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Summary /'

v

Progress in three different phases of our study of the
role of chemical bonding in adhesion is summarized in this report.
Phase one consisted of an experimental study of the self-adhesion
of thin layers of three crosslinked elastomers; namely, cis-
polyisoprene (natural rubber) and two polybutadienes. For the
polybutadienes, the strength of self-adhesion was found to be
strongly dependent upon the time of exposure of the two surfaces
to air before they were brought into ccntact. The same phenom-
enon did not take place on exposure to nitrogen nor for samples
of cis-polyisoprene and it was reduced or delayed in samples con-
taining antioxidant. It was therefore attributed to surface oxi-
dation reactions that can lead to interfacial covalent bonds with
polybutadiene kut not with polyisoprene. Phase two consisted of
a study of the effect of the number of chemical bonds at an
interface between glass and polybutadiene on the joint strength
of the adhesive bond formed between them. ~The radiocactivity
present in !%C labelled interfacial bonds was used as a measure
of the number of chemical bonds. Joint strength was determined
by the 180° peel test. The strength of the joint was shown to
increase as the number of chemical bonds increased. Phase three

consisted of a study of the effect of various levels of adhesion

pose 4




iii
between elastomer and glass bszad filler on the tear strength
and tensile strength of polybutadiene, which served as the
model elastomer. Preliminary results indicate that good ad-
hesion increased the nominal tensile breaking stress, but the
elongation at break as well as the strain energy density at
break was lower for all the filled materials. Tear strength
of the filled materials was sigaificantly greater than that of
the unfilled elastomer. Calculations of the size of a Griffith
crack based on the small number of samples studied so far in-
dicate that it is generally of the same order of magnitude as
the diameter of the largest glass particles present. This

aspect of the study is continuing.
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Introduction

The objectives of this study have been first to obtain
direct evidence for chemical bonding at the interface between
similar and dissimilar materials and second to learn how the
density of chemical bonds affects the work of detachment of
the materials joined together. TwoO substantial technical
reports describing some of this year's progress have recently
been published. They are: Technical Report No. 5, "Bonding
Elastomer Layers Together by a Surface Oxidation Reaction", by
R. J. Chang, A. N. Gent, C. C. Hsu and K. C. Sehgal, October,

1979, and Technical Report No. 6, "Effect of Number of Chemical
Bonds on the Strength of Adhesion Between Glass and Polybutadiene",
by P. Dreyfuss, Y. Eckstein, Q.-S5. Lien and H. H. Dollwet, Decembder,
1979. Only the salient features of these studies will be included

in this report.

Resulits and Discussion

1. Effect of Surface Exposure Prior to Bonding
In the course of studies of the work of detachment of peel
tast specimens with polybutadiene as both the overlayer and the

substrate, we observed that the strength of self-adhesion varied
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not only with the degree of crosslinking between the layers
as reported last year but also with the time of exposure of
the two surfaces to air before they were brought into contact.
The latter observation led to an experimental study of the
self-adhasion of thin layers of three crosslinked elastomers:
cis-polyisoprene (natural rubber) and two polybutadienes having
different cis-l1,4, trans-1l,4 and 1,2 contents.

For some polybutadiene materials, as shown in Figures 1

and 2, the strength of self-adhesion was strongly dependznt upon

the time of exposure of the two surfaces to air before they were
brought into contact. The strength rose so dramatically during
the first hour or so of exposure that sometimes the layers could
not later be forcibly separated. Wwhen the surfaces were expcsed
to air for longer periods before joining them, the strength of
self-adhesion fell to low levels again. This remarkable en-
hancement in self-adhesion did not take place on exposure to
nitrogen and it was reduced or delayed in samples c¢ontaining
added antioxidant.

Samples of polybutadiene, obtained at different times,

ware found to respond quite differently to air exposure. It

is thought that the antioxidants added to the material by the
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manufacturer may have been changed over a psriod of years.

Even after extraction with hot acetone, however, the samples

did not develop self-adhesion as rapidly, or to the same

degree, as earlier samples. Either the added antioxidants are
difficult to remove by this method or the new material is itself
more resistant to oxidation. This aspect of oxidative inter-
linking is being examined further.

