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A UNIFIED FORMULATION OF SYNTHETIC-APERTURE RADAR THEORY

by

E.B. Felstead

ABSTRACT

A theory of synthetic-aperture radar (SAR) is
formulated for the case where the radar antenna
is pointed along or close to the normal to the
track of the satellite or aircraft carrying the
radar. All the common signal defects are
presented and incorporated into a unified
matheratical description of the recorded input
signal. From this description, the two-dimensional
Fourier transform and the output image function
are derived. Signal defects arising from range
curvature, rotation of the earth, earth curvature,
and antenna pointing error are included in the
formulation. A method of correcting for the effects
of range curvature by use of a frequency-plane
filter is recommended. The direct effects of
cross-track motion caused by the earth's rotation
are eliminated by proper choice of the coordinate
system. Simple methods of handling other aberra-
tions are presented. Further topics covered are
ambiguities, the spread of range and latitude over
which a single reference function may be used,
incoherent integration for reduction of radar
speckle, object motion, and antenna motion errors.

1. INTRODUCTION

Synthetic-aperture radar (SAR) has been extensively studied [l]-[4]
and much excellent imagery produced. Under certain conditions the return
signal contains aberrations that cause problems in the production of high
quality imagery. These conditions arise especially on satellite-borne SAR.
There has been a tendency to consider each problem individually, in isolation
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from other factors. Although such an approach is handy for quick approxima-
tions, it can lead to inaccuracies and misinterpretations. In this paper all
the common signal defects are presented and incorporated into a unified
mathematical description of the recorded input signal. From this input signal,
the Fourier transform and the image plane function are derived. These three
functions form the mathematical basis for devising signal processing concepts.

Although the discussion in this paper concentrates on satellite-borne
SAR, the results can be easily simplified to apply to airborne SAR. The
formulation is presented in a form appropriate for optical processing.
However, it would be relatively simple to reformulate into a form appropriate
for digital processing. Also, the theory deals only with the SAR antenna
pointing normal or near normal to the direction of travel (sidelooking). A
theory for antennas pointed at large angles from the normal (squinted)
has been developed elsewhere [5].

There are four aberrations of the received signal considered here. The
first [6], sometimes called "range curvature" [7], arises from the fact that
the distance between the SAR and a point object varies quadratically with
time. A second class of aberrations arises from motion of the object or
motion errors of the SAR. The earth's rotation [8] is one example of such
motion. The third aberration is caused by the combined effect of pitch of
the antenna about a horizontal axis and yaw about a vertical axis. These
motions point the antenna either ahead of or behind the perpendicular to the
flight path. Although pitch and yaw alone do not cause much problem, their
effect becomes more serious in the presence of range curvature and motion
errors. The fourth aberration arises from the curvature of the flight path
and of the earth's surface. Leith (6] has formulated a theory of SAR opera-
tion taking range curvature into account. Here, the formulation is extended
to include the other aberrations.

In Section 2, a coordinate system is introduced that eliminates
problems caused both by the earth's rotation and by curvature of the earth
and of the flight path. In Section 3, the form of the received SAR signal
is given and the equations describing the recorded signal in its two-dimen-
sional format derived. The three forms of modulation of the recorded signal
and their implementations are discussed. The two-dimensional Fourier trans-
form of this signal is derived in Section 4. A discussion on image formation
in Section 5 includes a description of the basic correlation process required
to produce the image, a description of image characteristics, and a discussion
of methods of correction for the aberrations. In Section 6, the problem of
ambiguities arising from the pulsed (sampled) nature of the radar is treated.
The intervals of range or latitude over which a single reference function
adequately matches the signal are specified in Section 7. Incoherent
averaging to reduce radar speckle is discussed in Section 8. The effects of
both object motion and SAR antenna motion errors are considered in Section 9.
Neither the effects of the ionosphere (8],[9] nor the problem of imaging
ocean waves [10] are examined here. These problems are as yet unsolved and
required further work.
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2. SAR GEOMETRY

The instantaneous distance r between the SAR antenna and the object
being imaged is important in deriving the equation for the SAR signal. In
this section, a coordinate system suitable for satellite-borne SAR is
presented. The value of r is then derived in terms of these coordinates.

A spacecraft carries the radar along some orbit such as shown in Figure
l(a). If its altitude hs is approximately constant for at least a synthetic-
aperture length, then the centre of the orbit and the centre of the surface
curvature approximately coincide at 0. (For non-coincident centres, the
following theory needs only minor modifications.) The radius of the earth's
surface is re and that of the orbit is re+hs. The nadir of the satellite
moves along the curved azimuth coordinate x which is fixed to the earth's
surface. The satellite has a coordinate position cax along the orbit where
the constant

Ca f (re+hs)/r 1 + hs/r e . (1)

At some instant of time t=t o the satellite is at Co and its nadir is at Bo .
Consider a single point reflector on the earth's surface located at Ao, such
that the plane AoBoCo is perpendicular to the x coordinate at Bo. The
azimuthal position of Ao is the same as that of Bo, i.e., x=x o . The second
coordinate of AO is the slant range ro, the distance between A0 and Co . The
ground range do, the distance along the curved surface between Ao and Bo, is
given by do = reer, where 8r = /AoOCo. If the small-angle approximation
coser 1 r~/2 is made in

r2  (r+h )2 + r2 - 2(r +h )r cose (2)
o ehs e e s e r

then the ground range may be expressed in terms of slant range as

d = c V (3)
0 r 0 5

which is simply a right-angled triangle relation scaled by a magnification
factor

cr - i/ 1 + hs/re  I/cV".a (4)

The .pacecraft's orbital velocity usually is given as the velocity
vector V. measured with respect to inertial space. As shown in Figure 2, Va
makes an angle *s to the local meridian. Because of earth rotation, the
surface has a velocity vector Ve relative to inertial space. The spacecraft's
velocity vector V along the x axis (see Figure 1(a)) is the velocity relative
to the earth's surface. This velocity is calculated from V. and Ye.

As illustrated in Figure 1(b), the velocity V/ca of the nadir point Bo
along the surface is the vector sum of -Ve and the velocity Vs/ca. Velocity
Ve has components V parallel and Ven normal to the vector V s/ca. From
Appendix A, the magnitudes of the components are
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Figure 1. Coordinates, dimensions and velocities used in the formulation of the problem where (a) is a
perspective drawing, and (b) shows the plane of the surface at point 8 O.
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Figure 2. Angles for defining orbit
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V e wr cos i  (5a)
ep e e i

and

V e wr sinO cos °  (5b)

where 81 is the angle of inclination of the orbit, we is the angular velocity

of the earth about the N-S axis in radians per unit time, and *o is the angle
of the spacecraft measured from the equator in the orbital plane (see Figure
2). The sign of Vep in (5) is valid for the satellite ascending or descend-
ing. The magnitude of V/ca is

V/ca [V2 + (Vsp/ca) 2] (6)

and the angle eye between Vs/Ca and y/ca is

V

e-tan-1 en (7)
ye V sp/ca

where

V V -cV (8)•-sp --s a-ep

is the component of V parallel to Vs . The sign of Vep, as determined by
(5b), must be maintained in (8). Since Ve is independent of latitude, and
if ca and VS are constant, the magnitude of the component Vsp is constant.
The velocity Ven of the surface normal to the orbit, is latitude dependent.
It is this component of earth rotation that gives rise to certain processing
problems. It will be assumed that Ven is constant over a single synthetic-
aperture length.

The SAR moves along the orbit with velocity V to another position Ci
at time t-ti . Correspondingly, the nadir moves with a velocity V/ca along
the surface to position Bi on the x coordinate. The distance r between the
new position C, of the antenna and the object at Ao on the surface must now
be determined. For the triangle AoOCi

r2 . r2 + (re+hs )2 - 2r (re+hs)cOsE. (9)

From the rules of spherical trigonometry for the right spherical triangle
BoAoBi shown in Figure 1(a),

cose - cose cose (10)a r (0

where 0 - A,OB and e - CoO. If we solve for cos6r in (2) and note that
8a  (X-Xo)0/ e-then r becomes

r - Ir2 + (r+h)2 + [r2 - (re+hs)2 - r2 ] cos _ a (11)
0e r

Ie
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An expansion in a Taylor series about x-xo gives

(xx o )2 - r2_h2)
r r+c 0 °- e2S (12)

0e

Terms in (X-X )4 and higher are, in all practical cases, negligible and are
omitted in (12). Usually ca > (r2-h2)/2r2 so that the term (r2-h2)/2r2 may
also be omitted. For straight flight over a flat earth, re - w and c - 1,
so that the expression ir (12) reduces to that often given for airborne SAR
[1]-[3]. Range r may also be expressed as a function of time since azimuthal
distance is related to time by

X-xo - (V/ca)(t-to) (13)

3. FORM OF SAR SIGNAL

As the SAR moves along its orbit, a series of pulses are transmitted.
The nth pulse has the form f(t-n/fp)exp(J2wfct) + c.c. where the pulse wave-
form f(t) - a(t)exp[ja(t)] is a complex modulation of the coherent carrier
wave of frequency fc, c.c. denotes the complex conjugate of the previous
expression, and f is the PRF. This signal is coherent from pulse-to-pulse.
The signal returned from a point object at Ao is

u(t) - af(t - 2r/c - n/fp)exp[j2Zfc(t - 2r/c)] + c.c. (14)

where c is the velocity of the radar wave and a is a complex amplitude propor-
tional to the object's reflectivity. Recall that r can be expressed as a
function of time. Signal (14) is synchronously demodulated to become

ud(t) - of(t - 2r/c - n/f p)exp(-j4yrr/X r)exp(j2rf t) + c.c. (15)

where fo is an offset frequency and Xr = C/fc is the radar wavelength. The
demodulation is discussed further in Appendix B.

