INTRODUCTION

For sample sizes up to \(n = 50 \), an ordered sample \((X_1, ..., X_n)\) may be tested for normality by a calculation involving a vector \((V_1, ..., V_n)\) that is tabulated in (1). If \(V \) and \(X \) are column vectors the test statistic, also tabulated in (1), is

\[
W = \frac{(V_i^2 - \bar{X})^2}{(X_i - \bar{X})^2}
\]

The distribution of \(W \) ranges from 0 to 1 where as \(W \) approaches 1.0 the distribution of \((X_1, ..., X_n)\) comes closer and closer to being Gaussian.

When dealing with a very large sample, \(N \) measurements, how does one proceed to test for normality since \(V \) for samples greater than 50 is not available? A common procedure is the chi squared test for deviations from an expected distribution. A more attractive but approximate method, outlined below, is the taking of a sample of \(n = 50 \) from the cross section of the large sample of \(N \) values. These 50 values may
then be tested by \((V_1\ldots V_{50})\) from the table in (1).

METHOD

The procedure for obtaining \(n = 50\) values from \(N\) values is:

The \(i^{th}\) ordered value of the sample \((X_1\ldots X_{50})\)
equals the \((N P_i + \frac{50-i}{49})^{th}\) ordered value of sample \((X_1\ldots X_N)\)
rounding to the nearest integral value.

The vector \(P = (P_1\ldots P_{50})\) is obtained from (2) using 50 percent ranks
with the tails of the distribution adjusted outward to give a standard
deveation for \((X_1\ldots X_{50})\) close to that of the large sample \((X_1\ldots X_N)\)
and with \(W\) close to 1. The vector \(P\) is:

\[
P = \{0.0048, 0.0322, 0.0531, 0.0729, 0.0928, 0.1126, 0.1325, 0.1524, 0.1722, 0.1921, 0.2119, \\
0.2318, 0.2517, 0.2715, 0.2914, 0.3113, 0.3311, 0.3510, 0.3709, 0.3907, 0.4106, 0.4305, \\
0.4503, 0.4702, 0.4901, 0.5099, 0.5298, 0.5497, 0.5695, 0.5894, 0.6093, 0.6291, 0.6490, \\
0.6689, 0.6887, 0.7086, 0.7285, 0.7483, 0.7682, 0.7880, 0.8079, 0.8278, 0.8476, 0.8675, \\
0.8873, 0.9072, 0.9270, 0.9469, 0.9678, 0.9952\}
\]

If \(N = 10,000\) the required set \((X_1\ldots X_{50})\) equals the (49th, 323rd,
532nd ... 9952nd) ordered values of the sample \((X_1\ldots X_{10,000})\).

The vector \((V_1\ldots V_{50}) = (-0.3751, \ldots, 0.0035, 0.0035, \ldots, 0.3751)\) and \(W\)
would be calculated as usual. From tables of the unit normal
distribution a cross-section sample of 50 yielded a sigma of 1.004
(for 50 degrees of freedom) and a \(W\) of 0.9996, both sufficiently close
to unity for general application.

SUMMARY

An alternate method has been outlined to test if a large sample is Gaussian in distribution. Instead of a chi squared test of fit a new statistic W is evaluated using a cross-section sample of 50 from a much larger sample of data. If the large sample is at least 100, the technique yields reliable results which may be assessed for significance against tabulated percentiles of W.

JOHN SKORY
Math Statistician

REFERENCES
