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This paper introduces a mathematical framework within which a wide
variety of known and new inequalities can be viewed from a common

perspective. Probability and expectation inequalities of the following _ \

types are considered: (a) P(ZéA) z P(Z'eA) for séme class of sets A,
(b) Ek(Z)-g’Ek(Z') for some class of functions k, and (c) El(Z)hﬁhEk(Z') for
some class of pairs of functions 2 and k._ It is shown, sometimes using
explicit constructions of Z and Z', that, in several cases, (a) <> (b) <=> (c¢);
included here are cases of normal and elliptically contoured distributions.

A case where (a) => (b) <> (c¢) is studied and is expressed in terms of
"n-monotone" functions for (some of) which integral representations are
obtained. Also, necessary and sufficient conditions for (c) are given.
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I. Introduction

There is an extensive literaturc dealing with probability incqualities of

the form
P(ZeA) 2 P(Z2'€A) , Ae A, (1.1)
and expectation inequalities of the form

Ek{z) = Ek(Z2") , ke F, , (1.2)

where Z and Z' are random vectors (or more general random elements) with common
range space R, A is a class of (Borcl) subsets of R, and F1 is a class of real
{measurable) functions on R. Here we also focus attention on expectation

inequalities of the form

Ee(z) > Ek(Z") , (%,k) € FZ s (1.3

where F, is a class of pairs of (measurable) functions on R. When the classes
A,FI,F, are progressively richer then conditions (1.1),(1.2),(1.3) are
progressively stronger. Specifically if 1A € Fl, i.e. if IA ¢ F1 for all A A,

then (1.1) <= (1.2); and if F1 c {k: (k,k) € F2} =: F,, then (1.2) <- (1.3).

21
The more interesting conclusions are therefore those which lead from (1.1) to
(1.2) to (1.3).

The first question of interest is of course to describe conditions on the
distributions of Z and 2' which guarantee (1.1) for specific classes A of sets,
and there is a vast literature on this. The second question is, given a class

of sets A, to describe a class of functions Fl’ depending of course on A, for

which (1.1) == (1.2); if such a class F1 contains lA then in fact (1.1) <> (1.2).

The third question is, given a class of functions Fl, to describe a class F2 of




3
pairs of functions for which (1.2) => (1.3); and if furthermore Fl c F21
then (1.2) <=> (1.3). Clearly this equivalence holds for the class F,
defined by what may be called the '"separation approach':

F,={(2,k): 2 <m < k for some m e F_,
2 1 (1.4)
and the expectations in (1.3) are defined} . )
(This approach is most useful when there is a simple direct description of
F2, one that does not predicate the existence of quantities with certain
properties.) When positive answers to the second and third questions are
feasible, one of the following relationships will follow:
ic (1.1) => (1.2) - (1.3)
ii. (1.1) == (1.2) <> (1.3) (1.5)

iii. (1.1) <> (1.2) <> (1.3)

An interesting example of (1.5.iii) is-degcribed by Kemperman [5].
Suppose that R is a partially ordered space and that (1.1} holds for the class
A of all measurable increasing sets A (i.e. a ¢ A and a < b, in the sense of
the partial ordering, iﬁply b ¢ A). Then, by considering simple function
approximations, one obtains (1.1) <=> (1.2) where Fl is the class of all

measurable increasiﬁg functions k (in the sense of the partial ordering) for

_which the expectations in (1.2) are defined. Using the separation approach one

also obtains (1.2) <= (1.3), where Fz is defined by (1.4) and has the
alternative direct description as the class of all pairs of functions (¢,k)

satisfying %

k(x) = e(y) , X<y, (1.6)
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and for which the expectations in (1.3) are defined, provided the '"separating"

incrcasing function m defined for instance by
m(y) = sup{k(x),x<y}

is measurable, as is the case when R is the real line. (We infer from a
comment made by Kemperman [S5] that measurability of m may fail even in Rz,)
New examples of (1.5.iii) are described in Section 3 for bivariate random
variables with normal distributions (Theorem 3.1) and with certain elliptically
contoured distributions (Theorem 3.2).

An interesting example of (1.5.ii) is described in Section 2 when the
range of Z = (X,Y) and Zf = (X',Y') is the real plane. If A is the class of

all closed symmetric rectangles then (1.1) implies that

Eh(X%+Y2) = ER(X' 24y 9 1.7

for all nonincreasing, convex functions h on the positive half line; i.e.

(1.1) = (1.2) where Fl is the class of all functions k(x,y) of the form

h(x2+y2) with h as above. It should be pointed out that (1.1) no longer

implies (1.2) if h is either not nonincreasing or not convex; convexity would

2+Y2 is stochastically larger than

be unnecessary if (1.1) implied that X
X'2+Y'2, which is not true in general. In order to use the separation

approach, we note that functions f and g on the positive real line can be

separated by a convex function h,

fshs<g, (1.8)

e Rkaamdis
JRESORrY

if and only if

flAs + (1-2)t] s Ag(s) + (1-A)g(t) , sst, 0<iAs<l, (1.9 \
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and then the convex separating function h can be defined (not necessarily
uniquely) by

. _jt-u u-s
h(u) = 1nf{?T§ g(s) + ;j;'g(t), s <u -~ t} . (1.10)

Also, this choice of h, or some simple modification of it, is nonincreasing if

and only if
f(t) < g(s) , s <t . (1.11)

Consequently (1.1) implies

Eg(X2+Y?) = EE(X'%4y1 D) (1.12)

for all functions f and g satisfying (1.9) and (1.11) and such that the
expectations in (1.12) are defined; i.e. (1.1) > (1.2) <> (1.3) where F2 is
the class of all pairs of functions l(x,y)=g(x2+y2),k(x,y)=f(x2+y2) where f and
g are described above. Again, in this case, the class FZ’ originally
introduced via the separation approach, has a direct description. Section 2
includes additional implications of the form (1.1} = (1.2), which are
described for n-dimensional vectors Z and Z' (n 2 2), and also integral
representations for éertain "n-monotone" functions which may be of

independent interest.

Kemperman [5] also describes an alternative approach based on a theorem of

Strassen [10] which guarantees that when R is a partially ordered complete
separable metric space and A is the class of all measurable increasing sets,
then (1.1) is equivalent to the following:

There exist two random variables 20,26 with the same marginal

distributions as Z,Z' and such that Z0 2 26 a.s. (1.13)

NN AR T



It is then immediate that (1.13) -> (1.3) = (1.2) > (1.1) where Fl,F2 are
defined in the paragraph describing Kemperman's example, and thus
(1.13) <> (1.1) < > (1.2) <~ (1.3). It turns out that this use of surrogate
random variables with certain specified a.s. properties (cf. (1.13)), the
"surrogate approach,'" provides a necessary and sufficient condition for
expectation inequalities of the type (1.3) in cases where no other approach
seens to work (including the separation approach) and even in cases where no
useful necessary and sufficient condition for (1.3) of the type (1.1} can be
found. We illustrate the usage of this surrogate approach in a case treated in
Section 3.

Let Z = (X,Y) and Z' = (X',Y') be two-dimensional random vectors and A the
class of all principal lower and upper ideals in RZ, i.e. all rectangles of
the forms (-»,x}x(-»,y] and [x,©)x[y,~). Then (1.1) is equivalent to saying
that Z and Z' have common marginal distributions and that (1.1) holds for all
principal lower ideals (-=,x]x{-w,y]. It is shown in [2] and [12] that
(1.1) <= (1.2) where F1 is the class of all quasi-monotone functions k, i.e.

functions k which satisfy the inequalities
k(x;,y;) + k(x,,y,) 2 k(x;,y,) + kix,,y,) X; S Xy, Y1 $Y, s (1.0

for which the expectations in (1.2) are defined and which satisfy some minor
regularity conditions. It is not completely clear how the quasi-monotonicity
condition (1.14) should be modified in order to derive inequalities of type
(1.3). The separation approach would yield (1.5.iii) with Fz defined by (1.4)
as the class of all pairs of functions ¢,k which are separated by a

quasi-monotone function. It then follows that

L(x15y) + (xpyy) 2 k(xp,y,) + kix,,y)) X S Xy Yy £¥, 5, (i)




but we have been unable to find a direct description of the class F2 defined
through the separation approach. Condition (1.15) is necessary but not
sufficient for ¢,k to be separated by a quasi-monotone function, as shown by an
example in Section 3. Another example shows that (1.1) does not imply (1.3)
for all functions k and % satisfying (1.15) (and for which the expectations in
(1.3) are defined). One could conceivably require (2,k) ¢ F2 to satisfy
additional inequalities which are in the same spirit as (1.15). For instance,

if the additional inequalities

Q(xlayl) + 9,()(2,)’3) + Q(YS’XZ) 2 k(xl’y:])) + k(xzy)’z) + k(xs’yl) »

X; S Xy S Xg YL SV, S¥g s

do not hold, it is possible to construct examples where (1.1) holds but (1.3)
fails. But even these inequalities are insufficient and we have failed to
obtain usable conditions describing the class F2 by continuing with this
approach. An alternative approach is to assume that k and ¢ satisfy no more
than (1.15), i.e. to define F2 as the class-of all pairs of functions k and 2
which satisfy (1.15), and for which the expectations in (1.3) are defined, and
to impose additional assumptions on Z and Z', i.e. to strengthen condition
(1.1). This can be best achieved through a variation of the surrogate approach.

