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FOREWORD

Investigations of polynomial operations have been made in this laboratory for a
number of years. Subroutines have been prepared on the basis of several methods of
computation. It is the purpose of this report to provide analysis and documentation
of the best subroutines. The manuscript was completed by 27 October 1977.

Released by: <

\ G,W
"Ralph A. Niemann
Head, Strategic Systems Department
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ABSTRACT

Power polynomials and trigonometric polynomials are used for the approximation
of general functions. Analysis and documentation are given for a set of subroutines

which perform polynomial arithmetic, find roots of a function, or construct contours
of constant function.
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INTRODUCTION

There was a library of subroutines on the Naval Ordnance Research Calculator. The
subroutines were written in machine language. The library no longer was useful after
NORC was dismantled. Some of the subroutines have been transcribed into FORTRAN,
and are described herewith. In the meantime, the NORC library has been eclipsed by
giant library projects. There are the System/360 Scientific Subroutine Package of the
International Business Machines Corporation', and the Subroutine Library of the
International Mathematical and Statistical Libraries, Inc.? Nevertheless, the subroutines
from the NORC library present capabilities which are not exactly covered by the giant
libraries.

Power polynomials and trigonometric polynomials are used extensively in numerical
analysis because they can be evaluated with efficiency on digital computers. They are
used often to approximate other functions which are more expensive to compute.
They give continuous interpolations of a function which is specified only at discrete
values of its argument. The function is illustrated graphically as a set of ordinates at
a set of abscissae. The function can be represented as a set of coefficients of the
powers of its argument or of the trigonometric functions of its argument. Power
polynomial expansions are available through lLagrange polynomial approximation or
orthonormal polynomial approximation for arbitrary arrangements of the abscissae.
The power polynomial expansions can be differentiated, evaluated, or integrated.

lLagrange polynomials are convenient because the polynomial approximation of an
arbitrary function is given directly by the products of the polynomials and discrete
values of the function. In the construction of the polynomials, binomials are multiplied
in succession to form a polynomial which has all the abscissae for roots, then this
polynomial is divided in succession by binomials to obtain the Lagrange polynomials.
The binomials may be symbolic insofar as they are represented by linear functions
of their argument. There is a loss of accuracy to rounding error in the derivation of
polynomials of high order. The binomials may be numeric insofar as they are represented
by their values for a specific value of their argument. There is no significant loss of
accuracy to rounding error in the evaluation of polynomials of any order.

The orthonormal polynomials are convenient because they provide a least squares
approximation for a function when the number of discrete values of the function is H
greater than the order of the approximation. The polynomials may be orthonormal
with respect to integration between two limits of integration, or they may be orthonormal
with respect to summation over a discrete set of arguments. In the construction of
the polynomials which are orthonormal with respect to summation, a matrix of values
of the polynomials is synthesized by orthogonalization and the coefficients of a -
three—term recurrence are derived by summation. The coefficients of recurrence may
be used in the expansion of the polynomials into representations as coefficients of
the powers of the argument, or the coefficients of recurrence may be used in the
evaluation of the polynomials for specific values of the argument.

Many high--order polynomials have such large coefficients that they can be computed
accurately only at small values of their arguments. Otherwise the rounding error in
the largest term of their expansion exceeds the values of the polynomials. Expansion
of polynomials into representations by coefficients is feasible only for polynomials of
. low degree.
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A high-order polynomial may be represented as a set of discrete values with an
algorithm for interpolation, or as a recurrence formulation with a set of recurrence
coefficients. The interpolation and the recurrence can be differentiated or evaluated
but not integrated.

High—accuracy algorithms for integration to any order are available for special
spacing between abscissae. Of especial importance are equal spacing, Chebyshev spacing,
and Gauss spacing.

Equal spacing has the disadvantage that Lagrange polynomials of high degree have
large amplitudes of oscillation near the ends of a set of abscissae. Small errors in
the values of a function near the center of the set of abscissae cause violent oscillations
near the ends.

In Chebyshev spacing the abscissae are proportional to the cosines of equally spaced
angles. The orthonormal polynomials for Chebyshev spacing are nearly equal to the
Chebyshev polynomials. The amplitude of oscillation of the polynomials is nearly
uniform.

In Gauss spacing the abscissae are proportional to the roots of a Legendre polynomial.
The orthonormal polynomials for Gauss spacing are nearly equal to the Legendre
polynomials. The order of accuracy of the integration of a function is nearly twice
the number of values of the function.

In the discrete Fourier transform the orthogonality of trigonometric functions with
respect to summation is used to obtain the coefficients of a Fourier series. If the
order of the Fourier series is a power of 2, then there is available the fast Fourier
transform® Two versions of the FFT are known as the Cooley-Tukey’ algorithm and
the Sande-Tukey? algorithm.

Various tactics for finding roots have been proposed in the literature. it is beyond
the scope of the present investigation to provide a literature survey. Libraries of
subroutines have been assembled by various organizations. The presence of an algorithm
in such libraries is evidence that the algorithm is worthy of consideration.

If a function is irregular it may have roots anywhere. A set of values of the function
must be computed at a closely spaced set of abscissae. The values are sorted in order
to determine where the function changes sign.

If a function is represented by a smooth curve of ordinates, then the presence of
roots can be predicted from the behavior of the function between roots. Only a few
computations of ordinates, slopes, and curvatures are required in order to locate and
determine the roots.

In the method of false position or regula falsi®* two abscissae which straddle a
root must first be found. The values of the function are opposite in sign at the two
abscissae. Linear interpclation is used to obtain a new abscissa. The interpolation is
repeated between the nearest abscissae for which the function has opposite signs. The
curvature of the curve of ordinates tends to make the sign of the function at each
new abscissa uniformly the same and opposite to the sign of the function at a fixed
abscissa. Although the abscissae improve gradually in accuracy, the rate of convergence
is geometric, because each new abscissa is obtained with a slope which does not
continue to improve in accuracy.

In the Pegasus'®? method, the location of the new abscissa overshoots the regula
falsi by an amount which gives improved convergence.

In the Lehmer--Schur!® method, the field is partitioned into areas by an arrangement
of circles with various centers and radii. The coefficients of polynomials with complex
argument are combined with the coefficients of polynomials with inverse argument so
as to eliminate the terms of highest degree. When the polynomials have been reduced
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to a constant, then the sign of the constant indicates whether a root is located within
the circle of inversion. Repetition with the various circles identifies the areas within
which the roots are located. The disadvantage of the method is that the time for
reduction of polynomials for each circle is proportional to the square of the order,
and the method is too expensive.

In the Newton—Raphson®* method, a value of the function and its derivative at an
iterant is used. At the iterant a tangent to the curve of ordinates is constructed. The
point of intersection of the tangent with the axis of abscissae is the new iterant.

In the secant method, the values of the function at two successive iterants are
used. A chord is constructed between the ordinates at the two iterants. The point of
intersection of the chord with the axis of abscissae is the new iterant.

The advantage of the tangent is that it does not require as many iterations. The
advantage of the chord is that it does not require the differentiation of the function.
The rates of convergence are quadratic, because the accuracy of the abscissae and
the accuracy of the slope both improve together.

In the Muller method?®®, the values of the function at three successive iterants are
used. The three values of the function are fitted with a quadratic polynomial. The
nearer root of the quadratic polynomial is the next iterant. Convergence is complete
if the increment from the iterant to the Newton-—-Raphson intercept is less than a
tolerance. The three consecutive iterants which define the quadratic polynomial must
be distinct. Otherwise the roots of the quadratic polynomial may be out of bounds.
In that case, the iterant is brought in to a circle with radius equal to the geometric
mean of the distances to adjacent roots.

In the method of Jarrett and Nudds?!, the quadratic polynomial is replaced by a
linear rational function.

In the method of Jenkins and Traub?®?, the function is a polynomial. A set of auxiliary
polynomials is constructed by a recurrence relation. A fraction of the function is
subtracted from each auxiliary polynomial to give a difference which is zero at an
iterant. The difference is divided by a binomial to give auxiliary polynomials of one
lower degree than the function. At all roots of the function except the nearest root,
the values of the auxiliary polynomials approach zero by a powering process.
Newton—Raphson iteration is applied to the quotients between the function and the
auxiliary polynomials. Insofar as all roots of the auxiliary polynomials except one
approach the roots of the function, the Newton—Raphson iteration is applied to a
progressively more nearly linear function.

In the present system, it is assumed that the best tactic is to go directly in that
direction in which a root is most likely to lie. There are two stages in the search for
roots. In the hunting stage, the function is approximated locally at an iterant by a
quadratic polynomial. Steps of predetermined length are taken away from the iterant
in the direction of the nearer root of the quadratic polynomial. Convergence of the
Newton--Raphson iteration is tested with the aid of a criterion. The hunting stage
terminates when a region of convergence has been reached. In the homing stage, the
intercept of the tangent with the complex plane is computed at each iterant. The
intercept becomes the new iterant as long as the displacement of the intercept is less
than the displacement of the iterant. Termination of the homing stage occurs if the
displacement of the intercept is equal to or greater than the displacement of the
iterant. Termination may occur because rounding error has upset the convergence or
because the iterant has moved out of the region of convergence. Whether termination
is caused by rounding error or by nonconvergence is tested by comparison between
the displacements and a tolerance. If the displacements are less than the tolerance,
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the iterant is accepted as a root. If the displacements are more than the tolerance,
the hunting stage is resumed with double the tolerance.

After each root of a polynomial has been determined, the root of the polynomial
may be eliminated by a synthetic division to obtain a reduced polynomial of one lower
degree. Experience has shown that with each reduction of the degree of the polynomial
the remaining roots are disturbed and the accuracy deteriorates. Reduction of degree
is not feasible for transcend :tal functions. In the present system the function is
replaced by the quotient between the function and that polynomial whose roots are
equal to all roots already determined.

Contours are used for the illustration of information which may range from irregular
data to smooth functions. The contours for irregular data are based upon local
interpolations within one element of a grid, whereas contours for smooth functions
can be based upon global formulations for the entire field.

An equation between two coordinates defines implicitly a relationship which is
represented in a graph of the coordinates by a contour line. The equation is solved
by an iteration which starts with trial values of the coordinates and follows a hunting
procedure and a homing procedure. During hunting the trial point is displaced by
steps of predetermined length. Before the contour is reached the steps are perpendicular
to the contour while after the contour is reached the steps are parallel to the contour.
After a contour is reached it is followed until it goes out of bounds or closes on itself.
If it does not close on itself, then the trial point returns to the initial point and the
other half of the contour is followed until it also goes out of bounds.

Two programs on NORC were designed to trace section lines on a ship or contour
lines in a LORAN map. These programs were prepared when the available cathode—ray
printers were dot plotters. The rasters were coarse and the simulation of curves
required care in the arrangement of dots. Later the rasters were finer and the
cathode--ray printers were vector plotters. Now the rasters are still finer and the
latest cathode-ray printers again are dot plotters. The dots are arranged so as to
simulate vectors. Any simulation of a smooth curve by a vector plotter necessarily is
a polygonization. The simulation of a smooth curve by a polygonization requires an
optimization of the lengths of the sides of the polygonization.

POLYNOMIAL ARITHMETIC
Analysts

Let the polynomials A(z), B(z), C(z) be defined by the equations

L-1

A(z) = .‘_: a,z* (1)
£=0
M-1

B(z) = ¥ be2* (2)
k=0
N-1

(z) = ¥ c2® (3)
k=0

where a,, b,.c, are real coefficients and L,M,N are the numbers of coefficients
respectively. The argument z may be real or complex. The coefficients of each polynomial
are stored in an array in ascending order. If the degree of the polynomial is less than
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the size of its array, then the upper end of the array is filled with zeros. The dimensions
of an array are given by a two-—integer specification. The first integer is the interval
between elements of the array, and the second integer is the number of elements in
the array.

In the transfer of a polynomial, the coefficients of the new polynomial are related
to the coefficients of the old polynomial in accordance with the equation

by = ay (4)

Transfer continues until the second array has been filled with coefficients from the
first array, or with zeros if the first array is shorter than the second array.

In the addition of two polynomials, the coefficients of the new polynomial are related
to the coefficients of the old polynomials in accordance with the equation

Cx = Qy + by (5)

Addition continues until the new array is filled.
In the subtraction of two polynomials, the coefficients of the new polynomial are
related to the coefficients of the old polynomials in accordance with the equation

Cp =y — by (6)

Subtraction continues until the new array is filled.
In the multiplication of two polynomials, the coefficients of the new polynomial are
related to the coefficients of the old polynomials in accordance with the equation

m
Cm = Z am—kbk (7)
k=0
The indices m - k and k are coordinates in a rectangle with dimensions equal to the
lengths of the old polynomials. In the summation the indices advance diagonally across
the rectangle. Initialization of the summation is at the left or bottom of the rectangle,
and termination of the summation is at the top or right of the rectangle.

In the division of polynomials, fractions of the denominator are subtracted from
the numerator until the numerator has been eliminated. The fractions which are
applied to the denominator are the coefficients in the quotient. Elimination is
accomplished with the aid of the substitutions

am
e (8)
[1]

Am+k > Qs cmbk (9)

where k is limited to the range k < M and to the range k + m < VN.

The quotient between two polynomials is a finite polynomial if all roots of the
denominator coincide with roots of the numerator. Otherwise the quotient is an infinite
series. The circle of convergence of the infinite series goes through that nearest root
of the denominator which does not correspond to a root of the numerator.

