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Nomenclature

A influence coefficient matrix

B array of closure coefficients

C element semi-curvature

E(m) complete elliptic integral of the second kind

F1 (s,s') axial velocity at s due to a unit source at s'

F2(s,s') radial velocity at s due to a unit source at s'

F3(s,s') stream function at s due to a unit source at s'

J n(x) Bessel function of the first kind and order n

K(m) complete elliptic integral of the first kind

1. total arc length of the body along the meridian

m modulus of the elliptic integrals

N number of surface elements

P field point or observation point

P' source point

r radius

s arc length parameter

z axial distance

Cangle between z-axis and the normal to the body pointing

into the fluid

tolerance parameter for surface velocity

A element base length

ordinate of the element's local co-ordinate system

0 velocity potential.I
I
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Nomenclature (continued)

a source strength

stream function

e element slope
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I. Introduction

1.1 Aim:

The hydrodynamic design of an axisymmetric body with certain

performance characteristics requires the solution of the inverse

problem wherein the pressure distribution on the body is specified

and the corresponding body profile must be determined. It is well-

known that the skin friction distribution on the body is related to

the pressure distribution for non-separating flows. Thus, the inverse

problem arises in the search for low-drag body shapes. The solution

to the inverse problem in two-dimensional plane flow has been known

for many years. This solution is fairly straightforward and is

obtained by conformal mapping techniques. Such simple mapping

techniques are not possible for axisymmetric flows because the axisym-

metric Laplace's equation is not invariant under conformal mapping.

Many early investigations of the axisymmetric inverse problem have

yielded unsatisfactory results and only recently have successful methods

been developed [1, 2, 3]. These methods which are essentially numerical

use the solution to the direct problem in an iterative manner. These

iterative methods are eijher slowly convergent [1] or applicable only to

simple body shapes [2,3]. The present effort was, therefore, undertaken

in order to develop an efficient inverse method which is rapidly con-

vergent and. is applicable to arbitrary axisymmetric bodies.

=m ~ n ~ m m m .. ....... . . gi -I .
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1.2 Earlier Studies:

One of the early investigations of the axisymmetric inverse problem

was by Young and Owen [41, employing axial source distributions. Their

theory assumed that the perturbation velocities are small compared to

the free stream velocity and thus is applicable only to slender

bodies of revolution. Their method is essentially the same as

that of the slender body theory which evolved subsequent to their work.

A later method due to McKnown and Hsu [5] turned out to be the same as

the Young and Owen method. A subproblem to the inverse problem was

solved by Marshall [6]. In this subproblem, which Marshall called

the "development problem," a small change in body shape is obtained for

a specified small change in pressure distribution. An interesting class

of inverse problem is the cavitation problem which requires the cavity

shape for a given cavitation number. In this case, the pressure

distribution remains constant. Such cavity problems for axisymmetric

flows have been treated by Munzer and Reichardt [7), Garabedian 18], and

Jeppson [9].

Among the recent axisymmetric inverse techniques is the method due

to James [10] who used a mapping function involving series expansion.

His results are applicable only for bodies with blunt or cusped tails.

For the case of bodies whose tail shapes are neither blunt nor cusped,

James' method requires a mapping function involving fractional powers

but he did not consider this case. The two recent methods that

are successful are due to Bristow [1] and Zedan and Dalton [2,3].

These methods start with an initial guess of the body shape and use a

variant of the direct problem solution in an iterative manner in order
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to update the body geometry. Bristow's method uses the Douglas-Neumann

direct method in which the body surface is discretized into conical

elements and the source strength remains constant over each surface

element. Zedan and Dalton use axial sources for their analysis. Their

earlier work [2] employed axial source elements with constant source

strengths while their later work [3] uses linearly varying source strengths

on each axial element.

1.3 Present Study:

In the present study we employ a higher order surface singularity

method for the solution of the axisymmetric inverse problem. In this

method the body surface is discretized into paraboloidal elements. The

source strength on each element is taken as linearly varying so that

the formulation remains consistent [11]. The present method starts

with an initial body profile which is an ellipse or a parabola of

reasonable fineness. The tangential velocity on the body is obtained

from the prescribed pressure distribution by using the Bernoulli

equation. The tangential velocity distribution along with the body

closure condition are used to obtain the source strength distribution

on the body. The improved shape is now given by the shape of the zero

streamline. The initial shape is replaced by the improved shape and

the computation is continued iteratively until the body shape converges.

