM *GE. EA - L 0 SIN(EAI EpsI
195 ASSERT (FP' LE. EA;E.*SONIEA: + EPS)
196( R P / 1.0 . E OS CaI)
197 ASSERT 1 8 *GE. A * ( 1.0 -E E PS
198 ASSERT ( R .LE. A * 1 1.0 4E E PS
199 Go TO 200
210o C
201 C
202 C
203 C EUREK~A .... NOW SET UP ANSW6ER ArNO RETURN
204 200 VG=S6RT(GCONOP)/R

2r1%ASSERT (VG *LE. SGRT ( I II.Q*E)*GCONI / I(I.0-E)SAI) C PS)
206 FAIL ( PRIN~T VO GCON A E I
2c,7 ASSERT (vW .GE. SQRT I ( I1.0-E).BCONI / (I.0+EI*AII C PS)
2o8 FAIL IPRIN4T VG GCON A E
209 VR=R*E*SlrIIQ I .9/p
210 C AT PERIGE
211 ASSERT I AH519 R) .GE. ABSI E / 1.0 + E V9 0 SINIQI E PS
212 NAIL I PRI147 (4 E YQ
21l C AT APOGEE
21% ASSERT ( A85(VR) .LE. ASS I E 4 1.0-E VO SINIG) E PS
21% FAIL ( PRINT vR E Vo )
216 CE(4I=OEI41+Q
21? ASSERT ( OE'4) *GE. -P1I
211. FAIL ( PRINT CE'. )
219 ASSERT 1E04) *LE. TWOPI + TWOPI)
220 FAIL j PRINT CC'.
221 C

22e C
22S CALL EULANG(I,AXES.VV,901
224 C
225 NCERIY 0
22t. INVOKE IOKAICES I
22? C
228 CALL TRP.SFm(STA1'E, XESlSP.-1,1I
229 CALL GRAViST*TE4STATE(8II
23U C
231 FINAL O UTCNK( MODC, VALUv ORSL STATE I
252 C
233 RETuRN

IL



23111

23d 2C r

239 m 7E(6,21
2..L 251 FGIRWATt 38tlCCR6P H-AS FAILEG TO REACH A SOLLTION-
241 6RIT~l.I) CL

2 c1 FORMAT(* CR&'1TAL ELEMEN.TS AREO,(5G20.81)

243 ELOCK ( ELLIPSE)
.,41 C * VERIFIES TH-AT ORBITAL VECTOR SORS9 IS ANI ELLIPTIC ORBIT

2.5 I ASSERT CH C1123 )GL. 0.0
2" 1 * ASSERT I CR323 *LL. T..CPI +. EPSI
2..? 1 * ASLLAT CR833 .GL. 0.0 I
246) i ASSERT 3;R CR1 .LL. P-i

2 ,1 . ASSERTtCRI1IV) .GE..0.0)
25 ', * A 5S4 u.T (CRO343 .LE. T..CPI # EPS I
251 1 * FAIL ( P14INT PERIGEE ANGLE
2,2 1 * ASSERT (CR33353 GL11 AUS ( CR8393 $ 1.0 - CROW6 so 2 3-EPS I
2113 1 AS5ERT ICRB 5) :LL. AB5 3 CR839) 0 1.0 -OAB(6) s. 2 1 EPS 3
2!-' 1 * ASSEFRT ( ( 1.0 - CR816.*02 I -LT- 1.0)I
2t5. CI ASSERT t ORBIBI .GE. CR0393 * SQRT I CRAM9 / GlIN I EPS
256 1 ASSERT I CRB83 *LE. CR819) $ SGRT 1 08(9) / GCON I + EPS
2b7 1 * ASSERT IRELERRIOR3II93..3, GCON*0RB88I.2) .E. EPS)
256 1 . ASSERT ( CR8163 *GT. 0.0 *AND. 0RB(6) *LT. 1.01
2t,9 Er.O BLO~CK

2,3. bLOCK ( CKAXES
25 C C a VERIFILS CIRECTION COSINE ARRAYS

2ce 1 * INITIAL ( KCERIv .GE. 0 *AND. NOERly I.E. 2
2(,3 1 N 3 * CERIV *4
2
b4~ 1 * 00 2, N4

2b5 2 C

""4b 2 D O i ,j =1. 3 1

2,7 3 . SSERT 3AlISI AXESII,J3 I I.E. 1.01
2E13 2 LIDET, C
329 2 00 CO 2,N

3 . . . COT A 0. 0
2rl 3 CC IK A1. 3 1

22 4 . . . . DOT DOT + AXES(I.KI $ AXESI.J.RII? 3 . NC CC
2'4. 3 . . IF CI .EQ. J I

7 4ASSERT ( ASE OCT 1.0 ) *LT. EPS I
* ISE

71, 4 ASSRT ABSI COT 1 LT. EPS .U .'~, 3 i, . lCF

52 * ND LC

END eLOCK
C

!LC I FIX 2
"'S. 1 . 0132 = CRBELC23

-~ INC BLOCK

7 eLOCK 3 FIX 3

h' 1 I GE31 =CREELI3)
d ,9 END BLOCK

90 C

BLOCK i FIX 4



SLU NEST SOURCE

292 1 CE(41 CRBEL(41
293 END BLOCK
294 C
295 BLOCK ( FIX 5 !