In striking contrast to the strong self-adhesion developed
in polybutadiene materials, no comparable effect was observed
with natural or synthetic cis-polyisoprene. Indeed, the self-
adhesion of crosslinked layers Of natural rubber was found to
be decreased somewhat by prior exposure to air.

Now, it is well-known that oxidative reactions lead to
further crosslinking and hardening of polybutadiene vulcanizates
whereas, in contrast, they generally lead to softening of poly-
isoprene vulcanizates as a result of molecular scission (1-4).
Contact angle measurements were consistent with oxidative reac-
tions occurring in the surface regions of all ths elastomers
studied. However, the reaction resulted in strong adhesion only
for the polybutadiene materials. This suggests that interfacial
bonding is due to a particular feature of the oxidation of the
polybutadiene that is not shown by polyisoprene. One particular

mechanism is outlined below.
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Oxidation of polyolefins is reported to involve two

main propagation steps (1-4).

Re + 0, =™ RO,®

RO,® + R'H—= RO,H + R'e
In the first, a polymer radical reacts with oxygen to form the
peroxy radical which, in the sescond step, abstracts H from a
nearby group to form a hydroperoxide and a second radical. More-
over, ths hydroperoxide itself decomposes slowly, generating
further radical species, sO0 that the process is autocatalytic.

This general reaction scheme does not account for hardening

during oxidation. Another reaction must therefore be invoked:

the addition of polymer radicals to other polymer molecules to
form intermolecular bonds.
i Re + R' ™ RR'®

This reaction is known to occur in polybutadiene by addition

to the C-C double bond but not to a significant degree in poly-

isoprene whare the radicals appear to be less reactive. It can

thus account for the interfacial bonding observed with polybuta-
diene but not with polyisoprene. Moreover, it will become of
proportionately greater importance as the concentration of

oxygen becomes lower, i.e., as oxidation continues in the inter-

D e A A

facial region after the elastomer layers have been brought into
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contact., Wz therefore infer that the observed adhesion is dus
to the attack of polymer free radicals, gznerated during oxi-
dation, upon molecules lying on the other side of the interface,
to bring about covalent interlinking.
2. Effect of Number of Chemical Bonds

Studies of the effect of chemical bonding on the joint
strength of adhesive bonds formed between polybutadiene and
glass were carried out. The number of chemical bonds was deter-
mined using !*C labelled interfacial bonds and measuring the
resulting radioactivity. The method of synthesis was described
in Annual Report 3. Joint strength was measured using the 180°
peel test with the slightly modified spacimen shown in Figure 3.
Measurements of the peel force were carried out sequentially on
the two sides of the slides using the same procedure previously
d=scribed by Runge and Dreyfuss (5). Wcrk of adhesion, W, per
unit area of interface was calculated from the time average peel
force, P, per unit width, w, of the detaching layer: W = 207.
All tests were carried out at 0.5 cm/min crosshead speed.

The results of the study are plotted in Figure 4 where the
observed work of adhesion is plotted against both E-emission and

the numbsr of glycine molecules per 100 2 . rThe number of

glycines is equal to the number of interfacial bonds. The
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data are based on what appears to the eye to be interfacial

failure at the glass-rubber interface. Several conclusions

can be drawn from the results shown in the Figure:

1.

As the number of glycine/100 R: increases, the
work of adhesion increases.

There are relatively few instances in which the
number of glycine/100 22 is greater than 4. By
far the largest number of points lie between two
and four glycine/100 & %, although the mole fraction
of l-trichlorosilyl-2-(p,m~-chloromethylphenyl) -
ethane in the treating solution was varied from