Usually convergence is obtained in four iterations. The use of the

stream function to predict the improved body shape is similar to the

technique used by Zedan and Dalton [2,3]. However, Zedan and Dalton

use axial singularities and their method cannot handle bodies with

I'
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sharp corners or sudden changes in slope. The present method employs

surface sources and, therefore, is capable of dealing with axisymmetric

bodies of arbitrary shapes. In comparison with Bristow's method [1],

the present method (i) uses higher order surface elements as well as

higher order source distributions,and (ii) employs an improved

algorithm for the body shape prediction. These improvements result in

faster convergence. The present method converges in four iterations

while Bristow's method converges in ten iterations.

1:
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II. Problem Formulation and the Method of Solution

2.1 Body Geometry:

Consider an axisymmetric body placed in an unbounded free stream

at zero angle of attack. Let the body profile be approximated by N parabolic

elements whose end points are given by the sequence Rz2j_l, r2j-1 ),

1 < j < N + 11. The shape of the j-th element can then be represented

by the parabola

n = C. (E2 - A 2 /4) (1)

where ( , r) is a coordinate system local to each element such that the

axis passes through the end points of the element and the n axis is

the perpendicular bisector of the element chord. The length of the

chord is A. while C. is the element curvature. The slope e of the

element is taken as the slope of its chord (Figure 1 ). In general,

the curvature C. for each element is taken as the geometric mean of the

curvatures of the two parabolas, the left parabola passing through the

end points of the elements j and j-l, while the right parabola passes

through the end points of the elements j and j+l. If the two curvatures

are of different signs then C. is taken as zero. The curvature CJL of the

left parabola is given by

- tan (e,_ I - 0J)
CjL =A + Aj 1 cos ( 0 j - 0j) (2.1)

I
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while the curvature CJR of the right parabola is given by

- tan ( -J+ I)  (2.2)
CjR =A* + Aj+ Cos (S6 - 6j I

j+l i j+l(2)

For the first element we take C1 = CIR while for the last element CN = CNL.

The boundary conditions of zero normal velocity and the prescribed

tangential velocity are to be applied at the mid-points of the element

arcs. These points correspond to = 0 for each surface element.

The sequence of points where the boundary conditions are applied

are called control points and are denoted by {(z2j, r2), 1 < j < N}.

The locations of the control points are calculable from the specified

end points and the element geometry.

2.2 Source Distribution:

It is well-known that the flow around the body can be represented

by a source distribution over its surface. Since the flow field is

axisymmetric, the source distribution will consist of source rings.

For the parabolic representation of body elements, the source distribu-

tion on each element must vary linearly so that the formulation remains

consistent [11]. The source distribution for the j-th element is then

given by

i(+) 2+ + (oj+l -j) A. A
2 A-2 -2

(3)

The unknowns al. ... N+I are the source strengths at the N + I end1% points of the elements. Equation (3) ensures that the source
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distribution is continuous over the body surface and is linearlyvarying

across each element. From the source distribution and the body geometry,

the velocity potential and the stream function at any point can be

obtained. For the purpose of our analysis, we shall employ the notation

whereby the source point is denoted by a primed entity while the field

point (or the observation point) is denoted by an unprimed entity.

2.3 Surface Integrals:

The condition of zero normal velocity on the body is given

by [12]

h(s) = - u2 0 (s) + f O(s') [FI(s,s') cos a + F2 (s,s') sin a] r' ds'

0 (4)

where the parameter s is the arc length at any point on the body along

its meridian, £ is the total arc length of the body, h(s) is the component

of the free stream along the inward normal to the body, and a is the angle

between the z-axis and the outward normal to the body. The influence

functions F and F2 are related to the velocity potential D by [12]

F (s's') - 271 (z,r; z' r')

(5)

F2 (s,s') = 2i (zr; z',r')

It should be noted that the coordinates (z,r) on the body in Equation

(5) are functions of the arc length s.

4[
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The tangential velocity V on the body can be obtained from
T

VT sin a - (s') [F(SS') sin a - F2(ss') cos a] r' ds'
0 (6)

The first term on the right is the component due to the free stream

while the integral represents the contribution from the source

distributions.

