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ABSTRACT

Consider the linear regression model Y = X0 + E, where 0

is an unknown parameter vector to be estimated. A class

of estimators, variously known as the ridge estimators, is

given by Q = (X'X + KI) -xy, where K is a constant or a func-

tion of Y. The ridge estimator is a suitable alternative to

the least squares estimator when the design matrix X'X is

nearly singular. A number of papers has appeared in the sta-

tistical literature in th3 recent years, giving empirical

evaluation of various ridge estimators. This paper gives

a theoretical discussion of some properties of the ridge es-

timators.
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INTRODUCTION

Consider the linear regression model

Y = Xe + (1.1)

where Y is n x 1 vector of observations, X is n x p design

matrix of rank p, 0 is p x 1 vector of unknown parameters

and e is n x 1 vector of observational errors. Let the com-

ponents of e be uncorrelated and have zero mean and a com-

mon variance equal to a2 , say. The usual estimator of e is

derived by the least squares method, that is, by minimizing

(Y-X®)' (Y-XE) with respect to 0, and is given by

0 = (X1X)1 x'y (1.2)

where prime denotes the transpose of a matrix. Clearly, 0

is an unbiased estimator of G. Let l'""',p denote the

characteristic roots of X'X. The mean squared error (MSE)

of 0 is given by

MSEG - E(G-G)' (5-)

G2 ZP 1 (1.3)i=l -X."i.3
1

In application of multiple linear regression, the design

matrix X'X is often nearly singular. This is due to some

interrelation between the explanatory variables. The rela-

tion is technically called multicollinearity. The least

squares estimator of the regression coefficients tends to

become "unstable" in the presence of multicollinearity.

More precisely, the variance of the estimates of some of

the regression coefficients becomes large. This is shown

by (1.3). For this case Hoerl (062) and Hoerl and Kennard

L J _ .
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(1970, a), (1970, b) suggested a class of estimators known

as ridge estimators as an alternative to the least squares

estimator. The ridge estimator is given by

W= (Xx + KI)-1x'y (1.4)

where I denotes an identity matrix and K is a positive num-

ber or a suitable function of Y. Clearly, 0 is a biased es-

timator of e. The new method of estimation is called ridge

estimation.

Let P be an orthogonal matrix, diagonalizing XIX, that is

PX'X P'= D (1.5)

where D is a diagonal matrix with the ith diagonal element

equal to A.. Let a = ( )' = Pe. If K is a constant,

the mean squared error of 0 is given by

MsEe = E(G-O)'(&-0) 2
= o 2 EP __. _ ci

=_a2__ K2 _ ai (1.6)=l (X K; Ai +K)2

Comparing (1.3) with (1.6) we observe that the effect of

multicollinearity of the explanatory variables in the design

matrix on the mean squared error is suitably reduced by the

ridge estimation.

Applied statisticians have shown considerable interest

in ridge estimation. Papers by Farebrother (1975), Hawkins

(1975), Hemmerle (1975), Hoerl, Kennard and Baldwin (1975),

McDonald (1975), McDonald and Galarneau (1975), Newhouse and

Oman (1971) and Sidik (1975) may be cited for reference.

Most of these papers deal with the empirical evaluation, based

on simulation study, of various ridge estimators and its com-

parison with the least squares estimator and other biased es-
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timators. Since a large number of variables is involved

in the regression problem, the given empirical results do

not give sufficient insight into the operating character-

istics of the ridge estimators. This paper gives a theo-

retical discussion of an expository nature of the ridge

estimation. Among other results it is shown that for a

certain choice of K, de--nding on Y, the ridge estimator

has uniformly smaller mean squared error than the least squares

estimator, if a number of characteristic roots of the design

matrix is sufficiently small.

A generalized ridge estimator is given by

E = (X'X + K )x'y (1.7)
0 0

where K is a diagonal matrix. In this paper we consider only
o

the ordinary ridge estimator, given by (1.4).

N
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RIDGE ESTIMATION

The main results of the paper are given by the following

theorems. First we give a derivation of the ridge estimator

based on the least squares principle. A slightly different

derivation based on the same principle was given by Hoerl and

Kennard (1970 a). Let c be a positive number, and let

R(O) = (y-XO)' (Y-XE).

Theorem 2.1. The value of 0 minimizing R(G), given

G'G < c, is equal to 0, where K is chosen such that C'O = c.

