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Abstract

An experimental, and an analytical, model of Turbine/Compressor blade

with a circular root geometry is developed for the purpose of studying

the effects of slip damping on the response of the blade. The expression

for the energy dissipated by slip damping is presented. In addition the

expressions for the energy dissipated by air and hysteresis damping are

presented. The equation of motion for the blade is developed, and solved,

to provide an expression relating the various parameters of the experi-

mental and analytical models.
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I. Introduction

Today there are significant problems associated with the failure

of Turbine/Compressor blades. The failures are due to increasing de-

mands in the areas of performance and service life from the jet engines.

To increase the performance, higher thrust to weight ratios are deman-

ded. As a result, the excess material of the Turbine/Compressor blades

is being reduced to the absolute minimum and the margins of safety are

being reduced to the minimum allowable limits. Longer service life re-

quirements have brought about problems with fatigue which are difficult

to predict due to the random nature of the dynamic loading.

The environment of the Turbine/Compressor blade is very severe.

The stresses generated within the Turbine/Compressor blades are very

high. The loading which acts on the blades is very dynamic and random.

The loading is expecially severe at the resonant frequencies of the

Turbine/Compressor blades where there is increased displacement which

results in an increase in the stresses. In addition, for Turbine blades,

there is the additional problem of a very high temperature environment.

It is important to understand the mechanisms which operate to reduce

the effect of this dynamic loadinq. With a knowledge of these damping

mechanisms, it might be possible to exploit them to obtain a further

reduction in the effect of the dynamic loading.

There are three damping mechanisms which operate to reduce the re-

sponse of a Turbine/Compressor blade. They are hysteresis or material

damping, air damping, and slip damping. This paper is concerned with

slip damping and so the other two forms of damping were addressed only

to the degree necessary to provide the means of isolating the effect of

the slip damping.
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* -This study was undertaken to establish both an experimental, and an

analytical model of a Turbine/Compressor blade. These models may be used

to study the effect of slip damping on the response of a system similar

to a Turbine/Compressor blade mounted in a disk. The analytical and

experimental models might also be used to study ways of increasing the

* slip damping which occurs on the contact surface between the blade root

and the disk. For example, if the slip damping mechanism could be main-

- tained at higher engine RPM levels there would be a significant contri-

bution to the reduction of the response of the Turbine/Compressor blade.

The primary area of investigation presented in this paper is the

*development of the analytical model. All equations and relationships re-

quired to predict the response of the Turbine/Compressor blade to a spe-

cified loading condition were compiled. In addition, the equations re-

quired to predict the amount of energy dissipated per cycle by the three

forms of damping were developed. The experimental model was used to gen-

erate data for several variations in 1-adinq conditions for the purpose

of validating the model for use as a too. for the experimental study of

slip damping.

2



II. Experimental Development

Model Description

Figure 1 is a picture of the experimental blade model. A uniform

beam with a half cylinder fixed to one end was chosen as a simplified

model of a turbine or compressor blade. Due to the limitations of this

investigation, and the phenomenon being studied, this simplification was

felt to be acceptable. The half cylinder is the root for the experimen-

tal blade model. The shape was chosen to facilitate both the manufac-

turing of the model and the analytical work. The dimensions of the ex-

perimental model are shown in Figure 2. Figure 3 is a picture of the

experimental disk model. The assembled blade-disk model (Figures 4 and

5) provides a simple representation of a turbine or compressor blade

mounted in an engine disk. In a jet engine the primary force acting on

the blade root is due to the inertia load of the blade on the blade root

which is produced by the disk and blade rotating during engine operation.

To simulate this loading, in the blade-disk model, a spring beam with a

pointed screw was used to apply a point load to the blade root at the

point of rotation for the blade root (Figure 6). The beam was instru-

mented on both sides at a chosen point with strain gages to allow for

the determir'.:ion of the clamping force. The blade-disk model was manu-

factured using Inconel-X. This material was chosen because it is repre-

sentative of the materials used in a jet engine and to allow the use of

the blade-disk model at elevated temperatures without severe changes in

the material properties. The properties for Inconel-X are:

Modulus of elasticity (E) = 31 x 106 lbf/in
2

Poisson's ratio (v) = .29

3



Figure 1. Picture of Experimnental Blade Model

Figure 3. Picture of Experimental Disk Model
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Figure 2. Dimensions and Sign Convention of Both Models



Figure 4. Picture of Assembled Disk-Blade Model
(side view)

Figure 5. Picture of Assumbled Disk-Blade Model
(end view)
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Figure 6. Picture of Spriiiq Btedm



