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I. INTRODUCTION

This report describes the key considerations that were involved in
the conceptual design of a 1024-bit silicon gate (MOS/SOS state retention
random access memory. Three appendices are attached to the report.
Appendix I describes the design rules used to define the topological lay-
out of key memory areas. In Appendix II, a radiation-hardened (MOS/SOS
process is outlined. Appendix III contains data describing the total-dose
1 radiation response of (MOS/SOS devices fabricated with the process out-
lined in Appendix IT

IT. RADIATION CONSIDERATIONS

Semiconductor memories which combine nuclear radiation hardness with
the high density, speed and low power-dissipation of state-of-the-art
large-scale-integrated (LSI) circuits are not presently available for many
systems which now have such requirements. Radiation-induced changes in
device parameters limit the operational range of ''state-of-the-art' LSI
random access memories (RAMs) to about 5 x 103 rads(Si) total dose and
3 x 10° rads(Si)/sec transient dose rate.l Over the past several years,
there have been a number of publications on the subject of integrated-
circuit radiation hardening. Most of these publications address process
approaches. Process modifications, with minimm design and layout
changes, have allowed some increases in the hardness of available LSI
designs. Also, some small capacity RAMs have been specifically designed
and fabricated to withstand higher radiation levels. In the first case,
the increase in radiation hardness is generally not satisfactory for most
applications. In the second case, the small storage capacity (e.g., 64
bits) per chip limits applicability.

To achieve the radiation hardness goals shown in Table 1 along with
an access time below 300 nsec, both hardened processes and hardened circuit-

design methods are necessary. thea a
108
The main objective of this program was to identify methods for achiev- a
———
ing a high degree of radiation hardness with minimum sacrifice of the
density and performance of LSI random access memories (RAMs). __4
(oES
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Radiation-hardened designs must consider three different types of
effects--(1) permanent ionizing-radiation degradation of MOS device parame-
ters, (2) transient upset of operation and (3) damage due to neutron
fluence.

The permanent degradation2'7 in MOS device characteristics is caused
by accumulated ionizing radiation dose effects--resulting in shifts of
threshold voltages, increases in leakage currents, decreases in gain, and
changes in various other parameters. The degradation of these device
parameters varies with the individual MOS device and depends upon the
voltage bias existing during the time of the radiation exposure. Some
annealing of the degradation may occur with time and temperature.

The transient upset of operation is induced by short-pulse high-dose-
rate radiation events, which result in radiation-generated photocurrents
and temporary shifts of MOS device parameters. After a recovery time, the
currents and parameters return approximately to their original values;
however, the disturbances can cause a loss of information or ''scrambling"
of a memory.

The effects of neutron fluence on MOS devices (up to at least 1015
neutron/cm?) are generally not significant.

The use of radiation hardened, silicon gate (MOS/SOS processes has
greatly reduced the problems associated with threshold voltage variations

and device leakages.‘?’_7 Nevertheless, circuit designs for 106 rads(Si)
ionizing radiation dose must consider up to 4 V bias-dependent, nonuniform

changes in threshold voltages (Figure 1).

Since, on a given chip, the threshold voltage of the individual MOS
devices can be significantly different, the technique of threshold
voltage control by substrate biasing circuits®,9 is not adequate. Some
designs must also allow up to 200 niA/). drain-source leakage arrent (Figure 2),
which also depends on device type and voltage bias. Degradations in
carrier mobility and other parameters must also be tolerated in circuit
operation.

