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i SUMMARY

In microelectronics the rapid degradation in reliability which occurs
with modest rises in temperature makes it important that temperatures resulting
from different geometries can be simply evaluated. One particular geometry
which is becoming increasingly common is that of a long narrow strip heat source
mounted upon the upper surface of a thin substrate which has a heat sink on its
rear face.

This report presents a series summation computation method suitable
for pocket calculators, by which the state of convergence (SOC), in terms of
maximum possible error, is calculated at each stage in the summation, thus
enabling the calculation to be terminated as soon as the required accuracy has
been obtained. {\

&

|

L. INTRODUCTION

One of the major advantages of solid state microelectronic circuits is
their inherent high reliability. This reliability deteriorates rapidly with elevated
temperatures in the active devices. Thermal design, therefore, becomes more
important as the technology advances and the power densities of the heat
dissipating elements increase (1). Of the methods (2) that are available for the
calculation of temperature distributions, numerical computer methods are
generally the most useful as they can accommodate the wide range of
parameters which exist in modern electronic assemblies.

There is also, however, a need for the circuit designer to be able to
make, at his own desk, a quick estimate of the temperature distributions in
specific regions (3). One of the techniques presented in reference (3) is the
evaluation of spreading resistance from a small isolated heat source attached to
a substrate cooled by conduction to a rear-mounted heat sink, This geometry was
analysed by equating a fixed angle solution to that obtained by integration and
superposition (4) for the heat flow into a semi-infinite body. the result being the
well known "45 -Model".

There is now an increasing need in both microwave and power device
circuits to be able to carry out a similar analysis for long strip heat sources also
mounted on rear-cooled heat sinks. This report presents a solution to this problem,
suitable for pocket calculators, by which the greatest error in successive
summations is calculated, thus enabling the computation to be terminated when
the required accuracy has been reached.

2. PROBLEM DESCRIPTION

Many temperature distribution problems in microelectronics are of
the general form of a long narrow strip heat generator located on one surface of
a thin substrate which has a heat sink mounted upon its rear face. In these
examples it is usually possible to assume that there is no heat loss except to the

heat sink which maintains a uniform temperature oyer its entire_surface.
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3. PREVIOUS EVALUATION

Using an analogy between fringe capacitance and heat flow spreading
H F Cooke has published a useful approximate solution of undefined accuracy and
based upon the elliptical integrals of hyperbolic functions (5). All of Cooke's
published values are compared in section 7.2 with results obtained by the
technique developed in this present report.

b, PRINCIPLE OF REFLECTED HEAT SOURCES

The temperature distributions arising from most heat source confi-
gurations are readily calculated when their cooling is entirely by conduction into
an infinite body. It is the introduction of boundaries which generally make the
solutions complicated. Conveniently, microelectronic geometries generally have
mutually normal boundaries. It has already been proposed (6), and is shown in
appendix A, that such boundaries can be represented by planes of symmetry in
the case of insulated boundaries, and by planes of inverted symmetry in the case
of heat sunk surfaces. This enables temperature distributions to be obtained by
the combination of infinite body problem calculations and the principle of
superposition (4).

3. MATHEMATICAL ANALYSIS

An analysis is now presented for the evaluation of the temperatures
reached on a long narrow heat dissipating element mounted on an insulating face
of an infinite substrate of finite thickness and having a heat sink mounted upon
the rear face. This analysis is a summary; the more detailed analysis is given in
appendix B.

As the heat source is long compared to its width, the central and
hottest area will experience heat flow parallel to planes which are normal to the
longest dimension of the heat source, and the analysis of the maximum
temperature may be treated as a two-dimensional problem.

The analysis technique consists of obtaining the temperature at the
middle of a strip, mounted on a semi-infinite solid, from the expression for heat
flow into an infinite solid and by the use of superposition. A further expression is
then obtained for the contribution from a reflected strip at a distance s, and this
expression is used to sum all such contributions to infinity.

5.1 Heat flow from a strip heat source in an infinite solid

Consider a long strip heat source of width b in an infinite solid. The
maximum temperature @ will be at the centre of that strip and is shown in
section B2 of appendix B to be equal to

-9 _L &
By = oo [c+1 Ln(-z-)] ,
where Q is the total power dissipation per unit length of the strip,

k is the thermal conductivity of the solid,

C is a constant.