The stream function at any point s on the body is given by

L

T(s) =-K -- a(s') F3(s,s') r' ds' . (7)

0

The first term on the right hand side of Equation (7) represents the

stream function due to the free stream while the second term is due to

the source distribution on the body. The influence function F3 is

related to the stream function by

F3 (s,s') = 2w (s,s') , (8)

where 4(s,s') is the stream function at s due to a unit ring source at

s'. In terms of the (z,r) coordinates the three influence functions

are given by

(ss') = E(m)(z - Z') (9)

1 -m) p 3

(ss') {r 2 _ r2- 2 - (z- z') 2 } E(m) + K(m(
2 21rp L (r -r) 2 + (z z') 2  

(

i,;
'I

- -
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F3(sis') Sgn (z - z') F3  (11)

where

F . Iz - z'I r K(m) + (1 - A (C;m)] r > r'
3 p(r + r') [ 0

i z - z'I r K(m) 1
Sr m +- [1 + Ao (E;m)] r < r'
x p(r + r')

The functions F1 and F2 are derived in Reference [12].

The function F3 is derived in the Appendix where the functions p,

A0 (E;m) are also defined.

2.4 The Influence Coefficients:

In the implementation of the inverse method, the surface integrals

of functions F., F and F3, indicated by Equations (5 - 7), are discretized

over the body. The body radius r', the source distribution G(s') and the

elemental arc ds' are expressed in terms of the local coordinate C, and

the integration is carried out with respect to for each element. It

should be noted that a, the slope of the normal is a function of the

observation point s and is, therefore, independent of . In this

discretization process the following two forms of integrals arise:

A J/2

0 ds'x iJk _AJ/ Fk (Si,&) r' (Q) d (12)

I,
!tfj
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and

J/2
X1 F ds'13
Xjk J Fk(si,) r' (0 d d& . (13)

J/ 2

0The subscript k can take values 1, 2, or 3. The coefficient XIjk is

due to the constant term in Equation (3), while Xi1 is due to the
ij k

first order term in Equation (3). Further, these coefficients are

assembled into three N x (N+1) matrices {Ak' 1 < k < 31 such that element

Ak(i,j) is the influence coefficient due to the source strength Ca at

the i-th control point. The contribution of each of the X-

coefficients to the appropriate element of matrix A is calculable from

Equation (3). In order to minimize the storage requirements for the

computer program, the elements of Ak are assembled as each X- coefficient

is being generated. The integrals (12) and (13) are evaluated by

Simpson's rule and pose no difficulty when i # j. However, when

i = j the integrand in Equation (12) becomes singular for k 1 1, 2,

which occurs when = 0 , In this case, the inverval

- A /2 < & < A /2 is divided into three subintervals -A /2 < < h,

-h < < h, and h < < A /2. The integrals over the first and the

third subintervals are evaluated by Simpson's rule. The integral

over the singular subinterval is evaluated analytically. These

analytical results are similar to those of Reference [13] except for

the differences due to the respective variables of integration. The

function F3 is non-singular when i - J, but has a finite discontinuity
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at = 0 as shown in the Appendix. In this case the integrals (12) and

(13) are obtained by evaluation over the two subintervals

-Aj /2 < < !0 and 0 < Aj 1/2.

2.5 The Conditions on the Body:

The velocity on the body is purely tangential since the normal

velocity must be zero. Thus, the tangential velocity, VT, can be

obtained from the prescribed pressure distribution through the

Bernoulli equation. The tangential velocity condition, viz. Equation (6),

can then be discretized as

N+I A,(i,j) cos i+A2(i,j) sin a a.- cos ai -VTi (14)

where A1, A2 are the influence coefficient matrices and VTi is the

prescribed tangential velocity at i-th control point. The conditions

that the normal velocity on the body be zero and the value of the

stream function on the body remain constant are equivalent.

The later condition is our natural choice since the improved body shape

for the iterative process will then be given by the shape of the zero

streamline. Thus, the stream surface condition on the body can be

written as

N+l ri2

j"1 A3(i,j) j = - i 
(15)

where ri is the radius of the body at the i-th control point. Finally,

in order that the body is closed, the areal sum of sources on the body
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should be zero [12]. This is the body closure condition and is given by

f 0(s') r' d O' - 0 (16)
0

Introducing the approximations for the source distribution and the

body geometry in Equation (16) one obtains integrals similar to those

of Equations (12) and (13). In this case the function Fk will, of.

course, be replaced by unity. Collecting the coefficients of Y. in thisJ

approximation, Equation (16) can be discretized as

N+I
I B(j) (j) = 0 (17)
j=l

The computation of B(j) is similar to that of a row in matrix Ak(i,j).