Polynomial arithmetic with real coefficients can be adapted to polynomial arithmetic
with complex coefficients. Let complex polynomials be given by the expressions

A+ iB C+1iD (10)
Then complex transfer is expressed by the substitutions
C~A D-B (1)
5




Complex addition is expressed by the equation

@+B)+(C+iD)=A+C)+(B+D)i (12)
Complex subtraction is expressed by the equation

A+iB)-(C+iD)=(4-C)+ (B - D)i (13)
Complex multiplication is expressed by the equation

(4 + iB)(C + D) = (AC — BD) + (AD + BC)i (14)

Complex division is expressed by the equation

A+1iB _ (AC+ BD) + (BC - AD)i
cC+iD cC + DD

(15)

The polynomials 4, B, C, D have real coefficients but complex arguments.
Programming

SUBROUTINE PLNM (MO, PA, NA, PB, NB, PC, NC)
KRR KKK KRR AR KRN RN NN R KRR R RKRR NN R AR R N R Rk Rk RN kR kR kR Rk Rk ok ok Kk ko Kk ko Kok ok ok ko
FORTRAN SUBROUTINE FOR POLYNOMIAL ARITHMETIC

AR R KKK KRR KRR R KRR K KRR KRR KRR AR KKK KRR KRR KRN RN KRR R SRR R R R RN RN KRR RS R Rk R KRB Rk

The mode of operation is given in argument MO. The polynomials 4, B, C are given or
stored in the arrays PA, PB, PC. The specifications of the polynomials are given in the
arrays NA,NB, NC. The specification for a polynomial PX consists of the array NXx as
given in the following table:

Address Specification
NX(1) Interval between coefficients
NX(2) Number of coefficients

There are no compatibility requirements on the lengths of the polynomials. The
repertory of operations and call lines is given in the following table:

Operation Call Line

B=A CALL PLNM (71, PA, NA, PB, NB)
C=4A+B CALL PLNM (2, PA, NA, PB, NB, PC, NC)
C-A-B CALL PLNM (3, PA, NA, PB, NB, PC, NC)
C- AB CALL PLNM (4, PA, NA, PB, NB, PC, NC)
c-4 8B CALL PLNM (5, PA, NA, PB, NB, PC, NC)

During polynomial division, leading zeros are shifted off to the left as far as possible
in the numerator and the denominator.

MULTIPLEX POLYNOMIAL EVALUATION
Analysis

Let ¢(u) be a polynomial of (n - 1)th degree in the argument u. Let the polynomial

6
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be expressed in terms of its argument by the equation

o) = T auut (16)
k=0

where the coefficient a, is the kth element of an array. The first derivative of the
polynomial is given by the equation

(17)

and the second derivative of the polynomial is given by the equation

dz n-1 N
—‘p(;‘) =Y k(k— a,u*?
du k=0

Integration of the polynomial is expressed by the equation

‘J‘u n-1 ak
eu)du= 3% - yktt (19)
o ro k+1

Whether the operation is integration, evaluation, first differentiation, or second
differentiation is determined by a mode-of-operation parameter.

Programming

SUBROUTINE MPLNMV (MO, AU, NC, AC, F\/)
KRR K KR K KRR KK KK K K KRR K KKK R K KR R KK KR R KRR R KKKk kR o ik ok KRR R KRR o K kR KRR K K K b

FORTRAN SUBROUTINE FOR MULTIPLEX POLYNOMIAL EVALUATION

ok ke k Rk k KRR KA AR R AR AR AR R AR ARk KKKk R AR R KRR KRR AR R RN R R KA KA R R R A kR KR AR KRR R kR ek Rk KRR Rk kR

The mode of operation is integration if MO = -1, evaluation if MO = 0, first differentiation
if MO = +1, and second differentiation if MO = +2. The argument u is given in the
address AJ. The number of coefficients n is given in the address NC. The coefficients
Qp, -, Q. are given in the n—-array AC. The value of the function is stored in address FV.

LAGRANGE POLYNOMIAL EXPANSION
Analysis

Let u,, -, u, be discrete values of the argument u, and let ¢,(u), . ¢.(u) be Lagrange
polynomials. The mth polynomial ¢,,(u) is defined by the equation

emlu) = (U = w) (U = Up J U~ Upy)

[TV W YV OV R A (20)

The lagrange polynomials have the property which is expressed by the equation
¢m(ulc) = 6mk (21)
where 6., is zero if k # m but is unity if £ = m. The Lagrange polynomials are expressed
in terms of powers of the argument by the equation
n-t

¢m(u) = ¥ ameut (22)
k=0

SR, e e




where the coefficient a,,, is the mkth element of a matrix of coefficients.
Let the partial polynomial F, (u) be defined by the equation

Fu(u) = (u = u)(u - up) (23)
and be expressed in terms of powers of the argument by the equation
Fuu) = ¥ cmpu® (24)
k=0

The coefficients of the partial polynomials are generated with the aid of the recurrence
equations

Cmk ™ Crn-1,k-1 ~ UmnCm-1,k (25)
and
Comm = 1 (26)

The coefficients of the partial polynomials are stored temporarily in the matrix of
coeflicients.

Cycling of the recurrence leads to the complete polynomial F(u) which is defined
by the equation

Fu) = (u-u,)(u-u,) (27)

and is expressed in terms of powers of the argument by the equation

Flu)= 3 cput (28)

k=0

The coefficients of the complete polynomial are stored in the (n + 1)th row of the

matrix of coefficients. 7
The Lagrange polynomial ¢, (u) is recovered from the complete polynomial F(u)

through division by the binomial u ~ u,,. The algorithm for division is just the nested

method for polynomial evaluation. The coefficients of the Lagrange polynomials are

given initially by the recurrence equation

Ak = Ckvt + U Om g4y (29)
and then they are normalized through division by the product
(um - ul)'”(um - um~1)(um - umn)'”(um - un) (30)

All coefficients are stored in the computer in ascending order.
Inasmuch as the mth Lagrange polynomial is unity at the mth argument and zero
for other discrete arguments, an arbitrary function f(u) is expressed by the equation

S ) () (31)

1

flu) =

It

The polynomial approximation of an arbitrary function is derived from a set of values
of the function at the discrete arguments through vector-matrix multiplication.

8




Programming
SUBROUTINE LGRNGX (AU, NA, AC)

e 3 30 e e 4 e 3 e e ok e ok 3K ok ok ok ok ok ki K o ok ok k ok ok ok ok R ok kR K ok Rk ok ok ok Rk R R Kok ok ok kR kR kR kR kR kR kR kR kR Rk kR ok ok

FORTRAN SUBROUTINE FOR LAGRANGIAN POLYNOMIAL EXPANSION

ok o ok ke Rk koKl ok kK K ok ok ok ok R ok ok ok ok ok kol k ok ko ko ok ko e ok Rk kR kR ok ok R kK Kk Kk 4 kR Rk Rk Rk Rk kKK KRR Rk

The arguments w,, -, u, are given in the n—array AU. The order »n is given in the
argument NA. The coefficients of the polynomials g¢,(u), -, ¢,(u) are stored in the
{n + 1) x n array AC. The coefficients of the polynomial F(u) are stored in the (n + 1)th
row of the array AC.

LAGRANGE POLYNOMIAL EVALUATION
Analysis

If u#u, for any k, then the mth Lagrange polynomial ¢,,(u) is evaluated by the
equation

(u ~ ) (U = U U = U)o — )

) )~ )t — )i — ) (32)

The normalization divisor of the mth polynomial is given by the product
(Um, ~ %) (U, — U1 Ui, = Ut 1) (U, — Up) (33)
which is computed initially from the discrete data. The function F(u) in the equation
Flu) = (v — ) (v — up) (34)

is computed from the given argument «, is divided by each difference u ~ u,, and by
the normalization divisor to give the values of the successive polynomials ¢,,(u).
The first derivative of the polynomial ¢, (u) is given by the equation

d 1 1 1 1
— =+ + o 4+ + + o+ u) (35
o omw =+ o et rerdhd et o om0 @)
The sums of the reciprocals of the first m - 1 differences v - u,,_, are accumulated
and are stored in an array.

The second derivative of the polynomial ¢, (u) is given by the equation

2
.d_. (u)—_[ L._+ S ! + 1 FENN 1 ] ('U.)
du? ¥ (w —wy)? = U 1)® | (U Umer)? (w—un)?] om
1 1 1 1 z
+ + e+ + + o+ u) (36
[uuul U~ Ump-y U~ Umyy u—un:I¢M( )( )

Polynomial expansion and cancellation of squares of reciprocals of differences reduce
the second derivative to the summation in the equation
dz n n 1
——¢mu) =Y L ¢m(u) (i#7) (37)
du? ™™ El Pl R TR [ (TR T I
where the summation does not include any terms for which it=m, j=m, or i=j.
The terms in the summation may be arranged in the form of a matrix such that

9
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the 1, jth term occupies the 4, jth position in the matrix. The mth row, the mth column,
and the diagonal of the matrix contain zeros. There is a matrix for each value of m.
The sum of elements in the upper left quadrant is twice the sum of products of the
reciprocal of the difference v - u,,.; and the sum of the first m — 2 reciprocals of the
differences u — u,,_;. The sums of the elements in the upper left quadrant are computed
and are stored in an array.

The computation of the second derivative is completed with further accumulations
of the products of the reciprocals of differences. The sum of elements in the lower
right quadrant is twice the sum of products of the reciprocal of the difference u - u,,,,
and the sum of the last n — m - 1 reciprocals of the differences u -- 4,,,,. The sum of
elements in the lower left quadrant and in the upper right quadrant is twice the
product of the sum of the first m — 1 reciprocals of differences and the sum of the
last n — m reciprocals of differences.

The computation of the first derivative is completed with further accumulations of
the reciprocals of differences. The sum of the first m — 1 reciprocals of differences is
added to the sum of the last n ~ m reciprocals of differences to complete the summation.

If w =, for any k, then the reciprocal of the difference u - u, is omitted throughout
the computation, and the values of the polynomials ¢,,(u) are replaced by zero when
m # k and by unity when m = k.

Programming

SUBROUTINE LGRNGN (AU, NA, AN)
ER I E e s i R e R R R S R RS N
FORTRAN SUBROUTINE FOR LAGRANGIAN NORMALIZATION DIVISORS

Aok Rk kR R R Rk R R R R kR R R KRR R R KRR AR R R R KRk R Rk Rk Rk kKR RN R AR kR ARk kAR kK

The arguments u,, -, u, are given in the n-array AU. The number of arguments is
given in the argument NA. The normalization divisors are stored in the n -array AN.

SUBROUTINE LGRNGV (MO, NA, QU, AU, AN, FF, DF, SF)
AR RN RN R R R R R R R Rk AR KRR R AR KRR R R R KRR RN A R AR R R R R AR A kAR R b bkt b A IO hd

FORTRAN SUBROUTINE FOR LAGRANGIAN POLYNOMIAL EVALUATION

e R R R R s R R R s s e R s R R s e A A R A R A R AR R R RS AR R

The mode of operation MO is 0 for functions, 1 for first derivatives, and 2 for second
derivatives. The number of discrete arguments n is given in argument N4, The variable
argument u is given in argument QU. The discrete arguments u,, -, u, are given in’
the n -array AU, and the normalization divisors are given in the n array AN. The
functions are stored in the n—array ff, the first derivatives are stored in the n- array
DF, and the second derivatives are stored in the n array St.

ORTHONORMAL POLYNOMIAL SYNTHESIS

Analysis
Let u,,,u, be the discrete values of the argument u at n stations, and let
! . ¢olu), -, ¢ (u) be n polynomials of progressively increasing degree. The polynomials

10
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are orthonormal if they satisfy the condition

‘Z? PaU)Pm () = Gpm (38)

=1

where §,,, is zero if k # m and is unity if kK = m. Any polynomial of degree m can be
expanded in terms of the orthonormal polynomials of degrees 0 through m. The
coefficients in the expansion are given by the solution of a sequence of equations
which start at the highest degree and compare terms of the same degree. Let ¢, (u)
be expressed by the equation
m-1
¢m(u) = 7mu‘pm—l(u) + Z 7v¢v(u) (39)

v=0

where the ¥, are constant coefficients. Multiplication throughout by ¢,(u) and
summation isolates y, in accordance with the equation

)E et} Pm () = Ym i U@ (U)Pmoy (W) + 7 =0 (40)

=1 i=1

The polynomial ug,(u) may be expressed by the equation

k+1
u‘/’t(u) = 2 evvu(u) (41)
v=0
where the ¢, are constant coefficients. All terms of the summation are orthogonal to
@m-1{u) and the coefficient 7, therefore is zero when k sm —3. The orthonormal
polynomials can be generated by a three—term recurrence equation.
The polynomial of zero degree is given by the equation

1

(u) = —= (42
Yo \/—'r;, )
and the polynomial of first degree is given by the equation
1
@1(u) = ;—(u - Ba)wo(u) (43)
0
where the constants ay and B, are defined by the equations
1 n
0g = 7= 2, w1 (u) (44)
0 \/7—1 ot 11
and
1 n
Bo = n pIRTA (45)

The subsequent polynomials are generated by the three-term recurrence equation

om(t0) = — §u¢m~l<u>  Brtms () - am-w..._g<u>} (46)

Gm-t

11




where the constants a,,_, and f8,,_, are defined by the equations

Oy = :./3 U1 (%) P (y) (47)
=1
and
Bon-1 = L Wi@mey (Ug) Py (1) (48)
i=1

The coefficients a,,_,, B,,-; are stored in a row array and the values ¢,,(u,) are stored
in a matrix array.
Let a function f(u) be expanded as a series in the orthonormal polynomials as

expressed by the equation

n-{ i
Ju) = ¥ cmem(u) (49) |
m=0
The square of the standard deviation o2 is given by the equation
1 n n-1 2
0=~ % %f(w) - cm(m)% (50)
L £=0

Differentiation with respect to a coefficient gives the equation

2 n nd
- 3= =2 2 b - T vt} ot (51)

cn Mo k=0
For least squares the coefficients are given by the equation
n
em = 2, fu)em(us) (52)
i=1

The square of the standard deviation is given by the equation

1 n n—~1
P T ) - T ent (53)
L m=0 :
For a complete expansion in terms of all n orthonormal polynomials the function is
equal to its series representation at every discrete argument and the standard deviation
is zero.

