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VACUUM ULTRAVIOLET PHOTOELECTRON EMISSION SPECTROSCOPY OF WATER AND

AQUEOUS SOLUTIONS

Iwao Watanabe,t James B. Flanagan,* and Paul Delahay*

Department of Chemistry, New York University, 4 Washington Place, Room 514,

New York, NY 10003

(Received )

Experimental methods are developed for the photoelectron emission

spectroscopy of water and aqueous solutions (halides, hydroxyl ion,

phosphoric acid and phosphates) up to 10.5 eV. The yield for emission

of photoelectrons by the liquid into water vapor is measured as a function

of photon energy. Threshold energies are determined by extrapolation from

emission spectra. Photoelectron emission by liquid water obeys Urbach's

rule and has a threshold energy of 9.3+0.3 eV. This threshold is

compared with the literature value of 8.7+0.1 eV for the threshold energy

for amorphous ice. Threshold energies for halide and hydroxyl ions are

obtained by application of the Brodsky-Tsarevsky theory of photoelectron

emission by solutions: 8.7, 7.9, 7.2. 8.4 eV, respectively, for Cl', Br-,

I-, OH" ions. The emission spectrum for Br" is deconvoluted for spin-orbit

coupling. The threshold energies of these ions are higher by 1.6 to 1.8 eV

than the energies at the maxima of the corresponding charge-transfer-to-

solvent absorption spectra. The difference of 1.6 to 1.8 eV agrees with a

theoretical prediction. Preliminary results are reported on the effect of

ionic charge on the emission of phosphoric acid and phosphate ions.
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I. INTRODUCTION

Photoelectron emission spectroscopy of water and aqueous solutions

has been studied only to a very limited extent and only in the UV range.

Only two investigations on cyanometalate complexes1'2 and two papers on

water3'4 have been published, to our knowledge, since earlier work was

reviewed.5  Further work was deemed desirable for several reasons:

(I) Extension to the vacuum UV range (up to 10.5 eV) would greatly

enhance the scope of such studies. (ii) The methodology of the vacuum

UV photoelectron spectroscopy of liquids was developed6'7 in recent years,

and adaptation to water and aqueous solutions seemed quite feasible.

(iII) Water should be a very useful solvent because of its expected high

photoionization energy in liquid phase (cf. 12.6 eV for the first band

in the gas phase). (iv) Emission spectra could be correlated with

absorption spectra.

II. EXPERIMENTAL

A. Instrumentation

A detailed report Is available 8 on instrumentation, and only essential

points will be noted here. The instrument consists of the followin§

components:

(I) The filament-type Hinteregger hydrogen lamp already used in earlier

work. 6

(t) A vacuum-tight compartment with shutter, interchangeable filters

(glass, Suprasil, sapphire, no filter) and a chopper (12 Hz). The

monochromator side of this compartment was closed by an easily interchange-

able lithium fluoride window which protected other optical components from

degradation by the plasma and high energy photons generated in the hydrogen

lamp. This compartment was connected to a differential pumping system to

: oe
im
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avoid contamination of the kydrogen lamp by air leaking through the

joint of the shaft of the chopper.

(iii) A GCA/McPherson 0.5-meter vacuum UV monochromator, model 235,

with pumping system, model 815. Fixed entrance (I mm) and exit (1 mm)

slits were used. The entrance slit was closed with a vacuum-tight

lithium fluoride window.

(iv) A vacuum-tight compartment (Fig. 1) with sodium salicylate

converter A and photomultiplier B for monitoring of the photon flux. This

compartment was closed by a lithium fluoride window C covered with a gold

grid mesh D (80% transparency) serving as electron collector electrode

(10 to 250 V applied voltage) for photoelectrons emitted by the liquid or

solution under study. The window holder was kept at about 450C by means

of an electric heater to avoid condensation of water on the window.