Operation during high-level transient radiation is often not necessary,
because an external radiation detector may switch off the logic circuits

and "'disconnect' the memory for the time of the exposure and recovery.
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However, beyond some specific dose rate (e.g., 109 - 1010 rads(Si)/sec),
the memory cells can lose stored information due to high photocurrents (as
much as 10 mA/mil) and transient threshold-voltage shifts beyond the value

of supply Voltages.w'11

ITI. GENERAL DESIGN CONSIDERATIONS

In addition to the radiation effects, the design must accommodate
worst-case process tolerances, power supply and temperature variations.
Thus, circuits designed for radiation hardness, as well as for normal
variations, must tolerate a considerably larger range of parameter
spreads and nonuniformities than those designed for commericial or military
specifications only. E.g., Figure 3 shows a comparison of threshold
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Figure 3. Threshold Voltage Ranges for Radiation Hardened Design
(Solid Line) and Standard Design (Dotted Line)

voltage ranges for radiation-hardened and nonhardened designs. Conse-
quently, the circuit design of a radiation-hardened (MOS/SOS RAM, which
includes digital and analog stages on the same monolithic chip, should

provide the following features:

Compensation to decrease the effects of parameter degra-
dation on the operation of the circuits.

. Balanced or differential circuitry in the highly sensitive
analog functions which will provide a high degree of

parameter tracking.
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Minimum sensitivity to timing of any floating nodes, to
assure proper control of sensitive nodes during transient

radiation pulses.

Avoidance of circuitry configurations (e.g., NOR gates)
which can become severely degraded after radiation

exposure.

Inclusion of the above features in a radiation-hardened design will
reduce the range of variations shown in Figure 3. Also, a parameter
spread or range chart for each critical circuit area can be constructed.
The following discussions highlight some of the important design con-
siderations for each critical circuit area.

IV. MEMORY CELL DESIGN

The basic objective in the design of memory cells and a cell matrix
is to achieve high density while tolerating a high ionizing radiation
fluence ['\:106 rads(Si)] and a high transient ionizing radiation pulse
[mlo12 rads(Si)/sec]. The high-density objective addresses not only small
cell and matrix sizes, but also a minimum number of small-size peripheral
circuits (e.g., sense amplifiers, drivers, etc.). A significant factor,
then, is the ratio of the worst-case n-channel drive current to the post-
radiation drain-source leakage. Practically, this ratio defines the
maximum number of cells which can be tied to a given data bus line. (A
small number of cells on a bus line implies more peripheral circuitry and
lower density.) After irradiation, the drain-source leakage on an n-
channel device may be an order of magnitude larger than that of a p-
channel device;3-7 therefore, p-channel devices normally would be selected
as transfer elements for radiation hardened cells. Since the p-channel
devices in this configuration can experience a worst-case bias condition,
the threshold shifts may be large at the maximua radiation fluence.
Excessively large threshold shifts will render the memory inoperatiave--
especially if a 5-volt power supply is used. In addition, for operation
at 10 volts, a special circuit configuration, with bias interruption on
the selected column, would be required to overcome the write-in and speed
difficulties created by the low drive current of the p-channel devices
after irradiation.




To avoid these problems, n-channel devices with special design and
process features can be used for transfer elements. ‘These design and
process features involve the special treatment of the edges of these n-
channel devices, to minimize the radiation-induced leakage currents. The
trade-off penalty is the inherent addition of some capacitances to the

word lines. This capacitance causes the addressing to be slower.

Tolerance of the memory cells to high transient pulses of ionizing
radiation can be realized by adding an RC stiffening network to a basic
six-transistor complementary cell. Schematics of several different con-
figurations of these types of memory cells are shown in Figure 4. These
cells retain the information as a charge difference on the capacitor, C,
during the generation and recovery of extremely high photocurrents.ll
After the disappearance of the radiation pulse and the resulting photo-
currents, the storage flip-flop is forced back to its original state. The
design shown in Figure 4(a) provides a balanced structure with a high
degree of state retention. Particular attention must be given to the
choice of physical structures for the resistors and capacitors in the cell.
The capacitor structure must not suffer excessive discharge during the
radiation pulse. An oxide-nitride sandwich structure can be used to
minimize radiation-induced discharge and maximize capacitance per unit
area. The doping levels of the resistors must be high enough (v2 k/0)
so that the effects of ionizing radiation on the carrier concentration
(conductivity modulation) is minimized. Tinally, the RC time constant
will determine the width of the radiation pulse that can be survived.