Programming
SUBROUTINE ORTHOS (AU, MA, AA, NA, AR) |

Ak ok dok Kok kR Rk kK Rk ok Kk ko Rk ko kR ok kR k ko ko ok ok ok kkkkokkkokkkkkkkkkkk kA ko kK kR kR kR Rk Kk

FORTRAN SUBROUTINE FOR ORTHONORMAL POLYNOMIAL SYNTHESIS

B L Tt e L T T T T I T E IS T T e

The arguments u,, -, u,, are given in the 1 xn array AU. The number of polynomials

m is given in argument MA. The values of the polynomials ¢g{u), -, ¢m_,(u) are stored
in the m x narray AA. The number of arguments nisgiven in argument NA, The recurrence
r . coefficients ag, By, ') Xp-2. Bm-2 are stored in the 2m — 2 array AR.
12




ORTHONORMAL POLYNOMIAL EXPANSION

Analysis

Let the mth orthonormal polynomial ¢, (u) be expressed by the equation

n-1

¢m(t) = T amu’ (54)
a=0

The polynomial of zero degree is given by the equation

1
polu) = —= (55)
VA
for which all coefficients are zero except
Qg = —= (58)
Vn
The polynomial of first degree is given by the equation
1
@1(u) = — (u ~ Bo)¥o(u) (57)
0
for which all coefficients are zero except
Bo 1
Q= — ayy = + —=—— 58)
10 Vna, " Vna, (

Thereafter the ﬁolynomials of progressively increasing degree are given by the equation

o)~ - o () = B 1Py () = 202} (59)

m-1
for which the coefficients are generated with the aid of the recurrence equation

1

Qg =~ {am—l.k—l ~Bm-1Gm-1x ~ am-za'm-z.tg (60)

Oy
The constants a,,.,, fm.1 8re given in a row array and the coefficients a,,, are stored

in a matrix array.

If a function f(u) is represented by a series of the orthonormal polynomials, then
the function f(u) is converted into a series of the powers of the argument u by a

vector—matrix multiplication.

Programming
SUBROUTINE ORTHOX (NA, AR, NC, AC)

ARER RN RN AR R RN R E AR R AR RN RN R RN AR AR AR RN R R AR R RN R R Rk ROk R RNk

FORTRAN SUBROUTINE FOR ORTHONORMAL POLYNOMIAL EXPANSION

BERRBRREAER X RN AR R R R A AR R RN AR RN AR R R AR AR R R AR R AR R AR AR SRR AR RS AR R RN SRR kb TRk kb bk

The number of arguments n is given in the argument NA. The recurrence coefficients
g, Bo. '+ @m_2, Bm 2 @re given in the 2m - 2 array AR. The number of coefficients m is
given in the argument NC. The coefficients of the polynomials @g(u), -, ¢m-1(u) are
stored in the m xm array AC.

13
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ORTHONORMAL POLYNOMIAL EVALUATION
Analysis
The polynomial of zero degree is given by the equation
polu) = = (81)
n

and the polynomial of first degree is given by the equation .

mw=iw—m%w (62)

The polynomials of progressively higher degree are generated by the three-term
recurrence equation

o) = 1 fuipm 1(0) = Bon- s () B3 )] (63)

m-1

where constants a,,., and 8, , are given in a 2m — 2 array.
The first derivative of the polynomial of zero degree is given by the equation

= go(u) = 0 (64)

and the first derivative of the polynomial of first degree is given by the equation

2 00 = - valw) (63)

The first derivatives of the polynomials of progressively higher degree are generated
by the three--term recurrence equation

2 o) = 2 o 0) + Ui () ~ B s ()~ st} (60)

where ¢,,(u) is the first derivative of ¢, (u).
The second derivative of the polynomial of zero degree is given by the equation

2 pa(w) =0 ®7)

and the second derivative of the polynomial of first degree is given by the equation

ad;i @1(u) =0 (68)

The second derivatives of the polynomials of progressively higher degree are generated
by the three-term recurrence equation

d? 1
du’ Pmlu) = a %2%'7-—1(“) + uPm 1 (U) — B @y (u) — am—z‘P;.—z('"-)} (69)

m-1

where ¢, (u) is the second derivative of ¢, (u).

14
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Programming
SUBROUTINE ORTHOV (MO, NA, AU, AR, NF, FF, DF, SF)

KEEERERRBBBERRBEERERREREBE R RSP R AR RRRE SRR R B R R E R BB R KRB RB AR BB R AR RER AR AR ER R AR R RSB AR RS SR SRR IR N
FORTRAN SUBROUTINE FOR ORTHONORMAL POLYNOMIAL EVALUATION

BEREFERBARBEREREER IR R AR AR RABBAB AR AR AR RN B IR RRRRARBARRR R BRI R AR AR DR AR AR AR IR R RARAB AR RARAARREBRES

The mode of operation MO is O for functions, 1 for first derivatives, and 2 for second
derivatives. The number of discrete arguments n is given in argument NA. The variable
argument u is given in argument AU. The recurrence coefficients are given in the
2m - 2 array AR. The number of functions m is given in argument NF. The functions
are stored in the m—array FF, the first derivatives are stored in the m-array DF, and
the second derivatives are stored in the m-array SF.

ISOMETRIC REPRESENTATION
Analysis

Let z,y be functions of u such that u is proportional to the length of the curve
which connects z,y. Approximate values of u are derived from the perimeter of a
polygon which is inscribed within the curve. Let u; be the ith discrete value of u, and
let z,, y, be the ith discrete values of z,y. Let the values of u be limited to the range

—1Sus+1 (70)
The values of u are derived from the equation
2 \/(11»4 = 2)% + (Your ~w)?

Ugsy ~ U = (71)
z \/(zﬂ-l = 2%+ (Yeur — Y0)?
Accuracy of the simulation requires closely spaced data.
Let z,y be approximated as power polynomials in u by the equations
n n
=} zp,(u) Y =2 Yeps(u) (72)

i=1 i=1

where ¢,(u) is the ith Lagrange polynomial. The coefficients of the polynomial
approximations of z, y are the sums of products of the discrete values of z, y and the
columns of the matrix of coefficients for the functions ¢,(u).

The polynomial approximation for z y defines a curve for which the metric [ is

defined by the equation
dl f(dz)z ( y>z
— = —_— + | — 73
du du du (73)

The coefficients of a polynomial approximation for | are the sums of products of the
discrete values of | and the columns of the matrix of coefficients for the functions
¢(u). Improved isometry is achieved if u is replaced in accordance with the iteration
u [ TNE 2
dx d
NGRS
N du du

—qegra ZATRS AR EL (74)

JNE) ()

15




Stability of the iteration requires closely spaced data.

Programming
SUBROUTINE iSMTRS (NA, AX, AY, SU, AU)

AR AR AR FRRR AR AR R AR AR AR RRA AR ARAR AR AR AR AR AR KRR RRR AR AR LA A AAA AP AR AR R AR EAR AR ARARS
FORTRAN SUBROUTINE FOR ISOMETRIC POLYGONAL SIMULATION

BEERRERERERREEEXARER AR RRER BB AR ERRRARRARBERRARBARRA IR F AR AR R AR RRRRBRERRB PR AR AR AR R RN 2400404008

The number n of data is given in argument NA. The coordinates z; are given in the
n-array AX, and the coordinates y, are given in the n-array AY. The perimeter of the
polygon is stored in address SU. The coordinates u; are stored in the n-array AU.

SUBROUTINE LPLNMA (NA, AU, AX, AY, CX, CY, AC)
R T T T L L T T T T T YT P T Y PPN

FORTRAN SUBROUTINE FOR LAGRANGIAN POLYNOMIAL APPROXIMATION

EEABEAERER SRR BRI AER KRB A RARARAR R R AR AN LR RARERARRARRARARR R AR ARABL AR B R AR LA 24000004404000000044

The number n of data is given in the address NA. The arguments u,, -, u,, are given
in the n-array AU, the arguments z,,---,z,, are given in the n-array AX, and the
arguments y,;, -, y, are given in the n-array AY. The coefficients of the polynomial
for z are stored in the nm—-array CX, and the coefficients of the polynomial for y are
stored in the n-array Cv. The coefficients of the Lagrange polynomials are stored in
the (n + 1) xn array AC. A call is made to Subroutine LGRNGX.

SUBROUTINE OPLNMA (NA, AU, AX, AY, NC, CX, CY, AA, AR, AC)
REEEREERRREERRRKEXERR KRR RERRRARA AN RADAAR A IR RRARBARARAEBRABR AR ARRSAR22000 0004088800000 0400040%

FORTRAN SUBROUTINE FOR ORTHONORMAL POLYNOMIAL APPROXIMATION

EREBEEREXAEREERREERRERAEERRERRBRERERAAARRKRERR BRI AP RRAR R AR AR A SRR AR AT AR AR I AR RSB AA AR RS AR A R R L KR A

The number n of data is given in the address NA. The arguments w,, -, u, are given
in the n—array AU, the arguments z,, -, 2, are given in the n-array AX, and the
arguments y,, -, y, are given in the n-—array AY. The number m of coefficients is given
in the address NC. The coefficients of the polynomial for r are stored in the m-array
CX, and the coefficients of the polynomial for y are stored in the m-array CY. Values
of orthonormal polynomials are stored in the m x n array AA, the recurrence coefficients
are stored in the 2m - 2 array AR, and the coefficients of the polynomials are stored
in the m ~m array AC. Calls are made to Subroutine ORTHOS and to Subroutine ORTHOX.

SUBROUTINE ISMTRL (NA, AU, AL, CX, CY, CL, AC)
P Y Yy Y Y Y Y VY VYT VYT PY VPP

FORTRAN SUBROUTINE FOR ISOMETRIC LAGRANGIAN ITERATION

AEERBUEF AR BB KRR AN AR KRR RN AR R AR R R AR AR NSRS RN AR R R AR R RN A SRR IR AR NI AP A S22 2400000000084 0040400004

The number of arguments n is given in the argument NA. The coordinates u,, -, u,
are given in the n-array ~J. The values of the [-metric are stored in the n-array
AL. The coefficients for the x - coordinate are given in the n—array Cx, and the coefficients
for the y coordinate are given in the n-array CY. The coefficients of the !--metric
are stored in the n-array C.. The matrix of Lagrange polynomials is given in the
(n + 1) ~n array AC. Improved coordinates w,, -, u, arc returned to the m--array AU.
Calls arc made to Subroutine MPLNMYy.
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SUBROUTINE ISMTRO (NA, AU, AL, NC, CX, CY, CL, AA, AR, AC)
AERRRRRRREERRRRRR SRR RRRR AR RRRRR AR AR AR R R AR AR AR AR R AR AR AR AR AR A AR KRR AR AR AR AR AR A KA AR R AR AARRALS

FORTRAN SUBROUTINE FOR ISOMETRIC ORTHONORMAL ITERATION

AEEREEARRBRARABIRRBIBRABERBIRRAL AR R LR RRAR AR A RARRARA KL AR RARARAR AR RR KA RRERR A AR R KK ARLRARRAAK A AR K AR

The number of arguments n is given in the argument NA. The coordinates u,, -, u,
are given in the n—array AU. The values of the [-metric are stored in the n—array
AL. The number of coefficients m is given in the argument NC. The coefficients for the
z-coordinate are given in the m—array CX, and the coefficients for the y-coordinate
are given in the m—array CY. The coefficients of the l-metric are stored in the m—array
CL. Values of orthonormal polynomials are given in the m x n array AA, the recurrence
cocfficients are given in the 2m - 2 array AR, and the matrix of coefficients is given
in the m x m array AC. Improved coordinates u,, -, u, are returned to the n-array
AU. Calls are made to subroutine MPLNMV.

LAGRANGE INTEGRATION
Analysis

Let u,, -+, u, be arbitrary coordinates and let f(u,), -, f(u,) be values of an arbitrary
function. Lagrange interpolation approximates the function in accordance with the
equation

£00) = T fu)putu) (75)
=1

where ¢,(u) is the ith Lagrange polynomial. Expansion of each Lagrange polynomial
in powers of the argument and integration lead to the integration multipliers

m, = f 1) du (76)

Then the integral of an arbitrary function is given by the equation

+

1 n
Sf(u) du = §; m, flu,) (77
i=t

Expansion and integration is achieved by reference to auxiliary subroutines.

Programming

SUBROUTINE LGRMLT (NA, AU, AM, CP)
AEKEEEXAERRRFRRRERRRARRARBRAREARABAARAIAARARAARRRARRAARERARARAARAAARAAXIAARARRRRRARRRALERAR S AN
FORTRAN SUBROUTINE FOR LAGRANGE INTEGRATION MULTIPLIERS

KRR REAAARKEREARERRRRRRR AR AR R KRR B EAARR L AL ARAER AR AR RAREARAREARR R AR RAR LRI A KRR AR AL AR RN A R L AL

The number of coordinates n is given in argument NA. The coordinates w,, -, u, are
given in the n—array AU. The integration multipliers m,, ---, m,, are stored in the n--array
AM. The coefficients of the Lagrange polynomials are stored in the (n + 1) «n array
CP. Calls are made to Subroutine LGRNGX and Subroutine MPLNMV.

17
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ORTHONORMAL INTEGRATION

Analysis

Let u,, -, u, be arbitrary coordinates and let f(u,), -, f(u,) be values of an arbitrary
function. Orthonormal interpolation approximates the function in accordance with the
equation

n-in

flu) = E Z f(ui)¢b(ui)¢k(u) (78)

k=0 1=1
where ¢,(u) is the kth orthonormal polynomial. Expansion of each orthornormal
polynomial in powers of the argument and integration lead to the integration multipliers

+1

n-1
my = Zo @x(uy) Prlu) du (79)
k= -1

Then the integral of an arbitrary function is given by the equation

flu) du =L my flu,) (80)
i=1

-1
Expansion and integration is achieved by reference to auxiliary subroutines.

