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Although the theory of functional differential equations
in R™ is very well developed, comparatively little is known
about these equations, when the right hand side contains unbounded
operators. Since semigroup methods have proved to be a powerful
tool in treating functional differential equations in R" [1,9,12],
it seems -desirable to extend semigroup theory methods also to the
more general situation of partial differential equations with delay,
The present paper is intended. to make a contribution in this sense,

We shall consider the functional differential equation

(1) e x(t) = £(x(t)) + g(x(t),x,)

in a reflexive Banach space Y with norm |°*|. As usual for a
function x:{-r,T) + Y, we let xt(s) = x(t+s) for s ¢ [-r,0]

and t € [0,T). The delay r- in (1) is chosen in [-»,0] and

f is a nonlinear, not necessarily bounded operator from Dom(f) €Y
into Y. The initial datum at time 0 is a Y-valued function
defined on [-r,0]. The existence and uniqueness problem as well

as some qualitative aspects of (1) have been treated in different
state spaces in a number of recent papers, some of which are men-
tioned in the references [5,6,7,8,15,16,17],

The objective of this investigation is to give sufficient
conditions on f and g such that local semigroups can be associated
with (1) - this will imply representation formulas for the solutions
of (1) -'and. secondly, to discuss various notions of solutions which

have arisen in the study of (1). Although only the autonomous
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equation is considered here, many of the results remain true if

f and g depend on t.

The state-space chosen for the presentation is Y x Lp(-r,o;Y),

where for (n,¢) € Y x LP(-r,0;Y) we use the norm

0
Il (@) Il = (InIP + j exp(ps) |6(s) |Pds)1/P

for some p > 0. Thus Y x Lp(-r,o;Y) becomes a reflexive Banach
space, denoted by Z. In case 0 £ Tr <=, one may chose p = 0.
On the other hands, for r = », the need for weighting the nornm
is quitg obvious and our results will remain true for weighting
functioﬂs different from the one used here, as long as they are
bounded from above and below by an exponential function. The
projection of Z onto the fizst and second components will be

denoted by P1 and P,, respectively.

Now that the state-space is fixed we specify as initial data

for (1) at t =0

(2) (x(0),xy5) = (n,¢) for (n,¢) € 2.

The conditions on f and g will guarantee that the solutions of
(1) and (2) do not depend on a specific representative in the class

¢ € LP(-r,0;Y).
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Next we reformulate (1) and (2) ;n'vz.' This abstract equation

PP




is not a consequence of calculations, but it is motivated by

previous knowledge about semigroup-theory treatment of (1) and

(2) in case Y = R", Therefore, we consider

do2(t) = Az(t), in 2

3)
z(01‘= 2, for z, €2z

where Dom(A) = {(n,¢)|¢ € Wl;p(-r,O;Y), n=¢(0), ¢(0) € Dom(£f)}
and for (¢(0),¢) € Dom(A)

A($(0),9) = (£(6(0)) + g(4(0),9),0). 1

Here Wl’p(-r,O;Y) stands for the Sobolev-space of absolutely
continuous functions defined on [-r,0] with first derivative in
LP(-r,0;Y). Conditions will be given that guarantee that A
generates a semigroup, and it then needs extra analysis to clarify
how these 'generalized" solutions are associated with (1) and (2).
The conditions on f and g are motivated by the following two

examples:

0
(1) g8 = by + [ K(sIhy(4(s))ds

for (n,¢) € 2, h:Y+ Y, for i=1,2 and k:[-»,0] -+ R. Here,




for a sufficiently rich class of kernels k, the smoothness of

the maps h; determines the smoothness of g:Z » Y,
(ii) g(n,¢) = hz(n,e(-19),..., (-1,)),

1, Y, which corresponds to the case when (1) is a

with h3:Y£+
difference differential equat?on. Contrary to (i), Lipschitz
continuity of h3, for example, does not imply Lipschitz con-
tinuity of g, and the situation is even worse, since h3 is not
even well defined on 2Z,

For the convenience of the reader we end this section by

recallinﬁ the definition of local semigroup.

Definition [4].

Assume that for each z E Z there is associated a strictly
positive number t(z). Let t* denote the suprenum of these
numbers. For each t € [o,t*) let D(t) ={z € Z:t < t(z)}. A
family of operators {T(t)}:D(t) -+ Z is called a strongly con-
tinuous local semigroup in Z if

a) D(0) = Z and T(0) is the identity operator on 2,

b) D(t,) € D(t;) for 0 <t <t, <t’, and z € D(t)

for all 0 < t < t(z),

c) if t,s>0 and t + s <t’, then
T(s)D(t+s) € D(t) and
,T(t)T(s)z = T(t+s)z for all z € D(t+s),
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d) for each t, T(t) 1is a continuous operator on D(t),
e) for each 31 €2, the map t + T(t)z {is comtinuous on
[0,t(2)).

