
AD-AOBI 713 STANORD UNIV CALIF SYSTEMS OPTIMIZATION LAB FI6 12/1
SOLVING STAIRCASE LINEAR PROGRAMS BY THE SIMPLEX METHOD, 1: INV-ETC(U)
NOV 79 R FOURER N0014-75-C-0267

UNCLASSIFIED S L- 18 NL

-I.E-Eu.

IND

4-80

liliiiii .0 ii~I

11111LIt25 11=±11.4

MICROCOPY RESOLUTION TEST CHART
hlATI= .. .o,

Systems
Optimization
Laboratory PTIc

1-r C MAR 1ni

cx)

- Department of Operations Research
C.Z Stanford University
C Stanford, CA 94305

80 3 4 02

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALI FORN IA

94305

S ING STAIRCASE.INEAR- ROGRAMS BY 7

-THE SIMPLEX METHOD, 1: INVERSION "

by

TECHNICAL REPOR OLd2 .:J"""",. '

November" f79 ,:- I

Research and reproduction of this report were partially supported
by the Department of Energy Contract DE-AS03-76-SFO0326 PA#
DE-AT-03-76ER72018; the Office of Naval Research Contract
N00014-75-C-0267; the National Science Foundation Grants
MCS76-200l9 A01 and ENG77-06761.

Reproduction in whole or in part is permitted for any purposes of
the United States Government. This document has been approved
for public release and sale; its distribution is unlimited.

"-LA

INTRODUCTION

Staircase-structured linear programs (LPs) have been studied

about as long as linear programming itself. Staircase LPs arose naturally

from models of economic planning over time: activities were run in a

series of periods, and constraints linked activities in adjacent periods.

The resulting LPs, in their simplest form, had a structure like this:

maximize clxI + c2x2 + c3x +.. + CtlXtl+ ctx t

subject to A 1 = bI

A21 xl +A 22x2 - b2

A x +A x =bi 32x2 + 33x33

.. ~o......

A t,tIXt-l + A tt xt b bt

In the infancy of computers this sort of structured problem was

attractive because it seemed to offer a hope of solving practical LPs

in a reasonable amount of time. Thus in 1949 Dantzig observed [5] that

...while the general mathematical problem is concerned with

maximization of a linear form of nonnegative variablea

subject to a system of linear equalities, in the linear

programming case one finds by observing the above [staircase]

system that the grand matrix of coefficients is composed

mostly of blocks of zeros except for submatrices along and

just off the "diagonal". Thus any good computational

technique for solving programs would probably take advan-

tage of this fact. . ..

k

W4

k4
41 '

-- j ~ ~ :

The simplex method was as yet impossibly slow for large general problems,

but there was reason to think that a much faster version could be devised

for staircase LPs.

Staircase linear programs are of no less interest today. Along

with economic planning, they have found applications in production

scheduling, inventory, transportation, control, and design of multi-

stage structures [32]. Yet a recent survey [181 observes that

the "staircase" model, in which similar sets of variables

and constraints are replicated many times, seems no more

tractable today then when its importance was recognized

over 20 years ago. Typical of many "time-phased" economic

problems, it is the standard model for numerically solving

problems of optimal control. Today we know only how to

solve it as we would any linear programming problem; but

this type of problem requires more work to solve than does

the average problem of the same size. However, there

should be some way to take advantage of their simple structure.

Thus the situation has been reversed. The general simplex method is now

impressively fast rather than impossibly slow, while staircase LPs are

a troublesomely hard case rather than a promisingly easy one.

Proposed methods for staircase LPs

There has certainly been no shortage of attempts to solve stair-

case LPs more efficiently. Although the simplex method has usually been

involved in some guise, individual proposals have varied considerably.

The essential ideas of these proposals may be classified in four broad

areas:

2

Compact basis methods employ a special representation of the basis

or basis inverse in conjunction with a more or less standard simplex

method. This approach was first suggested by Dantzig [6,8], and early

variations were employed by Heesterman and Sandee [23] and Saigal (461.

More recent compact-basis schemes have been worked out by Dantzig [9],

Wollmer (51], Marsten and Shepardson [35], Perold and Dantzig [42], and

Propoi and Krivonozhko 143).

Nested decomposition methods apply the Dantzig-Wolfe decomposition

principle to generate a series of sub-problems at each period. This

approach was suggested by Dantzig and Wolfe in their original paper on

decomposition 110], and has been extended or modified by Cobb and Cord

[4], Glassey [19,20] and Ho and Manne (29]. (Ho has reported favorable

computational results in two special cases [26,27].)

Transformation methods start with a simpler LP that can be solved

easily, and work toward a solution of the original staircase LP. Varied

proposals in this class are from Grinold [22], Aonuma [1], and Marsten

and Shepardson [35].

Continuous methods deal with a multi-period LP in continuous rather

than discrete time. Fundamentals of a simplex method for continuous-time

LPs have been proposed by Perold [41].

Computational experience with most of these proposals is negligible.

At present no method has proved as effective as the general simplex

method in handling a wide variety of staircase problems.

3

Adaptation of the simplex method for staircase LPs

Proposals for improving the general simplex method itself have

been, by contrast, much more successful. As a result the simplex method

has become an amalgam of fairly sophisticated algorithms. Many of these

algorithms are objects of study in their own right, and are not normally

thought of in connection with linear programming. The simplex method has

consequently become more and more a specialist's domain.

It is therefore not surprising that study of staircase LPs has

tended to diverge from study of the simplex method. Staircase linear

programming, typified by the above-listed papers, has become a search

for methods to replace the old simplex method; in the mean time a new,

better simplex method has emerged for general linear programming but has

not been applied to special structures such as staircases.

This and a companion paper [16] seek to reverse the trend: they

are concerned with adapting the modern simplex method to solve staircase

LPs more efficiently. Each paper looks at a set of algorithms within the

simplex method: this one deals with "inversion" of the basis--more

accurately, solution of linear systems by Gaussian elimination--and the

succeeding one considers partial pricing.

Both papers describe extensive, although preliminary, computational

experience. The results are quite promising: a staircase-adapted

simplex method sometimes performs considerably better than the general

method, yet on a range of problems it is never significantly worse.

Moreover, further improvement appears possible in a number of respects.

4

1. STAIRCASE LINEAR PROGRAMS

Staircase linear programs share two simple characteristics:

their variables fall into some sequence of disjoint groups; and their
constraints relate only variables within adjacent groups. Usually the

* sequence of groups corresponds to a sequence of times, so that variables
Iin a group represent activities during one time erio. Constraints

then indicate how activities in one period are related to activities

in the next. Staircase LPs thus arise especially often from many kinds

of economic planning models.

A constraint is said to be in period Z if it contains variables

of period t but not of later periods. Typically some constraints involve

only variables of period I', while others relate variables of periods 9

and 1-1; the latter are linking constraints, whereas the former are non-

linking. Analogously, linking variables appear in constraints of periods .

and £+l, while non-linking variables appear only in constraints of

period 1.

A staircase LP is also naturally viewed as a kind of linear discrete-

time optimal control model. Typically such a model minimizes a linear

function of nonnegative state vectors x. and control vectors u, sub-

ject to dynamic equations,

(1) () ()
C xZ~ -A tx Z+ D ituI + b

9.9.4x+I - A9. x +. D9~, 9. b (. , . -l, t

and control contraints,

0-A (2) x+D(2) u+b(2)Zt+

0 -A2)x9. +DD2)u9 +b , 9- 1,..., t+l

k,,, l _ _ - , ..-5

This is readily seen to be a staircase linear program. The state vectors

are the linking variables, and the control vectors are the non-linking

variables; the dynamic equations are the linking constraints, while the

control contraints are non-linking.

Staircase LPs of higher orders

A more general approach says that a staircase linear program is

of order r if its constraints relate variables that are at most r periods

apart. The preceding subsection thus characterized staircase LPs of

order one. Higher-order staircase LPs are not uncommon in complex appli-V :cations (for example, modeling energy systems [40]). They are analogous

to linear control models that have rth-order dynamic equations.

This paper is predominantly concerned with first-order staircase

LPs: these have the most specialized structure and, consequently, are

most amenable to special techniques. Still, many techniques are essen-

tially applicable to higher-order staircases as well, with appropriate

adaptations that will be pointed out as the exposition proceeds. For

brevity, however, the adjective "first-order" will usually be dropped.

Higher-order staircase LPs can also be made into first-order ones,

in either of two ways. First, rth-order equations can be transformed to

equivalent first-order ones by adding certain variables and constraints.

This yields a larger first-order LP that has the same number of periods.

Second, every r periods of the rth-order LP may simply be aggregated

as one period. The result is a first-order staircase LP of the same

size but having only about t/r periods. The first method is most

practical when the LP is nearly first-order to begin with, while the

second may be feasible when the number of periods is large relative to r.

6

Staircase matrices

The matrix of constraint coefficients of a staircase linear

program is a staircase matrix. Its nonzero elements are confined to

certain submatrices centered roughly on and just off the diagonal--as,

for example,

A1

L 4J

A AA

-5 1551
L

Formally, one partitions the rows of an m x n matrix A into t disjoint

subsets, and the columns into t disjoint subsets, so that the matrix is

2
partitioned into t submatrices, or "blocks":

Aij , i t; t

A is lower staircase (as above) if A = 0 expcet for i f j and
ij

i - j+l. A is upper staircase if A = 0 except for i = j and

i =j-l.

By analogy with staircase models, rows in the ith partition of

a staircase matrix A are called period-i rows, and columns in the jth

partition are called period-J columns. If a period-i row has nonzero

7

elements in blocks A and A it isa linking row; if it has non-
i, i-l i

zeroes only in Aul it is a non-linking row. Similarly,a period-j

column that has nonzeroes in A and A is a linking colum,
jj j+l,j

while one that has nonzeroes in A only is a non-linking column.

Any upper-staircase matrix may be permuted to lower-staircase

form by reversing the order of the periods [15]. Moreover, if a period-i

row is entirely zero within A that row may be moved back to period i-i
ii

without disrupting the staircase structure; analogously, a period-j column

that is all-zero within A J may be moved to period j+l. Nothing is

lost, therefore, in assuming that A is lower staircase and that its

diagonal blocks A have no all-zero rows or columns; A is then said

to be in standard staircase form. Henceforth it will be assumed that all

staircase LPs have a constraint matrix A in this standard form. (The

trivial case in which A has an all-zero row or column is thus ruled

out.)

Following [15], the period-i rows may be permuted to put the link-

ing rows first, and the period-j columns may be permuted to put the link-

ing columns last. Then A has the following reduced form:

,I A2 2 !
AII

3 A33

I 3

I A44

L

The reduced block Ak- is just the intersection of the period-k link-

ing rows and the period-(k-l) linking columns.

If the linking rows of every period i are switched to period i-1,

then A gains an alternative row-upper-staircase form:

Switching the linking columns of period j to period J+l gives a different,

column-upper-staircase form. Thus a staircase A in reduced standard form

embodies three staircases--lower, row-upper, and column-upper--each corre-

sponding to a different choice of where the periods begin and end.

Staircase bases

Any basis B of a staircase linear program necessarily inherits a

staircase structure from the constraint matrix A; B's staircase blocks,

B XZ and Bk may be taken to be the sub-blocks of Aand A z

that contain only the basic columns. If A has a reduced form, B

may likewise be taken as the basic part ofA^k91

The inherited staircase of B need not be in standard or reduced

form, even though A is. Specifically, either B zzor tB'- may be

9

zero along some linking row i--if it happens that, in A or

all the nonzeroes along row i are in non-basic columns. In this event,

B may be returned to reduced standard form by reassigning certain rows

and columns. Any linking row that is zero in B becomes a non-linking

row in period Z-1; in the process, some linking columns of period £-l

may become non-linking. Any linking row that is zero in B£ ,_l becomes

a non-linking row.

