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A MODIFIED SUBSONIC AERODYNAMIC SUBROUTINE FOR

THE VIBRA NUCLEAR VULNERABILITY CODE

1. INTRODUCTION.

The aerodynamic subroutine in VIBRA-4 (Reference 1) for lifting

surfaces of aircraft flying at subsonic speeds was devised from empirical

* results. For all practical purposes, this subroutine is essentially the

same as that in the earlier VIBRA versions. Prepared nearly twenty

years ago, the original version (Reference 2) was tailored specifically

for configurations of interest at that time. The data utilized in

Reference 2 consist of "average" values which are deemed acceptable

whenever the Mach number (M) is around 0.8, the aspect ratio (AR) is

between 4 and 6, and the quarter-chord sweep (A) is say between 35 and

45 degrees. Some current aeronautical systems have higher aspect ratios,

lower sweeps, and the flight speeds are such that M falls between 0.5

and 0.75.

In what follows, certain practical modifications are effected

which allow the subsonic aerodynamic subroutine to be applicable over

broader ranges of Mach number, aspect ratio, and sweep; and, more

specifically, over the ranges 0.5 < M < 0.8, 3 < AR < 12, and 0 < A < 60

degrees. The latest VIBRA version, designated as VIBRA-8, differs from

VIBRA-4 in that it includes the modified and improved subsonic aero-

dynamic subroutine. Section II of the original VIBRA report (Reference 2),

which documents the subsonic formulation for all versions through

VIBRA-4, is followed in the discussions below. The intent of this short

report is to justify and to document the effected modifications and

additions.

2. AERODYNAMIC CONSIDERATIONS.

There are three areas which need to be examined:

1. Potential flow results for the ratio of two-dimensional

normal force coefficient to angle of attack as a function

of aerodynamic time.
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2. Two-dimensional, non-potential flow, large angle of

attack effects.

3. Three-dimensional effects.

2-1 Ratio of Two-Dimensional Normal Force Coefficient to Angle

of Attack as a Function of Aerodynamic Time.

Consider first the function f(s),

c n(as)

f(s) a ,s(1)

which is the ratio of the normal force coefficient to angle of attack

according to linearized potential flow theory for a two-dimensional

unswept wing subjected to a step change in angle of attack, i.e., the

indicial problem. This functionality with respect to the dimensionless

time parameter s is given by Eq. (128) and Figure 9 in Reference 2, with

the units of f(s) being ker degree. The value of f(s) according to

Eq. (128) should be related to the so-called Wagner function, c , as given

on Page 350 of Reference 3. In fact, it can be easily shown that

* f(s) - 2r (S) (2a)

if f(s) is expressed in units of per radian, and

2
f(s) E 6 c(S) (2b)

if f(s) is expressed in units of per degree.

Invariably, the function 0c is approximated in practical

applications through the expression

*c(s) - b0 + be-
2  l s + be2 8 2 + be 2 83s (3)

where bo,...b 3, Ol...,83 are parameters depending on Mach number only.

This expression differs slightly from the corresponding one in Reference 3.

The adjustment here is due to the fact that in Reference 3 the parameter

s=Ut/c, whereas in Reference 2 and here s=2Ut/c, where U is the wind

speed, t is time, and c is the chord.

4.~.



From steady-state considerations for an unswept two-dimensional

(2D) airfoil in subsonic compressible flow,

c (S=-) f(s=-) = 2r (4)n
a il-M 2

It is also known that a., 82, $3 are always positive; and thus terms

involving them - 0 as s w. From Eq. (4) and Eq. (2a),

(s- ) = b = (5)

-M
From acoustic theory (or linearized piston theory), the condition thatI
the loading at t=s=O depends on the instantaneous angle of attack, and

more precisely,

C n(S=0) 4
c f(s=O) - (per radian)

Sa TM

leads to the result that

b0 + b + b2 + b3 must equal 
to -2,

or equivalently,

b2 1 b I  - b 2
b3 = M 1  2  (6)

M

except at M=O . The entries in'Table 6-1 of Reference 3 are in accord

with the above results.