Static coefficient of friction (P) = 1.1

s

Dynamic coefficient of friction (p) = .5

* Test Set-up

Figure 7 is a schematic diagram of the test set-up which is pictured

in Figure 8. A MB model N695 Automatic Vibration Exciter Controller was

used to adjust the frequency and the magnitude of the signal being fed

thru the MB model 2120MB Amplifier to the MB model EA1500 Exciter. The

exciter applied a sinusoidal force to the tip of the blade to simulate

the dynamic loading of a compressor or turbine blade which occurs in a

jet engine. The magnitude of the applied force was monitored using a

Wilcoxon model Zll impedance head. The force gage signal from the impe-

dance head was amplified using a Kistler model 568 charge amplifier and

displayed on a Tektronix model 465M dual trace oscilloscope. Due to

problems with the integral accelerometer within the impedance head, a

separate accelerometer, mounted on the blade tip, was used to measure

blade tip displacement. The signal from the MB model 306 accelerometer

was amplified using a Kistler model 504D charge amplifier and displayed

on the same scope as the force gage signal. The signal from the strain

gages was monitored using a Tektronix type 549 oscilloscope with a plug-

in dynamic strain preamplifier.

Test Procedure

Due to the nature of the test set-up, with the blade tip constrained

by the physical attachment of the exciter, it was not possible to study

the displacement of the blade tip to a known force at resonance. Instead

the force required to maintain a set displacement at resonance was moni-

tored. The procedure for collecting the data was:

_
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ION

Figure 8. Picture of Test Set-up in Lab
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1) The force gage and the accelerometer were calibrated using the

procedure outlined in Appendix B.

2) The spring beam strain gages were calibrated using the procedure

of Appendix C.

3) A force was applied to the blade root using the set screw and

spring beam.

4) A displacement for a data run was selected.

5) A frequency was selected for a data point within the data run.

2
6) Using: displacement = acceleration/(2i frequency)

the acceleration required for the desired displacement at the selected

frequency was determined.

7) Using the controller/oscillator, the needed acceleration was set.

8) The magnitude of the force being exerted to maintain the displace-

* ment was recorded.

9) A new frequency was selected and steps 6, 7, and 8 were repeated.

This was done at as many data points within a set displacement data run

as desired.

10) Steps 4 thru 9 were repeated for different values of the clamp-

ing pressure.

Since the frequency range of interest was the range about a point of

resonance, the frequency range for the data runs was selected about the

first resonant frequency calculated which was calculated in Appendix A.

Data and Discussion

Figure 9 is a plot of the force versus frequency for a clamping pres-

sure of ten pounds and three variations in the value of blade tip dis-

placement. The first item to note is the presence of the resonance at

320 cps. This corresponds almost exactly to the value of resonance which

11
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was predicted by the analytical model for the first mode of the blade.

All data runs were made over the range of 240 to 420 cps, but a sweep

was made to a frequency of 1200 cps to check for other possible reso-

nances. This sweep verified the existence of a resonance at 1000 cps,

within five per cent of the value of resonance which was predicted by

the analytical model for the second mode of the blade.

With an increase in the blade tip displacement there is an increase

in the magnitude of the blade tip driving force, for the displacements

of .00005 in. and 0001 in. Figure 9 shows an amplification factor of

1 to 6.5 at 320 cps. This indicates no change in the damping of the sys-

tem. This is difficult to understand in light of the fact that all the

damping mechanisms are functions of the exciting force. The slip damp-

ing, however, will not be present until the exciting force reaches a

threshold value. The third displacement data point of .0003 in. plotted

in Figure 9 shows an amplification factor of 1 to 3.5 at 320 cps. This

indicates a significant increase in the amount of damping, present in

the system, at resonance. It may be assumed that the threshold value

for slip damping has been passed and that slip damping is making a large

contribution to the damping of the system.

Figure 10 is a plot of the force versus frequency for a clamping pres-

sure of twenty pounds and three variations in the blade tip displacement.

The analytically predicted resonance at 320 cps is present in this set

of data. The amplification factors, for the resonance peak at 320 cps,

for the lower two displacement cases are almost identical. The amplifi-

cation factor for the largest displacement case shows a significant in-

crease in the amount of damping present at resonsance. Again it can be

assumed that the critical value of the exciting foice has been passed and

13
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that slip damping is contributing to the dissipation of energy of the

system.

Figures 11 and 12 are force versus frequency plots for a set dis-

placement and variations in the clamping force. From these plots it can

be seen that, for a set displacement, or exciting force, that the lower

clamping pressure provides a better reduction of the amplification fac-

tor. This supports the conclusion that the lower the clamping pressure,

the more slip damping is present. The exception to this occurs at 320 cps

on Figure 11. The resonant amplification factors are almost identical.

This can be explained by supposing that the particular value of the ratio

of exciting force to clamping pressure is not high enough for slip to

occur. The prominant resonance at 370 cps appears to correspond to the

second torsional mode of the blade.

'-I-
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III. Analytical Development

Model Description

Figure 2 shows the dimensions and sign convention of the analytical

blade model that was used in this study. The blade was represented as

a continuous beam of constant mass per unit length and constant cross

sectional area.

