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Abstract

An experimental, and an analytical, model of Turbine/Compressor blade
with a circular root geometry is developed for the purpose of studying
the effects of slip damping on the response of the blade. The expression
for the energy dissipated by slip damping is presented. In addition the
expressions for the energy dissipated by air and hysteresis damping are
presented. The equation of motion for the blade is developed, and solved,
to provide an expression relating the various parameters of the experi-

mental and analytical models.
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I. Introduction

Today there are significant problems associated with the failure
of Turbine/Compressor blades. The failures are due to increasing de-
mands in the areas of performance and service life from the jet engines.
To increase the performance, higher thrust to weight ratios are deman-
ded. As a result, the excess material of the Turbine/Compressor blades
is being reduced to the absolute minimum and the margins of safety are
being reduced to the minimum allowable limits. Longer service life re-
quirements have brought about problems with fatigue which are difficult
to predict due to the random nature of the dynamic loading.

The environment of the Turbine/Compressor blade is very severe.

The stresses generated within the Turbine/Compressor blades are very
high. The loading which acts on the blades is very dynamic and random.
The loading is expecially severe at the resonant frequencies of the
Turbine/Compressor blades where there is increased displacement which
results in an increase in the stresses. 1In addition, for Turbine blades,
there is the additional problem of a very high temperature environment.

It is important to understand the mechanisms which operate to reduce
the effect of this dynamic loading. With a knowledge of these damping
mechanisms, it might be possible to exploit them to obtain a further
reduction in the effect of the dynamic loading.

There are three damping mechanisms which operate to reduce the re-
sponse of a Turbine/Compressor blade. They are hysteresis or material
damping, air damping, and slip damping. This paper is concerned with
slip damping and so the other two forms of damping were addressed only
to the degree necessary to provide the means of isolating the effect of

the slip damping.




This study was undertaken to establish both an experimental, and an
anaiytical model of a Turbine/Compressor blade. These models may be used
to study the effect of slip damping on the response of a system similar
to a Turbine/Compressor blade mounted in a disk. The analytical and
experimental models might also be used to study ways of increasing the
slip damping which occurs on the contact surface between the blade root
and the disk. For example, if the slip damping mechanism could be main-
tained at higher engine RPM levels there would be a significant contri-
bution to the reduction of the response of the Turbine/Compressor blade.

The primary area of investigation presented in this paper is the
development of the analytical model. All equations and relationships re-
quired to predict the response of the Turbine/Compressor blade to a spe-
cified loading condition were compiled. 1In addition, the equations re-
quired to predict the amount of energy dissipated per cycle by the three
forms of damping were developed. The experimental model was used to gen-
erate data for several variations in inading conditions for the purpose

of validating the model for use as a too: for the experimental study of

slip damping.




II. Experimental Development

Model Description

Figure 1 is a picture of the experimental blade modei. A uniform
beam with a half cylinder fixed to one end was chosen as a simplified
model of a turbine or compressor blade. Due to the limitations of this
investigation, and the phenomenon being studied, this simplification was
felt to be acceptable. The half cylinder is the root for the experimen-
tal blade model. The shape was chosen to facilitate both the manufac-
turing of the model and the analytical work. The dimensions of the ex-
perimental model are shown in Figure 2. Figure 3 is a picture of the
experimental disk model. The assembled blade~disk model (Figures 4 and
5) provides a simple representation of a turbine or compressor blade
mounted in an engine disk. In a jet engine the primary force acting on i
the blade root is due to the inertia load of the blade on the blade root ;
which is produced by the disk and blade rotating during engine operation. !
To simulate this loading, in the blade~disk model, a spring beam with a
pointed screw was used to apply a point load to the blade root at the
point of rotation for the blade root (Figure 6). The beam was instru-
mented on both sides at a chosen point with strain gages to allow for
the determiricion of the clamping force. The blade-disk model was manu-
factured using Inconel-X. This material was chosen because it is repre-
sentative of the materials used in a jet engine and to allow the use of
the blade~disk model at elevated temperatures without severe changes in

the material properties. The properties for Inconel-X are:

. 2
Modulus of elasticity (E) = 31 x 106 1bf/in

Poisson's ratio (v) = .29
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Figure 1. Picture of Experimental Blade Model

| Figure 3. Picture of kExperimental Disk Model




< W(x,T)

K-1.0 in. >

Figure 2.

