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1. Introduction

Anyone who is familiar with recent developments in continuum

mechanics is aware of the many special features of the equations

of hyperelasticity and thermoelasticity. From the viewpoint of

analysis, the most aggravating and, at the same time, most

challenging characteristic is that internal energy cannot be a

globally convex function of deformation gradient without violating the

principle of material frame indifference [1],

A consequence of this lack of convexity is that the classical

direct methods of the calculus of variations are ineffective for

establishing existence, uniqueness and stability of equilibrium

solutions. Among the various restrictions on material response

that have been laid down for study in the theory of elasticity [11,

Strong Ellipticity appears interesting and promising. The work

of Ball [2] has produced a breakthrough by establishing the

existence of equilibrium solutions in isotropic hyperelasticity

under the assumption that the stored-energy function is polycoivex,

a condition somewhat stronger than Strong Ellipticity but

definitely weaker than convexity and, in particular, not in-

compatible with frame indifference.

-- )In dynamics, the goal is to relate the Second Law of thermv

dynamics with fstabilityv. The work of Ericksen kJf reveals that

the Second Law induces stability of an equilibrium state of a

thermoelastic material in the range of convexity of internal

energy (e.g. at points where energy attains a minimum.) Similarly,

it has been shown that smooth adiabatic processes in
*
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thermoelasticity, residing in the range of convexity of internal
energy, depend continuously upon the initial state, even within the

class of processes that develop shock waves. Actually, in certain

circumstances, the same result can be established under a mere

Strong Ellipticity assumption f.-

Here we investigate the implications of the Second Law upon

a different manifestation of stability, namely the stability of

weak shock waves expressed by the E-condition of Lax [5]. If

energy were convex, the results of Lax [6] on general hyperbolic

systems of conservation laws endowed with a convex "entropy"

would imply that the Second Law is equivalent to the E-condition.

A property of this nature was established by Malek-Madani [7] in

the context of hyperelasticity under the weaker assumption of

Strong Ellipticity. In [7] an "energy criterion" plays the role

of the Second Law. The work of Ericksen [8] suggests that certain

phase transitions may be interpreted through failure of Strong

Ellipticity so it would be advisable to avoid adopting this con-

dition at the outset. Consequently, our project here is to work

in the broader framework of adiabatic thermoelasticity, in which

the Second Law is expressed in a definitive form by the Clausius-

Duhem inequality, and to dispense with the need of imposing Strong

Ellipticity in advance. We show that, due to the special structure

of the equations of elasticity, the Second Law implies that every

weak shock satisfies Lax's E-condition, without regard to convexity

or Strong Ellipticity.

It would be interesting to examine the implications of lack

of convexity upon other shock admissibility criteria. This program

&mum" l
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is carried out, to a certain extent, in [7], within the context

of hyperelasticity, and in [9], in the context of one dimensional

elasticity.

2. Adiabatic Processes in Thermoelasticity

We consider a body with reference configuration M c Rn,

n = 2 or 3, and reference density p(X). A thermodynamic process

of is determined by a motion x(X,t) and a (specific) entropy

field n(X,t). A motion generates a velocity field v = * and a

deformation gradient field F = Vx., det F > 0. An adiabatic

process with zero body force is governed by the conservation laws

of momentum and energy, viz.,

F - vi, =O0i

Pvi - Tialt = 0 (2.1)

Pi - (Tiavi) (X 0

and the Clausius-Duhem inequality

Ph > 0, (2.2)

where T is the Piola-Kirchhoff stress and E is the (specific)

energy, sum of kinetic energy and internal energy C,

E viv i . (2.3)
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In thermoelasticity theory E,T and temperature 0 are

determined by F and n via constitutive relations

A

T Tia Q ; = P (2.5)

0= ~6-,n;V a > 0. (2.6)

For every proper orthogonal matrix R, the function E should

satisfy on its domain the condition

E(RF~n;X) = (Fn;j), (2.7)

which is dictated by the principle of material frame indifference,

and possibly additional restrictions expressing material symmetry.

One of the implications of (2.7) is [1,§52] that E cannot

be a globally convex function of F, for fixed n and X. Weaker

than convexity and not necessarily incompatible with (2.7) is

rank-one convexity (Hadamard's condition). Uniform rank-one

convexity or Strong Ellipticity requires that at every point in

the domain of 6 and for any unit vector N in Rn the matrix

PCil),

Pj(N) a E NQN8 , (2.8)

i j aFOTFj
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is positive definite. This condition implies that the system

(2.1) is hyperbolic. The characteristic speeds, in the direction

N, are 0, with multiplicity n(n-1) + 1, and i - 1,...,n,

where XI"'n' X are the eigenvalues of P(N).