It is generally more convenient to deal with B in its inherited

staircase form, whether standard, reduced or otherwise. However, better

results are often achieved by using B's reduced standard form instead,

especially as it has fewer linking rows and columns ard hence a tighter

structure. This issue is considered further subsequently.

Henceforth B and B£,£_I (or B) will represent the

blocks of B's chosen staircase form, whether inherited or reduced standard.

The number of rows in period i will be denoted mi, and the number of

columns in period j will be n.; the respective numbers of linking rows

and columns will be mi and nj. For the row-upper-staircase form, the

i
number of rows in period i will be m , and for the column-upper-staircase

form the number of columns in period j will be ni. Necessarily
Imi = Imi = nj = m, and mi (mi, ni < n*.

Balance constraints and square sub-staircases

If the staircase LP has a special dynamic Leontief structure 171

then in each period the number of basic columns must exactly equal the

number of rows: n. = mk for all Z, and all blocks B are square.

10

This is not the case in general, however. A basis B of an arbitrary

staircase LP may have nZ > mt for some periods I and nI < mt

for others.

Since the basis is nonsingular, however, it must obey the "balance

constraints" developed in [15]. In summary, these restrict the excess of

basic columns over rows in each period, individually and cumulatively,

as follows:

0< (ni-mi) < min(m+l,n..), 9 = 1,..., t-1
1~ ^1

-min(mknkl,) (ni-mi) < min(m.+l,n.), k,k = 2,..., t-l-nmkn-)< k i- - +1

-min(mk'nk-l) -< k (ni-mi) < 0 k =2,..., t

In words, the cumulative imbalance between rows and basic columns in

periods k through Z is bounded by the smaller dimension of B k,k 1 and

the smaller dimension of B Hence these constraints are quite

strict when there are relatively few linking rows or columns.

The first constraint above may also be written as the following

three inequalities:

n >i ml

it ni < I4J mi

n ni < 4mi

These say that the first I periods of the lower staircase cannot have

more rows than columns, while the first Z periods of the associated row-

upper or column-upper staircase cannot have more columns than rows.

11

All three of these relations are equalities when 9 = t, since

B is square. It can also happen that equality is achieved for some

2I < t. For example, if I m, n,, B must look something like this:

* n

d I
-* I

1L

The rows and columns of periods 1 through X form a square sub-staircase,

as do the rows and columns of periods L+l through t; they are linked

only by nonzero elements in the off-diagonal block B +,. In a similar

way an equality 4 n, = i mimplies a pair of square sub-staircases

within the row-upper staircase form, and 4 n l i 4 m implies the

same for the column-upper form.

Generally B may exhibit any or all of these three kinds of

equalities, and each may hold for several values of X. < t. If p differ-

ent such equalities hold, then B breaks into p+l disjoint square sub-

staircases of various kinds. The presence or absence of sub-staircases

will be of importance to several of the techniques described further

on in this paper.

12

2. SOLVING LINEAR SYSTEMS IN THE SIMPLEX METHOD

In solving linear programs by the simplex method, a great deal of

computational effort is devoted to "inverting the basis". More precisely,

at each iteration the simplex method solves two linear systems:

By= a

1* TB = z

B is the basis, an m x m matrix of basic columns of the constraint matrix

A; a is a non-basic column of A; and z is an appropriately chosen

"pricing form".

There are many ways to solve such systems, but not all are suit-

able to practical linear programming. Typically m is in the range of

several hundred to several thousand, and the simplex method generates

roughly 2m different bases B. Hence only very efficient solution

techniques are useful. Further, B has two very special properties:

* Successive bases are similar. Only one column of B is

changed at each iteration.

0 Bases are sparse. For a typical large application, less than

1% of the elements of an average B are nonzero.

The best techniques can use these properties to advantage in various ways

. that are outlined in this section.

*
It is general practice to incorporate the linear objective function as a
row of A. Then, when the basis is feasible, the pricing form z is a
unit vector; when the basis is infeasible, z has one nonzero element--
either +1 or -1--corresponding to each infeasible basic variable. The
exact choice of z depends on details of the implementation, as explained
in [39,50].

13

I4

Permutation of the basis

The variables and equations of a linear system By = a or

B Ti = z can be written in any order. Each ordering of the variables

corresponds to some permutation of the columns of B, while each ordering

of the equations corresponds to some permutation of the rows of B.

Any permutation of the rows and columns of B may be written

PBQ T , where P and QT are suitably chosen permutation matrices. The

system By = a is thus equivalent to the permuted system (PBQ T)(Qy) = (Pa).

T T T
B 7r = z is likewise equivalent to (QB P)(Pr) (Qz).

LU factorization

At the heart of recent simplex implementations is a technique based

on Gaussian elimination. The basis B is factored as the product of a

lower-triangular matrix L, and an upper-triangular matrix U. Once

B = LU is known, the linear systems of importance reduce to

L(Uy) = a

U T(Li) ffi z

Then y or 7 may be found through solving two triangular systems by

back-substitution.

In practice Gaussian elimination is applied to a chosen permuta-

T Ttion PBQ . Choice of P and Q is a crucial matter, as can be seen

by considering the computation involved in elimination. Its essential

operations are defined by the following recursion:

14

~~ ~~ ... -Mq_

(1) TBQT

(k+l) (k) - (k) 0 (k) (k) , > k; k 1,., r-i
ij ij ik 8 kj /Bkk

of which L and U are a by-product:

L 0) (0) > j
ij ii ii/'i

ii i)

The critical values are the "pivots" (an LU factorization exists
kk

if and only if all pivots are nonzero. Moreover, elimination is numeri-

cally stable only if all picots are sufficiently large in magnitude, both

absolutely and relative to other elements of B(k)

As a consequence, practical Gaussian elimination looks for permu-

tations P and QT such that PBQT has an acceptably large series of

pivots. Choosing P and QT is thus commonly called "pivot selection".

Once L and U are computed, solving the resulting triangular

systems presents no difficulty. Back-substitution in these systems is

an inherently fast and stable process.

The jargon of LP computer codes refers to solution of a lower-

triangular system as an FTRAN ("forward transformation"); solution of an

upper-triangular system is a BTRAN ("backward transformation"). Solving

L(Uy) = a thus requires first an FTRANL and then a BTRANU, while solving

U T(LTn) z requires an FTRANU and a BTRANL.

15

Updating the LU factorization

Just as successive bases are similar, their LU factorizations are

similar. Consequently it is practical to merely update L and U at each

basis change, rather than compute the factorization from scratch each time.

The idea of an LU update is as follows. Suppose the initial basis,
T T

Bo, has been factored as P0BoQo = L0U0. Thus B0 = (P L0)(UoQo): B0 is

the product of a permuted lower-triangular matrix and a permuted upper-

triangular matrix. Equivalently, (PTLo)-Bo = U- O .

Now update B0 to a new basis B1, and consider

(P L)-B 1 = UoQo (1)

U0 need not be upper-triangular; however, it does have an LU factorization,

UOQ0 = (PjLI)(UIQ1). Substituting into (1) and rearranging shows that

T T
BI = (P0 L 0)(P LI)(UQ I) (2)

Thus B1 is factored as the product of two permuted lower-triangular

matrices and a permuted upper-triangular matrix. Linear systems involving

B are then readily solved as before, but with the addition of some back-

substitutions in L1 .

* Similar updates can be applied at subsequent basis changes. After

k iterations, the basis Bk is factored at

B= (P TLo)(PT L 1) (PTL)(U6Q (3)

16

FTRANL and BRRANL perform back-substitutions with L0 through Lk,

while FTRANU and BTRANU use U
. k*

LU updating in this way is practical because B differs from

B in only one column. Hence U is nearly upper-triangular--it differs
0

from U0 in only one column--and, as a result, U1 is much the same as

UO, while L is not much different from the identity. The factorization

(2) is thus fairly easy to find and record, and the subsequent back-substi-

j tutions are only marginally more expensive than for BO. Further updates

are equally economical, and may continue until the cost of back-substi-

tution in (3) begins to rise appreciably--typically after 50 to 100

iterations. A fresh LU factorization of the basis is then computed, and

updating begins anew.

* Specific algorithms for LU updates differ primarily in their

choice of permutations P1 and Q for the factorization U0Q0 = (PTL1)(UIQI).

The original algorithm of Bartels and Golub [2,3] was designed to ensure

numerical stability. Subsequent variations have given more weight to

storage arrangement [14,47] or sparsity [17,441.

Another technique, proposed by McBride [361, promises an especially

sparse update. Essentially, it uses as B1 acarefully updated and permuted

Bo, with the result that the product (PoLo)(PTLI) may be collapsed to

a single lower-triangular factor; in effect this technique updates the

lower-triangular factor at each iteration, whereas the other techniques

merely augment it. McBride avoids Gaussian elimination in his implemen-

tation, however, preferring to keep the inverse of one small matrix

explicitly.

17

Storing the LU factorization

To benefit from sparsity, an LP code must store only the nonzero

elements in matrices such as A, L and U. The total storage required by

a sparse problem is thereby drastically curtailed; indeed, large-scale

linear programming would be impossible if all zeroes had to be stored.

Moreover, sparse storage makes possible efficient pricing and pivoting

routines that automatically skip multiplying and adding zeroes.

Because bases are subsets of the columns of A, it is universal

practice to store A by column. Typically one array lists the nonzero

elements of A in column order, a parallel array lists the row index for

each element, and a shorter third array indicates where each column begins

in the first two arrays. A basis is represented by just a list of the

* basic columns.

To factorize a basis B stored in this way, it may be efficient

to rearrange the operations of Gaussian elimination so that only one

Tcolumn, bi, is processed at a time. An LU factorization of PBQ is

then computed by essentially the following algorithm:

1: SET L = U = I

2: REPEAT for each column b of BQT:

2.1: SOLVE Lx - Pb for x

2.2: SET U - xi for i - I,..., J

2.3: SET L1 - Xix for £ - +1,..., mn

L and U are produced one column at a time, and so may be stored like A

as columnwise lists of nonzeroes. FTRAN operations read forward through

18

these lists, whereas BTRAN operations start at the end of a list and

read backward to the beginning. (Hence the terms FTRAN and BTRAN.)

In practice the storage arrangement of L and U is closely tied

to the updating technique. Any of the previously-mentioned techniques may

store L columnwise, since it is just augmented (by PTLk) at each

iteration. Only the Forrest-Tomlin technique, however, can be adequately

implemented with U stored columnwise. Saunders' technique requires

row-wise access as well to a (hopefully small) part of U, while Reid's

technique is only practical with row-wise access to all of U. Thus these

latter techniques have been implemented with various alternative storage

schemes for U: Saunders has stored part of U explicitly [47], while

Reid has experimented both with linked lists and with a combination of

row-wise and colum-wise arrays [45].

There are important advantages to storing L and U by column

only. Column-wise storage is simple and compact; the associated FTRAN

and BTRAN routines are also simple and L and U may be held on any

sequential storage device. In a virtual-machine environment, sequential

storage also minimizes the danger of "thrashing"--excessive overhead

cost that results from trying to access too many widely-separated parts

of storage in a short interval of time. On the other hand, if storage is

at a premium one may take further advantage of "triangle" columns--those

that are zero above the diagonal of PBQ T; a triangle column is essen-

tially trivial in U and unchanged in L, and so may be represented in

L by just a pointer into A.

