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ABSTRACT
V
The basic performance of an adaptive antenna system is influenced some-

what independently by two sub-systems: the antenna and the adaptive processor.

Choice of the antenna type (multiple beam antenna or phased array) and the

design of the adaptive processor (which is used to control the weighting at

each antenna feed port) depends strongly on the specific requirement of a

particular system. To date, much has been published on the ideal performance

characteristics of adaptive nulling antenna systems. However, little has

been published on the effects of hardware component imperfections on system

performance. To characterize these effects is the purpose of this note. We

present methods for categorizing, analyzing and measuring the effects of a

few of the key components which are common to the majority of adaptive systems

implemented to date. Some examples we will discuss are those effects due to

antenna type, antenna tolerance errors, channel tracking errors, weighting

circuits, hard-limiters, correlators and base-band components. We analyze

these from the viewpoint of the degree of cancellation achievable by the

adaptive processor and also their impact on loop dynamics (where appropriate).

In order to illustrate the various effects, measured performance results

obtained using an experimental Applebaum-Howell type adaptive processor will

be presented.
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I. INTRODUCTION

Adaptive antennas are capable of autonomously changing their radiation

pattern characteristics in response to the signals incident on the aperture.

This is generally accomplished by applying amplitude and phase control (weight-

ing) at the output of each of several feed-ports designed into the antenna

system, where the weighting is adjusted according to some specified control

algorithm. For communications systems where the antenna field of view (FOV)

may contain both interference and signal sources, adaptive antennas can be

utilized to improve the signal-to-interference ratio. This is done by auto-

nomously changing the pattern so that relative pattern maxima are directed

toward the desired user locations and pattern minima (nulls) are directed
toward the interference locations.

The basic performance of such an adaptive antenna system is influenced
somewhat independently by two sub-systems: the antenna and the adaptive

processor. Choice of the antenna type (multiple beam antenna (MBA) or phased

array (PA)) and configuration (number of beams or array element positions) is
usually determined by such considerations as signal interference proximity

(i.e., resolution), number of interference sources, nulling bandwidth, number

of simultaneous users and their locations over the FOV, the specific FOV over

which the antenna must be designed to operate, etc. Similarly, the design of

the adaptive processor, which is used to control the weighting at each antenna

feed-port, depends strongly on such factors as how the user signals are to be

distinguished from interference signals, the time required for the processor

to "adapt" to a steady behavior, the bandwidth of operation, etc. For these
reasons, the specific characteristics of existing adaptive nulling systems

are as different as there are applications for adaptive nulling techniques.

To date, much has been published on the ideal performance characteristics

of adaptive nulling antenna systems. However, little has been published on
the effects of hardware component imperfections on system performance. To

characterize these effects is the purpose of this note. We present methods

for categorizing, analyzing and measuring the effects of a few of the key



components which are comon to the majority of adaptive systems implemented

to date. Some examples we will discuss are those effects due to antenna

type, antenna tolerance errors, channel tracking errors, weighting circuits,

hard-limiters, correlators and base-band components. We analyze these from

the viewpoint of the degree of cancellation achievable by the adaptive pro-

cessor and also their impact on loop dynamics (where appropriate). We will

also identify several techniques we have found useful in evaluating these

component effects. One such technique has already been published in Lincoln

Laboratory Technical Note 1978-l(1) and we will utilize this material where

appropriate. Others will be developed in the forthcoming sections.

The characterization of the performance of the antenna sub-system has

been discussed in some detail in Ref. 1; hence, the major thrust of this note

will be to concentrate on those factors associated with the adaptive processor

sub-system. However, a brief summary of antenna dispersion (i.e., frequency

variations introduced by the antenna) and some updated estimates on the

effect of antenna type (MBA vs PA) on cancellation will be included here. In

order to illustrate the various component effects, measured performance results

obtained from an experimental Applebaum-Howell type adaptive processor will

be presented.
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II. BACKGROUND

In this section we present a brief summary of the basic equations charac-

terizing the performance of a wideband Applebaum-Howells type adaptive nulling

processor. A simplified diagram of the processor is illustrated in Fig. 1.

The narrowband analysis pertaining to this type of processor has been discussed
(2)in some detail in a review article by Gabriel . In our model, we include the

frequency response of the various components (e.g., the antenna, RF front-ends,

IF filters, etc.) in order that a wideband characterization of the processor

can be obtained. We also include in our analysis the effects of a frequency-

dependent feedthrough component inherent in the weight circuitry. We adopt

the following notation:

n(t) = complex envelope of a single interference noise
waveform incident on the aperture.

S (w) = power spectral density of the noise, n(t).' n"

th
Ak(w) = frequency response function of the k antenna

element (including time delay in the case of a
Phased Array).

Hk(w) channel frequency response function charac-
terizing the kth channel RF/IF mixer, amplifiers,
and filters, over the nulling bandwidth.

E k(M = overall frequency response of kth channel.

Ek(w) = Ak(w) * Hk{ ).
Vk (t) = complex envelope of signal voltage at the input

to the kth weight circuit.

w*(t) = complex, frequency independent weight, where "*"
denotes complex conjugate.

Y*(M) = frequency-dependent feedthrough path present inkthe weight circuitry.

v (t) = complex envelope of the processor output voltage.
0

Xk(t) = complex envelope of the correlator mixer output.

To = time constant of first order filter following the

correlation mixer.

3
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i 7. feedback loop gain.

V = complex beam steering voltage specifying the
quiescent (no interference sources) weight
setting and thereby the quiescent radiation
pattern.

R((T) = cross correlation between v,(t) and v (t).k,q q

Sk(w) = cross power spectral density of vk(t) and Vq (t).

Wo = carrier radian frequency of input waveform.

BWc = closed-loop bandwidth in hertz.

BW = nulling bandwidth (as determined by Hk())
in hertz.

R. = total power of n(t) in the nulling bandwidth

R. f - S(w) dw
3 27rj

C = cancellation: C = (I/N) a/(I/N)b .

(I/N)b,a  = ratio of interference noise level to thermalnoise power before adaption (b) or after

adaption (a).

Complex notation is used because most commonly employed weighting techniques

use the inphase (I) and quadrature (Q) outputs of the correlation mixer to

drive separate I and Q weight circuits in each channel. These are modelled
as a single, complex weight circuit with a frequency response which is

given by

k+ y() = k- Jok + (Ykl(w) - JYk2(w)) (1)

where k and 0k denote the I and Q frequency independent weights and Ykl(w)

and Yk2(w) denote the I and Q frequency dependent weight feedthrough paths

respectively. a k and 8k are assumed directly controllable over the range -1 to
+1 by means of drive voltages derived from the I and Q outputs of the correlator

circuitry.
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Using the above notation, the processor output, v (t) can be expressed
as a weighted sum of the N waveforms, vk(t), k = 1, .... N:

N N
vot) w V Ct) +. L* (-T) Vq(t-T) dT (2)

q=l q=l -

where we have defined the impulse response of y(w) to be y(w) +-* r(t), where

the arrow "+-+' denotes a Fourier transform pair. Note that y(w) - r(t)
implies that y*(w) 4-* r*(-t), leading to the presence of r*(-T) in the
convolution integral in Eq. (2). By considering the basic feedback rela-

tions defined at the sum junction in the baseband branch of the loop, it can

ibe shown (2 ) that each complex weight, wk satisfies the first-order differ-

ential equation,

ToWk + wk + PXk = Vk , k = 1, ..., N (3)

where Xk(t) is the output of the kth complex correlation mixer and the dot

notation indicates a time derivative. The complex correlation mixer consists

of separate I and Q mixers followed by low pass filters to select the lower

side band. In complex notation the mixer output is given by Xk(t) = vk(t) v*(t).

Note that Xk(t) is a stochastic waveform. It is conventional to design the

feedback loops so that the closed loop bandwidth is considerably less than the

bandwidth of n(t) after filtering by the bandpass filters in the RF/IF front

end. In this case, Eq. (3) acts to yield an averaging or integrating effect

on Xk(t). If the input process is stationary over the loop adaption time,

then the "short time average" of wk(t) (averaged over the time scale, I/BWcS

where BWc is the closed-loop bandwidth in hertz) can be estimated by averaging

Eq. (3) over the ensemble of sample functions of n(t). We obtain

ToWk + wk + E{Xk Vk k = 1, ..., N (4)

where, for convenience, we now denote E{wkI by the same variable, wk. It

remains to determine E{Xk. Using Eq. (2) we obtain
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N
E{XkI = w E(vk(t)v*(t)}

q=l q

N

+ I I (-z) E{V(t)v*(t-T)} dT (5)
q=l- q k q

Consider the case where a single interference source is incident on the antenna.

The expected value in Eq. (5) is readily expressed in terms of the power

spectral density, S (W) of the interference source input process, n(t). First,

define Rkq(T) to be the cross-correlation function between vk(t) and v (t)(3)q

and denote the cross power spectral density to be Sk,q(w) +- Rk,q(T ) . Then

Eq. (5) can be written as

N N
E{Xk} = w R o + r (-T) R () dT (6)

q=l q ,q q=l -co Rkq

The integral in (6) can be expressed in terms of Skq(W) by replacing r*(-T)
k~q q

and Rk,q(T) by their Fourier transforms.

f r*(-T) R (T) dT = L Y Sk(w) dw (7)
q Rk, 27 _ q Sk,q

Using Eq. (7), Eq. (6) can be rewritten in the form

N1
E{Xk = - f0 (wq + Yq ()) Skq(w) dw (8)

k q=l -C

The cross-spectral density Sk,q (w) is readily expressed in terms of S n(W)

using the results of Ref. 3 (Chapter 9):

S (w) =A()A*(w H-1(w) *wSM(9k,q Ak(w) q k H*(w) Sn(w) (9)

Finally, we assume that Sn (w) is white over the nulling band and define

S n(w) = R./BW where we assume each Hk(w) has a nominal bandwidth of BW Hertz,

and R. denotes the average power of the incident noise process over the

7



nulling band arising from a single interference source. In this case Eq. (8)

can be written in the simplified form
N

E{Xk} = R. q (w + y (w)) Ak(W) A*(w) Hk(w) H*(w)> (10)
k qi <(q q Ak~ q~J Hk~ Hq~

where the bracket-notation <.> denotes an average over the nulling bandwidth

wi +irBW

f ') dw (11)<> 2wBW

W -71BW
0

Using Eq. (10) in Eq. (4), the time evolution of the N weights wl(t), ... , wN(t)

can be expressed in vector form as
11

Tw + w + p <R. E E (w + y)> = (12)

where the notation "t" denotes the complex conjugate transpose operation, the

underbar denotes a column vector of the N appropriate scalar variables, and

Ek(w) = Hk(w) Ak(w) is the overall channel frequency response.

Equation (12) governs the time-evolution of the complex weight w for a

white noise process as an input to the processor resulting from a single

interference source, and with frequency dependent channel characteristics

embodied in E(w). For ideal weight circuits, y(w) = 0 and Eq. (12) reduces to

Tw + W R w = V (13)

where the matrix R = R.<E E > as defined above.* Equation (13) is the conven-

tional form of the equations characterizing the time-evolution of w that is

discussed in Ref. 2 for narrow-band channels and in Ref. 1 for wide-band

channels. The effect of y on the performance of the processor is one of the

component error effects to be considered in the following sections.

*A more general definition of R is

.t
R = E{v(t) v(t) (14)

The definition used in Eq. (13) is a specia! case which is particularly useful
in testing or characterizing nulling performance in the frequency domain.

8



We conclude this section by defining some parameters that are useful for

characterizing the performance of a processor. The expected value of power

output of the processor is given by

P E{Iv(t)12} (15)

Strictly speaking, this is an ensemble average defined over the ensemble of

sample functions of the input noise process, n(t). Practically speaking, it

is essentially the same as a time average of the power as long as the average

is taken over an interval of time greater than the inverse nulling bandwidth

(in hertz). Using the same procedure used above, P can be expressed as a
0

frequency average

Po =  (w + y()) . R. E(w) E (w) • (w + y())> (16)

w in Eq. (16) is frequency independent. If E(w) and y(w) vary significantly

over the nulling bandwidth, the average output power will necessarily be

greater than the case where y and E are frequency independent. To assess

these effects, it is convenient to define the cancellation, C, by

C = (I/N) a/(I/N)b (17)

where (I/N) denotes the ratio of average interference output power (i.e.,

that contribution of P due to n(t)) to the average thermal noise output

power. The subscripts "a" and "b" denote "after adaption" and "before

adaption," respectively. (I/N)b is a function of the steering vector, V,

which is the weight setting in the absence of interference (or quiescent

weight setting). Following Ref. 2, it is conventional to normalize the

incident interference power, R., to receiver thermal noise power. When this

is done, the cross-spectral density, Sk,q (w) of the thermal noise is an

identity matrix. This assumes the noise in each channel to be uncorrelated

with the other channels and of the same power level as the other channels.

