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RIDGE ESTIMATION FOR THE LINEAR REGRESSION MOREL.

James S. Hawkes and Khursheed Alam*
Clemson University

ABSTRACT

Consider the linear regression model Y = X0 + ¢, where 0

is an unknown parameter vector to be estimated. A class
of estimators, variously known as the ridge estimators, is
given by 0= (X'X + KI)-IX'Y, where K is a constant or a func-
tion of Y. The ridge estimator is a suitable alternative to
the least squares estimator when the design matrix X'X is
nearly singular. A number of papers has appeared in the sta-
tistical literature in th2 recent years, giving empirical
evaluation of various ridge estimators. This paper gives

a theoretical discussion of some properties of the ridge es-

timators.
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INTRODUCTION

Consider the linear regression model

Y =X0+ ¢ (1.1)
where Y is n x 1 vector of observations, X is n x p design
matrix of rank p, © is p x 1 vector of unknown parameters
and € is n x 1 vector of observational errors. Let the com-
ponents of ¢ be uncorrelated and have zero mean and a com-
mon variance equal to 62, say. The usual estimator of 9 is
derived by the least squares method, that is, by minimizing
(Y-X0) ' (Y-X0O) with respect to ©, and is given by

8= (xx)"1

X'y (1.2)
where prime denotes the transpose of a matrix. Clearly, )
is an unbiased estimator of ©. Let Al""’kp denote the
characteristic roots of X'X. The mean squared error (MSE)

of 0 is given by

MSEG = E(8-0)' (8-0)
_ 2P 1
= 0 Zi=l —7;. (1.3)

In application of multiple linear regression, the design

matrix X'X is often nearly singular. This is due to some

interrelation between the explanatory variables. The rela-
tion is technically called multicollinearity. The least
squares estimator of the regression coefficients tends to
become "unstable" in the presence of multicollinearity.
More precisely, the variance of the estimates of some of
the regression coefficients becomes large. This is shown

by (1.3). For this case Hoerl (1J)62) and Hoerl and Kennard
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{1970, a), (1970, b) suggested a class of estimators known
as ridge estimators as an alternative to the least squares
estimator. The ridge estimator is given by

§ = (x'x + kD) Ixy (1.4)

where I denotes an identity matrix and K is a positive num-

ber or a suitable function of Y. Clearly, ® is a biased es-

timator of @. The new method of estimation is called ridge
estimation.
Let P be an orthogonal maﬁrix, diagonalizing X'X, that is
PX'X P'= D (1.5)

" where D is a diagonal matrix with the ith diagonal element

i ! equal to Ai. Let a = (al,...,ap)' = P8. 1If K is a constant,
é the mean squared error of é is given by
MSE@ = E(6-0)' (6-0) 2
_ 2P i (1.6)

2 + K21 !
j=1 (A¥K)Z X #K) 2
. Comparing (1.3) with (l1.6) we observe that the effect of
multicollinearity of the explanatory variables in the design
' matrix on the mean squared error is suitably reduced by the
ridge estimation.
Applied statisticians have shown considerable interest

in ridge estimation. Papers by Farebrother (1975), Hawkins

(1975), Hemmerle (1975), Hoerl, Kennard and Baldwin (1975),

———

McDonald (1975), McbDonald and Galarneau (1975), Newhouse and
Oman (1971) and Sidik (1975) may be cited for reference.
Most of these papers deal with the empirical evaluation, based

on simulation study, of various ridge estimators and its com-

parison with the least squares estimator and other biased es-




timators. Since a large number of variables is involved
in the regression problem, the given empirical results do
not give sufficient insight into the operating character-
istics of the ridge estimators. This paper gives a theo-
retical discussion of an expository nature of the ridge
estimation. aAmong other results it is shown that for a
‘fi certain choice of K, der~nding on Y, the ridge estimator
has uniformly smaller mean squared error than the least squares
; . estimator, if a number of characteristic roots of the design
matrix is sufficiently small.