Access to U by column only does have its disadvantages, however.

It restricts updating to the Forrest-Tomlin technique which, while usually

19

adequate, is inferior to other techniques in numerical stability and

sparsity. In addition, it suffers from certain inefficiencies in applying

FTRAN and BTRAN to sparse vectors, as explained further below.

Sparse LU factorization

It is well-known [11,12,13] that when B is sparse, some of its

permutations have much sparser L and U factors than others. Conse-

quently all LP codes implement some form of sparse Gaussian elimination

in which pivots are chosen to promote sparsity of L and U as well as

numerical stability.

There are principally two techniques of sparse Gaussian elimina-

tion employed in linear programming. Bump-and-spike techniques look for

a block-triangular permutation of B that has many small blocks ("bumps")

and few columns ("spikes") that extend above the diagonal. Local-minimiza-

tion techniques choose each pivot to minimize the estimated number of non-

zeroes added to L and U by that pivot alone. These ideas are des-

cribed and compared in Section 1 of [15].

Each technique of sparse elimination is best suited to certain

updating techniques. Saunders' update relies on there being relatively

few spikes in U, and so it has been implemented with bump-and-spike

elimination. Reid's update, by contrast, benefits when nonzeroes fall

more heavily in U than in L, and is well-suited to elimination by

local minimization.

As noted previously, update techniques can also be designed to

promote sparsity in the updated factors Lk and Uk. Reid's update in

20

•

particular is intended to preserve sparsity, and Gay has also incorporated

Reid's ideas in Saunders' technique.

Sparse right-hand side vectors

T
The linear systems of the simplex method, By = a and B T =z,

usually have not only a sparse matrix but a very sparse right-hand side:

a is a column of the sparse matrix A, and the pricing form z has one

nonzero when the basis is feasible and k nonzeroes when there are k

infeasibilities. FTRAN and BTRAN routines can take advantage of this

additional sparsity to a certain extent, depending on how they access

L and U.

For purposes of illustration, consider first a simple lower-tri-

angular system Lx = d. If the nonzero elements of L are available

sequentially by column, back-substitution is carried out as follows:

FTRANL:

REPEAT FOR j FROM I TO m:

SET x f d /L

REPEAT FOR L 0 0, i FROM J+l TO m:
ij

SET di = di - Lijx j

At the jth pass through the main loop, if dj = 0 then also xj = 0

and the inner loop merely adds zero to various elements of d. Hence

the jth pass is superfluous when d = 0. Moreover, if it happens that

dl,..., dk are all zero, then the main loop does no work until pass k+l.

A more efficient algorithm is thus as follows:

21

FTRANL:

1: SET k min{J:dj i 01; SET xj = 0 for j 1,..., k

2: REPEAT FOR j FROM k+1 TO m:

IF d 0: SET x. = 0

ELSE: SET x = d /L
j j i

REPEAT FOR L # 0, 1 from j+l TO m:
* ij

SET di = di -L xi i. ij xj

Step 1 is especially valuable when dl..., are known beforehand to

be zero. In step 2, d tends to fill in with nonzeroes in each pass of

the loop; but if L and d are both sparse then d should not fill in

too quickly.

The situation is quite different if instead one must solve the

T
upper-triangular system L x = d. If the nonzeroes of L are only avail-

able sequentially by column, then LT is effectively available only by

row, and back-substitution must be carried out as follows:

BTRANL:

REPEAT FOR j FROM m TO 1:

REPEAT FOR L # 0, i FROM m to J+l:

SET d = d - L
j j iji

SET x d = d/Ljj

Here there is no advantage to knowing dj = 0, since d is continually

modified within the inner loop and xj is not set until after the inner

loop. The most one can say is that, if dm,... , dk are all zero, then

Xm, ..., xk are also all zero and the main loop may be started with

j = k-l.

22

I °-

For sparse elimination with updating the situation is somewhat

more complex, involving not one L but a series of permuted L's.

The conclusions are the same, however: if the lower-triangular factors of

the basis are stored by column only--as they commonly are--then FTRANL can

benefit from sparsity in the right-hand side to a much greater extent than

BTRANL. Moreover, the same reasoning can be applied to U: if all or part

of the upper-triangular factor is stored by column only, then BTRANU can

exploit right-hand side sparsity much more than FTRANU.

In practice these differences have various consequences. At a

typical iteration, the FTRAN and BTRAN operations are carried out once

each, to solve systems that look like these:

TO SOLVE By = a:
I T T T y 1

FTRANL: (PoL0)(PILl) (PkLk) Y = a

BTRANU: (UkQk) y = y(l)

TO SOLVE BT 7= z:

T T (1)FTRANU: (QkUk)7 = z
k kT T()

BTRANL: (LT P (LIT)(LTP) =

Hence sparsity of the right-hand side can be exploited in the following

ways:

rFTRANL can fully exploit the sparsity of a. A small additional

advantage can be had if it is known that (P 0a)l, ... , (P0a)1 are all

zero for some i; this knowledge is not readily available in the general

case, but it is often available from staircase methods to be described.

23

BTRANU can fully exploit any sparsity in y Since y1) is

the solution vector from a sparse FTRANL, it may well be sparse itself.

FTRANU can exploit the considerable sparsity in z only if either

Uk is available by row, or (QkZ)l, ... , (QkZ)i are all zero from some

i. In many cases it is possible to arrange that i is quite close to m

[21]. Indeed, with some updating methods it can be guaranteed--provided

the basis is feasible--that (QkZ)l, (QkZ)m are all zero, so that

FTRANU may effectively be skipped.
BTRANL generally cannot benefit from sparsity in 7(However,

the update factors LI,... , Lk are generally so simple in form that

BTRANL handles them as efficiently as FTRANL. The significant extra

T
work lies entirely in processing L0 .

Partial solutions

It is evident from the preceding analysis that the solution to

T
By = a or B T = z is ultimately computed one element at at time, regard-

less of how L and U are stored. The vector y is produced by BTRANU

in the order (Q likewise, the vector Tr is computed

by BTRANL in the order (P0 10),... ,

BTRANL or BTRANU may therefore be terminated prematurely if only

part of y or iT needs to be computed. Such a partial solution has two

potential uses in linear programming: when the rest of y is known to

be zero, and when only a portion of n is required for pricing in the

current iteration.

24

Nevertheless, in the general case there is little to be gained

from trying to compute partial solutions, owing to the presence of permuta-

tions P0 and Qk: there is no efficient way to tell whether all remain-

ing elements of Qky are zero, or to predict which elements of P 0I will

be needed. Section 4 will show, however, that partial solutions can

offer an economyin solving staircase LPs, provided P0 and Q are chosen

Ato reflect the staircase structure.

25

kI

!I

25

3. SPARSE ELIMINATION OF STAIRCASE BASES

Two techniques for sparse elimination of staircase matrices were

proposed in [15]: one adapts the bump-and-spike approach, while the

other is a kind of local minimization. Either of these techniques may

be applied to the staircase bases that arise from staircase LPs in the

simplex method.

W" 1 This section summarizes the direct effects--on speed, storage,

and sparsity--of substituting staircase elimination techniques for

standard ones in a simplex LP code. Section 4 then shows how these stair-

case techniques make possible additional efficiencies in the FTRAN and

BTRAN routines.

Bump-and-spike techniques

The standard bump-and-spike technique [24,25] is a two-step pro-

cedure. First it determines the block-traiangular reduction of the

basis B, an essentially unique permutation that puts B in block-tri-

angular form with as many diagonal blocks ("bumps") as possible. Second,

each diagonal block larger than 2 x 2 is further permuted by the Pre-

assigned Pivot Procedure (P3), a heuristic that tries to make each block

lower triangular except for a small number of "spike" columns that extend

above the diagonal. Permuted in this way, B has a good structure for

sparse Gaussian elimination: fill-in (creation of new nonzeroes during

elimination) is confined to the spike columns, and pivots within a given

bump cannot give rise to fill-in within other bumps.

26

A proposed staircase bump-and-spike technique [15] dispenses with

block-triangular reduction, and uses instead the staircase form of the

basis. The heuristic P3, adapted to handle blocks that are non-square

or rank-deficient, is applied in turn to each of the diagonal blocks

(B.) of the staircase. Thus the rows of period 1 are assigned to pivot

first, followed by the rows of period 2, period 3, and so forth through

period t. The columns are also generally pivoted in period order, but

"interperiod spikes" from certain periods are pivoted in later periods

in order to square off the oblong staircase blocks. Thus fill-in is con-

fined to two kinds of spikes--intraperiod spikes found by P3, and inter-

period spikes assigned to square off diagonal blocks--and pivots within

a given period can only give rise to fill-in within spikes of the same

period or within interperiod spikes of preceding periods. The balance

constraints of Section 1 guarantee that this is a workable arrangement:

the number of interperiod spikes need not be very large, and there are

always enough interperiod spikes to square off every staircase block.

Computational experience [15] has shown that the standard and

staircase bump-and-spike techniques are roughly comparable. They usually

produce about the same number of spikes, and both yield a sparse factoriza-

tion: the fill-in due to either technique is seldom more than twice the

fill-in due to the other. However, each technique does appear to be

superior in certain situations.

Standard bump-and-spike seems invariably better when all bumps

are small and most are 1 x 1. P3 is then applied cheaply to a few blocks,

whereas the staircase technique must still apply P3 to every diagonal

27

block of the staircase. The interperiod spikes of the staircase technique

also tend to be larger than the spikes of the standard technique, and so

the former fill in more: fill-in within L tends to be about the same,

but the standard technique produces a notably sparser U. In addition,

the standard technique is less prone to producing spikes that have un-

acceptable pivot elements, and so less time is wasted in "spike-swapping"

during the elimination.

Staircase bump-and-spike has the advantage when there are one or

two very large bumps that comprise half or more of the rows and columns

of B. P3 becomes highly inefficient in processing these large bumps.

Fill-in within U is comparable, while the staircase technique yields

a sparser L. Moreover, the staircase technique produces substantially

fewer spikes that have unacceptable pivots.

Storage requirements vary somewhat with the size of the largest

block that must be processed, but are moderate in any case. Since a

pivot order is fully chosen prior to elimination, storage required by

the bump-and-spike heuristics may later be used to hold part of L and U.

Local-minimization techniques

Standard local-minimization techniques dynamically choose the

kth pivot element from the remaining uneliminated matrix, 8 (k). The

chosen pivot minimizes some "merit" function over all nonzero elements of

0 (k) that meet certain numerical tolerances. Practical merit functions

(k)
are computed from two sets of values: r ik , the number of nonzeroes in

row i of 0(k), and c(k), the number of nonzeroes in column j of

28

Local minimization was first suggested by Markowitz [34], who proposed

that the merit of element (i,j) be (r(k) - M)(k) - 1); no substantially

better merit function has been found since.

Proposed staircase local-minimization techniques [15] differ by

limiting the minimization to roughly one period of 8 at a time.

As a consequence both the rows and columns of B are pivoted in period

order. It can also be shown that fill-in is limited to a small part of

(k)(kS--roughly two periods or less--while the remainder of 8 k is just

the same as B.