Then, using Eq. (16), the expression for (I/N)a or b reduces to

9



( + - R. E Et  (w+Y)>=IN -- (18)
(I/N)a or b <(w+y) (w+y)>

where we get the "after adaption" or "before adaption" value by inserting

the appropriate weight vectors. When y = 0 this reduces to the more familiar

form,<I t
i t• R • w

(I/N)l t (19)

where, as before, R : R. <E Et

The above definitions are the basis for a systematic approach to

classifying and quantizing the effects of component imperfections on the

overall performance of an adaptive antenna system. For example, antenna

* dispersion is accounted for by Ak(w). Channel tracking errors, or the

mismatches in the channel frequency responses, can be incorporated in the

Hk(w) and so on. In the following sections, these error effects are quanti-

fied in terms of their impact on the achievable cancellation, C. Cancellation

is not entirely satisfactory for use as a figure of merit because it depends

not only on the error effects, but also on the choice of steering vector, V,

power level, and processor threshold level. Quoting a cancellation number

alone can therefore be misleading unless one specifies the other conditions

for which it is applicable. We have generally used one of two standard

choices of beam steering vectors in the following discussions. Unless

otherwise stated, we have used an "earth coverage" quiescent radiation

pattern, which is a uniform gain beam 180 wide. The corresponding V for a

PA is V = col(l, 0, 0.....). The other standard choice is a V that points

*a maximum gain beam in some specified direction.
I4

Finally, before proceeding to a discussion of the results summarized in

Section III, some basic assumptions inherent in these results should be

discussed. First, we assume weight circuits whose phase and amplitude are

ideally frequency independent. This precludes the use of tapped delay line

10



or other frequency dependent weight designs. Second, we constrain the

processor to allocate only a single degree of freedom per interference

source. When a single interference source is incident on an adaptive

antenna, the adaptive processor will generally allocate as many degrees of

freedom as are needed to form a null over the total nulling bandwidth.

However, this situation is undesirable for seve-ral reasons, perhaps the most

" important of which is that using more than a single degree of freedom to

form a wideband null on the source leads to a spatially broad null. (Note:
for an array, the phase at each element varies as w sine -- or simply, as We

1 for small 6. Hence, the processor output is a function of we, so that

fixing e and varying w gives the same result as fixing w and varying e.)
Hence, if one allocates several processor degrees of freedom to null a

i:ingle source over, say, a 20% frequency band, the angular width of the

resulting spatial null will be 20% of the interference source off-axis

angle. This significantly limits the off-axis angular resolution achievable

with the antenna. Another reason for constraining the processor to one

degree of freedom per source is simply that the systems we have considered

have a limited number of degrees of freedom and we want to maximize the

number of sources they are capable of nulling.

III. CLASSIFICATION OF COMPONENT ERROR CHARACTERISTICS AND THEIR EFFECTS

A block diagram illustrating the basic sections of an adaptive antenna

feedback nulling system is shown in Fig. 2. We use a feedback nulling

processor to develop the effects of the various components on performance.

Most results, however, are readily applicable to other types of processors

such as open-loop and feed-forward processors. The feedback mechanism, however,

.does compensate for certain frequency independent errors which would affect the

cancellation performance of open-loop systems. Parameters characterizing

each sub-section of the processor are listed in each block. The effects of

parameters associated with each sub-section on the cancellation achievable

from the processor will be developed in detail in Sec. IV. For convenience

these results are summarized in Table 1. A brief discussion of Table I will

11



TABLE 1

FACTORS AFFECTING CANCELLATION

EFFECT CANCELLATION DEPENDENCE

1. Antenna Dispersion

a) N-Element Array C= KI sin 6.FBW)2

b) MBA - Time Delayed Beams C = K2 (FBW)
2

t 2. Correlated Channel Tracking Errors

(A = RMS Path Length Mismatch 2

consisting of Antenna Placement C < tBW 2

Errors Normal to the Plane
Containing the Array or Cable/ -p
Channel Path Length Mismatch)

22

a) Earth Coverage C < OMAx

b) Beam to User C < oMAx2 N

4. Weight Circuits

a) Feedthrough (Isolation yo 12)

Uncorrelated Feedthrough (a2 ) C < NfYo 2 a2
Correlated Feedthrough (delay T) C < N 2 (_B__3

2- 2

b) Weight Quantization (a 
2) C < a2

c) I/Q Imbalance (Frequency Independent) No effect.

5. Errors in Feedback Paths

a) Frequency Independent Equivalent to Beam Steering
Vector Error (Loop Stability

may be affected)

b) Frequency Dependent Weak Dependence

c) Weight Noise Spectrum Modulation of
Communications Signals

6. Hard-Limiting in Feedback Loops Small Eigenvalue Suppression
Relative to Non-Limited System

12 2



ANTENNA DISPERSION

* PHASED ARRAY

. MBA

ANTENNA TOLERANCES

* ELEMENT PLACEMENT

• * CABLE EXPANSION
* CORRELATED TRACKING

ERRORS

CHANNEL TRACKING

a MIXERS
* AMPLIFIERS

e FILTERS

FEEDBACK LOOP

* HARD-LIMITER e
* PATH-LENGTH MATCHING '

* FREQUENCY VARIATIONS

CORRELATION CIRCUITS WEIGHT CIRCUITS
0 I/0 IMBALANCE 0 FEEDTHROUGH

e D.C. OFFSETS * I/0 IMBALANCE
* I/0 GAIN DEVIATIONS e QUANTIZATION ERRORS
a WEIGHT NOISE

OUTPUT

Fig. 2. Component effects characterizing a closed-loop adaptive
nulling processor.
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be presented in the remainder of this section; the reader not interested in

the development of SectionlV leading up to these results may readily skip to

Section V.

Recognizing that the results of Table I apply with the assumptions

mentioned above and in Section II, the cancellation dependence on each

sub-section of the processor can now be considered.

A 1. Antenna Dispersion

The effects of antenna frequency dependence (i.e., antenna

dispersion) on the cancellation achievable with a particular antenna type

have been studied in some detail in Ref. 1. Basically, antenna dispersion
*1

results from the differing frequency responses of each element of the adaptive

antenna. Generally each antenna output port has a frequency response function

that depends on the interference source location. The nature of this fre-

quency dependence is fundamentally different for an array antenna when compared

to a multiple beam antenna employing time delayed beams, and this difference

clearly shows up in the dependence of cancellation on aperture size. Although

the cancellation is a function of fractional bandwidth (FBW = BW/fo,

f = center frequency, BW = bandwidth in Hertz) and degrades according to
2(FBW) for both antenna types, the cancellation of an MBA becomes independent

of its diameter for very large apertures whereas the performance for the PA
2

degrades as (D/X) . Therefore, MBA's become inherently more broad band at

higher frequencies when larger apertures might be used. A theoretical

development with computer simulations verifying this result will be

presented in Sec. IV.

2. Correlated Tracking Errors

Assembly of the antenna system usually results in errors in

positioning the antenna elements and matching the cable lengths. Generally,

for a satellite at geosynchronous orbit, only the placement errors that are
- I

perpendicular to the plane containing the array are important. These can be

described statistically as an rms error, A, in the overall path length of

each channel. The important conclusion from the result of Table I is that

14



II

matching of these path lengths is dependent only on the bandwidth and not the

RF or IF frequencies. The cancellation deteriorates approximately as !(WBWA/v)
2

where v is the phase velocity in the propagation medium. These tolerances on
p

path length matching must be maintained following the antenna through each

channel down to the sum junction, although v will vary dependent on thep

propagation medium.

3. Uncorrelated Channel Tracking Errors

Implementation of the N-channels of an adaptive processor

usually results in differences in the frequency response functions (i.e.,

tracking errors) of each channel. These tracking errors can usually be

characterized by an rms amplitude and phase error, a2 = aA2 + a 2, which

tenJs to be uncorrelated from channel to channel. The tracking errors are

generally dominated by the filters in each channel which set the processor

nulling bandwidth and by the mixers which may be used to convert each channel

to an IF frequency for weighting. The effects of such uncorrelated tracking

errors have been discussed in some detail in Ref. I, and the cancellation

limits for two particular modes of operation listed in Table I are developed

in that reference. The most notable of those results is that in the case of

an earth coverage quiescent pattern obtained from a PA antenna, best cancel-

lation results are obtained by selecting the "best" channel (i.e., the one

with the lowest measured rms tracking error) as the reference channel.

4. Weight Circuits

The usual approach to adaptive processing is to implement

frequency independent weights -- i.e., ones for which amplitude and phase

hold the same values over the entire nulling K.nd. In reality such a weight

is achievable only within certain limits. We have found that a good model

applicable to many realistic weight circuit designs is an ideal, frequency-

independent weight shunted by a non-weighted feedthrough path (see Fig. 1).
2The amount of feedthrough is characterized by an isolation parameter, 1y ,

and a time delay, T, relative to the weighted path.

15



This model can accommodate two basically different types of feedthrough --

correlated and uncorrelated. In the latter case the kth channel feedthrough

path is characterized as a random function of frequency, yk(w), with mean, Yok'

and standard deviation, ak. The yk(w) are assumed to be uncorrelated from

channel-to-channel in the sense that

f <(Yk() - Yok ) (Yj() - Yoj)*> 0 = 0 (20)

I For uncorrelated feedthrough we assume ik to be 0.

To model correlated feedthrough we have a frequency-independent isolation

parameter, yk' in series with a time delay in which case the frequency response

of the kth feedthrough path is

-jJTk

Y*M = Yok e (21)

The Yk(w) are obviously correlated from channel to channel with the case of

equal time delays yielding maximum correlation. The correlated feedthrough

model is applicable to several real weight circuit designs and is considered

to be a more useful model than uncorrelated feedthrough.

Notice from Table I that the cancellation effects of feedthrough are

functionally similar to the effects of channel tracking errors except

that cancellation performance degrades as N2 where N is the number of

channels. When the processor is assembled, two-channel measurements are

the simplest to make; this is usually the manner in which the performance

is specified. If the two-channel measurement yields a measured cancellation,

C2, then the system performance will degrade by (N/2) 
2 relative to C2 in

an N-channel system. This corresponds to a 12-dB degradation for an

8-channel processor. A more thorough examination of feedthrough, and

techniques for measuring this effect, is presented in Sections IV and V.

Other types of errors which might occur in the weighting circuits are

I/Q imbalance and weight-quantization, if digital control of the weights is

used. I/Q imbalance results from an I/Q-type weight where the phases of the

16



I -

I and Q sections of the weight are not in true quadrature (for example, an

imperfect hybrid is used). Normally the deviation from quadrature is on

the order of 1-5, depending on the IF frequency. However, most hybrids are

broadband devices so that this deviation from quadrature is generally constant

over the nulling band. In this case, it can be shown that a closed-loop feed-

back algorithm compensates for this error so that it imposes no limitations on

cancellation. If the I/Q phase difference should vary with frequency, its

effect on cancellation will be the same as for a weighted channel-tracking

error.

Weight quantization usually results in a weight setting that is slightly

different from optimum. If w is the optimum weight, then w = w + Aw is

the applied weight as a result of quantization. The quantization error, Aw,

s similar mathematically to an rms mismatch between channels when averaged
2over all possible weight settings. The cancellation is then limited by a

which we defined as the rms quantization error (see Eq. (65)).

5. Feedback Path Errors

The basic function of the feedback loops in an adaptive processor

is to sense the N x N correlation matrix of the N signal channels. Denote this

correlation matrix by R. The array output power is then given by (without

feedthrough)

t
P = w •R - w (22)
0 i- =

where w is a column vector of the weights and "It" denotes the complex conjugate

transpose operation. For an ideal system, then, the steady-state adapted weights

are given by (see Eq. (13), with T w = 0)

1w = [I + 9 -  . V (23)

where P is the effective processor gain and V the quiescent beam steering

vector. It is readily shown that using Eq. (23) in (22) results in a minimum

in the radiation pattern in the direction of all interference sources while
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I.

yielding the best rms fit to the quiescent pattern defined by V. (4) However,

in a realistic system, due to the inherent errors present in the feedback loops,

a slightly erroneous correlation matrix, R', is actually sensed. Two basic

questions then arise. How do the errors in R! affect the achievable cancel-

lation and how do these errors affect loop stability (i.e., the transient

response during adaption)? A stability analysis for first-order control loops

is presented in Sec. IV. The effects on cancellation are summarized in Table I.

The effect of errors in R' can be conveniently separated into frequency

independent errors and frequency dependent errors. Examples of the former

include errors in quadrature hybrids, mixer imbalance, dc offsets, and differ-

ences in loop gains, whereas examples of the latter would include loop path

length mismatches, and loop amplifier and filter tracking errors. Frequency

independent errors have no effect on the capability of the processor to null

the interference. Their main effects are to modify the equivalent beam steering

voltages and to modify the stability margin of the loops. Frequency dependent

errors in the feedback loop can degrade the ability of the processor to null

the interference, but such effects are only second order relative to channel

tracking errors. ,In fact, we show in Section IV that if the signal channels

track perfectly, then frequency dependent errors in the feedback loops are

totally compensated for by the feedback mechanism.