Proof: From (1.4) and (1.5) we have

e'e = (PX'Y)' (D + KI) 2 (PX'Y). (2.1)

From (2.1) it is seen that e'e is decreasing in K. Therefore,

the value of K, given by 0'0 = c, is uniquely determined.

We have

R() =(Y-XG)'(Y-XO)

- (Y-X)' (Y-XG) + (X'Y) '(X'X + KI) -(X'X)

X'X[(X'X + KI)--(X'X)-)X'Y

= (Y-X6)'(Y-X6) + (PX'Y)'D*(PX'Y) (2.2)

w;here D* is a pxp diagonal matrix whose ith diagonal element

is equal to 2

Xi (K+Xi) 2

It is seen from (2.2) that R(0) is increasing in K.

Now, consider the problem of minimizing R(0) with respect

to ' under the constraint 0-' = c. By the Lagrangian method

the minimizing value of 0 is given by

",9-X' (Y-X3) = o

or

(X'X + U ) IVY
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where A is determined such that G'G = c. Thus R(O) is mini-

mized for 9 = 0, where K is determined such that 9'9 = c.

We have shown above that R(6) is increasing in K and

that 0'0 is decreasing in K. It follows that 9 which is the

minimizing value of R(G), given 0'0 = c, is also the mini-

mizing value of R(9), given 0'0 < c, where K is determined

from ' = c. 0

Remark 1. The above theorem gives an interesting com-

parison between the derivation of the least squares estima-

tor and the ridge estimator. The ridge estimator is derived

by minimizing R(G) under a certain constraint on the value

of 9'0, whereas the least squares estimator is derived by

minimizing R(G) without that constraint.

The next theorem gives another derivation of the ridge

estimator from a Bayesian approach, assuming that the prior

distribution of 9 and the conditional distribution of Y given

9, are both normal. The proof of the theorem is trivial.

This result is also noted by Lindley and Smith (1972). The

result implies that the ridge estimator for a constant value

of K is a Bayes estimator and admissible under squared error

loss. The notation Y IN(.,Z) means that Y has a (multivariate)

normal distribution with mean vector P and covariance matrix Z.

Theorem 2.2. IfY4 N(XO,a 21) conditionally given 0, and
I.
* a'priori GdN(O,t 2I) then the posterior mean of 9 given Y, is

2 2equal to 0 for K = a2/T

It is natural to compare the mean squared error of the

ridge estimator and the least squares estimator. First we

consider the case when K is a constant. It is clear from
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(1.3) and (1.6) that for any K > o

MSE6 > MSEe

for sufficiently large value of 0'0. On the other hand, if

it is known a' priori that G'G < c for some positive number c,

a valid condition in many practical situations, then from (1.6)

we get
MSE < 2 __

p
_ 2 + cK2 1P (2.3)

-- i=l (X i + K) i=l (Xi+K)-2

Theorems 2.3 and 2.4 below, give values of K obtained from

(2.3), for which the ridge estimator has smaller mean squared

error than the least squares estimator.

Theorem 2.3. If e'e < c then MSE6 < MSE6 for o < K < 2a
2

2c

Proof: From (2.3) we have for o < K < 2a2

c

2 _x__ 2KMSE < Z ( +
-=l (Xi+K)2 (Xi+K)2

2 x li+2K
= a ~

(Xi+K) 2

< (j i2

=MSE . 2

Theorem 2.4. If 0'0 < L-- Zp 1= then MSE(- < MSE6 for K'-o.
P il

Proof: Let D(K) denote the quantity on the right hand

side of (2.3). Differentiating D(K) with respect to K we get

= 2E . (c-l2

0D(K)/3K = EP 2X l (K-j23 (2.4)

The right hand side of (2.4) is equal to zero for K = a2/c

22

and is <(>)o for K < (>) nc Hence, D(K) is first decreasing

then increasing as K varies from o to h Now, D(=) Pc and2A. (cKAWT2
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2 P 11 1X

= MSEG.