Contact Surface State of Stress

The first step toward the calculation of the energy dissipated by

slip is the calculation of the stresses acting on the contact surface.

To determine the traction distribution on the blade contact surface re-

quired to maintain equilibrium, the loading on the blade root was broken

into three cases (see Figure 13). Case one is the force applied to the

bottom of the blade root by the setscrew. This force was intended to

simulate the inertia force of a blade which acts on a turbine/compressor

blade root due to the rotating motion of the blade-disk structure. Cases

two and three are the transverse force and moment, respectively, which

are applied to the blade root due to the dynamic force applied to the

blade tip. The first two loading conditions were analyzed using the solu-

tions for the stresses on a wedge loaded at it's apex. The half disk

geometry of the model blade root can be matched by expanding the half

angle of the wedge to 90 degrees. For the third loading case the solution

for a disk loaded by a couple was used. By starting with the stress func-

tions, for the wedge and disk solutions, and evaluating the constants

based on the conditions of the blade root model, a good approximation

of the stress condition of the contact surface can be obtained.

Timoshenko (23) discusses the wedge and disk problems in great detail.

18
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1. Case One Loading

Using as the stress function

= A rcos (1)

the following stresses were derived.

2
(' =---A sin0: r r 1

(2)

0 ( 1 rO 0

To evaluate the constant Al, the integral of the vertical component of

stress over the contact surface was set equal to the applied force (P).

o r sind6O + r sinbdO dz = -P (3)

f r 0r
0 0 f-61

Substituting equations (2) into (3) and evaluating,

2A, J ( O-sin20) + ( 0-4sin20) J dz = P (4)

0 0

results in an expression for A1 .

P (5)
1 t(20 1-sin20l)

Using the above gives the stresses on the contact surface due to case

one loading.

2P sin0
r rt(sin20 1-20

(6)

(0 T 0
0 r8

2. Case Two Loading

Using as the stress function,

2 = A2 r0sinO 
(7)

the following stresses were derived.

20



* ~ trO(8)

2* 
0
r =-A 2 cosO

To evaluate the constant A2, the integral of the horizontal component

of stress over the contact surface was set equal to the applied force

(F sinwT).

t 9T

rsl r cosd + for r cosOd] dz -F sinT (9)
0 

1f

results in an expression for A 2 .

F sinT (10)
A2 t(26 + sin20(1

Using the above gives the stresses on the contact surface due to case

two loading.

2F sinwT cosO
r rt(20 + sin20

rO 0r

3. Case Three Loading

Using as the stress function,

3 = A 30 (12)

the following stresses were derived.

0 r = 0 = 0

(13)
= A3

G -
r6 2

r

Solving for A 3 by setting the integral of the shear over the area of

the contact surface equal to the moment caused by the blade tip load

(FL sinT = FM).

21
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S1

FM + t r r do + Tr r2dOjdz (14
1(14)0 0 7-01

Substituting equations (13) into (14) and evaluating,

-FM= A 0 +0 dz (15)

results in an expression for A
3*

-FMA - (16)
3 2t0 1

Putting equation (16) into equations (13) gives the stresses due to

case three loading.

O o = 0 
(17)

-FM
T =

TrO 2
T 2r20 1 t

The results from the three separate loading conditions can be

combined, using the principle of superposition, to provide an expres-

sion for the total stress condition of the contact surface.

2P sine 2F siuT cos(1
r rt(sin201 -21) + rt(281 + sin201) (18)

-FM (19)
r = 

2r2 to1

o0 =o 0 (20)

As the blade loading of the blade root increases, the shear stress

on the contact surface of the blade root increases in magnitude. As the

value of the shear stress at a point on the contact surface reaches a

value equal to the friction force, opposing motion, slip will occur.

The friction force is generated by the radial stress times the static

22



coefficient of friction. Slip will continue until the shear force, at

the point, drops to a value which is less than the friction force caused

by the radial stress times the dynamic coefficient of friction.

A non-dimensional representation of the stress distribution on the

contact surface is pictured in Figure 14. The direction of the exciting

force is also depicted in the figure. It can be seen from the figure

that the normal force is not independent of the exciting force. The

static and dynamic friction forces will always be negative while the shear

force will change, from positive to negative, depending on the direction

of the exciting force.

The energy dissipated by slip is the integral, over the slip region,

of the friction force times the relative displacement across the contact

surface. If the normal force was independent of the exciting force, then

the relative displacement across the contact surface could be related

to the change in the stress component, parallel to the contact surface,

across the contact surface. Instead the relative displacment must be

calculated by first solving for the displacements associated with the

contact surface stresses.

Contact Surface Displacements

Associated with the three loading cases previously discussed are

the displacements which occur at points on the contact surface. To

solve for the displacements the equations for the relationships of

stress to strain, and strain to displacement were used.

