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1. INTRODUCTION

' When an adaptive array is implemented digitally, the sample covariance

matrix algorithm provides a direct method of computing the adaptive weights

and rapid convergence independent of the eigenvalues of the covariance

I matrix. Previous analyses of this algorithma]have assumed that the

weights are computed using one set of array element outputs and these

weights are applied to later array outputs. This report considers the
case where the adaptive weights are tested against the same set of data

used in the weight computation.
9

For many applications, the multiple channel sidelobe canceller is

the preferred adaptive configuration. It can be shown that the sidelobe

canceller is a special case of the more general adaptive array.Lr-T In

the next section it is shown that the general adaptive array problem can be

transformed to an equivalent sidelobe canceller problem, a form which is

more convenient for some analyses. It is also shown that the array per-
1

formance is independent of this transformation, and that the effective

weights, output S/N, etc., can be computed in any convenient coordinate

system provided the transformation of coordinates is non-singular. -

2. COORDINATE TRANSFORMATIONS

Let X denote the column vector of array element outputs,

a XT = (Xl,x 2,...,X N), and Sx denote the corresponding signal vector. The

noise covariance matrix of the array outputs is 1 -

I0

i ; '!I * t '

,I I I
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Mx  E X X()

where Mx is a NxN Hermitian matrix for an N element array, E denotes the*

expectation, t the complex transpose, and all noise components (but no

signal) are included in M

The weights which maximize the S/N ratio are

Wx = Mx1 Sx  (2)

and the corresponding array output is

Z t t

WKX = Sx MxX X (3)

With optimum weights, the output S/N ratio is

(Wx S )2r = W = S x M x Sx  (4)

x x Wx

Let T denote any non-singular transformation, and

Y = T X (5)

In the new coordinate system,

M =E Yy t = T M Tt (6)
My = E Y Yx

Sy T Sx  (7)

Wy = y1 Sy (8)

y y y-_
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Combining 5 through 8,

WY (T) Wx  (9)

and

t tz W Y= W X (10)yx

i.e., the output of the array is unchanged by the transformation.

The sample covariance matrix in X coordinates is

K

K Kkl k k

where Xk denotes the kth independent sample of array element outputs and K(k

is the number of samples in the estimator of Mx. The weights based on a

sample covariance matrix are

x= Mxl Sx (12)

Replacing Mx and M with the corresponding esimators, Mx and My, and fol-
y

lowing the analysis of the preceding paragraph, it can easily be shown

the array output with weights based on a sample covariance matrix is also

independent of the transformation T. Hence, the analysis of adaptive array

performance, including the sample covariance matrix algorithm, can be per-

formed in any convenient coordinate system provided the required trans-

formation is non-singular.
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3. PROBABILITY DISTRIBUTION OF S/N

For any arbitrary adaptive array, the input vector X can be trans-

formed to a new set of coordinates in which the signal is present in only

4i one component and the noise covariance matrix is diagonal. First, let

V = /2 X to diagonalize the noise covariance matrix. Then,

Mv = E M1 /2 X Mx1 /2 = 1

V X X(13)
-112

K Sv = Mxl Sx

Next, rotate the coordinates by a unitary transformation U so that the S

vector is non-zero only in the first component, and normalize its amplitude

to unity

Y = (S 1 Sx
1  / U V

(14)

r U M X

where r0 is the S/N ratio with optimum weights, given by (4). Then,

M =r U Mx1 /2 M - /2 U  1
y 0 x x x (15)

and

r U M Sx (1) (16)

: I_0
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Note that the output S/N ratio in the new coordinate system is

Sy My Sy (My) (17)

i.e., the (l,l) element of the matrix My1

y
kl The sample covariance matrix algorithm can be analyzed conveniently

in the new coordinate system. The subscript y will be dropped in the

following equations. Again, the sample covariance matrix is

K
k-1 " (18)

Kk ul k

The weights based on this estimator are

w = M S (19)

When these weights are tested on a different set of samples than those

used in estimating W, the S/N ratio rI is

r W' S12  (20)

The ratio of rI to the S/N with optimum weights is

r r 1 ( S -M- l S ) 2 ( 2 1 )

o (S S)(S M M S)

The probability density of this variable P, was derived in [1].
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In some cases of interest, the weights may be applied to the same

set of samples used in computing W. In this case, the output S/N ratio is

r - (M'1 )II (22)

The analysis of [l can be extended to obtain an expression for the pro-

bability density of r.