Dimensions

and Sign Convention of Both }Models
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Figure 4. Picture of Assembled Disk~Blade Model
(side view)

Figure 5. Picture of Assembled Disk-Blade Model
(end view)
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Figure 6. Picture of Spring Beam
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Static coefficient of friction (us) =1,1

Dynamic coefficient of friction (ud) = .5

Test Set-up

Figure 7 is a schematic diagram of the test set-up which is pictured
in Figure 8. A MB model N695 Automatic Vibration Exciter Controller was
used to adjust the frequency and the magnitude of the signal being fed
thru the MB model 2120MB Amplifier to the MB model EA1500 Exciter. The
exciter applied a sinusoidal force to the tip of the blade to simulate
the dynamic loading of a compressor or turbine blade which occurs in a
jet engine. The magnitude of the applied force was monitored using a
Wilcoxon model Zl1l impedance head. The force gage signal from the impe-
dance head was amplified using a Kistler model 568 charge amplifier and
displayed on a Tektronix model 465M dual trace oscilloscope. Due to
problems with the integral accelerometer within the impedance head, a
separate accelerometer, mounted on the blade tip, was used to measure
blade tip displacement. The signal from the MB model 306 accelerometer
was amplified using a Kistler model 504D charge amplifier and displayed
on the same scope as the force gage signal. The signal from the strain
gages was monitored using a Tektronix type 549 oscilloscope with a plug-

in dynamic strain preamplifier.

Test Procedure

Due to the nature of the test set-up, with the blade tip constrained
by the physical attachment of the exciter, it was not possible to study
the displacement of the blade tip to a known force at resonance. Instead

the force required to maintain a set displacement at resonance was moni-

tored. The procedure for collecting the data was:
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Picture of Test Set-up in Lab




1) The force gage and the accelerometer were calibrated using the

procedure outlined in Appendix B.

2) The spring beam strain gages were calibrated using the procedure
of Appendix C.

3) A force was applied to the blade root using the set screw and
spring beam.

4) A displacement for a data run was selected.

5) A frequency was selected for a data point within the data run.

6) Using: displacement = acceleration/ (271 frequency)2
the acceleration required for the desired displacement at the selected
frequency was determined.

7) Using the controller/oscillator, the needed acceleration was set.

8) The magnitude of the force being exerted to maintain the displace-

ment was recorded.

9) A new frequency was selected and steps 6, 7, and 8 were repeated.
This was done at as many data points within a set displacement data run
as desired.

10) Steps 4 thru 9 were repeated for different values of the clamp-
ing pressure.

Since the frequency range of interest was the range abcut a point of
resonance, the frequency range for the data runs was selected about the

first resonant frequency calculated which was calculated in Appendix A.

Data and Discussion

Figure 9 is a plot of the force versus frequency for a clamping pres-
sure of ten pounds and three variations in the value of blade tip dis-
placement. The first item to note is the presence of the resonance at

320 cps. This corresponds almost exactly to the value of resonance which
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was predicted by the analytical model for the first mode of the blade.
All data runs were made over the range of 240 to 420 cps, but a sweep
was made to a frequency of 1200 cps to check for other possible reso-
nances. This sweep verified the existence of a resonance at 1000 cps,
within five per cent of the value of resonance which was predicted by
the analytical model for the second mode of the blade.

With an increase in the blade tip displacement there is an increase
in the magnitude of the blade tip driving force, for the displacements
of .00005 in. and 0001 in. Figure 9 shows an amplification factor of
1 to 6.5 at 320 ¢ps. This indicates no change in the damping of the sys-
tem. This is difficult to understand in light of the fact that all the
damping mechanisms are functions of the exciting force. The slip damp-
ing, however, will not be present until the exciting force reaches a
threshold value. The third displacement data point of .0003 in. plotted
in Figure 9 shows an amplification factor of 1 to 3.5 at 320 cps. This
indicates a significant increase in the amount of damping, present in
the system, at resonance. It may be assumed that the threshold value
for slip damping has been passed and that slip damping is making a large
contribution to the damping of the system.

Figure 10 is a plot of the force versus frequency for a clamping pres-
sure of twenty pounds and three variations in the blade tip displacement.
The analytically predicted resonance at 320 cps is present in this set
of data. The amplification factors, for the resonance peak at 320 cps,
for the lower two displacement cases are almost identical. The amplifi-
cation factor for the largest displacement case shows a significant in-
crease in the amount of damping present at resonsance. Agdain it can be

assumed that the critical value of the exciting foice has been passed and
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that slip damping is contributing to the dissipation of energy of the
system.

Figures 1l and 12 are force versus frequency plots for a set dis-
placement and variations in the clamping force. From these plots it can
be seen that, for a set displacement, or exciting force, that the lower
clamping pressure provides a better reduction of the amplification fac-
tor. This supports the conclusion that the lower the clamping pressure,
the more slip damping is present. The exception to this occurs at 320 cps
on Figure 11. The resonant amplification factors are almost identical.
This can be explained by supposing that the particular value of the ratio
of exciting force to clamping pressure is not high enough for slip to

occur. The prominant resonance at 370 cps appears to correspond to the

second torsional mode of the blade.
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I1I. Analytical Development

Model Description

Figure 2 shows the dimensions and sign convention of the analytical
blade model that was used in this study. The blade was represented as
a continuous beam of constant mass per unit length and constant cross

sectional area.