The signal ud(t) is a one-dimensional function of time. The purpose of

the factor exp(j27rfot) will be seen later. The factor f(t - 2r/c - n/fp)
will be seen to lead to an image in the range dimension and the factor
exp(-j 4 7rr/X r ) to an image in the azimuth dimension. In order to produce the
required two-dimensional image, it is necessary to separate these two factors
in some manner. The separation is based on the fact that the range function
is very rapidly varying in time compared to the azimuth fuiction. This
difference arises because the range signal is associated with the velocity c
whereas the azimuth function is associated with the velocity V. To set up
the separation, the signal arising from successive transmitted pulses are
usually recorded along corresponding successive lines. The range function
is recorded along the lines. The azimuth function varies negligibly along
one line; its variation appears as a modulation across the lines.

i._________________
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For this discussion it is assumed that the signal is to be recorded on
photographic film [1] where the distance xf along the film represents the
azimuth dimension and distance rf across the film represents the range dimen-
sion. For each transmitted pulse a recording beam sweeps out a line across
the film at a velocity vc in the rf direction. The film is moving at a
velocity vf in the xf direction. Therefore, distance on the film is related
to time by

t = xf/vf + r f/vc . (16)

Because of the sampling in azimuth at the PRF, the signal will be recorded
only along the lines xf/vf = n/f Thus, the range function in (15) becomes

f(rf/V - 2r/c)= f -  (rf - r/q (17)

where the scaling constant,

C (18)

c

is the range demagnification factor. If the azimuth function is adequately
sampled, it is valid, for the purposes of the following discussion, to replace
the sampled azimuth variable n/fr by the continuous variable xf/vf. (The
effects of sampling are considered later.) Since x = (V/ca)t and xf = vft,
range (12) may be written in terms of xf as

CaP2

r=r + ( - X/P)2 (19)
0 2r Xf 0

0

where the scaling constant

V/ca
p = (20)

p vf

is the azimuth demagnification factor.

The signal in (15) is limited by the region of ground illuminated by
the antenna. The region illuminated depends on the antenna beamwidth and
pointing direction. In azimuth, let the two-way antenna pattern in amplitude
be h[(x-xo + xs)/L]. It is given here as a function of distance along the
ground where x is the shift of the beam centre from the perpendicular to
track. The effective synthetic-aperture length is

L = Or (21)

and B is the effective angular beamwidth, in azimuth, of the two-way amplitude
antenna pattern. An angular pointing error 6s measured in the slant plane
from the line CoA o may be associated with xs, where 6s - tan-l(xs/ro). In
this paper it is assumed that the antenna shift xs is sufficiently small that,
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when inserted into (11), it causes little error in the Taylor series expans-
ion. An angular pointing error 68 of about 100 to 200 is probably tolerable.
For larger pointing errors the antenna is said to be squinted. An expansion
about the offset angle 0s is then necessary for an accurate representation [5].

The shift x. is composed of several components. First, pitch 6p, and
yaw Oy,, of the antenna causes angular pointing-errors of 6ps and 6_ an
respectively, in the slant plane as illustrated in Figure 3. If ptch and
yaw are relatively small then

h
e = - e (22a)
ps r p

and

6 r 0 6 . (22b)ys r y
0

The corresponding components of shift x. are

xps r tanOps =hsa6, (23a)

and

x (r)=- r tan = - * e (23b)YS 0 0 Ys 0 S y

The signs of p and 6 in Figure 3 are considered positive. If the antenna
p ywere looking to the left, then X sy + r tan .

0 0 ys

COXK

SPACECRAFT SPACECRAFT cGx

0 eyy

/z z \.
a) PITCH b) YAW

Figure 3. Diagrams defining (a) pitch and (b) yaw angle of the centre of the beam
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Another component of xs arises if the antenna is pointed perpendicular
to the inertial-space orbital-velocity vector V rather than to the velocity
vector V which is measured relative to the surface. Then the antenna would
have an equivalent yaw angle Oye. which is the angle centred on the snatici:te
between V. and V shown in Figure 1(a) and is also the angle centred on Bo
between Vs/ca and V/ca shown in Figure 1(b). The e e shown in Figure 1(b) is
positive. The along-track offset due to the equivalent yaw is

Xyes (r) r tan o a y]. (24)

For e small, the substitution of (7) into (24) leads toye

V -dV
x (ro ) - -h en a o en (25
yesV s 7c c 25sp a r sp a

which is range and latitude dependent. If the antenna points to the left of
track, a left-handed coordinate system may be used. Then the sign of Xyes
in (24) and (25) is reversed. Note that through the use of a coordinate
frame fixed to the surface, the only effect of earth rotation is an equiva-
lent yaw of the antenna resulting in an offset of the antenna pattern. As
will be discussed in Subsection 5.4, even this effect may be eliminated by
steering the antenna to be perpendicular to V (i.e., to point along zero-
doppler frequency).

The SAR antenna can have a vertical velocity-component V . If Vv is
relatively small and slowly varying, its effect is approximateYy equivalent
to that of pitch. Since the antenna velocity is V + Yv whereas the antenna
is nominally perpendicular to V the equivalent pitch angle is ev - tan-l(Vv/V).
Thus, the component of xs caused by rtical velocity is

=s -h tan (Vv/V). (26)

An exact analysis of the effects of vertical velocity is given in Section 9.
The total azimuth shift of the beam centre is

xs(r) x + x (ro) + x (r ) + . (27)
5 0 p5 ys o yes o vs

In the range dimension, the beamwldth and the pointing direction of the
antenna limit the width and position of the ground swath illuminated. The
effect can be described as a weighting of the signal (15) by the weighting
function hr(t - 2 rc/c - n/fp), related to the antenna pattern in range, where
rc is the slant range of the beam centre. Antenna roll causes rc to vary.
The effect of roll is to shift the ground swath that can be imaged. Roll has
no other effect on the image. For simplicity the weighting function hr is
omitted in the following.

The complete recorded signal is thus,
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g(xfrf) - oh ?P

(2 F r c p 2f r [-" (xf P)

c f q 2-r fXo/P) J o +r

+ c.c. (28)

The exponential factor containing fo is a spatial carrier wave. Its
purpose is to aid in the separation of the spectrum of the c.c term in (28)
from that of the rest of the expression. If fo is small then, because
vc > vf, the carrier is approximately exp[j2r(fo/vf)xf], which corresponds
to an offset in azimuthal frequency. The spatial-frequency offset in azimuth,
fox 2 fo/vf, is selected to be larger than half the bandwidth-in-azimuth of
g(xf,rf). To obtain a frequency offset in range, the offset f must be an
exact integer-multiple of the PRF or else a serious error modulation will
occur. Thus, if fo - Nf_, the carrier is exp[j2vNn]exp[j2w(fo/vc)rf] -
exp[j21r(fo/vc)rf], the desired offset-in-range carrier. The spatial-frequency
offset in range, for = f /v , is selected to be larger than half the bandwidth-
in-range of f(xf,rf). Fgr digital processing it is usually preferred to work
at baseband where fo f 0. Then it is necessary to have both an in-phase and
a quadrature form of (28) available. An outline of how the three forms are
obtained electronically is given in Appendix B. The form of offset does not
affect the general theory. Therefore the offset term in (28) will henceforth
be omitted. Furthermore, it will be assumed that, with the aid of offsets or
in-phase and quadrature processing, the c.c. term can be separated out and it
will also be omitted.