To this end consider the following condition:

(co) There exists a four-dimensional random vector (xl’xz’Yl’YZ) whose

values are in the set F = {(xl,xz,yl,yz) = (xz-xl)(yz-yl) > 0}

and whose bivariate marginals FII’FIZ’FZI’F7? for
(XI’YI)’(XI’YZ)’(XZ’YI)’(XZ’YZ) respectively satisfy
F11 + F22 = 2H and F12 + F21 = 2H', where H and H' are the

distribution functions of Z and Z' respectively.

When (1.15) holds, condition (CO) implies




) a.s. (1.1¢y

1

COXLY ) e G, ) RN LY ) e ROY LY

which, upon taking expectations (assuming they are defined), yields (1.3).

Hence (CO)  ~ (1.3). It is shown in Scction 3 that when 2 and Z' are

normally distributed with common means and variances then
gt (o) - o (L) 2= (1L2) o= (1.3,

where p(p') denotes the correlation between the components of Z(Z'). In
Section 3, a similar result is obtained when Z and I' have elliptically
contoured distributions; and also a generalization from two to higher
dimensions is described.

For the example of the nreceding paragranh, as was mentioned, (1.1} doces
not imply (1.3) in general. It is shown in Section 4 that
(CO) < > (1.1)' < > (1.3), where AZ is the class o7 all pairs of Borel sets A

and A' in the plane which are such that the functions I and lA' satisty (1.15,

and
P(ZeA) = P(2'¢A") , (AAY) ¢ AL 1.0

1

Using a generalization of a theorem by Strassen [10] we obtain in Section 4
several further results of the type (CO) <=> (1.1)' <> (1.3), where (1.1}"' is
stronger than (1.1). Among these the following is related to the inequalities
of Section 2 described earlier. When R = RZ, A is the class of all closed

symmetric rectangles; F, is the class of all functions k which satisfy

1

k(x;,y)) < kix,y,) x5 =[x [or fy,| = Ivf




and for which the expectations in (1.2) are defined; and F2 is the class of all

pairs of functions ¢ and k which satisfy
Lxpy,) 2 klxguy)) x| dxplor dy,l <yl

and for which the expectations in (1.3) are defined: it is shown in Section 4
that (1.1) <> (1.2) <> (1.3). It should be noted that the functions

k(x,y) = f(x2+y2), with f nonincreasing and convex, considered in Section 2, do
not belong to the class Fl. Finally Section 4 derives several new inequalities

of the type (1.1) and (1.3) for normal and elliptically contoured distributions.

2. n-monotone functions

In this section we develop inequalities for expectations of n-monotone
functions [(to be defined below) of the squares of the moduli of n-dimensional
random vectors. We begin with the case n = 2 (Theorem 2.1} and then proceed to
the general case n > 2 (Theorem 2.2). In the process of establishing
Theorem 2.2 we develop an integral representation for certain n-monotone

functions (Lemma 2.3) which may be of independent interest.

Theorem 2.1. Suppose Z = (X,Y) and Z' = (X',Y') are bivariate random vectors

for which
P(|X|<a,|Y|<b) = P(|X'|za,[Y'|sb) , azx0, b>0. (2.1
Then
EE(X%y) = Ef(xr Byt Y (2.2)

for every nonincreasing convex function f on [0,~).

kel L e 2 TIPRITA




10

\
Proof. Condition (2.1) is equivalent to saying that aX'2 v bY'“ is

2
stochastically larger than aX”™ v bY2 for a » 0, h - 0, where u v v denotes the

maximum of u and v. Thus for any bounded nonincreasing function h on {0,+},

Eh(aX2vby?) > Eh(ax'2vby'd) a>0, b >0, (2.3)
and, consequently,
T m
2 2 2 = ,2 ,2
E fz h X v Y sin 6 cos 6 d6 = E [2 h X v Y sin ¢ cos & d-
0 2 . 2 0 2 . 2
cos 6 sin 6 cos B sin f
(2.4)

2
Now with the substitution of (x2+y2)u for xz v —2 , the integral

ki cos” 6 sin” ¢
2 X 2
f h v Y sin 6 cos § do simplifies to
0 2 . 2
cos 6O sin 6

2. 2
1 = h({x"+y )u)
2 11 22 du .

Thus (2.2) holds for functions f of the form f(s) = fT h(iu) du, s > 0. But,
u

according to the lemma below, the class of such functions coincides with the
class of bounded nonincreasing convex functions. The unwanted restriction of

boundedness is easily removed by truncation: If f is any nonincreasing convex

function, then f v (-n) is a bounded nonincreasing convex function whose limit,
as n +»», is f. Then (2.2) follows by means of the monotone convergence

theorem.

1

Lemma 2.1. The class of bounded noninereasing convex functions on [0,) and

the class of functions f of the form £(s) = fT EL%EL du, s 20, with h
u

noninereasing and bounded on (0,»), coineide.
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Proof. Suppose f(s) = jT h(;u) du, s = 0, with h nonincreasing and bounded on
u

ity sa -

[0,). Quite obviously f is nonincreasing and bounded. To see that f is

Pl Ay

convex, observe that f(s) = s f: h—Q;ldv for s > 0 and f(0) = h(0). Thus for

&

0 <s <t,

—— e s

. h(v)-h!S;t] . h(v)-hfsgt
s [ dv + t fo - dv

s 2
v v

1 £(s) + £(t) - 2f[5;t]

{
3 . h(v)-h'S;t
1 - (s+t) f — 5 dv
{ s+t v
: =L h(v)-h s;t’ . h S;t!—h(v)
i =5 js 5 dv + t | 5 dv > 0 .
X v S+t \'
: 5
: |
!
% The argument when s = 0 is similar. Consequently, f is convex on [0,»).

Conversely, suppose f is a bounded nonincreasing convex function on [0,=).

Define a nonincreasing function h on [0,=) as follows:

h(s) = £(s) - sfO(s) for s > 0 ,

£(0) for s = 0,

ROTTY

where fo(s) denotes, for definiteness, the smallest slope among all tangent
lines to f at s. (Thus, when f is differentiable at s > 0, fo(s) = f'(s).)
Then for fixed n 21 and s > O,

£(s(1+3))-£(s) £(s)-£(s(1-2))
< h(s) < £(s) - s T

f(s) - s s/n

due to the convexity of f. Thus

I e o1 WS 20 ey T T R P LT O s g sy » ‘ ’ - : AR AR g T
v b tan cogy s 190 £ L o
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(ne1)€(s) - nE(s(LeD) < h(s) < nE(s(1-D)) - (n-1)£(s)

But

1 1
o (n+1)f(su)-nf(su(l+=)) 1+
X > N gy = (n+l) fnf—(f‘z“—)du+f(s)asn»oo,
u 1 u

since f is continuous at every point s > 0, and likewise

nf(su(1-3)- (-1 £ (su)
5 du » f(s) as n » o ,
u

1
from which it follows that

f(s) = fT EL%EL du , s 20 .
u

From this integral it is easily checked that h is bounded.

There are unbounded nonincreasing convex functions f which cannot be
expressed in the above integral form, with h nonincreasing and necessarily

unbounded, e.g., f(s) = -s, s 2 0. An analogue of Lemma 2.1 can be established

for nonincreasing convex functions f defined on the open interval (0,«).

Boundedness is not essential on (0,1], but is on [1l,x}). See Lemma 2.3 below.
Likewise Theorem 2.1 can be modified to cover functions f defined on (0,x)

which are nonincreasing and convex. Such functions can be approximated from

below by functions of the type described in Theorem 2.1; and through use of the

monotone convergence theorem, we can obtain:

Corollary 2.1. If, in addition to (2.1), P(Z=(0,0)) = 0, then (P(2'=(0,0)) =0

and) (2.2) holds for each noninereasing convex function £ on (0,%) for which

the expectations contained therein exist.

e A A S A p ) 1
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It is apparent from the nature of assumption (2.1), appearing in Theorem

2.1, that inequality (2.2) can be extended to

2 .2 2 2 .
E€(aX™+8Y7) = Ef(aX'7+RY'7) , =N, g >0.

There are, of course, many nonincreasing convex functions f to which
Theorem 2.1 or its corollary is applicable. As an example the assumptions of
Theorem 2.1 imply ER® < ER'a, 0 < a < 2, where R2 = X2 + Y2 and R'2 = X‘2 + Y'2,
while the assumptions of Corollary 2.1 permit the conclusion ER® > ER'“, o1 < 0.