Contact Surface State of Stress

The first step toward the calculation of the energy dissipated by
slip is the calculation of the stresses acting on the contact surface.
To determine the traction distribution on the blade contact surface re-
quired to maintain equilibrium, the loading on the blade root was broken
into three cases (see Figure 13). Case one is the force applied to the
bottom of the blade root by the setscrew. This force was intended to
simulate the inertia force of a blade which acts on a turbine/compressor
hlade root due to the rotating motion of the blade-disk structure. Cases
two and three are the transverse force and moment, respectively, which
are applied to the blade root due to the dynamic force applied to the
blade tip. The first two loading conditions were analyzed using the solu-
tions for the stresses on a wedge loaded at it's apex. The half disk
geometry of the model blade root can be matched by expanding the half
angle of the wedge to 90 degrees. For the third loading case the solution
for a disk loaded by a couple was used. By starting with the stress func-
tions, for the wedge and disk solutions, and evaluating the constants
based on the conditions of the blade root model, a good approximation
of the stress condition of the contact surface can be obtained.

Timoshenko (23) discusses the wedge and disk problems in great detail.

18
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1. Case One Loading
Using as the stress function
= 6 6
¢l Alr cos (1)

the following stresses were derived.

o =—-2-A sinb
r r 1
(2)
g, = Tre=0

To evaluate the constant Al' the integral of the vertical component of

stress over the contact surface was set equal to the applied force (P).

t 61 n
/ f o, r sinf6do + /Or r sinbd@ dz = -P (3)
0 .0 n-el
Substituting equations (2) into (3) and evaluating,
t 61 m
2A1 (%6—&sin26)| + (%0-4%sin20) dz = P (4)
0 0 n-Ol
results in an expression for Al.
A = P (5)

1 t(261—51n261)

Using the above gives the stresses on the contact surface due to case

one loading.

G = 2P sin®
r rt(51n261~281)
(6)

06 = TrO =0
2. Case Two Loading
Using as the stress function,

= 8sint 7)
¢2 A2r sin (

the following stresses were derived.

20




(8)

E A_ cosg
r

o 2

X

To evaluate the constant A2, the integral of the horizontal component

of stress over the contact surface was set equal to the applied force

(F sinwT).
61 T
g, r cosydL + o, r cosfde dz = -F sinwT (9)
0 n-Ol
results in an expression for A2.
Az _ F sinwT (10)

t(2t:1 + sanUl)

Using the above gives the stresses on the contact surface due to case
two loading.

o = 2F sinwT cosf
b o rt(29, + sin281)

1
(11)
08 = TIB =0

3. Case Three Loading

Using as the stress function,

¢3 = A39 (12)

the following stresses were derived.

or =04 = 0
(13)

]

v 2
r

Solving for A_ by setting the integral of the shear over the area of

3

the contact surface equal to the moment caused by the blade tip load

(FL sinwT = FM).

T




1 7
. 2 2 -
FM + f frrvr as + /Trer dae dz = 0 (14)

t B, n
-FM = /A 0, +0 dz (15)
3 0 m-9
0 1
results in an expression for A3'
~FM
A, = 3ts, (16)

Putting equation (16) into equations (13) gives the stresses due to

case three loading.

g =0, =0
r 0
_ __~FM (17
rd 2
2r 61 t

The results from the three separate loading conditions can be
combined, using the principle of superposition, to provide an expres-

sion for the total stress condition of the contact surface.

_ 2P sinf + —2F sinwT cos® (18)
- in20_ ~28 8 i
r rt(sin2 1 2 l) rt(2 1 + 51n201)
2r to
1
0, =0 (20)

6

As the blade loading of the blade root increases, the shear stress

on the contact surface of the blade root increases in magnitude. As the

value of the shear stress at a point on the contact surface reaches a
value equal to the friction force, opposing motion, slip will occur.

The friction force is generated by the radial stress times the static




-

-

L

—— L

coefficient of friction. Slip will continue until the shear force, at
the point, drops to a value which is less than the friction force caused
by the radial stress times the dynamic coefficient of friction.

A non-dimensional representation of the stress distribution on the

e —— — —m 2e =

contact surface is pictured in Figure 14. The direction of the exciting
force is also depicted in the figure. It can be seen from the figure

that the normal force is not independent of the exciting force. The
static and dynamic friction forces will always be negative while the shear

force will change, from positive to negative, depending on the direction

of the exciting force.

The energy dissipated by slip is the integral, over the slip region,
of the friction force times the relative displacement across the contact
surface. 1If the normal force was independent of the exciting force, then
the relative displacement across the contact surface could be related
to the change in the stress component, parallel to the contact surface,
across the contact surface. Instead the relative displacment must be

calculated by first solving for the displacements associated with the

contact surface stresses.

Contact Surface Displacements

Associated with the three loading cases previously discussed are
the displacements which occur at points on the contact surface. To

solve for the displacements the equations for the relationships of

stress to strain, and strain to displacement were used.

(21)

=
"
oo
Lo 3 Rl
I
=
-
Q
[
<
s}

(22)
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1. Case One Loadiny

Using equations (6) and equation (21) the U displacement is

_ _2P sinv log r ‘
tE(20, - sin20 ) + B (24)

Using equations (24) and (22) the V displacement can be solved for.