Generally, the RC should be chosen to be about equal to the half-maximum

width of the most intense radiation pulse. The values of resistance
should be large enough to control the charging current to the capacitor
when writing the cell.

A candidate layout for a state retention (RC) memory cell is shown in
Figure 5. The area of this cell, using the design rules listed in
Appendix [, is about 5 mils2. The parameters of this cell (Table 2) can

be used tou calculate the various resistive and capacitive loads that must

be considered in the design of the word drivers, the bit line and sense

circuitry. FEach cell contains an RC network like that shown in Figure 6.

nr g p—egupmm————T—————_— . R ol



v
Table 1. State Retention Memory Goals
Organization 1024 x 1
Total Dose - 10° rads(si)
Memory Retention - 1012 rads (Si)/sec (30 nsec FWIM)
2
Neutron Fluence - 101° n/cm”
Read Access - 100 nsec
Post 3 x 10° rads (5i]
Cycle Time - 160 nsec
‘,é
i
VDD -
E#L__j
J
|,J
- s
R C R B
+ L
==
5 — [ v
Vss
(b)
g
O
SEE N
& “
(c)
Figure 4. Statc Retention Type Memory (Celis
a

v e R,

MR Iand Sag Sugk i ¥ - "
o ok R i o



T e R

Voo

\

-

q BURIED
N conracr

~

- - —dr— 1

r

~1--1=a:

’—~

3
L] CRCRO I I IR B Y I R RN B B SR B B B R B B B BB A A A
.

'..

\—-p——qp--n——l

J

~
¢ SILICON

- . -t

¢ o000
eoseae

N—
N et e = = e ]

)

csvoeofp o o 0o ¢ oo o

r-- - -7
|
|

«

-~

1

R §
-~

g

10

[ mevac

r
A~

*e L4
. o
c'lllloull
Ps .
.l
. ._
. n_
. - | S—
. .
. ®sas e
L] L]
L]
L
L
-
L]
. .
. L]
. .
. es s .
- v
. n n u
o
— ==
.
Lim —— =
L)
3 . .
- .
A -
.
L]
2
L]

. oo‘o

o..‘l.'o.

-y o e o =

\ﬂf'-‘

¥-1'--—--\

,—~

,__‘.___.,._/

{

N

77u

E CONTACT

Memory Cell
10

] POLYSILICON
Figure 5.

A VAW 3 o e R TTL W




Table 2. Process Parameters

TOTAL
INITIAL TEMP  DOSE
Vp 1+.2 3 T VOLTS
Vpy 1.5+.2 +3 1 VOLTS
% p 170 120 100  cm®/V-sec
§ by 360 250 200 cm®/V-sec
% Insp <10 <10 <1 nA/um
é IDSN <1 <10 <10 nA/um
i Ve >30 Volts
? BVpcq >13 Volts
N, 4x 100
N, 1x 10t
CHL I
Tox 600 R
Cox 5.7 x 1078 F/cm2
Corp 2 X 1071° FAm
ﬁ Coop 0.6 x 10720 F/um?
5 Cyp 13 x 107 F/em®  (300/100)
? TSi 0.5 um
o 0.2 x 1071 F/um?

SHEET RESISTANCE

pt <200 /O

N* <100

POLY <100
RESISTOR (P*) 2 ko/O
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Figure 6. Memory Cell Parasitic Resistors and Capacitors

V. DECODE CIRCUITRY DESIGN

The decode circuitry is simply 2 one-of-N selector. Selection can be
implemented in several different ways. Because it is desired to achieve
high radiation levels, a full CMOS type NAND structure was chosen to imple-
ment the one-of-N selector in this design. Since the size of a CMOS NAND
gate increases dramatically as the fan-in increases, it was decided to
limit the fan-in to four as shown in Figure 7. The full (MOS NAND circuit
maximizes the hardness to transient radiation pulses while minimizing the
effects of any radiation-induced leakages.