There fore

MSE6 < D(K)

< max(pc, MSE6)

= MSEO2

for c < 2p -pi.0o

An expression for K minimizing MSE6, given by (1.6), is

not obtainable in a closed form. But for a given value of 0'0,

it is seen from (1.6) that MSE6 is minimized (maximized) by

2
setting d 2 = S'S for the value of i corresponding to the largest

(smallest) characteristic root of the matrix X'X. That is,

MSE6 is minimized (maximized) for the value of e proportional

to the characteristic vector of X'X corresponding to the largest

(smallest) characteristic root of the matrix. This result was

also noted by Newhouse and Oman (1971). Let X, = min(l ..... ,\p)

and

Q2(K) = EP Ai + cK 2

( i=l (i+K)2 (X,+K)2

The following theorem follows from (1.6).

Theorem 2.5. A value of K minimizing Q c(K) is minimax

for MSEO, given S'S < c.

Now we consider the case when K depends on Y. In this

case, the main question is what is a suitable choice of K as

a function of Y? Some of the authors cited above, have con-

sidered various choices and have compared the corresponding

estimators with other estimators. Their comparison is mainly

based on simulation study which leaves many questions unanswered.

• .. 4 -4



(8)

In particular, it is not known whether the ridge estimator

for any of those choices of K has smaller mean squared error

than the least squares estimator for all values of 0. We

consider the choice of K, given by

K* = v .2 /(6,) (2.5)

where v is a positive number and

2 =Y (I-X(X'X)-Ix')Y
n-p

The given choice of K is suggested by Theorem 2.2, since ;2

is an unbiased estimate of a2 and (3'))/p is an estimate of

T2 . Let

G" = (X'X+K*I)-Ix'y (2.6)

denote the corresponding ridge estimator. Assuming that
Yd N(XOa 2I), we shall compute MSEG* and compare it with MSE6.

The normality assumption will be made tacitly throughout the

following discussion. Under the normality assumption, &2 and

are independently distributed.

It is in order at this point to consider briefly the

question of the inadmissibility of the least squares estimator

with respect to a certain class of biased estimators. Since

Stein (1955) showed that the mean of a p-variate normal dis-

tribution is inadmissible for p> 3, a large number of papers

has been written on the subject. Alam (1973, 1975), Baranchik

(1973), Berger (1976), Bhattacharya (1966), Bock (1975) and

Sclove (1968), to name only a few, have considered certain

class of estimators of the mean of the distribution, which

dominate the least squares estimator. From Theorem 5 of Bock

(1975) it follows that an estimator of the form

S Y'X(X'X)x'y (2.7)
S)"
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has a smaller MSE than 0 for all values of 0, where S is a

random variable independent of X'Y, such that (S/C2 ) has a

chi-square distribution with m degrees of freedom,

f: [o,-T [o,l], y(l-f(y)) is nondecreasing in y, o._y(l-f(y)) <

(2(1-4)/(m+2) and

2<a (EP 1 _1 ) x, (2.8)
"=li

The random variable S is given, for example, by

S = Y'(I-X(X'X) X')Y

where m = n-p. By Theorem 6 of Bock, the inequality (2.8) is

also necessary for an estimator of the form (2.7) to have

smaller MSE than the least squares estimator. Clearly, the

inequality holds for p > 3 if X'X is a constant multiple of

the identity matrix. In this case and only in this case the

ridge estimator is a multiple of 0.

Now we compute the mean squared error of the ridge esti-
2

mator ®*, given by (2.6). Let Xm,y denote a non-central chi-

square random variable with m-degrees of freedom and non-cen-

trality parameter y. Let $ be an integrable function, and let

Td NE,l). It is easily shown that

ETO(T2 ) = cE(x3,X 2 )  (2.9)

2 2 2E 2
ET2d.(T2) = E (X ,2) + 5 E , 2) (2.10)

Let Z = (ZI,...,Z )' PX'Y, where P is given by (1.5).
We have that Zd DL,c2D), A' = 2 and

D), 7i=l i and
MSEe* = E(9*-q) (

= E ((D+K*I)-lz-(I) ' ((D+K*I)- I Z-

E Z" 2
i::l? 2:;1pZ2/ 22

E 2 (2.11)"I'+(/ )/( P 2 ,
J=l Uj j __zl_
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where Ui = Zi/(/iX.a) d N(1-iei/, 1), so that U d X 2 2e/a

Let V2i dX2'W dx2 ( i = , . . . , p) independent of the Ui 's and among

themselves. Using (2.9) and (2.10) in (2.11) we get
X. 2

MSEO* =EP I
12 2 2

(A.+ a ~U. V. 2
i + -a2)/ (Ej=1 + 1i

A.' A

A 2

+.Z 2
P 2 A.+E~i= e i [ . 2

p U V + W
(X~ + j. +( i +  a--2) / ( Ej =i1-3-

2X.
1 + 1 ]. (2.12)

p V2
^2 p vi

X. + (.)La)/(z = j i
1 a 2  1 Aj A

It is not possible to simplify further the expression for MSEO*,

except for some special cases. Therefore, we shall consider

only those cases.