2.6 The Iterative Solution:

The conditions enumerated in the previous section contain the

ingredients for an iterative solution of the inverse problem. The

iterative solution starts with an initial guess of the meridian

profile of the body. This guess usually is an ellipse or a parabola of

reasonable fineness ratio. The matrices A1 , A2, A3, and B are then

obtained from the initial body geometry. The (N+I) ,,nknown source

strengths {a } are then obtained by solving the tangential velocity con-

ditions given by Equation (14) at the N control points along with the body

closure conditions, Equation (17). Equations (14) and (17) are cast into

an (N+l) x (N+I) matrix equation and the unknown {a i are obtained by

-N the standard Gaussian elimination method. These linear equations are

LA_
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veil conditioned and no difficulties have been encountered in obtaining the

source strengths. The improved body shape is now given by {ril the

radii at tb3 control points, which are obtained from Equation (15).

These N points along with the body end points constitute the improved

body shape. The quantities associated with the element geometry, like

the slopes, curvatures, etc., must be obtained by interpolation. In

order that the slopes and curvatures vary continuously, the interpolation

is carried out by means of cubic splines [141. The initial body shape

is now replaced by the improved shape and the iterative process is

continued until convergence is obtained. When the computed tangential

velocity for the improved body agrees with the prescribed values within a

prescribed tolerance, the iteration is taken as converged. Specifically, the

Root Mean Square (RMS) error in velocity, averaged over all the control

points,must be less than a given tolerance. Thus, the convergence

criterion is

iN (V C - V Pi)2 k < 6 ,(18)

where the superscript C refers to calculated values and P refers to

prescribed values. The value of 6 is usually taken as 10-3. Another

possible convergence criterion is to require that the RMS difference

in the radii at the control points for two successive iterations be

less than a given tolerance. But the convergence in tangential

velocity is more reliable and is employed in the computer program.

A flow chart for the algorithm used in the inverse method is shown inI Figure 2.
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III. Results and Conclusions

The present inverse method has been applied to various body shapes

of interest in order to test its efficacy. The first test case was a

spheroid with a tangent cone at the tail. The shape of this modified

spheroid was specified by the equations

r a/'z(a-z) , 0 < z < z 0  (19.1)

=A(-z) , z0 < z < 1

The various parameters for this modified spheroid are given by

a = 0.96324 z0 = 0.92910

(19.2)
= 0.16447 A = 0.41318

The pressure distribution for this spheroid in unbounded flow was obtained

by a direct solution method using the surface singularity technique [12].

This pressure distribution was used as the input to the inverse method.

The initial body shape was taken as an ellipsoid of thickness ratio 0.08.

The results from the inverse method are shown in Figure 3. It should be

noted that the vertical scale has been exaggerated in order to magnify the

differences between successive iterations. The shapes obtained in successive

iterations are labeled with the corresponding iteration numbers and the

initial shape is labeled as zero. With the prescribed tolerances, the

present method converges to the exact shape in four iterations.

A low-drag body with cusped tail was taken as the next test case. The

shape of this body is specified by the equations

r = r [-.1723 1
4 + 0.70881 3 + 1.0993c12 + 0 .364 2 ili/2 0 < Z < zm

= r m[-0.119962 5 - 2.582782 4 + 3.52544C23 + 0.1773 22] I /2 , Z < z < 1.

(20.1)
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The parameters in the above equation are given by

=l Mz/z m 2= (1-z)/(1-z M)

(20.2)
Zm = 0.4446 r - 0.117

M m

The pressure distribution corresponding to this shape was obtained by the

direct method [12]. The pressure distribution shows a stagnation point

at the nose where the pressure drop is rapid, followed by a gradual pressure

drop to the minimum pressure point at about 45 percent of the body'length.

The minimum pressure point also corresponds to the maximum thickness point

on the body. The pressure recovery is gradual and there is no stagnation

point at the tail because of the cusp. The pressure distribution along

with a parabolic initial shape were taken as input to the inverse method.

The body was divided into 30 intervals using a cosine distribution so that

the intervals are smaller near the nose and the tail. The results obtained

are shown in Figure 4 where the solid curve marked "expected shape" corre-

sponds to Equations (20). The circles which correspond to the body shape

obtained at the fourth iteration agree very well with the exact shape. A

difficulty was encountered during the initial iterations in this case,

whereby the value of R 2became negative near the tail region of the body.