2vP cosd 2P cosf log r
= - - ‘ - 9
v tE(20] - sin28)) ~ TE(27 - sin2b)) f(yav + £(n) 5,

To solve for f(9) and f(r), equation (23) and equation (6) are
used along with equations (24) and (25). Using these equations an ex-

pression in terms of f£(¥) and f(r) is developed.

S£(0) 1 2P cosf + 3f (r) N ~ P cost
A%, (26 - s 3 : - i
r rth{2 1 51n261) r rt:[:(28l 51n261)
{26)
f B2 g o B
r r

For this equation to hold the sum of the 8 terms must be equal to

zero and the sum of the r terms must be equal to zero. Timoshenko (23)
discusses the solution to equation (26) for f£{0) and f(r).

f(r) = er (27)
and

f(6) = f(particular) + f(homogeneous) (28)

The particular solution is dependent on the other 0 terms present in

the expression for f(6) and f(r), equation (26).

_ P(v - 1)8 cosO
0 - sin2b
tE(2 1 sin 1)

£(0) + stin” + QBCOSH (29)

Using equations (27) and (28), the displacements are

2P sinY log p(v - 1)9 cost
= - - + sind + cost
u tE(ZU1 - sin201) tE(ZU1 - s1n201) QZ Q3 (30)

25
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and

V= 2VP cosb _ 2P cosy log rx P(v ~ 1) cos9
tE(261 - sin20,) tE(201 - sin26,) th(201 - 51n281)
P(v ~ 1) sing Do
+ : +
tE(20, - sin20)) Q088 + 048100 + Q) x (31)

Selecting for a boundary condition that the displacements (U and V) are
equal to zero at the point on the contact surface where 6 = 0 allows the

evaluation of the constants in equations (30) and (31).

=0
Ql
_ _P(v+ 1) 2P log r
9 ~ ¥E(26, - sin2e,) ' tE(20, - sin2u) (32)
1 1 1 1
Q; = 0
Substituting equations (32) into equations (30) and (31)
U=-B - 16 cos6 | _Ply+ 1) sinv (33)

tE(Zel - SLnZSl) tE(2(il - 51n201)

and

_ P(v -1)6 sing
V= tE(26, - sin26) (34)

2. Case Two Loading
Using equations (11) and equation (21) the U displacement is

2F sinwT cosH
= +
u tE(2el + sin261) log r £(O) (35)

Using equations (35) and (22) the V displacement is

2F sinwT sind 2vF sinwT sind

v = - - log r -~ X :
tE(Ze1 + 31n261) tE(Zol + 51n201)

(36)

- Jf(e) do + f(r)
To solve for f(8) and f(r) the same method is employed as was used
for the case one loading displacement analysis. The results are

f(r) = er (37)

T e T T e,




and

; _ (v ~ 1) F sinwT cosy . .
‘ f(y) = tE(ZOl " sin201) + Q231n6 + Q30056 (38)

These results, when used with equations (35) and (36) provide the 4

following displacement expressions,

. 2F sinwT log r cosy + (v - 1) F sinyT cosY

U ; N
P s £ X + s
tE(ZHl + s1n2)1) th(20l 1n261)
f (39) |
‘ + Q251n0 + Q3cosu
. and
v = 2F sinyT log r sing (v - 1) F sinwT cosb
tE(26., + sin24.) tE(26, + sin206.)
1 1 1 1
(40)
{v - 1) F sinyT sing
- + - S
EE(20, + sinZ0 ) Q,c086 - Qgsinb + Q)x
{

To solve for the constants in equations (39) and (40) the displacement

at the point 8 = 0 is set equal to zero. Using this boundary condition

the constants are )
=0
Ql

(v - 1) F sinuT
= ~ 1
Q2 tE(2t)l + sinZGl) (41)

2F sinuwT log x

+ sin2
tE(281 sin el)

Q3=-

Introducing equations (41) into equations (39) and (40)

-

! U = (v +1) F singT cosp _ (v - 1) F sinyT sinp (42)
i - i X + sin20
i tE(20l + s1n261) th(201 sin 1)
and
v = - 2~ 1) F singT cosf (v = 1) F sinuT sin® (43)
- tE(26, + sin20,) tE(20 + sin26))

3. Case Three Loading

Using eguations (17) and equations (21) and (22) it is possible

to establish the relationships




-~

c
]

f£(8) (44)

and

\ - £(6) 4v (45)
Using equation (23) it is possible to set up an expression in terms

of f(uv)

FM £ (8)

26 r t 01 b

+ f(g) do (46)

which can be solved for f(8)

B . FM
£(0) = Q231n8 + Q3cose Ezr;fz—az- (47)
where
- —E
G = 2(1 + v) (48)

which gives the following displacements

. M
= + - e e—
U Q2s1n6 Q4cosy Tt 01 (49)
and
, M
= - b —
\Y Q2c056 Q351n0 Gt 91 (50)

The displacement at 6§ = O is set equal to zero in order to solve for
the unknown constants. Solving for the constants Q2 and Q3 and
putting them into equations (49) and (50) gives the final
displacement eguations

(1 +v) FM

= sO - 5
U E T to {(cosl 1) (51)
1
and
y= LX) B i) (52)
Er t 01

The total displacements can be arrived at, in the same manner as

the total stress components were achieved, by the principle of

A S A N - T R i BTGP MAR. T
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superposition.