The value of Theorem 2.1 and its corollary depcnds, of course, upon the
reasonableness of assumption (2.1), an inequality of type (1.1). Theorem 2.1

of Das Gupta et al. [3] states easily checked conditions under which this

inequality holds for pairs of related elliptically contoured distributions,

as well as conditions under which assumption (2.7) holds in Theorem 2.2 below
and in its corollary.

The requirements in Theorem 2.1 that f be nonincreasing and convex are
both necessary for the generality of the theorem: If f i{s any function on
[0,0) which satisfies (2.2) whenever (2.1) holds and the expectations make

sense, then f must be nonincreasing and convezx.

Proof. The need for f to be nonincreasing can be seen by considering

nonstochastic Z and Z' of the form (x,0) and (x',0}), 0 < x < x' < ». XNow

suppose f is nonincreasing and satisfies (2.2) for all Z = (X,Y) and

-

Z' = (X',Y') satisfying (2.1). For s > 0 and p ¢ (0,1], let Z' = sy
1
1, 2
and Z = szv[; f] , where V is uniformly distributed on the unit circle. Since

Z and Z' are elliptically contoured vectors which satisfy (2.1) (cf. Theorem 2.1

of [3]), inequality (2.2) holds, which translates into

£s) sl ooy f(stewolddu ., s >0, pe (0,11 . (2.5

e T 1 T T NI R BT T vr s o N
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Replacing s by s-1/n and letting n -~ « yields

f(s-) < vt Y ) TE e(s[rupdu, s> 0,  pe (0,1,

which, in turn, due to the monotonicity of f, yields

- -1 _1
£s-) <t [0 (1?7 £(s-spddu + [) (1-uP) T £(s)du = 5 fs-s0) + %-f(s+)
for s > 0 and p € (0,1]. Letting p + 0, we obtain f(s+) = f(s-), s > 0, which
establishes the continuity of f on (0,»).

Now suppose f is not convex so that for some 0 < a < b, we have f(a) > f(b)

and

2
Fa

f£la) + £(b) < 2f a*b) . (2.6)

Consider lines t = ms + ¢, a < s < b, of negative slope m = (f(b)-f(a))/(b-a).
For large values of ¢, the line t = ms + ¢ > f(s) over the entire interval
[a,b]. Let ¢ decrease until the line first touches the graph of f at some

point in the interval [a,b], and let So be the smallest such point of contact

e b i 8 e

with this line. (Since f is continuous on (0,«), both ¢ and s, are well-defined.)

Due to (2.6), o is in the open interval (a,b). Setting s = S0 and
o= {1-2;} A F%—-l}, so that 0 < p <1 and a < s(l+up) < b for -1 <u <1, we
0 0
obtain from inequality (2.5): l

f(so) < w'l [i (l-uz)-% f(so[1+up])du < w-l [i (l-uz)_lj (mso[1+uo]+c)du

+ ¢ = f(s

™50 o’

This can only happen if

IA

[+

A

-
-

f(so[1+up]) = mso(1+up) +cCc, -1

] P Y S A i T Y
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which is impossible (for negative u) due to the way So is defined. Thus f must

be convex. .

e ]
We remark that the random variables R2 and R'", associated with the random
1

o1 )¢ 5 . .
vectors Z = szv[p ?) and Z' = s’V (used in this proof), are not stochastically

ordered since ER2 = ER'2 = s. Thus condition (2.1} ca» hold without R2 being
e

stochastically smaller than R'", It follows, of course, that condition (2.1)

can hold without (2.2) holding for every nonincreasing function f.

Finally it should be pointed out that the argument used in establishing

Theorem 2.1 shows that inequality (1.2) holds for all functions k of the form

)

-2 |x] |yl
k(o) = [ Fe(cos 5 ¥ sin g4 (®)

where Fe(r) is jointly measurable in (6,r) and nonincreasing in r for each
fixed 0, u is a measure on the open interval (0,%), and the indicated integral
exists and is finite. By choosing for instance Fe(r) = h(r)g(8) with h bounded
and nonincreasing and g bounded and =2 0 (e.g. g(0) = (sin e)" (cos e)m) and u
Lebesgue measure, we can generate a large class of symmetric as well as

nonsymmetric functions k(x,y). The choice g(8) = sin 6 cos £ gives Theorem 2.1

for bounded nonincreasing convex functions of x2+y2; k(x,y) = f(x2+y2).
Theorem 2.1 can be generalized to higher dimensional vectors, and this is
done in Theorem 2.2 where the following terminology is used. For 2 < n < «, a
function f defined on [0,~) or (0,») is said to be n-monotone if its kth order
divided differences are of alternating signs for 1 < k < n, of nonpositive sign
for odd k and of nonnegative sign for even k. (Thus [xo,xl;f], defined by
(f(xo)-f(xl))/(xo-xll, is nonpositive for distinct X,y and Xy in the domain of
f; [xo,xl,xz;f], defined by ([xo,xl;f]-[xl,xz;f])/(xo-xz), is nonnegative for

distinct xo, x1 and X3 etc.) It follows from Theorem A, page 238, of Raberts
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and Varberg [7] that { is n-monotone iff (i) it is nonincreasing on its domain,

(ii) it is (n-2)-times continuously differentiable on (0,-) with

K. (K)

(-1 f (s) ~ 0, s -0, Y- l,Loo,n-2
and (iii) (_l)n—zf(n-Z) is nonincreasing and convex on (0,x). For future
. s n-2.(n-2) .
reference, we note that (iii) is equivalent to: (iii') (-1) f is

locally absolutely continuous with a nonpositive and nondecreasing

- ~1
(Radon-Nikodym) derivative (-l)n 2f(n ).

A function f defined on [0,«) or
(0,) is said to be w-monotone if it is n-monotone for all n, i.e., if f is
nonincreasing on its domain, and f is infinitely differentiable on (0,«) with
(-l)kfk(s) >0, s >0, k>21. InLemma 2.3 an integral representation is
obtained for all bounded n-monotone functions defined on [0,®), 2 = n < =, A
well-known related notion is that of complete monotonicity. A function f
defined on [0,x) or (0,») is called completely monotone if it is continuous
on its domain, and it is infinitely differentiable on (0,») with

(-l)kf(k)(s) >0, s >0, k 2 0. Thus a completely monotone function is
wo-monotone, and if f is «-monotone on [0,~) or (0,x), then -f(l) is completely
monotone on (0,«). Completely monotone functions on {0,~) are Laplace
transforms of finite measures on [0,~), and completely monotone functions on

(0,) are Laplace transforms of (not necessarily finite) measures on [0,x)

for which the Laplace transform is finite on (0,»). (See Widder [13].)

2

Theorem 2.2. If the random vectors 2 = (Z;,...,2) and 2" = (Zg»-ees2p), m 22

satisfy

P(|21|5a1,...,[z

v

n|san) P-(lzi|sa1,...,|zr;|san) , a >0,...,a >0,
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and 15 € (o an n-monotone unction on |0,+), thes:
- 0 o)
EF|Y 27| - Ef|Y z) | (2.8)
L “q L=y
{1 1 s

Remarks. 1. Theorem 2.2 can be viewed as an extension to higher dimensions of
a wcll-known result in one dimension, provided onc interprets a l-monotone
function as a nonincreasing function.
2. Some examples of «~-monotone functions on [0,«), to which
. . -0s a
Theorem 2.2 is applicable are: e (o >0), -s” (0 < <1),
(s+a)“ (n < 0, a >0), -log(s+a) (a > 0).

3. An example of an n-monotone function which is not (n+1)-monotone

is the function f defined by £(s) = ((1-s)v0)™ ! s20 (n = 2).

Before we prove Theorem 2.2, we must gather together a number of facts,

some of which we state in the form of lemmas.

-~

Lemma 2.2. If h ig a bounded funetion and the randor: vector (vl""’vn)’ n -z,

te uniformly distributed on the surface of the n-imencional unit sphere, 3.7

2 2 n
X X = n-2
1 oo - -
= vo.v Blv v | - 2 Q1) " hr?uydu (2.9)
2 2101 n n/2 1 n
\ V m (n-2)! u
1 nj
2 2 2
for every real vector (xl,...,xn), whepre t° = X] 4ot X

Proof. For n = 2, (2.9) is established in the proof of Theorem 2.1. We now

assume (2.9) is true when n in (2.9) is replaced by n-1, and proceed to

establish its validity for n (n 2 3). Using the facts that Vn has density
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, -1 v -1,

