CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM AND VOICE MES-ETC(U)

NOV 79 J P LEHOCZKY, O P SAVER

NP555-79-028

END

11-80

END

11-80
CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM AND VOICE MESSAGES, II: DIFFUSION APPROXIMATIONS

by

J. P. Lehoczky

and

D. P. Gaver

November 1979

Approved for public release; distribution unlimited.

Prepared for:
Chief of Naval Research
Arlington, VA 22237
Title: Channels that Cooperatively Service a Data Stream and Voice Messages, II. Diffusion Approximations

Authors: J. P. Lehoczky and D. P. Gaver

Performing Organization: Naval Postgraduate School, Monterey, CA 93940

Controlling Office: Chief of Naval Research, Arlington, VA 22217

Abstract:
A system of channels mutually accommodate both data and voice messages, voice having preemptive priority but being a loss system, and data being allowed to queue. Approximations to the data queue properties are derived.
CHANNELS THAT COOPERATIVELY SERVICE
A DATA STREAM AND VOICE MESSAGES, II:
DIFFUSION APPROXIMATIONS

J. P. Lehoczky
Carneige-Mellon University
Pittsburgh, PA

D. P. Gaver
Naval Postgraduate School
Monterey, CA

1. INTRODUCTION

In this paper, the study of the behavior of an element of a communication system carrying both data and voice traffic is continued. In a previous paper, Gaver and Lehoczky (1979), a fluid flow approximation was developed to predict the characteristics of the data queue length for such a system. The fluid flow approach applied to the case in which the data service rate, \(\eta \), was large compared with the voice service rate, \(\mu \); for example, when \(\eta/\mu \approx 10^4 \). In this paper, a different approach is taken: a Wiener process approximation is developed. The accuracy of this approximation depends on the "heavy traffic" assumption, that is that the overall traffic intensity should approach unity from below. One need not make any assumption concerning the individual parameters. It follows that the diffusion approximation complements the fluid flow approximation to give a more complete picture of the behavior of voice-data communication systems.

Research in part sponsored by ONR at Naval Postgraduate School W001480W00067, and in part by NSF at Carneige-Mellon University, ENG79 05526.
The communication system to be studied is essentially a part of the SENET network as described by Coviello and Vena (1975) or Barbacci and Oakley (1976). This network employs time-slotted frames. A certain portion of each frame is allocated to voice traffic, while any data traffic can use all remaining capacity including any left unused by voice. The voice traffic cannot use any unused data capacity and operates as a loss system.

We introduce probabilistic assumptions, conventional in many queueing studies. Voice traffic arrives according to a Poisson(λ) process, and each voice customer has an independent exponential(μ) service time. Data arrivals are governed by an independent Poisson(δ) process and exhibit independent exponential(η) service times. A total of c channels are reserved for exclusive use of data, while v channels can be used by both data and voice; however, voice pre-empts data. The assumptions imply that voice can be modelled as an $M/M/v/v$ loss system, and the well-known "Erlang B" loss formula will give the loss rate. We focus our attention on the behavior of the data queue and seek to develop expressions for the steady-state distribution and the mean queue length. Many authors have studied such a system, including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), Chang (1977), and Gaver and Lehoczky (1979). Only the latter paper gives approximations valid for the extreme but realistic case in which η/μ is large, and none give a Wiener approximation.
Rather than focus on this simple version of the problem, we wish to provide a somewhat more general analysis. The generalizations arise when one considers more complex voice service. Two types of generalizations are rated here.

In general, voice traffic is unlike data traffic. A voice communication is actually a series of bursts or talkspurts separated by silence. It is reasonable to model a conversation as a two-state Markov chain of alternating talk and silence. Exponential holding times are appropriate for talkspurt and silence lengths, see Brady (1965). During the periods of silence, the voice channel is available for data traffic. This extra channel capacity can serve to allow for increased data utilization, or to reduce the data queue length, or both. The voice process can be described by a Markov chain for which each state provides a description of the number of voice customers requesting service and the number actually using the channel. For each voice state one can compute the number of channels available for data, and thus the data transition rates.