U= - P(v - 1)y cosg P(y + 1) sing (v + 1) F sinuyTB cosB
tE(261 - sin201) tE(20l -~ sin2bl) tE(201 + sinzel)
_{v - 1) F singT sinv N {1L +Vv) FM (cos9 - 1)
E(24 + i t 3 a
tE(2 1 51n2)1) Ert 1
(53)
and
v = P(v -~ 1)VY sinb _2(v - 1) F sinwT cos¥ (Vv ~ 1) F sinwTh sinf
2 (260, - sin20 (20 in20 2 (20 in20
tE(2 1 sin2 l) tE(2 1 + sin2 l) tE(2 1 + sin2 l)
(1 + v) FM (8 - sinl)
+ ]
Ert © (54) i
1 ‘

Having expressions for the, or V, and the radial, or U, displace-
ments it is possible to solve for the relative displacement between two
originally adjacent points after slip has occured. Figure 15 depicts
the guantity that is desired.

The component of the displacement of interest is the 0 direction or
V component. On one-half of the slip region, region 1, the displacemnt

will be described by equation (54). Denoting equation (54) in that half

as
= o +
vy £( r) g(TIO) (55)
where
f( ) is the V displacement associated with the radial stress
1
and

g( ) is the V displacement associated with the shear stress
In the other half of the slip region, region 2, the displacement (VZ)
will be a combination of the displacement associated with the radial

stress (f( )) and the displacement associated with the friction force ]

This can be written

acting on that portion of the slip region (h( )).

as

'7 q
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RELATIVE DISPLACEMENT
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SLIP . REGION 2
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~
REGION 1
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~

Figure 15. Relative Diaplacement Across Contact
Region




r = N
x2 f(or) + h(pDor)

(56)

The relative displacement is the difference between equations (55) and

(56)

Vl - v2 =9 (Tre) - h(“Dor)

i which can be written as

U P(v - 1)6 sinb

v - v = (1 + v) FM (6 ~ sinY) D
2 E t © Tt - si
» 1 r 1 E(20l sxn261)
{
! 2(v - 1) F singT cos6 (v - 1) F singTH sindh
tE(281 + sin201) tE(2el + sinzel)

(57

(58)

Since the energy dissipated is related to the integral, over the

slip region, of the friction force times the relative displacement it 1is

necessary to determine the limits of integration.

Points of Slip Initiation and Zero Normal Force

There will be two such points (Q and R), one on each side of the

blade root, where slip will begin (Figure 14). The equation for
points where the friction force and the shear stress are equal is

- ABS =
1r() uSor

the two

(59)

Solving for points © and R, the points of eguality, on the blade

contact surface by writing

.o = Lsinf + Gcosy
S'r
-
' where
L)
Pu
L = : =
T rt(sin20. - 28
(sin 1 l)
) 2Fus sinwT
G =

= —
rt(51n2(l + 201)

and writing

(60)

(61)




- ABS TrO = H (62)

setting the two functions equal to each other
LSin® + Gcos® = H ;

3

rearranging the equation and squaring both sides

2 .
L (1 - 00526) = Gzcoszu + H2 ~ 2HGcosu
collecting terms results in a quadratic equation

(L2 + G2) c0528 - 2chose + (H2 - L2) =0 (63)

This equation can be soiyed for the angles corresponging to points
g and R. f
Due to the nature of the loading on the blade root there will be a
small portion of the contact surface adjacent to the y-axis which will
be free of any normal force. This small portion of the contact surface
will have an outward noémal opposite in direction to the direction of
v

the tangential force discussed as the case two iocading condition. To

solve for the point (S) where the normal force equals zero,

2P sin® _ 2F sinuwT cosé (64)
v 8 - - - B .
rt{sin2 1 261) rt (2 1 + 51n261)
Solving the equality for tLe angle of the point (S).
- i 6. - 28
6 = tan Lt F(sin20) - 20,)) (65)

0 i S}
P(2 1 + sin2 l)

Having an expression for the normal force on the contact surface
(equation 18) the friction force can be written as

2PuD sinb 2FuD sinuwT cosb

wo o= - + — (66)
- 6. - 20
Dr tr(s:LnZO1 261) tr(sin2 1 2 l)

The relative displacement across the contact surface due to slip is

known (equation 58), and the points of slip initiation are known
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(equation 65). With these expressions the energy dissipated due to slip

can be calculated.