2
In the first exponential factor of (28), the component in xf is the

azimuth-focussing function, and 4rro/xr is a constant phase. The focussing
term is modified by ca. In the function f(xf,rf), the component in xf is a
quadratic displacement in the rf direction. This displacement is known as
range curvature. It is often negligible for low altitude SAR's [1]. The
quadratic shape of the envelope of function f is illustrated in Figure 4.
The quadratic curve is centred on (xo/p, ro/q). The range width R2/2q will
be discussed in Subsection 5.2. As indicated by the cross-hatched area of
Figure 4, the antenna pattern h and the function f select the section of the
complex function that is used.
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Pr rf
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q

I I- -I I "~WIDTH OF f=R

I_ I 2q

p I
CENTER CENTER OF

OF QUADRATIC
SHIFT CURVE

Figure 4. Outline of the envelope of the function f(xpr limited by h(x? as given in (28).

4. THE FOURIER TRANSFORM OF THE INPUT SIGNAL

In many processing methods, frequency plane operations are used. The
two-dimensional Fourier transform of g(xfrf) in (28) is shown in Appendix C
to be

/cf \-j 2 rfrro/q (f - 2capxs(r )/(X rro
x(fx fr 2 a F 2 -) e h x - 2caPS/X r

jirr qf 2

o x
c ap2(fr +2q/) -j21rf xx/p

x e e (29)

where fx is the azimuth spatial frequency and fr the range spatial frequency,
F(fr) is the Fourier transform of f(rf), and c2 - c[roAr/ (2Cap2)/(2q)]
exp(j-i/4) exp(-j47rro/Ar), a complex constant. If suitably processed, the
F exp(-j27rfrro/q) factors in (29) result in a compressed range signal
located at r2 - ro/q, the desired result, where r2 is the range dimension in
the output plane. The second exponential in (29) contains the desired
azimuth focussing function but is aberrated owing to range curvature
represented by fr in the denominator and is scaled by 1/ca because of earth
and orbit curvature. The focussing may be separated from the aberration by,
first, noting that the maximum value of (frxr)/( 2q) is 1/2 Af/fc where Af is
the bandwidth of f(t) and fc - c/Ar is the rf carrier frequency. Usually 1/2
Af/f c << I so that
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7X r f2  nX r f2  iX2r f f2
rox rox rorx

S2c ap2 (l+f rr/2q) 2c ap2  j 4c p2qe - e •e30

where the first complex exponential is the desired azimuth focussing-function
free of range-curvature effects and the second represents an aberration due
to range curvature and is a function of fr . If suitable processing is used,
the exp(-j27rfxXo/p) term results in the azimuth signal being centred on
x2 - X0/p at the output plane. The form of the azimuth antenna pattern
remains h but it is now a function of f., and is shifted by the amount
fx - 2pcaxs(ro)/(Xrro) because of antenna pointing error. The spatial
bandwidth in the fx dimension of the function h, and therefore of G, is

2V$ (Lf)
Bf " 2cP8/r " l ( (31)

and the spatial bandwidth in the fr dimension is Bfro which is the width of
the function F(cfr/2q).

In converting the demodulated signal of (15) into the recorded signal
of (28), the time variable t was separated into two components and converted
to the two space variables xf and rf according to (16). There is a similar
conversion between temporal and spatial frequencies. A temporal frequency vr
may be associated with the range function f(t) in (15) so that the transform
of f(t) is F(vr). The frequency conversion

Vr - v f (32)r cr

follows from the temporal-to-spatial conversion of (16). Similarly, a
temporal frequency vx may be associated with the azimuth phase function in
(15) so that

V " Vff. (33)

It is noted in Appendix C that, for a large time-bandwidth product,
there is a one-to-one correspondence between time and frequency for the
azimuth phase function. Thus an instantaneous frequency has some physical
significance. For the azimuth function in (15), the instantaneous azimuth
(doppler) frequency is defined as

Vxi - -(2/X r)dr/dt. (34)

The substitution of (12) and (13) into (34) results in

2V 2 (t-to) 2V(x-xo)
0 0Vxi c- rX rX (35)

a o r o r

The instantaneous spatial frequency in azimuth is found, by differentiating
the azimuth focussing function in (28), to be

.- j ,
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cap2 d(xf-xo0p)2 Vxi

xi - r dxf vf (36)

The temporal azimuth bandwidth BVx is found by letting x-xo  L in (35) to
give

B 2V8 (37)v~x -"
r

In the description of the frequency function G, the effects of the
azimuth sampling at the PRF fp, the frequency offsets mentioned in conjunction
with (28), and the c.c. term were neglected. If these three factors are
included, then the output spectra have the following forms:

Azimuth offset -

Z [G(f -fox-nf )r + G*(-fx-f o-nfp -f
nm- x0 P x P

Range offset -

n - [G(fx-nf pxf r-f or) + G*(fx-nf px'-f r-f or)]

Baseband -

I channel
Z [G(f x-nf 'fr + G*(-f-nf,'f Mn-- px r px r

Q Channel

n (G(f -nfpx*fr) - G*(-fx-nfx ,-fr).
n=- x px r x p r

where fp " fp/vf is the spatial PRF and * denotes complex conjugate. Repre-
sentations of the envelope hhr of these spectra are shown in Figure 5. The
boundaries obviously will not be as sharp as shown. The same PR is used in
all cases. To avoid overlap of spectra, the PRF must be

fpx > 2Bfx (38a)

for azimuth offset but need only be

fpx > Bfx (38b)

for range offset and for baseband. Thus, azimuth offset has a disadvantage
in requiring a PRF twice as large as that for the other two techniques. The
effect of antenna pointing error is to shift the repeated envelope Eh of the
repeated spectra EG by a distance 2pc xs/Xrrn in the fx direction. The
envelopes of the conjugate spectra are shifted by the same amount but in
the opposite direction. These shifts were not included in Figure 5. It is
very important to note that the phase functions in EG and EG* do not shift -
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fr B

*P x7"- fpx -fox

( aE) AZIMUTH OFFSET

-for- f fIIK G I
~(b) RANGE OFFSET

0 Tx

I (C) BASEBAND, I CHANNEL ONLY

Figure 5. Envelopes of two-dimensional spectra of input signal for 3 forms of frequency offset and all for
the same PRF, fpx" Right-to-left cross hatching represents the spectrum G and the other represents

G * (after Harger [3, p. 68]).

only the envelopes shift. These shifts are discussed further in Subsection
5.2.

In the above, a weighting in the fx direction over the infinitely
repeated spectra has been omitted. The weighting arises because of limited
frequency response of the input device.

Sometimes it is useful to do certain operations in a mixed domain,

i.e., a domain where space is one dimension and spatial frequency is the
other. From Appendix C it can immediately be seen that the one-dimensional
transform of g(xf,rf) with respect to rf is

G x-j~- cF~ r i21rf ro/q _x-( xV

c ap2  cap 2

x a qr 0  r f 0 e ro (39)

where c3 " exp[-j4fro/ r ] is a complex constant. The undesired exponential
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2
in frxf is caused by range curvature. The last exponential is the desired
azimuth focussing-term. From the techniques used in Appendix C it may be
shown that the one-dimensional transform with respect to xf is

fl~ [r r X2 r f2 -ii
G (f r) ac c-f. -af qox.

( 2cap X rro

x - xs cp2 xr f2 xo/P (40)
x h eo e f2

2
where c4 is a complex constant. The exponential in fx is the desired focus-
sing term free of range-curvature aberrations. Range curvature appears as
an offset in range of the function f.

5. IMAGE FORMATION

5.1 GENERALIZED PROCESSING

The object of signal processing is to take an input signal and produce
an output image. For a point object at (xo,ro) it is required to produce a
point image at (x2 ,r2) - (Mxxo/p,Mrro/q) where (x2 ,r2) are the azimuth and
range dimensions in the output plane, Mx is the azimuth magnification and Mr
is the range magnification. For unity aspect ratio we require that Mx/p -
%q. In this section it is assumed that aberrations are fully corrected so
tat only ideal images are discussed. A discussion of image degradations
will be included in Section 7.

The image R(x2,r2) is produced by performing the two-dimensional
correlation

R(x2 r2) - f g(xfrf)g*f (xf-x 2. rfr 2 )dxfdrf. (41)

The reference function is given by

/xfx/P\ [ f)] ~
gref f x (DxIp / [ 2qro /

2ea 2 
(2-j -r xf

r (42)
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where w is a window function and Dx is its width. The correlation (41) mayx
be done directly as indicated or by matched filtering, wherein the spectrum
G(f x,f ) of (29) is multiplied by a reference spectrum

G*f(f'f) - cf r [fx - (2ca P/ro)xsref fx r. c2 F ,r)T x pDf

-j7rX r f2  jwA 2r f r 2
r o x r o r x

2cAp 2  4cap2q
aaxe e

The first exponential is a focussing function and the second corrects for
range curvature. The product GG* is inverse transformed to produce the
image R(x2,r2).

The correlation may also be performed as a combination of direct
correlation in one of the two dimensions and by matched filtering in the
other. Different operations such as focussing and range-curvature correction
may be performed independently and at different stages.