The difficulty was overcome by normalizing the body coordinates with

respect to the body length corresponding to the point R =0 near the tail.

While the foregoing examples verify the correctness of the inverse

method, its usefulness lies in the ability to synthesize bodies corresponding

to prescribed pressure distributions. As a start toward this end the inverse

method was used to find the body shape for a hypothetical constant pressure.1 distribution. In this case, the pressure drop and recovery are confined
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respectively to five percent of the body length fore and aft. Stagnation

points exist at the nose and tail where CP = 1. The number of intervals

in this case was also 30 with the points selected using a Cosine distri-

bution. Convergence was obtained in four iterations and the body obtained

is symmetrical and resembles an ellipsoid (Figure 5). The pressure dis-

tribution on the resultant body, computed by the direct method 1121 is

shown by the circles. The agreement is very good except in the "corner"

regions of the prescribed pressure distribution. The computed body tends

to smooth the discontinuous slopes of the pressure distribution. Such

constant pressure designs are useful in maintaining laminar flow on the

body and thus minimizing the drag.

Figure 6 presents two bodies, one in unbounded flow and the other in

a cylindrical tunnel, which have the same pressure distribution. In this

sense, the two bodies are equivalent. The pressure distribution for a

cylindrical body with spherical ends, in a tunnel of infinite length, was

obtained by the direct method [12] and is shown in Figure 6. The in-tunnel

body is shown by the broken curve in Figure 6. The tunnel diameter and the

body length were taken respectively as 6 and 3k times the body diameter.

The pressure drop is rapid near the nose and the tail with the minimum

pressure points located at about 12 percent of the body length from the

ends of the body. The inverse calculations for this pressure distribution

in unbounded flow resulted in a body of greater curvature and thickness

than the body in-tunnel. This behavior is caused by the increased surface

velocities on the body in-tunnel. This calculation employed 50 intervals

and convergence was obtained in four iterations. This type of analysis

is of interest in relating water/wind tunnel tests to performance in an

unbounded medium.
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The foregoing results demonstrate that the present inverse method

shows excellent agreement in cases where the results are known. The

method is also rapidly convergent. In combination with a drag estimation

technique, the inverse method can be used for obtaining low-drag body

shapes. The method is currently being applied to a family of pressure

distributions in a parametric-design study. In conjunction with the

results of Reference [12], the present method is capable of being extended

to the inverse problem for axisymmetric bodies in cylindrical tunnels.

This extension has been already implemented by the author and will be

reported elsewhere.

4
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Appendix

Stream Function for a Source Ring in Unbounded Medium

The purpose of this appendix is to obtain the stream function due to

a source ring kept in an unbounded medium. Employing the cylindrical

coordinates (z, r), let us consider a source ring of unit strength and

radius r' with its center at (z', 0) lying in a plane perpendicular

to the z-axis. The incremental velocity potential at a point (z, r) due

to an incremental arc of the ring is given by

=1 do
d 4 -2 , (A-l)

4 [x2 + r2 
+ r'2 - 2rr' cos Y]

where x = Iz - z'1 , y is the included angle between the radius vectors

r and r' and do is the incremental source strength. Since the ring is

of unit strength, do = dy/2T and the velocity potential is

TI

4 2 
2 d 2 (A-2)

where R2 is defined by R = r2 + r'2 - 2rr' cos y. The integrand in

Equation (A-2) can be replaced by the infinite integral of Lipschitz [15]

and the potential is then given by

dy fe-kx 1 0 (kR) dk . (A-3)

0 0

4 f

L
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By the application of Sonine-Gegenbaur integral [16], viz.

1 f J 0 (kR) dy = Jo (kr) J0 (kr') (A-4)

0

to Equation (A-3), the velocity potential can be rewritten as

4- f e J0 (kr) J0 (kr') dk (*-5)

0

The stream function and the velocity potential are related by the

well-known equations

34, 1 2 and -(A-6)

z r 9r 3r r az

Substituting the partial derivatives of 0 obtained from Equation (A-5)

into the Equations (A-6), and then integrating (A-6), we obtain

00r -kx

= - Sgn (z - z') j e Jl (kr) J0 (kr') dk + C

0 (A-7)

where C is arbitrary constant, taken as zero henceforth, and Sgn is

the Signum function defined by

Sgn(t) = 1 , t > 0

:-1 t < 0 (A-8)