A generalized ridge estimator is given by

L5
ataad.

i

-1
= '
Go (X'x + Ko) X'y (1.7)

where Ko is a diagonal matrix. 1In this paper we consider only

.

1 the ordinary ridge estimator, given by (1l.4).




RIDGE ESTIMATION

The main results of the paper are given by the following
theorems. First we give a derivation of the ridge estimator
based on the least squares principle. A slightly different
derivation based on the same principle was given by Hoerl and
Kennard (1970 a). Let c be a positive number, and let

R(9) = (y=-X0)'((Y-X0).

Theorem 2.1. The value of 0 minimizing R(Q), given

0'0 < c, is equal to 0, where K is chosen such that §'§ = c.
Proof: From (1.4) and (1.5) we have
3'0 = (PX'Y)' (D + KI) 2(px'y). (2.1)
From (2.1) it is seen that 9'Q is decreasing in K. Therefore,

the value of K, given by 8'0 = c, is uniquely determined.

We have
R(8) = (Y-XO)' (Y-X0)
= (Y-XB) ' (Y-%8) + (X'¥)'[(X'X + KI) " =(x'x)"1]
X'X[(x'x + KI) "= (x'x) " Lyxry
= (Y-X0)' (Y-X0) + (PX'Y)'D*(PX'Y) (2.2)

tvvhere D* is a pxp diagonal matrix whose ith diagonal element

is equal to 2
- Kk _
2

xi(x+xi)
It is seen from (2.2) that R(a) is increasing in K.

Now, consider the problem of minimizing R(9) with respect
to 7 under the constraint 0'0 = c. By the Lagrangian method
the minimizing value of » is given by

\*3-)(' (Y-xt\/) = QO

or

L= (XX 4 D) " Yxry




where A is determined such that ©0'0 = ¢. Thus R(®) is mini-
r. mized for O = é, where K is determined such that 0'0 = c.
We have shown above that R(0) is increasing in K and

~

that 0'0 is decreasing in K. It follows that © which is the

minimizing value of R(©), given 0'®@ = ¢, is also the mini-
mizing value of R(O), given ©'0 < c, where K is determined

from 0'0 = c. O

1 Remark 1. The above theorem gives an interesting com-
j; parison between the derivation of the least squares estima-
% tor and the ridge estimator. The ridge estimator is derived
, by minimizing R(Q) undér a certain constraint on the value
L of 0'09, whereas the least squares estimator is derived by
minimizing R(O) without that constraint.

i . The next theorem gives another derivation of the ridge
estimator from a Bayesian approach, assuming that the prior
distribution of © and the conditional distribution of Y given

f O, are both normal. The proof of the theorem is trivial.

- This result is also noted by Lindley and Smith (1972). The

|

result implies that the ridge estimator for a constant value

of K is a Bayes estimator and admissible under squared error
4
1 loss. The notation YQ'Hm,Z) means that Y has a (multivariate)
L normal distribution with mean vector u and covariance matrix I.

Theorem 2.2. Ify¢$ NUKLOZI) conditionally given 0, and

——

a' priori @@buO,TZI) then the posterior mean of 0 given Y, is

equal to o for K = 02/12.

| It is natural to compare the mean squared error of the

ridge estimator and the least squares estimator. First we

) consider the case when K is a constant. It is clear from
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(1.3) and (1.6) that for any K > o

MSE® > MSE®
for sufficiently large value of 0'G. On the other hand, if
it is known a' priori that ©'0 < c for some positive number c,

a valid condition in many practical situations, then from (1.6)

we get
A,
= 2.p i 2.p 1 .
MSE® < 07Ii_; TT;—:‘?)Z + cK"I7_, (X +K) (2.3)

Theorems 2.3 and 2.4 below, give values of K obtained from
(2.3), for which the ridge estimator has smaller mean squared

error than the least squares estimator.