3. Lax's E-condition and the Second Law of Thermodynamics

In view of (2.5) and (2.6) every smooth process that satisfies

the conservation laws (2.1) satisfies automatically the Clausius-

Duhem inequality (2.2), as an equality. However, smooth solutions

of (2.1) generally break down and shock waves develop. It is in

the class of discontinuous solutions that the role of (2.2)

becomes important.

Functions of bounded variation in the sense of Tonelli-Cesari

[10] constitute the natural class in which solutions of (2.1)

should be sought. Functions in this class are endowed with

geometric structure that closely resembles that of piecewise smooth

functions. In particular, within the class of solutions of

bounded variation one may distinguish shock waves across which

the classical Rankine-Hugoniot jump conditions are satisfied,

namely,

s[Fia] + [vi]NJN 0

PS[v i] + [Tia]N 0 (3.1)

ps[E] + [Ti(vi]N- 0
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where N is a unit vector pointing in the direction of propagation

and s is the speed of propagation of the shock. In (3.1) and

throughout, a bracket [ I denotes the jump (left minus right) of

the enclosed quantity across the shock. The jump condition

associated with (2.2) reads

Ps[n] 0. (3.2)

A shock that satisfies (3.2) will be called admissible.

It can be shown [11] that strict rank-one convexity is

equivalent to nonexistence of isentropic shocks of speed 0 (if

one allows [n] # 0, this is no longer true). On the contrary,

as the following two propositions indicate, positive eigenvalues

of P(N) and weak shocks of nonzero speed go hand in hand.

Proposition 3.1. Assume that every neighborhood of a state

(F ,v ,n ) contains some point (F ,v ,n ) which can be

connected to ( ,v ,n ) with a (not necessarily admissible)

shock propagating with speed s, Isl > sO > 0. Then there is a

unit vector N in Rn such that the matrix P(N), defined by

(2.8), at (F,v ,n ) has at least one eigenvalue X s 2

Prof W fi a oin (+ +

Proof. We fix a point (F ,v ,n ) which can be connected to

(F,v',n ) with a weak shock propagating in the direction, say,

N with speed s. From (3.1),, s [Fi,][Fi,- (viJ[vi] so that

[[]I and [y]I are of the same order of magnitude. We now
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show that, in contrast, [n] is of higher order than 1I~v]I

Using (3. 1)31 (2.3), (2.5) and (2.6),

0= s[E] + [T ~v1J&Nq 1 Ps[Vvi] + Ps[E] + ITiaV ]Na

=1 psV+v [viJ IF.17 ~vii-[] + sia(ial + 71 PS I a]~~r8

Psg[n] + IT ~V N~ (3.3)

where

aE - a E F,-
BictF jo 3ictF jo F -

with iibetween n ,n+ and F on the straight line segment in

n 2

R which joins F with F+. Hence, on account of (3.1) and

(2.8),

- 1 r~v A
-pse [n] = T~ ps(v~i+v:)[v.] + Ta m + TaVi

1 1

T -s A i P..(N)[v][v.I

1~ ~ pr1 ~-
2~ps(v~i+vi:)[vi] + v[iN + y 1J 1 ( [v][

1 + 1 -

= ps(v++v. - v +Vi 2. [i~ I

~7Psf~v~ilvil+ (3.4)
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which shows that [n11 is at most of order v]

On the strength of the above results, combining (3.1)i with

(3. 1)2 we obtain

P.1(9)[v.] - ~2 [v 2 (35)1

1)- 
(3..5)~lv

with P(N) evaluated at IFn) Dividing through by Iv]
in (3.5) and passing to the limit as 1[yjl -o 0, using the

compactness of the unit sphere in R n we arrive at the assertion.

The proof is complete.

0 0
Proposition 3.2. Assume that P(N), at a state (Q, and a

vector Nhas a simple positive eigenvalue X0 ' Set

11 or v0= -Vr- and fix any yo in Rn. Then there are

two smooth maps from an interval (C-6,6) to R and R~ n2n+1 which carry

'r E (-6,6) into s(T) and (F,y,r)(U), respectively, with the

00 0

(F,y,r)(1) can be connected to (t0,v , n) by a shock

propagating in the direction N with speed s(T), i.e.,

s(Fi -FQ) + (v-v?) NG , 0

Ps (v -v?) + ( T -T? )N =0 (3.6)

Ps(E-E0) + (Iv.-T? v?)NQ 0.