[1,3]
The sample covariance matrix has a complex Wishart distribution

i.e.,

K-N

P(A) JIT F exp -tr(M'lA) (23)

where 1A1 denotes the determinant of A, N is the number of elements in the

array, tr denotes the trace of the matrix, and A = K M. The constant I(M)

is a function of K, N, and the covariance matrix M. In (23), P(A) is the

joint probability density of the elements of A, and is restricted to those

matrices A which are positive definite. It assumes that the underlying

noise process is complex Gaussian.

Consider the following representation of the matrix A.

A11  A 12 \
A = , (24)

\A 2 1 A2 2

where A11 is a scalar, A21 is a (N-1)xl column vector equal to A12, and

A22 is a (N-l)x(N-l) matrix. As in [1], A can be factored as follows
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A At2 \All-A A-1A 0
21 11 12 22 A21,

A )= (25)
A22) 22 21

and

Al = 1A1-A12 A2 A211 1A221 (26)

ii Let

A 
1 At

- 1I i i -= 1 - 12  22 12

D12 = A12 = A21  (27)

D22 = A22

The Jacobian of the transformation from (All, A12, A22) to (Dll, D12, D22)

is one, so

P(Dill D12 D = N ID K-N 1~) exp -(Dll+Dl 2 D2 D 2 + tr D22)r0

= P(Dll P('12,D22 ) , (28)

where
P(o) = c1 o- ex-roD} (29)

and C1 is a constant.
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Representing A-I in the same form as (24),

1=(All A 12~'A -, (30)

\A21  A22)

it can easily be shown that A 1 Since A = K M and, from (22), the

output S/N ratio is

r= = K A l D K (31)

Let p =r/r° o K rom (29)

C2 KK-N+l

PKN+2 exp"- , (32)

Normalizing this distribution, C2 = ,N) , and

KK-N+l

P(P) K K-N+2 exp l ,P > 0 (33)

This is the probability density function for the normalized output S/N

ratio, P = r/r0 , when the same samples are used in M for computing the

weights and for testing the weights.

From (33),

- K (34)

K--N
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Note that p > 1. When the same set of samples is used for computing the

adaptive weights and for testing these weights, the output S/N ratio is

greater than it would be with "optimum" weights, i.e., W. = MS. (This

statement assumes that a signal is not present in the sample set, and

signal is defined by the steering vector S. It will be shown in Section 5

that this algorithm using the same samples leads to a signal cancellation

effect when a signal is present.)

4. PROBABILITY DENSITY OF MEAN OUTPUT NOISE POWER

In the analysis of the preceding section, the steering signal had

the form ST = (l,O,O,O,...O). This represents the usual sidelobe can-

celler problem where the signal is present in the main channel and is

either absent or negligible in the auxiliary channels. For example,

the main channel may be fed by a high gain antenna directed toward the

desired signal source and the auxiliaries fed by near-omnidirectional

auxiliary elements. As formulated above, the magnitudes of the weights

applied to all channels vary with the noise field.