Energy Dissipated by Slip

The energy dissipated by the slip region is the product of the fric-
tion force acting over the region times the relative displacement across
the interface. This quantity, integrated over the slip region, will give
the amount of energy dissipated at a particular instant. Integrating this
result over one cycle will result in the energy dissipated per cycle.
During one cycle the exciting force will change from zero to a maximum
value four times. Thus the energy dissipated per cycle (Do, 1b-in) is

Friction force x Relative displacement
D =4 (67)
slip region
Four times the product of equations (66) and (58) integrated over the
slip region gives the energy dissipated per cycle.
Q b
D, =4 /‘ (o) (V) = V,) do + /‘ (upo ) (Vi = v,) dsl  (68)
0 R

It should be noted that the region of zero normal force is included
in the above expression. The reqion is on the order of two degrees and
its inclusion in the expression has a negligible effect.

In order to isolate the effect of the slip damping it is necessary

to develop expressions for the air damping and the material damping.

Energy Dissipated By Air Damping

The amplitudes associated with the blade displacements are small
and thus the force acting on the blade is proportional to velocity

{reference 2)
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F = CV (69)
utilizing references (2) and (5) the equation for the air damping of
the blade is

_ 2.2
D0 = NC7w X (70)

where
w is the circular frequency of the blade
X is the displacement of a point on the blade

and C7 is a constant equal to

¢, = L‘QSCD (71)
where

¢ 1s the density for air

S is the wetted area of the blade

CD is the drag coefficient for the blade

the expression for the energy dissipated can be written

c:schzx2 (72)

lw)
(o]

i
(ST

Energy Dissipated By Hysteresis Damping

To develop an expression for the hysteresis damping of the blade,
a relationship between stress and energy dissipated of the form

D = JOBN (73)

was assumed. J and N are empirically derived constants and 0B is the
bending stress due to the tip load on the blade. D has units of
(lb-in/in3) and must be integrated over the total valume of the blade

to obtain the energy dissipated

t b/2 L

_ N
D, = f / / J [%!] dxdydz (74)

0 -b/2 0
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Evaluating this integral where M = F(L - X) leads to

27t AR SRR
b, =7 |71 ) (75)
(N + 1)

For Inconel-X and OB less than 33 KSI

N 2.224

13 (76)

J = 4.586 x 10

In order to be able to use the experimental model to verify the
analytical model, it is necessary to develop an expression which re-
lates such quantities as blade tip displacement, exciting force,
clamping pressure, material properties, etc. This can be done by
developing a solution to the equation of motion for the blade. The
first step toward this is the evaluation of the restoring moment due

to slip which acts on the blade root.

Restoring Moment Due to Slip

The restoring moment due to slip (M) can be calculated from

2
= +
M r/ ﬁ Dor ae /“DOr as dz (77)

where t is the depth of the blade root in the z direction. Placing
equation (18) into equation (69) and evaluating,

Q v

2P cose‘ + cosei
0 R

i - 20
D (51n261 2 l)

n
2F sinwT sin® ‘ + sinb I
0 R

+ sin26
(26l sin2 l)

+

This leads to an expression for the restoring moment,

i 2P(cosR - cosQ - 2) 2F sinwT(sinQ - sin R) 5
= : 8
M= Ty (sin20, - 20) (20 + sin20)) (78)

which can be rewritten as




P

M m sinwT

where

r 2P (cosR - cosQ = 2) + 2F(sinQ ~ sinR)
) (sin26) - 26 )sinuT (20, + sin26,)

(79)

m

It should be noted that the region of zero normal force was in-
cluded in the determination of the restoring moment which was due to

friction developed on the contact surface. The region is on the order

of two degrees and its inclusion in the integratic.. has a negligible

effect on the result.

Equation of Motion and Boundary Conditions

To derive the eguation of motion and boundary conditions for the
blade, Hamilton's principle was used.

T

(8K - 6U + SWK)AT = O (80)

0
For the blade the variation of the kinetic energy is

L

2 2
oW 3 2° W d
oW 4 +1 1

Vot ot WY I uar | ST Y| (81)

x=0 x=0

§K =

where
L. is the length of the blade in inches
Yy is the mass per unit length of the blade (lbm/in)
I is the mass moment of inertia of the blade root about

point O (lbm-inz)

W = W(x,T) is the displacement of the blade in the Y direction

The variation of the potential energy of the blade is

L
2, .2 |’

SU = EI 2—% §~3 SW dx (82)
90X 09X
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where
' E is the modulus of elasticity of the blade (lbf/in2 =

386 lbm/sec~in)

I is the area moment of inertia of the blade (in4)

S and the variation in the work is

SWK = F sinwT &W - m sinaT %; oW (83)
x=1 x=0

Placing equations (81), (82), and (83) into egquation (80), performing
the necessary integrations, and eliminating the zero terms leads to

the equation of motion,

4 2
. W
; EI —3—-2—:' + ¥ §_—2_ =0 (84)
k ax T

the boundary conditions at x=0,

w(o,T) =0 (85)
. and
- 32 52 5
EI —— W(O,T) + —— -— W{0,T) I +msingT =0 (86)
2 L2 Ix )
r ax Jt

and the boundary conditions at x = L

——

3 a2
: EI —— W(L,T) =0 (87)
2
ax

and
3

{ | EI 2—5 W(L,T) + F sinwT = 0 (88)