A0/AD AVAT A2/A7 A3/A3 +V
[ T 0 ) o

ng O
4}—{?:3 >

] worDp LINE

- - A
wo JFC__FC 6L IFC rIﬂF"l

Vss

F-

Figure 7. 1 of 16 Address Decoder
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The restricted fan-in limits the decoders to one-of-sixteen and
suggests an internal chip organization as shown in Figure 8. This organi-
zation also minimizes the number of transfer devices on any data line and
hence, also minimizes the accumulative effect of radiation-induced
leakages in these transfer devices.

A e o ——

VI. SENSE CIRCUITRY DESICN

The sense circuitry in memory systems has, historically, been most
sensitive to radiation effects. Radiation-induced leakage currents
decrease the logical one and increase the logical zero level in the cell.
For a single supply-voltage source, the signal amplitudes on the gates of
the transmission devices are modified by approximately the same amount as
the cells logic levels, due to leakage currents and charge coupling.
Consequently, on the inputs of the sense amplifier, either the zero level

SIPSRRAp 4 S +

is increased by the amount of the p-channel threshold voltage (if the

f? cell is designed with p-channel transmission gates) or the one level is
decreased by the amount of the n-channel threshold voltage (when n-channel
transmission devices are used). Imbalances (as a superimposed result of
sense amplifier offsets, nonsymmetrical leakages on the data and sense
lines, and other electrical and spatial effects) can be opposite to those
of the stored logic levels, with respect to the effective input voltage

B ST R I

of the sense amplifier. Charge transfer from the data and sense lines
(associated with transient currents from the pre-charge voltage source and
with capacitive coupling from the selector and pre-charge rails) results
in transient (10 nsec - 80 nsec) logic margin reduction, and must also be
considered for high-speed operation. Finally, pre-charge voltage
variations up to +10% (due to process, temperature, supply and radiation
effects) narrow the available zero and one margins.

Because of the indicated sensitivity to various effects, a consider-
able amount of development and analysis effort was devoted to the sense,
read an write circuitry, to provide low offset voltage and current, high
input sensitivity and large output voltage swing.

s T T TR R W R D s oh
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Several sense circuits that have very high-speed regenerative gain
stages were considered in detail.l? These circuits require several
different clocks to operate, and some of the internally generated clocks

would have critical timing requirements. Detailed analyses showed that it
would be very difficult to maintain critical timing pulses through the
required radiation levels and temperature and power supply voltage ranges.
Additional studies were performmed to consider compensation for the

changes induced by temperature, radiation, and power supply voltage varia- ;
tions. All of the resulis indicated that the high-speed operation can be

maintained for devices with reduced requirements for temperature (0 ~ 70°C),

radiation [<100 krads(Si)], and power supply voltage variations. For

these types of sense circuits, then, some undesirable tradeoffs are

required.

A second approach was investigated and subsequently chosen for the
sense circuitry. This approach generally involves the use of a high-gain
high-speed differential amplifier with a high common-mode operating range
as the sense amplifier. In this scheme, the amplifier need only be
clocked '"on'" with chip select (for power savings) and will respond to the
voltages on the data lines as they appear. As the data stored in the
memory cell overcome the precharge levels on the data lines, the amplifier
responds and yields valid data. The schematic of the sense amplifier is
shown in Figure 9. This amplifier is a variation of the high-speed high-
gain amplifier developed for a previous program concerned with radiation-
hardened (20S/S0S compurators.13 The circuit is extremely tolerant of
temperaturc, voltage and radiation-induced variations. An analysis of
the speed of this circuit, under worst-case conditions, shows a delay of
only 30 x 1079 seconds. This delay time is entirely satisfactory and, at
worst, is a factor of threc slower than the best clocked sense amplifier

designs.