A more convertional sidelobe canceller implementation, illustrated

in Figure 1, constrains the weight on the main channel to a constant

value, e.g., unity. While the performance of the two sidelobe canceller

algorithms is equivalent, the configuration of Figure 1 with constant

main channel gain is usually more convenient to implement. With a

constant unit weight on the main channel, and no signal components in

the auxiliary channels, the output signal power is independent of the

adaptive weights.
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Auxiliary Elements

* Main
-Antenna

*Y YIN~ B
1 2 N-

Z(t) = B(t) - WY(t)

Figure 1. Sidelobe Canceller with Unit
Weight on Main Channel
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In the configuration of Figure 1, the output of the main channel

is B and the (N-i) auxiliary element outputs are represented by the

column vector Y, where YT = Y The canceller output is

Z =B - WY (35)

1 The output noise power,

WBB W YB -BYtW + WtMW (36)

M = YY
y

is minimized when

W = M- YB (37)

y

Since the output signal power is independent of the weights, the

probability distribution of the mean output noise power can be derived

from the distribution of output S/N. First consider the case of [1]

where the adaptive weights are based on a sample covariance matrix

and the resulting weights are tested on a different set of samples.

As derived in [1] the normalized output S/N ratio, given by p, of (21)

has the probability density

K! )N-2 K-N+lP(Pl ) = (N-2)'!(K-N+I)1 ! (1-131 Pl ,0 < p , 1 (38)
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Let nl,denote the normalized mean output noise power, i.e.,

- 1, (39)

0

i I

where W are weights based on a sample covariance matrix and W are

optimum weights of (37). From (38) and (39)

K! ( l )-I  N-2
P(l) (N-2)!(K-N+IT! nK+l 1 ql - (40)

The mean output noise power exceeds that with optimum weights by the

factor

l-K
K-N (41)

As before, K denotes the number of samples in the sample covariance

matrix and N is the total number of channels. The number of auxiliary

channels in the sidelobe canceller configuration of Figure 1 is (N-i).

Similar expressions for the distribution and mean of the normalized

output noise power, when the weights are computed and tested on the

same sample set, can be derived from the results of the preceding

section. The density function for the output S/N ratio, p, is given

by (33). Again



13

7I -- (42)

From (33) and (42),

K -=K K -N +l K-N eKTn 0<(33 P~ - , 0 <rP (43)

and
- K-N+l l
. K ( - - ) (44)

Note that the mean value of n is less than unity. The weights based

on a set of K noise samples reduce the noise in that sample set to a

lower mean power level than weights based on the true covariance matrix

of the noise process.

5. PROBABILITY DENSITY OF OUTPUT SIGNAL

As observed in the preceding section, the sample covariance matrix

algorithm yields weights which are more effective in cancelling the

*noise in the same sample set than optimum weights. These weights are

optimized for the particular set of samples and would not perform as

well as the theoretically optimum weights (based on the true covariance

matrix) against other input noise samples. The weights are optimized
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to minimize the output noise power in the same specific set of samples.

This suggests that these weights will also tend to cancel any signal

present in the sample set when the weights are computed from and applied

to the same samples. The following analysis shows that this is indeed

the case.

Again, consider the sidelobe canceller configuration of Figure 1,

where the weight in the main channel is constrained to unity and a

signal, if present, occurs only in the'main channel. Let

B =Y 0 + S (45)

where Y is the noise component and S is the signal component of B.

The weights based on a set of K input samples, {Yk' in the auxiliaries

and {Bk} in the main channel, are

A YB (46)
YB

where

KMy^ =K YkYkt

k=l

(47)
K *

B ^ Y k Bk
YB K 1k=l
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I
The sidelobe canceller output is then

Z = B - VY (48)

We are interested in obtaining the probability density and mean

value of the output signal when a signal is present in B and the same

samples are used for computing and testing the weights. The mean

output signal voltage in Z is the correlation of Z with S, i.e.,

Sz^

= SY + SS SY l Y(Y*+S*) (49)
0 y 0

= -Y Y ) + (SS- SY M )

In (49), the first term contains the product of S and a noise output

voltage, so its mean value is zero. The noise component of this first

tern is the output noise voltage that would be present in the absence

of a signal. When the signal is constant, the second term reduces to

SZ = SS (l Y~ M Y

=SS (50)
= SS( - q)
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where q is the fractional loss in signal. The same expression of (50)

is obtained when the signal is any function of time, not necessarily a

constant, provided its amplitude remains constant. In particular, (50)

gives the mean output signal amplitude for a constant amplitude phase

coded signal.