To avoid confusion in later derivations, quantities obtained

from potential flow theory are so designaLed by a superscript P. Thus,

when expressed in units of per degree,

f (ss)O
f 8 (s'a+0)J

S2(b + ble-2$1 s + b2 e - 2 2s + b e-282s )  (7)

When M-O, one has to deal with an impulse due to apparent mass effects.
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It should be noted that f(s) as given by Equation (128) of the VIBRA

report is really fP(s); and, as far as can be determined, it was obtained

from data for a single Mach number, namely M=0.8. The first task at

hand is to give formulas for b0 ,..., 83 as functions of M, so that the

more general equation (i.e., Eq. (7) above instead of Eq. (128)) may

be applied to represent f P(s) for a range of Mach numbers, and not be

limited to the single M=0.8. Using the numerical values from Table 6-1

of Reference 3 and corresponding values for M=0.8 from Reference 4,
.1 curves were fitted for each of the parameters b0 ,... ,83. The curve fits

resulted in the following expressions for the range 0.2 < M < 0.8

b = 1

bI = -0.165 - 0.482M 0.2 < M < 0.5

= 1.044 - 6.933333M + ll.4M2  6.666667M3 0.5 < M < 0.8

b2 = -0.249 - 0.344 (0.5 -M)2  0.2 < M < 0.5

M 36.806 - 173.393M + 266.4M 2  135.668M3  0.5 < M < 0.8

2b3  , - 2 - b0 - b, - b2

1 i 0.0754 - 0.1196 (0.5 - M) 0.2 < M < 0.5

= 0.4029 - 1.50583M + 2.36M 2 - 1.31667M 3  0.5 < M < 0.8

82 = 0.300 + 0.288M2 0.2 < M < 0.5

M -13.293 + 62.94667M - 94.15M2 + 45.83333M 3  0.5 < M < 0.8

83 - 0.945M -1  0.2 < M < 0.5

- 58.96 - 257.59M + 380.4M 2 - 187.0M 3  0.5 < M < 0.8 (8)

Through extensive calculations, it has been determined that when Eq. (7)

is applied using the curve fitting expressions (Eq. (8)) considerable

improvements are achieved in estimating f P(s); this is true even at

the single Mach number (-0.8) for which Eq. (128) of Reference 2 was

offered earlier.
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Based on the above brief discussions, the following change was

made:

Change 1:

(a) Omit Equation (128) of Reference 2.

(b) To replace it, compute first bo,. ... 3 according to

Eq. (8) for the actual M.

(c) Use the b0 ,... ,$3 coefficients thus computed to find

fP(s) = 1-- b0 + ble-2l
s + b e-2a2 s + be -203s (9)

which is in units of per degree and ready to replace

Eq. (128). This eliminates the use of the same and less

accurate formula for all subsonic M's.

2-2 Two Dimensional, Non-Potential Flow, Large Angle of Attack

Effects.

Refer once more to Figure 9 of Reference 2. If the loadings
P

were linear with angle of attack, the f (s) as modified above would suffice

for the two-dimensional case. However, steady-state measurements on
Cn

airfoils show than - (s-, a0#0) depends on a. This is evident from

the asymptotes (i.e., as s - large values) of the non-potential curves

in Figure 9. The non-potential conditions will henceforth be referred

to as the NP-conditions; and to stress them, when necessary to do so for

the sake of clarity, related quantities will be superscripted with NP.

As seen in the figure, the potential flow conditions prevail

up to times S=Sb(a); thereafter, the curves decay towards their steady-

state values as s-*o. Equation 129 of Reference 2 gives f NP(s) in the form

f NP(s) = A + Be-C As (10)
A A

where AA, BA, and CA are functions of a. Table I of the same reference
gives the variations of AA, BA, aiLd CA with a. Presumably, these have

been obtained from shock tube data and correspond to M=0.8. This fNP (S)

7
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is used for s > sb in previous VIBRA versions. Equation (10) needs to

be reexamined. Let it be cast into the form

f NP(s) = A  1

AA (ci#O) ( / A e'CA5= \AA(a.0)) kAA(a _0) / A

The first factor on the right hand side, i.e., A (a=O), is of special
A

nrA (a-0)
significance. The quantity A which is A (a=0) of Table I,

180 A
P

but in units of per degree rather than per radian, is really (c n/a)

steady-state. Based on potential flow derivations in Reference 3,
P 2 1

S)steady-st0 90e18 i9

which is equal to 0.1828 for M-0.8. The entry AA(=O) in Table I gives

for the same quantity the close value of 0.1837. Thus, an analytical

expression has been established for AA(c=O,M),
2

AA(aO, ) 90 (per degree) (12)

which is no longer restricted to Mach numbers near 0.8.