Staircase local-minimization offers clear economies in both

execution time and storage space. All of the work at the kth pivot--

minimizing the merit function, updating 8 (k) to 8(k+l), and updating

(k)(k)--is confined to the rows and columns of one or two periods,

(k)
whereas the standard technique must deal with the entire 8 . Storage

(k)alooeotwpeidht
is required only for the part of 8 also one or two periods, that

differs from B.

For large problems of many periods, the differences in required

storage may be immense. As a result, staircase local-minimization may be

able to use simpler or more efficient storage strategies than standard

local-minimization. During elimination by the standard technique the

uneliminated 8 (k) shrinks while L and U grow; thus some sort of

(k)
dynamic storage allocation is necessary when 8 k, L and U are too

large to be stored fully together. By contrast, under the staircase

technique the active part of 8(k) is small and fairly constant in size,

and might well be kept in a fixed work area.

29

Standard local minimization does seem to usually produce a sparser

L and U, as might be expected: it conducts its minimization over a much

greater number of potential pivots. In the worst case in [15] the stair-

case technique produced about twice the fill-in (47% vs 22%); in some

cases it did nearly as well, however, and in one it was distinctly better.

Comparison of techniques

Choice of a sparse-elimination technique cannot be separated from

choice of an updating method (as explained previously), and both choices

are sensitive to the nature and availability of storage. Consequently it

is impossible to recommend one class of techniques--bump-and-spike or

local-minimization--over the other categorically. Each may have its place

in certain situations.

Indeed, the evidence of [151 suggests that every technique outlined

in this section (standard and staircase bump-and-spike, standard and

staircase local-minimization) offers the lowest fill-in for certain bases.

Either of the staircase techniques should be acceptably fast, and all but

the standard local-minimization have unproblematical storage requirements.

Staircase bump-and-spike techniques apply just as well to higher-

order staircases. Staircase local-minimization might also be adapted to

handle higher-order problems, but the extent of fill-in would be greater

and hence the savings would be less.

30

4. SOLVING LINEAR SYSTEMS WITH STAIRCASE BASES

Both proposed staircase elimination techniques order their row

pivots by period: all rows in period 1 are pivoted first, then all rows

in period 2, and so forth. Staircase local-minimization also orders all

column pivots by period, as does staircase bump-and-spike with the excep-

tion of certain columns (the interperiod spikes) that pivot after other

columns of later periods.

This section describes how these staircase pivot orders can be

taken advantage of to make the FTRAN and BTRAN routines more efficient.

A partition of the L and U factors by period is first defined more

formally, after which each solution routine--FTRANL, BRRANU, FTRANU, BTRANL--

is taken up in turn.

Period partitions of the L and U factors

In the notation of Section 2, the basis B at an arbitrary

iteration is factored as

B = (PTLo)(PTL1) .. (PTLk)(UkQk)

In terms of this factorization and the staircase constraint matrix A,

one may define the following indices for any period Z:

X first row of P0 B whose corresponding row of A is

in period Z or later

P first column of BQk from period Z or later of A.

31

Necessarily A I< A 1 , Ii1(1'.£+l for any factorization as above. Thus

{A1 ,..., }A and ft'''' Pt partition the rows and columns, respec-

T T
tively, of POBQk by period. Since the rows of POBQk correspond to the

rows of Lo, the A's can also be thought of as partitioning L0 ; anal-

oguously, the p's partition Uk.

In general these partitions are not particularly useful, as the

A's and p's all tend to be small. In an extreme case, for example, if

the first row of POB is a period-t row then A1 At = 1. It is

thus necessary to show that the staircase pivoting techniques yield worth-

* Iwhile partitions whose A's and p's are more or less evenly spread out.

TConsider first a factorization with no updates, P0 BQ 0 L0 U0.

Certainly the staircase techniques, applied to the staircase structure

* that B inherits from A, yield good partitions. Either technique yields

A I mi + 1. For bump-and-spike Va > A, and A = if there are

no all-zero rows in B ; for local minimization, V= 1 ni + 1.

The situation is slightly more complicated if, as suggested in

Section 1, B is put in reduced standard staircase form before the stair-

case pivoting techniques are applied. Some rows of B that correspond to

period-1 rows of A may then be pivoted as if they were in period t-l.

As a consequence, one can say only that i1 mi + 1

the A's may be smaller, and the X-partition less regular. Nevertheless,

.4 the A's are still well spaced and constitute a useful partition, particu-

larly if the periods are small and numerous.

As B changes and the factorization is updated, L0 and the

A-partition are unchanged. U0 is updated to Uk, however, and in the pro-

cess the -partition is altered. Specifically, all of the common update

32

T
methods have the following action: a column of BQkl is deleted, and

a new column is inserted at some point after the deleted column to produce

BQ k. The u-partition up to the deleted column and after the inserted

column is therefore unchanged; but if P is between the two columns then

its value drops by 1. The p-partition is thus slowly degraded. Degradation

should not be severe, however, for large LPs with the usual 50-100 updates

between refactorizations.

It may be concluded, then, that staircase pivot-selection tech-

niques do yield A's and p's that constitute non-trivial partitions of

L and U by period.

Staircase FTRANL

At each iteration FTRANL starts by solving a system like

(PTLo)x = a, or equivalently Lox - P a, where a is a column of A.

If a is from period L, then it is zero on rows of periods I through

-1. Consequently,

(P0a)i f 0 , i =-

and the main loop of the FTRANL routine may begin at index A as ex-

plained in Section 2.

In short, when FTRANL transforms a period-t column it can start

at the Eth period in L0 , rather than at the beginning. The resultant

savings will be small, however, since FTRANL already handles right-hand

side zeroes efficiently.

Further savings might be possible if one kept track of upper-

sub-staircases of B0 , as described in Section 1. The idea is as follows:

33

if B has an upper-sub-staircase in periods 1 through Z, and if a
0

lies in period k or earlier, then the solution x of (PTLo)x a is

zero in periods k+l and later. Thus the main loop of FTRANL may be

terminated prematurely. As a practical matter, however, the logic of such

a scheme is fairly complex, and computational experiments [15] have

shown only a moderate number of upper-sub-staircases; so the potential

savings are probably not worth the trouble.

Staircase BTRANU

At each iteration BTRANU solves a system like (UkQk)y x, where

x is a solution vector from FTRANL. Since FTRANL has solved with

L0 , L,..., Lk, there is no telling where zeroes may be in x. Hence

BTRANU cannot benefit specially from a sparse right-hand side.

A small saving is possible, however, if the location of (lower)

square sub-staircases in B is known. Suppose that the linear system at

hand is By = a, that a is from period j, and that B has a sub-stair-

case at period t < j (that is,)imi =I)n 1). Then the system can be

partitioned as[B~" 0 iF 0)
B(21) 1B(22) (2) (2)

(11) (22)
where B (II) and B are the square sub-staircases. Clearly the solu-

tion must have y() -0, y(being just the part of y that corresponds

to the columns of B in periods I through £.

34

Now if By a is written instead as (BQk)(Qky) = a, the pre-

ceding statement is equivalent to the following: an element of Qky

will be zero if it corresponds to a column of BQk in periods l,...,Q.

That is,

(Qky)i 0, i 1,...

Thus the main loop of BTRANU, which computes (Q i = M,..., 1, can

stop after the p -th pass; the remainder of the solution is zero.

Staircase FTRANU

FTRANU solves at each iteration a system like (UkQk)Tx = z,

T
or Ukx = Qkz, where z is a pricing form chosen in one of several ways

(see Section 2). Usually most of z is zero, and often it can be deter-

mined that z is zero in all columns of the first £ periods of the basis;

during Phase I of the simplex method, for example, this would occur if all

basic variables of the first Z periods were feasible. It would then

follow that

(QkZ)i = 0, i =

and the main loop of FTRANU could begin at v as explained in Section 2.

This result is analogous to the one for FTRANL above: when

FTRANU transforms a z that is zero prior to period £, it can start at

the £th period in Uk rather than at the beginning. However, the

potential savings are greater since--if Uk is stored only by column--

FTRANU cannot normally benefit from sparsity in z. In practice the

savings depend on how U is actually stored and on how z is handled.

35

Staircase BTRANL

BTRANL produces a vector 7 that is employed in "pricing" non-

basic columns of A; specifically, each iteration computes numerous inner

products fTa with columns a. If a is from period Z then it is zero

except on rows of periods k and X+I, and so only the elements of n

Tthat correspond to these periods are needed to form n a. Since the

simplex method seldom considers all nonbasic columns at one iteration, it

can be arranged that only certain periods of w are needed. (See [161

for a more extensive explanation.)

Assume, therefore, that at the current iteration one only needs

elements of i corresponding to rows of periods k and later. The vector

7t is the solution of BT = z, or (PoB)T(Po7) = z. Thus, equivalently,

one needs only elements of P Ot that correspond to rows of P B in

periods I and later. It will suffice, therefore, to compute (Po)i,

i = AV,... M.

BTRANL actually produces the elements of i by solving (P0Lo)T 0 = x,

or LT(P0) = x, where x has been obtained from preceding transformations

of z in FTRANU and BTRANL. Each pass through BTRANL computes another

element of P07, in reverse order: (P0)m,... , (P0 T)I. Thus to compute

the desired part of w one need only run BTRANL through the X k th pass

of the main loop; the remainder may be skipped.

The potential savings in this instance are considerable. Using

one of the partial-pricing schemes of [16] substantial amounts of computa-

tion may be avoided, on the average, at each iteration. This is especially

important as BTRANL is one of the less efficient transformations, being

unable to take advantage of right-hand side sparsity when L0 is stored

in the usual columnwise fashion.

36

5. COMPUTATIONAL EXPERIENCE

This section reports on initial computational experiments with some

of the preceding ideas. The results indicate that staircase adaptation of

the simplex method does make a significant difference: generally much

less time is spent in certain routines, while more time is spent in others.

Overall the staircase runs were measurably faster, and in one case the

savings were quite substantial. Moreover, it appears there is still room

for improvement in subsequent implementations.

For the test runs an existing LP code, MINOS [38,48], was modified

to recognize staircase structure and to apply optionally the staircase

techniques of Sections 3 and 4. Each test LP could then be solved twice

-- once with the staircase features turned off, once with them on--and

the results could be meaningfully compared. Details of the test code and

the experimental setup are given in Appendix B.

MINOS employs a bump-and-spike factorization with Saunders' up-

dating technique. Consequently the staircase bump-and-spike technique was

implemented in the test version, and all test results bear directly only

upon bump-and-spike methods. Nevertheless, from certain results one may

make quite favorable speculations about the expected performance of stair-

case local-minimization techniques, as described further below.

To keep the presentation compact, only short tables of results are

presented in this section. Graphs of more extensive test data are collected

in Appendix C.

37

Overall results

Seven medium-to-large-scale linear programs were used in the tests.

All are from applications, and are of dissimilar structures (aside from

being staircase). Their dimensions are as follows:

ITERATIONS TO

NONZERO SOLVE FROM
PERIODS ROWS COLUMNS COEFFICIENTS SLACK START

SCAGR25 25 472 500 2208 1058

SCRS8 16 491 1169 4106 862

SCSD8 39 398 2750 11,349 2047

SCFXM2 8 661 914 5466 1012

SCTAP2 10 1101 1880 13,815 1174

PILOT 9 723 2789 9291 >2000

BPI 6 822 1571 11,414 >2000

For the sake of economy, PILOT and BP1 were tested on runs of 1000 and

750 iterations, respectively, starting from advanced bases. The rest

were run to optimality from an all-slack start. Additional information

about the test LPs is collected in Appendix A, and Appendix B explains

in more detail how they were solved.