~ 2
Theorem 2.3. If @'0 < ¢ then MSEQ < MSE§ for o < K < Zg .
202
Proocf: From (2.3) we have for o < K A
N AL
usE 6 < o°fh_ (—i— + 2
- (A.+K) (A, +K)
i i
=0 Ii 2
(Ai+K)
2 .p 1
< g ILi_
i=1 Ai
= MSE 0.1
2 . N
Theorem 2.4. If 0'0 < 2~ 17 ) <% then MSEG < MSEG for K>o.

1

Proof: Let D(K) denote the quantity on the right hand

side of (2.3). Differentiating D(K) with respect to K we get

2, (cK-92)
ID(K) /oK = B —F—e— (2.4)
(A, +K)

The right hand side of (2.4) is equal to zero for K = oz/c

and is <(>)o for K < (>)0%QL Hence, D(K) is first decreasing

then increasing as K varies from o to «. ©Now, D(=) = pCc and




Lt

Therefore

MSE® < D(K)

max (pc, MSE 0)

A

= MSEOQ
for c f-g Zfll —%T.U
i

An expression for K minimizing MSEé, given by (1.6), is
not obtainable in a closed form. But for a given value of 9'9,
it is seen from (1l.6) that MSEO is minimized (maximized) by
setting di = 0'Q for the value of i corresponding to the largeét
(smallest) characteristic root of the matrix X'X. That is,
MSE® is minimized (maximized) for the value of 6 proportional

to the characteristic vector of X'X corresponding to the largest

(smallest) characteristic root of the matrix. This result was

also noted by Newhouse and Oman (1971). Let X, = min(xl,...,xp)
and
X, 2
2P i cK
Q. (K) = 727 2z T O,z

The following theorem follows from (1.6).

Theorem 2.5. A value of K minimizing QC(K) is minimax
for MSEG, given 0'€C < c.

Now we consider the case when K depends on Y. 1In this
case, the main question is what is a suitable choice of K as
a function of Y? Some of the authors cited above, have con-
sidered various choices and have compared the corresponding

estimators with other estimators. Their comparison is mainly

based on simulation study which leaves many guestions unanswered.




(8)

In particular, it is not known whether the ridge estimator
for any of those choices of K has smaller mean squared error
than the least squares estimator for all values of 0. We
consider the choice of K, given by

K* = v62. /(8" ) (2.5)

where v is a positive number and

- 1
22 _ Y I-xx'x) XY
n-p

The given choice of K is suggested by Theorem 2.2, since 82

is an unbiased estimate of 02

Tz. Let

and (9'6)/p is an estimate of

0% = (X'X+K*I) Ix'y (2.6)
denote the corresponding ridge estimator. Assuming that

yd N(X&ﬁzl), we shall compute MSEQ* and compare it with MSED.

- The normality assumption will be made tacitly throughout the

following discussion. Under the normality assumption, 52 and
5 are independently distributed.

It is in order at this point to consider briefly the
gquestion of the inadmissibility of the least squares estimator
with respect to a certain class of biased estimators. Since
Stein (1955) showed that the mean of a p-variate normal dis-
tribution is inadmissible for pz_3, a large number of papers
has been written on the subject. Alam (1973, 1975), Baranchik
(1973), Berger (1976), Bhattacharya (1966), Bock (1975) and
Sclove (1968), to name only a few, have considered certain
class of estimators of the mean of the distribution, which
dominate the least squares estimator. From Theorem S5 of Bock
(197%) it follows that an estimator of the form

YR(x'x) Ixry

S ) o (2.7)

3 = f£(




(9)

has a smaller MSE than O for all values of ©, where S is a
random variable independent of X'Y, such that (S/oz) has a
chi-square distribution with m degrees of freedom,

f: [o,«]?[0o,1], y(1-£f(y)) is nondecreasing in y, o<y (l-£f(y))<
(20-4) /(m+2) and

2<a = (2P Loya- )
(TR, T (2.8)

Loy

The random variable S is given, for example, by
S = ¥' (1-x(x'x) "Tx")y

where m = n-p. By Theorem 6 of Bock, the inequality (2.8) is
also necessary for an estimator of the form (2.7) to have
smaller MSE than the least squares estimator. Clearly, the
inequality holds for p > 3 if X'X is a constant multiple of
the identity matrix. In this case and only in this case the
ridge estimator is a multiple of é.