A third source of error can be attributed to the feedback circuitry

weight noise, either generated independently in each loop or by the modulation

induced on the weights as a result of the interference. (5 ) The main effect of
this "weight jitter" is to modulate the signal waveforms passing through the

weight circuits making the processor behave as a time varying multi-path com-

munications channel. This can affect the signal detectability and induce cross

Ptalk between signals closely spaced in frequency. For example, when a c-w

signal is incident on the antenna, weight noise generated internal to the

baseband circuits modulates this signal so that the power spectrum of the

output broadens, resulting in a higher total power level at the output. This

effect can be used as a diagnostic tool to measure weight noise arising within

the feedback loops.
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6. Hard Limiting in the Feedback Loop

Previous analysis(6 ) on the effects of hard-limiting in adaptive

feedback loops has led to the conclusion that such limiting relaxes circuit

dynamic range requirements, while having little effect on the system cancella-

tion performance. For a certain class of feedback loop designs, we have found

this result to be valid for a single interference source, but not when multiple

interference sources are present. A detailed analysis of the effects of hard-

limited nulling processors can be found in Ref. 7. The effect of hard-limiting

on cancellation performance (relative to a non-limited system designed for the

same threshold power) is summarized in Table I for the case of two sources, P1

and P21 which generate two eigenvalues, sI 1nd s2, of the correlation matrix.

liard-limiting in the feedback loops has the effect of increasing the sensitiv-

ity threshold (or equivalently decreasing the feedback loop gain) applied to

the smaller eigenvalue. For example, if the larger eigenvalue is 40 dB above

the design threshold, the effective threshold for the smaller eigenvalue is

raised by 20 dB and the smaller eigenvalue will not be sensed or nulled by the

processor unless it is 20 dB or more above the design threshold. The result is

a reduced sensitivity to the weaker sources, and reduced suppression of these

sources relative to a non-hard-limited system.
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IV. ANALYSIS OF COMPONENT IMPERFECTIONS ON CANC[ELLATION AND LOOP DYNAMICS

The previous section summarized some estimates of component limitations

on system cancellation capabilities. In this section we develop these esti-

mates in detail and also consider the effects of loop component errors on

loop stability. Uncorrelated channel-tracking errors and hard-limiting

effects are considered elsewhere and will not be discussed further in

this note. The remaining component effects will be developed in this Section.

A. Antenna Dispersion Effects

In this Section we assume the antenna and processor to be "ideal" (in

the sense that no errors or imperfections are present) and consider the

fundamental limitations on cancellation imposed by the antenna itself.

The achievable cancellation for a given size aperture depends strongly

on the operating frequency, fractional nulling bandwidth and field-of-view.

Furthermore, cancellation depends strongly on the choice of the steering vector

that governs the quiescent radiation pattern (e.g., earth coverage or directed-

beam-to-user). A rule of thumb for geosynchronous satellite antennas is that

ideal antenna dispersion will limit achievable cancellation to about 40 dB

over a 3% bandwidth with a D/X of 10( , for interference sources within 8' of

boresight using one degree of freedom per interference source. An aperture

diameter of lOX is a lower limit for what would be required on a satellite-

borne antenna operating at UHF. Since aperture sizes much larger than lOX

will be desired at higher frequencies and since fractional bandwidths larger

than 3% might be employed in spread-spectrum communications systems, it is

desirable to extrapolate this rule of thumb to larger D/A's and to larger

bandwidths. Since the cancellation performance of multiple beam antennas and

4phased arrays is different, we consider them separately. We shall show that

the MBA has considerably greater bandwidth potential than the PA as D/X

increases.
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1. Phased Array

The dependence of cancellation on bandwidth and aperture size can be

determined directly from the eigenvalues of the expected value of the cor-

relation matrix of the signals at the antenna output ports. Denote this

matrix by R, the corresponding eigenvalues by s s2, ... , s and the eigen-

vectors as e e ... e Then the cancellation, C, is generally given

by(
1 )

C = K s2/S I  (24)

where K is a constant depending on the steering vector V and array configuration
t t

and we assume that e2 " V # 0 (the case S2 • V = 0 would correspond to a special
case unique to a particular choice of V -- in this case Cacs 3/s1 ). It remains

now tc estimate s1 and s2 as functions of D/X and bandwidth. In Appendix I we

show that for the phased array,

2
C = K (D/A sine * FBW) (25)

where K is a constant and e is the scan angle relative to array broadside.
This is the functional dependence shown in Table I. For example, since C

2increases as (D/X) , increasing D from lOX to 10O0 for a fixed antenna geometry

degrades the achievable nulling performance by 20 dB! For D/X = 10, e = 8'
and FBW = .032, a typical number for C is l0-4 and we can express (25) in the

form

C = 5.2 x 10-2 (D/X sine * FBW)2  (26)

Of course, better cancellation levels might be obtained by using up more than

one degree of freedom per interference source, but this results in a broader

angular null and therefore less gain for users in close proximity to the inter-

ference source. It also limits the maximum number of interference sources

which can be nulled by the array. Equation (26) indicates that for a frac-

tional bandwidth of 2%, null depths on the order of 25 dB are realizable for an

aperture diameter of 0OX, using a single degree of freedom per interference

source. A wider fractional bandwidth of 5% would reduce the cancellation

performance to less than -20 dB for the same size aperture.
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As an example to illustrate the validity of the approximations leading

up to Eq. (25), consider the 13-element thinned array illustrated in Fig. 3

having the normalized coordinates for each element indicated in the Figure.

A signal source is positioned at angular coordinates 0s = 7.70, 0s = 0' and

an interference source 0.30 away at 6. = 8.00, %= 0  which is equivalent

to an elevation angle to the satellite of 20°. This spacing of 0.30 between

* user and interference corresponds to a half-power beamwidth/2 for D/A % 100.
* iFigure 4 illustrates the behavior of the first four eigenvalues of the correla-

tion matrix of interference signals as functions of D/X assuming a fixed

fractional bandwidth of .046 and white noise interference spectrum over this

band. s1 corresponds to the array output power realized with a maximum gain

beam pointed to the interference source. Therefore, we expect s1 to be very

nearly equal to R. NGe (where Ge is the element gain) and to be independent of

D/X. Observe from the figure that

s I constant (27a)

s2 " (D/A sine * FBW)2  (27b)

s3 % (D/A sine * FBW)4  (27c)

s4 (D/A sinO * FBW)6  (27d)

The behavior of s, is clearly consistent with the results of Appendix I.

To check the validity of Eq. (26) for cancellation, we compute from our

example the cancellation and user gain loss assuming that the interference

power iS 30 dB above the processor threshold. This threshold level of the

processor is indicated in Fig. 4. Since the processor does not respond to the

eigenvalues below threshold, only eigenvalues above threshold are sensed and

nulled. The number of eigenvalues above threshold is the number of degrees of

freedom used by the processor to form the null. The loss in user gain and

cancellation are shown in Fig. 5 as a function of rl/A. We have assumed a

steering vector that directs a maximum gain beam to the user in the unadapted

case. The user power is negligible in its impact on processor performance.
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Fig. 3. 13-element thinned planar array geometry used for the
simulations of Figs. 4 and 5.
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Observe that for D/X 15, the processor senses only the first eigenvalue,

therefore only one degree of freedom is used to null the interference. The

resulting cancellation is about -30 dB. For D/X = 25, the second eigenvalue

is sensed so that two degrees of freedom are used to form a wide-band null.

The resulting cancellation is about -25 dB, 4 dB worse than predicted by

Eq. (26) (which assumes only a single eigenvalue sensed). As D/A increases

still further, the cancellation remains fairly constant at about -28 dB, even
though the processor is now using more degrees of freedom to form a null.

However, the user gain degrades rapidly as a consequence of the loss in

resolution due to the wide-band null. To illustrate this, the loss in gain to

the user which would be obtained for FBW = 0 is also plotted in the figure.

Up to 7.5 dB loss in directive gain in the direction of the user occurs as a

consequence of using additional degrees of freedom to wide-band the null.

Therefore, the achievable S/J (signal-to-interference power ratio) improve-

ment averaged over the band is only about 16 dB for D/A = 100!

These results show that Eq. (26) is valid as long as a single eigenvalue

per source is sensed. They also illustrate that using more than one degree of

freedom may improve the cancellation, but it may not improve the S/J perform-

ance because the user gain may suffer. These results also show that the phased

array becomes relatively narrow-band near the edge of the FOV. The cancella-

tion versus bandwidth achievable with an MBA is much better than for a PA. We

now consider this antenna configuration.

2. Multiple Beam Antennas

The general characteristics of multiple beam antennas for use in

satellite-earth coverage applications are discussed in Ref. (8). The salient

features of MBA's used for this application briefly be summarized.

.A multiple-beam antenna located on a geosynchronous satellite illuminates

the earth with a fixed position set of beams, the composite of which cover the

earth FOV. For earth coverage illumination (i.e., a circular FOV), the beams

are generally positioned hexagonally and usually are chosen to number 7, 19,

37, 61 ..... in order to fully illuminate the circular FOV. To each beam-set
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covering the earth, there corresponds a given size aperture consistent with

this number of beams. When a lens or reflector antenna system is used,

physical realization of the beam-set is obtained by offsetting an array of

feeds from the focal point of the lens or reflector, transverse to the focal

axis. Consequently, each beam has a beam-width and sidelobe levels consistent

with full aperture illumination. As the number of beams increases to cover a

fixed FOV, the aperture size, D/X, must increase correspondingly. Hence, for

a large number of beams, there is significant coupling only between adjacent

4 beams. This leads to a correlation matrix R, defined at the feed port outputs,

which is diagonally dominant. Furthermore, an interference source positioned

at a specific location on the earth is characterized only by that set beams

in close proximity to the source. Consequently, the eigenvalues of the feed-

F:ort correlation matrix resulting from this source are dominated by the sub-

matrix generated by the beams surrounding the interference. Otherwise said,

adding more beams to the antenna configuration far away from this source

should not affect the eigenvalues of R. However, as discussed above, adding

more beams corresponds to increasing D/A for a fixed FOV. Consequently, we

anticipate that the cancellation dependence of the MBA operating over a fixed

FOV becomes independent of D/A (or number of beams) as D/A becomes large.

Thus, the cancellation achievable with an MBA tends to be dependent on the

position of an interference source within the surrounding beam set, and this

positioning is predominantly aperture independent. The resulting simulations

will, indeed, verify this conjecture.

Because the frequency transfer function, Ak(w), characterizing the N

beams of the MBA is much more complicated than for the phased array, it is

difficult to obtain analytical results predicting the dependence of cancel-

lation vs. D/X sine and FBW for the MBA similar to those of Appendix I for

the phased array. Consequently we resort to computer simulations. In order

to generate a simulation for the MBA paralleling the analysis of the phased

array, we again separate the jammer and user positions by 0.3". The MBA

performance curves corresponding to Figs. 4 and S for the phased array are

illustrated in Figs. 6 and 7. For D/X = 10, 7 beams cover the FOV and were
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used in the simulation. For D/X . 20, the simulation employed only the 19 beams

at the center of the FOV so that existing computer programs limited to a small

number of beams could be used. The user and interference source were placed at

es = 10, *s = 0 and *. = 1.30, *. = 0 respectively. Since the MBA is scan

angle dependent only relative to the position of the interference source amongst

a triad of adjacent beams, this positioning relatively close to array broad-

side does not compromise the simulation results concerning bandwidth. Inclus-

ion of the outer beams to cover the FOV completely would not affect the results

appreciably. Observe in Fig. 6 that all the eigenvalues are relatively inde-

pendent of aperture size. Generally, for fixed input power, s1 should increase)2

as (D/X) , since s1 represents the maximum power received with a maximum

directivity beam pointed to the source, and this maximum gain increases as
2(D/X) . However, in order that the nulling processor used in the simulation

might see the same input power for each D/X, we have adjusted the input power

for each D/A so that s1 remains constant, independent of D/X. The processor

gain, p, is then chosen for each case so that uIs1 = 30 dB. The simulations

confirm that s2 is also independent of D/A. Then to first order, the cancel-

lation, C, is also independent of D/X because C - s2/s1 (Eq. (24)). Further-

more, we note that sI is relatively independent of FBW (s1 corresponds to the

output power when a maximum directivity beam is pointed to the interference).

This beam is independent of frequency for the small percentage bandwidths
2( 5%) of interest here) whereas s2 increases as (FBW) . Hence,

C = K s2/s I = K (FBW)2  (28)

For an MBA, therefore, C is predominantly a function only of FBW. This is the

result referred to in Table I. The MBA cancellation is illustrated in Fig. 7,

-and is considerably better than that for the PA, averaging about 40 dB ovcr

the range of D/A considered. Furthermore, the cancellation is achieved using

only a single degree of freedom. This is evidenced by examining the directive

gain in the direction of the user assuming both FBW = 0 and FBW = 4.55%, which

yields similar results for each FBW. For D/X = 100, the loss in user gain at

one-half power beamwidth from the interference source is S dB rather than the

predicted 3 dB for a phased array when FBW = 0. This is because the resolution
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of the MBA is poorer when the user is not positioned at a beam center. A

maximum gain beam synthesized from a dyad or triad of beams has a broader

beamwidth at the edge of the 19-beam FOV. Clearly, however, the overall S/J

improvement is good compared to the phased array. For example, for D/X = 100,

the S/J improvement is 33 dB for the MBA compared to only 16 dB for the

phased array. We should mention again that the results of the simulation are

steering vector dependent, so that deeper cancellation levels might be

obtained for other steering vectors.

One final note which should be mentioned regarding the MBA is that for

employing an MBA with aperture sizes D/A = 100, and, with adjacent beams

spaced one HPBW apart, approximately 721 feeds are required for full earth

coverage. Clearly, employing full adaptive control on each feed is imprac-

tical. One technique for simplifying the hardware would be to employ a

smaller feed cluster which could be scanned to cover particular areas within

the FOV. Another technique might employ a switch network to utilize only

those beams containing signals in an adaptive processor with a smaller number

of channels.