In the object domain, the x axis was chosen such that it is parallel to the
velocity V/ca over the surface. This velocity makes an angle (Os - eye) with
the local meridian as shown in Figure 1(b). The output image axis x2 is also
oriented parallel to V/ca, i.e., at an angle (Os-eye) to the local meridian.
Since both 0 and e vary with latitude, the orientation of the ax.s
varies with latitude. It is assumed that this variation is sufficiently slow
that (0s - eye) can be considered constant over at least a synthetic-aperture
length.

5.2 OUTPUT WAVEFORM AND RESOLUTION

Even in the absence of aberrations a point object cannot be imaged to a
perfect point image. In this section the waveform of the ideal image of a
point object and the resulting resolution are discussed for both the range
and azimuth dimension. It is assumed that the image is formed by the
correlation operations described in Section 5.1 and therefore implied that
all aberrations have been corrected.

5.2.1 Range

In a pulsed ranging system the slant-range resolution is

Prs = cTe/2 (44)

where T is the effective pulsewidth of the received pulse. For a simple
pulse, e just the pulsewidth, and for a coded pulse, Te is the width of
the compressed pulse.

For a narrow pulse of width T,, the transmitted range signal is
represented by
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f(t) - a rect(t/T1 ) (45)

where

1, -T/2 < t < T/2
rect(t/T) -

0, elsewhere

and ao is a constant. The recorded range signal is

f[(rf - r/q)] = a rect Ir I /q (46)
c f 0 LR17 2 ) J

where R, - cT1 is the pulse length in space. For practical reasons a long
coded pulse is usually used. In SAR the most commonly used coded pulse is
the chirp waveform. The transmitted range signal is

f(t) - a rect(t/T 2)eJWSt2 (47)

where T2 is the pulsewidth and s is the sweep rate in Hz/s. The recorded
range signal is

f ?A ( r/q arectFrf-r/q e jrs(2q/c)2(r f-r/q)2  (8

f (rf-1r/] -a rect [R /(2q) e (48)

where R2 - cT2 is the pulse length in space.72

If the range correlation in (41) is performed for f as given in (48)
and if the width Dx of the window function wx is large compared to L, then
the envelope of the resulting compressed signal is

FR 2 _ (2 r \

where sinc x - sin wx/(rx) and c is a complex constant. For D - L a more
complex form results although (49) remains a good approximation, especially
near the main peak at r2 - Mrr/q. The dependence of r on xf in (49) must be
removed in the processing so that the sinc function is centred on r2 - Mrro/q
as required. The range compression can be performed separately before
recording the input signal, in which case the input range signal has the form
of (49) where r2/Mr is replaced by rf.

By omitting the magnification factors, we obtain the resolution in
terms of unscaled dimensions. From (49), the Rayleigh slant-range
resolution is jRrs R -) Te (50)

•r - (71F



where Te - l/Bur and Bvr - sT2 is the bandwidth of the chirp signal. If a
weighting is used the output is no longer a sinc function. The -3 dB width
of the compressed pulse is defined as the resolution

u c

13rs 2B- (51)

where ur is a weighting constant (which, for example, is 0.886 for uniform
weighting and 1.33 for Hamming weighting). Because of the one-to-one
correspondence between time and frequency pointed out in Appendix C, a
weighting of wr(rf) in the input plane or a weighting wr[czfr/(4q 2s)] in the
frequency plane results in approximately the same output.

The ground-range resolution prg is found from the slant range by
differentiating (2) or (3) so that

P p c r /r2-h2 , (52)

rg re r o 0 a

a function of range r -

5.2.2 Azimuth

The azimuth image is obtained by performing the azimuth correlation in
(41). For g given by (28) and gref given by (42) the azimuth correlation
reduces to

xf- 2o (\ /f+ - XR(x 2 ) h f ti +xDX/P- )

2ap2 (x___ x) j2iCap2 (x2_ X
2)

-J2 (2c 2- xo) Xr o (53)
Xrro fX r r o

e dxf e

2 2
The phase factor in x2-xo has no effect on the image intensity and is here-
after omitted. It was assumed that the range-curvature effects appearing in
the range function f have been taken care of appropriately (see Section 5.3).
The azimuth point-spread function (impulse response) is then the Fourier
transform of the product hwx . If, for example, both h and wx are rect
functions and Dx >> L, then the envelope of the azimuth point-spread function
is proportional to

[L 2cap /(x.2
sinc r X 7 - X 0Pj. (54)

The unscaled azimuth Rayleigh resolution is PRa - Xr/( 2caO) and the -3 dB
resolution P3a - 0.886 Xr/(2c a). Often, a uniform antenna of width D is

II II i .. - -%m J .. .. .. -L i i.. . .. . .
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considered and the Rayleigh beamwidth of 8 - Ar /D is taken as the beamwidth
over which the beam pattern is uniform. Then, pRs = D/2. In general, the
-3 dB resolution is

uA

P3a m a (55)
a

where ua is a weighting constant that depends on the form of h and wx.
Similar results are obtained by utilizing a window Wx(fx/Dfx) in the frequency
plane.

If wx and h are rect functions and Dx  L, then the envelope of the
azimuth point image is proportional to

(1-plx"I/L) sincL'-r A (1-pix 2 /L)x X" 1x l L (56)

I

and is 0 elsewhere. Here, x2  m - Xo/p. Around the central peak at
x2 - xo/p, (54) and (56) are nearly dentical and therefore the resolutions
are nearly identical. Although form (56) has the slight advantage of having
no sidelobes for x2 > L, most successful correlators to date [1] generate
outputs with the form (54).

5.3 RANGE-CURVATURE CORRECTION

In the input signal of (28), range curvature appears in the function f
as a quadratically varying offset in rf equal to cap (xf-xo/p)2/(2qro). If
direct correlation of the input were to be performed as in (41) then the
reference function (42) would have to contain a function f with the same
quadratic warp. Note that the quadratic is a function of ro and therefore
the reference should be changed with each new value of ro . However, if the
input signal is slowly varying with to, a single reference may be adequateover a certain spread of ranges (see Section 7).

In the two-dimensional frequency plane it is seen from expansion (30)
that the effect of range curvature appears as the separate phase term

[ rX2r fr f2]
exp, J 4capq .

If this term is multiplied by a filter function whose argument is its
complex conjugate then the product is unity and the effects of range curva-
ture are cancelled. The filter function can be part of Gfef given by (43)
or it can be used separately. This rather complicated filter is a two-
dimensional phase function of frf and is range dependent. Again, as
discussed in Section 7, a single reference may be adequate over a certain
spread of ranges.

Range-curvature correction may also be performed in either the (xf,fr)
domain or the (fx,rf) domain. Leith [6] demonstrates a method of multiplying
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the function Gr(xf,fr) of (39) by a correction factor exp[Jwcap 2fr(xf-xo/p)2 /
(qro)] which in a phase function in both f and x2. The range curvature is

thereby eliminated. Unfortunately, not only is the correction dependent on
range ro, but the correction is good for only one value of xo . In the
function Gx(fx,rf) of (40) it is seen that range curvature may be corrected
by shifting the function f by an amount -X2rrofx/(8cap 2q) in the rf direction.
The shift is dependent on both range ro and azimuth frequency squared.
However, by reasoning similar to that used in Section 7, there may be a
substantial spread of ranges over which a single shift may be adequate. Note
that the shifting in rf is the equivalent to applying the linear phase shift
fr in the two-dimensional transform domain. If precompression in range is
utilized, the function f in (40) becomes its compressed form and signals from
different ranges are separated in the (fxrf) domain. This separation means
that it is possible to correct for range curvature for all ranges at once.
However, the shifting required is complicated, in that every point in the
(fx,rf) domain must be shifted by amounts that vary with both ro and fx"

5.4 ACCOUNTING FOR ANTENNA POINTING ERROR

Antenna pointing error refers here to the deviation of the beam centre
from pointing perpendicular to ground track. This error arises from pitch,
yaw, equivalent yaw, and vertical velocity. Its only effect on the input
function g(xf,rf) was noted in (28) to be a shift in azimuth x of the
antenna pattern h by the amount -xs/p. Both this offset and the width of the
antenna pattern are range dependent. Despite this offset, an aberration-free
image is obtained when the direct correlation (41) is performed using the
reference function gref given by (42). Only the window function wx of gref
is affected by the pointing error. The only problem then is the matching of
position between w x and h. Alteration of any component of g or gref other
than the windows h and wx will usually lead to image degradation as discussed
later.

In matching the window function wx to the antenna pattern h, several
approaches may be taken. One approach is to make the width Dx of wx so large
that h falls within the width Dx no matter how large the shift x. of h may
be. Then the window wx need not be offset by the amount x indicated in (42).
If w and h are rect functions, the azimuth output has the form (54). Notice
that the image is properly focussed and at the correct location independent
of the offset x.. Therefore it is unnecessary to determine pitch and yaw!
Use of such a wide window has the disadvantage of reduced signal-to-noise
ratio.