VT

5.2 Maximum temperature of strip mounted upon a semi-infinite solid

It has been shown in appendix A that mirror image sources are
equivalent to an insulated boundary. Hence the placing of an equal power
dissipating strip upon the original will result in the same temperature value 82 as
would be obtained for the original strip mounted upon a semi-infinite solid having
its plane surface insulated. By superposition this doubles the temperature of the
original strip acting on its own, therefore

62 = [o+1-1 ().

5.3 Temperature contributions from a reflected strip source at
distance s

The temperature contribution s from the reflection of a strip
reflected in a line of symmetry parallel to the original strip and the line of
symmetry being at a distance s/2 from the original strip is shown in section B4 of
appendix B to be

= Q 2 2s -1 %
6, ;EE[C*'I-L“(Z—"'S)-B-tan -5;].

5.4 Temperature of strip mounted upon a substrate of finite thickness

Reference (6) proposed the use of negative mirror image sources to
represent a heat sink at the line of inverted symmetry. We can, therefore, obtain
an expression for the final temperature 6. by superimposing all of the
contributions from the original source and all of the positive and negative
reflections to infinity. Section B5 of appendix B shows this to result in the
expression

] =Q—{L (v'l+wz)+wt:an-ll
Tk n w

F

a “[Ln,_/u * (20 - D3)(L+ (20 s 1)),

(1 + (2n)“w*)?

n =1

—1l . -l
= l)w) 2(2n)w tan (m)

-1
+ (2n - 1) w tan ((Zn

-1 1
+ (2n + 1)w tan (m)]} ’

where w = 4 times the ratio of substrate thickness to strip width, ie,

4t

w:——

b ?




¥, 6. SUMMATION TECHNIQUE

The relation given in section 5.4 can be summed over many terms
but with no actual knowledge of the state of convergence (SOC), except by
experience or excessive over summation. This report will now present a
technique to evaluate the SOC at each step in the summation and by so doing ;
enable the number of terms summed to be kept to a minimum and the evaluation {
taken to any predetermined degree of accuracy.

6.1 Underlying principle

The technique depends upon the absolute convergence of two series to
their own values and the relative convergence of the individual terms of both
series.

A simple graphical analysis (3) shows that in any problem having
finite power input, finite dimensions and at least one heat sink boundary, the
resultant temperature will also be finite. Hence any series obtained in a similar
manner to the one presented in this report must be convergent, provided that at
least one plane of negative symmetry exists.

By examination of the principle of multiple reflections it can be seen
that the terms of the general series, which results from taking the reflected
sources geometry into account, also converge upon the terms of the particular
series which would be obtained if all the heat was generated at a point. As this
results in a large w (= 4t/b), the particular series can be obtained from the
general series by making w large. This particular series is then evaluated, and by
comparison of each equivalent term, it is possible to determine the maximum
possible error which would result from taking the remainder of the, already
evaluated, particular series, instead of the balance of the more complex general
and accurate serijes.

6.2 Application of the state of convergence (SOC) technique to strip heat
source problems

The detailed derivations of the terms are given in appendix C. ]

The particular summation series which is obtained by making w large
in the summation part of the expression obtained in section 5.4 is equal on being
summed to Ln (2/7).

The nth term of this series is

1
Pn Ln(l - (2n)!)'

This is compared with the nth term in the general series

. (1 + (2n - 1Pwd(l + (20 + 1PV
Cp ™ Ly (‘/ (1 + (2n)7wF )

+ (2n - 1w t:an_l ((2n .l_ I w) - 2(2n)w tan~! (-2le)

1

+ (2n + Dw tan~! ((Zn ).

+ Dw
6

— 4
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As the corresponding terms of the general series converge upon the
terms of the particular series, the ratio of the sum of the subsequent terms will
be less than the ratio of the two equivalent terms at all stages of the summation,

1e,

n=®
nZm(Gn - Pn) Gn - Pn
( ngw < Gn ).
G
n
n=n

Hence by comparison with the state of the summation at that time we can
evaluate a maximum possible error.