51
that, conditioned on Vn =v, (1-v7) ¢ (Vl....,vn_lj is uniformly distributed on
the (n-1)-dimensional unit sphere (see for instance Lemma 3 in [1]), and

therefore that (by the induction hypothesis) the conditional expectation of

2 2
x1 xn . .
hi— Vv...v—= |V1...Vn| given V_ = v is
Vv \'
1 n
n-1 n-1 [,.2 .2 2
[—— — n-3 (r’ -xJu x
2 2, 2 w (u-1) n n
n-1 v(-v) II n-1 hl >V —7|du
5 u 1-v v
i (n-3)!
we obtain (after some minor simplifications)
2 2
nx;pn v fl nox; nI |
Ehiv —| T |V, = Eth|v =NV, |{Vv_=v|f,, (v)dv
1 v b 1 V21 n Vi
i i
(2.10)
n 2 2 2
3 (r"-xJu  x
2] -1 -2
= Th/2 1 £ nzl 0 h ; v —% V(l-Vz)n dvdu .
m (n-3)! 1-v v
u(rz-xi) x2
With the change of variable v » y: ——V —% = r y, the inner integral in
l-v v
(2.10) simplifies to
2, .2 2,n-2
n-1 x (ry-x)
u 2 n n 2 2.n-1}|_-n
2@, f: , e T s ()T ay
u(r -x_)+x u
n’ n
2
T

and (2.10) becomes




- - P ———
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u

ro-x ( |
cn 2 n g lX (r y-x ) n-1
] ‘ -2(n-1) ¢ h(ry) n-3;n__’ _n - ‘
2 o (n-1) }'] ___Tn jl (u-1) i__.n i + (I‘ X ) {dudy .
y

7 (n-3)! )

The inner integral equals

2 2 \™2 > n-2
Tr - r v-X
2 2.1 n 2 2.,n-1 1 T on
S e 2 e ) B Lt R 2
Ty %, n J
1 2(n-1 n-2
- LA D2
and thus (2.10) becomes
r[ﬂ] n-2
2 -1 2
73 T D hiefyyey |
m (n-2)! Yy -

By using the same argument used in proving Theorem 2.1, together with
Lemma 2.2, one can readily establish (2.8) for functions f defined on [0,~) of

the form

[\
o
-
~
1o
—
b

f(s) = f( £E—ll———— h(us)du , s
u”

where h is bounded and nonincreasing. The class of such functions is

characterized in Lemma 2.3, which follows.

Lemma 2.3. The class F_ of functions f described by (2.11), with h any boundcd
and noninereasing function on [0,°), coincides with the class of bounded

n-monotone functions on {0,x). The class F; of functions f of the form

[ ' ST LD (3 e T 0 F Dl tuns Wt e DR & £t oo 7o m et
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n-2

. v (v-s
f(s) = s f v=s) 7 h(v)dv , 5 - 0, (2.12)

s n

v
200 W o nondnercas g Snet Lon on (0,0) and ool o [, ) endieeldoe 0T

s elarae of nemonetone funcetions o (0,9} 9hd & cpe bounded on [1,0) (no- 20,

Remark. An immediate consequence of this lemma is that the classes Fn and Fé
are nonincreasing inn. If f ¢ Fn ((FA) for every n, then f-f(«x) is a
completely monotone function on [0,+) (on (0,-)), and, therefore, f must be of

the form

£(s) = c+ [ye ™ duw , s+ 0 (s> 0),
where ¢ is any real number and u is a finite measure on [0,«) (u is a measurc

on [0,») for which the integral is finite for all s > 0),

Proof. We shall prove the characterization of F;. Since the right-hand side
of (2.12) is equal to the integral in (2.11) when s > 0, the stated
characterization of Fn is easily inferred from that for FA.

Suppose f ¢ F;. It is clear from (2.11) that f is bounded on [I1,:), and
from (2.12) that f is (n-2)-times continuously differentiable on (0,°) with

n-k-2
£y = (nF BB T - epsha
v

(2.13)

s >0, 1 <ksn-2.

Also f(n-Z) is locally absolutely continuous with a (Radon-Nikodym) derivative

€D - (0™ et TED gy s (0™ e D s ase. on (o,
v
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which, after integrating by parts, simplifies to the version we will use:
£ D) = (o™ @ SV @, s (2.14)
Clearly f(n'l)(m) (=1im f(n_l)(s)) exists and equals zero. In fact,
g0
sk-lf(k)(s) +~0as s » o, 1 <k<n-1 (2.15)

This is obvious from (2.14) for k = n - 1 and from (2.13) for 1 <k < n - 2.

n-lf(n-l)

Observe that (-1) is nonincreasing. Since h is nonincreasing, it

n-lf(n—l)

follows by (2.14) that (-1) is nonnegative. Proceeding by backwards

n-lf(n-l) (n-2)

-2
induction: From the nonnegativity of (-1) , we infer that (—1)n “f

f(n"z)

is nonincreasing. Since (©) = 0 (implied by (2.15)), (_l)n—Zf(n-Z) is

nonnegative, etc. Thus (~1)Jf(3) is nonnegative for j = 1,...,n-1, and
(-1)n-1f(n_1) is nonincreasing, which together say that f is n-monotone.
Conversely, suppose f is n-monotone on (0,») and bounded on [l,®). Define
h on (0,«) by
n-1

k
h(v) = (n-1) Z (_—i)‘.—— ka(k) V) , v>0, (2.16)
k=0 )

which is nonincreasing because each term in the sum is nonincreasing (a

consequence of f being n-monotone). Observe that h is of bounded local

variations and

) (_l)n-l n

dhev) = o v e Dy (2.17)

R o e ATl - ST R DRSS Y L



n-1
h(v) - h(s) = e [7 ™! af™ D)y, o<ssvew.  (2.18)

Then for s > 0 (using (2.18)),

(

n S

n-2 n-1 n-2
s [7 4=l mr-neener = s LA 0o e Y way
A" v

1 n-1 -1 -1 -
) EnL)l)! MU RO hae™ ) = Frts)

say, where we have applied Fubini's theorem for nonnegative functions (without
knowing, as yet, that Fn_l(s) is finite). In what follows, we shall need to
use (2.15), which should be justified in the present context. This is done in
Lemma 2.4 below for the kth derivative of an arbitrary n-monotone function,

2 <k <n -1, The remainder of (2.15), for k = 1, is valid in the present
context since, by assumption, f is bounded on [1,~).

Now, using integration by parts and (2.15) for k = n - 1, we obtain

n-1

where

n-2
Fog(8) = ks[5 ™2 - w-5)" 23 £ D yau .

Proceeding by backwards induction, we are eventually led to

n-2 n-1 k
s LS y-nisna = £(s) - ] LR KWy
v 'k=0 :

KR St RS PRIt
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which, in view of (2.16), establishes (2.12). The boundedness of h on [1,)

may be inferred from (2.12). [

If £ is n-monotone on [0,®) or (0,x), then (-l)kf(k) is nonnegative and

nonincreasing on (0,») for k = 1,...,n-1, and, hence,

(=]
A

s s-0%® gy < 15 Cnke® yyan
s/2 (2.19)

20-0*eD gy - ke g 09y s>0 | 1

[1a}
in
P
A
=2

1
—

These inequalities permit us to describe the behavior of the derivatives of f

as s »x and s ¥ O:

Lemma 2.4. If f ig¢ n-monotone on [0,%) or (0,0) for some n > 3, then

Sk_lf(k)(s) >0 as s » o, 2<k<n-1. (2.20)

Proof. This follows by induction from (2.19), provided (corresponding to

k-1=1

Mgy - e MWg/ny 4 a

But this is the case since f(l) is nonpositive and rondecreasing.

Lemma 2.5. If f ig n-monotone on [0,%), or n-monotone on (0,2) with £(0+)

finite, for some n 2 2, then

Skf(k)(s) > 0 as s ¥ 0 , 1 < k <1 - 1 . (2.21)

Proof. 1In either case, f(0+) exists and is finite. Thus f(s) - f(s/2) ~ 0 as

s + 0, and (2.21) follows from (2.19) by induction. .

T

H
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Proof of Theorem 2.2. In view of the remark preceding Lemma 2.3, we may take

(2.8) to be established for all bounded n-monotone functions f on [0,=). The
proof for unbounded f requires the removal from f of its (possible) linear part
and then a truncation argument.

Suppose first that f(s) = -cs, s = 0, where ¢ > 0. Tnequality (2.8) can

be expressed as

e S
™
™~
A
Lol e e
™
£
(a8

2

[l A

which must hold since (2.7) implies Zi is stochastically smaller than Z

i=1,...,,n.

Now suppose f is any unbounded n-monotone function on [0,x), i.e. f{~) = -

Since f(l)

is nonpositive and nondecreasing, the finite nonpositive limit
f(l)(m) exists. We shall assume, without loss of generality, that f(l)(w) = 0.
For otherwise, we may express f as the sum of two n-monotone functions,

f = fl + fz where fgl)(«a = 0 and fz(s) = f(l)(aO + s, s 20, and treat the
parts independently. We shall truncate f as follows: Define h on (8,:) by

(2.16) and h(0) = (n-1)f(0). For x > 0, let hx(v) = h(vax), v 2 0, and definc

fx by (see (2.11))

W
(=
~~
9
ro
tJ
—t

-2
_ e -
£.08) = [} ——=—

hx(us)du , s

Since h is nonincreasing on (0,«) (see (2.17)) and
h(0+) = (n-1)£(0+) < (n-1)f(0) = h(0) (cf. Lemma 2.5), it follows that h is
nonincreasing on [0,«) and, consequently, hx is a bounded nonincreasing

function on [0,») for every x > 0. This implies that (2.8) holds for each

ety g T YO T AT Y WP vy e Frir TN




function fx’ and it only remains to show, if possible, that fx + f as x » ¢+ (so
that {2.8) follows for f itself by the monotone convergence theorem). Since hx
is nonincreasing in X, so is fx (apparent from (2.22)), and thus it is only
necessary to show the pointwise convergence of f to t.