Programming
SUBROUTINE OPLMLT (NA, AU, AM, AA, AR, AC)

AAKKKKKRR KR RERARRR BB RR P RARAA KR AR A AR AR AR R LR ARARE R AR RRRF AL AL L2 22 AAL AR AAR KA bEAS R At rhabrsnan

FORTRAN SUBROUTINE FOR ORTHONORMAL POLYNOMIAL INTEGRATION MULTIPLIERS

EERKRREERKRRERERKRER AR A RRR R KRR AR R ARAA R AR AR R R AR R AR AR R R AR RA XA KK A ARARLARAL AR R R LA AR ARSI 2L g thds

The number of coordinates n is given in argument NA. The coordinates w,, -, u, are
given in the n—array AU. The integration multipliers m,, ---, m,, are stored in the n—-array
AM. The values of orthonormal polynomials are stored in the mxn array AA, the
recurrence coefficients are stored in the 2n--2 array AR, and the coefficients of
expanded polynomials are stored in the n xn array AC. Calls are made to Subroutine
ORTHOS, Subroutine ORTHOX, and Subroutine MPLNMV,

TRAPEZOIDAL INTEGRATION

Analysis
Let 8,, -, 8,, be equally spaced values of an angle 8 such that the ith value is defined
by the equation

o=~ HZ (81)

The Euler theorem and the rule of summation for a geometric series are used in the
summation of the products of the trigonometric functions

cos k@ sin m8@ (82)

18
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The summations over the angles 6; are given by the equations

n sin(k - m)2n  sin(k + m)2n

s k@, 8, ==
Z coskbycosmly = e )T * Zsin(k + m)E

(k + m = jn) (83)

n
Y. coskf;sinmf; =0 (B4)
i=1
hid sin(k - m)2r  sin(k + m)2n
in k8, si 8, = - k # 85
E’, sin kb stnmey 4sin(k - m)y 4 sin(k + m)EZ (k£ m = jn) (85)
and by the equations
n
Y cos?*kb, =n (k = 0) (86)
=1
n
Y cos®k, = in (0< k< in) (87)
=1
n
Y sin®kf, = n (0 <k s in) (88)

i=1
The functions are orthogonal if k, m satisfy the inequality

O<lk+tm|<n (89)
No term with k = in can be included in the cosine series because cos k8, is zero for

all i when k = jn. An arbitrary function f(8) is approximated by the trigonometric
polynomial

m(%n m§%"
f(@=3%a+ ¥ a,cosmf+ Y b, sinmb (90)
m=1 m=1

The coefficients in the approximation are recovered with the equations

A = % if(e() cos mé, (m < 3n) (91)
i=1
by = % i £(6,) sin m8, (msin) (92)

-
n

1

Only the constant a, survives integration through the angle 2n as expressed by the
equation

2 n
["reras -2 % st0 (93)
0 i=1

which is the trapezoidal rule of integration over a complete cycle.

Programming
SUBROUTINE TPZMLT (NA, AQ, AM)

KAKRKAAKRKRRRKAE A XD AR RARRARR KR A AR R A SR RAR AL AR AR AL AARERARALAA RS A AAABRARAAARILERRAARAAAIARALS

FORTRAN SUBROUTINE FOR TRAPEZOIDAL INTEGRATION MULTIPLIERS

B Ry R R Y T N N Y Y T N Y TR

The number n of coordinates is given in argument N4 The equally spaced coordinates

19

- '.-./s:hhﬂpu-‘g‘]ﬁ‘le ‘Ii' LTV 'i i PR v

L SO



pgmer ".""’

. w . . C e

The summations over the angles 8, are given by the equations

n sin(k — m)2n  sin(k + m)2m
k6 == k #jn) (8
E:; cos kb, cos mé, 4sin(k - m)L  4sin(k + m)Z (k +m #jn) (83)
n
. Y cos k6, sinmb, =0 (84)
i=1 3
n sin(k - m)2n  sin(k + m)2n
in k . — — k # 9 8 o
L sinkbisinmd = Fo e m)E  dsin(k s myz £ E™ I (89) i
and by the equations 4
. :
Y cos*k8,=n (k = 0) (86)
i=1
i .
¥ cos?6, = in (0 <k < 3n) (87) i
{zl E
Y sin®kf, = in (0 <k < in) (88) i
=1 :

The fusnctions are orthogonal if k, m satisfy the inequality

SRR SRt

O<lkxm|<n (89) 3

No term with k = jn can be included in the cosine series because cos kf; is zero for ;
all i when k = jn. An arbitrary function f(8) is approximated by the trigonometric i
polynomial -
m<%n mé%ﬂ.

f8)=1ag+ ¥ amcosmb+ ) b,sinmb (90) §

m=1 m=1 2%
The coefficients in the approximation are recovered with the equations

2"

I = 7(8,) cos m8, (m < 3n) (91)
YTy
22 . L
b,, = - Y £(8,) sinmé, (m < zn) (92)
=1
Only the constant a, survives integration through the angle 2m as expressed by the
equation
R n
2r =
f(6)dé = - - 3 £(6,) (93)
a T =y .

which is the trapezoidal rule of integration over a complete cycle.
Programmaing

SUBROUTINE TRPZMLT (NA, AQ, AM)

AAKRERKRE SRR K A RAR A AR AR KRR AR R AR AR KA AR RAR AR R AR R LR R AR S LA R AL AR F A A AR AAL AL RARARA L ARA AR AL AR AR

FORTRAN SUBROUTINE FOR TRAPEZOIDAL INTEGRATION MULTIPLIERS

EEXE AR NASER AR TR R KR NAR R R KRR AR R R AR AR A AR RAK AR RARAARER A AN RAARARRREAARAARAR A AR RA A AR RAL AL AR KA ¢ 4

The number n of coordinates is given in argument NA. The equally spaced coordinates

b ey et e
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0,, .0, are stored in the n-array AQ. The integration multipliers m,, -, m, for
trapezoidal integration are stored in the n-array AM.

CHEBYSHEV INTEGRATION

Analysis
Let 6,,--, 6, be equally spaced values of the angle 8 such that the ith value is
defined by the equation
. ™
6, =(i- %)7"’ (94)

The Euler theorem and the rule of summation for a geometric series are used in the
summation of the products of the trigonometric functions

cos kf cosmé (95)

The summations over the angles 6; are given by the equations
ki sin(k - m in(k + m
in( )n sin( P 2jn) (96)

cos k6, cos mb, =
L cos ko *7 Lsin(k —m)g,  dsin(k + m)=

and by the equations

¥ cos®kf, = n (k- 0) (97)
=1
n
Y cos®k, = in (0 < k< n) (98)
i=1

The functions are orthogonal if k, m satisfy the inequality

0<lktm|<2n (99)
An arbitray function f(8) is approximated by the trigonometric polynomial
n-1{
f(8) =3a0+ ¥ a, cosmb (100)
m=1{

The coefficients in the approximation are recovered with the equations

Ay = f(8;) cos mo, (101)

3
M

i=1
Only the constant a, survives integration through the angle n as expressed by the
equation
ud i n
[ECEES¥ (102)
0 T ooy

which is the trapezoidal rule of integration over a half cycle.
Let the argument z be defined in terms of the angle 6 by the equation

xz = -cosf (103)

20
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Integration with respect to z is expressed by the equation

fnf(z) d:c:f”f(ﬁ)sinﬂda (104)
-1 0

Term by term integration of the trigonometric polynomial is achieved with the aid of
the indefinite integral

cos(lc 1)0 cos(k + 1)8
k0 sin 8 d6 = - 105
fcos 0sinfdb = T2 - 1) 26+ 1) (105)
Evaluation at the limits of integration leads to the equations
f coskfsingdd=0 (odd k) (106)
0
" . 2
J coskfsin0dl = ~ -—5——< (even k) (107)
0 (k% -1)
Integration multipliers are defined by the equation
k<ln
2 4 2 cos2kf;
I — 108
™ a "1:2 4k - 1 (108)

Then integration with respect to z is evaluated by the equation

f flz) dz = me(xd (109)

where the m, are the integration multipliers for Chebyshev integration.

Programming

SUBROUTINE CHVMLT (NA, AU, AM)

AARREERRE S AR KRR LA AR AR AR R R A AR A AARARA L AR R A AR AR AR A A KA A KA R AR AR AAKAKAAR A ANAALARANSAIARA A CRRRIAL

FORTRAN SUBROUTINE FOR CHEBYSHEV INTEGRATION MULTIPLIERS

ARKERREKKA X AN AL AR AARRRARR KRR ARARR S e R A KA RRAAARA R A A B E 0L A AL b hA A bAbbahrtrdsdbatantahatarsy

The number n of coordinates is given in argument NA. The cosines u,, -, u, of equally
spaced angles are stored in the n-array AU. The integration multipliers m,, .-, m, for
Chebyshev integration are stored in the n—array AM.

HIGH-ACCURACY QUADRATURE
Analysis
Christoffel—Darboux Identity

Let an arbitrary function f(z) be given at the abscissae z;,--,z, Let the
polynomial p(z) be equal to the values of f(r) at the abscissae as expressed by the
equation

p(z,) = flz) (110)
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Let the function F(z) be defined by the equation
Fz) = (z -~ 2,)(z ~ z,) (111)

The function F(z) is a power polynomial of the nth degree and is zero at each abscissa.
Let the function g(x) be a power series which satisfies the equation

f(x) = p(x) + q(z)F(z) (112)

If the function f(xz) itself were expressed by a power series, then the coefficients of g(x)
could be determined one by one by an algorithm which starts at the highest power
of z and compares terms with the same power of z. The abscissae are so selected as
to satisfy the equation

b
f g{z)F(z)w(z)dx =0 (113)
a

where w(z) is a weighting function, and g(z) is any polynomial of the (n - 1)th degree.
Insofar as f(z) can be approximated by a polynomial of the (2n ~ 1)th degree, the
integral of f(x) is given accurately by the equation

b ]
j fz)w(x) dx = f p(z)w(z) dz (114)

The function ¢(z) can be expressed as a linear combination of orthonormal polynomials
of which the nth polynomial is the function F(z).

Let ¢o(z), -, pn-{(z) be n polynomials of progressively increasing degree. The
polynomials are orthonormal if they satisfy the condition

b
[ e@ent@rstz) de = oun (115)
a

where 6, is zero if k # m and is unity if £ = m. Any polynomial of degree m can be
expanded in terms of the orthonormal polynomials of degrees 0 through m. The
coefficients in the expansion are given by the solution of a sequence of equations
which start at the highest degree and compare terms of the same degree. Let ¢, (1)
be expressed by the equation

e g SR AR & e £

om(Z) = IZPmr (@) + T 7,00(2) (116)
n=0

where the ¥, are constant coefficients. Multiplication throughout by ¢.(z) and integration
isolates 7, in accordance with the equation

b b
[ ot@lent@iutz) dz = 7 | sor(@)om@hule)dz + 7, =0 (117) :
a [}
q The polynomial z¢,(x) may be expressed by the equation
k+1
1‘¢b(1) = Z €uwu(z) (118)
v=0
where the ¢, are constant coefficients. All terms of the summation are orthogonal to
¢m-1(z) and the coefficient 7, is zero for all £ s m -- 3. The orthonormal polynomials
- can be generated by a three-term recurrence equation.
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If ¢_((x) is zero and ¢o(z) is constant, then the three—term recurrence equation is

1
Pm(z) = ;,‘n:

{wm-lm  Bonor Ot (2) = Gon-zfme(2) (119)

where the constants a,,., and 8,,., are defined by the equations

Gy = f " 2pm 1 (2)pm(@)0(e) dz (120)

a
b
b= | 20m (@) (@ 02) a2 (121)
a
Multiplication of the three--term recurrence equation throughout by ¢, (y).
interchange of z and y, and subtraction gives the equation
(@ - Y)Pm-1 (2)m-1 (¥) = Aoy {0 (2)Pm-1(Y) = Pt (T)em ()}
T Qg l¢m—l(x)¢m -z(y) - ¢m~2(x)¢m—l(y); (122)
Summation with respect to m gives the Christoffel-Darboux identity

n-1{

Bp_y {0 (2) 0 1 (¥) — n- 1 (D)en(W)) = (- y) ¥ we(@)eely) (123)

k=0

Rearrangement and integration gives the equation

J‘b ‘pu(x) %fn(x)ﬂon—l(y) - ¢n—l(x)¢n(y)} ’LU(I) dI = @i’iz (124)

z-y

which is fundamental to Lagrange integration when y is set equal to an abscissa z;.

n-1

Chebyshev Quadrature
The Chebyshev polynomial T,(z) is defined by the equation
Tn(z) = cos(n cos "'x) (125)
The Chebyshev polynomial for 0 < n is given by the equation

y
mizn

To(zx) = et E

m=0

(- 1)™n(n - m)tz" ™

2*™(n - m)(n - 2m)'m!