6.3 Technique of summation

At the commencement of the summation the particular series is
added to the non-summed part of the expression in section 5.4 to give

“keo 2 —3 -1 1
T—=Ln (“1+w2)+wtan (;)-

At each stage in the summation the corresponding term in the
particular series is replaced by that of the general series. At the same time the
ratio of these two terms multiplied by the ratio of the balance of the Ln(2/n)
series to the value of the summation at that time is evaluated to give the
maximum error, ie, after m summation terms,

ﬁ9=L(3J1+w2)+wtan (1)+Z(G-P)
Q m nTmw w n=1 n n

and the maximum possible error given by
=m
2
G -~ P L@ - 1By
m n=}

Tk
w T O

This is evaluated at each stage of the summation and the value of 8 _ obtained
when an acceptable SOC, as indicated by the maximum possible error, has been

reached.

7. RESULTS
7.1 General

A wide range of calculations has been carried out for strip widths
from 8 x 107™ to 40 times the substrate thickness. Apart from the narrow width
evaluations, which were used to compare with Cooke’s analysis, all the
summations were carried out in excess of 500 terms in order to relate the
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maximum possible error with the actual error. In all cases the actual error was
found to be less than one-third of the calculated maximum error. Figure |
presents the actual errors for different strip widths from the basic evaluation
and after one and two summation exchanges.

7.2 Particular examples

The maximum temperatures reached by a heat source which is very
wide compared to the substrate thickness is that obtained by parallel flow
calculation. Figure 2 shows the ratio of the results from the heat spreading
calculation to those of parallel flow calculations plotted against summation
exchanges. The calculated maximum error is also shown in the same figure.
After 20 exchanges the calculated maximum error is less than 1% and the actual
error 0.297%. In practice such a problem would be tackled by parallel flow, but 20
exchanges take very little time on a pocket calculator and provide a stated
confidence in the result.

Cooke (5) presented values of thermal resistance over the range
W =125+ 5000. Table | presents the ratio of Cooke's results to those of the
present work, together with the indicated maximum error of the present results
after one summation exchange. As w is so large the summation approximates to

_ 2w
6, = =8 (1 + L (50).

The error obtained in using this equation, compared with the detailed analysis, is
also presented in table 1.

TABLE !
W Ratio Cooke | Maximum Possible | Error in Simple Equation,
Dean Error, % (Dean) cf, Full Summation, %
125 0.926 6.9 x 10_° 3.2 x 10_*
500 0.957 3.4 x 106 1.6 x 10_°
1000 0.958 7.7 x 10_7 3.6 x 10_°
5000 0.965 2.6 x 10 ° 1.3 x 1077
8. TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY

Alumina is a commonly used substrate material in microelectronics
and, together with beryllia, it undergoes a rapid decrease in thermal conductivity
with increases in temperature in the range encountered in microcircuits. The
principle of superposition cannot be directly applied to bodies having a
temperature dependent thermal conductivity. However, results obtained from
superposition analysis assuming constant thermal conductivity can readily be
corrected by use of a transformation function derived from the thermal
conductivity-temperature relationship (7).
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9. FUTURE WORK

In principle this technique should be applicable to any problem which
has a finite solution and can be represented by multiple reflections in mutualiy
normal boundaries.

It is intended in the first instance to use the same technique to
produce an expression for the heat flow spreading from sm%ll circular and
rectangular heat sources and to evaluate the accuracy of the 45 model over its
whole range. It is then intended to evaluate the effect of multiple heat sources.

Consideration will also be given to developing pocket calculator
programs.

10. DISCUSSION

A new technique for the evaluation of temperature distributions has
been presented and shown to give very rapid accurate results from strip heat
sources. In addition, a novel approach to the evaluation of the SOC has been
developed which gives confidence at all stages of the summation.

The ability to evaluate other models and approximations is an
important feature of the method. In the particular case of the strip heat source
it shows that a parallel flow calculation is correct to within 1% for all strip
widths greater than 5.6 times the substrate thickness and 10% for strip widths
greater than 2.7 times the substrate thickness.

i1 CONCLUSIONS

A new analytical expression has been obtained for the analysis of
temperature distributions from a strip heat source. In addition to this analysis, a
new evaluation technique has also been developed. This allows the status of the
calculation to be determined by a state of convergence expression being obtained
after each summation exchange. The resulting confidence in the result at each
stage of the summation is, it is believed, unique in this type of solution.
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APPENDIX A

PRINCIPLE OF REFLECTED HEAT SOURCES

Al. INTRODUCTION

The temperature distributions arising from most heat source confi-
gurations are readily calculated when their cooling is entirely by conduction into
an infinite body. It is the introduction oi boundaries which generally make the
solutions complicated. Conveniently, microelectronic geometries generally have
mutually normal boundaries. It has already been proposed (6) that such boundaries
can be represented by planes of symmetry, within the conductive solid, in the
case of insulated boundaries, and by planes of inverted symmetry in the case of
heat sunk surfaces.