From (2.22) we have fx(O) = (n-1Yh(0} = £(0) for all x > 0. Thus we may
focus our attention exclusively on points s > 0. For such points, it is more

convenient to use the following variant of (2.22) (sece (2.12})):

n-2
o (v-s)
s n
Y

fx(s) = s f hx(v)dv s s >0 .

For x > s > 0, we have (using (2.18))

n-2 n-2
ix:él———-h(v)dv +s [ (v-s) dv « h(x)
J

fx(s) s n
v v

1]
0
—
[

X (v-s)n_2 (-l)n'1 v n-1 (n-1)
=3 fs N (n-2)! Jg ¥ df (W pdv
h(x) ()N sy, st
ECEY - (1_-& tael (1_x)
-1 n-1 n-1}
_ DY x on-l s s (n-1)
T /s [1’x] - [1‘ ] }df (v)
+ h(x) 1 - (l—i]n-l + h(s)_(]_i}n-l
n-1 U x n-1 (77X

n-1
i %%)—' ™t ag™ Dy o M

By rcpeatedly integrating by parts (much as in the proof of Lemma 2.3), we

obtain

T R TV S e SIS R —e YD T
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! n-1
g £.(s) = f(s) + }
x k=1

k
L%%l— f(k)(x){xk - (x—s)k} , x>s >0 .

Since, as x - <, f(l)(x) - f(l)(w) = 0 (assumed without loss of generality),

}¥ it follows from Lemma 2.4 that the sum converges to zero as x -+ . Thus

o]

fx(s) + f{s) as x + o, which completes the proof.

Theorem 2.2 can be extended to n-monotone functions on (0,«), to allow for

functions which are unbounded at zero as well as at infinity.

Corol.ary 2.2. If, in addition to (2.7), P(Zl=0,...,2n=0) = 0, then

(P(Zi=0,...,Zﬁ=0) = 0 and) (2.8) holds for each n-monotone function f on

(0,°) for which the expectations in (2.8) are defined.

Proof. Let f be n-monotone on (0,®) with f(0+) = » and f(«) = -, (Functions

f with smaller ranges can be handled similarly or more easily.) Let Sy be the

f zero of f, f(so) = 0, and for each k > (2/50) define fk(s) = f(s+%9, s 2 0.

-~
1=y P

Then each f, is n-monotone on [0,~), and by Theorem 2.2, Efk(|!2||2) > Efk(ii~

k

Also as k + », f. 4+ f on (0,). More precisely, £5 4 £ and by monotone

k k
convergence Ef;(|]2||2) 4 Ef+(||Z||2). Also for s = s - %, since 0 ¢ -£17y,

we have

S+
0 5 £1(s) - £(s) < -f(s+%) . £(s) = -f‘ £ (wydu

s
; s -£W(sp-ph < WDy,

4 S
: and thus 0 s £1(s) - £ (s) < +|£D (D[, s > 0. Tt follows that Ef;(|[z]|%)

-
(RSN

and Ef'(llzllz) are finite or infinite together and thus Ef;(l]zllz) vy EF(]1Z]]

———

-—

e
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¥ (by dominated convergence if they are finite or trivially if they are infinite)}.
since £F(|[2]]D) is defined by Ef*(]|z]]|9)-E£7(]]2||?) iff at least one of the

two terms if finite, (2.8) follows.

- Some examples of an «-monotone function, to which Corollary 2.2 is y

applicable, are: s& (v < 0), -log s.

We have already shown that the 2-monotone functions provide the appropriate
class for the result of Theorem 2.1. The following example shows that
3-monotone functions provide the appropriate class for the result of
Theorem 2.2 for n = 3 (by constructing, for a 2-monotone function which is not
3-monotone, 3-dimensional random vectors Z and Z' which satisfy (2.7) and for
which (2.8) fails), and we anticipate that similar examples would show the same

for n > 3.

Example. Suppose f is 2-monotone but not 3-monotone on [0,«). Then for some

aand b, a 2 0, b » 0, one has
f(a+3b) - 3f(a+2b) + 3f(a+b) - f(a) > 0 . (2.23)

{Implicitly we are saying that functions f which are 2-monotone and satisfy the
converse of (2.23) for all a and b are 3-monotone, which can be verified.) Let

3a2 = a and 2a2 + 62 = a + b be used to define o« and 8 (0 < o < 8), and let Z

and Z' be three-dimensional random vectors whose distributions are described by

the following table:




| 2 P(Z=2) P(2'=2) P(z<z) P(2'7 2) ;
1 . - - e ]
: 11 9 11 3. |
4 (o, 00,00) 81 8T 81 Y 5
~i 4 6 15 15 !
;’ (0., Oy B) _ST gl— '8_1 8—1' I
§ 4 6 15 15 ';
3 (o, B,0) 3T 31 BT 3T
3 4 6 15 15 i
; (B,a,a) 3T 58 BT B '
i 8 6 27 27
8 6 27 27 f
¥ 8 6 27 27 |
! (8,B,0) 3T 3 3 T :
: 34 36 T
-‘3 (8: Bs B) —8—1 8_1‘ 1 1 |
H J

From the last two columns it is apparent that condition (2.7) holds. Now for

i
% R2 = ZZt and R'2 = Z'Z't, we have
2, _ 11 12 24 34
’ Ef(R") = 3T f(a) + 3T f(a+b) + 3T f(a+2b) + T f(a+3b) ,
: 2 9 18 18 36
! = e— — — —
; Ef(R'7) 81 f(a) + 3 f(a+b) + 31 f(a+2b) + 3 f(a+3b)

From (2.23) it follows that Ef(R'Z) > Ef(RZ). Consequently, the assumption of
3-monotonicity in Theorem 2.2 when Z and Z' are three-dimensional is essential;

it is impossible to consider a larger class of functions. o

3. Expectation inequalities for pairs of functions

In this section we consider random vectors Z and Z' (i.e. R = Rn) which

satisfy (1.1) with A the class of all principal lower and upper ideals (-«,z]

— ey ; y §TA 7 w3
T T By VI S ) G 9 e - YR - o P, ey ‘ b AP ’1;.1 v .
N - i b i DRLARS T Y .

[



3
2
4
g
4
3
b )
3

T e e

and [z,»), z € R". When n = 1, (1.1) says that Z and I' have the same
distribution, which is not interesting. When n = 2, (1.1) says that Z and Z'
have the same marginal distributions and that their Livariate distribution
functions H and H' satisfy H > H'. Our attention will be focused on the
bivariate case, and only at the end of the section will we consider a higher
dimensional case.

It is shown in {2, 12] that (1.1) <=> (1.2) with Fl the class of all
quasi-monotone functions (cf. (1.14)) for which the expectations in (1.2) arc
defined and which satisfy certain minor regularity conditions. (See
Theorem 1 in [2].) The separation approach yields (1.5.iii) with F2 defined by
(1.4) as the class of all pairs of functions 2,k which can be separated by a
quasi-monotone function m: f£=m+f,k=m-g where f and g are nonnegative. (Large
classes of quasi-monotone functions are known or can be constructed; see for
instance [2].) When £ and k are separated by a quasi-monotone function then
they satisfy (1.15) (cf. (1.4) and (1.14)). [owever (1.15) is not sufficient
for 2 and k to be separated by a quasi-monotone function: there exist
functions £ and k satisfying (1.15) which are sufficiently close that no
quasi-monotone function can exist between them. This is easily demonstrated
with the aid of Figure I.

In Figure I, relevant values of k and ¢ are indicated at various points
within an array of eight points possessing a particular geometric orientation
in the plane. In order to obtain a contradiction, it is assumed that a
quasi-monotone function m satisfying £ > m > k does exist. Figure I indicates
two points in the array where it is impossible to define m simultaneously. In
order to insure that (1.15) is satisfied, it is sufficient to define k as -10,
say, and £ as 10 at all points in the plane for which an explicit definition i-

not given in Figure I.

R i o s L o e e -t
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DI L —— o (2=0)

(m=8) —————————— (-kf-“%:-l-) ----------- . (3=0)
(2=0) i ------------- i ------------- j (k=0)
(m=0)

FIGURE 1

By referring to the four points in the lower left-hand corner of Figure I, onc
can easily deduce from £ > m 2 k and the quasi-monotonicity of m that the
inequality o + B < 1 must hold. In the same way, one can obtain the
contradicting inequalities o > 1 and B 2 1 by examining the four points in the
lower right- and upper left-hand corners of Figure I, respectively. Thus no
quasi-monotone function m exists which satisfies £ > m > k. This example
suggests the possibility that (1.1) can hold without (1.3) holding for all
functions k and £ which satisfy (1.15) (and for which the expectations in (1.3)
arc defined). In fact, an example based upon Figure I is easily constructed:
Let the distribution of Z assign mass 1/3 to each of the points in Figure 1 at
which £ = 0, and let the distribution of Z' assign mass 1/3 to each of the
three points in Figure I at which k is explicitly defined. It is easily
checked that (1.1) holds but ER2(Z) < Ek(Z').