(0 < n) (126)

The functions of lowest order arec given by the equations

To(z) = 1 T(z)=x (127)
and the functions satisfy the recurrence equation
Tolz) = 22Ty (2) - T, 2(x) (128)
The first derivatives of lowest order are given by the equations
To(z) -0 Ti(x) = 1 (129)

and the first derivatives satisfy the recurrence equation

Ton(z) = nT, ,(2) ~ 1;‘_" {.‘CT,"_I(I) (130)
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The second derivatives of lowest order are given by the equations

Te(x) =0 Ti(z) -0 (131)

and the second derivatives satisfy the recurrence equation

2
n
Ta(z) = o

n
| Ta i(x) + ;l"__"{-rrv';- (x) (132)

The Chebyshev functions satisfy the orthogonality equations

1
Te(z) T (x
[FhETn(z) (k = m) (133)
a4 Vi-zx? 1
+1 2 - 3
Tz L (n-0)
[ (134) i
1 V12 in 0-n) '
§
The limits of integration and the weighting function are given by the ecquations
1
a= -1 w(x) = o b o+ 1 (135)
Vi1l oox?
The orthonormal functions and the Chebyshev functions are related by the equation
9
¢nlz) | Tal2) (136)
A comparison between the three term recurrence equations leads to the equations :
Qn é Bn 1 0 (137) i
The function F(x) is given by the equation 4
-4
1
Fz) - ’é;,{Tn(I) (138)
and its derivative is given by the equation
A 1 ] N
Fx) ~ é;;TTn(I) (139) :
The abscissae are given by the equation )
x, cos(i Y (140) {
-
The Lagrangian integration multipliers arc given by the equation ]
b
‘o
F(x) dr i
m S (141) .
‘ f Fz,) (z =) ’
Substitutions in the Christoffel Darboux identity lcad to the cquation L
n 3
my - . (142) :
! To (24} Th(y) 3
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Evaluations of the Chebyshev functions at the abscissae lead to the equation

m <2 (143)

The integral of an arbitrary function is given by the equation

tofla)
rﬁ—l—x dx = mef(xt) (144)

where the m; are the multipliers for the trapezoidal rule.
Gauss Quadrature

The Legendre function of nth order is given by the equation

megn -1)™(2n — 2m)iz™"*™
Palz) = m{:O é"('ri —(2m)!(n -) m)tm! (145)
The functions of lowest order are given by the equations
Po(z) =1 Plz)==z (1486)
and the functions satisfy the recurrence equation
nP,(x) = (2n - 1)xP, 4(x) - (n - 1)P,_(x) (147)
The first derivatives of lowest order are given by the equations
Po(x) =0 Pi(z) =1 (148)
and the first derivatives satisfy the recurrence equation
Po(z) =nP,_(2) + 2P, _,(7) (149)
The second derivatives of lowest order are given by the equations
Py(x) =0 Pi(z)=0 (150)

and the second derivatives satisfy the recurrence equation
Pr(z) = (n + 1)Pp_((x) + 2Py () (151}

The Legendre functions satisfy the orthogonality equations

+1
J Py(x)Pp(z)dz =0 (k = m) (152)
-1
and
+1 2
2(z)dz = 153
| pe@as- 2y (153)
The limits of integration and the weighting function are given by the equations
a= -1 w(z) =1 b=+ (154)
The orthonormal functions and the Legendre functions are related by the equation
2n + 1
Pn(T) = \]-—2 P,(x) (155)
25
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A comparison between the three--term recurrence equations leads to the equations

A n Bn-1 =0 (156)
M Ve - 1)@+ 1) not
i The function F(x) is given by the equation
2™ (n!)?
F(z) = — P 7
{ (x) @n)! ' (2) (157)
and its derivative is given by the equation
, 2*(n!)?
F(z) = (Zn)!_ P, (x) (158)
The Lagrangian integration multipliers are given by the equation

L Fla) _dz
™ f-l (xy) (z - zy) (159)

Substitutions in the Christoffel -Darboux identity lead to the equation

2
my =
nP, . (x)P,(x)

(160)

The recurrence equation
i (1~ 2)Py(@) = (P 1(2) - 2P(x)) (161)
leads further to the equation

2

M= - TS T O (162) :
C (- 2B PR {
The integral of an arbitrary function is given by the equation q
+1 n k
| ferae - mosta (163) -
-1 =1 4
where the m, arc the multipliers for Gaussian integration.
Let 6, be an angle which is defined by the equation
i-- 1
0, --:~~I§n (164)

3
~

Then an initial approximation for x, is given by the equation

z,~ t cosb, (165)

The approximation for z; is refined by Newton -Raphson iteration until
Pn(xy) =0 (166)

to within rounding error. The Legendre function and its derivatives are computed by
recurrence equations.
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Programming

SUBROUTINE GSSMLT (NA, AU, AM)
ERRKEKPFDRERARS SRR ARALEERSABI R A 2200223852830 550020 RRLRARERARBRERERRRARERERIRAIRKRRBRDEXRSES

FORTRAN SUBROUTINE FOR GAUSS INTEGRATION MULTIPLIERS

AEXRERELRRRARIRBARSXA R AR LA 422X 254 KRRARKEFRRRRLBRARREARRERAEREERERRRRRAF AR AR A AR N ERKK KRN

The number n of coordinates is given in argument NA. The roots u,, -, u, of the nth
degree Legendre polynomial are stored in the n--array AU. The integration multipliers
m,, -, m, are stored in the n -array AM.

COMPLEX POWER POLYNOMIAL EVALUATION
Analysis

Let f(z) be a polynomial of (n - 1)th degree in the argument z. Let the polynomial
be expressed in terms of its argument by the equation

f(z) = “i a,z* (167)
k=0

where the coeflicients a, are complex. The coefficients are arranged in ascending order
in an array with real parts in alternate addresses and with imaginary parts in the
next higher addresses. The first derivative of the polynomial is given by the equation

=) _ nil kagz*!

168
L (168)

and the second derivative of the polynomial is given by the equation

d?f(z) _
e (169)

Whether the operation is evaluation, first differentiation, or second diflerentiation is
determined by a mode- of -operation parameter. The polynomials are evaluated by the
nested method of polynomial evaluation.

Programming

SUBROU™ NE CPWRY (MO, AZ, NC, AC, FV)
T T T T T L T T S R g P

FORTRAN SUBROUTINE FOR COMPLEX POWER POLYNOMIAL EVALUATION

WOLERE KA R B AR B AR ARSI R B ARLRARERERR R AP R KRR T ARK KRB R AR AR AR AR AI AR SRR AAKFRARRARKARKRARARANAR T Q42 b

The mode of operation is evaluation if MO = 0, first differcentiation if MO = 1, and second
differentiation if MO = 2. The argument z is given in the 2 -array AZ. The number of
cocfficients n is given in the address NC. The coefficients ay, -, a,_, are given in the
2n array AC. The value of the function is stored in the 2 -array V.
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COMPLEX FOURIER SERIES EXPANSION
Analysis

Let 8,,-. 8, be a set of angles such that
2m
6, = (k - %)—7’{ (170)

Each angle is the midpoint of one of n intervals into which 2n is divided. Let a
function f(#) be expressed in terms of its argument 8 by the direct transform

m-1
f6) = ¥ 4™ (171)
k=0

where the coefficients A, are complex. The coefficients are recovered from values of
the function by the inverse transform

1 r —m
Am = = T f(Oh)e” ™ (172)
LA

The weighting factors for the transform are stored in an n - 2m matrix of coefficients.
The weighting factors are the same for all values of m(k - ;) which differ by n. It is
sufficient to compute the 2n pairs of trigonometric functions for which k¥ 1 and k - :
are less than n. The trigonometric functions are computed and are stored in the first
two columns of the matrix. The remainder of the matrix is filled by transfers from
the first two columns. Then the first column is replaced by constants.

The coefficients for a particular set of values of the function are obtained from a
vector—-matrix multiplication. From the Fourier transform for one set of angles may
be derived the Fourier transform for another set of angles. If the angles are displaced
by a constant ¢, then the coefficients of the Fourier transform are multiplied by powers
of e*

Programming

SUBROUTINE CFOURX (NA, NC, AC)

AREREAERRC LSRR KRR A KL LRRARNRR IR B AN A AR KRR AR XX AR AL R AR A A SR RA$ AR BA LB 008K 40 0 "4asRassnnsranrnas

FORTRAN SUBROUTINE FOR COMPLEX FOURIER SERIES EXPANSION

AEEXEERAERRER KRR A ER KRN R A SR B R AR A A AR R A RS LA AR AR KRR KRR RS A S A AR S LA RS2 FAHRABN AT FARBERRLZ0 IR

The number n of data is given in argument NA, and the number m of weighting factors
is given in argument NC. The matrix of weighting factors is stored in the n-2m
array AC.

COMPLEX FOURIER SERIES EVALUATION
Analysis

Let f(8) be a polynomial of (n - 1)}th order with angular argument 8. Let the
polynomial be expressed in terms of its argument by the equation

n-1
f0) = ¥ Ane™™ (173)
m-=0
where the coefficients 4,, are complex. The coefficients are arranged in ascending
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order in an array with real parts in alternate addresses and with imaginary parts in
the next higher addresses. The first derivative of the polynomial is given by the
equation

dafe)

T Y imd,e'™ (174)
m=0
and the second derivative of the polynomial is given by the equation
d?r(6 !
;8(2) =~ ¥ m24,e™ (175)
m=0

Whether the operation is evaluation, first differentiation, or second differentiation is
determined by a mode -of -operation parameter. The polynomials are evaluated by the
nested method of polynomial evaluation.

Programming

SUBROUTINE CFOURV (MO, AQ, NA, AA, FV)

LR R R R e A i R R ]

FORTRAN SUBROUTINE FOR COMPLEX FOURIER SERIES EVALUATION

AT R ERRRE AR E R RN KRR KRR AR R A AR AR R R R AT RER R KRR AR FE R AR BRKEE RN R R F R R R R R A E RN R R RN K

The mode of operation is evaluation if MO = 0, first differentiation if MO = 1, and second
differentiation if MO = 2. The argument 8 is given in the address AQ. The number of
coefficients n is given in the address NA. The coefficients 44, -, 4,, ; are given in the
2n- array AA. The value of the function is stored in the 2-array V.

FAST FOURIER TRANSFORM
Analysis
In the conventional discrete transform a cycle is divided into VN intervals. A set of

discrete arguments 8, -, 0y_, is defined by the equation

2
0.=k§ (176)

A function f(8) is expressed in terms of the argument 8 by the series in the equation
N1

f(0)= T 4pne'™ (177)
m=0

The values of the function at the discrete arguments are given by the discrete Fourier
transform in the equation

(4.4
th‘

N-t

f(6) = L Ame (178)
m=0

The formula for the summation of geometric series lcads to an orthogonality relation

as expressed by the equation

m2?
P AT 2 (179)

z

N-1
k=0
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where 6,,, is zero if m # n and is unity if m = n. The coefficients of the Fourier series
are isolated by applications of the orthogonality relation. The coefficients are given
by the equation

i

z)=

N-t L em
Am T e Ff6,) (180)
k=0

In the summation with respect to k, there is redundancy when N is factorable.
If N=2" then the indices k,m are expressed as binary numbers in accordance
with the equations

k=kp 2V 4 kg ] (181)
m=mu_ 2%+ - +my-1 (182)

where each binary bit has the values 0, 1. Single summation with respect to & is
replaced by multiple summation with respect to k,_,, -, ky and functions of £k or m
are replaced by functions of k,,_;, -, kg or m,,_,, -, my. Thus the Fourier transform is
expressed by the equation

1 1 - -
(1 2™ Heoetkg)(m, 2 e bmg)

1
Almey,mg) =5 T o T flkny, ko) w (183)
k=0  ky=0
where the weight w is defined by the equation
_am,
w=e ¥ (184)
The weight w satisfies the identities
1
w' =1 wt = -1 (185)

There is therefore a repetition of factors whenever km is incremented by a multiple
of IN.

In the Cooley—Tukey version of the FFT, the binary expression for k is resolved into
its individual terms. In the product

(M 277"+ -+ Mgk, 27 (186)
all terms reduce w to unity except those in the product
(M 277 + - + Mok, 277 (187)
The weighting factor in the Fourier transform is given by the equation
wkm _ w(ma)nﬂ,,_lz"~1+-.~+(mn~lz"“1+-..+mo)to (188)
The summations with respect to k,_y, ', kg are nested. The summation with respect

to k,_, is associated with m,_,2¥"! + .- + my. If the transformations of data are made
in place, then new arrays of data are created with the aid of the recurrence equation

z'l"V

nv (189)

1 v l‘m*
A(u)(mn""‘mv—l'kn—u—l"“"’b) = Z A(v—l)(’"O""'mu—Z‘kn~u""'kﬂ)w(mur 12 ™o
k,_,=0
where the order of the bits m,,_,, -, my becomes reversed. The original set of data is
transformed into new sets of data until the final set is the set of coefficients. Initially,
summation is for k,_; = 0,1 with all values of k,_,, . kg and with my = 0, 1. Finally,

summation is for kg = 0, 1 with all values of my, -, m,_, In each cycle of transformation
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the number of sets of data is doubled while the number of data per set is halved.
In the Sande—Tukey version of the FFT, the binary expression for m is resolved into

. its individual terms. In the product
(kp-12™' + - + kg)m,_,2"71 (190)
. all terms reduce w to unity except those in the product
(ka-y2™7Y + - + kg)m,_ 27 (191)
The weighting factor in the Fourier transform is given by the equation 4
km - w(ko)m _12"_1+~-~+(k"_12"'1+~~~+ko)mo (192) J
The summations with respect to k,_,, -, ky are nested with the summation with respect P
to k, , associated with m,_,. If the transformations are made in place, then new
arrays of data are created with the aid of the recurrence equation 4
! n-v, . v--1
A(u)(mo"“'mu"l'kn—v~1'”"k0) = S A(v'l)(mﬂ’""mv—z'kn«v""'ko)w(kﬂ—uz ey ® (193)
k,_,=0
while the order of the bits m, _,, -, my becomes reversed. The original set of data is

transformed into new sets of data until the final set is the set of coefficients. Initially,
summation is for k, ;= 0,1 with all values of k,_,. .k, and with mq =0, 1. Finally,
summation is for kg = 0, 1 with all values of m,, -, m,,_,. In each cycle of tranformation
the number of sets of data is doubled and the number of data per set is halved.
t The difference between the two algorithms is in the powers of w which are associated
) with summations with respect to the binary bits. Both algorithms require n log,n cycles
; of transformation, and both are unscrambled in accordance with bit reversal if they
are cxcecuted in place.