Now we compute the mean sguared error of the ridge esti-
mator 9*, given by (2.6). Let Xi,Y denote a non-central chi-

cquare random variable with m-degrees of freedom and non-cen-

trality parameter y. Let ¢ be an integrable function, and let

T@ NE,1l). It is easily shown that
ETo (T2) = gE¢(X§ 2 (2.9)
rs
2 2y = . -2 L2
ET“4 (T<) = E¢p (x5 .2) + £°Eo(yc .2). (2.10)
Brg S’Q
Let 2 = (Zl,...,Zp)' = PX'Y, where P is given by (1.5).
We have that Z@t«Da,czD), 3'5 = I§=l Zi/\i and
MSEg* = E(s*-a)' (a%*-a)
= E((D+R*T) " Lz-q)' ((D+x*1) " 12- )
- E® | (d L
T Rei=) W3, P L2, 2 1
1
- i
= e2b | « - S -2 (2.11)
. 2 1
yH o /(s us )
-2 Jj=1 1] ]

iR
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(10)

2 2
dxl)\¢/0"

Ietrvzgx% 2 dX (i=1l,..., p) independent of the Ui s and among

where U, = 2, /(/_ c) a N(/- @/ 0 1), so that Uy

themselves. Using (2.9) and (2.10) in (2.11) we get

A, 2
P P 10
MSEG* = EIT_, =7 2 -
Oy + (=25 "2)/(2 j o))
2
‘B3 2 M
i=1 % vz vi Wt o,
) 1
(A + )/(zJ =1 7t )
3 3
23
- +11. (2.12)
R
ARkt T M v v

It is not possible to simplify further the expression for MSEg*,
except for some special cases. Therefore, we shall consider
only those cases.

First suppose that the xi's are all equal to ), say.

From (2.12) we obtain after simplification

2 .
* = 9 F 2, F* 2_ 2F
MSES x Elp(—f +v/(p+2)) t Tl F*+v/'p+4;) F+v /(p+2)
(2.13)
where F d(n-p)x2 , _/(p+2)02__,F* d(n-pix2,, _ /(p+4)x_ and
~ p+2, t “n-p’ ~ “p+4,T ' ‘n-p
T = kq'd/cz.

The above expression for MSE9* is computable by integration
from the density function of the non-central F-distribution.

For T = o we have
2

2 X
MsEg* = B B(~rp+2 )2

2
p+2 An p)

+21)]

T O N
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For large values of tv we have

MSE o* :i—-E[p(l- a-p. )+T(""E )]

(n-p'xp+2,T (n- p)Xp+2 T

2n- -2
) l+Tv {n-p+2) E(X )

=3 [p- 2p\)E(’Qp+2 T n-p ‘p+2,1

= (p/2) P © T, =-T/2
= & [p- R¥L 22, 2+ 1; De
A ng + 1) 2" 2 2

+

2, r¢-1)
Tv (n pf‘?) 2 o (%—l,g +1; %)e-.T/zl
4 {n-p) T(5+1)

2
x 0 Vs _ V(in-p+2)
Pz (2e- 5 )]

1]

2
_ _Vva vin-p+2)
MSE - (2p- np )

< MSES for v<2p(n-p) /(n-p+2) (2.14)

where

a a(a+l) 53
b b(b+1) 2!