(a 1U (21)
r ar E r (

U 1 av 1 ( (22)
0 r r038 E 0 r

23
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rU 
=  

(23)r8 r )o 3r r G ro

1. Case One Loading

Using equations (6) and equation (21) the U displacement is

- 2P sink, log r + f(u) (24)
tE(20 - sin20111

Using equations (24) and (22) the V displacement can be solved for.

S- 2VP coso 2P cosO log r (O)d+
tE(20 _ sin201) tE(2 1 _ sin2O1) - + f(r) (25)

To solve for f(0) and f(r), equation (23) and equation (6) are

used along with equations (24) and (25). Using these equations an ex-

pression in terms of f(0) and f(r) is developed.

'6f(o) 1 2P cosO +f(r) ° ;P cos+ -
30 r rtL(2 0 

- sin20 I ) Dr rtE(20 - sin20

+ f(O) d f(r) (26)
f r r

For this equation to hold the sum of the 0 terms must be equal to

zero and the sum of the r terms must be equal to zero. Timoshenko (23)

discusses the solution to equation (26) for f(O) and f(r).

f(r) = Q1 r (27)

and

f(O) = f(particular) + f(homogeneous) (28)

The particular solution is dependent on the other 0 terms present in

the expression for f(u) and f(r), equation (26).

P(") - 1)0) cos(
- tE(2OI - sin20 ) + 2 i Q3 cosO (29)1

Using equations (27) and (28), the displacements are

2P sinO log r ,(\) - )0 cos +
- tE(20 - sin2) ) tE(2 0 - sin2 0 1) + sin0 + Q3cs (30)

.LL~ 25



and

2vP cosO 2P cosu log r P(V- 1) Cosa3
tE(26 - sin20 1 tE(2U I sin20 1 tEL(201 - sin261

+ P(v -1) sin + Q Cosa + Q sinj + Qr (1
tE(20 1- sin2o 1) 3 1

Selecting for a boundary condition that the displacements (U and V) are

equal to zero at the point on the contact surface where ui 0 allows the

evaluation of the constants in equations (30) and (31).

P (N + 1) 2P log r (2
Q2- tE(26 - sin2o I tE(26 - sin2u )I32

Q3=0

Substituting equations (32) into equations (30) and (31)

U=-P(V - 1)0 Cosa P(v + 1) sino 33
tE(26 1- sin26 1 tE(2o - sin201

and

V=P(v -1)0 sinO (4V=tE(2e - sin20
11

2. Case Two Loading

Using equations (11) and equation (21) the U displacement is

U=2F smuwT cosO lor+ ()35
tE(26 + sin26 lo r) ()(5

Using equations (35) and (22) the V displacement is

2F smuwT sine 2\)F sinwT sinO
V tE(26 + sin2o loI tE(20 I+ sin20

f (36)

-Jf (e) do + f(r)

To solve for f(O) and f(r) the same method is employed as was used

for the case one loading displacement analysis. The results are

f(r) = Q Ir (37)

26



and

f U (v - 1) F sinu)T cosu
) tE(20I + sin201) + Q2 sinO + Q3 cose (38)

These results, when used with equations (35) and (36) provide the

following displacement expressions,

2F sinwT log r costj (v - 1) F sinwT coso
tE(20 + sin20 I ) tE(20 + sin2o I

*(39)
+ Q sino + Q3 cos)

and

2F sinw4 T log r sinO ( - 1) F sinwT cosb
V tE(2 1  + sin2o I) tE(20I + sin20(

1 1 1 1(40)

(V - 1) F sinwT sine
t- (u inO + Q2cosG - Q3sinG + Q1r
tE(201 + sin201 )

To solve for the constants in equations (39) and (40) the displacement

at the point 0 = 0 is set equal to zero. Using this boundary condition

the constants are

1= 0

(v - 1) F sinmT (41)
Q2 =  tE(201 + sin2o I )

2F sinT log r
3 - tE(201 + sin20 I

Introducing equations (41) into equations (39) and (40)

U = (v + 1) F sinwT coso 1) F sinwT sine (42)
tE(20 1 + sin20 I )  tE(20 I + sin20 I1

and

V = - 2(v - 1) F sinT cosO (v - ]) F sinT sine (43)
tE(201 + sin26 ) tE(20) I sin2( I

3. Case Three Loading

Using equations (17) and equations (21) and (22) it is possible

to establish the relationships
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U = f(6) (44)

and

V = - ff(0) dO (45)

Using equation (23) it is possible to set up an expression in terms

of f(u)

FM f() + !f(e) dO (46)
2G r t 0J 6

which can be solved for f(6)

FM (7
f(a) Q2 sine + Q3 coso - Ft (47)2 3 T2G r t 6

where

E (48)2(1l+ )

which gives the following displacements

FM (49)
U =

2sinu +Q 3cost 2G r t 0

and

VQ cosO sin0+ FM (50)V 2cs - 3sn 2G r tt 1

The displacement at 0 = 0 is set equal to zero in order to solve for

the unknown constants. Solving for the constants Q2 and Q3 and

putting them into equations (49) and (50) gives the final

displacement equations

= (1 + v) FM (COS) - 1) (51)
E r t 0

and

V = (1 + \) FM (0 - sinG) (52)
E r t 01

The total displacements can be arrived at, in the same manner as

the total stress components were achieved, by the principle of
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superposition.