Another approach is to make Dx - L. Then, if wX and h are rect
functions, the azimuth output has the form (56). However, the window wx must
be shifted by exactly the distance -xs indicated in (41) so that it will be
superimposed on h. Otherwise, the image will be degraded or may not even
exist. Unfortunately, exact superposition is difficult to achieve. Not
only do the shift xs and width Dx have to be precisely determined, but both
vary continuously with range. A practical compromise is to choose the width
Dx sufficiently wide that x. need be known only approximately but is
sufficiently narrow to reduce the noise and the number of computations.
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The effect of antenna pointing error in the frequency plane is seen in
(29) to be a shift of only the pattern h. This shift in fxf

f (ro) 2capx (ro)/(Xr) (57)
xs 0 a s o r o

is a function of ro as illustrated in Figure 6(a). The range function F and
the phase functions are not affected. To obtain an image by matched filter-
ing, the product GGref is formed. Several approaches to matching the window
Wx in (43) to the pattern h in (29) may be taken. Once more, the most
practical approach appears to be to make Dfx sufficiently wide that x. need
only be known approximately but is kept as small as possible to reduce both
noise and the number of computations.

r G FOR roMIN.

r 8"i G FOR ro0MAX.

(r o MIN.) i
fl's

r o MAX)

(a)

ro/q M AX - C

r / MIN--- -- f

-f X3 -
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(b)
Figure 6. Outline of spectra offset by pitch and y-w for (a) two-dimensional transform and

(b) one-dimensional transform
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Sometimes there may be certain computational advantages in dealing with
pointing error by other than the simple window shifting discussed above. One
method is to "de-skew" the input (28), by tilting the lines of constant
azimuth during recording so that a shift in azimuth of xs(r o) occurs. The
azimuth envelope is simplified to h[(xf-xo)/(L/p)] but all other functions of
xf are made more complicated and the entire spectrum is offset by fxs in the
fx direction. To prevent the output from being distorted, appropriate range-
dependent frequency shifts could be applied or a second de-skewing used, this
time on the output. Although initially attractive, this technique appears to
introduce unnecessary complications.

Another method of correcting for pointing error is to do a range-depen-
dent frequency shift of the input signal by the amount -fxs(ro) so that the
spectrum becomes G(fx + f s'fr). This operation would certainly centre the
azimuth envelope h in (29) on f " 0 but the phase functions of fx would also
be shifted by -fXS. If the image were then produced by correlating against
the original reference Gref(fx,fr) given by (43), the output image would be
located at x2 - xo - fxsXrro/2caP 2) = x0 - xs(ro). This image would be
distorted because of the range dependent offset. Image processing would be
necessary to correct the image. Thus, frequency shifting of the input should
only be used when the computational advantage gained outweighs the disadvan-
tage of first having to perform the range-dependent shift and then having to
correct for distortion (although sometimes the distortion can be tolerated).

Steering of the antenna to point perpendicular to V is highly recommen-
ded since antenna pointing error is eliminated at all ranges simultaneously.
Since the signal received from an object at the instant it is abeam of the
antenna has zero-doppler frequency, this steering is also called steering to
the zero-doppler direction. Most airborne SAR's built to date have employed
such steering with either doppler- or inertial navigation techniques to
measure the pointing-angle error.

5.5 DETERMINATION OF POINTING ERROR

In Subsection 5.4 it was assumed that the shift xs or fxs caused by
antenna pointing error was available to aid in image production. In this
subsection, it is indicated how a value of the shift may be obtained. The
accuracy required will depend on requirements for matching the window function
to the antenna pattern.

The value of xs or fxs may be determined through use of separate
instrumentation. The component Xyes can be calculated directly from otbital
data. In principle the angles Op and ey could be measured by on-board
detection devices such as star trackers or horizon sensors and the shifts
xps and Xys calculated by (23). These techniques can be very expensive and
inaccurate.

A somewhat better method of determining x is by using the radar signal
itself to find the mean frequency fxs of the azimuthal spectrum (i.e., the
doppler centroid). It can be seen in the spectrum G(fx,fr) given by (29)
that the amplitude variation in the fx dimension is dependent only on h. The
other terms containing fx are phase functions only. Therefore, the mean
frequency of h is also the mean frequency of G(fxgfr) in the fx dimension. For
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simplicity we assume that the mean frequency of h(fx/Bfx) is 0 so that the
mean frequency of h[(fx-fxs)/Bfx] is just the offset fxs. If the spectrum
from objects at a single range can be isolated, then determination of the
mean frequency automatically gives the spatial-frequency offset from which
the input offset x. can be easily determined from (57). It is only necessary
to determine the total xs and not the individual terms.

Since xs(r o ) and fxs(ru) are dependent on range, it may be necessary,
depending on the accuracy required, to determine their value at more than one
range. Measurement could be made for each value of ro required. Alterna-
tively, measurement could be made at at least two values of ro and then the
remaining values interpolated.

In the estimation of fxs it was assumed that the spectra for different
values of ro were separated. However, in the two-dimensional spectrum the
spectra are overlapped such as illustrated in Figure 6(a). In some cases
the average position of such a broadened spectrum gives a sufficiently
accurate estimate of fxs. If the accuracy desired requires separation in
range of the spectra, a one-dimensional spectrum Gx(fx,rf) such as illustra-
ted in Figure 6(b) is useful. This distribution is obtained by first applying
range compression to the input signal, then performing a one-dimensional
transform in xf for each constant-range line. For very accurate determination
of fxs' it is necessary to correct for range curvature before this stage.

In the above, the determination of fxs involved calculation of the
entire spectrum G. It may also be determined electronically, without the
necessity of calculating the entire spectrum, by well-known techniques [11]
developed for doppler navigation. For example, a simple digital version of
[11] which was built in our laboratory is capable of determining fxs
simultaneously for 1024 different ranges, obviating the need for interpola-
tion. Another method, which uses two narrow-band filters, has also been
considered for SAR [12].

6. AMBIGUITIES

To avoid range ambiguities, the PRF, fp, is constrained by [131

f C (58)
p - 2ArSs

where Ars is the slant range swath width. To avoid overlap of the azimuthal
spectra shown in Figure 5, the PRF is constrained by (38a) or 38b). Overlap
of spectra (or "aliasing") results in azimuthal ambiguities. Restriction
(38) merely states that the PRF rate must be chosen according to the sampling
theorem. The effect on the output image of this overlap as fpx approaches
and goes below the lower bound (38) has been studied experimentally [13] for
azimuth offset signals. The effect of range ambiguities was also studied. In
addition, the relationship of f and signal-to-noise ratio has been investi-
gated for baseband digital processing [14].
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Pitch and yaw aggravate the azimuth ambiguity problem by causing the
envelope Eh of the repeated spectra EG in Figure 5 to be shifted by fxs. If
f is large enough, selection of the n-O spectrum becomes ambiguous. If the
nth repeated spectrum G(fx-nfxpfr) were mistakenly chosen as the n-o spectrum
and correlated against the corresponding zero-order reference, Gref(fxtfr),
the output for range ro would be located in azimuth at

x 2  x0 + nf xpXrr/(2cap2). (59)

This equation is obtained by noting that the frequency shift nfxp results in
the insertion of the factor exp(j 2Trnfxpxf) in the correlation (53). The
ambiguity has resulted in a range-dependent offset (distortion) of the image.
There appears to be no direct method of determining from the image that a
mistake in the selection of n has been made. Note that selection of the
wrong spectral order could lead to incorrect correction of range curvature.

Another problem caused by the shift fxs occurs when the PRF approaches
the lower bound. The spectral window Wx must be accurately shifted by fxs
and not be wider than the bandwidth of h. Otherwise, sections of adjacent
spectra will be processed along with the desired spectrum. The result is
that a shifted and degraded image will be added to the desired image.
Unfortunately these restrictions on window size and position preclude the
techniques, described in Subsection 5.4, of using moderately wide windows to
simplify the processing in the presence of antenna pointing error.

The determination of pointing error by doppler-centroid estimation
techniques is made difficult as the lower bound on fpx given by (38) is
approached. First, such things as noise, antenna sidelobes, and quantization
may obscure the dip between spectra such that it is impossible to distinguish
one repetition of the spectrum from the others. If pointing errors are slowly
varying, time averaging of spectra may alleviate the problem. Second, the
estimator could lock on to the wrong repetition of the spectrum. Third, the
techniques of centroid estimation that do not require calculation of the
spectrum [11], (12], may not work in the presence of high ambiguity levels.
The analyses of these techniques have considered only a single spectrum to
be present. Further work is required to determine if these techniques are
useful as the PRF approaches the lower bound.