The product of the Bessel Functions, J1 (kr) J0 (kr') in

Equation (A-6) can be obtained by differentiating the Sonine-Gegenbaur

integral, viz. Equation (A-4) with respect to r. Thus,
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7T J1 (kR)
J (kr) J0 (kr')= J (r - r' cos y) dy (A-9)

0

From Equations (A-7) and (A-9) we obtain

= Sgn (z - z') (r - r' cos y) dy e-kx Jl (kR) dk
0 0

(A-10)

The infinite integral with respect to the parameter k can be obtained

from Hankel's generalization of the integral of Lipschitz [17]. The

stream function is then given by

nr x1

-Sgn (z - z') r f ( - rRcos J dy
47T2 0 R~f2+R2

(A-11)

It can be shown easily that the first integral,

71J (r - r' cos y) dy = (A-12)

R
2

Substituting cos y 2 cos 2  I - 1 in the second integral and changing
2

the variable y = - 20, we obtain, after some algebraic manipulations,

pSgn r - r') (h, m) + K(m (A-13)

47 2 p Ir +I'

where p2 x2 + (r + r')2 , H (h, m) is the complete elliptic integral
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of the third kind, defined as

7r/2
(h, m = Ide

0  (1 - h2 sin 2  )(l- m 2 sin2 Q) (A-14)

and K(m) is the complete elliptic integral of the first kind, defined as

7r/2

K(m) = 2 dO (-15)0 (1 m2 sin 2 )

The parameters h and m are defined by

h2 4rr' m2 
= 4rr' (A-16)

(r + r')2  x2 + (r + r')2

In order to facilitate the computation of the stream function,

Equation (A-13) is simplified further. It is observed that the

condition m2 < h2 < for r r', z 0 z' corresponds to the

circular case for the complete elliptic integral of the third kind [18].

Under this condition, the complete elliptic integral of the third kind

can be expressed in terms of elliptic integrals of the first and the

second kinds. We also define the related functions F3 and F3 which

are useful in our analysis as

F = Sgn (z - z) F = 2F3 . (A-17)

From Equations (A-13), (A-17), and the results from Reference [18], it

can be shown that

F3 Xr K(m) + r Sgn (r r') - [I - Ao(;m)] . (A-18)

I
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The function A0 (e;m) of Equation (A-18) is the Heumann's Lambda function

[19] given by

Ao(C;m) = { K(m) E(E;m') - [K(m) - E(m)] F(C;m') }
(A-19)

where F(E;m') and E(e;m') respectively are the incomplete elliptic

integrals of the first and the second kinds with parameter m' and

amplitude C. The parameters m' and m are complementary to each other

and are related by

m2 + m'2 = 1 (A-20)

The amplitude c is given by

Ir- r'I
tan C =. (A-21)

It should be noted that for z # z' and r r', A0 (e;m) = 0. Then

the function F3 has a discontinuity of 1/2 acrosss r = r'. In order

to ensure continuity of F3 across r = r' we define

F*= xrK(m) +! 1 , r>r'3 p(r + r') 4 0(;m)]

(A-22)

xrK(m) 1 A (s;m) r < r'
iTp(r + r') + 4[ +

The function F3 now becomes continuous for all values of z and r.

But when z = z', r = r', A0 (E;m) = 1. Therefore, F3 is continuous

for all z and r except when z = z', r < r'. For r < r', z - z' we
I~e +

get F3  1/2 while for r < r', z - z' we have F3 = -1/2. Thus the

.. ......
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function F3 experiences a unit jump across the disc z = z', 0 < r < r'.

Since the value of the stream function I at any point is equal to the

volume of fluid passing between the streamline through the point and the

reference streamline, this jump represents the volume of fluid issuing

from the ring source. At the singular point z = z', r - r' the function

F3 becomes indeterminate. Approaching the singular point along a ray

Ir - r'I = tan 0 Iz - z't, -n/2 < 0 < W/2,one observes that as r -'r'

and z + z', the amplitude E - 181. In this case

1F 3 = (1 - 2e/TT) z z+

1=- (1 + 26/n) , z z'

(A-23)

Thus the value of F3 at the singular point depends on the angle of

approach. The foregoing results on the limiting values of F are

required in obtaining stream functions due to surface source

distributions.

[I

fI f__
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