P(V - l)u cosfj P(V + 1) sino8 (v + 1) F sinuTb coso
tE(26 - sin2u ) tE(20 - sin21 ) tE(20 + sin2o

- ) F sinT sin+ (1 + V) FM (cosO - )

tE(20 + sin2(T) E r t 01

and 

(53)

P(\ - 1)0 sine 2(v - 1) F sinwT cosJ (v - 1) F sinwATO sinO
tE(2 1 - sin20 I tE(20 I + sin20 tE(2C1 + sin20

(I + ')) FM (0 - sin0 ) (54)
+ ErtE3 (4

Having expressions for the O, or V, and the radial, or U, displace-

ments it is possible to solve for the relative displacement between two

originally adjacent points after slip has occured. Figure 15 depicts

the quantity that is desired.

The component of the displacement of interest is the 0 direction or

V component. On one-half of the slip region, region 1, the displacemnt

will be described by equation (54). Denoting equation (54) in that half

as

V =f() + g(T r) (55)

where

f( ) is the V displacement associated with the radial stress

and

g( ) is the V displacement associated with the shear stress

in the other half of the slip region, region 2, the displacement (V,)

will be a combination of the displacement associated with the radial

stress (f( )) and the displacement associated with the friction force

acting on that portion of the slip region (h( )). This can be written

as

2 ,1



RELATIVE DISPLACEMENT

SLIP REGION 2

REGION 1

NO SLIP

Figure 15. Relative Displacement Across Contact
Re gion
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V2  f(o ) + hD(p a) (56)

r Dr

The relative displacement is the difference between equations (55) and

(56)

V1 -V 2 = (Tr) -h(uD) (57)

which can be written as

p P(\ - 1)( sin6

V = (I + v) FM (6 - sing) D
.1 2 E r t 0 tE(201 - sin201 )G1 1)1 (58)

+ 2(v - 1) F sinwT cos6 (' - 1) F sinTO sinO
tE(2l + sin2o1) tE(201 + sin20

Since the energy dissipated is related to the integral, over the

slip region, of the friction force times the relative displacement it is

4. necessary to determine the limits of integration.

Av Points of Slip Initiation and Zero Normal Force

There will be two such points (Q and R), one on each side of theIblade root, where slip will begin (Figure 14). The equation for the two

- - points where the friction force and the shear stress are equal is

4- ABS t 0 (59)

Solving for points Q and R, the points of equality, on the blade

contact surface by writing

-S G Lsin) + Gcoso (60)

where

2Ps
L rt(sin2t1  _ 2)

(61)

2F S sinwT

rt(sin201 + 20

and writing
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-ABS T r0 H (62)

setting the two functions equal to each other

LSinO + Gcos0 = H

rearranging the equatica and squaring both sides

2 2 2 2 2
L (1 - cos 6) G cos 0 + H - 2-GcosU

collecting terms results in a quadratic equation

(L2 + G2 ) cos 2 6 - 2Gcos6 + (H2 - L2 ) = 0 (63)

This equation can be soi.ved for the angles corresponging to points

Q and R. I

Due to the nature of the loading on the blade root there will be a

small portion of the contact surface adjacent to the y-axis which will

be free of any normal force. This small portion of the contact surface

will have an outward normal opposite in direction to the direction of

the tangential force discussed as the case two loading condition. To

solve for the point (S) where the normal force equals zero,

2P sinO 2F sinwT cosO
rt(sin20 - 20) rt(261 + sin201)

Solving the equality for tle angle of the point (S).

8 = tan- I F(sin261 - 201 (65)
P(20 + sin26 I)

Having an expression for the normal force on the contact surface

(equation 18) the friction force can be written as

2PpD sin 0  2F D sinufr cos6
D D (66

D r tr(sin20 - 26 1 tr(sin21 _ 201) (6)

The relative displacement across the contact surface due to slip is

known (equation 58), and the points of slip initiation are known
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(equation 65). With these expressions the enegy dissipated due to slip

can be calculated.

Energy Dissipated by Slip

The energy dissipated by the slip reqion is the product of the fric-

tion force acting over the region times the relative displacement across

Io

the interface. This quantity, integrated over the slip region, will give

the amount of energy dissipated at a particular instant. Integrating this

result over one cycle will result in the energy dissipated per cycle.