Ambiguity arising from pointing error may be eliminated by steering the
antenna to point perpendicular to track. However, if the feedback required
for pointing the antenna is obtained from a doppler-centroid estimator, then
the problems discussed in the previous paragraph also arise. They will not
normally be as severe because the feedback keeps fxs small. Therefore, there
is less chance of ambiguity, if the correct spectrum can be locked onto
initially. Also, the methods not requiring spectrum analysis [11], [12]
operate better hen the offset is small.

7. MATCHING LIMITS

In the discussion in Section 5 on image formation it is assumed that
the reference function gref was perfectly matched to the signal g or, alter-
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natively, that Gref was perfectly matched to G. In practice, various forms
of mismatch can arise. In this section, the effects of mismatch arising
from three different causes are considered. Limits to the mismatches are
given.

The image degradation caused by mismatching the reference to the signal
may be assessed by comparing the processor's actual point-spread function
(impulse response) to the ideal correctly matched point-spread function.
The degradation of the point-spread function can be a simple shift of the
entire function or a dimension-dependent shift which is then called distor-
tion. If the shape of the function is degraded it will be called here a
blurring. For blurring, the quality comparison could be made on criteria
such as resolution and integrated sidelobe ratio. Other image quality
parameters are discussed elsewhere [15]. Such comparisons can be laborious.
A simpler approach, that of using the Rayleigh quarter-wavelength rule, is
utilized here.

Rayleigh took as a reference a quadratic wave converging to an ideal
image of a point. It was found that, for certain aberrations, the intensity
of the point image falls by less than 20% with little loss in resolution if
the departure (aberration) of the actual wave from the reference wave is less
than 1/4 of a wavelength. Other related crite-ia have been found but will
not be employed here. In the present application of the Rayleigh rule, the
maximum phase difference between the signal, g or G, and the reference, gref
or Gref, will be limited to be less than w/2 in order to maintain acceptable
image quality.

The form of the phase error Oe governs the type of image degradation.
A phase error linear in the spatial variable merely causes a constant shift
of the image. A quadratic variation corresponds to a focussing error and
results in a defocussing of the image. Defocussing is one case of blurring.
When Oe is a function of a cross product between the two spatial variables
or any of their powers, various forms of blurring of the point-spread
function arise.

7.1 RANGE SPREAD

The signal g and its spectrum G are seen to be functions of target
range ro . For perfect matching it would be necessary to have a different

gref or Gref for every value of ro . Sometimes continuous variation with rois impractical to achieve. Instead, the reference function is matched for a
single range rr. The tolerable range spread, AR, over which the reference
and signal are adequately matched, is

AR - r omax-r omin

= 2(r omax-r), (60)

where romax and romin are the maximum and minimum values of r. for which
there is acceptable match. Often AR is referred to as "depth of focus".
This usage is avoided here because of the possible confusion with the depth
of focus that arises in optical processors for SAR signals.
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The two phase factors whose matching is affected by range ro are the
azimuth-focussing factor found in either the input (28) or the transform (30),
and the range-curvature factor found in the transform (30).

7.1.1 Azimuth Focussing

For azimuth focussing the phase error may be calculated for the direct
correlation (41) or for the transform correlation. The range spread obtained
is the same in either case. For direct correlation, a phase factor exp Jiel
is inserted in the azimuth correlation (53) so that the phase error is

27nc p
2

a X 2 x(61)

'el AX f F

For notational simplicity the reference xo is set at 0. Since Oel is quad-
ratic in xf, it represents a defocussing.

In the absence of pointing errors (xs-O), the maximum value of xf is
(L/2)/p where L is the synthetic-aperture length. By the Rayleigh rule it is
required that *el < w/2, so that the range spread is

2A r
2

AR r ro (62)
a

where r2 = rrro. The substitution ro/L = 2caPRa/Xr from Subsection 5.2.2
results in

8c p2
AR a R . (63)
1 - Ar

Thus, the range spread decreases with the square of the resolution. A
decrease of the wavelength increases the range spread.

In the presence of antenna pointing error, the section of the phase
function utilized is centred on xf = -x,. It is now useful to substitute a
new azimuth coordinate xj - xf + xs into the correlation (53). Then the
phase difference may be expressed as

2 rcap 2  r -r
e2 " - [xf 2 - 2xfXs/P + (Xs/p) 2 ] r " (64)

r o

2
The component in x. is a phase constant and has no effect on the output image.
Direct application of the Rayleigh rule to the first two terms of (64)
results in a range spread of

2A r
2

ro
AR r o
2 -c a(L2+4Lx 67 (65)
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which suggests that range spread can decrease considerable as x becomes the
same order as L. However, note that the first two terms of (641 represent
different aberrations. The second term inserted into the azimuth correlation
integral (53) represents a linear phase shift which leads to a shift of the
output point image so that it is located at

x - Xs/P (r . (66)\rr /)
Often the image distortion (66) can be tolerated. Then the phase error e2
reduces to %,) given by (61) and the range spread AR2 reduces to AR1 given
by (62) or ( 3).

7.1.2 Range Curvature

Range curvature is manifested solely as a phase function in the trans-
form plane so that range spread is easily determined there. In the product
GG*ef the phase error resulting from mismatch is obtained from the second
phase factor in (30) as

rX2  jf \ f )\2 r -
e3 r ( q -)( r r)" (67)

In terms of temporal frequencies given in (32) and (33),

c TrX21 IV\r(x
*e a2r - IV (ro-rr)" (68)

From (35), the maximum value of v is 2Vxma /(roXr) where xmax = L/2 + xs is
the maximum value of x experienceg during tMe recording of one aperture
length. The maximum value of vr relative to the centre of the range spectrum
is Bvr/2 where, from (50), Bvr - c/(2PRrs). By the Rayleigh rule, the range
spread is

2PRr
2

AR3 < ca (L/2+x)2  (69)

which means that range spread deteriorates rapidly as the offset xs approaches
the beamwidth L.

It is sometimes possible to relax the limitation (69) by examining the
nature of the aberration. First note that the section of the spectrum
utilized is centred on fx - fxs, where fxs is given by (57). It is then
useful to replace the variable fx in the matched filtering process by fx
fx-fxs. The phase difference becomes

fX2(ro-r )
r o r. (frf 2 + 2f f' + f 2 sf r ) (70)a4 4 ca qp2 xsrx xsr



28

v 2
where the maximum value of fI is L/2. The term in fxsfr' being a linear

phase shift, results in a shifted output image. This image distortion may
often be acceptable. The term in fsfrf I is sometimes inappropriately called
the range walk aberration. Here it will be called the linear cross-coupling
aberration. Its effect is an image blurring. A range spread may be derived
for this term alone. Also it may be corrected separately. The term in frf'2

is the basic range-curvature aberration alone. 
Its range spread is

8 pRrsr2  32c P s2
ARs a - (71)

4 c L2  X2
a r

which is also the range spread in the absence of pointing error (xs-0). It
is very sensitive to azimuth resolution and radar wavelength.

7.2 DEPENDENCE OF RESOLUTION ON RANGE-CURVATURE CORRECTION

Many SAR's to date have not used any range-curvature correction. Here,
the limitations placed on the resolution by not performing correction are
discussed, together with those arising from partial correction.

The phase error arising when no correction is used is given by (70)
with rr=O. Once again the image shift and distortion caused by the third
term is not considered a serious degradation and is neglected. Only the
range curvature and the linear cross-coupling blurring terms are considered.
The Rayleigh rules leads to the limit

X2r Xx
-r o r s < (72)

16caPRrsP a 2PRrs Ra 1(

The first term expresses the limit of resolution on the basic range curvature
and the second expresses the limit of the linear cross coupling. If the
linear cross coupling is corrected separately or in the absence of pointing
error (xs-O), the limit becomes

A2r
P p2 > ro
Rrs Ra - 16c a (73)

This result was also obtained in [6] from analysis of the input plane. (There
is an arithmetic error in [6] by a factor of 4.) It shows that resolution in
one dimension may be traded against resolution in the other. Reducing the
wavelength greatly improves the resolution capability.

7.3 LATITUDE SPREAD

The latitude spread is the range of latitude over which the reference
does not need to be altered and still give an adequate match to the signal.
The altitude hs, the earth velocity normal to track Ven and film recording
velocity vf can be latitude dependent.
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The altitude affects the constant ca and the slant-range-to-ground-
range conversion. Normally the orbit would be chosen to hold the altitude
reasonably constant over many synthetic-aperture lengths. As ca changes,
the azimuth focussing function is altered and refocussing is required as
latitude changes. A latitude spread is easily derived using Rayleigh's rule.
Usually the change in focus should be slight and slowly varying. The range
conversion varies only slowly with latitude and should be easy to alter as
necessary.