Attention is next focused on the second term which is the ratio

AA (u#O)
r(ca) =r = Aa0 ) (13)

A A (a-O)

Note that f NP(s-) AA(a#O) - (AA(a=O)) r. From Table I, Reference 2,

the following values are obtained for r(a, M-0.8):

a(deg) r(a, M=0.8)

0 1.0

5 0.6984

10 0.4573

15 0.3059

30 0.2559

45 0.2243

60 0.1998
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A test was made to find out if this "distribution function" r fits

experimental data at other Mach numbers. Had this test shown a reason-

able fit, one could then use the above r-entries along with AA(a=O, M)

as given by Eq. (12) to obtain f NP(s-*). Data for the symmetric

64A006 and 64A010 airfoils (6 and 10 percent thick, respectively)

presented in Reference 5 were found suitable for this purpose. If one

plots the experimental data for r = (cn/a)a*O versus a, and corresponding
(Cn/) 0

to M=0.3, 0.5, 0.7, and 0.8, the various M-curves do not fall close to

each other. However, if one plots this ratio r as a function of a e where

ae is the "equivalent angle of attack at M=0.8"1

= 0.6aa e

then all the data points fall close to an "average curve". Since at M=0.8,

ae=a, this average curve should correspond to r(a=a , M=0.8) and more or

less duplicate the curve one has from the r(a, M=0.8)-tabulation above,

i.e., from Table I of Reference 2. There are some differences however.

The average curve resulting from the steady-state data of Reference 5

is better defined and is therefore used here.

The above observations indicate that the dependency of r on

two parameters a and M can be reduced to a dependency on the single

parameter a . Thus,
e

r(a,M) = r(ae)

from which it follows that

AA(0,M) = AA(a=O, M) r (a,M)

= A (a=0, M) r (a)
A 2 e

= r(a 1(14)
e 90 ,--my



The average curve representing r(ae) vs a and referred to earlier is

described by the following table:

a (deg) r(a e) from "Average Curve"

0 1.0

±5 0.875

±10 0.440

±15 0.310

1 ±30 0.256

±45 0.224

±90 0.151

Linear interpolation may be used for a 's between the tabulated values.e

This table should be compared with the preceding r(a, M=0.8)-tabulation.

Consider next the third factor on the right hand side of

Eq. (11). One way of handling this "decay" is to assume that the
NP

non-potential value f breaks from the potential value at the reakpoint

S=S (a), where s 's are as in the previous VIBRA versions, and that the
b b

decay is such that following 30 chord lengths of travel, i.e., at

s=sb + 30, the decay to the steady-state value f NP(a, s-o) is 99%

complete. However, this is at most a rough approximation. One would

do just as well to retain the previous fNP-format, i.e.,

fNP A + Be-CAs

using BA = B (a, M=0.8) and CA = CA (a, M=0.8) as given in Table I of

Reference 2. (of course, it may be argued that perhaps a better approach

would be to say BA = BA(ae ) and C A = C (a e), in analogy with the change

associated with AA(a, M), i.e., Eq. (14). But there is no applicable data

to support this hypothesis.)

Based on the above discussions, the following change was made:

Change 2:

(a) Use Eq. (129) of Reference 2, but with A A (per radian)

from Table I of the same reference replaced by

A(2,M) - r(a ) (units here are per radian)

NP
to obtain f

10



(b) Proceed in exactly the same manner as before, but with the

modified fP (Change 1) and fNP (Change 2a), to obtain
C

. U (s,a).

2-3 Three-Dimensional Effects.