P

Ix

Solution to Equation of Motion

To solve the equation of motion for the displacement it is neces-
sary to make the boundary conditions homogeneous. Denoting
W 82W

3; = hx ; T—E = wxx H etc.
IxX

M‘_—‘-—“-_n______._._A
¥ -
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and writing the equation of motion

4
-aWw _ =0
XXXX a tt (89)
where
4 _ X
a EI (90)
Making a change of variables
W{x,T) = ¥Y(x,T) + (BlsinaWX + Bzcosan + B3sinhaWX
2 (91)
+ B4coshaWX)sinw T
with
lbz = W

From equation (391), and the boundary condition (85) for

Wi{x,T) = ¥Y{(x,T) = 0

Placing the result in equation (91) and substituting this into equation

(87) and requiring that

w (L, T) =Y (L,T) =0
X% XX

requires that

B3sinha¢L = B_sina¥L + B

1 ) (cosa¥L + coshaVL) (92)
Using equation (88) and forcing

Wxxx(L,T) = Yxxx(L,T) =0
requires that

F

BlcosawL - Bz(slna¢L -~ sinhaV¥L) - B3coshaWL = EIa3w3 (93)

Using equation (86) and forcing
- ,T =

EI wxx(o'T) + I0 Wxtt(0,T) EI Yxx(O,T) +Iotht(0 ) 0

requires that
m-1 aWS(Bl +B3)
B, = = oW (94)
2EIa“V




Equations (92), (93), and (94) provide three equations in three

unknowns which can be solved to provide the following results,

B = m _ 3 1+ sinayL
1 5 33 , i
Iow a Ela ¢ (cosayLl - cothayL sinayl) sinhavL
.3 ] A |
X 1+ Eggha?L + + sinavlL
sinayL cosayl + coshayL
(sina¥l - sinha¥l.) - (cosa{L + coshaVyL)cothayl
cosayLl. - cothayl sinayL
F
+ 33 (95)
Ela™y” (cosayL - cothayl. sinayL)
B = m _ F sinayL
2 5 33 i
Iow a Ela ¥~ (cosa¥L - cothayL sinayL) sinhayL
% cosayl - cothaV¥l sinaV¥L
(sina¥lL, - sinhailL) - (cousavl + coshaVL)cothayL
sinhayL sinall
+ +
X 1 sinayL cosayl, + coshall *1 (96)
B = [(sinawL - sinhayL) - (cosayL + coshawL)cothawL]sina@L
3 (cosaVL ~ cotha¥L sina¥L)sinhaVL
(cosayl, + coshaylL) B
sinha({L 2
F sinaVl (97)

+
EIa3w3 (cosay¥L ~ cothayL sinaV¥L)sinhayL

With the change in variables, and the constants (95), (96), and (97)

the homogeneous equation of motion is

Y

Y + — Y = 98
XXXX EI "ttt 0 (98)

and the homogeneous boundary conditions are

Y(0,T) =0 (99)

Y (LT =0 (100)

Yxxx(L’T) =0 (101)

ET Yxx(o,T) + onxtt(o,T) = 0 (102)
39
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Assuming a solution of equation (98) of the form

Y(x,T) = X{(x)Z(T)

and using the solution method of separation of variable results in

Z(T) = JcosiT + KsinwT {103)
and

X(x) = Dlsinex + chosﬁx + DBSinhax + D4coshﬁx (104)
where

4 _ by

BT TET (105)
Using the first boundary condition (99)

02 = —D4 (106)
Using the second boundary condition (100)

-DlsinBL + D4(cosBL + cosh@L) + D3sinhsL =0 (107)

Using the third boundary condition (101)

- chosSL + D4(sinhBL - sinBL) + D3coshBL =0 (108)

Using the fourth boundary condition (102), rewritten as
1 &°
X, (0) = —— X_(0) =0
XX EI X
gives
10&2
2D4 - “EiB (Dl + D3) {109)

D., and D, are not zero,

For the non-trivial solution where D_, D 4

1 2" 73
the determinant of the coefficient matrix must be zero. The governing
equation is

1 @2

EIB (coshBL cosBL + 1) + cosBL sinhBL - sinBL coshfL = 0 (110)

This equation can be solved, to provide the values of tL and &, using

L@L)4EI E

G o= (111)
YL4
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See Appendix A for the solutions to (110) and (111). Using equations

(107), (108), and (109), the constants D3 and D4 can be put in terms

of D. to provide

1
1 (gL’
3 (o) (cospL + coshgl) singL
Prh 17T sinhEL ~ 1T Sinner
2Ly
3 (112)
+ 2Ly sinfL
I (gL)3 (cosBL + coshfL)
o
and
1_(pL)° ’
D =D 1 [ (cosfL + coshgBL)
4 1 4 YL3 sinhfL
3 (113)
+ IO(BL) sinBL sinfL
2L3Y sinhBL (cosBL + coshgL)
Setting Dl = 1 and substituting (112), (113), and (106) into equation
(104) provides,
3 2
Y (x)  sine x + 1 IO(BNL) (cos(BNL) + cosh (BNL))
N N 4 YL3 s1nh(BNL)
I (B.1)° sin(B.L) sin (B_L)
+ 2 N N + N
2L3 y 51nh(BNL) (cos(BNL) + cosh(BNL))
x (coshBNx - cosBNx)
I (8.1)° (cos(B L) + cosh(B L))
X Ly cos (B co N ., ;
2L3 y 51nh(BNL) E
3 sin(B L) g
, 2L Y PN
I (8 L)3 (cos(SNL) + cosh(BNL)) :
o N
sin(H L)
+ EI;ETEEE) (51nhBNx) (114)