Raw results from the test runs, standardized to seconds

per 1000 iterations, were as follows:

38

TOTAL TIME
STANDARD STAIRCASE % CHANGE

SCAGR25 29.7 27.9 - 6%

SCRS8 33.9 31.5 - 7%

SCSD8 43.2 37.8 -13%

SCFXM2 43.4 42.2 - 3%

SCTAP2 67.2 67.1 0%

PILOT 155.7 106.4 -32%

BPI 181.8 189.7 + 4%

Savings were substantial for PILOT, and respectable for SCSD8. For the

others the gross difference between the standard and staircase techniques

was small, though the latter performed worse only on BPI.

It is misleading to consider only these totals, however. When

the times are broken down by function--as in the first set of graphs in

Appendix C--it can be seen that gains in some areas tend to be offset by

losses in others. The staircase version has an edge in simplex pricing

and pivoting, while it is usually slightly behind in updating the LU

factorization; it ranges from much faster to somewhat slower in pivot

selection for Gaussian elimination, but is almost always slower in computing

the L and U factors. Miscellaneous routines consume a good 10-20% of

the time, much of which could be saved in practical (rather than test)

circumstances.

Thus much more is to be learned by examining the times of individual

routines and functions. The following subsections consider first the simplex-

iteration routines, and then the LU-factorization ones.

39

Iterating routines

The simplex method spends a majority of its time in tasks that

are repeated at each iteration: choosing a column to enter the basis

(pricing), determining which column leaves the basis (pivoting), and revising

the basis factorization accordingly (updating). The LP code's "iterating"

routines carry out these tasks.

For the test problems, total time spent in the iterating routines

--again, normalized to seconds per thousand iterations--was as follows:

ITERATING TIME

STANDARD STAIRCASE % CHANGE

SCAGR25 24.6 22.2 -10%

SCRS8 28.1 23.8 -15%

SCSD8 34.2 30.5 -11%

SCFXM2 33.2 32.5 - 2%

SCTAP2 56.9 54.3 - 5%

PILOT 108.0 86.3 -20%

BPl 136.6 146.1 + 7%

Here the results are somewhat more striking, four of the seven showing

savings of 10-20%.

Again more can be learned from a further breakdown of the times,

given by the second set of graphs in Appendix C. The greatest difference

by far is in BTRANL, which is significantly faster with the staircase version

in every instance. There is a corresponding, but smaller, efficiency in

FTRANL. The figures for tI.ese two routines are as follows:

40

- ~- ...- -- . - 1 C '-t~Now

FTRANL BTRANL
STD STAIR % CHNG STD STAIR % CHNG

SCAGR25 2.7 1.9 -29% 6.7 3.5 -48%

SCRS8 2.4 1.5 -36% 5.7 3.4 -41%

SCSD8 3.9 2.9 -25% 8.2 4.7 -42%

SCFXM2 2.6 1.9 -28% 7.8 5.4 -32%

SCTAP2 3.3 2.6 -21% 9.2 6.6 -28%

PILOT 13.0 8.0 -38% 22.9 12.7 -45%

BP1 14.8 12.6 -15% 32.5 26.9 -17%

Roughly there is a 30-50% saving in BTRANL, and a 20-40% saving in FTRANL.

There is a small but noticeable tendency of the staircase version

to run slower in BTRANU and FTRANU. Most likely this behavior is a con-

sequence of the LU factorization: the staircase bump-and-spike pivot order

tends to yield a denser U.

Some of the difference in BTRAN and FTRAN timings should be due

to the methods of Section 4. The efficacy of these methods cannot be told

from the above data, however, since the same timings are sensitive to differ-

ences in L and U density. Consequently a separate set of runs was made,

employing the staircase LU factorization but not the Section 4 enhancements.

The differences were as follows:

41

~aa. t

TIME SAVED
BY EFFICIENCIES
IN FTRAN, BTRAN % OF

(SECTION 4) TOTAL TIME

SCAGR25 4.9 15%

SCRS8 4.1 12%

SCSD8 5.2 12%

SCFXM2 4.4 9%

SCTAP2 4.4 6%

PILOT 13.4 11%

BPI 3.5 2%

Thus the efficiencies in FTRAN and BTRAN cut total running times 9-15%

in most cases; the savings would be more pronounced as a percentage of

iterating time only. Predictably, LPs of many periods tended to show the

greatest differences.

Comparable savings should be realized if staircase bump-and-spike

pivot selection is replaced by staircase local minimization, since the

methods of Section 4 apply equally well to either. Hence local minimization

may well be superior for Us such as SCACR25 and SCFXM2 whose staircase

factorizations--as reported in [15]--are notably denser under bump-and-spike.

The one sour note in the three tables above is BPI, on which the

staircase iterating routines seem to perform rather poorly. On closer

examination, however, this is not entirely surprising, as BPI differs

significantly from the other Lis. Whereas the others are first-order stair-

cases (or, in the case of PILOT, very nearly first-order), BPI has a large

42

number of nonzeroes below the staircase; its form is in fact closer to dual-

angular. BPl's bases consequently tend to be unbalanced. Hence the stair-

case technique produces considerably more spikes, and a much denser U factor.

The result: much more time spent in FTRANU and BTRANU, offsetting any gains

in FTRANL and BTRANL.

It thus appears that a good staircase form is essential to success

of the staircase techniques. BPI's staircase arrangement was deduced from

fairly scant information, and is evidently inadequate. A better staircase

form may exist, but a better knowledge of the underlying model may be necessary

to find it.

Factorizing routines

At intervals of typically 50-100 iterations a fresh factorization of

the basis is computed by a separate set of routines. For bump-and-spike

techniques, these "factorizing" routines fall into two classes: ones that

select a pivot order, and ones that compute the L and U factors.

For the test problems, total time in factorizing routines--normalized

to seconds per 10 refactorizations--was as follows:

FACTORIZING TIME
STANDARD STAIRCASE % CHANGE

SCAGR25 1.4 1.6 +15%

SCRS8 1.1 1.4 +22%

SCSD8 2.7 1.6 -39%

SCFXM2 1.9 2.8 +47%

SCTAP2 1.7 3.0 +80%

PILOT 32.8 9.7 -70%

BPl 27.9 26.1 - 6%

43

The outcomes appear to vary wildly. However, they are the consequence of

a few simple patterns which are revealed by looking at the pivot-selection

routines and LU-computation routines separately, with reference to the third

set of graphs in Appendix C.

Pivot selection involves a routine for the P3 heuristic, a block-

triangularization routine (for the standard technique only), and main

routines to call these and record the selected pivots. The staircase

technique's main routine seems to run usually somewhat longer, probably

because it is more complicated. The others' times are summarized below:

STANDARD STAIRCASE MEDIAN SIZE,
P3 BLK A TOTAL P3 LARGEST BUMP

SCAGR25 0.4 0.2 0.6 0.2 45

SCRS8 0.2 0.2 0.4 0.2 28

SCSD8 1.1 0.4 1.5 0.2 114

SCFXM2 0.2 0.5 0.7 0.8 36

SCTAP2 0.0 0.5 0.5 0.7 1

PILOT 20.4 1.0 21.4 2.4 533

BPI 13.1 2.0 15.1 3.8 408

The behavior of P3 is clearly critical. When bumps are small P3 is quite

fast; but it begins to slow down whem bump size passes 100, and it is

extremely inefficient on bumps of size 400 or 500. PILOT, the worst case

here, spends 16% of its total running time in P3 alone! By extrapolation,

it seems likely that P3 will be prohibitively slow for larger bumps. Thus

a staircase bump-and-spike technique (or else an efficient local-minimiza-

tion technique) may be essential for larger versions of models like SCSD8

and PILOT.

44

The main LU computation routines employ FTRANL and BTRANL as sub-

routines: FTRANL solves for the next column of L and U (as described in

Section 2); BTRANL solves for row k of B (k) when a column interchange

("spike swap") is necessitated by an unacceptable pivot element. The test

problems gave the following results (where SWAPS is the maximum number of

swapped spikes per factorization):

STANDARD LU STAIRCASE LU

4 MAIN FTRAN BTRAN SWAPS MAIN FTRAN BTRAN SWAPS

SCAGR25 0.2 0.0 0.0 3 0.6 0.1 0.1 20

SCRS8 0.2 0.0 0.0 1 0.4 0.1 0.1 11

SCSD8 0.4 0.1 0.0 6 0.5 0.1 0.1 11

SCFXM2 0.5 0.1 0.0 2 1.0 0.2 0.1 8

SCTAP2 0.2 0.0 0.0 0 0.7 0.1 0.4 19

PILOT 3.3 3.8 2.4 27 3.2 1.8 0.8 16

BPI 3.7 3.8 2.4 28 6.4 5.8 7.2 49

Predictably, the times are sensitive to the numbers of spike swaps; each

swap requires another BTRANL and FTRANL, plus extra work in the main

routine. Experience with PILOT and other LPs [15] suggests that the stair-

case pivot order may generally require fewer swaps when the bumps are big

(as for PILOT) and the staircase is well-balanced (unlike BPI's). The

other test LPs have smaller bumps and require fewer swaps with the standard

pivot order.

Again the data suggest that staircase local-minimization techniques

might be preferable for the small-bump staircase LPs. An efficient imple-

mentation of local minimization [12,451 incurs only a small extra cost in

rejecting any unaccepatably small pivot element.

45

Comparison with a commercial code

The PILOT model was frequently solved--on the same computer as used

for the above tests--by a commercially-marketed machine-language LP code,

MPS III [37]. These runs employed the WHIZARD simplex routine of MPS III,

which incorporates a bump-and-spike factorization scheme. Various system

parameters were set from experience to yield fast PILOT runs.

For imparison, WHIZARD was run 1000 iterations from the same

starting basis as used above with MINOS. The running times were as follows:

MINOS, standard pivot selection 155.7 sec

MPS III/WHIZARD 114.7 sec

MINOS, staircase pivot selection 106.4 sec.

MINOS did require considerably more storage, primarily because its storage

scheme for the U factor could not efficiently accommodate a large number of

spikes. U could probably be stored more compactly, however, without

significant effect upon the MINOS timings.

Nothing very definite can be inferred from these figures, since

MINOS and MPS III differin many ways; moreover, the internal structure

of the latter is largely unknown, as is the case with many commercial codes.

Nevertheless, it is gratifying that MINOS--which is written in FORTRAN and

intended more as a test code--can compete with a supposedly fast LP system.

At the least, one may conclude that the timings throughout this section are

probably quite realistic. And the superiority of staircase MINOS to MPS III

for PILOT suggests that, for at least some large staircase problems, the tech-

niques of this paper will offer significant savings.

46

APPENDIX A: TEST PROBLEMS

The linear programs used in the computational experiments of

Section 5 are described in greater detail below. The tabular summarizes

for each LP are largely self-explanatory, but a few general notes are

appropriate:

All statistics except OBJ ELEMS refer only to the staircase con-

straint matrix, excluding the objective row and right-hand side. In each

case the constraint matrix, A, has been put in reduced standard form;

DIAGONAL BLOCKS refers to the staircase blocks A OFF-DIAGONAL BLOCKS to

the blocks i,+I,, and SUB-STAIR BLOCKS (when present) to the blocks

A t+2A' .. Att.

Variables (columns) are implicitly constrained only to be non-

negative, unless there is an indication to the contrary. BOUNDED implies

implicit lower and upper bounds, FIXED implies fixture at a given value, and

FREE implies no implicit constraints.