The probability density function for q = YM lYis derived in the

appendix. The same set of samples, {Yk }, is used in forming the sample

covariance matrix My and in obtaining the mean, V. The probability

density of q, assuming K samples of Yk are contained in both V and My

and that Yk is a zero mean complex Gaussian process, is

PFq rK) qN-2( K-N

P(q) =(-I) 1(N-I q l(1-q) 0 < q < 1 (51)

where N-1 is the number of auxiliary elements. The mean value of q is

N K 1 (52)

so the mean signal voltage is reduced by the factor (I- Nl). This

is the same factor obtained earlier in (44) for the reduction in mean

output noise power.

6. CONCLUSIONS

In a digital adaptive array or sidelobe canceller, the sample

covariance matrix algorithm can be used to obtain adaptive weights

based on a set of array output samples. Applying these weights to

the same set of samples to obtain the corresponding set of array

------- - 1-- -- --
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outputs is an effective method of optimizing the system performance in

a rapidly changing noise field. The weights are always optimized for

the specific noise field which is present during the sampling period.

The probability density functions for the output noise power and output

signal amplitude have been obtained for this same sample algorithm. It

was shown that the application of same sample weights reduces the mean

output noise power (Eq. 44) and mean signal amplitude (Eqs. 50 and 52)

by the same factor.

A

*
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APPENDIX

Distribution of X MIX

To obtain the probability distribution of this quadratic form

consisting of complex variables, a corresponding quadratic form will

first be defined in terms of real variables and real matrix elements.

Let

'I
X =U + A1 V

(Al)

~V

where U and V are column vectors of real variables. The corresponding

covariance matrices are

M = XXt
(A2)

H'= ZZ

Expanding these matrices in terms of U and V

M = (WFiV)(U-iV) = uu +VV + i (VU - -V')

:(A + iB) (A3)

T(A 
-1



A-2

where UUT = VVT = A/2

VU- =UVT= B/2

These relationships between the second moments of U and V follow from

the usual assumptions of zero mean normal distributions for the com-

ponents of U and V, with U-Wn = TV and U = -U V
mn mn n m m n

We will be interested in sample covariance matrix estimates of M

and H'. From the equalities of (A3), better estimates of A and B for

the real covariance matrix can be obtained by using

A = UU T+ VV
T

B = VUT - UVT (A4)

H= )
B A

where K complex samples in the estimates of M correspond to 2K real

samples in the estimate of H.

Next consider the inverses of the covariance matrices M and H.

Because of the form of H, H- can be expressed as

where (A5)

~whereC

D: C/ B:A
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and

CA- DB =1I
(A6)

DA + GB = 0

In terms of the real matrices. C and 0, the inverse of the complex matrix

M is

M- =(C +iD) (A7)

since M- M = (C+iD)(A+iB) = (CA-DB) +.i(DA+CB) =I (A8)

from (A6)

Next, the quadratic form

ZR Z

U TCU +V TCV- U DV + VDU (A9)

The corresponding quadratic form of complex variables is

XW -1 X= (UiV) T (C+iD)(U+iV)

= (U CU+ VCV+ -T~)(Ao

Since the covariance matrix M and its inverse are Hermitian ,the

imaginary part of (AlO) is zero.
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Having derived the relationship (AlO) between the real quadratic

form Z H-Z and the corresponding complex quadratic form X M-X, results

for the real variables case can be used to obtain the probability density

and mean of X M-IX in (50). Consider a set of K independent samples

of the variables X U + iV, where U and V are column vectors of N real

variables, normally distributed with zero mean. Let

k Vk

with the sample mean

A K

Z=k I Z', (All)
k=l

and moment matrix
K

H (A12)

k= I
K

Also, let H1 A

k=l

H ZZ (Al3)

The elements of H1 are Wishart distributed [Eq. 29.9.6, p. 405 of Ref. 4],

and independent of Z. The sample means are normally distributed with

zero mean and a moment matrix H' of (A2).