2. Local Semigroups

We begin by listing all the hypotheses that are needed in
this section. Some familiarity with semigroup theory is assumed;

as a reference we refer to [2].

(H1) The operator f: Dom(f) » Y, Dom(f) < Y, is densely defined

and (f-wI) is m-dissipative for some w > 0.

(H2) g:Z - Y 1is locally Lipschitzian, i.e. there exists a
nondecreasing real-valued function L such that

lg(x) - g(¥)| < L(r) ||x-yl|
for all ||x|| <r and ||y|l < r.

Condition (H3) below is a generalization of Borisovich-Turbabin
type conditions previously used in case Y = R®., For a discussion
of this condition we refer to [9], where it is also shown that a

large class of maps g of the form (ii) satisfy (H3).

(H3) (a) If for some a > 0, x € Lp(--,u;Y) and x is absolutely

| continuous on [0,a), then the map G:t + 8, (x(t) ,x,)




f‘ is defined a.e. on [0,a), depends on the equivalence

| ‘ class of x only and is in Ll(O,a;Y).

(b) There exists a nonnegative, nondecreasing function
y:]R* x R* + R* such that for each a >0 and 8 > 0

3 the inequality

t t_ 1/p
| Iong(X(S).xs)-gz(y(s),ys)Ids f_Y(t.BJ(IrD(S)IX(S)'Y(5)|pdS) ,

a with p(s) = e?® for s € [-r,0] and p(s) =1 on [0,x),
¥ § holds for t € [0,a) and all functions x,y in
[ .5 LP(-w,a;Y) which are absolutely continuous on [0,®)

with |Ixgll <8, llygll <8 for s € [0,#).

(H4) g is defined on #1'P={(4(0),0)|¢ € W*P(-r,0;Y)} and is
locally lipschtzian from j’l'p, endowed with the suprenum

! norm, to Y.

(HS) g is positive definite with constant kz, i.e. for all

¢ € Dom(g), g does not depend on the values that ¢ takes

on [-kz,O].

For (n,¢) € Z the function x(-<;n,¢) will be called (strong)
solution of (1) and (2), if it is defined on [-r,tl) with

— e
L]
.

t, >0, if it is absolutely continuous on [O,tl), and satisfies (2)

O : and (1) almost everywhere.
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7.

Theorem 1. Assume that (H1) and (H2) hold. Then
(a) A gemerates a local semigroup T(t) in Z, given by
T(t)z = lim(I-gA)-nz, for all t € [0,t(z)) and
n
z €17,

(b) -For -z € Dom(A),T(t)z satisfies (3) and the solution 1

x(* ;2z) of (1) and (2) is given by

(4) x(t;z) = PyT(t)z, for t € [0,t(2)) and x(t;z) = (P,z) (t)
for t € [-r,0].

Of course, if in (H2) the Lipschitz constant can be chosen
globally, then t(z) = » for all z € Z and A generates a

(global) semigroup on Z.

Proof. We give here an outlifie of the proof and refer to [12]
for the details. For each B € [0,») 1let n® denote the radial

projection on Z, so that for 2z € Z

z for |lz|l <8
nfz =9 8
z for ||z]| > @
el

For fixed but arbitrary 8 > 0 we remark that the map 2z + g(naz)
is globally Lipschitz continuous with Lipschitz constant 2L(8).

Some calkulations then show that the operator AB given by




Don(AB) = Dom(A)

and
Ag(4(0),0) = (£(6(0)) + g(nP(9(0),6)),4)
satisfies the conditions of the Crandall-Ligett theorem [3], i.e.

A8 - w(B)I 1is dissipative for some w(B) € R and range of

(I-A(AB)) = Z for all sufficiently small nonnegative A. This

% implies that AB generates a (global) semigroup TB(t)’ t>0,

' on Z for all g > 0 given by

|

R .t -n
(5) | TB(t)z I;m(l : AB) z for 2z € Z.

Moreover TB(t) is Lipschitz continuous with Lipschitz constant

exp(w(B)t), and TB(o)z is Lipschitz continuous for each fixed

z € Z, For each 2z € Z with |jz|] < B8 let

te(z) = {inf t:||TB(t)z” > B}.