B. Element Positioning and Cable Length Mismatch

An array antenna in space may experience variations in its element posi-

tions or electrical path lengths as a result of the extreme temperature vari-

ations to which the outer surface of a satellite is subjected. The effect of

such variations on cancellation will be analyzed in this section. If A is

the rms differential displacement of the elements (expressed in feet), then

for the cancellation to be a level C over a bandwidth BW (in MHz), the

tolerance on A will be shown to be

A[feet] < 542.6 Vc/BW (29)

Some values of A for selected bandwidths and cancellation levels are tabulated

in Table 2. It should be emphasized that these tolerances on 6 assure that

the antenna element position errors will not degrade cancellation below the

value shown. However, they do not assure that cancellation to these levels
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will actually be achieved because, for some scenarios, the inherent dispersion

of the antenna due to the wavefront angle of arrival dominates the cancellation

performance so that in those cases position errors are not important.

TABLE 2

REQUIRED TOLERANCES ON RMS DIFFERENTIAL ELEMENT DISPLACEMENT
A VS. BANDWIDTH AND CANCELLATION LEVEL

BW(MHz) C(dB) A(ft) A(in)

1 -30 17.2

1 -40 5.4

1 -50 1.7

10 -30 1.7

10 -40 6.5

10 -so 2.1

100 -30 2.1

100 -40 0.65

100 -50 0.21

1000 -30 0.21

1000 -40 0.07

1000 -50 0.02

Development

Let (Xkyk,0) be the desired x,y,z coordinates of the kth element

normalized to D/2, where D is the smallest diameter enclosing the array. Let

the matched cable length extending from the processor of each element be k.

When the element is displaced, and the cable expands, the new values of these

variables are (xk + Axk, Yk + Ayk' Azk) and Z + Atk, respectively. Denote

the output signal at the kth port with perfect positioning by Ek . Then, for

a wavefront of amplitude E incident from angle (0,€) with respect to the

array reference frame, Ek is given by
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D
0 j k 0 TW(xk sine coso + Yk sine sino) -jk LW

E k (w) =E e e (30)

where, as before, w is the actual angular frequency, w° is the angular frequency

at band center, k° = o/c, and W = /" When the elements are displaced and
0 0 0

the cables expanded, then the output Ek(w) becomes

D
-JkWAk W  +jko . W[Ax k sine coso + Ayk sine sineEk ) M Ek (w) o k e k

+ Azk cose] (31)

Note that errors Axk, Ayk are reduced in magnitude by sine (sine < .15 within

the 8.70 FOV) so that the co-planar positioning of the elements is less critical

than out of plane position or cable length. Furthermore, for some angles of

arrival, the dispersion inherent in Ek0 (w) will dominate all positioning errors,

particularly for large antennas. However, if we wish to specify the antenna

tolerances so that their effect on cancellation is negligible for all angles

of arrival, then the case of sine = 0 (broadside incidence) is a worst-case

condition.

Define Mkq(w) = E (w) E*(w). Then M takes the form

S-(j ° -Jko(Atk-At ) W +jk D(Azk- z ) W
kq =k,q() e e (32)

where we have used the small angle approximation cose = 1 and defined

NI 0qCw) = Ek0 (w) Eq°0*(w). Equation (32) indicates that the dominant errors

are cable expansion and deviations in out-of-plane element positioning.

Define the net position error for the kth element to be

A k ALk - AzkD/2 (33)

Then, assuming broadside incidence (0kq(u) = IEo1 2 ), we obtain

kq(w) = Eo12 e-JkoW(Ak-Aq) (34)
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In order to compute the effect on the cancellation level, we average M(w)

over the frequency band. Define R = M , where<> denotes a frequency

average over the bandwidth of interest: Now expand R in the form

R = R + AR (35)
- =0 =

where R -< (M>w and AR denotes a perturbation of R due to the net position
-0 -0 =0

errors of each element. For a single interference source incident on the array,

it can be shown that the cancellation C for an earth coverage beam-steering

vector is bounded by

C < Nis2/s1) (36)

where N is the number of elements and sI and s2 are the two largest eigenvalues

of R. (Normally s1 >' s2 and s is determined by the channel tracking errors

or differences in frequency response among channels, which in this case result

from the net positioning errors.) To determine s1 and s2, we average Eq. (34)

over FBW and obtain

k FBW
=A2 Jk°(Ak-A) sin ( 0  ( Ak - Aq

R ~ kq IE I 2 (37)q~
0 o k0 FB

(ko -- (_2 q _ J

To express (37) in the form of Eq. (35), assume that k oAk-Aq « 1 and also

k FBW
that 02 JAk-A = -7-BW IAkAqI - 1, where BW is the nulling bandwidth in

hertz. Then (37) can be written in the form

= JEo 12  1---9, (Ak-A )  + jk (A -A (38)

It is reasonable to assume that each Ak is an independent random variable with

zero mean. Let A be the standard deviation of the distribution of position

errors, then
0 for k=q

E{(Ak-Aq)2} 22 (9)

2A 2 for 3
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where E{.} denotes the expected value taken over the distribution of position

errors. The expected value of R, denoted by R, is therefore given by

kE2 1 2-M) A2 (16) (40)
=k,q 0.Q c ~

where 6k is the Kronceker delta function. Equation (40) can be expressed ini 'q

the form

E {( "- ) 1 h + E (41)

i2
where we have defined 1 = col[l,l,...,l], E- 'At" is the complex

conjugate transpose, and I is the identity matrix. The eigenvalues sI and s2

of R can readily be determined to be

s 1 =-JEo0 2 (1-c) N
(42)

s2  0~1

so that, using Eq. (36) bounding the cancellation C, we obtain

C = l1t7BW\ 2  2-- 1- ~ / _ (43)

Expressing BW in MHz and A in feet then leads to Eq. (29) specifying the

allowable tolerances on A as a function of the desired cancellation and

bandwidth. Recall that (43) is based on a statistical average. There will

be some variation in the actual cancellation achieved.

C. Weighting Circuits

There are several methods for implementing amplitude and phase control

in each channel of an adaptive processor. Perhaps the simplest technique is

an attenuator and phase shifter in series as illustrated in Fig. 8a. This

topology can be quite useful for certain applications. Its limitations lie

in its inability to turn off completely, due to the finite dynamic range of

real attenuators, but perhaps more significantly, it is difficult to couple

this type of weight to the output of an analog adaptive processor. As shown
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Fig. 8. Two common techniques used to obtain amplitude and phase
control at the output of each antenna port: (a) Attenuator in
series with phase-shift, (b) Inphase (I) and quadrature (Q)
weighting.
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in Section III, the weight control output of the processor is usually avail-

able as "inphase" (I) and "quadrature" (Q) voltage for each weight. This

output must be converted to an amplitude and phase form to drive the attenu-

ator and phase shifter, thus complicating the circuitry. To avoid this, the

weighting is usually accomplished in terms of the I and Q components directly,

as illustrated in Fig. 8b. In this case, the I and Q components are separated

by a quadrature hybrid. The I and Q branches can then be driven directly by

the I and Q components of the correlator output. When implemented as in Fig.

8b, each complex weight circuit, depending on the weight setting, can have as

much as 12 to 14 dB of insertion loss from the splitting and combining losses

of the hybrids. A lower insertion loss topology for I and Q weighting is

illustrated in Fig. 9. In this scheme, both attenuation and phase reversal are

accomplished with two fewer hybrids than in Fig. 8b, resulting in a 6 dB

improvement in insertion loss. The drive voltage, Vd, which is derived from

the Q control voltage, controls the pin-diode resistance, which varies the

reflection coefficients rI and r2 (which are nominally equal) over the range

-1 to +1. This allows both attenuation and phase reversal. A direct conse-

quence of this technique, however, is the presence of a "feedthrough" compo-

nent which is independent of control voltage. In this case it arises in the

hybrid parasitic coupling. In practice, a small component of feedthrough is

usually present in any weighting circuit. It has an important effect on

performance and it is of interest to analyze its effect on cancellation.

Development

The basic equations characterizing the effects of weight feedthrough

on the adapted output power have been developed in Section II. The composite

weight, including feedthrough, is modeled as a single, complex weight circuit

with a frequency response which is given by Eq. (1). That part of the weight

which is directly .ontrollable, denoted by w, via the I and Q correlator out-

puts is governed by Eq. (12). The corresponding output power accounting for

the presence of feedthrough is given by Eq. (15). These equations are generally

difficult to solve unless one resorts to numerical simulations. However, if
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we assume an array antenna geometry, and broadside incidence for the interference

source, then the questions simplify to a tractable form. With these assumptions,
t.E E is independent of frequency and Eqs. (12) and (15) reduce to the simpler

form

T + +  ] " (w + <y>) = V + <y> (44)

0 --

and

t
P = ((w+ <-Y> + y) • (w + <y> + Ay)> (45)

t
where, as before, we have defined R : R. E E and

y() = <y(W)> + Ay() (46)

Note, by definition, <Ay> = 0. In the steady state, solutions to Eq. (44)

take the form

*w + <y> [I + pR]-I (47)

Equation (47) points out that the control loops only compensate for the average

of y(w) over the nulling band. This occurs because feedthrough is not sensed

in the covariance matrix, R, as are, for example, weighted channel frequency

variations (e.g., those occurring in the front end filters). Using (45) and

(47), and noting <Ay> = 0, then the adapted output power, P0 , is given byv* -1-I1
f! + -P1 R • [I + pR] V + <Ayt. R Ay> (48)

The first term in (48) is the output of an ideal processor (i.e., one

with no feedthrough). The second term is a residual component of power due

to the frequency variation in the feedthrough. This residual power is weight

independent, and cannot be compensated for by the adaption process.

The above limitations are quite significant and have considerable impact

on system performance. To illustrate this impact, let us rewrite Eq. (48)

in the form

Po= Pa (without feedthrough) + k Pin (49)
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That is, the actual output of the nulling processor consists of the theoretical

adapted output, assuming perfect weights, plus a residual term proportional to

the input power. Figure 10 illustrates the effect of this latter term on system

performance. In Fig. 10, we plot the input-output power relationship for the

nulling processor either in the quiescent (unadapted) state or the adapted state.

The difference between the two curves is indicative of the cancellation realized

by the processor. Clearly the constant k, dependent on Ay, limits the achiev-

*able cancellation. In the general case (i.e., non-broadside incidence), the

constant k is dependent on the feedthrough parameters (i.e., isolation, time

delay, etc.), interference-source angle of arrival, and quiescent steering

*vector. For weight circuits designed to be as identical as possible, k would

be near maximum for broadside incidence. Consequently, it is for this case

which we estimate quantitatively the cancellation dependence on feedthrough

in the following paragraphs.

To obtain an estimate of the constant k, consider the second term in

Eq. (48). We have

(Po)feedthrough = Ay t . y> = R. Et • <yAy t> E (50)

The cancellation C is defined in Eq. (16). Assuming the feedthrough term

dominates the adapted output power, then (I/N)a is given by

(I/N) = t -
(51)

a (w + <y>)t . (w + <y>)

In order to simplify Eq. (51), note that, for broadside incidence, F is propor-

tional to the first eigenvector, e1 , of R. Furthermore, assuming an earth

coverage quiescent steering vector, it can be shown that Eq. (47) reduces to

t <> = co,[I .1 -] (52)

valid for broadside incidence. Hence

t 1i (w <y>) (w + <y>) = 1---

N
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performance.
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Consequently, the expression for (I/N)a becomes

t , <Ay Ay t> . e
(I/N) a  Rj(E t  E) (54)

a -- "- 1 -1/N
N

Now R.Et • E = R. IEkj 2 = Trace(R) s1 = maximum eigenvalue of R. Hence,
1- -- ] k=l k

_ ~~~N Slt A yt> 1(5
(I/N) a N t (55)

To compute (I/N)b for the same earth coverage quiescent constraint, we note

V * R • V(I/N)b Vt = s1/N (56)

so the cancellation C is given by (see Eq. (16))

C = " N. (57)

-l<AY AYt> -1S

Clearly, the cancellation is directly dependent on the frequency variation of

the feedthrough. Equation (57) can be estimated for two characteristically

different types of feedthrough -- correlated and uncorrelated.

(a) Uncorrelated Feedthrough -- One example of uncorrelated feed-

through which might occur is when the feedthrough path length from weight

input-output is the same as the weighted path length from input-output, but

the isolation <Ay Ayt> takes the form of a diagonal matrix

<AyAj t > = I1y12  2 (58)

2 2

where a2 is the isolation tracking error, and Iyo1 2 the isolation level of the
feedthrough path relative to the weighted path. Then (57) reduces to

C v NIyo12 a2 (59)
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which is the result tabulated in Table 1. Equation (59) assumes an earth

coverage steering vector. Since (I/N)b is dependent on steering vector,

whereas (I/N) is an absolute level independent of steering vector, Eq. (57)
a

specifying C would change dependent on V. Otherwise said, referring to

Fig. 10, the unadapted curve in Fig. 10 moves up or down dependent on V,

whereas the nulled output in the feedthrough limited region remains independ-

ent of V.