First suppose that the XA.'s are all equal to X, say.

From (2.12) we obtain after simplification

22O F 2 4 F* 2 2FMSE* =- E[p( F +v/(p+2) F,+v/(p+4) F+\)/(p+2)

(2.13)

where F 2n-p) / (p+2), /(p+4)% 2  and
2* n-pp~

whre d(n pp+2, T / P+)n_-p'F dn P'+4,T n-p

T= Ac,'c /a2

The above expression for MSEe* is computable by integration

from the density function of the non-central F-distribution.

For r = o we have
2

MSE* p - 2=)2
A+ Xn /,n-p)

<Pc-- MSE jz



For large values of r we have

2 2 2DIE*Z-- U(--\Xn-p +T v Xn-p 2

2 2pv ) 1+T (np+l 2 E (X.2e-2
(p- n-p p+22, 2 (-) 

X 2 +i+) 2 +2) 2

= c [p2pT ( 2p)-
< Se o v<p+2,p /(n-p)p 2.14)

22

,. o [ a ( ) x + 1

+!: .TV, (n-e+2)r -2 " (- I R +1 1.)r e- -/2

x 4 n -p ) )( 2=+ ) 2 2 2

2 (n-p+2)
-ex s p a 2-- ad t

XT n-p

I. I ^d . 22 (p ( -D 2

a< MSE for \t<2p(n-p)/(n-p+2) (2.14)

where

(D~~b;x 1+ xa a (a+l1) x2 +." (ab; x = 1 5 x b(b+l) 2! +'

denotes the confluent hypergeometric function. Since e* is

of the form (2.7), an application of Bock's result shows that

MSE6* < MSE for all values of 0 if

!<2 (p-2) (n-p) /(n-p+2) .

Next suppose that X*,*0 and the remaining (p-1) charac-

terist roots are bounded away from zero. Let Xj X*,G dqn-p)x 23/3X 2

and G* d~-DX 2/ .2 If*aa0 then from (2.12) the value

of MSE9* is approximated by
2 G 2_ 2+.~

MSE e* -LI- E ( ) +
A, * ' T-173 i q

+C 2[E ( G ) 2_2E( G ) + 1]. (2.15)
J G*+\/5 G+v/3
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Hence
2 G 2

X, (MSE)-MSE2*)- (1-E( ) . (2.16)

We have shown the following result.

Theorem 2.6. If the Xi s are equal to X, say, then

Lim (MSEe-MSEe*)e'e = (-p+ 2 ))
' I e X2P n-p

and MSEe* < MSE6 for v < 2(p-2)(n-p)/(n-p+2) for all values of 6.

If A-10 but the other p-i values of the X.'s are bounded away

from zero, and X*' -0 then

Lim X,(MSE6-MSEe*) = a2 (l-E(ov/3  2

X*40 v/

Suppose that Ai=X* for r values of i and the other

values of the X.'s are bounded away from zero. The following

theorem shows that MSE8*< MSE6 for sufficiently small values

of X,. The proof is based on certain results given in the

Appendix.

Theorem 2.7. If o<v<l and r>4+v(n-p+2)/(n-p) then for

X* sufficiently small MSEe*<MSEe for all values of 6.

MSE6 is bounded for any value of e as X, *o but MSEe*--.
An alt-ernative estimator fo. which the MSE is bounded, is given by

S** = (X'X+K**I) X'Y

Where K** = a2/,. The mean squared error of e** is given byk,02

MSEe** = E1 =iI
i=l + (;2/,2) / . jU 2

X1 j 1l ( + K ) 2  ( X .i + K ) 2

il22 2 K)2 2 2
(X.+C lX )/i +X(V +W 2

J~~l 3 i + K) 2

1 (X.+K) (A.+K)2
S1

2X.

+(2/ ( + EXI~ [

2 2
2X..