During one cycle the exciting force will change from zero to a maximum

value four times. Thus the energy dissipated per cycle (D 0, lb-in) is

D = 4 JD(67)

0 f

slip region

Four times the product of equations (66) and (58) integrated over the

slip region gives the energy dissipated per cycle.

D 4 f(P D u)(V 1 - V 2 ) dU + ](Do r3 )(V 1 - V 2) dO] (68)

0 RJ
It should be noted that the region of zero normal force is included

in the above expression. The region is on the order of two degrees and

its inclusion in the expression has a negligible effect.

In order to isolate the effect of the slip damping it is necessary

to develop expressions for the air damping and the material damping.

Energy Dissipated Tiy Air Damping

The amplitudes associated with the blade displacements are small

and thus the force acting on the blade is proportional to velocity

(reference 2)
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F CV (69)

utilizing references (2) and (5) the equation for the air damping of

the blade is

D =R 7 CW 2 X2  (70)

where

' w is the circular frequency of the blade

X is the displacement of a point on the blade

and C7 is a constant equal to

C = PSC (71)7 D

where

P is the density for air

S is the wetted area of the blade

C is the drag coefficient for the blade0

the expression for the energy dissipated can be written

D 7= (72)

0 2 D

Energy Dissipated By Hysteresis Damping

To develop an expression for the hysteresis damping of the blade,

a relationship between stress and energy dissipated of the form

N
D = J0 (73)

B
-j

was assumed. J and N are empirically derived constants and a is the
B

bending stress due to the tip load on the blade. D has units of

(lb-in/in 3) and must be integrated over the total valume of the blade

to obtain the energy dissipated

t b/2 L
f f f f F7-1

0 -b/2 0
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Evaluating this integral where M = F(L - X) leads to

D 2Jt 2 .(N (bL]N+l (50 (N + 1)21] F

For Inconel-X and aB less than 33 KSI

N = 2.224

13 (76)
J = 4.586 x 10

i In order to be able to use the experimental model to verify the

analytical model, it is necessary to develop an expression which re-

lates such quantities as blade tip displacement, exciting force,

clamping pressure, material properties, etc. This can be done by

developing a solution to the equation of motion for the blade. The

first step toward this is the evaluation of the restoring moment due

to slip which acts on the blade root.

Restoring Moment Due to Slip

The restoring moment due to slip (M) can be calculated from

M = rf[ [fp D a d0 + fJ P do]I dz (7

where t is the depth of the blade root in the z direction. Placing

equation (18) into equation (69) and evaluating,

-2P
r'D (sin201 - 201) os + cos]

2F sin(TQ+ sin ]

(20 1 + sin2Ol) sin 0 s R

This leads to an expression for the restoring moment,

[PcosR -cosQ -2) 2F sinwT(sinQ - sin R) (8
D Sin2 1  201) (201+ sin20

which can be rewritten as



M m sinwT

where

2P(cosR - cosQ - 2) 2F(sinQ - sinR)(
riD (sin20 _ 20 )sinwT (20 + sin26

It should be noted that the region of zero normal force was in-

cluded in the determination of the restoring moment which was due to

friction developed on the contact surface. The region is on the order

of two degrees and its inclusion in the integratiG,, has a negligible

effect on the result.

Equation of Motion and Boundary Conditions

To derive the equation of motion and boundary conditions for the

blade, Hamilton's principle was used.

fT

(6K - 6U + 6WK)dT = 0 (80)

0

For the blade the variation of the kinetic energy is

6K JW dx T I 6W (81)

0 T 3 J x =0 Ox T LW x=
0

where

L is the length of the blade in inches

y is the mass per unit length of the blade (lbm/in)

0I is the mass moment of inertia of the blade 
root about

point 0 (lbm-in2

W = W(x,T) is the displacement of the blade in the Y direction

The variation of the potential energy of the blade is
L

6U = J El 2W  6W dx (82)

0 x2 3x
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where

2
E is the modulus of elasticity of the blade (lbf/in

386 lbm/sec-in)

I is the area moment of inertia of the blade (in

and the variation in the work is

6WK F sinwT 6W - m sinwT x 6W (83)
x X=0

Placing equations (81), (82), and (83) into equation (80), performing

the necessary integrations, and eliminating the zero terms leads to

the equation of motion,

": 2W

--1 + - - = 0 (84)

3x 4T

the boundary conditions at x=0,

W(0,T) = 0 (85)

and

EI - W(0,T) + - W(O,T) I + m sinwT = 0 (86)
x 2  it 2  3o

and the boundary conditions at x L

32

EI -2 W(L,T) = 0 (87)

ax

and
;3

El a3W(L,T) + F sin(,sT = 0 (88)
3x3

Solution to Equation of Motion

To solve the equation of motion for the displacement it is neces-

sary to make the boundary conditions homogeneous. Denoting

3W 2 W-- =W ; =W ; etc.
3x x 2 xx
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and writing the equation of motion