This approach allows solutions to be obtained by the combination of
infinite body problem calculations and using the principle of superposition (4).

A2. INSULATED BOUNDARIES

There can be no heat flow normal to an insulating boundary. Hence
the temperature gradient normal to such a boundary is zero. Similarly, if a
surface within a body can be maintained in such a state that the temperature
gradient normal to that surface is zero, that surface can represent an insulating
boundary.

Consider the temperature distribution from a small spherical source
in an infinite solid. The temperature at a distance s is given by

g =

+ c
s 4mks onst

and the gradient by

2 4
drs L4kmse '’

therefore for a source at point (a, b, ¢) we have

0 - Q + const
Y92 ame/(x - a)? o+ (y -b)2 + (z-¢)?

and the gradient in the x direction

(%@ = - -—Q— ( — (x s a) )
X X,y,2 4mk ﬁ(x -~ a)? + (y = b)2 + (z - ¢)2)3 .




— A

28, _ -0

Consider an insulated boundary in the yz plane and at a distance d in the x
direction. At this boundary the gradient in the x direction must be zero. For it
to be possible to represent this boundary by a plane of symmetry the
superimposed gradients in the x direction from both the original source and its
reflected source must sum to zero over the whole plane.

The gradients in the x direction due to the original source acting on
its own are at the plane of symmetry:-

(_8_6_) =‘_(_2( ((d + a) - a) y,
% ((da+a),y,z) 4™ (@ +a)-a)2 + (y- D)2+ (z - c)?)3

-9 ( : d __ =)
4Tk f(@% + (y - B2 + (z - ¢)?)

and from the reflected source at ({a + 2d), b, ¢)

(a +d) - (a + 2d)
x T 4k (/ 2 2 . 213
X' ((d+a),y,2) ((a+d) - (a+2d))% + (y -b) + (z2-¢)°)

e

-d
(=— — .
mk J(dz +(y -2+ (z - )?)?

&~

Hence, by superposition the gradients normal to the plane of
symmetry are zero for all values of y and z. Similarly, by superposition this is
true for multiple heat source configurations.

Hence it can be stated that an insulated boundary can be replaced by
a plane of symmetry by the use of reflected mirror image sources.

A3, HEAT SUNK BOUNDARIES

By a similar analysis to that just used to show that an insulated
boundary can be represented by a line of positive symmetry, it can also be shown,
by superimposing the temperature expressions, that a line of negative symmetry
will produce a plane of constant temperature. It can also be shown that_, if the
constants in the temperature expression are equal, the temperature of this plane
will be zero and the resulting calculated temperatures are excess temperatures

over the sink.

11




APPENDIX B
ANALYSIS OF HEAT FLOW SPREADING FROM A STRIP HEAT SOURCE

Bl. INTRODUCTION

Many thermal resistance problems in microelectronics are of the
general form of a long narrow strip heat generator formed on one surface of a
thin substrate which has a heat sink mounted upon its rear face. It is usually
possible to assume that there is no heat loss, except to the heat sink which
maintains a uniform temperature over its entire surface. An analysis of such a
problem is now presented.

As the heat source is long the centrz! and hottest area will
experience heat flow normal to the longest dimension of the heat source and the
analysis of the maximum temperature may be treated as a two-dimensional
problem.

B2. HEAT FLOW FROM A LINE SOURCE IN AN INFINITE SOLID

First consider the two-dimensional flow from a small linear element
(8a) in an infinite solid. The element dissipates at a rate of q per unit width and |
the system is taken to be in dynamic equalibrium

. d6
q8a = - k21!ra?,
dr _ _ 271k
f—? - q%a a8,
2tk

[}
}
<
+
(@]
.

therefore Ln( r)

17

Consider a strip of width b in an infinite solid. The maximum
temperature 8; will be at the centre of that strip and by superposition (4), will be
the sum of the temperatures at that point due to all of the elements §a at
distance r = a.