MAX ELEM and MIN ELEM are the largest and smallest magnitudes of

elements in A; LARGEST COL RATIO is the greatest ratio of magnitudes of

elements in the same column of A. Where values are given BEFORE SCALING

and AFTER SCALING, all tests were conducted with A scaled as described

in Appendix B. Otherwise NO SCALING is indicated.

47

/i~~~~~~~~l~il

SCAGR25

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, N.Y.; source not documented.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1 18 20 45 13% 8 7 17 30% 19

2-24 19 20 46 12% 8 7 17 30% 19

25 16 20 43 13% 19

1146 12% 408 30% 475

GRAND TOTALS

ROWS 471 (300 EQUALITIES, 171 INEQUALITIES)

COLS 500

ELEMS 1554

DENS 0.7%

NO
COEFFICIENTS SCALING

MAX ELEM 1.3

MIN ELEM 2.0 x i0
- I

LARGEST COL RATIO 1.9 x 10-1

48

SCRS8

Derived from a model of the United States' options for a transition

from oil and gas to synthetic fuels; documented in [27,33).

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1 28 37 65 6% 25 22 29 5% 18

2 28 38 69 6% 25 22 29 5% 19

3-5 31 76 181 8% 25 22 29 5% 55

6-8 32 79 192 8% 25 22 29 5% 58

9 31 79 189 8% 25 22 29 5% 58

10-12 31 80 190 8% 25 22 29 5% 59

13-15 30 80 186 8% 25 22 29 5% 59

16 31 70 177 8% 59

2747 8% 435 5% 847

GRAND TOTALS

ROWS 490 (384 EQUALITIES, 106 INEQUALITIES)

COLS 1169

ELEMS 3182

DENS 0.6%

BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 3.9 x 102 4.0

MIN ELEM 1.0 x 10- 3 2.5 x 10-1

LARGEST COL RATIO 4.5 x 103 1.6 x 10

49

SCSD8

A multi-stage structural design problem, documented in [26].

This is the only staircase test problem for this paper in which the stages

do not represent periods of time.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1-38 10 70 130 19% 10 50 90 18% 70

39 17 90 224 15% 90

5164 18% 3420 18% 2750

GRAND TOTALS

ROWS 397 (ALL EQUALITIES)

COLS 2750

ELEMS 8584

DENS 0.8%

NO

COEFFICIENTS SCALING

MAX ELEM 1.0

MIN ELEM 2.4 x I0-

LARGEST COL RATIO 4.0

50

SCFXM2

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, New York; source not documented.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1 92 114 679 6% 9 57 61 12% 13

2 82 99 434 5% 9 35 35 11% 4

3 66 126 300 4% 5 33 33 20% 1

4 90 118 1047 10% 5 5 5 20% 5

5 92 114 679 6% 9 57 61 12% 13

6 82 99 434 5% 9 35 35 11% 4

7 66 126 300 4% 5 33 33 20% 1

8 90 118 1047 10% 5

4920 7% 263 13% 46

GRAND TOTALS

ROWS 660 (374 EQUALITIES, 286 INEQUALITIES)

COLS 914

ELEMS 5183

DENS 0.9%

BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 1.3 x 102 1.1 x 101

MIN ELEM 5.0 x 10- 4 8.7 x 10- 2

LARGEST COL RATIO 1.3 x 105 1.3 x 102

51

SCTAP2

A dynamic traffic assignment problem, documented in [28].

The LP has 11 objective rows; the objective named OBJZZZZZ was used in

all tests. Statistics below omit the other ten objectives.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1-9 109 188 423 2% 62 138 276 3% 141

10 109 188 423 2% 141

4230 2% 2484 3% 1410

GRAND TOTALS

ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES)

COLS 1880

ELEMS 6714

DENS 0.3%

NO

COEFFICIENTS SCALING

MAX ELEM 8.0 x 101

MIN ELEM 1.0

LARGEST COL RATIO 8.0 x 101

52

PILOT

Derived from a welfare equilibrium model of the United States'

energy supply, energy demand, and economic growth: seeks maximum aggregate

consumer welfare subject to competitive market equilibrium. The LP was

supplied by the PILOT modeling project, Systems Optimization Laboratory,

Department of Operations Research, Stanford University; it is documented

in [40].

SUB-STAIR
DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS DENS ELEMS

1 84 343 686 2% 31 74 105 5% 18 0% 10

2 90 345 1079 3% 34 76 11 4% 8 0% 10

3 90 343 1073 3% 34 74 109 4% 5 0% 10

4 90 343 1073 3% 34 74 109 4% 5 0% 10

5 90 343 073 3% 34 74 109 4% 5 0% 10

6 90 343 1073 3% 34 74 109 4% 3 0% 10

7 90 343 1073 3% 32 74 107 5% 1 0% 10

8 87 341 1060 4% 4 19 19 25% 10

9 11 45 113 23% 12

8303 3% 778 4% 45 0% 92

GRAND TOTALS

ROWS 722 (583 EQUALITIES, 139 INEQUALITIES)

COLS 2789 C 80 FREE, 296 BOUNDED, 79 FIXED)

ELEMS 9126

DENS 0.5%

BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 4.8 x 104 2.0 x 101

MIN ELEM 1.4 x 10-4 4.9 - 10 - 2

LARGEST COL RATIO 7.0 X 106 4.2 x 10 2

53

BPI

Developed by British Petroleum, London; supplied via the Systems

Optimization Laboratory, Department of Operations Research, Stanford

University.

This LP is approximately dual-angular, with 6 main diagonal blocks

and about 400 coupling variables. For the experiments described in this

paper it was treated as a 6-period, 5th-order staircase problem.

SUB-STAIR
DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS DENS ELEMS

1 111 227 1400 6% 3 60 3 2% 163 0% 138

2 151 353 2175 4% 62 108 112 2% 142 0% 149

3 113 321 964 3% 92 232 346 2% 494 1% 270

4 170 295 2178 4% 51 14 11 2% 4 0% 74

5 134 198 1315 5% il 2 2 1% 40

6 142 177 1091 4% 56

9123 4% 474 2% 803 0% 727

GRAND TOTALS

ROWS 821 (516 EQUALITIES, 305 INEQUALITIES)

COLS 1571

ELEMS 10400

DENS 0.8%

q BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 2.4 x 102 1.3 x 101

MIN ELEM 2.0 X 10-4 7.6 x 10 - 2
15 12

LARGEST COL RATIO 1.7 X 10 1.7 x 10

54

APPENDIX B: DETAILS OF COMPUTATIONAL TESTS

Computing environment

All computational experiments were performed on the Triplex system

[491 at the Stanford Linear Accelerator Center, Stanford University. The

Triplex comprises three computers linked together: one IBM 360/91, and two

IBM 370/168s. Runs were submitted as batch jobs in a virtual-machine environ-

ment, under the control of IBM systems OS/VS2, OS/MVT and ASP.

Test runs employed a specially-modified set of linear-programming

routines from the MINOS system [38,48]. MINOS is written in standard

FORTRAN. For timed runs, MINOS was compiled with the IBM FORTRAN IV (H

extended, enhanced) compiler, version 1.1.0, at optimization level 3 [301.

Timings

All running-time statistics are based on "CPU second" totals for

individual job steps as reported by the operating system. To promote

consistency all timed jobs were run on the Triplex computer designated

"system A," and jobs whose timings would be compared were run at about the

same time. Informal experiments indicated roughly a 1% variation in timings

due to varying system loads.

More detailed timings employed PROGLOOK [31], which takes frequent

samples of a running program to estimate the proportion of time spent in

each subroutine. To determine the actual time in seconds for each sub-

routine, every timed job was run twice--once without PROGLOOK to measure

total CPU seconds, and once with PROGLOOK to estimate each subroutine's

proportion of the total. PROGLOOK estimates were based on at least 2300

samples per job.

55

MINOS linear-programming environment

MINOS was set up for test runs according to the defaults indicated

in [38], with the exception of the items listed below.

Scaling. Problems noted as "scaled"in Appendix A were subjected

to the following geometric-mean scaling (where A denotes the matrix of

constraint coefficients, not including the objective or right-hand side):

1: Compute p0 = maxIAA /A2, A 0.

2: Divide each row i of A, and its corresponding right-hand side

value, by [(mini IAij I)(maxj Aij)]1 2 taking the minimum over

all Aij #0.

3: Divide each column j of A, and its corresponding coefficient
in the objective, by [(mini.Aij)(maxiJAij)]I/ , taking the

minimum over all Aij J 0.

4: Compute p = maxlAij /A 1, A # 0.
i j i j

This procedure was repeated as many times as possible until, at step 4,

p was at least 90% of p0. (In other words, scaling continued as long

as it reduced p, the greatest ratio of two elements in the same column,

by more than 10%.)

Starting basis. All LPs except PILOT and BPI were solved with

crash option 0 of MINOS: the initial basis was composed entirely of unit

vectors, and all nonbasic variables were placed at zero. PILOT and BPI

were run from initial bases that had been reached and saved in previous

MINOS runs.

56

Termination. All LPs except PILOT and BPI were run until an optimal

solution was found. PILOT and BPI were run for 1000 and 750 iterations,

respectively.

Pricing. Except for SCTAP2, the partial-pricing scheme of MINOS

was employed--with one important change: the arbitrary partitioning of

the columns normally defined by MINOS for partial pricing was replaced by

the natural staircase partition. Thus the periods of the staircase were

* priced one at a time in a cyclic fashion.

Pricing for SCTAP2 was similar except that the incoming column

was chosen from the latest possible period. (This choice was known to

produce a relatively small number of iterations from an all-unit-vector

start.)

Refactorization frequency. MINOS was instructed to refactorize

the basis (by performing a fresh Gaussian elimination) every 50 iterations,

except for BPI (every 75) and PILOT (every 90).

Tolerances. The "LU ROW TOL" for MINOS was set to 10 . All

other tolerances were left at their default values.

Modifications to MINOS

All runs described in this paper were made with a special test

version of MINOS. This version retained MINOS' routines for standard

bump-and-spike elimination, and added new routines to implement a version

of staircase bump-and-spike elimination. Routines for solving linear

systems were also modified to take advantage of the staircase pivot order.

Control routines were adjusted appropriately.

57

'7 I

New subroutines in the test version are described briefly as

follows:

SP3--an adaptation of the P3 heuristic to find a bump-and-spike

structure in non-square or rank-deficient blocks, as proposed

in [15]. This routine is a modification of the MINOS subroutine P3.

SP4--main routine for the staircase bump-and-spike pivot-selection

technique of 115]; sorts the staircase basis into reduced form, and

calls SP3 once for each diagonal block.

DSPSPK--spike-display routine; prints a graphical summary of the

basis bump-and-spike structure found by P4 (for the standard tech-

nique) or SP4 (for the staircase technique).

STAIR--a staircase analyzer. Given an initial partition of the rows

by period, this routine permutes the constraint matrix to a reduced

standard staircase form and stores the staircase partitions in arrays

that are read by subsequent routines. STAIR is called once at the

beginning of every run.

SCALE--implementation of the geometric-mean scaling scheme described

above; called optionally at the beginning of a run.

UPDBAL--updating routine for cumulative-balance counts: after

each iteration, revises an array that records the cumulative excess

of columns over rows at each period of the staircase basis. (This

array is used to find square sub-staircases.)

58

In addition the test version incorporates the following substantial modifi-

cations to MINOS subroutines:

FACTOR efficiently handles a pivot order from either the standard

or staircase technique, and finds the partitions X and ji

(defined in Section 4) for the staircase technique.