VII. SUMMARY

The conceptual design of a 1024-bit silicon-gate (MOS/SOS state
retention random access memory has been performed. An overall topologi-
cal layout for the 1024-hit memory is shown in Figure 10. Using the

design rules described in Appendix T, the chip size is approximately

15
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125 mi1lsZ. The speed and radiation goals shown on Table 1 are compatible

with the design described above. Key considerations involved in the

design and layout of the memory cell, decode circuitry, and sense ampli-

fier have resulted in approaches which maximize radiation hardness while

maintaining reasonable speed and density.
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APPENDIX 1
(MOS/S0S MFMORY DI'SIGN RULES

Min. Dimensions

: (um)
)
! 1.0 Island Mask
1.1a Island Width (Base of Island) 3 }
; 1.1b Islanc¢ Width (Base of Island in Active area) 4 ﬁ
i .
, 1.2 lsland-Island Spacing 4
1.3 Buried Contact Area 6 x6
2.0 P-Well Mask
2.1 Island Qverlap 2
2.2 Poly Gate Overlap (n-Chennel) 2.5
} 2.3 Spacing from Poly Gate (p-Channel) 2.5
; 2.4 Spacing from Opposite Island 2
: 3.0 Resistor Implant Mask
i
! 3.1 Island Overlap 2
3.2 Spacing from Poly Gate (n-Charnnel) 6.5
| 3.3 Spacing from Opposite Island 2
3.4 Buried Cocntact Overlap 3
4.0 Buried Contact Mask
4.1 Contact Wirdow to Poly Edge on Island 2.5
4.2 Contact Area 2.5 x 2.5
4.2 Contact Window Overlap at Island Edge 2.0
4.4 Spacing to Adjacent 2
4.5 Spacirq to Poly Gate (on same island) 3
4.6 Contact to Contact Spacing 4
5.0 Poly Cate Mask
5.1 Poly Width 3
5.2 Poly-Poly Stacing 4
5.3 Poly Extension Cver Island at Gate 2
5.4 Poly-Island Spacirg (long runs) 1.5
5.5 Poly-Metal Spacing (long runs (fcr capacitance reasons) 1.5
5.6 Poly Area for Metal Contact 7 x7
21
FUVRRIDONE VRSO R 9 SV LU AT g



Min. Dimensions
()

6.0 n* or p* Implant Mask

6.1 Island Overlap 2

: 6.2 Spacing from Opposite Island 2

f 6.3 p* to Poly Overlap over Buried Contact 2.5

; 6.4 p* to n* Overlap for Dicde 3 5

f 6.5 pt or n* to Opposite Gate 4.5 ;
7.0 Metal Contact Mask E
7.1  Contact Window Size 4 x6or5x5 5
7.2 Contact Area 3x3 '

; 7.3 Spacing to Island Edge 0

‘ 7.4 Spacing to Poly Edge 1

i 7.5 Contact Window Size for Double Contact 9 x4

g (n* to p* or poly to n* or p*)
7.6 Contact Window Spacing to Gate 3.5

8.0 Metal Mack

8.1 Metal Width 4

8.2 Metal-Metal Spacing 6

8.3 Metal Overlap of Contact Window 1, except 0 for
internal shorting
contacts

8.4 Bonding Pad Size 135 x 135

8.5 Bending Pad to Bonding Pad Spacing 65

8.6 Bonding Pad to Unrelated Metal Spacing 40

9.0 Glassivation Mask

9.1 Bonding-Pad Window Size 125 x 125
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APPENDIX TI

RADIATTON HARDENED (MOS/SOS MEMORY PROCESS

The following description outlines a candidate radiation-hardened
| (MOS/SOS memory process. Only major processing steps are included, and

| the results of those steps are presented. In some cases, the results

7 of several steps are combined for brevity. Some general process features
& that should be noted are the minimization of high temperature and thermal r
oxidation steps, and the restriction of all process temperatures to 900°C

and below. i

; 1 - Formation of Mask for Island Etch: Combination of thermal -
1 and deposited oxides. 5
5

2 - Island Mask: Photoresist, expose, develop, etch oxides,

{
strip resist. fi

5 - Etch Islands: Use anisotropic etch to define isclated

! silicon islands.