A second generalization allows for the addition of extra voice channels by reducing the quality. One strategy available to provide adequate voice and data capacity is to assign voice users to certain acceptable quality voice channels, say 6 or 8 KBPS. When a specified number of voice users are in the system, new voice users are assigned to less acceptable channels, say with 2 or 4 KBPS. In this way, one has increased the number of voice users that can be serviced at the expense of the quality of the voice
transmissions. This situation can also be incorporated into our structure. One again defines voice states: each state provides a description of the voice channels in use. One can specify a generator Q for the Markov process over the states and use it to compute the channel availability for data for each state. To include this and other possible generalizations, we assume that the voice process is a continuous time Markov chain with finite state space and that it subordinates the data queue length process. We will work out formulas for the special case in which the voice is an $M/M/v/v$ queueing system.
2. **Diffusion Approximation Approach**

We assume that the voice process \(\{V(t), t \geq 0\} \) can be described by a Markov chain with state space \(\{1, 2, \ldots, N\} \). We let this Markov chain have generator \(Q = (q_{ij}) \), an \(N \times N \) matrix, and stationary distribution \(\pi \). An important special case occurs when voice operates as an \(M/M/\nu/\nu \) loss system in which case

\[
Q = \mu S = \mu
\]

\[
\begin{pmatrix}
-\rho_v & \rho_v & 0 & \cdots & 0 \\
1 & -(1+\rho_v) & \rho_v & \cdots & 0 \\
0 & 1 & -(1+\rho_v) & \rho_v & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & \cdots & 0 & 1 & -(1+\rho_v) \\
0 & \cdots & 0 & \cdots & \cdots & -\nu
\end{pmatrix}
\] \tag{2.1}

and then \(\pi = (\pi_0, \ldots, \pi_\nu) \) with

\[
\pi_i = \frac{\rho_v^i}{i!} \quad \text{and} \quad \pi_\nu = \frac{1}{\mu}.
\]
Each voice state i gives a number of channels available for data, say c_i. From c_i one can compute the rate, r_i, at which the data queue increases or decreases. Here $r_i = \delta - \eta c_i$. We let

$$ R = \begin{pmatrix} r_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_N \end{pmatrix} \quad (2.2) $$

For stability one requires $\sum_{i=1}^{N} \pi_i r_i < 0$. In the special case for which Q is given by (2.1), these conditions become

$$ \sum_{i=0}^{V} \frac{\rho_v^i}{i!} (\delta - (c + v - i)\eta) < 0 $$

where data has exclusive use of c channels and the voice has v channels. This condition can be written $\rho < 1$ where

$$ \rho = (\rho_d + \rho_v(1-q))/(c+v), \quad \rho_d = \delta/\eta, \quad \rho_v = \lambda/\mu, \quad \text{and} \quad q \text{ is the blocking probability} $$

$$ q = \frac{\rho_v^v/v!}{\sum_{j=0}^{v} \rho_v^j/j!} $$

We develop a Wiener process approximation under a heavy-traffic assumption that $\sum_{i=1}^{N} \pi_i r_i \to 0$. This entails finding an appropriate infinitesimal mean and variance. Locally the data
queue length process does not resemble a Wiener process. If
voice is in state i, the change in the data queue is nearly
deterministic and equal to \(r_i dt \) rather than a normally dis-
tributed random variable. Nevertheless, if we consider a longer
period of time, say \([t, t+T]\) with \(T \) large, then the change
in queue length will be more reasonably assumed to be normally
distributed. The next section contains the outline of a proof
that a suitably sealed version of the process converges to
a Wiener process. This proof does not require the fluid flow
approach of \(\eta/\mu \) large, so a slightly more refined variance
term is derived. The Wiener process derived will have a reflect-
ing barrier at 0.