0 to 1. The number of such silane molecules in
the interphase determines the maximum number of
radiocactive glycine molecules that can be present.
This measured nunber of chemical bonds is cf about
the same order ¢f magnituds as the number of OH
groups/100 R ¢ usually quoted for glass dried
under our conditions (6-8). This suggests a near
1l:1 correlation between the number of interfacial
bonds and the numnber of OH groups on the glass
surface and indicates that the polysiloxane layer

is probably no more than l-2 layers thick.
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As the number of glycine/100 R 2 increases, the
scatter in the data also increases. We believe
the scatter is real and results from an increasing
amount of tearing through the polybutadiene toward
the cloth. At higher peel forces patches of rubber
on the glass were always visible to the eye. There-
fore, instead of making a statistical analysis which
would give one line and a coefficient of correlation,
we have elected to draw two lines that encompass most
of the data and give slightly greater‘weight to the
lower values.
The slope of the lines is a measure of the increase
in the work per interfacial chemical bond. This slope
lies between 5 and 8 x 10-'%® J/bond and is of the same
order of magnitude as C-N, C-C, and C=C bond strengths
found in the literature (9). Table 1 shows the
numerical comparisons. The experimental value is
only one order magnitude higher than the bond strengths.
The comparison would be even better if dispersion and
van der Waals forces are considered (10). Furthermore,
experimentally at any given time it is not possible
to stress only one bond of a crosslinked network. Some

work must be expended stretching several bonds
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Table I

comparison of Typical Bond Strengths With Observed Increase
in Work of Adhesion per Chemical Bond

; Bond E: .J‘ggonda Slope b
ﬁ c-N 0.5 x 10™!¢8 9~15

t c-c 0.6 x 107'® 8-13
S c=C 1.2 x lo~}1é@ 4=6

3/alues in reference 14 are at 298°K.

bThe experimental slope is (4.8-7.7) x 10~!% J/glycine
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simultaneously and this would lead to observed forces
being higher than theoretical forces. Thus we feel
that there is reasonable agreement between the glope
and bond strengths.

Bonds between silicon and oxygen or between silicon and
carbon were not included in Table 1 because after peeling,
essentially all the radiocactivity remained on the glass surface.
Considering that the interface has the structure shown in Figure
5, this indicates that fracture must have occurred within the
polybutadiene or at one of tha C-N bonds.

Since a correlation exists between the number of inter-
facial bonds of the model adhesive degcribed in this report and
the resulting joint strength, we conclude that chemical bonds
at the interface improve adhesion of a properly prepared joint,
3. Studies of Model Filled Elastomer

Simple elastomers filled with glass beads or other model
fillers have been shown to be stiffer, and sometimes stronger,
than the corresponding unfilled material (l11-14). Large changes
have been associated with "dewetting", when the elastomer de-
tachas from the glass beads at high strains to form vacuoles.
Whan dewetting is pronounced, then the presence of the glass

beads is stated to have no effect on the tensile properties (15).
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In order to study the process of fracture in glass-filled
elastomers in more d=tail, it thus seems advisable to control
the tendancy of the elastomer to dewet from the glass. Glass
microspheres have therefore been obtained with a variety of
surface pretreatments. In some instances; for example, when
the glass had been treated with vinyltriethoxysilane; chemical
bonding to the elastomeric matrix would he expected to 2zccur
during the free-radical crosslinking of the diene elastomer
itself after the glass filler had been incorporated. 1In other
instances; for example, when the glass had been pretreated
with dimethyldiethoxysilane or had received no pretreatment
at all; then no interfacial chemical bonding between the elasto-
meric matrix and the glass filler particles would be expected
to occur when the elastomer was later crosslinked.

Model filled compounds were prepared using these treated
and untreated glass microspheres, by mixing 50 phr into 100 phr
polybutadiene, tog2ther with 0.05% of a free-radical cross-
linking agent, dicumyl peroxide. These mixes ware then pressed
into sheets and the elastomeric matrix was crosslinked by heat-
ing at 150°C for 2 hrs. Tensile fracture experiments and

measurements Of tear strength, hysteresis and swelling ratio
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were carried out on the resulting materials.
Tensile Properties