(b) Correlated Feedthrough -- Correlated feedthrough errors occur

when a time delay difference exists between the weighted and feedthrough
paths. Effects on cancellation due to this type of error can be estimated

assuming identical time delay mismatches, defined by T, for each weighting

circuit. Then :1(w) takes the form
jW(woT)

_(w) = yo e (60)

It is a straightforward procedure to evaluate<Ay Ay >. We obtain

<ye>jAWoT sin r BWT
<A_ Ay> = o BW T T I> (61)

where BW = bandwidth (Hertz), and AW = W-1. For BW • T << 1, we obtain

2
t (T " BW T)<AY yt > -Y.010 3(62)

t 1 [, , . . ] e o t i
Substituting Eq. (62) into (57), and noting that e t 1 [1,1, ... , 1], we obtain

C E N2  yo 12 (i BW - T)2  (63)03

Equation (63) is the result cited in Table 1.

Finally, although not related to the feedthrough effect developed above,

it remains to evaluate the effects of using quantized weights, as alluded to

in Table 1. It is interesting to note that analyzing this effect is similar

mathematically to that for the feedthrough analysis. To see this, we express

the error in weight setting in the form

w = w + Aw (64)
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where w is the precise (desired) weight and Aw is the error due to quantization.

Define the rms quantization error according to

a 2 E)l---I2 = E--w 1 EfAwk2 1 (65)
wk wk

where the expected value is statistically a function of all possible weight

settings. The adapted interference to thermal noise ratio is given by

E"wt 
* R- wi EAW t R.Awl

(I/N)a =- .f = -- - (66)Eaw • . l -*
w *w

We can express Eq. (65) in the same form as (51), i.e.,

*EjAw Aw* Ei
(I/N) a -t - . (67)

Assuming uncorrelated errors between channels, and using Eq. (65)

-2

-2

0 wN

Assuming an earth coverage steering vector constraint, we have wI = 1-1/N,

2= "" = WN = 0-1/N so that (68) reduces to

+w A2w/ = .2  1/N]2  (69)

0 I1/N2

Using Eq. (69) in (67), we obtain

(I/N)a = N /N (70)a N I 1 IN
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Since (I/N)b = sl/N, it follows that

C = 2 (71)

which is the result referred to in Table 1.

Another class of errors alluded to in Table I which occurs in the weight-

ing circuits is I/Q imbalance from true quadrature separation. Because of the

inherent compensation of these errors by the action of a feedback processor,

discussion of this error type is deferred to the next section.

D. Effects of Compoent Imperfections in the Feedback Loops

The function of an adaptive processor is to provide control of the

weights following the antenna port outputs. Many techniques for adaptive

cortrol of the weights have been developed and used in practice. Each has

its own peculiar properties. Since the feedback type of processor employing

either analog or digital processing is most commonly used, we direct our

attention to it.

As discussed in Section III, one of the basic functions of the feedback

loops is to "sense" the correlation matrix of the N signal channels. In

practice, the correlation matrix sensed by the control loops includes

imperfections in both the signal channels and feedback channels. If these

imperfections are frequency independent, then there exists a unique set of

weights that minimizes the output power, therefore compensating for the

errors. It is not surprising that a feedback type processor can adapt to

this unique set of weights because the inherent nature of the feedback

mechanism is to drive the output toward zero. Consequently, we anticipate

that the main effect of frequency independent errors is their impact on loop

dynamics. Otherwise said, as long as the feedback loops remain stable, the

feedback processor is considerably tolerant of frequency-independent

imperfections.
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To demonstrate the above conjecture, and to develop a quantitative

assessment of component error effects on loop dynamics, we consider the model

of the analog feedback processor illustrated in Fig. 11. The following error

types will be considered:

1. Pre-weighting channel tracking errors: Hk(w)

2. Post-weighting tracking errors: C k(w)

kS3. Feedback loop tracking errors: Fk(w)

4. I/Q mixer imbalance errors: cik and E2k

5. I/Q weight imbalance errors: *k

6. Loop gain imbalance: v lk/12k

dc dc
7. Mixer dc offsets: Vik and V2k

As before, Ak(w) denotes the antenna frequency response for the kth channel.

We assume a single pole filter (F(s) = 1/(Tos+l)) in each feedback loop. For

an N-channel system with component errors, the equations characterizing the

dynamic system response must be formulated as a 2N dimensional problem. In

the following, we first develop the general set of 2N equations governing the

system response and then consider separately the effects of frequency inde-

pendent and frequency dependent errors.

Denote the weights for the I and Q channels as ak and 8k9 respectively,

where k = 1, ..., N. In a statistical formulation, ak and $k are character-

ized as random processes which are dependent on the interference noise

process incident on the antenna and the time-evolution of the expectations

E{a k} and E{8k} (denoted hereafter as ak' Ok' for simplicity) is governed by

r 2N differential equations. Statistical variations relative to the expected

values of the weights are called "weight noise" and are treated separately in

Section IV-E. From Fig. 11, we find that the 2N equations for ak and ak are:

Took + [ak + EYIk] = Vlk

k=, ...1 n (72)

ok V k + E{Qk} =V 2k
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Fig. 11. Model of a wideband, analog feedback nulling
processor including the effects of various component
imperfections.
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where the complex steering vector k= ik + J-2k and we assume j(w) = 0

(i.e., no weight feedthrough) V. It can be shown that (e.g., see the analysis

leading up to Eq. (13))

El )= j R +jF-lk _B w)kI + P Vdc
E{Ik} :'lk Re e k (" * _)k lk lk

E e2k I e 1_ w dc (73)

{Qk_ = 2k Im, )k 2k 2k

In (73), V and V are the I/Q channel beam steering voltages and R" is the
Vlk 2k

N x N covariance matrix sensed by the correlation mixers (Fig. 11), and is

given by

R" = <Fk Ek C* E*> (74)
k,q q q

where Ek(w) Z H kw) Ak(w). Also in (73), we have introduced the equivalent

weight w, defined by

=ak + J k e (75)

The factor e 'k characterizing weight imbalance errors, accounts for

the deviations from true quadrature. Any absolute phase error in the weight

transfer function is included in the definition of Ck(w).

Equation (72) defines 2N real equations specifying the time evolution

of ak and ak. This evolution is dominated by the properties of R" defined in

(74). Observe that R" is non-hermetian, indicating that the eigenvalues of R"

will in general be complex, leading to oscillatory solutions for ak and B

Once the ak and ak adapt to steady state (assuming that stable solutions to

(72) exist), then the adapted output power, P0, can be computed. Define the

N x N signal channel covariance matrix (including signal channel imperfections),

R' to be
C**

RIq = <Ck Ek Cq Eq> (76)
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The output power is then given by

P = w " R' - w (77)
0 - -

Equation (77), when w is obtained from Eqs. (72) and (73), specifies the

dependence of adapted output power on loop component errors. To determine

w in the steady state, substitute Eq. (73) into (72) and set ek = 8k =0.

The resulting expressions, expressed in the vector, form are:

a + Re W R 1 =dc

+ IM w VR". dc (78)

- m 2 = = 2

where we have defined the diagonal matrices

+J6 lk-Jk

()lk,q V ilk e 
6k,q ' (2)k,q = 12k ejE2 6k, q  (79)

6k,q is the Kronecker delta function and (V k dc Vdk (V2 d V2k
d c

Observe that the effect of the mixer dc offset voltages is to modify the beam

steering voltage. This does not affect the ability of the processor to null,

but does affect the adapted radiation pattern away from the null. This could

be a serious consideration for the mode of operation of steering a maximum

gain beam to a user close to an interference source, but in the earth-coverage

mode it is not a significant effect. In either case, digital calibration

techniques can be used to compensate for this effect. Consequently, in the

dc dcfollowing analysis we assume V 1 and V 2 to be zero.

Closed form solutions to Eq. (78) are in general difficult to obtain.

The task can be simplified considerably by assuming that tLe interference

sources are large relative to loop threshold. That is, if Sl, ..., sN denote

the N eigenvalues of R", we assume that 11s.1 >> 1 for eacli interference

source. In this case, the a and $ terms on the lefthand side of Eq. (78) are

negligible. Equation (78) can then be rewritten as 2N real equations for the

solution of the vector X where
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X R"- w (80)

Solving (78) for X, w can then be determined by inverting (80).

w = R" X (81)

Substituting (81) into (77) yields the general dependence of output power on

loop component errors.

It is convenient to classify the effects of component errors into two

categories: "frequency dependent" and "frequency independent." Consider

first the latter category.

1. Frequency Independent Component Error Effects on Cancellation

On substituting the adapted solution, Eq. (81) into (77), P takes

the form

P t.(1-1 t -
P X R(R"1) R'*R" *X (82)0 - " =

If we assume all errors to be frequency independent, then (82) reduces to a

simpler form. For this case, let Ck(w) e+ k to represent the net phase

error of the kth channel and let Fk(w) - eJ6 k. Then (74) for R" can be
=k,q

expressed in the form

F k  *F k

R" = k * C E E* = Fk (83)
=k,q Ck k k q q  C=k ,q

so that R' and R" are related by a diagonal matrix, i.e.,

R" = D - R' (84)

where Dkk = F /C and D =0 for Z $ k. R' and R (where R is defined at the
k /Ck kR.

output ports prior to weighting) are also related by a diagonal matrix. From

(76),

J~k - Jq
R, e Rk e (85)

k,q k,q

so



whereR = <E E*> which can be written ask,q k q

R I = C R Ct (86)

-=

where C = e and C = 0 for k / £. It can be easily shown that the
kk

eigenvalues of R' are the same as those of R. Using Eq. (86) in (82), we

obtain
tI I t -l -1Po [X .( -)]_R' .[D .X] (87)

which takes the same form as the error-free solution having equivalent beam

steering vector V = D X. Since the R' has the same eigenvalues as R,
-eq =

P can assume as low a value in this case as for the error free case. Conse-" 0

quently, we conclude that frequency independent errors, assuming the loops

remain stable, do not affect the nulling capability of the feedback processor

They do, however, affect the adapted radiation pattern away from the nulls.

This is the result referred to in Table 1. These results have been verified

by numerous computer simulations.

2. Frequency Dependent Errors

A general analysis of the effects of frequency dependent loop

component errors is difficult to carry out. It is clear that in this case
csrdt
R" and R' are no longer simply related by Eq. (83); therefore the achievable

£ ! ~cancellation is affected by frequency dependent errors. Setting Fk

and C k (w) = 1 leads to the analysis channel tracking errors (mismatches in the

H k (w)) presented in Ref. 1. Consequently, the major thrust of this Section is

to include the effects of Fk(w) and Ck(w) on achievable cancellation.

To accomplish this, we resort to the simple two-channel model illustrated

in Fig. 12, assuming broadside incidence (A1 = A2 ). For this model, assume

that the interference source is large relative to threshold ( > 1). The

expression for the output frequency spectrum, V (w), can be shown to be
0

Vo(W) a V[ F2C 2>C 1() - <F2 C1> C2

+ V2  F 1C 1 > C2 (w) -(F 1 C2 > CI(I) (88)
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Fig. 12. Two-channel model used for frequency-dependent
loop component error analysis. ""indicates "complex-
conjugate" operation.
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We define the frequency response errors, AF(w) and AC(w), to be:

AF(w) = F(w) -

AC(W) = C2 (W) - C1 (W) (89)

Using Eq. (88), we can show that the effects of AF on cancellation are of

secondary importance relative to AC. That is, differences between the

feedback loop frequency response functions have only a weak effect on the

achievable cancellation level compared to differences in the response func-

* tions of the signal paths. To see this, substitute Eq. (89) into (88). We

obtain

Vo(w) = V1 [(F1 AC> C1 (w) -<F 1 C1> AC(w)

+ <AF* AC>C 1(w) -<AF* Cl> AC(W)]

+ V2 KF 1 CI>AC(w) - <F l AC> C l()] (90)

Equation (90) characterizes the output frequency spectrum of the output signal

voltages. For an ideal system, V0 () would be zero. The fact that it is

not is attributable to the tracking errors, AC(w) and AF(w). Note that all

terms involving AF are of order AF • AC, indicating only a weak dependence
of cancellation on AF relative to its dependence on AC. Note that if AC = 0,

V0 (w) = 0 independent of AF. Consequently, we conclude that the dominant

effect on cancellation is due to those frequency dependent tracking errors

in the signal channel for which the results of Ref. 1 apply directly.

3. Effects on Loop Stability

Consider now the stability requirements imposed by the set of 2N

differential equations, (72) and (73). It is convenient to recast these

equations into the form of a single 2N x 2N matrix equation:

T+ += (91)
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! iwhere 
+t 1J kt

Re Bi e(lWk,q = Plk Re1-kq

t J(q+ lk)

(2)k, q  = lk Re jR" q e

and it e 2k (92)

(l)k,q = 2k Im Rk q e

(=2,q P2k Im ijq e

We onsider only the narrowband (FBW << 1) case in which path length errors in

the various parts of the loops can be approximated as fixed phase errors,

Recall that R" implicitly includes a frequency independent tracking error

,-j q

C (W) =e due either to weight circuit hybrid mismatches or to signal
q

channel path length errors. If we define the 2N x 2N stability matrix S as
!+ l 2

= 1 =g2

where S is a real matrix, then the eigenvalues of S determine the stability of

the coupled set of 2N loops. In particular, if we denote the eigenvalues of

S by X (Z=l ..., 2N), then stable operation requires that

Re(X ) > 0 (94)

for Z = 1, ..., 2N. In general, S is not a symmetric matrix and the A are

in complex, admitting oscillatory or unstable solutions for ak and k"

Example: A Single Loop

A general study of the stability criterion defined by Lq. (94) is

complicated and requires numerical solutions for the eigenvalues of Eq. (93).