FTRANL, BTRANL, FTRANU and BTRANU incorporate the ideas of

Section 4 in a uniform way. FTRANL and FTRANU can begin at a

specified L or U transformation, and BTRANL and BTRANU can stop at

a specified transformation. BTRANL can also be restarted at a

point where it previously stopped.

LPITN determines a starting point for FTRANL and a stopping point

for BTRANU when the staircase technique is used.

SETPI, for the staircase technique, determines a starting point

for FTRANU and a stopping point for BTRANL when it is first called

at an iteration. When subsequently called at the same iteration it

determines restarting and stopping points for BTRANL.

PRICE incorporates the staircase-oriented partial-pricing methods

described in the preceding subsection of this appendix. When

these methods are used with the staircase factorization technique,

PRICE also keeps track of how much of the price vector it requires,

and calls SETPI accordingly.

SPECS2 determines whether the standard or staircase technique will

be used in a particular run, according to instructions in the SPECS

input file.

59

Other subroutines were modified as necessary to accommodate these

changes.

MPS III linear programming environment

For purposes of comparison the PILOT test problem was also run on the

MPS III system [37], as explained in Section 5.

The MPS III run employed the WHIZARD linear-programming routines

of version 8915 of MPS III. The run used the same starting basis as the

MINOS runs for PILOT, and was terminated after 1000 iterations like the

MINOS runs. Exact CPU timings were 0.56 seconds in the compiler step

and 114.18 seconds in the executor step.

The control program for the MPS III run was as follows:

PROGRAM

INITIALZ

XPROC = XPROC + 6000

XCLOCKSW = 0

XINVERT = 1

XFREQINV = 90

XFREQLGO = 1

XFREQ1 = 1000

MVADR (XDOFREQ1, TIME)

MOVE (XDATA, 'PILOT.WE')

CONVERT ('FILE','INPUT')

SETUP ('BOUND', 'BOUND', 'MAX', 'SCALE')

MOVE (XOBJ, 'OBJ')

MOVE (XRHS,'RISIDE')

INSERT ('FILE','PUNCHl')

WHIZFREQ DC (250)

WHIZSCAL DC (4)

WHIZARD('FREQ', WHIZFREQ, 'SCALE', WHIZSCAL)

TIME PUNCH ('FILE', 'PUNCH1')

EXIT

PEND

60

APPENDIX C: TIMINGS

The bar graphs below summarize timings of the MINOS test runs

for this paper. Details of the test runs and timing procedures are in

Appendix B; individual MINOS subroutines are documented in Appendix B

and in [48].

Graphs are presented in three groups. The first group shows

time in all routines, the second shows time in iterating routines only,

and the third shows time in factorizing routines only. Within each

group the format is the same: the first graph compares totals for all

seven test problems, and seven succeeding graphs--one for each test

problem--break the times down into various subtotals.

All graphs show a pair of bars for each total or subtotal.

The top bar is for the run that used standard bump-and-spike elimination

on the basis; the bottom bar is for the run that used staircase bump-and-spike

elimination and the related techniques described in this paper.

Total time

The FORTRAN subroutines of MINOS are classified below as follows:

PRICE routines choose a nonbasic variable to enter the basis;

they include FORMC, PRICE, SETPI and FTRANU, and BTRANL when called

from SETPI.

PIVOT routines choose a variable to leave the basis; they

include LPITN and CHUZR, and FTRANL, BTRANU and UNPACK when called

from LPITN.

61

UPDATE refers to the subroutine MODLU, which updates the LU

factorization of the basis at the end of each iteration.

PERM routines permute the basis of a bump-and-spike structure.

For the standard method they include P4, P3, TRANSVL, BUMPS and

MKLIST; for the staircase method they are SP4, SP3 and MKLIST.

FACTOR routines compute an LU factorization of the basis; they

include FACTOR and PACKLU, and FTRANL, BTRANL and UNPACK when called

from FACTOR.

OTHER routines include all other MINOS subroutines, and utility

routines inserted by the FORTRAN compiler. Other MINOS routines

comprise DRIVER and routines it uses (BTRANU, FTRANL, ITEROP, SETX, STATE,

UNPACK, UPDBAL), INVERT and routines it uses (BTRANU, DSPSPK, FTRANL,

SETX), and various routines called once only at the beginning or end

of the run (CRASH, GO, HASH, INITLZ, LOADB, MINOS, MOVE, MPS, MPSIN,

NMSRCH, SAVEB, SCALE, SOLN, SOLPRT, SPECS, SPECS2, STAIRS). FORTRAN

routines for input and output registered significantly (3-10% of

total) in the timings; the volume of input was very small, so these

routines probably did most of their work in producing printed output

for the runs. A FORTRAN square-root subroutine, called from SCALE and

SETPI, used an insignificant amount of time.

62

TOTAL TIME

SCAGR25 STANDARD
SCAGR25U STAIRCASE

SCRS8

SCSD8

I SZFXM2

PILOT _ _ _ _ _ _ _ _ _ _ _i

'1 BPI

25 50 125 150 175

CPU SECONDS /1000 ITERATIONS

SCAGR25

PRICE

PIVOT

UPDATE

PE RM

FACTOR

OTHER __________________ __

r10 20 30 40

CPU SECONDS /1000 ITERATIONS

63

SCRS8

PRICE 1~r ll lm[mlllUl

PIVOT

UPDATE

PERM

FACTOR

OTHER

10 20 30 40

CPU SECONDS / 1000 ITERATIONS

SCSD8

PRICE

PIVOT

UPDATE

PERM

FACTOR

OTHER

10 20 30 40

CPU SECONDS / 1000 ITERATIONS

64

SCFXMK2

PRICE______

PIVOT

UPDATE

PERM4

FACTOR

OTHER

10 20 30 40

CPU SECONDS /1000 ITERATIONS

SCTAP 2

PRICE

* PIVOT

UPDATE

PERM4

FACTOR

OTHER

10 20 30 40

CPU SECONDS /1000 ITERATIONS

65

PILOT

PIVOT

FACTOR

OTHER

1 0 20 30 40 50

CPU SECONDS /1000 ITERATIONS

BPI1

UPDATE

PERMl

OTHER

10 20 30 60 70

CPU SECONDS /1000 ITERATIONS

66

Iterating time

Iterating routines are those invoked at each iteration. They

are classified as follows:

MAIN includes DRIVER and miscellaneous routines invoked from it:

ITEROP, SETX, STATE, UNPACK and UPDBAL, and FTRANL and BTRANU when called

from SETX.

PRICE refers to subroutines FORMC, PRICE and SETPI.

FTRANU and BTRANL refer to the like-named subroutines when called

from SETPI.

PIVOT refers to subroutines LPITN and CHUZR, and UNPACK when

called from LPITN.

FTRANL and BTRANU refer to the like-named subroutines when called

from LPITN.

UPDATE refers to subroutine MODLU.

67

TOTAL ITERATING TIME

SCAGR25 D STANDARD
U STAIRCASE

SCRS8

SCSD8

SCFXM2

SCTAP2

PILOT [WWWW 11 r

BPI 1~~TT7

25 50 75 100 125 150

CPU SECONDS / 1000 ITERATIONS

SCAGR25

MAIN

PRICE

FTRANU

BTRANL

PIVOT

* FTRANL

BTRANU

UPDATE

5 10 15 20

CPU SECONDS / 1000 ITERATIONS

68

SCRS8

MAIN

PRICE

FTRANU

BTRANL

* PIVOT

* FTRANL

BTRANU

UPDATE

510 15 20

CPU SECONDS /1000 ITERATIONS

SCSD8

MAIN

P RICE

FTRANU

BTRANL

PIVOT

FTRANL

BTRANU

UPDATE

5 10 15 20

CPU SECONDS /1000 ITERATIONS

69

SCFXM2

MAIN

FT:AU

PIVOT

FTRAliL

BTRANU

UPDAE

5 10 15 20

CPU SECONDS /1000 ITERATIONS

SCTAP2

MAIN

PRICE

FTRANU

BTrL

PIVOT

FTRANL

BTRANU

UPDATE

5 10 15 20 30

CPU SECONDS /1000 ITERATIONS

70

PILOT

MAIN

PRICEIl fMHM fflIHHilIfl114IfIIIII111

FTRANU __________

BTRANU

UPDATE

5 10 15 20 25

CPU SECONDS /1000 ITERATIONS

BPI1

MAIN

PRICE

B T L I1111L 111111 1111111 11 fl IIH lHI 111111111 iiIli I11111111111111111111

B TA -T....

FTRANL

5 10 15 25 30 35

CPU SECONDS / 1000 ITERATIONS

71

Factorizing time

Factorizing routines are those invoked at each refactorization

of the basis. They are classified as follows:

MAIN includes INVERT and miscellaneous routines invoked from it:

DSPSPK and SETX, and FTRANL and BTRANU when called from SETX.

PERMUTE includes the driving routine for bump-and-spike

permutation--P4 with the standard method, SP4 with the staircase method--

and the utility routine MKLIST.

P3 refers to the subroutine that implements the spike-finding

heuristic: P3 for the standard method, or SP3 for the staircase method.

BLK A refers to subroutines TRNSVL and BUMPS, which find a

block-triangular reduction of the basis (in the standard method only).

FACTOR includes subroutine FACTOR, the driving routine for LU

factorization of the basis, plus routines PACKLU and UNPACK invoked

from FACTOR.

FTRANL and BTRANL refer to the like-named subroutines when called

from FACTOR.

72

TOTAL FACTORIZING TIME

SCAGR2 5 0 STANDARD
E STAIRCASE

S CRS 8

SCSD8

SCFXM2

SCTAP2

BP1 1

5 10 15 25 30

CPU SECONDS I10 FACTORIZATIONS

SCAGR2 5

MAIN

PERMUTE

P3

BLK A

FACTOR

FTRANL

BTRANL

5 10

CPU SECONDS /10 FACTORIZATIONS

73

SCRS8

MAIN

PERMUTE

P3

BLK A

FACTOR

FTRANL

BTRANL

5 1 10

CPU SECONDS I10 FACTORIZATIONS

SCSD8

MAIN

PERMUTE

P3

BLK A

FACTOR

FTRANL

BTRANL

5 10

CPU SECONDS /10 FACTORIZATIONS

74

SCFXM2

MAIN

PERMUTE

P3

BLK A

* FACTOR

FTRANL

BTRANL

5 10

CPU SECONDS /10 FACTORIZATIONS

SCTAP2

MAIN

PERMUTE

P3

BLK A

FACTOR

FTRANL

BTRANL

5 10

CPU SECONDS /10 FACTORIZATIONS

75

PILOT

MAIN

PERMUTE

* P3

FACTOR

BTRANL

5 10 20

CPU SECONDS /10 FACTORIZATIONS

BP 1

MAIN

PERMUITE

BLK A

BTRANL

5 10

CPU SECONDS /10 FACTORIZATIONS

76

REFERENCES

[1] Aonuma, T., "A Two-Level Algorithm for Two-Stage Linear Programs."
Journal of the Operations Research Society of Japan 21 (1978),
171-187.

[2] Bartels, Richard H., "A Stabilization of the Simplex Method."
Numerische Mathematik 16 (1971), 414-434.

[31 and Gene H. Golub, "The Simplex Method of Linear Programming
Using LU Decomposition." Communications of the ACM 12 (1969), 266-268.