'j K (i+K)

corresponding to (2.12) for MSE8*. (2.17)
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APPENDIX
Proof of Theorem 2.7. Let Xl=X 2 . .*=Xr=X* and let Xi

be bounded away from zero for i>r. We consider the limiting

value of MSEe* as A-)O. Let Bi denote the quantity inside

the square bracket in (2.12). Clearly, O<B.<2. Also, Bi0

as X,--0 for i>r. Therefore, the second summation in (2.12),givenct'a,

is maximized in the limiting case as X*-,O by putting a20=

for i=r+l,...,p. Similarly, the first summation in (2.12)

is minimized in the limiting case as X, .0 by the same sub-
* ' 2

stitution. Therefore, we let a.=0 for i=r+l,...,p.1

From (2.12) the value of MSEe* as A*-,O is approximated

by
22 2 20 P

MSEe* ra E(1+( -2 +2 pi- 2/Xr+2,X ' a /o2 )  i=r+l Xi

V2 2 ^2
+ a 2)22(1+( )/

a2 + /- 2  r+2ri,4,/

(3.1)

where the x2 random variables are distributed independent of ^2

Let6 =Xa' a/a 2 ,V d 2 and let Q denote the quantity in-

side the square bracket in (3.1). We have

E Q2 2 a2 "o2
EQ= E - v 2) -2(1- 2 2/ ) + 1 ]

r+2,6 + a /o

E( 2 2+ 22

_2 (vo2/.o2) V) ++(o2.a2/

2 2 2) 2 22 2 2 22
E r(2, /+2,+Va  ) I

2 2 22 2 2

NO2 2a ( 2o 2a 2X a2G2-2E(v 2/o 2 ) ( 4 +vo2/ 2 ) (Xr+2, 6 +v2/C)
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-vE(4+ 2 /(n-p)) 2 2 -2= U .1n-p+2 r+2,6 +Un-p+2/n))

n+p+2 n-pr+)-2

n-"2 2  2 -2

= (4\ n-p )E( r+2,6 +VXn-p+2/(n-p)) (3.2)

For the first term in (3.1) we have^ 2 2 2)-2 2 , + v 2 / 0 -I_
E(1+ 2 / Xr+2, < i-E(v 2 /a2 ) (Xr+2 , / 2 )

2 2_-1
1-vE(Xr+ X- n-p))

r+2,6 n~p+2(3.3)

Combining (3.2) and (3.3), we get an upper bound on the right

hand side of (3.1), given by^ 2 n-+2 2 2 /(-)-2

+ rp r+2, (3.4)

The fifth line in (3.2) and the second line in (3.3) is ob-

2 2 2tained from the relation E Xm X ) m (Xm+2 ) for any in-

tegrable function @

Let R denote the quantity inside the square bracket

in (3.4). Clearly, R <o for sufficiently small values of 5.

On the other hand, if 64- then

R ! (4+ v(n-p+2) r)/ 6n-p

< o for r4+v
(n- p - 2 )

n-p

If v=o then

2 -2 2 -i
R = 4 6 E (xr+2,5) r E(Xr+ 2 )

3 1" ) r r V 2r r 2) -/2
r I(- i + 2lerl;r(+ 1) 2 2

45 r 6 r r 6 -6/2

r(r-2) 2-, 2 1 )(, 2 l)e
(3.5)
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Using the recurrence relation

b$(a,b;x)-bf(a-l,b;x) = xD(a,b+l;x)

and the integral representation formula

I(b-a)f(a) 1 xt a-i b-a-iFb) (a (a,b;x)=foe t (l-t) db>a>o
I'(b)

it can be shown that the value of R, given by (3.5) is ne-

gative for r>4.

If v=n-p then

R 2 (n-p+6)E( 2 )-2 2 -i
R Xn-p+r+4,6 rE(Xn-p+r+4' 6)

[6(n-p+6)F((n-p+r)/2) ,(n-2r, n-p~r+4,

S4F ((n-p+r+4) /2) 2 2

-'rr((n-p+r+2)/2). (n-p+r+2, n-p+r+4 6 -6/2

2F((n-p+r+4)/2) 2 2 2 )e
(3.6)

As for (3.5) it can be shown that (3.6) is negative for

r> (n-p+6).

The above result suggests that the value of R is nega-

tive for all 6, and therefore MSEe*<MSEe if r>4+ n-p

This result is connistent with the numerical values of R which

have been computed for 6=ii)5,10,15v=2.2)1.0, n-p = 5(5)25

and r=5 11)10.
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