Attention is next turned to methods for accounting for three-

dimensional (3D) and sweep effects. Consider first the steady-state

case which corresponds to s-o.
CN

Figure 1OA of Reference 2 gives the ratio - (a,s- ) as a function
c

n

of a for a "representative case", namely that for M = 0.8, A = 35 to 45 deg,

AR = 4 to 6. Of course, M, AR, and A are expected to affect this curve.
CN

One can see this by examining the starting point, i.e., - (ct0, s-oo).
n

Experimental data from a NASA Memorandum (Reference 6) have been used to

confirm the well-known expression given as Eq. 6-35 in Reference 3 to be

quite accurate. This expression (for the normal force slope) is:

a cosA ARI.~

CN a- a osA TT a cosA
a .' A l R Vl-MZ l+ o e + 0

where

A tan-1  tan A) (15a)
e

The 2D incompressible lift curve slope a may be taken equal to 27, and its
a 0a

compressible counterpart c = 0 = 2r
n

Since

C N
S(af0, s-) = '

c n n

one has from Eq. (15)

C NA
(a-O, s-) cosA A _ (16)

n A 
+ 2cosA

11



CN
Calculations for~- (a-0, s-o-) according to Eq. (16) show large variations

n
with respect to M, A, and AR. The single representative value from

Figure 10A of Reference 2 is around 0.445 (corresponding to 40.8,

A & 35 deg, AR - 5.5). But this ratio is substantially higher in cruise

missile applications where one usually has lower M's, lower A's, and

higher AR's. This indicates that Figure 10A must be adjusted to reflect

its dependency on M, A, and AR.
CN

Although the steady-state values of - at a-0 for different
n

(M, A, AR) combinations can be estimated adequately by the use of Eq. (16),

the question still remains as to how to predict the variation of

- (a; M, A, AR) versus a. After much exploration, the following approxi-" c
n

mation was found to be in reasonable agreement with data used in the

earlier VIBRA work and with related data from the NASA Memorandum

(Reference 6):

CN (a, s-*; M,A, AR) = F [1.7-0.7 cos lOa] 0 < a < 18 deg

cn  e - e -

[2.05-0.35 cos 10ae  18< ae < 36 deg (17)

S[1.7] > 36 deg

where ae - 0.6a//I§-W as before, and
- e CN

= -- (ai0, s--; M, A, AR)c
n

which is exactly the quantity obtained from Eq. (16).

Up to this point, one can get the 2D c (, s -) and the 3Dn

CN (, s-)m); but the CR-value is for the total lifting surface. The next

question to be addressed is how to distribute the load spanwise such that

the total loading will correspond to CN . A spanwise distribution, denoted

by g(n) (n being a dimensionless spanwise coordinate), is needed, such

that the local loading per unit span is {(n)CN}

12



In incompressible flow, the sectional lift Z(n) is elliptic if

the chord varies elliptically along the span. If one sets

t(n) - qc(n) c a
a

and c(n) - co V1-7, where n = 12y/91, = span, c root chord, then

at M-0, one would want c. = constant = ko, i.e., independent of n.

Thus for an elliptic plan wing at M=O.

X(n) = qc° (koF -
2 )a

For non-elliptic wings at M=0, let

oR = a (18)£() q o  M~) c0

where f(n) is to be chosen so that if the c(n) becomes elliptic f(n)

cancels the (c(n)/c )-variation to give the /- -type spanwise dis-

tribution. An elliptic wing may be thought of as approximately a tapered

wing with taper ratio (TR) equal to

(TR) = -1 = 0.571
e 2

because its area is 0 and the area of a tapered wing with root chord
4

c and tip chord ct is

A suitable expression for f(n) is then

f() = 1 + ((TR) e-l)n = -0.429n

resulting in
£(q) ~ ~1 =qok o  I(TR-I)q 1j

1-0.429n a (19)

Equation (19) does not show the dependence of lift distribution

on the effective sweep parameter A = tan (tan A/Il-M7 ) which is knowne
to exist (e.g., Reference 7). (The Ae-parameter is the same as the

commonly used A -parameter found in the same reference.) With no sweep,

the sought distribution g(n) is insensitive to M; but the magnitude of

L(n) is dependent on k which in turn depends on M through the factor
0

13



1/4-HZ. Let A be given in degrees. Instead of using Eq. (19), ae

modified version would be more appropriate. Assuming the A -variatione

is a linear one, let

I(n) - qco ko/l " l+(TR - I)n (1 + a 52  1 (1-0.429n 45)(20

where "a" is a suitable constant to be determined through trial examples.