Thus if Z and Z' are bivariate random variables with equal marginal
distributions and with bivariate distribution functions satisfying H = H' (i.e.
if (1.1) holds), then in general this does not imply that (1.3) holds for all
functions k and £ satisfying (1.15). We now show that this implication is true
in certain special cases, using the variation of the surrogate approach
involving condition (C0), which is described in the introduction. We begin

with the normal case.
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Theorem 3.1. Suppose Z and Z' are bivariate normal random variables with
common means and variances and with correlation coefficients o and p'
satisfying the inequality p > p'. Then (1.3) holds for every pair of functions
k and L which satisfy (1.15) and for which the expectations appearing therein

make sense.

Proof. Let (S,T,U) be normally distributed with a zero mean vector and the

covariance matrix

1 o (p'-p)

r = P 1 (p'-p)
(s,T,0)
(p'-p) (p'-p) 2(p-0")

Define
X =u oS, Y1=uy+0yT, X,=u,+o, (5+U), Y2=uy+0y(T+U) s

where (ux,uy) is the common mean vector, and oi and oi are the common variances
of H and H'. It is easily checked that (Xl,Yl) and (XZ’Y7) have distribution
function H and that (Xl,Yz) and (Xz,Yl) have distribution function H'.

2

Moreover (XZ'XI)(YZ'YI) = cxoyU > 0. Thus condition (CO) is satisfied and

(1.3) follows from (1.15), via (1.16) as discussed in the introduction. )

Thus when Z and Z' are as in Theorem 3.1, and F2 is the class of all
pairs of functions 2 and k satisfying (1.15) and for which the expectations in
(1.3) are defined, we have p > p' ~> (1.3). On the other hand we clearly have
(1.3) => (1.2) and, as was already mentioned, (1.2) <> (1.1) which in this

case is equivalent to H > H'. Thus p 2 p' => H 2 H', which is a special case

of an n-dimensional result due to Slepian [9]), and which implies p 2 p' <=>H = i .
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It then follows that when Z and Z' are bivariate normal variables with common

means and variances then
p >p' <>H 2z H" <> (1.2) <> (1.3)

Theorem 3.1 can be extended to higher dimensions and from normal to
elliptically contoured distributions. If Z is an n-dimensional random (row)
vector and, for some n (row) vector py and some nxn nonnegative definite matrix
%, the characteristic function ¢Z-u(s) of Z-u is a function of the quadratic
form sZst, ¢Z-u(s) = ¢(sZst), we say that Z has an elliptically contoured
distribution with parameters u, L and ¢, and we write Z ~ ECn(u,Z,¢). When
o(u) = exp(-u/2), ECn(u,Z,¢) is the normal distribution Nn(p,z). The location
and scale parameters py and I can be any n vector and any nxn nonnegative
definite matrix, while the class @k of admissible functions ¢ depends on the

rank k of Z, r(X) = k, and consists of all functions of the form

ow) = Qk(rzu)dF(r) , w0,
[0,=)

for some distribution function F on [0,«), where Qé||s||2), S ¢ Rk, is the

characteristic function of the uniform distribution on the surface of the unit

sphere of.Rk. This follows from a theorem of Schoenberg [8] and is discussed

in [1] where the following useful stochastic representation is also introduced.

Let T = AtA be a rank factorization of I, i.e. A is kxn and r(Z) = k = r(A).

Then Z has the "canonical' stochastic representation

29, g

where the equality is in distribution, R is a nonnegative random variable (with

distribution F), U(k) is a k-dimensional random vector uniformly distributed on

e Y TR Y b by gy o s
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(k)

the surface of the unit sphere in Rk, and R and U are independent.

Theorem 3.2, Suppose that 7 ~ ECZ(u,X,¢) and Z' ~ ECZ(u,F',Q) where

2 2 '

o) PO, 0, 9y p' 0,0,

0,0 02 tg,0 2

P9192 2 P99 92

and p = p'. Then (1.3) holds for every pair of functions k and L which satisfu
p

(1.15) and for which the expectations appearing in (1.3) are defined.

Proof. If p =1 and p' = -1 we have

Z'gu+RU(1)A'

Zgu+RU(1)A 1

1 3

(1)

where A1=(01,02), Ai=(ol,-02). Since R and U are independent, in order to

show E2(Z) = Ek(Z') it suffices to show

Ez(u+ru(1)Al) > Ek(u+rU(l)Ai) , r>0. (3.1)

Since k(+) and 2(-) satisfy (1.15), so do k{u+re) and (u+r-) for every u and

r > 0. Thus it suffices to show (3.1) when y =0 and r = 1, i.e. it suffices

to show EQ(U(I)AI) > Ek(U(l)Ai), which is written as

1 1 1 1
EQ(—OI’—GZ) + ig(ol’cz) = 7k('01:02) + _Z'k(cls‘Gz)

and follows from (1.15). ]
Now assume that at least one of p,p' differs from 1 in absolute value. ﬂ

Putting
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g, €OS J., sin a g, cos o' g, sin a'
1 2 1 2
A = and A' = ,
] 3 ] 1]
o, sin « 0, cos a o, sina a9, c05f1)
' -m . v L . . . : 2 [ : 9,00
where « and a', 7o asg, are defined by ; = sin 2a and o' = sin 2y', we

have J = AtA and ' = A'tA'. When -1 < p' < p < 1 then both i,!' are full
rank and r(A) = 2 = r(A') so that X=AtA, X'=A'tA' are rank factorizations of

%,5'. 1t then follows that

28er0Pa, 208 eruPar . (5.2)
When one, but not both, of p,p' equals 1 in absolute value, say -1 < p' < p = 1,
AP,
then 2' ¢y + RUPar and €5 L gzt = [ o (fsershaR)
0,)
where F is a distribution of R. Since
is(z-p)"® t 2t
Ee = o(szs) = [ Q,(xr"sis")dF(r)
(0,)

it is easily checked that Z d o+ RU(Z)A. Hence (3.2) holds provided at least
one of p,p' differs from 1 in absolute value. Because of the independencc of
R,U(z), arguing as before, it suffices to show that EQ(U(Z)A) 2 Ek(U(Z)A').
This will be done by defining a random vector (XI’XZ’YI’YZ) which satisfies
condition (CO); (X;,Y;) and (X,,Y,) will be distributed as U'2A, (x,,Y,) and
(X,,¥;) will be distributed as u@ar, and the product (X,-X))(Y,-¥,) will be

nonnegative.

The random vector U(Z) can be taken to be (sin u,cos 8), where 8 is

uniformly distributed on any interval of length 2n. Then

U(Z)A = (ol sin(6+a) , o, cos(6-a)) , U(Z)A' = (01 sin(6+a') , o, cos(8-a'))

(3.3)
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Let
S=sin(8+a) , T=cos{(6-a) , V=sin(a'-0) ,
and define

X, =0

= [} - = s !
1 1S, X2—01(5+2 cos(a+a')V) ,Yl-ozT, Y2 02(T+2 sin(a-a')V)

Since 2 sin(o-a')cos(a+a') = sin 20 - sin 2a' = p - p' 2 0, it follows that

(Xz-xl)(Yz-Yl) > 0. By further trigonometric manipulations, one obtains

S + 2 cos(o+a')V = sin((2a'-0)+0) , T+2 sin(a-a')V = cos((2a'-08)-a)

Since 2a'-6 is uniformly distributed on an interval of length 2w, (Xz,Yq), as
well as (Xl’Yl)’ is distributed as U(2)A. Similarly, one finds that (XI’Y7)

(2)

and (XZ,YI) are distributed as U A'. This completes the proof.

Remark. Implicit in this proof is the use of a fact about any two ellipses
which are inscribed in the same rectangle. Each point on one of the ellipses
is the vertex of a rectangle whose opposite vertex is on the same ellipse and
whose adjacent vertices are on the other ellipse. (In fact there are two such
rectangles.) Whether this is a known fact from projective geometry is unknown
to the authors. (In the present context, the two ellipses are the ranges of

the random vectors U(Z)A and U(Z)A'.)

When k and # are functions of x * y.

\
Suppose k and £, which are defined for (x,y) ¢ R", are functions of the

sum x+y. For convenience, we shall write them as k(x+y) and 2(x+y). In terms

of
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u = %("1“"2”1*)'2) »V = %("2"‘1*)'2”1) P W= %'xz"‘l*yl'yzl ’
the inequalities (1.15) become é
Q(u+v) + 2(u-v) = k(u+w) + k(u-w) , ue R, 0 <wsv <o (3.4) é

When k = £, this condition is equivalent to convexity. Thus k(x+y) is
quasi-monotone (as a function of (x,y)) if and only if it is a convex function
(of the single variable t = x + y).