(v) The vacuum-tight cell compartment (Fig. 1) with rotating quartz

disk E (52 mm diameter, 2 mm thick) partially immersed in the reservoir F

containing the liquid being studied. The liquid film on the face of the

disk was Irradiated. The gap (ca. 1 mm) between the disk and gold grid

was adjusted to keep the capacitance between the liquid film and the

collector electrode constant. The actual gap did vary somewhat with the

speed of rotation of the disk (variable meniscus), and this is why the gap

was monitored by means of capacitance measurements. The speed of

rotation was adjustable (30 to 240 rpm) to ascertain the absence of

contamination (Sec. II.B). The liquid in the reservoir was cooled by a

glass tube G in which externally cooled nitrogen gas flowed. The temperature

of the liquid was monitored with thermistor H and kept constant at 1.50C by

controlling the cooled gas flow automatically. The entire cell compartment

therefore was filled with water vapor at the equilibrium pressure
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(corresponding to 1.5C of the liquid) after the compartment was evacuated

and sealed off.

(vi) Electronics for processing the signal from photomultiplier B and

the photoelectron emission current. A platinum wire I dipped into the cell

served as electrode and was connected to a high-impedance current-voltage

converter (Burr-Brown BB3430, feedback resistance of 109 ohms). Phase-

sensitive detectors (Princeton Applied Research, model 121, and Keithley,

model 822) with ancillary equipment (operational amplifier, bandpass

filter) were used In both channels.

(vii) A Digital Equipment Corp. computer, model PDP 11/34, for data

acquisition, processing and display (graphic terminal VT55 with hard

copy unit).

Operational procedures are discussed in Ref. 8.

B. Determination of Emission Spectra

Contamination by a spurious film of insoluble material on the surface

of the liquid posed a very seriods problem with water and aqueous solutions.

This problm did not arise with organic solvents in earlier work, 6 , 7

presumably because contaminants were soluble in the liquids being studied

and their contribution to photoelectron emission was negligible.

Contaminants in this work undoubtedly were surface-active, high-molecular-

weight substances, namely, vacuum pump oil, impurities on glass surfaces

and in water and chemicals.

Decontamination was achieved by continuously running the instrument

for at least three weeks prior to the determination of emission spectra

considered reliable. The water sample was renewed several times daily to

wash away impurities. Distilled water was adequate in this work. Further

01
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purification of the water by treatment with ion e .change resin and/or

additional distillation did not result in any detectable change in emission

spectra. Progress of decontamination was monitored by measuring the

emission spectrum of water. This spectrum progressively displayed lower

emission currents as contaminants were removed. Emission currents

measured with contaminated water were dependent on the speed of the

rotating disk. The current typically decreased by one order of magnitude

when the speed was varied from 12 to 60 rpm. The current leveled off above

90 rpm. The absence of such a dependence on speed of rotation provided

a reliable criterion for satisfactory decontamination. All measurements

in this work were performed at 200 rpm.

Emission spectra obtained after three weeks of continuous operation

were reproducible within the noise level. Moreover, water samples left

for several hours in the cell did not show any detectable increase in

emission current. Discrepancy between emission spectra taken the same

day after decontamination was less than 5%. Similar reproducibility was

achieved between measurements on consecutive days except that occasionally

the discrepancy reached ca. 20%. The shape of the emission spectral curve,

however, was not affected significantly after normalization. Most of the

discrepancy resulted from variations in the level of scattered light as

a result of color center formation in the lithium fluoride window separating

the hydrogen lamp from the monochromator compartment.

Chemicals were baked at 5000C whenever feasible since contamination

levels were lowered by this treatment. The glassware and rotating quartz

disk were cleaned with 30% sodium hydroxide solution each time a solution

was changed in the cell. The apparatus was then thoroughly washed with

distilled water.
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The emission spectrum of iodide displayed a small, nearly constant

background which was ascribed to traces of 13 and/or traces of surface

active impurities in crystalline potassium iodide used for preparation of

the solutions. Potassium iodide was not baked at 5000 C as were the other

alkaline halides. The species 13 is easily formed by oxidation by air,

especially upon irradiation, and, moreover, addition of iodine did increase

the background.