A-5

The quadratic form of interest, XtMW1 X, can now be related to the

Hotelling distribution. Let

T= (K-i)27 H (A14)

The probability density function of T [Eq. 29.11.4, page 409 of Ref. 4]

is

2r(K K/
P(T) T 2. Tl(l +-2) ,T>0

(K1 /rK- N K-1

(A15)

where K is the number of samples in H 1 and Z , H1 is a N x N sample

dispersion matrix, and Z is a column vector of N sample means.

Next, from the matrix inversion identity and (A13),

A A i~z z T ?j1
TH+ 1r 1  - 7 A 1 H 1 1(A6

(H ~ ~ l+ H1 +ZZi A6

The quadratic form of interest is

Q = X X z H (A17)

In terms of the sample dispersion matrix H1 9

Q~7(~ A 1) l

Z~p-1Z

A (A18)
(l+Z H 1Z)
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From (A14),

Q~ K-) (Ali9)

where the probability density function of T is given in (A15).

To obtain the corresponding probability density function for Q,

note that

dT =- (K-1) 1/2  (A20)
Q 2Q11/2(iQ)3/2

From (A15), (A19), and (A20)

N-1

2FO- )(K-i) 2 (1_Q)K/
2  N-1

P(Q) = 2 (Q 2 A'- I
(KiN/ 2  N N Q 2?Ql/ 2(1Q 3/2

2 2

number of real samples in H, respectively.
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As noted in (A4), the effective number of samples in the sample

covariance matrix H is 2K. Also, when (N-l) represents the size of the

complex covariance matrix and sample mean vector, the corresponding

dimension for the real variable case is 2(N-l). Replacing K by 2K and

N by 2(N-l) in (A21), the corresponding probability density function for

the q of (50) is

P(q) = P(K) q O<q<l (A22)

r(N-1 )1v(K-N+I)

This density function can be derived in a different way which does

not require the analogy to the real variable problem. As before, let

K

I12. XkX-I (A23)
k=l

and
K

M (X ) (A24)

k=l

where
K

k=l

Again, the Xk are column vectors of N zero mean complex Gaussian
sa

variables. The variables (X k-X) are also zero mean Gaussian variables,
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and the sample matrix M has the complex Wishart distribution of (23)

with K replaced by K-1.

Next, consider the quantity

R =K A (A25)1X

For any column vector X, there is a unitary transformation on X which

leaves the value of each quadratic form in (A25) unchanged, but reduces

X to the form (a,o,o,o... ,o)T. Without loss of generality, it can be

assumed that M=I. Then

R- K

^ K (A26)

(MI 1

and from the analysis of Section 3 and (29),

RK-I-N -R
P(R) = (K--N) e , R>O (A27)

The numerator of (A25),

A A

a = K XtM'X = KX7 X (A28)

is the sum of 2N real Gaussian variables and has the probability density

aN-1 -a
P(a) -e a>O (A29)
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The sample means are independent of the sample matrix M.so R and a

are independent. Let

a' (A30)

From (A27) and (A30)IC
P(Q) = f P(R)P(QIR)dR

= RK-N- e-R RQ )N-1 e-RQ R dR (A31)J (K-N-i)1-
0

K-i N-i
(K--) N -i) Q Q>O

(K-NI~i(-I)!(i+Q)K

We are interested in obtaining the distribution of

q = X t M X, where

M = MI+ X Xt(A32)

Since A-

M- -K (A33)

The quadratic forms q and Q satisfy

q Q (A34)
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From (A31) and (A34)

(K-l)! Ni1 (1 qK-N-* 0q
IP~q) q (K-N-l)!(N-l) (A35)

Replacing N with N-i in (A35)1, where (N-l) is the number of auxiliary

elements as in (A22), the two results for P(q) are the same.