4
W - a4Wtt = 0 (89)

where

4 L_
-a = (90)

EI

Making a change of variables

W(x,T) = Y(x,T) + (B sina ,x + B2cosaqx + B 3sinhawx

2 (91)
+ B 4coshax)sin'P 2T

with

2

From equation (91), and the boundary condition (85) for

W(x,T) = Y(x,T) = 0

B4 = -B2
4 2

Placing the result in equation (91) and substituting this into equation

(87) and requiring that

W (L,T) Y (L,T) = 0xx xx

requires that

B sinhaL B sinafL + B (cosa L + coshafL) (92)
3 1 2

Using equation (88) and forcing

W xxx(L,T) = xxx (L,T) = 0

requires that
F

B cosaOL - B (sinafL - sinhafL) - B coshafL = 3 3 (93)
1 2 3 Elat

using equation (86) and forcing

EI W xx(0,T) 4 I Wxtt(0,T) El Y xx(0,T) +1 W xtt(0,T) 0

requires that

m - I a5 (B +B3 (o 1 394

2 = 2EIa 2 2
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F'quations (92), (93) , duid (94) provide three equations in three

unknowns which can be solved to provide the following results,

B1  - + si j
5s E~~ 3 (co3 sinha4)

1 i a Ua (ayL coshai' sa'L

+sinia L + sinayL

( rsinaqL - sinhaPL.) - (cosa ,L 4 coshaYL)cothaPL]x cosaPL - cotha )L sn

F
+Ela 343 (cosaj'L - cothaPL sinaYL) (5

rB - F 1 + snP]
B2 = [IoP5a Ela 3 3 (cosaqPL -cothaPL sinaYL) [ j snha PLj

~cs[; [sn~--cotha)L sinaPL

x + s-Inha'L] + sinaqYL + (96)

B r(i(5 haL - sinhaYL) - (cosaPl + coshaOb)cotha4'LlsinaWL
3 [(cosaPL - cothaPL sina444sinhaqbb

+ (cosaYL + coshaY)L) ] [sinhaYL ] [ 2]

+F san~ (97)

Ela 3 (cosaPL - cotha4'L sinaPL)sinhaPL

With the change in variables, and the constants (95), (96), and (97)

the homogeneous equation of motion is

-' + -YY 0 (98)
xxxx El tt

and the homogeneous boundary conditions are

Y(0,T) = 0 (99)

Y xx(L,T) =0 (100)

Y x (L,T) -0 (101)

El Y xx(0,-i') + 1 0Y t (0,T) =0 (102)
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Assuming a solution of equation (98) of the form

Y(x,T) = X(x)Z(T)

and using the solution method of separation of variable results in

Z(T) = Jcos6T + KsinuiT (103)

and

X(x) Dlsin~x + D cosix + D3sinh~x + D coshvx (104)

where

42
E l (105)b El

Using the first boundary condition (99)

D2 = -D4 (106)

Using the second boundary condition (100)

-DIsin L + D4 (cos L + cosh3L) + D3sinh L 
= 0 (107)

Using the third boundary condition (101)

-D lcos L + D 4(sinh3L - sin$L) + D 3coshaL 
= 0 (108)

Using the fourth boundary condition (102), rewritten as

X(0) 0 Xx(0) =0
xx El x

gives ^2

2D - (D + D3) (109)
4 EI 1 3

For the non-trivial solution where D1 , D2, D 3 , and D4 are not zero,

the determinant of the coefficient matrix must be zero. The governing

equation is

.2
I 1.)
0 (coshL cosfL f 1) + cos 3L sinhOL - sint3L coshfl. = 0 (110)

This equation can be solved, to provide the values of tLando, using

=~ 4E] (iii)
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See Appendix A for the solutions to (110) and (111). Using equations

(107), (108), and (109), the constants D3 and D4 can be put in terms

of D 1 to provide

[ 3(DL)3  (cos3L + coshOL) - 1 + sin

D3 = 1 3L sinhhL sinh6L

3 1 (112)

+ 2L 3 sinfiL
3(L) (cosBL + cosh$L

0

and

D= [ (cosL + coshL)
4 1 [ [ L 3  sinh' L

I (BL) 3  ](113)

+ 0 sinBL sin1L
2L3 sinhBL + (cos3L + coshSL)]

Setting D1 = 1 and substituting (112), (113), and (106) into equation

(104) provides,

X (x) sin x + __(cos 
( NL ) + cosh (1N L ))

N() = N 4 - 3  sinh(N L)

I ( L) 3  sin(N L) sin (PN L)

+ 3 sinh(1N L) (cos(1 N L) + cosh(1N L)]

x (coshBN x cos N X)

Io(N L ) 3(cos( N L) + cosh( N L))

+ 2L 3 y sinh(6 NL) - 1

2L3 y sin(BNL)

1 3 (cos(13L) + cosh(N L))I o ( 1NL) N

sin( , L) ]
+ sinh(1NL) (sinh Nx) (114)

s( nd(0 N be

Using equations (114) and (103), the solution to equation (98) can be
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written,

Y(x,T) X (x) (JNcos T + KNsin T) (115)

Substituting the above into equation (91) provides an expression for

the displacement.