However, the analysis for a single loop is analytically tractable and it is
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instructive to examine this example to obtain insight into the dependence of

stability on the various component errors. A single loop is shown in Fig. 13.

If it is stable, it will simply tend to turn weight "off" when a signal is

applied to the input.

For the case of a single loop, we adopt the following notations

(1) R°  input power to loop relative to thermal noise
r0

(2) 'H = ' K2 = nf, where n = gain mismatch between

I and Q channels

> (3) E11 = r1 C21 = E2' I1 =
S-J(A 2- 1) ejA

(4) C(w) = e F(w) e )

With these definitions, the stability matrix S takes the form

1l + P R0 cos ' - R° sin(+E') 1

v Ro0 sin c'2 1 + Yn'j Ro cos(p+F 2')

where el C 1 (A-C), '= 2 - (A-E). The two eigenvalues of S can be

computed directly, and are:

r (Cos el + 9 cos(p + C'2))]
1,2 +l Y 2 12

+ P o 4 cos £' - n n cos e1 cos({ + E'2)
o1 112

+ C (Cos + £ 2)  n sine' 2 sin(, + E') (96)

Applying the stability criterion of Eq. (94), Eq. (96) leads to the stability

diagram illustrated in Fig. 14. In this diagram, the errors n, 4 and (&-A) are

treated as parameters, and stability is plotted as a function of correlator
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Fig. 13. Loop parameters used for the single loop stability
analysis leading to the stability diagram of Fig. 14.
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output phase errors E and e2 ' The loop is stable if el, C2 lie inside the

solid boundary indicated in the Figure. The boundary is determined from the

two conditions.

cos F-I + n cos( + C 2) > 0 (97)

iE' 2 - E' 900 (98)
2(

which follow directly from (94) and (96), assuming p R °  1. In (97) and
0

(98) we have defined

E'I = C1 + (c-A) (99)

E' = E + ( -A) (100)

indicating that differential phase errors in the feedback paths are equivalent

to identical correlator phase offsets in the I and Q channels. Generally

speaking there is a biased region of stability about E1 = C = 0.

To obtain a physical feel for how the loops become unstable, consider

a simple unstable condition and track through the feedback process. Basically,

stability (or instability) is a consequence of the negative (or positive)

feedback condition existing at the output of the correlator, where errors in

the mixer generate a drive voltage in the quadrature channel. Once the

quadrature channel is turned on, the output now has a component shifted 900.

Hence, should the correlator differential error between I/Q channels exceed

900, this 900 shift combines with the quadrature weight 90* shift resulting

in a 180' phase reversal at the sum junction -- i.e., the feedback in the

quadrature channel is now positive feedback, resulting in an increasingly

large growth in signal level driving the weight, and the loop becomes

unstable. Thus, the stability boundary as a function of e'1 , C'2 inter-

sects ± 900 on all axes of the diagram. When e1 = -£20 a 450 error in both

I and Q yields a 900 differential output error in the correlator and an

unstable condition, as can be seen on the stability diagram. Errors in the

hybrid ( ) or differential path length (4-A) result in a more complicated
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I/Q coupling, but essentially lead to some type of positive feedback when the

loops become unstable.

Some N-Loop Examples

The above results indicate that the stability characteristics of a

single loop are quite tolerant to most reasonable values of component errors.

Practically speaking, one would anticipate that E'1 and -' 2 would be 5 to 100

at most and that weight hybrid errors, k' would be less than 1 to 20. Loop

gains might differ by as much as 2 or 3 dB. Consequently, it appears to be

relatively easy to design a single stable loop. The question then arises,

"How does the processor stability depend on the number of loops and number

of interference sources?"

It is useful to consider a simple special case in order to obtain a feel

for the dependence on the number of loops. Consider the N-loop problem having

equal I and Q mixer imbalance errors in each loop. Denote this error by e.

Then we have

T a + a + p Reeje RI'- w] = V

+ jim[eJ '(110- - I

Equation (101) can be rewritten in complex notation as

T + w + p R' • w = V1 + jV2  (102)

where now w = a + j0 since we assume k = 0. Denote the eigenvalues of

B' by sk , Then the stability of (102) is governed by the eigenvalues

Ak = 1 + usk e
j
E. Clearly, if Re(Ck) - 0, we must require that e < 90* .

This is the same stability requirement as for a single loop. Consequently,

we anticipate that increasing the number of loops should not adversely affect

the stability of the processor.
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In practice, the various component errors will be statistically distributed,

with some channels having little error and others, perhaps, a larger error.

The above result then is a worst-case condition for this more realistic case

and we anticipate the stability of the processor will improve as the number

of loops increases. To examine this, we resort to a numerical simulation of

Eq. (93) including all types of component errors. Each component error will

be assumed to be uniformly distributed over a range within a maximum error

bound. Each simulation trial uses a set of errors randomly selected from each

distribution. The stability criterion for each sample set of errors can be
checked by computing the eigenvalues of S and applying the condition

Re(A ) 0 0, Z=I, ..., 2N. This process is repeated for a number of trials

with a specified error bound for each component. The percentage of cases

for which the processor is unstable is tabulated. In this manner, the proba-
bility of achieving stability can be studied as a function of the error

bounds for a particular component. The result can then be used in designing

the processor to a fixed set of specifications.

This procedure can be utilized to examine processor stability as a

function of antenna type, number of loops and number of interference sources.

Consider the results of Fig. 15, where we show processor stability as a

function of the number of loops for a single interference source. For
example purposes, we use the 7-element hexagonal array antenna geometry,

illustrated in the figure, and examine the percent of unstable eigenvalues

vs error bound as the number of control loops increases from 1 to 7. For

simplicity, we consider only I/Q mixer imbalance errors to illustrate the

dependence oa N. Observe that for a single loop, no value of mixer imbalance

errors leads to an unstable loop until the c max exceeds 450. This critical

value allows the case c I - E2 to occur for some set of random errors. As

mentioned previously, this results in an unstable loop. More importantly,

observe in Fig. 15 that as the number of loops increases, the loop stability

becomes tolerant of a larger error bound, as predicted above. Clearly, for

7 loops, the tolerances on I/Q mixer imbalance errors would be very easy to

satisfy.
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We now fix the number of loops, and vary the number of interference

sources. Consider the same 7-element hexagonal array with 6 sources located

on the FOV as shown in Trable 3 below.

TABLE 3

RANDOM LOCATIONS OF SIX INTERFERENCE SOURCES

j 6. ,

1 10 100

2 40 300

3 80 800

4 50 1350

5 70 2050

6 60 2800

The probability of achieving stability as a function of the error bound on

mixer imbalance errors is indicated in Fig. 16 for J=1, 4 and 6. Clearly',

the sensitivity to component tolerance errors is most severe for the case of

six sources incident on the 7-element array. In this case the processor has

used all its degrees-of-freedom to null sources. Note, however, as suggested

by our simple example above, the allowable component tolerances never become

more severe than those for a single loop.

Finally, consider a 7-element array with a double triangle configuration

(Fig. 17). Again, we use the 6 interference sources of Table 3. All the

errors (clk, E2k' k' lk and Ak) are allowed to vary statistically as in the

previous simulations. In this case, we tabulate the statistics of the trial

cases in the following manner: We treat n (gain mismatch) as a parameter

and generate a set k. k and Ak' k=l, ..., 7. Then for this random set of

component errors, we generate a subset of Elk and c2k' k=l, ..., 7 bounded by

Fmax . We consider twenty sample cases for Elk and e2k for each set 'k' k
and A We then store the percent of unstable values as a function of
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C max' and repeat for a new set ot k and lor each set of yk k

*and Ak, we store the cumulative maximum of the percent unstable values obtained

vs Ema x . Figure 17 illustrates this cumulative maximum (i.e., the worst case
result) vs emax using max = max max = 20' for n = 1 and n = 0.7. The

results are essentially the same for n = 1.0 and n = 0.7. Observe that

the curve of Fig. 17 has shifted only slightly to the left of that for Fig. 16,

-or which case max = A = = 0. Consequently, as predicted by Fig. 14i- imax max'

,r a single loop, errors in ck' Ak and k are not cumulative relative to clk

.and E 2k* In fact, as Fig. 14 and the above simulations indicate, the loops

are more tolerant to errors in Ek' k and Ak than for c1k and _2k" We conclude

therefore that even loose tolerances on error parameters still allow stable loop

operation, even in the worse case of N-1 sources incident on an N-element array.

E. Weight Noise

Heretofore when the time variation of the weights has been mentioned we

were speaking of the statistical or ensemble average of the weights. It was

pointed out in Section II, Background, that the differential equations for

w(t) were derived in terms of a statistical average. In this section we consider

the statistical fluctuations of w(t) around its average value. We refer to

these fluctuations as weight noise. In an analog processor weight noise may

arise from two sources. The first is thermal noise in the weight control

circuits. Secondly, if the input signals are noisy, some of this noise is fed

back to the weights, causing them to fluctuate. In digital systems, quantiza-

tion and round-off errors can contribute to weight noise.

Weight noise has two observable effects. First, it increases the adapted

output power of the processor over what it would be if the weights were fixed

at their average value. Second, even when the nulling processor is in a steady-

state, adapted condition, the continuous small weight fluctuations make it

appear to be a time-varying, multi-path channel to the communications signals.

Thus it will tend to smear or broaden the signal spectra. This reduces the

detectability of a signal and can also cause cross-talk between signals that

are separated in frequency. In this section we will quantify these two effects.

We will calculate the weight noise contribution to total output power and find

that it is insignificant as long as the processor dynamic range is not exceeded.
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1. Circuit Noise

Circuit noise effects can be modeled as in Fig. 18(a). We will

assume the input v(t) to be a noiseless process (i.e.,a sinusoid) so that

circuit noise is the only source of weight fluctuation. The total weight

vector is the sum of a noiseless average value w(t) and a noise vector n(t)

whose components are identical, but statistically independent, zero mean random
2

processes of variance, n . An example of such a noise source in a baseband

feedback loop is the i/f noise in the video amplifier following the correlation

mixer.

Total Output Power:

Assume the processor to be in a steady-state adapted condition

for which w(t) is a constant. Consider the total output power

P = E{V (t) vo(t)} (103)

where

v (t) = (w + n (t)) • v(t) (104)

By substituting (104) into (103), and by using the statistical independence

of the noise generators, it can easily be shown that

P = w • R • w + n P. (105)
O - in

where R is the correlation matrix E{v(t)v(t)}, w R • w is the noiseless

adapted output power and Pin is the total input power to all channels.

When testing a processor one often measures the dependence of Pout on

Pin for a single interference source, usually at broadside incidence. When a

narrow-band test signal is used, weight noise manifests itself as shown in

Fig. 18(b) (for a hard-limited processor). When Pin exceeds a particular value

(40 dB in this case), the weight noise dominates the output power and P
0

becomes proportional to Pin as predicted by Eq. (105). Measurements to this

effect will be presented in Section V.

66



- I

HARD V
LIMITER _7+Z

I t) 
z

V -- n+A

v2(t)

(a) (d)

360

340 a

20 IN =60

0J 0-0

20 Z RTH COEAE 
I 2

-40 -20 0 20 40 60 80 -8 -6 -4 -2 0 2 4 6
RELATIVE INPUT POWER (d) FREQUENCY (MHz)

Ib) (c)

WEIGHT NOISE
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Output Spectrum:

Weight noise modulates any signal passing through the processor

and broadens its spectrum. The power spectral density of the output is

So() = f R(-r)e- di (106)

where R (r) is the output autocorrelation function,o0

R (w) = E{v (t) V (t-r)) (107)
0 o 0

4 As in Section II, we define a correlation matrix for the channel signal vector

v(t) as follows:

[Rv (T)] = E{v(t) v (t-T)} (108)

The cross-power spectral density matrix is

[Sv(4)] = f v (T)] e-JWT dr (109)

With these definitions it follows from Eq. (104) that the output power spectral

density is

So(W) = w " vS (w) • w + Tr{S *() G (u)} (110)
0 =V n =

where Tr is the matrix trace (sum of the diagonal elements), S (w) is the weight
i n

noise spectrum andG 0denotes the convolution integral divided by 2r. For the

case where the signal vector v(t) is a tone of amplitude V, Pin = NIVI2 and we

have

So(u) = 2n {Iv 2 w t w 6(w) + P.n (u)} (111)
0 in n

The first term is the line spectrum of the signal at the output (6(u) is an

impulse in frequency). The second is the weight noise contribution.

As an example of Eq. (111), Fig. 18(c) shows the measured output spectrum

for a hard-limited processor. As Pin is increased, the signal component is

clamped at a fixed amplitude by the adaptive processor, but the weight noise
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spectrum increases in proportion to P. . Of course a pure tone is not ain
realistic interference signal; however, this test is useful in revealing

directly the circuit noise spectrum.

2. Interference Noise

We will now consider the weight noise generated by a noisy input, v(t).