29b I * OE(51 = CRBEL451
297 END BLOCK
298 C
299 BLOCK ( FIX 6

300 1 OE(6!) CREL(6i

3C1 ENO BLOCK
302 C
303 BLOCK I FIX 7 1
304 1 * E(7) 2 CRBEL(7
305 END BLOCK
306 C
3E7 BLOCK ( FIX B
3b 1 E8) = CRBELI8)
309 ENO BLOCK
310 C
311 BLOCK FIX 9 )

312 1 E19) = GRBELIS)
313 END BLOCK
314 C
315 BLOCK I PRINT PERIGEE ANGLE J
316 1 . WRITE ( 6. 1000 I ORB(')
317 1 1000 , FORMAT (vARGUMENT OF THE PERIGEE a so 624.18

318 END BLOCK

319 C
320 BLOCK FIX KODE
3i1 1 IF I MOCE GE. 0 *AND. MODE *LE. 3 1

322 2 . KODE . MODE * 1t
323 1 ORIF 4 MODE -EQ. 4 -OR. NODE EQ. 5 1

3i4 2 . KOOE 2 MODE - 2

325 1 * ELSE
326 2 . O KODE a 1
327 1 ENO IF
3 8 END BLOCK
3,19 C
330 BLOCK ( SMALL DIVISOR I
33I 1 GGTO 42
332 ENO BLOCK
333 C
334 BLOCK ( PRINT VO GCON A E I

335 1 * WRITE (611001) VO. GCON, A. E
336 1 1001 • FORMAT I VQ=* G24.18 / * GCON10 624.18 / 0 An* 624.10 /

1. S E=* G24.18

337 ENO BLOCK
338 C

339 BLOCK ( PRINT GPRIME

340 1 * WRITE (6,1002) OPRIME
341 1 1002 . FORmAT(s OPRIPE=* G24.181
342 1 . OPRIME : SIGN (1.09 OPRIME I
343 END BLOCK
344 C
345 BLOCK ( PRINT VR E VO
346 1 * WRITE(6*1003) VRv Es VO, 9

347 1 1003 . FGRMAT (OVR8$ 624.18, 5X9 .E2. 624.18, 5X *VOn* 624.18 G o *uo

1. G24.18)

348 END BLOCK
349 C
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SEQ NEST SOURCE

BLOCK( PRINT CE4

351 1 * .11Ll,;10144) 0(141, Q

352 1 1004 . FoHMA 7O ( 4: 0 (2 24.18. 5x oots G24.18)

353 END bLOCK

354 bLOC,( T11E mAx i

355 1 .RI71 ( 6.l 1005 1VALUE, PP*TWOP1

356 1 1005 * FORMAT (o VALUE= 6 24.18, 5X.1OHPP*TWCPI= .624.18

357 END BLOCK

358 BLOCK FP MAX

3t9 1 w R17E 1 6. 1006 1FM, IMOPI

360 1 1006 * FORMAT I*FM 6. 24.18. 5X. * TWOP1a * G24.18

361 END 8LOLK

f362 BLOCK i FNI FVLUT.P
363 1 00 *RO7T(6,1007I M AUT.P

364 1 107* FORMA 1 0 M:s. 024.18/ VALUE.. 624.1895X. *TP=*. 624.18. SX.

1. *PPz*. 624.18)

36(b5 END BLOCKI
366 c

3(.7 RETU.RN

368 END
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The following collection of papers and reports was supported by

AFOSR contract number F49620-79-C-0115.

I. D. M. Andrews, Using Assertions for Adaptive Testing of Software,

presented at the International Federation of Information Processing

Society Working Conference, September 26-29, 1979, London, England.

2. D. Andrews and J. Benson, Using Executable Assertions for Testing,

presented at the 13th Annual Asilomar Conference on Circuits,

Systems and Devices, November 6, 1979, Pacific Grove, California.

3. D. Andrews and J. Benson, An Automated Program Testing Methodology

and Its Implementation, submitted to the 10th International Sym-

posium on Fault-Tolerant Computing, October 1-3, 1980, Kyoto, Japan.

4. D. Andrews and J. Benson, Adaptive Search Techniques Applied to

Software Testing, Final Report, General Research Corporation

CR-1-925, February, 1980.

5. J. Benson, A Preliminary Experiment in Automated Software Testing,

General Research Corporation TM-2308, February, 1980.

6. D. M. Andrews and J. P. Benson, "Using Assertions to Test Computer

Programs Automatically", to be submitted to the IEEE Transactions on

Software Engineering.
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