The azimuth offset Xye and the ground speed V are dependent on Ven
which in turn is dependent on latitude. The azimuth-spectrum window should
be shifted appropriately as xye varies. Orbital data is all that is needed
to calculate the shift. Antenna steering, as suggested previously, could be
used to eliminate the shift entirely.

The velocity vf is assumed to track ground speed V according to (20).
However, it may not always be convenient to do this tracking. If vf is
constant then p - V/(cavf) varies with V. The most significant effect of p
in the input (28) is on the azimuth focussing function. The latitude spread
over which a constant focus gives acceptable imagery may be derived, again
by the Rayleigh rule. Usually the spread is very large compared to a
synthetic-aperture length.

8. MIXED INTEGRATION

SAR images of diffuse extended targets can have a granular appearance,
sometimes called speckle, arising from the fact that the microwave illumina-
tion is coherent. Image quality may be improved either by improving resolu-
tion by means of increased coherent integration or by improving the signal-
to-noise ratio by incoherent averaging of images. Resolution p is inversely
proportional to coherent-integration length. Signal-to-noise ratio, defined
as the ratio of the mean of the image intensity to it's standard deviation,
is increased by a factor V where N is the number of independent images
incoherently averaged. In SAR, the practical forms of incoherent averaging,
sometimes called mixed integration [16] or multiple-look processing, are
implemented at the sacrifice of resolution. It is not yet clear what
combination of coherent and incoherent integration leads to the best image
interpretability [17], [18]. For some processing techniques, mixed integra-
tion can have the advantage that it is easier to perform than the processing
required for an improvement in resolution. In this section, we look at ways
of implementing mixed-integration processing. The separate images to be
smoothed by incoherent averaging may be obtained from different frequency
regions of the range signal (frequency diversity) or from different target
aspects in the azimuth dimension (variously named time, angular, or doppler-
frequency diversity (17], (18]).

As the SAR moves in the azimuth direction, a different target "look"
is obtained as each aperture length is traversed. The full synthetic apera-
ture L with resolution pa - roXr/( 2L), is divided into N sub-apertures of
width Dxs and resolution Psub " roxr/2Dxs. Then the N separate images are
incoherently averaged to produce a smoothed image with degraded resolutionI _ _
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Psub. The division and averaging may be done in one of three equivalent
ways described below.

The first method is to window the input signal given in (28) with N
windows where the nth window has the form wxsl[xf-(xo-xs+nX)/p]/Dxs, X is
the window spacing, and wxs is often a rect function but can have tapering
if desired. This window slides inside the aperture function h which is the
full antenna aperture displaced by the antenna pointing error. The N sub-
apertures may be processed in series or parallel and the resulting images
incoherently summed. The disadvantage of input-plane windowing is that the
signals for each xo should be processed separately although the signal from
a limited number of values might be processed in parallel with little
degradation of image quality.

In the second method, the frequency-plane distribution given by (29) is
divided into sectionR in the fx dimension by windoas of the form
Wxs[(fx-nFx)/Dfs] where Fx is the window spacing and Dfs is the window width.
If Dfs - Dxs2caP/(Xrro), then the frequency-plane and input-plane operations
result in the same resolution. Again, the sub-apertures may be processed
either in series or parallel and the resulting N images incoherently summed.
Obtaining multiple looks by frequency-plane division has a significant
advantage in that placement of the windows is independent of azimuth position
x0. Unfortunately, it is seen from (29) that the envelope h of the spectrum
shifts along fx because of antenna pointing errors. It will usually be
desirable to make the multiple-look windows track this displacement.

The third method makes use of the equivalence of convolution in the
output plane and the bandpass filtering used in the frequency plane. The
convolution is performed by first forming an image with the full resolution
Mx p /p and then incoherently averaging the intensity over a width NMxPa/p,
which becomes the resolution of the smoothed image. The advantage of this
third method is that the summation process is relatively simple. In fact,
merely observing the output from a greater distance performs a similar
smoothing. The method has a disadvantage in that a full resolution image
must be produced.

The offsets nX in the first method and nFx in the second have the same
effect as the offsets due to pitch and yaw. Therefore the range spreads (65)
and (69) are decreased by the addition of nX to x. and increased by the
replacement of the full aperture length L by the sub-aperture length Dxs. In
the third method, the range spread is that for the full aperture L as given
in (65) and (69). It is particularly important to obey the range-spread
rules for multiple-look processing. If they are not followed, each look can
have a different distortion making it very difficult to overlay the "looks".

Incoherent averaging may also be performed in the range dimension if
the waveform bandwidth permits. Again it may be performed in 3 ways:
windowing at the input, frequency-plane division with incoherent summing of
images, or convolving the output image with a window. The first method is
impractical and the third requires a full resolution output. The second
method appears to be quite simple to implement.

Incoherent averaging techniques may be implemented in both dimensions
simultaneously [16]. If MN independent images are incoherently averaged,
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where M and N are the number of independent images obtained in the range and
azimuth dimensions respectively, the SNR is increased by VW.

Continuous scanning of a window across the frequency plane is possible
in optical pocessors. For a rect window, the SNR of the output is increased
by about /372 (0.9 dB) [16], and by almost 2 dB for a cosine (Hanning) window.
Incremental scanning of a window allowing overlap of adjacent window positions
is -)ssible with digital processing. An overlap of 50% or more gives almost
as much SNR gain as does continuous scanning [19].

The microwave speckle discussed above is to be distinguished from the
laser speckle that arises in optical processors because of scattering by dust
or imperfections of the optical elements. Laser speckle is normally reduced
by using a "tracking" processor (20] to incoherently average the output image.
The use of the incoherent integration techniques discussed above for microwave
speckle reduction would also result in a reduction of laser speckle. Images
produced by digital processors will also have a degradation that in some ways
is similar to laser speckle, but is caused by the quantization and the finite
word length of the processor.

9. EFFECTS OF SPURIOUS MOTION

At least three forms of motion other than the desired along-track motion
of the SAR antenna can be distinguished. First, there is motion caused by
earth rotation. This velocity can be large but varies sufficiently slowly
to be considered constant over at least one synthetic-aperture length. This
motion was simply handled by choosing a coordinate system fixed to the
surface. Second, there may be motion of individual objects, such as vehicles,
relative to a fixed background. MTI techniques may be useful here [7].
Similarly, there can be motion of one section of the object fields such as in
one model of ocean-wave motion [10]. Third, there are spurious motions of
the SARl itself. The form of the input function in the presence of spurious
motion of the object will be presented. Then the effects on the image of
spurious motion of both the object and the SAR are discussed. Some comments
on correction are made.

Let the point object located at point Ao (see Figure 1) have, at time
t-to, a velocity V. along the surface. It has components V. parallel to the
SAR velocity X/ca, V n normal to V/ca, and Vov vertical to tNe surface. The
range r may then be derived by techniques followed in Section 2. If terms
in x3 and higher are neglected, then

C V v2 (xxo)2
r =r + a o..._r (XXoC) + ca1 (- 0(4or ~ (74)

0 V 0- 2r0

where

V Ar-h h V
V o os sov (75)or c r rro o

is the radial velocity of the object,

__A
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r2-/ h \
V2 + - (CaV )2 (76)

1 p r2  ov r/ aon
00

and

V -V-cV
-p - a-op

is the relative pelocity between the SAR and the object in the direction of
V. The factor V1 is just the sum of the squares of all velocity components
plrpenlicular to the radial line. Usually the first term dominates so that
V VP. Raney [7] derived a similar result and included object acceleration.
Ii the squares are completed, r may be also written as

r r + C a 1. vl. 2  ]
7 - [x -x + x ]r 2 ( (77)

0 r°  o mo

where

V Vr
x (r or o (78a)
m 0 V2

and

c V2 r
r (r) a aoro, (78b)m o 2V

are, respectively, azimuth and range offsets caused by object motion and are
both functions of ro . A similar form describing the effect of object motion
in terms of offsets has been given by Elachi and Brown [10, p. 90]. For
Vo-O, both (74) and (77) reduce to (12).

In the recorded signal, the range r affects the range function
f[(2/c)(qrf-r)] and the azimuth focussing function exp(-j4tr/Xr). For both
forms of r, one manifestation of the object motion in the focussing function
is the weighting (VI/V)2 which results in a defocussing. Since V1 = Vp, the
along-track velocity component is the main cause of this defocussing.

For form (74), the rangc function has a displacement linear in x-xo
caused by the radial velocity Von. Such displacement in range is sometimes
referred to as "range walk". This linear term in the focussing function
represents an azimuth-frequency offset. If form (77) is used, the range
function and the focussing function may be described as being offset in
azimuth by xm and in range by rm.