The voice process subordinates the data process; see
Feller [], pp. for the notion of subordination. If voice
is in state \(V(t) \), then the data queue is increasing at rate
\(r_V(t) \) over \([0, t+dt]\). The expected change over \([t, t+T]\)
is given by

\[
E \int_t^{t+T} r_V(s) \, ds = \int_t^{t+T} E(r_V(s)) \, ds = \int_t^{t+T} \sum_{i=1}^N r_i P(v(s)=i) \, ds.
\]

For the case of \(T \) large we can assume \(V(t) \) has the stationary
distribution, thus \(V(s) \) has distribution \(\pi \) for all \(s \). The
expected change over \([t, t+T]\) thus becomes \(T \sum_{i=1}^N r_i \pi_i \). Notice
that the data queue is very large, so the boundary is not en-
countered. For a Wiener process, this expected change would be
mT again assuming that the boundary is not encountered. We thus find

\[m = \sum_{i=1}^{N} r_i \eta_i = T \pi R \]

(2.3)

We follow a similar method to determine \(\sigma^2 \). The variance in the change in the data queue length over \([t, t+T]\) is given by

\[\text{Var} \int_{t}^{t+T} r_V(s) \, ds . \]

We again assume \(V(s) \) has distribution \(\pi \), so this variance is equal to

\[\text{Var} \int_{0}^{T} r_V(s) \, ds \]

\[= \mathbb{E}(\int_{0}^{T} r_V(s) \, ds)^2 - (\mathbb{E} \int_{0}^{T} r_V(s) \, ds)^2 = \mathbb{E}(\int_{0}^{T} r_V(s)) - (\mathbb{E}[R])^2 \, T^2 \]

The last term can be computed to be

\[\mathbb{E}(\int_{0}^{T} r_V(s) \, ds)^2 = \mathbb{E} \int_{0}^{T} \int_{0}^{T} r_V(s) r_V(t) \, ds \, dt - \mathbb{E}(\int_{0}^{T} r_V(s) \, ds)^2 \]

\[= 2 \int_{0}^{T} \int_{0}^{N} r_i \sum_{i=1}^{N} \eta_i \, \mathbb{P}(V(s)=i) \, \mathbb{E}(r_V(t) \mid V(s)=i) \, ds \, dt \]

\[= 2 \int_{0}^{T} \int_{0}^{N} r_i \eta_i \sum_{j=1}^{N} r_j \mathbb{P}(V(t)=j \mid V(s)=i) \, ds \, dt . \]
We let \(p_{ij}(u) = P(V(u)=j | V(0)=i) \) and \(\pi_i(u) = (p_{ij}(u)) \).

The Kolmogorov forward equations give \(\pi(u) = \exp(Qu) \) where
\[
\exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!} = I + M + \frac{M^2}{2} + \cdots
\]
for a square matrix \(M \). One can reexpress the second moment in matrix form as
\[
E(\int_0^T r_V(s) ds)^2 = 2 \int_0^T \int_0^t R(t-s) d\pi(t) ds dt
\]
\[
= 2 \int_0^T \int_0^t \exp(Q(t-s)) d\pi(t) dt R_1
\]

In view of the fact that \(Q \) is singular, one can most easily carry out the required integration by introducing the eigenvalue decomposition \(Q = \Psi \Sigma \Psi^T \) with
\[
\Sigma = \begin{pmatrix}
\theta_1 & & \\
& \theta_2 & \\
& & \ddots \\
& & & \theta_N
\end{pmatrix}
\]
a diagonal matrix of eigenvalues,
\[
\Psi = (\psi_1, \psi_2, \ldots, \psi_N), \quad \Psi = (\psi_1, \psi_2, \ldots, \psi_N)^T,
\]
the associated right- and left-eigenvectors. Here \(\Psi \Psi = \Psi \Psi = I \).