The results of the tensile fracture experiments are given
in Table 2. Data for unfilled rubber is includ=d for comparison.
The nominal breaking stress was higher and the elongation at
break was lower for the compound filled with glass beads pre-
treated with vinyltriethoxysilane, which is expacted to form
chemical bonds with the elastomer, and for the glass beads
pretreated with n-propylaminotriethoxysilane. Indeed, the
values obtained are highar than for unfilled elastomer and the
specimens showad stress whitening before rupture. Compounds
filled with glass treated with non-bonding silanes, dimethyl-
diethoxysilane and octadecyltriethoxysilane, had lower breaking
stresses and lower breaking elongations than‘unfilled material.
These specimens also showed substantial stress whitening before
rupture. Nominal breaking stress of compounds containing un-
treated glass was higher or lower than unfilled material, da-
pending on the size of filler added but the slongation at break
was always lower than for unfilled 2lastomer.

An alternative measure of the strength in tension is
given by the strain energy density at break, U_. These values

b

are given in the final column of Table 2. The results show a
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marked decrease in Ub on adding glass filler, even whan the

glass was pretreated with a bondable silane, and a further
large decrease when the glass was pretreated with a non-bonding
silane.
Tear Strength

Measurements of fracture energy, or tear strength, T
ware carried out on 5 or more strips of each compound. The
values obtained were found to vary by about + 15 per cent, even
though the tear force had been preaveraged along the length of
each strip. The mean values of tear strength are given in
Table 3. They are s=en to be significantly increased by adding
glass particles, by about 25 per cent fcr the largzsr sized
particles. Moreover, the tear strength does not ad®pesar to
d2pend upon the degree of interfacial bonding to a significant
degree. The tear strength is somewhat higher for the compound
containing non-bonding octadecyltriethoxysilane coated glass
particles; but this may reflect merely the enhanced energy

dissipation of this material oan daformation. The low value

- ea

of tear, strength for the compound containing glass particles

coated with dimethyldiethoxysilane may result not only from

-ac

non-bonding to the elastomer but also from poorer bonding to

- - el el AN € .
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the glass of a weaker polysiloxane network from the diethoxy-
silane. All other polysiloxane coatings were obtained from
triethoxysilanes.

It seems liksly that the intrinsic tear strength of the
filled materials is not much different from that of the elas-
tomeric matrix. The main effect of the filler particles is
apparently to cause a deviation of the tear path from a straight
line, so that the tear becomes rougher. A noticeable increase
in roughness of the torn surface was observed in comparison with
that of the unfilled material. The scale of roughness is probably
set by the size of the filler particles; it is noteworthy that
the larger glass particles gave higher tear strength compounds.
However, if the particle size is smaller than the natural tear
roughness of the unfilled elastomer, then they would presumably
have little influence on the tear strength by this particular
machanism of enforced deviation of the tear path.

Fracture nuclei in tension

The depth, ¢, of a nick or flaw from which tensile
fracture initiates may be calculated from the measured tear
energy T and the fracture energy density, Ub. Values obtained

in this way are given in the last column of Table 3. They are
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seen to be significantly larger for the glass-filled materials
than for the unfilled elastomer, and to be generally of the
same order of magnitude as the diameter of the largest glass
particles present. The only significant exception is shown

by the last material, for which the filler bonding is least

strong and dewetting is most pronounced. In this case, the

initial fracture nucleus may be a larger flaw associated with
several contiguous dewetted particles.

Nevertheless, the general correlation shown in Table 3
between the calculated flaw size and the size of the glass par-

ticles, for materials having a wide range of values of Ub'

strongly suggests that tensile rupture in elastomers containing
solid particles takes place by catastrophic tearing from an
initial flaw which may be identified with an unusually large
dewetted particle. Clearly, when the particle size is smaller
than the size of adventitious flaws, about 50 um in the present
case, then this correlation will cease to hold. work with
other sizes of glass beads, both larger and smaller than the
ones used in this study, is in progress.
Hysteresis
Energy dissipation was clearly greater for filled than

for unfilled materials. This is seen in the results of measurements
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of mechanical hysteresis shown in Takle 4. The differences in
hysteresis of coated and uncoated glass beads are small except
for the higher values obtained from materials containing glass
beads treated with octadecyltriethoxysilane. This probably
results from greater dewetting with these beads.
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