Emission spectra were not corrected for attenuation of the photon

flux by water vapor in the gap between the lithium fluoride window C

(Fig. 1) and the rotating disk. No correction was made either for

absorption by window C. These two corrections were estimated from

available absorption coefficients9 '1 0 and found negligible when water or

aqueous solutions were near 1.50 C and the gap between window C and the

rotating disk did not exceed 1 mm.

Emission currents were not corrected for backscattering of electrons

emitted into the gas phase. The shape of emission spectra was not affected

when the voltage applied between the collector electrode and the emitting

liquid was varied from 10 to 250 V. The ratio of collected current to

emitted current (not much smaller than unity 1) thus was independent of

photon energy, and the complication of a backscattering correction was

avoided.

C. Quantum Yield Calibration

The ratio of the collected current for photoelectron emission by the

liquid to the photomultiplier output (B, Fig. 1) was obtained in the

computer output as a function of photon energy. This ratio expresses the

quantum yield in arbitrary units. The quantum yield scale was calibrated

by determining the emission spectrum of 1,2-ethanediol (Sec. V) since the
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absolute quantum yield for photoelectron emission by this substance is

available.6 Backscattering of electrons in the gas phase is negligible

because of the low vapor pressure of 1,2-ethanediol at sufficiently low

temperature.6 Actual quantum yields for water and aqueous solutions would

be somewhat higher because backscattering decreases the efficiency of

electron collection. 1 Absolute calibration of photon fluxes in the

vacuum UV range6 is difficult, and the error on absolute quantum yields

is easily +25% and probably somewhat higher.

A typical current of 25 picoamp for a yield of 5 x 10. 3 collected

electron per incident photon corresponds to a photon flux of ca 5 x 101

photons sec 1 . The photon flux varied considerably with photon energy

because of the many-line spectrum of the hydrogen lamp output. Moreover,

the photon flux decreased by as much as one order of magnitude (especially

in the upper photon energy range) as a result of the progressive

degradation of the lithium fluoride window adjacent to the hydrogen lamp.

III. EQUATIONS FOR EMISSION SPECTRA AND EXTRAPOLATION TO THRESHOLD ENERGY

Equations for obtaining threshold energies from emission spectra

will be listed and briefly commented upon. The emission spectra of various

materials for different processes in the threshold region can be represented

by the general equation
11'12

Y - A(E - E )aEb (1)

where Y is the emission current (quantum yield), A a proportionality factor,

E the photon energy, Eo the threshold energy, and a and b parameters in the

ranges 1 , a t 5/2 and 0 - b ! 3/2. A particular form of Eq. (1), namely,

Y - A(E - Eo) 2 was found to represent the emission spectra of benzene or

rare gases in a rare-gas matrix.
13

01'
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Photoelectron emission by solutions was treated theoretically in

detail by Brodsky and Tsarevsky. 14 Their theory predicts that the

emission current in the threshold region can be represented by the

functions (E - E0 )
2 or (E - E0 )5/2 in the two limiting cases of a more

general functional dependence (also given in Ref. 14). The theory by

these authors was verified for the emission spectra (published by this

laboratory) of ferrocyanide in water and solvated electrons in hexamethyl

phosphoric triamide and liquid ammonia.

The Urbach rule 15 is also relevant to the present work. According

to this rule, the absorption cross section near the absorption edge varies

exponentially with photon energy. This relationship is observed for many

amorphous semiconductors, and it also was found to be valid for water.16

IV. EMISSION SPECTRUM AND PHOTOIONIZATION OF LIQUID WATER

A. Emission Spectrum

The emission spectrum of water is displayed in Fig. 2 for the run

with the least contamination, that is, with the lowest emission current.