Programming

‘ SCBR0LT N Cxr T (MO, LN, AAR)
‘ N I I I I I I T T T T T T T

: FORTRAN SUBROUTINE FOR COMPLEX FAST FOURIER TRANSFORM

R N e e Al AR A R A e s R R R R L e R e e s A R L el 2

The mode of opecration is given in argument MO. The transform is from data to

coefficients 1f "' 1. and from coefficients to data if MO = +1. The log,N is given in
argument . The data or coefficients are given or stored in the 2N array AA.
\) "i;J‘: ’ l‘f k;.'!"

O E B IR IR T LT et et I PER RSN R R BB RN R R R Rk Rk kR kR kR ko F Kk ke kb Rk Rk KRRk

FORTRAN SUBROUTINE FOR BIT REVERSAL i

R R N N N N T A R R R R s A s s S s e R R S SR R s R A e )

The logarithm log,' 1s given in the argument LN. The bit-reversed indices for a half i

circle are stored 11 the RV array . i
sl '.' '..|’ -.l"

P R N R R R R TR R R R R S R R R R R R R R R A s A A RS RSN

FORTRAN SUBROUTINE FOR COMPLEX WEIGHT FACTORS

D R R N R R R N A AR A A R R R e A A R R A A R AR S R RS A RS S R Al )

The logarithm log,\V 1s given in the argument _N. The trigonometric functions of
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multiples of (1, N)2n for a quadrant are stored in the iN + 2 array Wh.

SUBROUTINE MXFFT (MO, LN, IR, WK, 1A, AA)
EEER AR R R R R R R R R R R R AR R R R R K kR kR R R R KRR RF R KRk R R R R Rk R R RN R KR K R kKRR A R Rk kR ok WK Kk Kk ok kW Kk &k kKX
FORTRAN SUBROUTINE FOR FOURIER TRANSFORM

A K K R K Kk ok K K ok K ok kK R R R Kk K ok ok K ok kR R K K R K R R R KRR R R Rk K R R R R R KR R Kk kA kKR KR A KRR K R kR RNk R R A AR

The mode of operation is given in argument MO. The transform is from data to
coefficients if MO = --1, and from coefficients to data if MO = +1. The log,N is given in
argument LN. The bit reverse indices are given in the iN array IR, and the trigonometric
functions are given in the N + 2 array WK. The interval betwecn the addresses of data
or coefficients is given in argument iA. The data or cocfficients are given or stored in
the 2N array AA.

ROOTS OF POLYNOMIALS

The solution of the quadratic equation was known to the Arabs in the ninth century.
The solution of the cubic equation can be credited to Tartaglia in 1530. His solution
was published by Cardan in 1545. The solution of the quartic equation can be credited
to Ferrari who was a pupil of Cardan’s. He resolved the quartic polynomial into a pair
of quadratic factors. Another solution of the quartic equation was given by Euler in
1770. He assumed that the roots could be expressed by the sums or differences of
three radicals. A correlation of the methods of solution with their discoverers is to
be found in a book by Burnside and Panton!‘.

Solutions of the quartic equation can be classified as two radical'®!® or
three radical’’. The two methods must be equivalent analytically, but there is a
differcnce in their accuracy of computation.

In the Ferrari method, the roots of the quartic equation are computed with the
most positive real root of a resolvent cubic equation, whereas in the Euler method,
the roots of the quartic equation are computed with all three roots of the resolvent
cubic. In a special case of closely spaced roots, rounding error might upset the choice
of root for the Ferrari mecthod, but merely would modify the three roots for the Euler
method.

Subroutines have been available in the CDC 6700 library for the solution of quadratic,
cubic, and quartic equations. However, these subroutines do not give roots in a format
which is useful for further complex arithmetic, and they do not give roots with the
full accuracy of the computer. New and improved subroutines have been prepared in
the present investigation. The new subroutines force the product of the roots to be
equal to the constant in order to reduce rounding error in the smallest root. Previous
subroutines for the quartic equation have used the Ferrari method, whereas there are
new subroutines now for both the Ferrari method and the Euler method. In the previous
version of the Ferrari method, a choice between alternate formulae was made only to
avoid division by zero, whereas in the present version of the Ferrari method, the
choice is made to achieve optimum accuracy.

The function name SQRI(*) has been preempted in FORTRAN for the square root of
<. The function name C3R!{*} is used on the UNIVAC 1108 computer for the cube root
of *. A new function routine for the cube root has been prepared for the CDC 6700
computer. It obviates the inefficiency of exponentiation.
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COMPLEX ROOTS OF A QUADRATIC EQUATION
Analysis
Let a quadratic equation have real coefficients as expressed by the equation
az®+bz+c=0 (194)

The term in 2 is eliminated by the substitution

o
=t—- — 195
z 5o (195)
Then ¢ is a solution of the cquation
bZ
at® - —+c=0 (1986)

4a

and z is given by the well known quadratic formula

. et 197
z 2a ( )
or by the cquivalent formula
2
AR o (198)
- 6=V - dac

which gives better accuracy when c is small and the sign of --b is opposite to the sign
of the radical.
If the discriminant satisfies the inequality

b®-4acz0 (199)
the roots are real, but if the discriminant satisfies the inequality
b%~4acs0 (200)

the roots are complex conjugate.

The discriminant is exactly zero only for integer values of the coefficients. Otherwise
there is a residual error € either from inherent error in the coefficients or from
rounding error in the evaluation of the discriminant. In either case there remains an
error €'"? in the square root of the discriminant. It is not possible to distinguish two
closely spaced roots from one double root unless they have a discriminant larger
than e.

Programming

<l oo - -
SUBROLTNE QOCR (AC, D4)
LR A e T T LY

FORTRAN SUBROUTINE FOR ROOTS OF QUADRATIC POLYNOMIAL

FE RN E R R R RS AR AR AR R R R IR R R KRR RN A AR R R KRR RN KRR ARk R R Rk ek ko ko kkkkkok Xk k h kkk ke h k%

The real coefficients of the polynomial are given in array 4C in ascending order. The
roots of the polynomial are computed with the quadratic formula. The real and
imaginary parts of the roots are stored in alternate addresses of array R..
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COMPLEX ROOTS OF A CUBIC EQUATION
Analysis
Let a cubic equation have real coefficients as expressed by the equation
28+ pzP+qz+r=0 (201)
The term in 2% is eliminated by the substitution

P

z=1t~- 3 (202)
Then t is a solution of the equation
t3+aqt+b=0 (203)
where the coefficients are defined by the equations
a = 3(3¢ - p®) (204)
b= 3(2p° - 9pq + 277) (205)
In Tartaglia’s method, ¢ is given by the equation
t=4A+B (R086)

where the constants A4, B are defined by the equations

1
b [b® a3
-“[*5*\/;577] (=07

w2 T g ]

Among the three complex cube roots for each parameter only those pairs are selected
for which

a
AB = - — (209)
3
If the discriminant satisfies the inequality
b% a®
— 4+ =20 210
4 27 ( )

there are cne real root and two complex conjugate roots. If the discriminant satisfies
the inequa ity

S50 211
A (211)

there are three real roots. The constants 4, B are given by the equations

Lo
A:\]—ge 3® (212)
By ® e 3% (213)
N 3 ;
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where ¢ is defined by the equation

p=tant——— (214)

For every pair of constants 4, B the two other pairs are obtained through muiltiplication
by the factor

tgni

e’ (215)

Since 4 and B are complex conjugate, their sum is real.

Improved accuracy is achieved when the root of smallest absolute magnitude is
replaced by the quotient of the constant with reversed sign and the product of the
two largest roots.

Programming

SUBROUTINE CBCRT (AC. RZ)

I T T T P T T T R TR E LT TR R R e Py

FORTRAN SUBROUTINE FOR ROOTS OF CUBIC POLYNOMIAL

KKK kKR KR Rk b K K KKK KKK KKK KK KR KR KRR R KR R KR KK KRR KR K A KRR K KRR KRR KA R KKK KRR KK KKK AR KRR KRR ¥

The real coefficients of the polynomial are given in array AC in ascending order. The
roots of the polynomial are computed with the Tartaglia method. References are made
to function routine CBRT. The real and imaginary parts of the roots are stored in
alternate addresses of array RZ.

COMPLEX ROOTS OF A QUARTIC EQUATION
Analysis
Let a quartic equation have real coefficients as expressed by the equation
zt+pzl g2z +s=0 (216)

In Ferrari's method, the quartic polynomial is factored into the product of two quadratic
polynomials. The solutions of the quartic equation are solutions of the quadratic
equations

28+ 3pz + it + (az + 6) =0 (217)

Multiplication of the quadratic factors and comparison of coefficients shows that the
coefficients are related by the equations

g=t+ip%-a? (218)
r = ipt - 2ab (219)
s = 2 b2 (220)
Elimination of @ and b leads to the resolvent cubic equation
13- qt® + (pr- 4s)t + 4gs - p?s- ¥ =0 (221)
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whence a and b can be calculated either with the equations

1
_t_
a=Vipt+rt-g t>=é’—’2—a—I (222)

or with the equations

jpt— 7

25 b=vVit-s (223)

Q=

Computation of a and b is made with whichever pair of these equations gives the least
rounding error. The choice of equations is based upon the sign of the expression
ipt—Liqt +s (224)

If the coefficients of the quartic equation satisfy the relationship
2r
g=3ip+ —; (225)

then a is zero for one of the roots of the cubic equation. Substitution for gq its
expression in terms of p and r converts the cubic equation into

2 8
£ - <%p2+ l)t2+ (pr — 4s)t + 2o (2286)
p Y
which can be factored into the product
2
(t - f)(t2 —ipft+ipr-4s)=0 (227)
The roots of the quadratic factor are
ip®+ i Vpt—2pr+ 16s (228)

for which the square of b is given by the equation

12— s = fgp* - pr £ 35p% Vigp* ~ 2pr + 1Bs (229)

If the coefficients are related by the equation
2
r

s:
p?

(230)
then the radicand is a perfect square. For larger values of s and a positive radical
the square of b is positive. The roots of the quartic equation are computed with the
highest real root of the cubic equation.

The term in 2% is eliminated from the quartic equation by the substitution

P
z2=1f~-= 231
A (231)
Then ¢ is a solution of the equation
tt+at®+bt+c=0 (232)
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where the coefficients are defined by the equations
a=-2p*+q (233)
b=+3p°~ipg+r (234)
C= - 5Pt + Hp2q — fpr+s (235)

In Euler's method, the quartic equation in ¢ is factored into the product
EHNT+Vm e va)E+ V- Vm o )t - N+ Vm - Vet - VI - Vm +Vn) =0 (238)
Multiplication of the factors leads to the equation

-2t m+n)t+8VIimnt+ (l+m+n)¥-4(mn+nl+im)=0 (237)

Comparison of coefficients shows that the constants !, m, n are solutions of the equations

l+m+n=-la (238)
mn + nd + im = (a® - 4¢) (239)
Vimn = §b (240)

Thus the constants I, m, n are the roots of the equation

k3 + tak? + Lia? - 4c)k ~ 467 =0 (241)
The roots of the quartic equation are derived directly from the roots of the resolvent
cubic equation by the extraction of complex square roots.
Programming

SUBROUTINE QTCRT (AC, R.7)

AEERKREKRR AR NS KA F R AR LIRS R RN KRR R R R R AR AR R KRR R Rk kA Rk Rk Rk Rk ko kk kb kok kR kR Rk kokok %

FORTRAN SUBROUTINE FOR ROOTS OF QUARTIC POLYNOMIAL

EREUREFTRE R R FF TR AR R L AR RN R KRR T MR R AR AR RN R R TRk kR Rk Rk kR Kk ko kR Rk kR Kk kK k%

The real coefficients of the polynomial are given in the array AC in ascending order.
The roots of the polynomial are computed with the Euler method. Calls are made to
Subroutine CBCRT. The real and imaginary parts of the roots are stored in alternate
addresses of array R..

COMPLEX ROOTS OF AN ANALYTIC FUNCTION

Analysts

Let 2 and w be complex variables which are expressed in terms of their real and
imaginary parts by the equations
z x+iy w=u+iv (242)

lLet w be an analytic function of z as expressed by the cquation

w = f(z) (243)
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The derivative of w is given by the equation

== 2
dz dr +idy (244)

The derivative is independent of the direction only if the variables satisfy the
Cauchy-RKRiemann equations

du Odv a v
i = (245)
dxr oy oy ox
The modulus of w is given by the equation
1 .
lw| = (ww*)? = Vu? + 12 (246)
and the gradient of |w| is given by the equation
dlwf  dw|
Vwl = —-- +1i-—— 247
wl= S T (247)
Differentiation and substitution lead to the equation
v 2
V| = el @ (248)
wl - dw
dz

Double differentiation in the Cauchy-Riemann equations shows that u, v satisfy Laplace's
equation as expressed by the equations

®u 0% T Y
— =0 ——+—=—5=0 219
az® Ay , ar?  ay® (249)
whence the Laplacian of Jw| is given by the equation
?*lw| 8¥w Viwl|f?
O ol _ Sl 250)
oz ay jw|
The gradient of the gradient of |w| has the matrix
%ul  Ofw|
ax? dxdy
(251)
0%w| 8wl
8zdy ay?