Let further
I 1-0.429n 45 d (21)

Then the total lift L is

L = 2f 12(y)dy - A (q)cokoIa

co+ct  2co

a 2 co+c k0 ql

2k
- q Swin-ga I

wing l+TR

CL q Swing a

from which one obtains
2k

N L - l+TR
a a

An important parameter, which is also a spanwise distribution

function and will be used shortly, is

c c
P(n) a

p() Cc C Cc
L av L av

where cay is the average chord. From the preceding equations, it turns

out that

Lan [1 ,TR;l~ (l+an -A (22)
CL Cav 1-0.429n 45 1T22)
a

14



1 2
By expanding 1-0.429n 1 + 0.429n + (0.429i0 • •., and performing

the indicated integration in Eq. (21), one has also

1 0.785398 + 0.196350a (TR-0.571) 0.453803 + 0.197011a

(23)

The simple approximation Eq. (22) is the basis from which the

distribution function is derived. To determine whether it is a reasonable

one, its results were compared with those from the extensive parametric

study reported in Reference 7. (This parametric study is based on steady-

state linearized theory and covers wide ranges of M(<I), A, AR, and taper

ratio TR.) Choosing the constant a to be equal to 1, it was found that

Eq. (22) is indeed an adequate representation for (M, A, AR, TR)-combinations

appropriate for a variety of current subsonic aircraft. It was therefore

adopted.

With some algebraic manipulations, it can be shown that g(n) is

related to p(n). From that relation, it turns out that

8(n) - l+TR flE "  ( 1 + n2 -t 1 (24)2 1-0.429n 45 12

where I is according to Eq. (23) with a1l

For sectional lift coefficients on a 3D-wing, 8 i (n),
n n

one can use

n (aO, B.-) - (a-0, sa-) g(n)
C ncn

n n

If one assumes that g(n) holds at all a's (since nothing better and simple

enough is available),

Cn CN
S(a,s - N (a, a-) g(n) (25)

c c
n n

The distribution of the aerodynamic loading along the span as

indicated by Eq. (25) is for s-, i.e., the steady state case. At the

15



other extreme of the time scale, i.e., t-sO, three-dimensional effects

should be negligible, i.e., the flow is really two-dimensional, and thus

(a, s 0) - (26)
c
n

In Reference 2, the following procedure is suggested for

intermediate times s:

N (i ,S) 1 0 < I
C
n CN )s-l

1(1 n - _cN N
1 - (a, s -  ) <  16 (27)

C 1

n

(See Figure lOB of Reference 2.) With the introduction of the spanwise

distribution, the following alternative to Eq. (27) is recommended to

describe the variation of n with s:
C
n

n (a, s) = 1 O<s < 1

n 
(8( -. 6(s-1)) ( an(8

( I 1 - i - (a, s-I-) s > 1

Of course, -(a, s) must be multiplied by the spanwise strip width A to
nin

obtain the suitable coefficient for the strip i. The rest of the VIBRA

procedure remains the same.

Based on the above discussions, the following final change and

addition was made:

Change 3

(a) Find A according to Eq. (15a)
e

CN
(b) Find & = - (a-0, s-*-) according to Eq. (16).

n

16



C N
(c) Find - (a, s-m) according to Eq. (17).

n

(d) Find I and g(ri) for desired n's from Eq. (23) with a 1

and Eq. (24). Here n =12y/91.

(e) Find (a, s-) according to Eq. (25).
cn

This quantity will be a function of n, unlike its counter-

part in earlier VIBRA versions.
C

(f) Find, using the results from (e) and Eq. (28), --1 (a, s)

for desired stations n at each time s.n

This change describes the recommended procedure for distributing the

total leading C N in a reasonable fashion along the span of the lifting

surface.
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