The sum of these contributions is equal to




b
Yo = 2f ik(c - L (a))da,
0

b
_61 _ 2
= [aC a(L (a) 1)]o

3 : NOTE: O.Ln(O) = 0 Consider rate of convergence to zero,J
v‘ M ‘l
F |
A = ‘.l b - E _tl -
& " a3 ¢ - 20, - v

2"k[c-u()-n]

l
{ gb = Q = power dissipation per unit length of strip, therefore the total
: temperature

3 b
9, =‘%"€ [C +1 - Ln(-z')].

B3. MAXIMUM TEMPERATURE OF STRIP MOUNTED UPON A
SEMI-INFINITE SOLID

It has been shown in appendix A that mirror image sources are
eauivalent to an insulated boundary. Hence the placing of an equal power
dissipating strip upon the original will result in the same temperature value as
the original strip mounted upon a semi-infinite solid having its plane surface

insulated. By superposition this doubles the temperature of the original strip
acting on its own, therefore

b veeeeen(B2)
8, = % [c +1 - Ln(i)]-

13




B4.

TEMPERATURE CONTRIBUTION FROM A REFLECTED STRIP

SOURCE AT DISTANCE s

separation of s from it.

q6x _ 2 2yy,

: 66=m(c Ln(/x +8%))
|

- ! x Is

E |

k: || PR p—

Consider a strip source parallel to the original source and having a

From equation (B1) the temperature contribution at the centre of the
original source from any element & a distance x along the new source would be

The total temperature contribution 9 at the centre of the
strip at distance s is therefore
b

E o
= z'of ?3& (C - Ln(./x2 + s2))dx,

[P U U

original strip by a new

b

. ) _1 x '2-
=—3[Cx+x(l-L(Jx2+sz))-stan i )
Tk n 0

by,

. . 2 1
: =__‘1['93+._(1-L(,/ + s2)) - s tan 7s
! Tk
1
) {
1‘ ‘Now I (/x’ + s2)dx,
t —— ——
‘et w-/x OS,thercforex-/w ~sz
l wdw
! dx = s !
i w - 3 X
fl. Va2 o s’)dx = J'(L (W) —om— dw,
/u < st
———— 1. .2
‘] = (L (DA - ) - I/Lw 2 aw,
= /ul - a? L (w) -t - 8% s micos A&,
n w
. x (Ln(/x?-;_;;) 1) v s e8! (mm),
/x? v g2
= x (L (Az +s3)- 1) e um-l &,
n s

14
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In the particular example of sources mounted upon an insulating surface the
power input is from two superimposed strips each contributing Q,

therefore qb = 24,
/b? 26 . -1 b
therefore Gs = -i% [C +1 - Ln( 7 + 82) - 3 tan -z—s]
BS5. TEMPERATURE OF STRIP MOUNTED UPON A SUBSTRATE

OF FINITE THICKNESS

Appendix A proposed the use of negative mirror image sources to
represent a heat sink at the line of inverted symmetry.

In this case a negative heat source would have to be equal in
magnitude to the sum of the original and its reflected source and would have to
be at a distance 2t where t is the substrate thickness. Hence from the equation in
section B4 the contribution of the negative heat source at a distance 2t
establishing a heat sink is

/ b2 4t -' b
[C+1-Ln( Z—+4t2)-—tan -a—t]. . .(B3)

b

lo-

e =" 7

=

As the original heat source is on a line of positive symmetry this new heat source
also has to be reflected contributing a further 8, . This is further reflected in the
heat sink and hence gives rise to an infinite series for the total temperature by
the addition of the temperature contributions of the positive and negative
reflected heat sources (equation (B2) + (B3), etc). Hence,

n=w /% ——
eF = i% {c+1 - Ln(%) +2 3 [—- ln[(c +1) - Ln( Yt:— + (2nt)?)

n=1

4nt I

-5 tan (%E)]_” ceess(B4)

In order that a zero temperature is achieved at the heat sink there must be an
equal number of heat sources on each side of the plane of inverted symmetry.
We therefore take the last term at infinity to be a single negative term.