This spectrum differs considerably from the spectrum reported by Nason

and Fletcher3 since their spectrum is shifted to lower photon energies by

ca. 3 eV with respect to ours. The comparison is approximate since

emission currents and not yields are given in Ref. 3. Difference in photon

flux, 17 however, cannot account for the very large shift. We suggest that

the results in Ref. 3 were affected by contamination by surface-active

impurities. We applied the technique outlined18 in Ref. 3 to our instrument

and indeed observed emission below 7 eV. The emission current in fact

increased with time and depended on the degree of contamination of the

instrument. Moreover, our results are compatible with a study of

photoelectron emi.sion by ice by other investigators (Sec. IV.C).

'-,i
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The functional dependence of Y1/a vs. E did not fit the emission

spectrum of Fig. 2. Urbach's rule is obeyed and the plot of log Y

against E is linear (Fig. 2). Water exhibits strong hydrogen bonding

and has a high dipole moment. These two features should result in a

broad range of polarization states of water molecules in the liquid

phase. The corresponding density of states thus accounts for the

applicability of Urbach's rule. One would expect a somewhat different

situation for an ionic emitter because the strong polarization of the

medium by the charge on the emitter is then dominant versus dipole-dipole

interactions and hydrogen bonding. This is indeed the case Dec. V).

B. Photoionization of Liquid Water

The exponential dependence of the yield on photon energy precludes

the determination of a threshold energy from the data of Fig. 2. The

operational threshold for the exponential tail of the emission spectrum

in Fig. 2 is judged to be 9.3+0.3 eV. The photoionization energy I of

liquid water about OOC for the most probable configuration should be

somewhat higher than the threshold of 9.3 eV. The energy I is at least

9.5 eV and more likely about 10 eV with an uncertainty of approximately

+0.5 eV. The lower limit of 9.5 eV for the energy I is 0.5 eV higher than

the energy of 9 eV predicted by Henglein and coworkers19 from thermodynamic

cycles and a reorganizatlon energy of I eV in a vertical transition.

The operational threshold energy of 9.3+0.3 eV may be compared with

the value t 6.5 eV claimed for water20 for "internal photoionization" by

flash photolysis. The evidence for internal photoionization in Ref. 20

was the detection of the solvated electrons produced by flash photolysls.

The difference 9.3 - 6.5 - 2.8 eV is hardly accountable, and clearly the

production of solvated electron by flash photolysis involves a process
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different from photoionization of water as occurring in photoelectron

emission into the gas phase. The discrepancy is smaller if one compares

the energy of ,e 6.5 eV of Ref. 20 with the threshold energy of 8.4 eV

for OH- ions in solution (Sec. V).

The photoionization energy of water in the gas phase is 12.6 eV, and

therefore one estimates 2.6+0.5 eV for the algebraic sum of the following

energies: the energy for electronic polarization of the medium by the

positive ion produced by photolonization; the energy of the quasifree

electron in water with respect to the vacuum level; the surface potential

at the water-water vapor interface. The value of 2.6+0.5 eV is

significantly lower than the electronic polarization energy of 4.4 eV

calculated by Grand et al.21

C. Comparison with Photoelectron Emission by Amorphous Ice

The threshold of 9.3+0.3 eV for liquid water is higher than the

threshold energy of 8.7+0.1 eV reported by Baron, Hoover and Williams22

for amorphous ice at 13 and 80 K. Other data than those of Ref. 22

obtained by photoelectron spectroscopy (UPS, XPS) of water or ice films

on various substrates 23-2B cannot be used for comparison with our result

because of the uncertainty on the energy reference level (surface potential

correction). The shift of 0.6+0.4 eV toward higher photon energies from

ice to water may be accounted for by perturbation of the electronic states

of water upon condensation29 and by the difference in temperature of the

two se+- if experiments (cf. temperature dependence of Urbach plots 15).

The shift of 0.6+0.4 eV agrees quite well with the shift of ca. 0.5 eV

one calculates from the following data: the absolute quantum yield of

ca. 1.2 x 10-3 electron per incident photon at 10 eV in Ref. 22; the

absolute yields of ca. 3 x 10-5 collected electron per incident photon
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in Fig. 2; and the slope of 1.88 per eV for the logarithmic plot in

Fig. 2. The calculation is approximate because the slopes of the Urbach

plots are not exactly the same for water and ice.