We will first analyze a standard Applebaum-Howells loop, i e., one without the

hard limiter of Fig. 18(a). We will calculate its effect on a tone of constant

amplitude, V.., whose power is insignificant compared to the power in v(t). We

will also find the weight noise contribution to total output power and show that

it is insignificant as long as the processor dynamic range is not exceeded.

Section 3 extends this analysis to hard limited Applebaum-liowell loops under the

assumption of broadside incident interference.

Weight Noise Spectrum:

Let the total weight vector be the sum of its expected value,

w(t), and a zero-mean weight noise vector Z(t). Referring to Section II,

Eq. (3), the equation governing the total weight vector is

T 0 ( _+_) + [I + Pv v] • (w+Z) = V (112)

where we understand that w, Z and v are functions of time. Let v(t) be a zero-

mean, gaussian, band-limited process of bandwidth, BW. The basic assumption

underlying the analysis of nulling processors is that T and P are chosen so

that the closed-loop bandwidth, BWc, of the processor is a small percentage

of the nulling bandwidth, BW. Consequently, Z(t) is quasistatic in comparison

with v(t) and can be treated as statistically independent of the instantaneous

value of v(t) (although it is not independent of the past history of v(t)).

With this assumption, the expectation of Eq. (112) yields the well-known

equation for w(t),

T 0 + [ + R] * w = V (113)

where R R v(o) in Eq. (108). Subtracting Eq. (113) from (112) yields an

equation for Z(t).

T + + PR] • Z + P[v v - R] * Z = - i[v vt - R] " w (114)
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This is a linear, vector differential equation with a time-varying coefficient.

Figure 18(d) is the linear system representation of Eq. (114). The forcing

function is

M(t) = - [v v - R] - w (115)

In Fig. 18(d) we see that the time-varying coefficient has a negligible effect

compared with g(t) if IZI << Iwi. We are therefore justified in neglecting

it under normal operating conditions. The differential equation for weight

* noise is then

T Z + + uR] * Z = (116)
S0"- - = --_

Now we can obtain the power spectral density of Z. In multi-dimensional linear

systems the relationship between power spectral densities at the inputs and

outputs is

So(w) = t () Sin(w) H(w) (117)-out=i

where H(w) is the matrix of system input-output transfer functions. From

Eq. (116) we have

SZ(W) = [(1 + jW O) I + pR]-1 . S (W) - [(1 - jWT) I+ pR 1  (118)

Now, since BW >> BWC, Sg(w) is a very wide spectrum compared to the system

bandwidth and we can approximate it by a constant spectral density,

S (w) = 1- E[ 1

From Eq. (115) we find an expression for the expectation,
* 2 * v* *

Eg 0 = 2 w - {V v v. v 2 (R - ww • RI (119)S9d = -_J k i j = - =

where we have used the fact that E{v v = R. The fourth moment in (119) can

be simplified using the following identity for gaussian, complex random

processes (Ref. 5, Eq. 33)

* * * .,*. **

F{XlXXX4 = E{XIX 2  EX 3 X 4  + E{XlX 4 1 EX 2 3  (120)
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Using this in Eq. (119) yields

E{ } = 2 (w . R w) R (121)

(w R • w" is the adapted output power, Po, in the absence of weight noise.

From (118) we get
2 t
P (w Rw) -I 1

z - BW [(1 + jWT0 ) 1 + B] R[(l -joT 0 ) +

(122)

which is the desired expression for the weight noise cross power spectral

density. Since the off-diagonal terms of SZ(w) are non-zero, the weight

noise is correlated from channel to channel unlike the case of circuit noise.

Weight Noise Interaction with the Signal:

Now let the input contain a communications signal waveform,

V s(t), buried in the interference,v(t). V (t) is sufficiently small so as-s -- -S

not to affect weight adaption or weight noise. Let us find the power spectral

density of the processor output, v (t). By the same process that yielded

Eq. (110), we can show that it is,

S (u) w S s(w) M w +.Z [Z(w)j M[ s()]j + w S (u) w +
0=s Zij s i

[ [Z()ij 0 v [SvM ij (123)ij ij

where S (w) is the cross-spectral density of V (t) and we have assumed V (t)S--

and v(t) to be independent. The first and third terms are the signal and

interference throughput respectively and the second and fourth terms represent

weight noise modulation of the signal and the interference respectively. Let

us examine the signal modulation effect for a sinusoidal signal. Under this

assumption the third term in Eq. (123) reduces to

S'(W) = (V•z(w)•) (124)
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It is convenient now to apply a linear transformation. From Eq. (122), we see

that SZ(w) is diagonalized by the same transformation that diagonalizes R.

Let Q be a matrix whose columns are the eigenvectors of R. By definition

SOts 2  0
: B QR (125)

0 sN

t
Q ) (126)where s. is the i eigenvalue of R. Define the transformation of SZ(w) by

We have

P2(w R w) s.
( 2 it2.) 1 (127)

wher W u/(2 + Wt e2gevalu

where x i = T 0o/(1 + 1us) is the time constant associated with the i eigenvalue

of R. Equation (124) becomes

NS (w) N V 12 [Sz(w)].. 
(128)0OU j I Isi =_ 1i

where

V Q .v-s - -s

and ti
V. = eT • Vs (129)

The final expression for the spectrum of the weight noise modulated signal is

21- 2
P (w R w) IVSI s~

S M(i (30o BW 2 + (130)
i ( us) (I + i
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Let us evaluate Eq. (130) for a single interference source having total input
-l

power, Pin = sl" We will normalize Pin to the threshold power, PT =  1 It

can easily be shown that
tw I w) V112 Pin

(w R w) = - (131)

(1 + Pin/P T)2

t
where V1 = V (V is the steering vector). Equation (130) becomes

's1 12 1^112 (Pin/PT 1
S-() - 4 22 (132)

BW( in (1 + w T1 )

where

1 o/(1 
+ P in/P)

From this we can see that weight noise has its maximum effect when the inter-

ference power is near threshold. In fact, the worst case for the peak spectral

density S'(o) occurs at P. = P and is
o in T

Is 2

S'() I volts 2/hz (133)S;o) l16BW

where we have used IV se IVs and V1 < 1. The total power in the spectrum

reaches its maximum at Pin = 2PT and is

1_ S ) d IVs 2 2
-- f S d 4 BW - T volt (134)

To a first approximation, S'(w) affects the communications signals like additive
0

gaussian noise. An important question is how much of the power of Sg(w) falls

in the signal bandwidth. In frequency division multiplexed systems, a more

important question is how much power falls into adjacent frequency slots causing

cross talk between channuls. Given the parameters of the communications system,

these and other questions can be answered once S'(w) is known.
0
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Increase in Total Output Power Due to Weight Noise:

Let us return to Eq. (123) and consider the last two terms which

are the interference noise throughput and an additional component due to

weight noise modulating the interference. We will show that the latter effect

causes a negligible increase in power as long as the input power is within the

dynamic range of the processor. In the time domain the terms of (123)

characterizing the interference output power can be written as

t i.P = w . R * w + E{Z • R * Z} (135)
0 - - -

where we assume Z and w are uncorrelated. Applying the linear transformation

of (125) we get
t ~N 2

Z R = s} (136)
i=l

We obtain E{IZi 2 by integrating Eq. (127) over w and dividing by 27. With

this, Eq. (136) becomes
2

Po w • R • W[ + (137)
0 jj 2T BW 1 l+ JS

The result in Eq. (137) is similar to that developed by Brennan et al. (5) for

sampled data systems. The bracketed term is the contribution of weight noise

to the total output power. For a single interference source we have

2 2I 0 1 2 (Pin/PT)1 (P in /PT)2
PT (I + P in/PT ) 2 I + 2TBW (I + P in/PT)1 (138))

For the weight noise to be significant the input power must satisfy

Pin/PT > 2ToBW (139)

However, this violates our basic assumption that the weights are statistically

independent of the input, v(t). This assumption was necessary to get Eq. (113).
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It requires that the weights remain essentially constant over an interval of

several times the correlation time of v(t), which in turn implies

0 >> ( _1)(140)
PSmax

because T°/PSmax is the minimum time constant in the processor transfer func-

tion (Eq. 122). Using smax Pin' we have as the condition for validy of

this analysis

P.
in << T BW (141)

PT 0

which contradicts (139). (In fact, a common definition of the processor

dynamic range is P in/PT < (1/5) BW To.) We conclude, therefore, that we can

never observe the effect of Z(t) on the total power output if the processor

is operating within its dynamic range.

3. Hard-Limited Processors

This analysis can be extended only in a limited way to the hard-

limited Applebaum-Howells loop (Fig. 18(a)). This type of processor is

described by Gabriel (Ref. 2). The reason for hard limiting is to decrease

the dynamic range requirements on the correlation mixer and subsequent circuits.

As mentioned in Section V of this report and in Ref. 7, hard limiters do have

a harmful effect on system performance in that they make it difficult for a

processor to detect and null the smaller of two signals of widely different

power levels. Because hard limiting is used so often in practice, weight noise

effects in hard-limited processors is of interest. Therefore the necessary

modifications to the preceding analysis are pointed out.

In a hard-limited system the correlation mixer output is described by

V(t) v*(t)

Xk(t) k(t) 0 (142)
k _IVk (t)I
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Consequently the basic differential equation is

To ( + Z)+ [ + ihM1(w + Z) = V
0- - _

where M is given by

j = 1 4 (143)

This can be compared with Eq. (112) for the standard system. Brennan and Reed

calculated the mean value of M for a gaussian input (Ref. 6) and found it to be

EM . R (144)

-- 2-
where v is the input power per channel and R is the channel signal correlationt=

matrix E{v v }. (This result is valid only for array antennas with equal gain

elements because the power is assumed to be equal in all channels.) With this

result, the analysis proceeds as before. The equation for weight noise is

T Z+ [ + R] Z = (145)

The equivalent expression to Eq. (119) is

[E{Rt 
2h2  wiw. E ki v2 2 W* -ijk [=k Pvt -]kz

(146)

The expectation cannot be simplfied in general. However, if we restrict v(t)

to broadside incidence (i.e., all channel signals are equal), the expecta-

tion reduces to E{IvI 2. Equation (146) reduces to

t h2 _
E{gg} - (- ( •R -w) R (147)

v

which is very similar to Eq. (121) for the standard system except that it is

restricted to the cate of broadside incidence. Proceeding as before the weight

noise spectrum (equivalent to Eq. (127)) becomes
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[2h2N(l - Tr/4) 1
[Sz(w)]I1 BW (1 + uh/Ns9 2 (1 + 221

where

T = To/( + lh vNsl)

(For broadside incidence the only significant eigenvalue is sI = P in.) The
(inexpression for (w R w) in a hard-limited system under these conditions is

t Iv1 12 i
(wt• R w) = I Pin (149)=i T

which is comparable to (131). We have defined the threshold for a hard-

limited system to be

PT =  (V2h2N)- 1 (150)

The weight noise modulation of a tone signal yields the output spectrum

I s S1 l21Vll1 (Pin/PT) I
So(') inT4 2 2 (151)

BW(l + /P /P) (1 + 1
in TI

This can be compared to (132) for the standard system. The maximum value of

the peak of the spectrum again occurs at Pin = PT and is

(1 - Tr/4) IVs1 2 2
So) -< 16 BW volts2/hz (152)

which is very near the result for the standard system. The total spectrum power

reaches a maximum at P in= 4 P and is

1 2(1 - ir/4) IVs1 2 2
-- f SoO() dw < 27 to BW volts (153)

which is about 6 dB less than for the standard system. This is because of the

narrower bandwidth of a hard-limited system for the same filter time constant,

T
0
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I
The equivalent to Eq. (139) for total output power is

0 V 1 (P /P) ( P i__ _o I PnT) +() 1+ /4) (Pin/PT
P T i 2 2 BW )(IS4)

The weight noise contribution is therefore insignificant until P. exceeds
in

P.in > (2T BW) 2  (155)
PT - o

which is far above the dynamic range capability of the processor. -

V. EVALUATION OF SYSTEM PERFORMANCE

In the previous sections we developed quantitative estimates of the

effects of various component errors on system performance -- namely achievable

cancellation and loop stability. In this Section we show how the effects of

these various component errors reveal themselves in measurements ma-- on a

real system, and conversely, how one can tailor the system measurements to

evaluate the errors inherent in the processor or antenna. We address this

subject from the viewpoint of component effects on cancellation. Component

effects on loop stability are either obvious (e.g., unstable loops) or

directly measurable by observing the transient behavior of the loops during

adaption.

An experimental adaptive nulling processor was constructed and evaluated

in order to discover the limits on performance imposed by component errors in

the hardware. A detailed description of the processor is given in Ref. 9.

Here we limit our discussion to the measurement techniques employed for

evaluating the processor cancellation performance. The weight circuits were

initially the PIN-diode design of Fig. 9. Following that a set of weights

based on transconductance multipliers was installed and evaluated.
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The following technique was used to evaluate the individual weight

circuits before they were installed in the processor. A digital feedback loop

was implemented using an HP 8505 network analyzer and an HP 9825 desktop

computer. A CW tone at band center is applied to the input of a single weight

and the digital feedback loop was activated. Closing the loop causes the

weight to "turn off." At this point the weighted path exactly cancels the

feedthrough weighted contribution of the output path (see Fig. 19). The

weight I and Q control voltages are then frozen, and the input is swept in

frequency across the band. The resultant plot of output power vs frequency

for two of the weight circuits is shown in Fig. 19. It is clear that for

wideband systems, the feedthrough can contribute significantly to the total

output power across the band. These weights operated at an IF frequency of

120 MHz.

Figure 19 illustrates the effect of weight feedthrough for a single

channel. In a processor using N parallel channels, it was shown in Section

IV-C that the cancellation deteriorates by a factor of N (assuming equal

feedthrough levels). Measured data illustrating this are presented in

Fig. 20. Here, one channel of the weight sub-system is fixed as a reference

input, and the number of cancelling channels is varied from 2 to 8 using a

switch network designed into the test system. Broadband noise of fixed

bandwidth is applied to the input of each weight through an N-way divider.