Hence, equation (B4) is re-written as




b? 2y , 4t -1 by b
0 = i% @ (/2 v art) o 3 an ) - L

: A b
+ :Z[Ln('/z_z + 4(2n - 1)2¢e2) + i(—z-'—'s:—-l—)—t tan™ (___TA(znb- 57
} - 201 ¢/ %z- + 4(2n)2¢e2) - 3%'-‘5-)- tan™ (ﬁnﬁ )
i
r + Ln(/l—z-z— + 4(2n + 1)t2) + ‘—‘Lz—:-:—m tan” (mn—b;—lﬁ)]}-

o4t 2 4t -1 b
;‘g 0,/ 1+ EH) + 2 ean™ 2

- (1 + ((2n - D% SN + (20 + 1) £)2)
o T e T —)
3 n=1 ° (1 + ((z:.)(-;))z)z
T
- 4t -1 b 4t -1 b
E (! + (2n - 1) —l; tan (m) - 2.2n.—b tan (m)

-1
+ (2n + 1)4—; tan (R-Z_:_Tm):l}’

Let w = 4 times the ratio of substrate thickness to strip width, ie, 4t/b,
hence

AP -] 1
= 2 -_—
61? 1-'% {Ln(/l + w?) + w tan w

nee (1 + (2n - D3 + (20 + 1)3?)
+ z [Ln(// (1 + (2n)“w*)* )

n=}

- -1 -1 1
1 ‘ +(2n - 1) v tan ! (ziaré-ij;) - 2 (2n)w tan (553) + (2n + 1)w tan ((5E—T—TTG)]}

16
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APPENDIX C

SUMMATION TECHNIQUE

Cl. INTRODUCTION

The expression obtained in appendix B for the temperature at the
centre of a strip heat source can be summed over many terms but with no actual
knowledge of the SOC, except by experience or excessive over summation. The
technique presented in this appendix allows the SOC to be evaluated at each step
in the summation and by so doing enables the number of terms summed to be

kept to a minimum and the evaluation taken to any predetermined degree of
accuracy.

Ca. UNDERLYING PRINCIPLE

The technique depends upon the absolute convergence of two series to
their own values and the relative convergence of the individual terms of both
series.

By examination of the principle of multiple reflections it can be seen
that the terms of the general series converge upon the terms of the particular
series which would be obtained if all the heat were generated at a point. This
particular series can be obtained from the general series by making w large.

C3. APPLICATION TO STRIP HEAT SOURCE PROBLEM

Reference equation (B5), in appendix B,

1
8 ‘ﬁ{b (/1 + w?) ¢+ w tan™ 1
F 7%k n W

(1 + (20 - 1)2w?)(1 + (20 + 1)%w?),
* nz,[? 4 T+ s

-1
+ (2n - 1)w tan

Z]
3
]

(Ff—l;;) - 2(2n)w tan'1 (

+ (2n + 1)w um'l

1
((Zn + lsw)]}’

if w is large, the general series becomes the particular series

n= o
(2n - 1)(2n + 1) 1 1
ngs[L ( CL ) + (20 - WV ey - 2(20)v 5

+ (2n + 1w -(—Z_I'll_*_l;;'

-1 1 1
if y is 1 t =)+ =
if y is large tan (y >3




therefore the series then becomes a logarithm of a product series

L“(“I,!l a - (—2:‘71)) which equals Ln(%).

sin 2
NOTE: —‘.J! -1 Q- (:!:F) ).

v .
Let o 2n’

therefore Y = %,

@ 1 si '1!'-
therefore nI=11 Qa - (zn)‘[) = =

-]

[XYE )
E RN N

Subtract the Ln(2/1) term from each of the series terms and add Ln (2/7) to the
initial term of the summation, ie,

eF = '"% {L“(%T (A +w2)) + w tan ! -‘1;

n=a L
(1 + (2n - 1)242)(1 + (2n + 1)%2)(2n)"
+ ] [Ln(/ T+ (Zn) %D %20 - 1) %20 + 1)zn )

n=1

1

-1
+ (2n - 1)w tan (m) - 2(2n)vw tan-l (ﬁ)

+ (2n+1) w l:an-l ((—Zn—-lm)]}'
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k -
Let 16 6y = {Ln(% /1 + w?) + w tan

€|

+ nE“'[L (ﬂl + (2n - 1)2w?)(1 + (20 + 1)2w2)(2n)"

Ws b T WD W2 - D2 + 17 )
] L1 L
+ (2n 1) w tan (m) - 2(2n)w tan (an)
-l 1
+ (2n + 1)w tan (m)]},
that is © m = eF summed over m terms.
/(1 + (20 ~ D2w?)(1 + (20 + 1)2w?), -1 1
Let Gﬂ = Ln(/ (1 + (zn)zwzjz + (2“ - 1)w tan (m)

. - -1
% ; - 2(2n)w tan ' (%‘;) + (2n + 1)w tan (m).