V. EMISSION SPECTRA AND THRESHOLD ENERGIES OF HALIDE AND HYDROXYL IONS

The emission spectra of the halides (except F') and hydroxyl ions in

aqueous solution are displayed in Fig. 3. The emission spectrum of water

is also shown for comparison, and the spectrum of 1,2-ethanediol is given

for calibration of yields (Sec. II.C). The emission spectrum of a

saturated sodium fluoride solution (N I M) was identical to that of water,

and therefore the photoionization energy of F" ion in aqueous solution is

too high to allow experimental study. No cation effect was observed for

lithium, sodium and potassium salts. The proportionality between yield

and concentration was verified for the halides in the 0.1 to 2 ,14 range.

Incidentally, this proportionality relationship is not obeyed when the

instrument is not properly decontaminated.

Yields raised to the power 0.4 and 0.5 according to the Brodsky-

Tsarevsky theory 14 are plotted in Fig. 4 over a range of ca. 0.7 to 1 eV.

The small constant background in the iodide emission spectrum (Sec. II.B)

was subtracted before the plotting of Fig. 4. These plots involve the

implicit assumption that the photolonization cross section of the halides

in solution is a step function of photon energy. This assumption is quite

correct for photodetachment in the gas phase 30-33 but some broadening is

to be expected in solution. The Y0 '4-plot for iodide in Fig. 4 is indeed

linear and yields a threshold energy of 7.2 eV. The less satisfactory

y 0 .5_-plot for this ion yields 7.3 eV, the difference of 0.1 eV between

the YO.4_ and Y 05-plots being typical of the uncertainty from the
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extrapolation method. If the range of photon energies is extended

above ca. 1 eV, the Y0 .5-plot for iodide is quite linear whereas the

yO-plot becomes less linear.

The plots of Fig. 4 for bromide ion deviate significantly from

linearity. However, the emission spectrum of this ion consists of two

overlapping spectra because of the 0.5 eV spin-orbit coupling observed

in the gas phase. 30  Linearity for the Y0 .5-plot was restored after

deconvolution. The experimental yield curve A (Fig. 5) was fitted with

curve B accounting for the dependence of the yield on (E - E1)
2, where

E is the photon energy and E1 the lower threshold energy. Curve B was

then subtracted from the experimental curve A. The resulting curve

corresponds to the contribution from photoionization with threshold

energy E2. The Y0 '5-plot of this curve (line C in Fig. 5) is indeed

linear, and the difference between the threshold energies, E1 = 7.9 eV

and E2 8.5 eV, thus obtained is equal to the splitting energy of

0.5 eV. This analysis, however, leads to the conclusion that the cross

section for transition to the 2P3/2 state is less than one-fifth of the

cross section for the 2P1/2 state, and this seems unreasonable.

The plots of Fig. 4 for chloride ion are not satisfactory, and the

emission spectrum is best represented by an exponential dependence on

photon energy in the threshold region. We tentatively selected 8.7 eV

as the threshold energy of this ion in aqueous solution. Conversely,

the plots for hydroxyl ion in Fig. 4 are quite linear, and the

corresponding threshold energy for this ion is 8.4 eV.

Threshold energies thus obtained are listed in Table I with the

corresponding energies at the maxima of the charge-transfer-to-solvent

(CTTS) spectra.34 The threshold energies are higher than the CTTS

If -" , - --..-
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energies by 1.7+0.1 eV in agreement with the predicted value1 of this

difference. Threshold energies were available only for ferrocyanide ion

in aqueous solution at the time of the work in Ref. 1, and verification

of the 1.7-eV relationship was tentative because of uncertainty in the

assignment of bands in the absorption spectrum of ferrocyanide. This

relationship now rests on firmer experimental evidence. It should be

pointed out, however, that the difference between threshold energy and

the energy at the maximum of the CTTS spectrum may differ from 1.7 eV.