W(x,T) = XN(X) (JNcosN T + KNsin 2 NT)
N=I

r
+ [Blsina~x + B2 (cosa px - coshaox)

+ B 3sinhapx ] sin( 2T) (116)

To evaluate the remaining constants J and K it is necessary to use
N N

the initial conditions

W(xO) 0 (117)

and

W (x,0) = 0 (118)
t

The first initial condition (117) requires JN 0. Using this result

and the second initial condition (118) requires that

K N X (x) =- NW 2 (B 1sinaox + B2 (cosa~x - coshayx)

+ B3 sinhaqx) (119)

The functions (N X are not orthocional functions. Therefore a
N N

collocation method must be used to solve for the constants (K N).

The desired number of modes (N) must be chosen, and the X Nx) as

well as the right hand function must. be evaluated at a number of points

along the blade. The XN (x) can be evaluated using equation (110) and

the right hand function is evaluated us;ingj tquations (95), (96), and

(97). A matrix expression is developed
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K) f Wx

ontn (120)1 N (X
which can be solved for the K 'S

N

The solution to the equation of i.tiol, crov id,-L iii oxp-ression which

relates the various parameters of the xi~r. _0 ind analytical models.

This expression can be used as ah of vr i' t t, 'Analytical mod(-l

with the experimental model. It car1 aIlsu i~t U>,CA- ,'sUdly the effects

of varying the different parameters. If tht-le 1- rfrlation between

the inalytical model and the texperimurital m(,Iel , the2:i the expressions

for the energy dissipated can U- assumed toD be corrtect.
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IV. Recommendations

The recommendations are put forth in hopes that some useful infor-

mation, regarding slip damping of Turbine/Compressor blades, can be

generated, using the analytical and experimental models provided by

this study.

1) using the analytical model the following quantities for various

combinations of exciting force and clamping pressure should be generated:

a) Value of exciting force for complete slip.

b) The exciting force necessary to obtain a set blade tip dis-
placement.

c) A comparison of the energy being dissipated by the three
forms of damping.

2) Using the experimental model

a) A wider variation of clamping pressures and exciting force.

b) Differing conditions for the contact surface, such as a
sandwiched viscoelastic layer.

c) Investigations of slip in an environment with an elevated

temperature.

3) The analytical model should be modified to include a sandwiched

viscoelastic layer at the contact surface.
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Appendix A

Solution To Characteristic Equation

The characteristic equation

0 (cosh6L cos6L + 1) + cos8L sinhaL
El (A-1)

- sinRL coshbL = 0

P" I can be solved using a combination of the bisection and secant methods

to find the points (B NL) where equation (A-1) is satisfied. Using

the relation

^2 B4EI
=- (A-2)

and the values

3 3
L = 1157.625 in

I = .01828 Ibm-in
2

0

ibm
y = .18625 ---in

The first five values of BL which satisfy equation (A-i) are listed

in column two of Table One. In column three of the same table are

listed the classic values of BL for a clamped-pinned beam. Using

equation (A-2) the frequencies corresponding to the different values

of BL are entered in column four of Table One.
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Appendix B

Accelerometer and Impedance Head Calibration

Figure 16 shows the set-up used to calibrate the accelerometer

and force gage. The large MB model CIO exciter and the MB model 3402MB

amplifier were used. The accelerometer and the force gage were attached

to the head of the exciter. A known mass was placed over the impedance

head. The signals from the accelerometer and the force gage were fed

thru the same data chain as was used for the data taking. A known

acceleration was exerted by the exciter. The output of the accelero-

meter and the force gage were recorded. Knowing the mass over the force

gage allowed the calculation of the force corresponding to a certain

signal level.
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Figure 16. Schematic of Calibration 3et--ap for the
Accelerometer and Impedance Head Calibration
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Appendix C

Spring Beam Calibration

To calibrate the spring beam it was necessary to apply a known

force and record the corresponding signal from the strain gages.

Figure 17 shows the force table and guide which, when assembled on the

disk model (Figure 18), allowed a known force to be applied to the

spring beam. Increasing amounts of weight were set on the force table

and the signal from the strain gages was recorded.
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Figure 17. Picture of Force Table and Guide

.- -- .

Fiqure 18. Picture of Force Table in Place

on the Disk Model
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