We shall verify that for t € [O,ts(z)) we can replace AB by

" A in (4), so that

C (6) T(t)z = lrilm(l - &AB)‘“z - lrilm(l - %AB)‘“z on [0,t,(2)).

)
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Choose T € (O,te(z)) and put y = B-ts?p HT (t)z]] . Obviously
Yy >0, Assume first that 2z € Dom(A) and let JA = (I - AAB)'1
for nonnegative, sufficiently small A. Then by [18,pg.457] we
have for all m>n >0, and j=1,...,n and t € [0,T]

j m . . .
19, 2 - 35, 2l < AR Ba-pnt? e D llag
n nm
2t 2T jt
< — exp(4w(B)t) ||A,z < — exp(4w(B l—) Azl ,
- & P ( ”BII—/IT p(()n”B"

where n and m are chosen sufficiently large, so that both
Jp and J;p exist. Taking the limit as m + » in the last
n om

estimate, we get

J .
19, 2 - Tg(&Dzll < 2 expaw(®)T) || Agz] -
= /Ny
n 0
Choosing N0 such that %%: exp(4w(s)T)||ABz" <y, we get
0

for all n > Ng» j=1,...,n and t € [0,T]

M Wzl < gz - gzl ¢ T DI < s

ﬁlﬂ e

j
t
n

Since P was arbitrary (7) implies (6) for =z € Dom(A). For




arbitrary z € Z, (6) follows from the density of Dom(A) and

the Lipschitz continuity of (I - % AB);I. Now take 0 < g; < B,,

then tB (z) < tB (z) and therefore t(z) = 1lim t_(z) € (0,«]
1~ B 8

B+
exists for every =z € Z. Finally, it is simple to check that
{T(t)z: t € [0,t(z))} 1is a local semigroup in Z and that (6)
holds for all t € [0,t(z)). Assertion (b) of the theorem follows
from [3, Theorem 2]. 1Indeed, if 2z € Dom(A), then (3) holds on
[0,t(z)). Here wve note that. Z 1is reflexive and that T(t)z
is Lipschitz continuous in t. By a general result in [14],
T(t) 1is a local translation semigroup. Therefore for 2z € Dom(A)

we may define
'x(s;z) = P,T(0)z)(s) for almost every s € [-r,0],

X(s;z) = PyT(s)z for s € [0,t(z),

and taking projection P, in (3) we see that x(-;z) 1is a

solution of (1) and (2) on [-r,t(z)). This ends the proof.

To include a more general class of equations we now assume

that

g8 =8 * 8

|
where fl satisfies (H1) and (H2) and gy satisfies (li3) - (HS).

e akir. e it 3 et A ks e bt la




11,
We shall make use of the family of operators defined by
S(t) (n’¢) = (n.!l’) ’
¢(s+t) for s + t <0
where Y(s) =
n for s+t >0
Replacing A by A%, e > 0, given by Dom(A%) = Dom(A) and

€

ATO(0),9) = (00 + g1 (6(0),8) + } [ (5,00),022d0, #)

one can see that for each fixed ¢ > 0 Theorem 1 is applicable,
which implies the existence -of local semigroups T®(t) generated
by A®. The problem of taking the limit as e = 0 in T&(t)z
can be treated with techniques as if A® would arise from a

Yosida approximation and the following result can be derived.

Theorem 2. Assume that g = g1 * & where g1 satisfies (H1)
and (H2), and g, satisfies (H3) - (H5). Further, let Y have
a uniformly convex dual Y*. Then for each 2z € Dom(A) there

exists a unique solution x(-;z) of (1) and (2) on [-r,t(2)).

Moreover for =z € Dom(A)
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. (8) T(t)z = (x(t;z), x.(2)) = lim T®(t)z = lim lim (I - -—Ae)'
et¥0 €e¥0 n
| for t € [0,t(z)), and the limit is uniform on compact
5 subintervals of [0,t(z)).
’ , For the proof of this theorem under a weaker hypothesis then (H4)
. we refer to [12].
! The following Corollary asserts that t(z) in Theorem 2
is actually the best possible choice.
A
Corollary. (a) For =z € Dom(A) the alternative
t(z) =« or Iim |IT(t)z|] = =
ttt(z)
holds.
(b) For each z € Dom(A) and each t* € (0,t(z))
there exist constants € = €(z,t*) and T = I(z,t*)
such that for all y € Dom(A) with ||lz-yll < e
t* < t(y) and |lT(t)z - T(t)yll < T |lz-yll
for all t € [0,t*].
H !
| PO (c) For each n > 0 there exists a T(n) > 0 such
' that t(z) > t(n) for all 2z € Dom(A) with
~ | lzll <.
]?> 1
;
F - - [, . o N - . e e Vi et e . W e . gt
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13.