In general, k can be no larger than k* defined by

1

7—inf{2(u+v) + 2(u-v) 1} . (3.5) i

vz0

k*(u) =

(Set w = 0 in (3.4).) Assuming that k* is finite and measurable, k can equal
k* if and only if
inf{¢(u+w+a) + L(utw-0)} + inf{L(u-w+a) + 2(u-w-a)} < 2{2(u+v) + (u-v):
w20 az0

for all u ¢ R, 0 < w < v < ®, This condition is met if for each u ¢ R, w > 0

and v > w, there exists an o 2 0 such that

fu(w+a) + fu(w-a) < qu(v) s (3.6)

where fu is the ewen function defined by fu(v) = f(u+v) + 2(u-v). A suitable
value for o can be obtained if fu is nondecreasing (set a = 0), nonincreasing
(set a = v + W), or concave (set a = v) on [0,»). Summarizing, if k* is finite
and measurable, and if for each u, f(u+v)+2(u-v) is a nondecreasing,
nonincreasing or concave function of v on [0,»), then k* is a suitable and
maximal choice for k. Under these conditions on k* and ¢, any measurable

function k < k* satisfies (3.4).

TRE™

AR e i 4
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j The following are examples of functions ¢ which meet these conditions:

# (i) If 2 is convex (as a function of the single variable t = x + y), then é
f ¢ (u+v)+2(u-v) is a nondecreasing function of v on [0,<) and k* = £. %
'ﬁ (ii) If % is a symmetric function with respect to some point (uO,Qo) in R2 %
i@ (i.e., if Q(u0+v) + Q(uo-v) = 220, v = 0), and 2 is concave on [uo,m), ;
-x then 2(u+v)+2(u-v) is a nonincreasing function of v > 0 for u 2 ug and is ?
' a nondecreasing function of v =z 0 for u < uy- It follows that k* = & i
| on (o)

The values of k* on (uO,W) must be evaluated from (3.5) in each specific
?l case, and it must be checked whether k* is finite and measurable. For 5

instance, if 2 is the distribution function of a normal random variable with )

mean i and variance 02, then k* = ¢ on (-«,u] and k* = %-on [u,); hence k*

'; is a maximal choice for k. (This is another example of functions k and £
satisfying (1.15) which can not be separated by a quasi-monotone function m,
i.e., there is no function m which satisfies (1.14) and k < m < 2. The
details are left to the reader.)

When the supports of X+Y and X'+Y' are not the entire real line, the
y ranges of u, v and w in (3.6) can be reduced. Thus k and ¢ will have to
é satisfy fewer restrictions, and a wider variety of suitable k,f pairs will be
4 permitted. (The same can be said when k and ¢ are general functions on ]R2 and
the supports of (X,Y) and (X',Y') are proper subsets of Rz.)

When k and 2 are functions of x-y (instead of x+y) the analogue of (3.4)

is
L(utw) + 2(u-w) 2 k(u+v) + k(u-v) , ueR, 0 < wsv <>, (3.7,

(the definitions of u, v and w must be modified appropriately) and the analysis

of (3.7) is similar to that given for (3.4).

i
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A generalization to higher dimensions.

A higher dimensional version of Theorem 3.2 can be proven by reducing

the dimension to 2 through conditioning.

Theorem 3.3. Suppose that 7 ~ ECn(U,Z,¢) and Z' ~ ECn(U,Z',¢) where
= ‘= ! = ! > i i 7 1) v naLtr o
Z"(Jij)’ ) —(oij), 041%%1 ° Oij‘oij s 12 3. Then (1.3) holds for any pair c

functions k and & of n variables for which the expectations appearing in (1.3)

mak: sense and which satisfy (1.15) as functions of any two of the n varickles

for all fixed values of the remaining n-2 variables.

Proof. According to the argument in the first paragraph of the proof of

Theorem 5.1 in [3], it suffices to prove the result in the case where G2 > C

—
o

t . . N
and oij = Oij for all (i,j) = (1,2),(2,1). Write

I

..z
1 712

2=(21,2,) » u=(uy,u,) , I=| 00
21 722

where Zl’“l are two-dimensional and le is 2x2, It is easily seen via the

characteristic function that

I 0 0 )
(Yl’Yz) = (Zl"ul » Zz'“z) —z+ 5 I ~ Ecn [0: [0 222J5¢]
22721
+ . Cading . X A . - _ +
where 222 is the self-adjoint generalized inverse of 222 and 7 211 212222 Ioye

Now let RU(n) = R(UI’UZ) ~ ECn(O,I,¢], where U1 is two-dimensional. Then

1L
¥,,v) $R,U [P0 )7 C R e, Uy
1°Y2 %o 5, TR PYS

and
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d L 4 1 1
I = 2 }‘* 2 . i
1°22) = (upPRUST T )50y o+ RU B% 2, i +RU, 2,

o
"
~
™~

Since U(n) is uniformly distributed on the surface of the n-dimensional unit
d t. kL 2 .
sphere, (UﬂU2=u2) = [l-uzuz]f U( ) where [2], = max(a,0). (See for instancc

Lemma 3 in [1].) Since R and V are independent, it follows that for ail r ¢

and u2,
3 i t

((21,22)|R=r, U2=u?) = (u*+r*U(“)T*‘, L FTUL L) (5.3)

where
Lo+ t. . +
= y2 5 =rl]- T L
i A L PRI S Rt PR KRR SR
. M1 %2 .
Since I' = 5 5 s 27 = (Z’,Zé] satisfies (3.8) with u*' = p*, r*' = r* ang
21 ~22

nxr = Zil - ZIZXEZEZI' In order to verify E2(Z) = Ek(Z') it thus suffices to

show that for all r > 0 and Uy,

EQ( *+1‘*U(2)Z*l/2 +TU ):‘1/2 ) > Ek( *+r*U(2) y*u?.i +rU )
¥ » Hp 25227~ H ~ ) 9i90

and this follows from Theorem 3.2.

Remarks. 1. By letting k and % in Theorem 3.3 be iqdicator functions of
(-»,2], z ¢ Rn, one obtains the inequality H > H' where H and H' are the
distribution functions of Z and 2' respectively. For normal distributions this
inequality is a well-known result due to Slepian [9], and for elliptically
contoured distributions it has been obtained by Das Gupta et al. [3]} under the

assumptions that the matrices 1 are invertible and that densities exist.
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2. Undcer the assumptions of Thcorem 3.3 it is also true that
- . . n » n
PeZ A} PiZ" A ftor every set of the form {ueR ,u-r}, z ¢ R . Thus all
resu’t in  ».~ section are concerned with random vectors that are
stuochasticadly ordered in the sense described in the beginning of this section.

(Th.s observation muy point the way to extensions that are not confined to
fuclidean-space-valued random variables.)

3. The approach used in proving Theorem 3.3 can be used to extend
the theorem to random vectors Z and Z' with more general distributions than
elliptically contoured. For instance the theorem holds for random variables

(k)AR and Z' d U+ U(k)A' R, where R is any random

(k)

matrix with nonnegative components which is independent of U "-.

with distributions Z d u+ U

4. Necessary and sufficient conditions for (1.3)

It is possible to characterize the bivariate distribution functions H and

H' which satisfy condition (CO). This is accomplished by a straightforward

generalization of the proof given by Sudakov [11] of a theorem by Strassen (il].

Cast in our context this slight extension of Strassen's theorem says that (0}

is equivalent to the following condition (C1):

1,, satisfy (1.1%5)

(C1) P(ZeA) 2 P(Z'eA') , (A,A') € A, = {(A,AY): 1,,1,,

Thus if (C3) denotes the following,

(C3) EL(2) = Ek(ZY) , (2,k) € Fz, the class of all functions £,k which
satisfy (1.15) and for which the expectations are
defined ,

we have that conditions (C0), (C1l) and (C3) are equivalent. The implications
(C0) => (C3) and (C3) => (Cl) are immediate, and the nontrivial ones are

(C1) => (C3) => (CO).

LT TTRLT
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Two indicator functions k = 1A and £ = IB satisfy (1.15) if and only if

A ¢ B and for every rectangular set of four points in Rz

the number of points of {a,c} in B is larger than or equal to the number of
points of {b,d} in A. By choosing various such pairs of sets A and B one finds
that the inequality in (C3) requires H and H' to have common marginal
distributions and to satisfy H 2 H'. 1In the case of normal or elliptically
contoured distributions H and H', these two properties imply (C3) as shown in
Theorems 3.1 and 3.2. The case of more general distributions requires further
investigation.

Because of the equivalence of conditions (C0), (C1) and (C3)}, our goal,
i.e. condition (C3), can be achieved by establishing either condition (CO) or
(C1). In Theorems 3.1 and 3.2 condition (CO0) is established. Even though
condition (Cl) is very natural and satisfactory, especially in its relationship
with (C3), it is unfortunately very difficult to verify, and we have failed to
achieve this for any distributions H and H'.