Furthermore, (F,y,n)(T), T E (-6,6), are the only states in some

neighborhood of (Q ,v IV~ 0n that can be connected to Q1 0y IV0n 0
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by a shock of speed close to P0.

Proof. First we observe that, since P > 0 and a(pE)/Dn =PO > 0, the Jacobian

matrix 3(F,Pv,PE)/(F,v,n) is nonsingular. Thus, we may visualize (3.6) as an

equation sZ - G(Z) = 0 where Z = (F-F°,Pv-Pv9,PE-PE°). We observe that G(0) = 0.

Furthermore, since X0 is a simple eigenvalue of P(N), P0 is a simple character-

istic speed of (2.1) so that p is a simple eigenvalue of the matrix Gz(O). The

assertion of the proposition then follows from a standard theorem in bifurcation

theory [12].

We now assume that the conditions of Proposition 3.2 hold and

we discuss the admissibility of the shocks associated with the shock

curve (F,v,n)(1).

For I near 0, P(N), evaluated at (F,))(u), will have a

simple eigenvalue X(T) near X0  and, therefore, (2.1) will have

a characteristic speed P(E) near 10* The shock which connects

(F,v,n)(T) with (F,v 0 , n 0 ) will satisfy Lax's E-condition [5] if

11(T) < s (T) < 0" (3.7)

This condition may be motivated in a variety of ways. For example,

it can be interpreted as a stability statement for the systems

derived by linearizing (2.1) on both sides of the shock.

If (2.1) were genuinely nonlinear [5] and E were a uniformly

convex function of (F,n) (in which case -n would be a uniformly

convex function of (F,pv,pE) [13 ]), (3.2) and (3.7) would be

equivalent by a theorem of Lax [6]. We wish to investigate the
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relationship between C3.7) and the Second Law of thermodynamics

without imposing any convexity restrictions upon E.

In order to avoid the degenerate case where s'(1)* changes

sign infinitely many times in every neighborhood of 0, we make the

assumption

s(M)(O) 0, for some . > 1, (3.8)

which is generically satisfied. For Z = 1, C3.8) expresses the

genuine nonlinearity of the P0 characteristic field at

0 0 0
(F,v ,n ) and it will be satisfied if and only if

acFo, no)
aE j k  NaN N rir r k  0, (3.9)

iaDF j Fk

where r is the eigenvector of P(N) associated with the eigenvalue

x0 *

We are now prepared to state the main result:

Proposition 3.3. Under assumption (3.8) and for I sufficiently

close to 0, Lax's E-condition (3.7) is equivalent to the strict

Clausius-Duhem inequality

sMOC() - no) < 0. (3.10)

(*)Here and throughout a prime C') denotes derivative with
respect to U.



Proof. Differentiating (3.6) with respect to T,

sF!~ + v!N01 -SI(F. 0F)(.1

Psv! + T! Na PS -s(v.-v 0 (3.12)
1 ida 1

PsEl + T! v N~ + T ~v!N, = -Ps' (E-E0 ). (3.13)

Using (2.3), (2.5) and~ (2.6), (3.13) yields

Psviv! + sT. F!( + Psen' + T!, vN + T v!N, = -Ps' (E-E 0
11 iac' lad iia

whence, by virtue of (3.11) and (3.12),

sn = -s'{P(E-E)- T.a(F.a-Fa) - Pv.(v.-vc)1}. (3.14)

On account of (3.6), (3.14) gives

2 00

PSO'= -s'f( v -TsvN T(v-v)( s.(.v)

= -5' {Pv?(v.-vTO)N - Psv(vv)
1 1a 1 1

=Psfs'(v?(v -v?).-Pv~iv)

Hence,
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son' s'(vi-v?)(v i -v ° ). (3.15)

In view of (3.8), for t near 0, s' does not change sign

between 0 and T. It then follows from (3.15) that n' also

does not change sign between 0 and I and that sn' and s'

have the same sign on this interval. Thus, (3.10) is equivalent

to SCr) < stO) = pop T E (Oj). By reversing the roles of left and right

state one shows that (3.10) is also equivalent to s([) > P(T). The proof

is complete.
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