The CTTS state is considered 34 as rather localized near the central

electron-emitting molecule or ion whereas the energy level for the CTTS

state referred to the vacuum level may vary from one system to another.

VI. EMISSION SPECTRA OF PHOSPHORIC ACID AND PHOSPHATE IONS

A preliminary study was made of phosphoric acid and phosphate ions

to find out the effect of ionic charge on photolonization. The emission

spectra are shown itn Fig. 6. Yields increase from H3PO4 to PO
3 . The

emission for H3PO4 is somewhat higher than for water, and the emission of

PO-3 is comparable to that of Br- but somewhat weaker. The contribution

from OH" ions to emission should be quite negligible for PO4
3

Two effects must be considered: (i) the change in solvation energy

from H3PO4 to PO 3; (II) the Coulombic interaction between the species

produced by photolonizatlon and the quasi free electron being generated by

this process. Increase in the solvation energy from one species to another

should decrease the corresponding yield at a given photon energy. The

Coulombic Interaction changes from attraction for photoionizatlon of H3PO4

to strong repulsion for P043. The yields should increase accordingly since

geminate recombination is favored for H3 PO4 and strongly hindered for PO 3

34 4.

The static dielectric constant of liquid water is applicable to solvation
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processes to the crude approximation of the Born equation.35 Conversely,

the optical dielectric constant of water must be used, to a first

approximation,36 in calculating the Coulombic interaction between charged

parent species and the free electron being generated. Moreover, the

solvation energy is proportional to the square of the ionic valence

according to the Born equation whereas the Coulombic interaction with

quasifree electrons should depend on the ionic valence. One therefore

expects that solvation be dominant with respect to the effect of Coulombic

interaction, and one would predict a decrease of yield from H3PO4 to PO
3.

The opposite trend is in fact observed, and the difference in threshold

energy of the species H3PO4 to PO4 
3 in the gas phase offsets the effect

of solvation and Coulombic interaction in geminate recombination. A

trend similar to that from phosphate ions to phosphoric acid is observed

for hydroxyl ion (8.4 eV, Sec. V) to water (9.3+0.3 eV, Sec. IV.B).
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TABLE I. Threshold and CTTS-spectrn energies.

Ion Threshold CTTS-spectrum Energy

energy energy 34  difference

(eV) (0V) (eV)

Cl- 8.7 6.98 1.7

Br- 7.9 6.27 1.6

1- 7.2 5.43 1.8

OH- 8.4 6.63 1.8
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CAPTIONS TO FIGURES

FIG. 1. Schematic diagram of rotating disk target and photomultiplier

compartment. A, wire covered with sodium salicylate; B, photomultiplier;

C, lithium fluoride window; D, gold grid mesh; E, rotating quartz disk;

F, reservoir containing liquid or solution; G, glass tube for cooled gas;

H, thermistor; I, platinum wire electrode.

FIG. 2. Yield vs. photon energy for water at 1.50C (curve A) and Urbach

plot (line B).

FIG. 3. Yield vs. photon energy for 2 M solutions of KI (A), KBr (B),

KCl (C), KOH (D), and for water (E) and 1,2-ethanediol (F) at 1.50C.

FIG. 4. Yield to the power 0.4 (top of each plot) and 0.5 (bottom) vs.

photon energy for 2 M KI (A), 2 M KBr (B), 2 M KC (C) and 2 4 KOH (D).

The scales for the yO.4 and yO.5 plots are different. Data from Fig. 3.

FIG. 5. Yield vs. photon energy for 2 M KBr (curve A). Calculated yield

(see text) vs. photon energy in threshold region (curve B). Yield to the

power 0.5 vs. photon energy for the curve obtained by subtraction of curve

B from curve A (line C).

FIG. 6. Yield vs. photon energy for 1 M solutions of K3P04 (A), KHPO4 (B),

KH2PO4 (C), H3PO4 (D).
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