4 - P-Well Mask: Thick photoresist, expose, develop.

5 - Ion Implant P-Wells: Boron ion implant to determine threshold
and breakdown of n-channel transistors--strip resist,

etch all oxides.

6 - MNOS Capacitor Formation: Thin thermal oxide + deposited

silicon nitride.

~3

- Capacitor Mask: Photoresist, expose, develop, etch nitride--

strip resist, define capacitor and resistor areas in

nitride.
8 - Resistor Mask: Photoresist, expose, develop, open resist
over resistor areas.

Implant Resistors: Boron ion implant into silicon to reduce
resistivity of exposed areas to approximately 2000 /O,

strip photoresist.

T TR e ey ] ok L AE T
O
'

10 - irow Gate Oxide: lardened gate oxidation and anneal to grow

approximately 700 f of gate oxide.

[gV)
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11 - Buried Contact Mask: Photoresist, exposce, develop and
! ctch oxide to form buried contacts to epitaxial silicon,
strip resist, Polysilicon is then deposited using a (\D

- process.

[2 - Polysilicon Gate Mask: Photoresist, expose, develop and etch b

polysilicon using plasma etching techniques, strip resist.
13 - P* Mask: Thick photoresist, expose, develop - define areas
that form the P* sources, drains, and conductors.
14 - P* Implant: Boron ion implant to form P* conductors with
resistivity of about 200 /0O - strip resist.
~ 15 - N* Mask: Thick photoresist, expose, develop - define arcas

that form the N* sources, drains, and conductors. 5

16 - N° Implant: Phosphorus ion implant to form N* conductors

| with resistivity of about 100 0/0 - strip resist.
) 17 - Deposit and Densify TField Oxide: Low pressure CVD hot wall f
! process - about 6000 & of silox is densified at 875°C. f
g
: 18 - Contact Mask: Photoresist, expose, develop and etch oxide .
|
to form contact holes to the epitaxial silicon and the {
polysilicon - strip resist. i
3

19 - Deposit Metal: Deposit about onec micron of aluminum or
aluminum-silicon alloy.
20 - Metal Mask: Photoresist, expose, develop, ctch aluminum -

strip resist.

21 - Deposit Scratch Protection: Deposit approximately 5000 ]
silox at temperatures below 500°C. A sintering of the
metal silicon contacts is performed during and subsequent

to this operation in an inert environment.

22 - Scratch Mask: Photoresist, expose, develop and etch the
protective silox coating from over the bonding pads -

strip resist.

e b ey
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APPENDIX IT1

SILICON GATL CMOS/SOS RADTATION RESULTS

The radiation performance of silicon gate CMOS/SOS devices made at
the Electronics Research Center of Rockwell International has been con-

sistently good over the past 1-1/2 years. Typical ionizing-radiation-

induced threshold shifts are shown in Figures 1 through 4, for a 730 X
gate oxide thickness. The results for a 580 & gate oxide thickness are
shown in Figures 5 through 8. The radiation responsc of the 580 R gate k
oxide devices averages about .62 of the radiation response of the 730 R
gate oxide. The ratio of the square of the gate oxide thicknesses is

about .63.

Over the past nine months, a significant improvement has been made
in the reduction of the radiation-induced n-channel back-channel leak-

ages. The most recent results are shown in Figure 9.

Investigations to minimize the radiation-induced n-channel edge
leakage are still being conducted, since we have not yet achieved the
desired levels. 1In the interim, a special desien technique can be used
to eliminate edge leakage at some expense in area and speed. The best
results observed to date are side channel leakages <l nA per edge up to

one megarad(Si).

The radiation-induced reduction in field-effect mobility is shown

in Figures 10 and 11. Variation in gate oxide thickness has no apparent

effect on the radiation-induced mobility reductions.

ro
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