[4] Cobb, R. H. and J. Cord, "Decomposition Approaches for Solving Linked
Problems." Proceedings of the Princeton Symposium on Mathematical
Programming, Harold W. Kuhn, ed. (Princeton University Press, 1970).

[5] Dantzig, George B., "Programming of Interdependent Activities II:
Mathematical Model." Econometrica 17 (1949), 200-211.

[6] , "Upper Bounds, Secondary Constraints and Block Triangularity
in Linear Programming." Econometrica 23 (1955), 174-183.

[7] , "Optimal Solution of a Dynamic Leontief Model with
Substitution." Econometrica 23 (1955), 295-302.

[8] , "Compact Basis Triangularization for the Simplex Method."
Recent Advances in Mathematical Programming, R. L. Graves and
Philip Wolfe, eds. (New York: McGraw-Hill Book Co., 1963),
125-132.

[9] __, "Solving Staircase Linear Programs by a Nested Block-Angular

Method." Technical Report 73-1, Dept. of Operations Research,
Stanford University (1973).

[10] __ and Philip Wolfe, "Decomposition Principle for Linear Programs."
Operations Research 8 (1960), 101-111.

il] Duff, Iain S., "On the Number of Nonzeroes Added when Gaussian
Elimination is Performed on Sparse Random Matrices." Mathematics
of Computation 28 (1974), 219-230.

[12] , "Practical Comparisons of Codes for the Solution of Sparse

Linear Systems." Sparse Matrix Proceedings--978, lain S. Duff and
G. W. Stewart, eds. (Society for Industrial and Applied Mathematics,
1979).

[13] and J. K. Reid, "A Comparison of Sparsity Orderings for Obtain-
ing a Pivotal Sequence in Gaussian Elimination." Journal of the
Institute of Mathematics and Its Applications 14 (1974), 281-291.

77

[14] Forrest, J. J. H. and J. A. Tomlin, "Updated Triangular Factors of the
Basis to Maintain Sparsity in the Product Form Simplex Method."
Mathematical Programming 2 (1972), 263-278.

[15] Fourer, Robert, "Sparse Gaussian Elimination of Staircase Systems."
Technical Report SOL 79-17, Systems Optimization Laboratory, Dept. of
Operations Research, Stanford University (1979).

[16] , "Solving Staircase Linear Programs by the Simplex Method, 2:
Pricing." Technical Report SOL 79-19, Systems Optimization Laboratory,
Dept. of Operations Research, Stanford University (1979).

[17] Gay, David M., "On Combining the Schemes of Reid and Saunders for
Sparse LP Bases." Sparse Matrix Proceedings-1978,Iain S. Duff and
G. W. Stewart, eds. (Society for Industrial and Applied Mathematics,
1979).

[18] Gear, C. W. et al., "Numerical Computation: Its Nature and Research
Directions." SIGNUM Newsletter, Association for Computing Machinery
(1979).

[19] Glassey, C. Roger, "Dynamic Linear Programs for Production Scheduling."
Operations Research 19 (1971), 45-56.

[20] _ , "Nested Decomposition and Multi-Stage Linear Programs."

Management Science 20 (1973), 282-292.

[21] Goldfarb, D., "On the Bartels-Golub Decomposition for Linear Programming
Bases." Mathematical Programming 13 (1977), 272-279.

[22] Grinold, Richard C., "Steepest Ascent for Large-Scale Linear
Programs." SIAM Review 14 (1972), 447-464.

[23] Heesterman, A. R. G. and J. Sandee, "Special Simplex Algorithm for
Linked Problems." Management Science 11 (1965), 420-428.

[24] Hellerman, Eli and Dennis Rarick, "Reinversion with the Preassigned

Pivot Procedure." Mathematical Programming 1 (1971), 195-216.

[25] _ , "The Partitioned Preassigned Pivot Procedure (P 4)." Sparse
Matrices and Their Applications, Donald J. Rose and Ralph A. Willoughby,
eds. (New York: Plenum Press, 1972), 67-76.

[26] Ho, James K., "Optimal Design of Multi-Stage Structures: A Nested
Decomposition Approach." Computers and Structures 5 (1975), 249-255.

(27] , "Nested Decomposition of a Dynamic Energy Model." Management

Science 23 (1977), 1022-1026.

78

[281 , "A Successive Linear Optimization Approach to the Dynamic
Traffic Assignment Problem." Report BNL-24713, Brookhaven National
Laboratory, Upton, New York (1978).

[29] __ and Alan S. Manne, "Nested Decomposition for Dynamic Models."
Mathematical Programming 6 (1974), 121-140.

[30] IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide. No.SC28-
6852, International Business Machines Corp. (1974).

[31] Johnson, R. and T. Johnston, "PROGLOOK User's Guide." User Note 33,
SLAC Computing Services, Stanford Linear Accelerator Center (1976).

[32] Madsen, Oli B. G., "Solution of LP-Problems with Staircase Structure."
Research Report 26, The Institute of Mathematical Statistics, Lyngby,
Denmark (1977).

(331 Manne, A. S., "U.S. Options for a Transition from Oil and Gas to
Synthetic Fuels." Discussion Paper 26D, Public Policy Program,
Kennedy School of Government, Harvard University (1975).

[34] Markowitz, Harry M., "The Elimination Form of the Inverse and Its
Application to Linear Programming." Management Science 3 (1957),
255-269.

[35) Marsten, Roy E. and Fred Shepardson, "A Double Basis Simplex Method
for Linear Programs with Complicating Variables." Technical Report
531, Dept. of Management Information Systems, University of Arizona
(1978).

[36] McBride, Richard D., "A Spike Collective Dynamic Factorization
Algorithm for the Simplex Method." Management Science 24 (1978),
1031-1042.

[37] MPS III Mathematical Programming System: User Manual. Ketron, Inc.,
Arlington, VA (1975).

[38] Murtagh, Bruce A. and Michael A. Saunders, "MINOS: A Large-Scale
Nonlinear Programming System (For Problems with Linear Constraints):
User's Guide." Technical Report SOL 77-9, Systems Optimization
Laboratory, Dept. of Operations Research, Stanford University (1977).

[39] Orchard-Hays, William, Advanced Linear-Programming Computing Tech-
niques (New York: McGraw-Hill Book Co., 1968).

[401 Parikh, S. C., "A Welfare Equilibrium Model (WEM) of Energy Supply,
Energy Demand, and Economic Growth." Technical Report SOL. 79-3,
Systems Optimization Laboratory, Dept. of Operations Research,
Stanford University (1979).

79

---- mJ

....

[41] Perold, Andre, "Fundamentals of a Continuous Time Simplex Method."
Technical Report SOL 78-26, Systems Optimization Laboratory, Dept. of
Operations Research, Stanford University (1978).

[42] and George B. Dantzig, "A Basis Factorization Method for Block
Triangular Linear Programs." Technical Report SOL 78-7, Systems Opti-
mization Laboratory, Dept. of Operations Research, Stanford University
(1978).

[43] Propoi, A. and V. Krivonozhko, "The Simplex Method for Dynamic
Linear Programs." Report RR-78-14, International Institute for
Applied Systems Analysis, Laxenburg, Austria (1978).

[44] Reid, J. K., "A Sparsity-Exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases." Report CSS 20, Computer
Science and Systems Division, A.E.R.E. Harwell, England (1975).

[45] , "Fortran Subroutines for Handling Sparse Linear Programming

Bases." Report AERE-R8269, Computer Science and Systems Division,
A.E.R.E. Harwell, England (1976).

[46] Saigal, Romesh, "Block-Triangularization of Multi-Stage Linear
Programs." Report ORC 66-9, Operations Research Center, University
of California, Berkeley (1966).

[47] Saunders, Michael A., "A Fast, Stable Implementation of the Simplex
Method Using Bartels-Golub Updating." Sparse Matrix Computations,
James R. Bunch and Donald J. Rose, eds. (New York: Academic Press,
1976), 213-226.

[48] _ , "MINOS System Manual." Technical Report SOL 77-31, Systems
Optimization Laboratory, Dept. of Operations Research, Stanford
University (-977).

[49] Vinson, Ilse, "Triplex User's Guide." U,;er Note 99, SLAC Computing
Services, Stanford Linear Accelerator Center (1978).

[50] Wolfe, Philip, "The Composite Simplex Algorithm." SIAM Review 7
(1965), 42-54.

[51] Wollmer, Richard D., "A Substitute Inverse for the Basis of a Stair-
case Structure Linear Program." Mathematics of Operations Research

2 (1977), 230-239.

80

UNCLASS IFI ED

SECURITY CLASSIFICATION OF THIS PAGE (Whn Date Entered) ,.-

REPORT DOCUMENTATION PAGE BE ORE COMLTrTORBF..O P- COPETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO.1 3 ,ECiEN Ar TALOG NUMBE '

SOL 79-18 , .IP.....
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

"Solving Staircase Linear Programs By Technical Report
The Simplex Method, 1: Inversion" s. PERFORMING ORG. REPORT NUMBER

SOL 79-18
7. AUTHORr.) S. CONTRACT OR GRANT NUMBER(a)

Robert Fourer NO001475C0267

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROjECT. TASK

Operations Research Department - SOL AREA & WORK UNIT NUMBERS

Stanford University NR-047-143
Stanford, CA 94305

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Operations Research Program - ONR November 1979
Department of the Navy I3. NUMBER OF PAGES

Rnn N .iinrv qt Arlinqtnn VA 22217 80
14. MONITORI 4 0 AGE! (N AE & ADO rEss(II dilferent from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
150. DECLA- ICATION/DOWNGRADING

SCHE DL

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrec entered in block 20, II different from Report)

I8. SUPPLEMENTARY NOTES

t9 KEY WORDS (Continue on reverse side II nceeossy and Identify by block number)

LARGE-SCALF LINEAR PROGRAMMING
STAIRCASE LINEAR PROGRAMS
SIMPLEX METHOD

20 ABSTRACT (Continue an reverse sld. Ii necessay and Identify by block nt,,be,)

SEE ATTACHED

V I FAim 1473 EDITION oF I NOV 65 IS ODSOLYE UNCLASSIFIED
S/N o1O204-o6 o1, UNCLASSIFIED

ISCURITY CLASSIFICATION OF THIS *AOE (Ihen Dote Efntee)

UNCLASSIFIEC
SECUNITY CLASSI PICATIOW OF T1IS PAGE ffhn, oe ERaeo*

SOL 79-18, Robert Fourer
"Solving Staircase Linear Programs by the Simplex Method, 1: Inversion"

Problems of economic planning, production scheduling, inventory,

transportation, control and multi-stage structural design have

been modeled as linear programs that have a OstaircaseO structure:

their activities fall into a sequence of disjoint stages or

periods, while their constraints relate only successive periods.

At one time it was hoped that staircase linear programs would

be particularly easy to solve, owing to their special structure,

but experience with the most common solution technique --

the general simplex method -- has shown otherwise. Over the

years many alternatives to the simplex method have also been

proposed, but as yet none of these has been proved superior in

solving a wide variety of staircase problems.

This and a companion paper consider how the modern simplex

method -- as implemented for large computers -- may be adapted

to solve staircase linear programs more efficiently. Each paper

looks at a set of algorithms within the simplex method: this

one deals with 'inversionO of the basis -- more accurately,

solution of linear systems by Gaussian elimination -- and its

successor considers the task of 4pricing.

Both papers describe extensive (though preliminary) computational

experience, and can point some quite promising results.

UNCLASSIFIED

GBCUIUTV CLAIPICATIU OP T1i PAI(eia 60Won*