Image production for a moving object is made difficult because the
velocity V is usually not known. Consider first the defocusaing weighting
(Vl/V)2 . It becomes unity as V becomes large compared to Vo . Therefore,
defocussing can often be negligible. If it is not, then the processor may

p Ji
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be "refocussed" by trial and error until a satisfactory image has been
obtained. This technique has been used to try to image ocean waves. Objects
not moving at velocity V. will be defocussed.

Consider now the offsets xm and rm. If the recorded signal with r
given by (77) were correlated against a non-shifted reference and the focus-
sing were suitably adjusted, then the output point image would be located at
(x2,r2) - (xo-xm(ro), ro-rm(ro)] where magnification factors have been
omitted. Furthermore these offsets are valid for only one value of azimuth
xo . An object, also with a velocity Vo but located at (xo + Ax,ro) where Ax
is some azimuthal increment, will be imaged at

(x2 9r2) - [x + Ax - x r(ro),r + (Vor/V)Ax - rr (r) ] (79)

The extra shift in range results from the fact that the object at (xo+Ax,ro )
moves a distance (Vor/V)Ax in slant range in the time it takes the SAR to
move from xo to xo + Ax.

If the SAR antenna has a spurious velocity (-caV) in addition to the
desired velocity V, then the equation for range r will again be given by (74)
or (77). Thus, the effects of spurious motion of the antenna are the same as
those of object motion. The trial and error methods used for dealing with
object motion may be used for antenna-motion errors. However, advantage is
usually taken of the fact that the value of the antenna-velocity error can be
obtained. It may be obtained from orbital data for satellite-borne SAR and
from inertial- or doppler-navigation systems for airborne SAR. Two classes
of antenna motion are considered here.

In the first class of spurious motion, the velocity error is considered
to be very slowly varying (constant over many aperture lengths). Such errors
are commonly associated with satellite-borne SAR but can arise on airborne
SAR because of such things as the constant error of the velocity measurement.
The effects of such simple velocity errors are easily corrected by techniques
already encountered. The along-track error can be corrected either by alter-
ing the recording film velocity vf so that scale factor p is constant or by
equivalently altering the scale factor during image processing. The vertical
velocity component can be dealt with as an additional pitch of the antenna.
The horizontal cross-track component may be dealt with in the same way as was
earth rotation.

In the second class of spurious motion, the velocity error may vary
even during one synthetic-aperture length but the error itself is relatively
small. Such spurious motion is commonly associated with airborne SAR and
arises from air turbulence. The effects of these velocity variations are
best described through detailed analysis using range r given by (74) and are
usually corrected by applying motion compensation directly to the received
signal itself. The along-track velocity variation is compensated by varying
the recorder velocity vf and therefore the azimuth scale factor p. If
frequency offset in azimuth is used, the offset frequency must also be varied
so as to hold the spatial offset fox constant. Similarly, the PRF must be
varied so as to hold the sample spacing constant on the recording. (If the
spacing varies during an aperture length, the azimuth spectrum is broadened.)
The radial-velocity error Vor may be seen from (74) to give rise to a
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frequency shift of the azimuth focussing function. A phase shift may be
applied to the radar frequency to compensate. Although Vor is dependent on
range ro, a single compensating frequency shift is usually used over a broad
spread of ranges since the variation Vor is usually small.

Occasionally, there may be a rad4 1 acceleration [7] that causes a
quadratic phase-error sufficiently large to defocus the signal. Often it is
fairly simple to refocus by triaL and error.

In the above derivation of range r, terms in x3 and higher were neglec-
ted. Such terms arise in the Taylor expansion from spurious motions having
acceleration or higher derivatives in the along-track direction or having
third and higher derivatives in the radial direction. Recall that for the
azimuth focussing function, a linear term causes a shift of the output image
and a quadratic error causes a defocussing that often can be refocussed.
However, higher-order terms cause an image blurring that are not so easily
corrected. Processing is considerably simplified when these terms can be
neglected. For the range function f, the linear and quadratic terms relate
to range walk and range curvature respectively. The higher-order terms will
not normally be large enough to cause image degradation.

10. SUMMARY

A unified description of the signal received by a SAR is presented,
which accounts for the effects of flight-path curvature, surface curvature,
range curvature, the earth's rotation and antenna pointing errors. Curvature
of the flight path and of the earth's surface is handled taking the azimuth
coordinate as lying along the curved surface. The direct effects of the
earth's rotation are eliminated by aligning the azimuth coordinate with the
trajectory of the orbit along the surface itself. The two-dimensional
Fourier transform of the recorded signal is derived. It is found that
filtering in the two-dimensional transform plane is an attractive method of
correcting for range curvature although several other techniques are worth
considering. The effects of antenna pointing errors due to the pitch and
yaw of the vehicle, and to the equivalent yaw caused by the earth's rotation,
are found to be limited to a shift in the azimuthal frequency of the spectral
envelope. All that is then needed to obtain an image free of aberrations is
to centre the processing window on this shifted envelope. No other modifica-
tion to the processing is required. Steering the antenna to point to the
zero-doppler direction eliminates this shift problem entirely.

It is shown that azimuthal focussing can be carried out using the
same correlation reference function over an interval of ranges without
seriously degrading the quality of the image. A corresponding range interval
for range-curvature correction is derived. The range interval for azimuthal
focussing is usually much smaller than for range-curvature correction. The
trade-offs between resolution in range and azimuth in the presence of range
curvature are derived. The resolution obtainable with no correction at all
is given. Some methods of implementing incoherent integration to reduce
microwave speckle are described.
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Motion of the object results in an image that is offset from the
correct position but is usually still in focus. Slowly varying motion errors
of the SAR itself can usually be corrected for by the simple techniques used
to correct for the effects of the earth's rotation and pointing errors. The
effects of rapidly varying velocity errors of low amplitude can be corrected
by motion-compensation techniques.
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A PP EN D IX A

Derivation of V enand V e

A brief description of (5a) and (5b) are given here. Refer to Figure 2.
From rules of spherical trigonometry for right spherical triangles we have

COOSt tano laco to0 (A.1)

and

sine1  sinoi lt /sinoo. (A.2)

The velocity components are

V en (w er ecoso a )cosO (A.3)

and

V ep = (W ere cosolat)sino.. (A.4)

After some manipulation and the use of sinos )l1 cos2o5 a (5a) and (5b) are
obtained.
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APPENDIX B

Block Diagrams for Generating and Demodulating SAR Signals

A simplified block diagram is given here for each of the three methods
of generating and demodulating the SAR signal. Many variations of these
circuits are possible. They were chosen to illustrate the principle and not
necessarily to be a recommended circuit. In all three forms shown in Figure
Bl, the stable local oscillator (stalo) generates a signal of frequency fc
that is used both as the radar carrier and for demodulating the return
signal. As a result, the stalo frequency is accurately eliminated from the
output signal. All the boxes marked "mixer" include an appropriate low-pass
filter. For azimuth offset, the offset frequency fo is much less than fc-
Thus, fo need not be extremely stable. For range offset, frequency dividers
and multipliers are used to maintain the proper relationship between fo and
fp" For baseband operation, a 908 phase shifter is used. In-phase (I) and
quadrature (Q) components are produced.
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APPENDIX C

Derivation of the Fourier Transform

In this Appendix, (29) is derived. First, perform the Fourier transform
with respect to rf of the function g(xfrf) given by (28). If the function in
fo and the c.c. terms are omitted, the following is obtained:

4w
q -j2wf r /q -j )r

G(fxf r ) " cF (i fr e r e ro

co / x x (r )-x (r)ca
* 1 0 PV 0 ye 0 -jw~f r+2q/X] a r XfX0/) -2ro l ho - o e -J[r2/ r ]  (xf-Xo/P) 2  xh xf Lp /e qr e- 2 x f dxf.

* ~~L/p /edf
(C.1)

Consider a linear FM waveform h(t) exp[j7rkt 2] where h(t) is a real envelope
and k is the sweep rate in Hz/sec. If the time-bandwidth product is large,
then the spectrum M(f) is given approximately by [21]

M(f) - eJW/4 h( )ei-f1k. (C.2)

In other words, if the sweep rate is sufficiently low, there is a one-to-one
correspondence between t and f.

The azimuth linear FM in (C.1) usually has a reasonably large time-
bandwidth product so that rule (C.2) may be utilized. The integration over
xf is performed to obtain (29). The constant

is a slowly varying function of fr near fr * 0 and therefore 11/v -

(roAr /(2caP 2). The antenna pattern at the transform plane is therefore
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-f + 2q/Xr)[PCax/(qro)]1

- L(fr + 2q/r )/(qr 0 . (C.3)
L PC a L fr + qXr)r 0

The terms in fr represent the effect of range curvature on the antenna pattern.
Because the function h is broad and slowly varying and because, as seen in
Section 4, for most practical cases fr << 2q/Xr, little error in the output
image is caused by neglecting fr. Hence, the frequency plane form of h
given in (29) is used.