The product of the characteristic roots of the matrix is the determinant
0%w| 8%w! <aalw|>“‘
az? 8yt dzdy

(252)
At a point of zero gradient the determinant is zero or negative and the point is a
saddle point unless it is a root. The only minima in |w| occur at the roots of [w|. The
value of |w| in a finite region is a maximum only on the perimeter of the region. Other
analyses of the minima and the maxima are to be found in various texts.
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Once a root has been established it must be eliminated from further consideration.
Let p(2) be defined by the equation

k
p(z) =[] (2 - a) (253)
i=1
where a,, -, a, are the first k roots. If w(2) is defined by the equation
Hz)
w(z) = —— 254

then the roots of w(z) are only those roots of f(z) which have not yet been computed.
The first derivative is given by the equation

dw f f[ d 1 ]
badi SN - (255)
dz p pll(z-4a)
and the second derivative is given by the equation
dz t q k 1 k 1 2 1
il el el
dz D p Loy (2 —a)) plio(z-ay) pli(z-ay)

where f' and f" are the derivatives of f.
During hunting, the displacement to an intercept on the complex plane is computed
in accordance with the equation

Az = - (257)

and the position z' of the intercept is computed in accordance with the equation
z'=2z+ Az" (258)

For each displacement Az of the position z there is a displacement Az' of the intercept z'.
Hunting is continued as long as |Az'| is more than |Az|
The local expansion of w in terms of 2z is given to second order by the equation

dw d*w
w+ Aw=w + E—z‘ (AZ) + % Ezg (Az)?' (259)
The positions of two nearest roots are computed when the equation
w+Aw=0 (260)

is solved with the aid of the quadratic formula. A displacement is computed with the
aid of the equation

2
2= — =0 (261)
dw | (Lw)a 2n LY
dz dz dz?

where the : sign is selected to be whichever sign makes Az| the lesser. Then the
displacement is reduced to a step of length § in the same direction as expressed by
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the substitution

Az 6 — (262)

The local representation of w by a quadratic approximation eliminates the risk of

entrapment at a saddle point in |w|. .
During homing, a displacement to an intercept on the complex plane is computed

in accordance with the equation

w
Az'"'= ~ — 263
z dw (263)
dz
and z is replaced in accordance with the substitution
z-2'=2+A2" (264)

Homing is continued as long as |Az"| is less than [Az|. A tolerance ¢ distinquishes
between disturbance at a saddle point and rounding error at a root. The position 2z
is interpreted as a saddle point if

az") 2 |Az] > ¢ (265)

while the position z is interpreted as a root if

lAz| s Az <€ (2686)

Regardless of the value of €, a root is determined to the full accuracy to which the i
functions can be computed.

When the point of computation is near enough to a multiple root, the displacement
in each cycle is a constant fraction of the distance to go to the root. The distance
to go is the sum of an infinite geometric series. Displacement to the root in a single
cycle is achieved when the displacement to the intercept is extrapolated to the interval

|Az] .
m——mz”! Az (267)

which expresses the summation of the geometric series.

Programming

SUBROUTINE FNCTIN (MO, AZ, FF, DF, SF)
D Ty Ly Y T Ly T ey s

EXTERNAL SUBROUTINE FOR FUNCTION AND DERIVATIVES

EIEEREI R TR SRR RN A RS R AR AR R A R AR AR AR R R AR TR R AR AR R KR AR R AR AR R R R AR R Rk Rk Rk

The mode of operation MO is O for functions, 1 for first derivatives, and 2 for second
derivatives. The argument z is given in the 2-array AZ. The function f(2) is stored in
the 2-array Ff, the first derivative df/dz is stored in the 2—-array DF, and the second
derivative d%f/dz? is stored in the 2-array SF.
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SUBROUTINE CXRT (CD, CE, AZ, NA, AA, FNCTN)
T T s
FORTRAN SUBROUTINE FOR COMPLEX ROOT DETERMINATION

R KRRk RN RE TR R R RFFERR AN R NNRR I NI REEKRREER R R AR RN AR RN R E KRB R KRR R AR

The step length d for hunting is given in argument CD, and the tolerance € for homing
is given in argument CE. The initial position 2z is given in the 2-array AZ. The number
of roots mn is given in argument NA. The region of a root is located by a hunting
procedure with steps of fixed length, then the root is determined by a homing procedure
with Newton—Raphson iteration. References are made to the external subroutine FNCTN
to obtain values for f(z),f'(z).f"(z). The real and imaginary parts of the roots are
stored in alternate addresses of the 2n—array AA.

CONTOURS AMONG DATA

The General Purpose Contouring Program?? or GPCP of CalComp works with a random
array of elevations. Through each datum among the random data is passed a plane
with an orientation which is the weighted average of the directions toward the nearest
neighbors among the data. The weight function for the average has a bell-shaped
distribution. The random array is converted into a regular grid by an application of
the weight function to the heights of planes from neighbors nearest to a grid pint.

The clevation in the interior of a square is expressed as the sum of products of
functions which conform to the elevation and gradient at the four corners of the
square. For interpolation with respect to z the functions ¢(z) are listed for a unit
square in the following table.

¢(x) ¢(0) e(1) '(0) e'(1)
(1 - x)*(1 + 2z) 1 0 0 0
+ x%(3 - 27) 0 1 0 0
+z(1 - x)? 0 0 1 0
- z%(1 - x) 0 0 0 1

There is an analogous table for interpolation with respect to y. The products of the
first two of one set with all of the other set provide enough functions to meet the
twelve conditions of elevation and gradient at the four corners. Continuity of elevation
and slope across each side of the square is guaranteed insofar as the elevation and
slope along the side are determined by the elevations and gradients at the ends of
the side.

The square is subdivided into a subgrid, and elevations are computed at grid points
with the cubic approximation for elevation in the interior. Contours are traced through
the subgrid with linear interpolation within each square of the subgrid.

The ultimate contouring system for topographic applications has been developed
by Junkins and Jancaitis®*®® The Contouring Via the Surface Averaging Concept or
CONSAC system works with a rectangular array of elevations over a unitormly spaced
grid of rectangular coordinates. The elevation z is expressed at a local center of
approximation by the equation

Z=Co + 0T + Y + a2y < flx, y) (268)
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where z,y are Cartesian coordinates with origin at the center of approximation. The
coefficients in the local approximation are derived by sequential least squares from
a local array of data which is centered over the center of approximation. Rational
weight factors are applied to the data during the preliminary fitting to establish the
local approximation for each corner of a square whose lower left corner is at the
origin.

The local approximations at the corners of the square are blended in the interior
of the square. Rational weight factors are applied to the local approximations during
the final fitting to establish the interior approximation for the whole square. For a
center of approximation at the origin of coordinates the weight factor w(z, y) is given
by the equation

(1 -2)*(1 - y)*

WY) = 269
wEY S T T (-9 (269)
while the partial derivatives of the weight factor are given by the equations
dw 2z(1 - 2)(1 - y)*
N 270
bz T @A (-2 + (1= 9] (270)
a 1 - z)%2y(1 ~
w _ (1-2)%2y(1 - ) @71)

By (-2 (1 -y

Thus the value of w is unity at the origin butl is zero at the other three corners of
a unit square, and the derivatives of w are zero 2t all four corners of the unit square.
The weight factor satisfies the equation

wz.y)+w(l -z y)+wx l-y)+w(l-z,1-y)=1 (272)

throughout the interior of the square.
The elevation in the interior of the square is given by the equation

z = w fy + Wafp + Wafs + wef, = F(z.y) (273)

where w,, w,, w,, w, are the weight factors for each of the four corners and f,. f>. f3. f4
are the local approximations for each of the four corners. Since the weight factors
have quadratic numerators and denominators while the local approximations are
linear, the final approximation for the interior of the square is the ratio between a
cubic polynomial and a quadratic polynomial.

Differentiation with respect to z along a line of constant y and reduction to a
common denominator replaces the numerator of F(r,y) by a polynomial which is
quartic in z, while differentiation with respect to y along a line of constant z and
reduction to a common denominator replaces the numerator of F(z, y) by a polynomial
which is quartic in y. Solution of these quartic equations gives the points where F(z, y)
has minima or maxima along a side or along a median of the square. From the
elevations of the minima or the maxima are derived the range of contour levels which
intercept the sides or the medians of the square.

On a contour of level h the elevation is expressed by the equation

F(z,y)=h (274)

Clearance of the denominator in this equation gives a cubic equation for the contour
line. The cubic equation is solved for y with z set to a sequence of values or for x
with y set to a sequence of values to obtain a sequence of points on the contour.
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CONTOURS OF FUNCTIONS

Analysis |

Let z,y be Cartesian coordinates and let z be a constant contour level. Let i, j be
unit vectors in the directions of increasing z,y. Let f(z,y) be a function of z,y. Then
. the cquation

z = flz.y) (275)

defines implicitly a relation between z and y. A position vector r is defined by the
' equation

r=azi+yj (276)

The differential change df in the function f(x,y) for the differential change dr in the
position vector r is given by the equation

of af

df=—dxr+ —~dy=Vf-d s
f= gy 45 oo dy =0 dr (277) |
1
and the gradient of f(x,y) is defined by the equation i
i
of L of !

Uf=i—+j-= 78
f=ig " oy (278) ;

For each trial point there is an intercept in the z,y plane where the gradient is
estimated to be zero. The displacement Az*, Ay* from the trial point to the point of
zero gradient is a solution of the cquatlions

aEf aZf af E
5 Ax* + ——— Ay* = - = 279 i
0z °F dxdy oz (279) }
s 3%f of
—_ Ax*¥+ —5 Ayt = - — 280
dzdy o U Ty (280) {
{
The solution is expressed by the equations :
or 8 _of 8
dx dy® 9y dxdy
Az* = — S St 281
xz azf az{ < azf >a ( )
ar? ay® \azdy
of 8% _of 9%
dy 8z® 8z dzdy
Ay* =~ S s 3 282 .
YTy @50
ar? ay® \9zdy
The coordinates z*, y* of the point of zero gradient are given by the equations
x* =z + Az* y* =y + Ay* (283)
The value f* of the function at the coordinates z*, y* is given by the equation
of of , 8% a%f 0
e O AZE o Ayt L (A 2, T A TN S Ayt)? 4
fr=f axx ayy zarg(x) axayxAy zayz(y) (284)
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The matrix of the equations which determine the point of zero gradient is the matrix
of the gradient of the gradient of f. It is symmetric, and it has real characteristic
roots with orthogonal characteristic vectors. Its trace is the sum of its characteristic
roots, and its determinant is the product of its characteristic roots.

Each of the characteristic roots u, v of the matrix is given by the equation

a2 2 z 2p0\2 35 \2
i 3f> \[(af 6f> <3f>
V=4 + t -\l =) +4— 285
mov (ax ay?) T2 N\az? 32 azdy (285)
where the choice of root is determined by the t+ sign. The characteristic unit vectors
m, n are given by the equation

+_%‘2<gg"g‘;—f) Q\Kg;[ a;f> 4<ax;fy> }%i

(2 2 ( 20} -
Rt TN N R S,
;
(AR EA

where the choice of vector is determined by the + sign. The gradient of the gradient
of f is given by the equation

VVf - umm ¢ vnn (287)

If the roots have opposite signs, the point of zero gradient is a saddle point, and the
plane of z intersects the surface of f. If the roots have the same signs, the point of
zero gradient is a minimum or a maximum. If the signs of the roots then are the
same as the sign of f-- z, the plane of z does not intersect the surface of f

Let p be the position of the trial point relative to the point of zero gradient as
expressed by the equation

p=r--r* (288)

Let u, v be Cartesian coordinates with unit vectors m,n in the directions of increasing
u,v. The position vector p of the trial point is given by the equation

P =um + vn (289)

The coordinates u, v are expressed in terms of the coordinates z, y by the equations
u=(r r)i-m+(y-y)jm (290)

v=(zx--z*)i-n+(y -y*)j n (291)

Let ¢ be the value of the function relative to the point of zero gradient as expressed
by the equation

o= f- (292)
The value of the function is given in terms of the coordinates by the equation
¢ - suu® ¢ pt (293)

If the characteristic roots have opposite signs the contours of constant ¢ are hyperbolas
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and if the roots both have the same sign as ¢ the contours of constant ¢ are ellipses.
The trace of the matrix of the equations which determine the point of zero gradient
is given by the expression

aZf aZf
24, 2L 294
ar*  ay® (294)
and the determinant of the matrix is given by the expression
aZ 62 62 2
9197 <_J> (295)
0x° oy dzdy

If the determinant is zero there is no single point of zero gradient. The partial
derivatives are related in accordance with the equation

A

ozay  “\az?) \ay? (296)
and the function is given for any Az* Ay* by the equation
af<azf>% af(azf i
DALV, 2T
1] 8z \az? dy \dy?
A e B Py P
2 af .97
ar? a8y
1 s 9
?.f(,‘??)ﬂﬁ[(?zf)i . .
az \ dy* dy \8zx?® 3%f\2 3%f\2
+ S z 2 2 ) A F | — Ay*
or.,er oy 8z
ar? 9y
af (azf)% af <a=f : T
| —=< + 2 = 1
1| ar \az?/ =~ oy \dy? 62f>5 azf>i
- (=) 8z 2 (5 ) Ayt 7
> 5 ﬁ (a:ra Az i(ayz Y (297)
[ ar?  ay?

The contours of constant function are parabolas. The nearest point on the axis of the
parabolas is reached when Az* Ay* are given by the equations

a,f(?z)ia_f@fzf ,
oz \5a?) *ay\ay?/ (a7t
ey
oz oy
1 1
a_f(izi’)éiﬂ'(?fi)z ,
IR AL WA AL WA 4y (299)
ay?