The equivalence of (C0), (C1) and {C3) is a special case of a more
general situation which provides new ways of obtaining inequalities of the type
(1.3), and of showing the existence of joint distributions with fixed support
and with certain marginals fixed. To illustrate the power and novelty of this
approach let us consider a few examples.

Let F be a closed subset of R4, and consider an inequality between

functions k and ¢ of the following type (simpler than (1.15))




42

(CF) l(xl,)’l) 2 k(xzx)'z) ’ (xl:xz,yls)'z) e F,

and the following conditions which depend on F.

(COF) There exists a random vector (x1'x2’Y1’Y2) whose values are in the set

F and which is such that the bivariate marginal distributions of (Xl,Yl)

and (X2,Y2) are H and H' respectively.

(C1F) P{ZeA) = P(Z'€A') , (AAY) ¢ A2 = {(A,A"): lA’lA' satisfy (CF)} .

(C3F) E2(Z) = Ek(Z'") , (2,k) ¢ F2, the class of all functions 2,k which
satisfy (CF) and for which the expectations are
defined.

By Strassen's theorem, (COF) and (C1F) are equivalent. Also, if (COF) holds we

have

2(X,Y)) 2 k(X,,Y,) a.s.

for all pairs k and % satisfying (CF), and by taking expectations (C3F) follows.
Thus (COF) => (C3F) and clearly (C3F) => (C1F). Hence conditions (COF), (C1F)

and (C3F) are equivalent. By choosing
F = {(xl:xzsyls}'z): X12X2 » YIZYZ} )
(CF) becomes Q(xl,yl) > k(xz,yz), X} 2 Xy, Y5 2 Y55 (C1F) is equivalent to

H(I) =2 H'(I) for all increasing sets I ;

and the result includes Theorem 1(i), (iv), and (vi) of Kamae, Krengel and

O'Brien [4]. Of course, any one or both of the inequalities in the

definition of F could be reversed with corresponding results. If we choose
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F = {(xlxxz»yll)'z): max(lxll’l)'ll) = max(|x2|,|y2|)} »

then (C1F) becomes equivalent to
H(A) = H'(A) for all squares A = {(x,y): [x|<a, |y|<a}, 4.1)

and thus (4.1), (COF)} and (C3F) are equivalent. When H and H' are normal with
zero means, common variances and correlation coefficients p and p' satisfying
[o| = {p'], then (4.1) is satisfied and thus (COF) and (C3F) hold, both new
results. The same is true for absolutely continuous elliptically contoured
distributions EC2(O,Z,¢) and ECz(O,Z',¢), where I,Z' are as in Theorem 3.2 with
o] = |p*[; in this case inequality (4.1) follows from Theorem 2.1 of [3].

For not necessarily absolutely continuous elliptically contoured
distributions EC2(0,2,¢) and EC2(0,Z',¢), where £,I' are as in Theorem 3.1 with
|o} = |p"|, we now give a simple proof of (C3F), and thus also of (4.1), in the
case where the common variances of 7,I' are equal. The approach is through a
construction similar to that of Theorem 3.2 and thus the result is obtained
without using Strassen's theorem. Also the result is slightly stronger than
that in the previous paragraph in that the elliptically contoured distributions
are not required to be absolutely continuous. Even though we are assuming for
simplicity of the construction that the common variances of I,%' are equal, no
doubt a similar, but somewhat more involved, construction would be fcasible

when the variances are not equal.

Theorem 4.1. Suppose that 7 ~ ECZ(O,Z,¢) and Z' ~ ECz(O,Z',¢) where

and |o| 2 |p'|. Then (C3F) holds, as well as (4.1).

sy oy o
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; "
Proof. As in the proof of Theorem 3.2 it suffices to show EQ(U(”)A) b Ek(U‘(')A'.
(here u = 0). This will be done by defining a random vector (xl’xz’Yl’Y”)

which satisfies condition (COF); i.e. (x;,Y) $ A, (x,,v,) $ 0 @ar, ana

max (X, [, [Y, 1) = max(|X, ], [Y,]).

(2)

The random vectors U(z) and U can he taken to be (cos 0, sin ) and
(cos 0', sin 6'), where 0 and 0' arec uniformly distributed on intervals of

length 2n. Then we can take

(Xl,Y1)=o(cos(6-a), sin(6+a)) , (XZ,Y2)=o(cos(6'—a'), sin(8'+q"))

where sin 2a=p, sin 2a'=p?', —%—s o, a'< %—. We will now determine the joint

distribution of (6,8') so that the marginals will be uniform on intervals of

length 27 and
max{|cos(6-a) |, |sin(B+a) |} < max{|cos(B'-u')|, |sin(e'+a") |} . (4.2)

We have

v

[cos(8'-a")| 2 |sin(8'+a')| <=> cos 2(8'-a') 2 -cos 2(6'+a')

<=> cos 26' cos 20' =2 0 <> cos 28' 2 0

and similarly

|cos(8-a) | < |cos(8'-a')| <= sin(6+6'-y)sin(6-6'-B) = 0
|sin(8+a) | < |cos(8'-a')| <= cos(8+6'+B)cos(8-6'+y) 2 0
[cos(8-a)| < |sin(6'+a')| <= cos(6+6'-B)cos(6-8'-y) < 0 ;
|sin(8+a) | < |sin(8'+a')| <=> sin(6+0'+y)sin(6-6'+B) < 0

(NE

where B=a - a', y=a +a' (0 <B=< %, 0 <y <35). Thus (4.2) is equivalent

to

LN P A R A
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cos 26' 20 cos 26'<0
sin(6+6'-y)sin(8-6'-B) = 0} or {cos(6+6'-R)cos(H-6'-y) < O (4.3)
cos(0+0'+R)cos(0-0'+y) = 0 sin(8+0'+y)}sin(0-0'+B8) < O
The two sets of inequalities in (4.3) determine the set where the support of
the joint distribution of (6,6') must lie.
Let us first consider the case where 0 < p'< p, i.e. 0 < a's a < %
When o = o', i.e. B = 0, we can take 6 = 6'. In the general case, § > 0, we
can take 8 to be the following function of 6':
Ll 7 3 5
6 =06 +8 for -7 s<6'<gz-8, o< -8
™ il i) 5
=0 +B-7 for 1-RgO' <], Mogco<
(4.4)
=06 - B for %+BS8'<§££, %Tl+sse'<74—"
=8'-B+%for %se'<%+e, %Tnge'<§gl+8.

Since the relationship between 6 and 8'in [-g—,%) is one-to-one and piecewise

linear with slope 1, if 6'is uniformly distributed on [-%,—741) , then so is 6,

Moreover the pairs (6,6') defined by (4.4) satisfy conditions (4.3) and we now

'

check this for —-g- <9'< %, in which case cos 20' > 0 (the remaining cases

being similar). When T ocpr< g— - B, we have 6

7 ' + 8 and thus

sin(6+0'-y)sin(6-8'-B)=020, cos(0+8'+R)cos(H-6'+y}=cos 26 cos 2220

When%-Bse'<%wehavee=e'+8-%andthus

sin(8+6'-Y)sin(0-6'-B) = sin(zeue-g-y)sin(-g) = cos 2(8'-a') > 0
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since 0 = §' -a''< %, and

cos(0+0'+R)cos(0-0t+y) = cos(20+-%)cos(ﬁ+y—:%) = -sin 20 sin 20 > 0

. i T
since vy <6 < -5

The remaining cases are treated similarly, and Figure II shows the graph
of 8 = £(8') which achieves the desired properties. The graph is plotted for

ST o< 3" and for 3T <o < 1™ the graph is obtained by shifting the plotted

4 4’ 4 4
graph by (m,m). 0

If we choose
F= {(x,%y,) |x] 2 [x,] or |y} 2 |y,|}
then (CIF) becomes equivalent to

H(AC) > H'(Ac), j.e. H(A) < H'(A), for all rectangles A = {(x,y): |x[<a, |[y|sD},

(4.5)

and the corresponding conditions (COF), (C3F) and (4.5) are equivalent. When
H and H' are absolutely continuous elliptically contoured distributions
EC2(0,2,¢) and ECZ(O,Z',¢), where I,I'are as in Theorem 3.2 with [p| < |p'{,
then (4.5) is Theorem 2.1 of [3], and thus (COF) and (C3F) both hold.

If we choose
- . m
F = {(xl,xzsyll}'z)' (xlsyl) 2 (x2’y2)} ’

. : m
where for two-dimensional vectors (x;,y,) 2 (x55Y,) means max(xl,yl) > max(x,,y,)

and XptY) =Xyt Y then (C1F) becomes equivalent to
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H(A) = H'(A) for all measurable Schur-convex scts A (4.6)

(A is Schur-convex if Z ¢ A and 2' .M 2 imply Z' . A) and the corresponding
conditions (COF), (C3F) and (4.6) are equivalent. This is Theorem 2.2 in [6].

All the examples described above have obvious n-dimensional analogues.
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