denotes the confluent hypergeometric function. Since 5* is

d(a,b;x) =1+ x +
of the form (2.7), an application of Bock's result shows that
MSE6* < MSE§ for all values of 0 if
v<2(p=2) (n-p) /(n-p+2).
Next suppose that A,-»0 and the remaining (p-1) charac-

terist roots are bounded away from zero. Let xj= Axr G Qin—p)x§/3x2

andG* 4 (n- D)X /=

41 o' If A a'a>0 then from (2.12) the value
of MSES* is approx1mated by
2 2
ax > 9 g
*
+a?[E(-L— )2-2E(—S—) + 1], (2.15)

] G*+v /5 G+v /3
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Hence

A (MSEB-MSEG*)+0® (1-E(zZ—m) 2 ) . (2.16)

We have shown the following result.

Theorem 2.6. If the Ai's are'equal to A, say, then

A 4 -
Lim  (MSES-MSE@*)8'6 = V°2 (2p-2An-p*2) ,
8'9+c A n=p

and MSE6* < MSE8 for v < 2(p-2) (n-p) /(n-p+2) for all values of 8.
If A,>0 but the other p-1 values of the Ai's are bounded away
from zero, and i, a'a>0 then

G )2

G+v /3 ).

Lim A, (MSE8-MSE6*) = 02 (1-E(
X 4s0

Suppose that Ay=Aa for r values of i and the other
values of the Ai's are bounded away from zero. The following
theorem shows that MSE8*< MSES for sufficiently small values
of Ay Thg proof is based on certain results given in the
Appendix.

Theorem 2.7. If o<v<l and r>4+v(n-p+2)/(n-p) then for

Ay sufficiently small MSE*<MSE® for all values of 6.

MSE 9 is bounded for any value of 6 as A,>(Q but MSEf*-«a,
An alternative estimator foH_which the MSE is bounded, is given by

O** = (X'X+K**I) “X'Y

Where K** = 82/5'5. The mean squared error of 8** is given by

D Xi02
MSEQ** = Er°
_ ~ )
=1 (ki+(02/02)/' p AjU§ AL 1) 2
$521 L+K)2 (n, + K)?
2 J 1
o) 2 Ai
+ EIZT_.o. [ '
i=1"1 5 r.U2 xi(vi+w§) )
(A, +(8%0%) /(28| —Ld— + =)
1 I=L (AL+K) (A, +K)
J 1
2%,
) A U2 A V2 "ok
~2 2 2 3% ivi
N+ (0" fo%) /(25 _ 2 + =)
i J-l(Aj+K) ‘*i*K)Z
(2.17)

corresponding to (2.12) for MSES*.
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Proof of Theorem 2.7.

Let A =1p=...=X. =}, and let A

be bounded away from zero for i>r. We consider the limiting

| value of MSE6* as ),»>0. Let B, denote the quantity inside

i i the square bracket in (2.12). Clearly, 0<B,<2. Also, B,~+0

?;e as A,+0 for i>r. Therefore, the second summation in (2.12),givena'a,
.’;g is maximized in the limiting case as XA, ,+0 by putting “i=0

for i=r+1,...,p. Similarly, the first summation in (2.12)

is minimized in the limiting case as ),»0 by the same sub-

—— A e

. 2 .
stitution. Therefore, we let ai=0 for i=r+l,...,p.

From (2.12) the value of MSE®* as A,~0 is approximated
by

2 2
x ~ Xo Vg 2 -2, 2 p 1
MSE® A Efl+{ 02)/Xr+2.k*a'u/b2) +o z:i=r+1 A{

~2

A2
+ a'aE[(1+(3§§)/x

2
2)=2 (1+ (X2

2 2
02)/Kr+2.k*a'a/52

r+4, \,a'a/o

)"}

(3.1)
wihere the xzrandom variables are distributed independent of 5°

C .