That is the nth term of the general series and

1
Pn = Ln(l - mz).

That is the nth term of the particular series.

7 Ca. TECHNIQUE OF SUMMATION

. . At the commencement of the summation the particular series is added
| to the non-summed part of the expression for GF obtained in appendix B to give

LL P 2 -1 L
-390 Ln(n 1 +v") + w tan (w)'

B N T I D T LTI TR T W M L et




At each stage in the summation the corresponding term in the
particular series is replaced by that in the general series, and at the same time
the ratio of these two terms multiplied by the ratio of the balance of the

particular series to the value of the summation at that time is evaluated to give
the maximum error or SOC.

After m summation terms

nk 2 -1 nom
Bl LGl v v D+ [ -p)

n=l

and the maximum error is given by

2 n=m
G - P Ln('-ﬂ_) - 2 Pa
) m n=1
P . ﬂk e -
m T m

This is evaluated at each stage of the summation and when an acceptable SOC is
indicated by this maximum possible error the value of Om is then computed.
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Some Metric and SI Unit Conversion Factors

(Based on DEF STAN 00-11/2 "Metric Units for Use by the Ministry of Defence",

DS Met 5501 "AWRE Metric Guide" and other British Standards)

Quantity Unit Symbol Conversion
Basic Units
Length metre m lms= 13,2808 ft
1 f¢c =0,3048 m
Mass kilogram kg 1 kg = 2.2046 1b
1 1b = 0.45359237 kg
1 ton = 1016.05 kg
Derived Units
Force newton N = kg m/s? 1 N = 0,2248 1bf
1 1bf = 4.,44822 N
Work, Energy, Quantity of Heat joule JeNm 1J =0,737562 ft 1bf
1J = 9.,47817 x 107" Btu
1J = 2,38846 x 107" keal
1 ft 1bf = 1.35582 )
1 Btu = 1055.06 J
1 kcal = 4186.8 J
Power watt W= J/s 1 W= 0.238846 cal/s
1 cal/s = 4,1868 W
Electric Charge coulomb C=As -
Electric Potential volt Ve W/AeJ/C -
Flectrical Capacitance farad F=Ag/Va=C/V -
Electric Resistance ohm Q= V/A -
Conductance siemen s=1g7! -
Magnetic Flux weber Wb=Veg -
Magnetic Flux Density tesla T = Wwb/m? -
Inductance henry H=Ves/A=Wh/A -
Complex Derived Units
Angular Velocity radian per second rad/s 1 rad/s = 0,159155 rev/s
1 rev/s = 6.28319 rad/s
Acceleration metre per square second m/al 1 m/s2 = 3,28084 fr/s?
1 ft/8? = 0.3048 n/s?
Angular Acceleration radian per square second rad/s? -
Pressure newton per square metre N/m2 = Pa 1 N/m2 = 145.038 x 10™5 1bf/in?
1 1bf/1n? = 6.89476 x 103 N/m?
bar bar = 10% N/m? - )
1 in. Hg = 3386.39 N/m¢
Torque newton metre Nm 1 Nm=0,737562 1bf ft
1 1bf ft = 1,35582 N m
Surface Tension newton per metre N/m 1 N/m = 0,0685 1bf/fe
1 1bf/ft = 14.5939 N/m
Dynamic Viscosity newton second per square metre N s/m? 1 N s/m2 » 0,0208854 1hf s/ft?
1 1bf s/ft2 = 47.8803 N s/m?
Kinematic Viscosity square metre per second m2/s 1 m?/s = 10,7639 ft2/s
1 £t2/s = 0,0929 /s
Thermal Conductivity watt per metre kelvin W/m K -
Odd Units*
Radioactivity becquerel Bq 1 Bq = 2.7027 = 10~} ¢4
1C{ = 3,700 x 10!0 Bq
Absorbed Dose gray Gy 1 Gy = 100 rad
1l rad = 0,01 Gy
Dose Equivalent sievert Sv 1 Sv = 100 rem
l rem = 0,01 Sv
Exposure coulomb per kilogram Clkg 1 C/kg = 3876 R
1R = 2,58 x 107 C/kg
Rate of Leak (Vacuum Systems) millibar litre per second mb 1/s 1 mb = 0,.750062 torr
1

torr = 1.33322 md

*These terms are recognised terms within the metric svstem.
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