The operators T(t) given in Theorem 2 can be extended
to a local semigroup in 2. For 2z € Dom(A) we take t(z) as

in Theorem 2 and for z € Z ~ Dom(A) we let

M(z,p) = {y:y € Dom(A), z € B(y,e(y,t(y)-0)), t(y) > pl,

where p €R, p > 0, € is defined in the above Corollary and
B(y,r) is the open ball in Z centered at y with radius r.

Next we define

(9) t(z) = sup sup (t(y)-o)
: p>0 y€M(z,p)
for z € Z ~ Dom(A). The Corollary and the fact that Dom(A) is
dense in Z imply that t(z) > 0. For T € (0,t(z)) and
z € Z ~ Dom(A) there exists p > 0 and ¥ € M(z,5) such that

z € B(Y¥,e(¥,t(¥)-p)). We may therefore define
(10) T(t)z = lim T(t)z, for t € [0,T]}
n

where z € Dom(A) N B(Y,e(¥,t(¥)-p)) and lim z, = z. By the
Corollary T(t)z is well defined via (10) and the limit is uniform
in t € [0,T). Moreover, the operators T(t), t > 0, being
continuous extensions of continuous operators, are continuous
operators on their respective domains. It is now simple to see
that also (a), (b), (c) and (e) in the Definition of local
semigro:fs are satisfied. We may therefore summarize the above

discussion in a theoren.
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Theorem 3. Let the assumptions of Theorem 2 hold, Then
{T(-)}:D(+) + 2, with T(t) defined as in (8] respectively (10)

and
D(t) = {z:t < t(z)}

with t(z) as in Theorem 2 respectively (9), is a strongly

continuous local semigroup in Z.

3. Mild Solutions.

In this Section we discuss further the relationship between
the semfgroups given by Theorems 1 and 2 and solutions of (1)
and (2). For z € Z ~ Dom(A), T(t)z will in general not be
associated with a strong solution of (1) and (2) via (4). However,
if f 1is linear, the local s;migroup T(t): D(t) +» Z, gives rise
to mild solutions. By definition a function z(:) is called mild

solution of (1) and (2) if it satisfies

t
z(t) = U(t)n + IOU(t-S)g(Z(S),zs)ds, in Y, for t € [0,t(n,$))
(11)
z(t) = ¢(t) for almost every t € [-r,0].

Here we assumed that (H1) holds and denote by U(t) the linear semi-

group generated by f.

|
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Theorem 4. Assume that f is linear and let the assumptions of
Theorem 2 hold. Then for each (n,¢) € Z there oxists s function
viknt(n,¢)) + Y such that T(t)(n,e) = (v(t),v,) for te€[0,t(n,¢))

and v satisfies (11).

Proof. The existence of the map v, just as in the proof of Theorem
1, is a consequence of the fact that T(t) is a translation semi-
group. For =z € Dom(A) the élaim follows from Theorem 2 and

(12, Theorem 2.2]. If 2z € Z'~ Dom(A), let T € (0,t(z)). Then

by definition of (t(z) in (9) there exists a sequence

z, = (nn,¢n) € Dom(A) with 1lim 2, * 2, lim t(zn) > T and

n n

(12) lim T(t)z, = T(t)z uniformly on {o,T}.
n

Notice first that s » U(t-s)g(T(s)z) 1is integrable on {0,T] and
that T(t)(zn) = (vn(t),(vn)t) for a family of maps A Since

Vo satisfies (11) for each n and since the family T(-)zn:[O,T] + 7
is uniformly bounded, (H3) together with (12) and the fact that U(t)

is a linear Co-semigroup imply the result.

We close with a theorem further clarifying the relationship

between mild solutions and (strong) solutioms,

Theorem 5. Under the assumptions of Theorem 4 the map v defined

there satisfies

- ~ . - . - . e R P S N P




t t
13)  w(t) = n + f([o v(s)ds) + [o g(v(s),v,)ds,

for all (n,¢) € Z, and t € [0,t(n,d)).

This result is a special case of (13, Theorem 2.3). Of
course, (13) is just the intekrated form of (1) with integration

and operator f interchanged.in the second summand.
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