The resulting measured output spectra for various numbers of cancellation

channels is illustrated by the N2 dependence. For the same measurement, the

N 2 effect is illustrated in a different manner in Fig. 21. Here the measured

increase in total output power is plotted as the number of cancelling channels

and is increased compared to the theoretical N2 behavior. The measurements

indicate that three of the weight circuits have 7.5 dB more feedthrough than

the other four.

The above results are for the PIN-diode weight design of Fig. 9. In this

circuit the feedthrough is dominated by the isolation and time delay of the

quadrature hybrid. The second weight design we evaluated uses the principle

of transconductance multipliers and is illustrated in Fig. 22. To assess the
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F'

improvement over the PIN-diode weights, we use the eigenvalue estimate of the
achievable cancellation given by Eq. (24). With fixed I and Q control voltages

the amplitude and phase response of each channel is measured separately as a

function of frequency with a network analyzer. The correlation matrix, R, is

computed from the data parametrically as a function of bandwidth, BW. The

eigenvalues of R are then computed and plotted as functions of BW. The result

of processing the data in this way is illustrated in Fig. 23 for both the

transconductance multiplier weights and for the PIN-diode weights. Recalling

from Eq. (24) that C - s2/sl, we anticipate a 15 dB improvement in wideband

cancellation performance with the transconductance weights. This performance

improvement was indeed realized when the weights were installed in the processor.

The previous discussion has indicated several techniques useful for the

evaluation of the effects of weight feedthrough. We have shown that feed-

through results in an N2 degradation in broadband output power relative to a

single channel even if the weight feedthrough paths are identical in their

frequency response (i.e., they track perfectly).

We now consider the effects of channel tracking errors which arise from

the fact that the frequency transfer functions of each channel differ slightly

because of component differences. When considering the effect of channel

tracking errors, we emphasize that it is the total channel response from input

to output which must track. A valuable technique for separating the effects

of different components on the overall tracking performance of a channel is to

assemble and evaluate the processor sequentially, beginning with the N-way

combiner, proceeding to the weights, then the IF sections, and finally the

RF front ends, until the total processor is assembled. At each stage of

assembly, channel tracking measurements with data reduction similar to that

aiscussed above are made to determine which stages dominate the cancellation

performance.
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When this process is complete it will he found in general that one or

two channels are measurably worse than the others. Figure 24 illustrates

the effect of an anomalously bad channel on the eigenvalues of the processed

channel tracking data. For an earth-coverage quiescent radiation pattern

and a planar array of earth coverage elements, only a single channel will be

"on" in the unadapted mode. The corresponding beam steering vector is

V t = [0, ... 0,1,0 ...] where the I appears in the reference (or "on") channel.

Choosing a dominant error channel as the reference degrades the performance

significantly. In fact, if one measures the cancellation as a function of

reference channel, there will be one channel which yields the best cancel-

lation. This channel should then be designated as the reference.

Figure 25 illustrates the effect for the transconductance multiplier

weight circuits of the processor.. It shows the measured, broadband cancel-

lation as a function of reference channel. There are 7 channels in all.

Note that a significant improvement in cancellation can be achieved by

selecting the reference channel. For comparison, Fig. 25 also shows the

computed cancellation as determined from the eigenvalues of the measured

tracking data from the swept frequency measurement discussed previously.

The discrepancy between the two curves indicates that tracking errors in

these particular weights are a function of weight setting. The swept

frequency tracking data were obtained with fixed I and Q control drive

voltages to each weight (in their minimum attenuation state), whereas the

actual cancellation was measured with the weights at their adapted, steady-

state values. Figure 25 applies to the weight circuits alone.

Figure 26 shows the equivalent data with the remaining stages of each

channel added. These are the IF amplifiers, band-limiting filters and finally

the RF preamplifiers and mixers. The measured and computed results (again,

computed from the measured tracking data) are now more closely in agreement

confirming that the transconductance multiplier weights are not the dominant

components in limiting the achievable cancellation. Of the remaining IF and

RF components, there was in fact no dominant component. Each RF and IF sub-

section contributed in roughly equal measure to the cancellation degradation.

The existence of an "optimum" reference channel is also evident from Fig. 26.
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The previous results have illustrated the use of channel tracking meas-

urements for determining component effects on achievable cancellation. Still

another presentation exists which yields the effects of specific component

errors on performance, and this technique will now be considered. This useful

technique can be explained with reference to the output power vs input power

characteristic of a nulling processor* (Fig. 27). Consider first an ideal

system employing a hard limiter in each feedback channel operating first in

the quiescent (without nulling), then in the adapted (with nulling) mode.

Assume that a test signal of variable bandwidth and power is applied to the

processor through an N-way splitter. This simulates broadside incident of a

single source. In the quiescent mode, as P. to a given channel increases,in

Pout increases in a linear relationship to P in. In the adapted mode, a

threshold level, Pt. exists where the nulling processor just "senses" the

input power level. At this threshold, 6 dB of cancellation results. As .).in

increases further, Pout ideally remains fixed at a constant level as a conse-

quence of the hard-limiting action in the feedback loop. The achieved cancel-

lation is very nearly equal to the difference between the quiescent and

adapted levels. In an ideal system, therefore, cancellation increases without

limit as Pin increases. For a real system, however, only some maximum cancel-

lation is achievable. As one increases P. above threshold in a real processor,in

the output power remains constant only over a limited range of P. . At some
in

value of Pin' the output power begins to increase and becomes proportional to

P. . By repeating this measurement as each section of the processor is added,in

the result of the measurement then yields directly the error effect that is

dominating the performance degradation. By tailoring the input appropriately,

this effect can usually be identified. Representative results are illustrated

on the Figure, not necessarily in order of importance.

*The characteristic curve in Fig. 27 is applicable to processors with hard

limiters in the feedback loops (Ref. 7).
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Figure 28 is an example of this technique as applied to the demonstration

processor using the PIN-diode weight circuits. Several cases of interest are

presented. First consider the earth coverage mode, where a single channel is

used as reference. When the test input is a tone, then the achievable cancel-

lation is limited by the weight noise arising from the baseband circuitry

(Section IV-E-l). When a wideband test signal is applied to the processor

simulating broadside incidence on the array, the achievable cancellation is

limited either by channel tracking errors or weight feedthrough. Both effects

yield the same trends when Pout is plotted vs P in Therefore this technique

alone cannot distinguish between the two. The fact that it was weight feed-

through from the PIN-diode weights that dominated these results was determined

by the N2 dependence discussed previously. Another interesting fact is that

when the steering vector changes from earth coverage to a maximum gain beam

mode, the quiescent output power increases accordingly, because the array gain

increases. However (as discussed in Section 111-3), the adapted output in the

feedthrough dominated region is independent of the steering vector. This

results in greater cancellation for one steering vector than for another.

This is an example of the ambiguity inherent in using cancellation level as a

means of specifying system performance.

Figure 29 illustrates similar results for a case where the test signal

was time delayed to each channel in a way to simulate an 80 angle-of-arrival

on a specified array geometry to emphasize the effect of array dispersion.

Comparison of the measurement with computer simulation of the array bandwidth

characteristics yields results which confirm that array dispersion is the

dominant factor in this case.

The previous discussion has centered on evaluating the effects of compo-

nent errors (i.e., deviations from ideal behavior) on performance. We now

consider the effect of hard-limiting in the feedback loop. While not an error

source strictly speaking, hard limiters can have a harmful effect on perform-

ance and for that reason are mentioned briefly here. For a single interfer-

ence source, it is relatively simple to show that hard-limiting reduces the
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circuit dynamic range requirements in the feedback loops. For example, if the

processor is designed to operate over a 40 dB dynamic range of input power,

the correlator mixer and subsequent circuits must operate over an 80 dB range

of power if no hard limiter is employed. With hard limiting, the dynamic

range requirement on the correlator is reduced to 40 dB. However, if there

are two interference sources which are significantly spread in power level,

they give rise to two widely spaced eigenvalues in the signal correlation
(7)matrix. It can be shown that the effect of the hard-limiter is to< suppress the smaller eigenvalue (see Table 1), so that it is essentially not

sensed by the processor. The degree to which this happens depends on the

degree to which the larger eigenvalue is above threshold. For this measure-

ment, the eigenvalue sl (controlled by an incident source at a given angle

of arrival having power PI) is fixed relative to threshold. The second eigen-

value s2 (controlled by a second source eminating from a different angle of

arrival having power P2) is varied, and the output power is measured as s2 is

varied. The results are plotted in Fig. 30 for a system having a specific

dynamic range. The region over which the small eigenvalue is not sensed is

determined by s1/P, the ratio of the larger eigenvalue relative to threshold.

By examining the measured results, it becomes clear that the system cancella-

tion taking into account both sources is limited to n Y ~l/Pt. Hence, if

SI/P t is the desired cancellation level, then the dynamic range required of

the baseband circuitry is sl/Pt whether or not a hard-limiter is used. A

small eigenvalue might arise from a second incident source of low power level

(as simulated above), or it may result from a single wideband source incident

on a dispersive antenna. In this second case the hard-limiter essentially

prohibits the processor from compensating for array dispersion by using up

more than one degree of freedom to form a broadband null. In summary, a

hard-limiter does not reduce the circuit dynamic range requirements when two
sources of widely differing power levels are present, and requires a broad-

band antenna geometry when deep cancellation of a single source is desired.

i. We conclude that processors which must null multiple sources over a wide

dynamic range of power should not use hard limiters in the feedback loops.
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K 1APPENDIX
In this Appendix we estimate the eigenvalue ratio s2/s I for a phased

array antenna employing N elements each having element gain Ge' Let a wave-

front be incident on the array from angles 0, 0. The wavefront is normalized

to unity amplitude. The correlation matrix as defined at the antenna output

ports is given by (for broadband noise incidence)

-jw(Tk-Tq )
R -- <Ge e > (Al)

where <.> denotes the frequency average

vi w +BW/2
<-> -W dw (A2)

W -BW/2
p. 0

and Tk is the time delay for the wavefront to reach the k=h element relative

to an arbitrary reference position on the array:

T Ix cos + k sinj (A3)Tk  = - sine koo+ k
D 2 2

and the xk, Yk are the element position normalized to - (xk +2 < 1). The

eigenvalue s is simply given by NGe, since s1 corresponds to applying a

set of weights which points a maximum beam toward the interferfence source

having maximum array gain NGe . In order to estimate s2, we expand R in the

form

R = R + AR (A4)
= 0 =

where R is the correlation matrix assuming zero bandwidth, and AR represents

the perturbation to R due to non-zero bandwidth effects. Clearly, then,

from Eq. (AI),

R =G e- j O (Tk -T q )  (AS)
- k,q e

Al



To obtain AR, we expand R in the form

Rj oe ~w(T k -T) ej jAw(Tk-Tq)\

Rk,q e

Ge - jw ° (Tk - Tq) - j Ge <AW> (Tk-Tq) jwo(TkTq)

- Ge 2 e-J~o (Tk-Tq)> (Tk-Tq)

The term involving Aw averages to zero, so that from (A6) we obtain

(W FBW) 2  -jW0 (T k-T q)* AR = -G 024 (TT) 2 e q (A7)

The eigenvalue s2 can then be estimated according to:

Maxe . R * e
s = (A8)

e *e

t
where only vectors e such that e l = 0 are used in the maximization.

Since et * R = 0, (e is the first eigenvector of R and R), then
*0 -l=0

Max (W FBW)2  -jw T +J0 2
= e Ge o e ok (eq e (T (A9)

We note from (A9) the special case Tk = Tq (broadside incidence) where

s2 = 0. Furthermore, since

Se*e fo i 0 (AlO)
k k

(i.e., et • R0  e = 0), the factor (Tk-Tq)2 in (A9) essentially looks like
k- q 2

a correlated tracking error between channels which increases as (D/-. sinO)
Furthermore, Eq. (AlO) is independent of D/A, as e* simply negates the D/X

ok

phase term e so that the sum in (AlO) adds to zero. Thus the only

term inside the sum in (A9) which depends on D/X is the factor (Tk-Tq)2

Noting Eq. (A3), we can factor D/X sinO from inside the sum to rewrite (A9)

in the form:

A2



N G e2 M a x ( e 1- w 0J T k ) ( e + j 0o T  9
4 (D/• sing. FBW) 2  ejwO( k j q

-k q)(e q

i ) cost + __ sin (All)

The term inside the maximization bracket is independent of D/X sing, FBW

and only weakly dependent on N. Thus we conclude

"  
2  = K'(NG e ) (D/X sing FBW)

2

Employing Eq. (24) of the text results in

C = KK'(D/A sing FBW) (A13)

which is the desired result.
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