Using equations (114) and (103), the solution to equation (98) can be

41
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-~ written,

Y(x,T) = & XN(x) (JNcosz + KN51an) (115)

Substituting the above into equation (91) provides an expression for

, ' the displacement.
T B W ‘T=E J 5T+ ind
2 . (x,T) £t XN(x) ( NCOSdy KNSanNT)

. + [Blsinawx + Bz(cosawx - coshayx)
. . 2
+ B351nha¢x sin{(y T) (116)
" To evaluate the remaining constants JN and KN it is necessary to use
the initial conditions

Wi(x,0) =0 (117)

and

ST T TR, T T AT

Wt(x.O) =0 (118)

The first initial condition (117) requires JN = 0. Using this result

and the second initial condition (118) requires that

! 2
K 3 = = si + sayx - coshay
NmNXN(x) 17 (Blslnawx Bz(co ay» coshayix)
N=
+ B3sinha¢x) (119)
- The functions @ XN are not orthogonal functions. Therefore a
4 collocation method must be used to solve for the constants (KN).

: The desired number of modes (N) must be chosen, and the XN(x) as
well as the right hand function must be evaluated at a number of points
along the blade. The XN(x) can be evaluated using equation (110) and

the right hand function is evaluated using equations (95), (96), and

(97). A matrix expression is developed




Kl fl(x)
constants . = ) (120)
KN fN(x)

which can be solved for the KN'S.

The solution to the eguation of m.tiorn provides an expression which

relates the various parameters of the expoerimental and analytical models.

This expression can be used as a means of veritfving the analytical model

with the experimental model. Tt can also be used to study the effects
of varying the different parameters. If thoere is orrelation between
the analytical model and the e¢xperimental model, then the expressions

for the energy dissipated can be assumed to be correct.
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IV. Recommendations

The recommendations are put forth in hopes that some useful infor-
mation, regarding slip damping of Turbine/Compressor blades, can be

generated, using the analytical and experimental models provided by

this study.

1) Using the analytical model the following quantities for various

combinations of exciting force and clamping pressure should be generated:

Value of exciting force for complete slip.

a)

b) The exciting force necessary to obtain a set blade tip dis-
placement.

¢c) A comparison of the enerqgy being dissipated by the three

forms of damping.

2) Using the experimental model

a) A wider variation of clamping pressures and exciting force.

b) Differing conditions for the contact surface, such as a

sandwiched viscoelastic layer.
c) 1Investigations of slip in an environment with an elevated
temperature.

3) The analytical model should be modified to include a sandwiched

viscoelastic layer at the contact surface.

A\




10.

11.

12.

13.

14.

15.
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Appendix A

Solution To Characteristic Equation

The characteristic eguation

1 02

EI (coshBL cosBL + 1) + cosBL sinhRL
(A-1)

- sinfL coshBfL = 0
can be solved using a combination of the bisection and secant methods
to find the points (BNL) where equation (A-1) is satisfied. Using

the relation

(A-2)

and the values

13 = 1157.625 in>
.2
I0 = ,01828 lbm-in
y = .18625 ib%
in

The first five values of BL which satisfy equation (A-1) are listed
in column two of Table One. In column three of the same table are
listed the classic values of BL for a clamped-pinned beam. Using
equation (A-2) the frequencies corresponding to the different values

of BL are entered in column four of Table One.
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Appendix B

Accelerometer and Impedance Head Calibration

Figure 16 shows the set-up used to calibrate the accelerometer
and force gage. The large MB model Cl0 exciter and the MB model 3402MB
amplifier were used. The accelerometer and the force gage were attached
to the head of the exciter. A known mass was placed over the impedance
head. The signals from the accelerometer and the force gage were fed
thru the same data chain as was used for the data taking. A known
acceleration was exerted by the exciter. The output of the accelero-
meter and the force gage were recorded. Knowing the mass over the force

gage allowed the calculation of the force corresponding to a certain

signal level.
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Figure 16. Schematic of Calioration Set-up for the

Accelerometer and Impedance Head Calibration
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Appendix C

Spring Beam Calibration

To calibrate the spring beam it was necessary to apply a known
force and record the corresponding signal from the strain gages.
Figure 17 shows the force table and guide which, when assembled on the
disk model (Figure 18), allowed a known force to be applied to the
spring beam. Increasing amounts of weight were set on the force table

and the signal from the strain gages was recorded.
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5 Fiqure 18. Picture of Force Table in Place
on the Disk Model
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