Let$§ =A*a'a/02,V'§X§ and let Q denote the quantity in-

side the square bracket in (3.1l). We have

~2,.2 ~2, 2
BQ= E((1- X43° )2, 0- Y9/0 )4
Vidpyo, stV0 /o Xer2, s tVO /.o
) _ 2(v52%/52)v (‘)32/32)2
T 2, 2 (2., o) el aeidah?
Xr+2,6+95%7/ 5% Xrv2,67 V0 /7 *re2,87 V0 /2

E[_g(v82/02)E(V) + (v&i/cz)z

2 A2, 2.2
(-Kr+2'5+\)0' /~U )

]

A

(xi+2'5+v82/32)2

~ ~2, 2 2 ~ 2,-2
= E(voz/oz)(4+vo /o )(xr+2'6+v02/c )




(14)

. n -
s S PRI M
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2

vE(4+vx§_p+2/(n-p»(xi+2'6+vxi_p+2/(n'9))_

I A

2 2 2 -2
vE(4+vXn_p+2,4n-p))E(xr+2’5+vxn_p+2/(n-p»

v(a+ A2 (2 2 /(-p)) 72,

r+2,s “*n-p+2 (3.2)
F £ For the first term in (3.1) we have
~2
g vg 2 -2 A2, 2 2 2 ,,2,=1
8 E(l+*;§/ Xr+2,5) < 1-E(v5” /o )(Xr+2,5+V° /97)
-3 _ 2 2 . -1
@5 =1 VE(Xr+2,6+VXn-p+2/(" p)) (3.3)
¥y .
”gﬁ Combining (3.2) and (3.3), we get an upper bound on the right
, 3 _
"Qw hand side of (3.1), given by
4 2
y A.Vg n-p+2 2 2 _ -2
k¢ MSE@+—Y—[6(4+v A )E(Xr+2,5+vxn-p+2’An p))
}‘\ *

2 2 -1
= TEXp42, 5PV Xpopea /(07P)) T (3.4)

-~

e,

The fifth line in (3.2) and the second line in (3.3) is ob-

-

tained from the relation E Xé ¢(X§) = m¢(X§+2) for any in-
tegrable function ¢.

Let R denote the quantity inside the square bracket
in (3.4). Clearly, R<o for sufficiently small values of §.
On the other hand, if §+» then

R ¥ (4+-\-’r(1—‘_‘-;;ﬁl -r) /5

<o for r>4+2é%3213l .

If v=0 then

Sy MR T e
A

R=4 § E (’(r+2,6) -r E(Xr+2,5)

sp (5 - 1) -
i "2 r r 3 rr 5 -5,2

= — fD = - -_— ® ) -t = .o
: T&E + 1) (3 = L3+ Lizgl-2(z,53+l:i3) ]e

‘ 2
= 43 r ., .8 L, rx . 8. =38/2
= ey PG ~Liptliz) b gegtliple T

(3.5) !




Using the recurrence relation

b¢(a,b;x)~bd(a-1,b;x) = xé(a,b+l;x)

and the integral representation formula

F(b??ﬁfiél @(a.b;x)=f%eXtta-l(l-t)b-a-ldt, b>a>o

it can be shown that the value of R, given by (3.5) is ne-

gative for r>4.

If v=n-p then

2 )-z-r E(x2

-1
n-p+r+4,§ n-p+r+4,6)

R = 8(n-p+6)E (X

_ [5(n19+6)T((an+r)/2) o (AZR*L n-p+r+4 g)
- 4T ( (n-p+r+4) /2) 2 ' T2 P2

£l ((n-ptr+2)/2) , (n-ptr+2, n-ptr+d 6§, .-
2T ((n-p+r+4) /2) 2 2 r2

(3.6)

As for (3.5) it can be shown that (3.6) is negative for

5/2

r> (n-p+€).
The above result suggeststhat the value of R is nega-

tive for all &, and therefore MSEO*<MSE§ if r>4+v12§gggl-
This result is connistent with the numerical values of R which
have been computed for $=1(1)5,10,15v=2(.2)1.0, n-p =5(5)25

and r=5 (1)1lo0.




(16)
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