Both terms of the trace have the same sign and their square roots are positive or
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imaginary. Let A, v be defined by the equations

or (ﬂ)é Lo ((%?Z)'lz‘

dx \ ay? 0
A= Y LA (300)
(azf . ff.)é
az® 3y
0% o%f
V= 5‘2—'5 + 5? (301)
and let m, n be defined by the equations
(azf)% (azf 2
EY 6——2>
- ~~-y———~-—l iF IR —J (302)
<_‘?,2I R f’if)E (?Zf N "’zf>2
azr®  ay? ar® 3y
(a"‘-f>% <azf :
oz® wi
SRS R (303)
(;ﬁf , 62f>5 (azf ‘ azf)a'
axr® 9yt ar®  ay*
Let the coordinates u, v be derived from the coordinates z.y in accordance with the
equations
u-(xr 2%)i-m+ (y—-y*)j m (304)
v (x x2)i-n+(y-y*)j'n (305)
Then the function ¢ is given by the equation
@ = Au+ vt (308)

The contours of constant ¢ are parabolas with axis in the direction of m.
During hunting perpendicular to a contour a displacement to an intercept on the
z,y plane is computed in accordance with the equation

A - E,é,fﬂé Vs (307)

and the position of the intercept is computed in accordance with the equations

- x - Ax” y'=y+Ay" (308)
The increments Ax, Ay are replaced by a step of length & in the direction of Ar" as
expressed by the equation

Ar

Ar -6 .- (309)
Ar
unless a point of zero gradient is detected within that circle which is defined by the

cquation

(310)

(2P yEe 6t
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The characteristic roots and vectors of the matrix of VVf are analysed to determine
whether the plane at z can intersect the surface of f. Computation is terminated if
there can be no intersection. Otherwise the trial point is displaced toward the nearest
point of intersection. Hunting is continued as long as |Ar| is more than |Ar|, then
homing is started when |Ar| becomes less than IAr|.

During hunting parallel to a contour the steps of the trial point are expressed by
quadratic curves which are osculatory to the contour.

If i, v have opposite signs, then the contour of constant ¢ is an hyperbola. Let the
sign of i be the same as the sign of ¢ so that u,v can be expressed in terms of a
parameter 7 by the equations

2
u:<l> coshn (311)
u
L
v:il; sinh 7 (312)
|

[ncrements Au, Av in the coordinates are given in terms of the increment A7n in
parameter by the equations

1
.
Au = <:>2 sinh 7 A7 (313)
(2g |2
2
Au:l-;l coshn An (314)

The hyperbolic functions may be expanded with the aid of the addition formula and
may be expressed in terms of the coordinates to give the equations

1
Iy
u + Au = u cosh(an) + \Z! v sinh(an) (315)
| i
1
iz
v + Av = v cosh(An) + l;[ u sinh(An) (318)
|

which are valid for arbitrary increments, and the equations

v an (317)

1
| uan (318)
t

which are valid for small increments. The increments Au, Av are initially in the direction

of the tangent, which can be derived directly from the gradient Vf. The stability of

the computation is controlied when the increments are subject to the limitation
AW Q)8 (319)

where 6 is the maximum length of step. Then the increment An is determined with
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sufficient accuracy by the equation

[}
an=-— - — (320)
I e L N A L
(Au)? + (Av)? | Vl v (Au)? - (av)? }N

unless this would make An! more than % in which case A7 is reduced to = %

If u is zero, the contour of constant ¢ is a parabola. Let u, v be expressed in terms
of a parameter ¢ by the equations

1A

d 2
gz 321
x 207 (321)
A
v

g (322)

Increments Au, Av in the coordinates are given in terms of the increment Ao in
parameter by the equations

A
Au - - —0c Ao (323)
v

A
Av 4 - Ao (324)
v
The coordinates are given by the equations

1A
u+du=u-vao- EE(AO)Z (325)

A
v+Av=v+ - Ao (326)
v

which are valid for arbitrary increments and the increments are given by the equations

Au = --vAg (327)
A

Av = + - Ao (328)
v

which are valid for small increments. The increments Au, Av are initially in the direction
of the tangent, and the length of step is limited to 6. Then the increment Ac is
determined with sufficient accuracy by the equation

P
Ao = — 329
¢ Av x Au (329)

VawE s (00)E v Vau)?ts Go)

unless this would make {Acg| more than ; in which case Ao is reduced to %

If u, v both have the same sign as ¢, then the contour of constant ¢ is an ellipse.
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Let u,v be expressed in terms of a parameter ¢ by the equations
1

u = (ng cos ¢ (330)
I

1
u:(?i’)zsinqs (331)
v

Increments Au, Av in the coordinates are given in terms of the increment A¢ in angle
by the equations

1
Au= - <2—:>zsin¢A¢ (332)
1

Av = +<E§)Ecos¢A¢ (333)

The trigonometric functions may be expanded with the aid of the addition formula
and may be expressed in terms of the coordinates to give the equations
1

? U sin(Ag) (334)

u + Au = ucos(A¢) - ’

RN

i

v cos(Ag) +

v+ Av u sin(A¢) (335)

which are valid for arbitrary increments, and the equations

v AY (336)

Av = +

K ' udg (337)
v

which are valid for small increments. The increments Au, Av are initially in the direction
of the tangent, which can be derived directly from the gradient Vf. The stability of
the computation is controlled when the increments are subject to the limitation

V(au)? + (A)% = 6 (338)

where 6 is the maximum length of step. Then the increment A¢ is determined with
sufficient accuracy by the equation

Ag = 2 (339)
Av E’Eu_ o Au v 2
V(aw)? + (av)? v V(au)? + (av)? | 1

unless this would make |A¢] more than 3}, in which case A¢ is reduced to + 3

After the increments Au, Av have been determined, the increments Az, Ay are given
by the equations

Az =i maAu+i-ndlv (340)
Ay =j-mdu+j -nAv (341)
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unless the initial point is detected ahead on the path of hunting. When the position
Ty, Yo of initiation lies within that zone which is defined by the criteria

(Zg - 2)*+ (Yo -~ ¥)? < (Ax)® + (Ay)*? (342)
I(zo - T)Ay - (yo - Y)AZ| < € V(8z)? + (Ay)? (343)

where € is a specified tolerance, then the coordinates z,y are replaced in accordance
with the substitutions

T X Y Yo (344)

and the computation is terminated. Otherwise the hunting procedure is replaced by
the homing procedure.
During homing the coordinates z, y are replaced in accordance with the substitutions

T X vy y (345)
until Az, Ay satisfy the criterion
Arl e (316)

and the displacements of the trial point have been reduced to the level of rounding
error.

If the trial point is stepped out of bounds, it is reset on the boundary. If x is
outside the boundary it is reset onto the boundary and y is adjusted in linear proportion,
or if y is outside the boundary it is reset onto the boundary and r is adjusted in
lincar proportion. The computation is terminated if the trial point is trapped in a
corner. If x already is on a boundary, then partial derivatives with respect to r are
set equal to zero, or if y already is on a boundary, then partial derivatives with respect
to y are set equal to zero. Intersection of the contour with the boundary is established
by iteration.

After Newton- Raphson iteration the function and its derivatives are known at each
trial point. Two consecutive trial points are centers of expansion from ecach of which
the contours arc extended halfway to the other. Insofar as the extensions are accurate
only to second order. they do not quite meet in the middie. The extensions are adjusted
in proportion to the cube of the distance from their centers of expansion in order to
bring them into coincidence midway between the trial points.

Programmaing

SUBROUTING FNCII! (MO, A%, A, FF, FX, B\, av, o)
(AR AR AR R RS RN R N R R S R R AR R A AR N R R A R R A R R R A A N R RN N A Y
FXTERNAL SUBROUTINE FOR SURFACE ELEVATION AND DERIVATIVES

R O e R e e R R RN E PR T R IR W I

The mode of operation "0 is 0 for functions, 1 for first derivatives, and 2 for second
derivatives. The coordinates z,y are given in the arguments v, 3> The clevation f is

stored in the function ‘7. The first derivatives df dr. 8f dy are stored in the functions
. the sccond derivatives 8%f ax® 9% dxdy. 8%f 8y*® arc stored in the functions
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SUBROUTINE CNTCRV (CD, CE, CF, CA, AX, AY, A/, NO, FNCTN)

FAER KRR R Rk kR R R R KR R R R Rk R R ROk R KRR Rk RNk R KR E R Rk kR AR ARk Rk ok kR Rk Rk Rk AR Rk Rk R RN

FORTRAN SUBROUTINE FOR CONTOUR CURVE CONSTRUCTION

LA A ARE S LS R R Rl L R s Ry N T Y 11132224

The step length § for hunting is given in argument CD, and the tolerance ¢ for homing
is given in argument Ct. The edges of the plotter field are given in the 4—array Cf in
the order left, right, upper, lower, and the cdges of the contoured area are given in
the 4- array CA in the order left, right, upper, lower. The initial coordinates z, and y,
are given in the arguments ~X and AY. The clevation of the contour is given in the
argument A Datum points on the contour are written on tape file NO. The elevation
of the surface is computed by refercnce to the external subroutine FNCTN,

DISCUSSION

Experiments have been performed on the computer to determine the levels of
rounding crror in power polynomial approximation. Values of polynomials at nodes
and at antinodes and coefficients of polynomials have been compared for a few orders.
In all of the experiments the abscissae ranged from - 1 to +1.

For equal spacing the values of the Lagrange polynomials are greatest for those
polynomials which are unity at abscissac near the middle of the range of abscissae.
The values at antinodes are larger than unity but less than the maximum values at
endpoints.

For Chebyshev spacing the values of the lagrange polynomials are greatest for
those polynomials which arc unity at abscissae near the cnds of the range of abscissae.
The values at anlinodes arc cverywhere less than unity for all polynomials but the
values al endpoints are greater than unity.

The increase in endpoint values with order is illustrated by the following table.

Endpoint Maxima

Number kqual Chebyshev

of Data Spacing Spacing Degree
U 8.6-10! 1.27 10
17 3.5-10% 1.27 16
21 1.5+10% 127 20
25 6.1-10°% 1 2% 24

Thus any error in an ordinate ncar the middle of the range of abscissac is amplified
imnto wild wiggles near the ends of the range when the abscissae arc cqually spaced.

The effeet of rounding error is related to the disparities between the magnitudes
of terms and the values of polynomials. The increase in the coefficients of terms of
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Lagrange polynomials with order is illustrated by the following table.

Maximum Coefficients

Number Equgl Chebyshev Degree
of Data Spacing Spacing .

‘ 1 3.2x10° 2.6x102 10 T
17 1.4x10° 2.9x10* 16 P
21 1.0+10° 7.4x10° 20 {
25 6.8x10° 1.9-107 24

kI |

The increase in the coefficients of terms of orthonormal polynomials with order is
illustrated by the following table.

Maximum Ccefficients

EPURRPIPRN

Number Equal Chebyshev
of Data Spacing Spacing

11 5.3x103 5.5%10% 10
17 2.7=10°% 7.3x10* 16
21 2.2x107 2.0x10°8 20
25 1.4x101° 5.6x107 24

Degree

1an AR - ST At B AR e 0
s amanii

A

it W

The rounding error for abscissae near the ends of the range of abscissae is on the
order of the product of the maximum coefficient and 2°¥ for N-bit arithmetic. Thus
expansion into coefficients becomes rapidly more vulnerable to rounding error with
increasing order.

If the abscissae are proportional to the cosines of equally spaced angles, then the
trigonometric functions of multiples of the angles are orthogonal with respect to i
summation, and the orthonormal polynomials are proportional to the trigonometric ;
functions. The three- term recurrence for the polynomials is just the addition theorem
for the trigonometric functions. Experiments on the CDC 6600 with exact recurrence
separate the effects of rounding error in the three--term recurrence from the effects
of rounding error in the evaluation of coefficients. That the rounding error in the
recurrence increases only very slowly with increasing order is indicated by the following
table.

R OV ey

Number of Data Maximum Error Degree
11 1.3x10712 10 .
17 2.0x10712 16
21 3.2<10713 20
25 6.9x10713 24

where the maximum error is estimated from the residual at the nth abscissa after
the (n + 1)th cycle of recurrence.

There seem to be as many subroutines for the FFT as there are users. Only three
of the existing subroutines will be considered in the present discussion. A subroutine
. NLOGN has been published by Robinson!!. It is used extensively. It is short and moderately

C e AR i Y wa o bl ez
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fast. A subroutine FFT has been published by Brigham!?. It is relatively straightforward.
It is short, but quite slow. An improved version C4FFT has been prepared for the present
program. One major subroutine is FFTP, which is distributed by IMSL. It is very long
but very fast. It is not limited to orders which are a power of 2. It factors any order
into prime factors and applies the original formulation of Cooley and Tukey. The
ultimate subroutine is HARM, which is distributed by IBM. It is very long but very fast.
It is three--dimensional. A set of three subroutines has been prepared for the present
program. They can be used in computing loops to perform the same functions as
HARPM. The computing loops are only half as fast, however, because they do not take
every possible shortcut in computation. The merit of each subroutine depends upon
the length of program, the storage requirement for data, and the speed of computation.
Any increase in speed of computation is achieved at the expense of an increase in
storage requirement.

In the IMSL, subroutine 7ANLYT applies the Muller mcthod, and subroutine .'CPOLY
applies the method of Jenkins and Traub. In the present system., CxRT follows the
hunting and homing method. The length of ZANLYT is a few percent less than the length
of CXRT, but the length of ZCPOLY is more than three times the lengths of the other
two subroutines. Comparative tests with tenth—-degree polynomials showed that ./C”0.»
takes a few percent less time than the other two subroutines. For roots equally spaced
along the real axis, all three subroutines gave full machine accuracy. but for roots
equally spaced around a circle of unit radius, 7~s.¥" and ."C*0. ' gave two to three
digits less accuracy than C¥RT. All three subroutines gave double roots with only half
the accuracy of single roots.

CONCLUSION

Although [agrange and orthonormal polynomials of high degree should not be
expanded in coefficicnt form, they can be evaluated accurately to any order by
recurrence relations. Insofar as computations of roots and contours by hunting and
homing procedures are applied to unreduced functions, they give high accuracy
determinations.
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