Since \(Q \) is irreducible and finite \(\theta_i \) has a negative real part for \(2 \leq i \leq N \). It follows that
\[
\int_0^T \int_0^t \exp(Q_u) \, du \, dt = \Phi \int_0^T \int_0^t \exp(Du) \, du \, dt
\]

\[
\psi = 2\phi \begin{pmatrix}
\alpha_2 & & \\
 & \ddots & \\
& & \alpha_N
\end{pmatrix}
\]

with \(\alpha_i = \theta_i^{-1} (\theta_i e^{\theta_i T} - 1) \). Since \(\theta_i \) has a negative real part \(\alpha_i \sim -T/\theta_i \) as \(T \to \infty \). For large \(T \), the second moment can be written approximately as

\[
2\pi^2 R_1^2 \begin{pmatrix}
T^2/2 & & \\
& -T_0^{-1} & \\
& & \ddots & \\
& & & -T_N^{-1}
\end{pmatrix}
\]

thus the variance is given by

\[
T^2 \pi^2 R_1^2 \begin{pmatrix}
1 & & \\
& \ddots & \\
& & 0
\end{pmatrix} \Psi R_1 - 2\pi^2 T R_1^2 \begin{pmatrix}
0 & & \alpha_2^{-1} & \\
& \ddots & \\
& & \alpha_N^{-1}
\end{pmatrix} \Psi R_1
\]

\[-T^2 (\Psi R_1)^2.\]
The first and last terms cancel to give

\[\text{Var}\left(\int_0^T r_Y(s) ds \right) = -2T \pi^T R \phi \begin{pmatrix} 0 & \theta_1^{-1} & \cdots & \theta_{n-1}^{-1} \\ \theta_2^{-1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \theta_{n-1}^{-1} & 0 \end{pmatrix} \psi R l \]

(2.4)

For a Wiener process, this variance would be given by \(T \sigma^2 \).

We let

\[Q^- = \phi \begin{pmatrix} 0 & \theta_1^{-1} & \cdots & \theta_{n-1}^{-1} \\ \theta_2^{-1} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \theta_{n-1}^{-1} & 0 \end{pmatrix} \psi \]

(2.5)

so \(Q^- \) is a reflexive generalized inverse of \(Q \) obtained by reciprocating nonzero eigenvalues. We note that both \(Q^- Q = Q^- \) and \(Q^- Q^- = Q^- \) hold, thus we write

\[\sigma^2 = -\pi^T R Q^- R l \]

(2.6)

\[m = \pi^+ R l < 0 . \]

The crucial parameter \(2m/\sigma^2 \) can thus be calculated.

We illustrate the formulas in (2.6) for the special case where \(Q \) is given by (2.1). For this case

11
\[
\frac{\sigma^2}{2} = \frac{1}{\mu} \mathbf{TR}^T \begin{pmatrix}
0 \\
\theta_1^{-1} \\
\vdots \\
\theta_v^{-1}
\end{pmatrix} \mathbf{BL} = \frac{1}{\mu} \mathbf{TR} \mathbf{BS}^{-1} \mathbf{BL} \\
= \frac{1}{\mu} \mathbf{T} \mathbf{S}^{-1} (\mathbf{R} - \mathbf{mI}) \mathbf{I} + \frac{m}{\mu} \mathbf{T} \mathbf{R} \mathbf{S}^{-1} \mathbf{I}.
\]

For our choice of \(\mathbf{S} \), \(\mathbf{S}^{-1} = 0 \), thus

\[
\frac{\sigma^2}{2} = \frac{1}{\mu} \mathbf{T} \mathbf{S}^{-1} (\mathbf{R} - \mathbf{mI}) \mathbf{I} = \frac{1}{\mu} \mathbf{T} \mathbf{R} \mathbf{S}^{-1} \mathbf{Y}.
\]

where \(\mathbf{Y} = (\mathbf{R} - \mathbf{mI}) \mathbf{I} \). We note that \(\mathbf{T} \mathbf{S}^{-1} \mathbf{Y} = 0 \), so if \(\mathbf{z} = \mathbf{S}^{-1} \mathbf{Y} \), then \(\mathbf{Sz} = \mathbf{Y} \) is a consistent set of equations and \(\mathbf{T} \mathbf{z} = 0 \).

In general one can solve (2.6) by direct calculation of \(\mathbf{Q}^{-1} \); however, this is rarely possible. A second approach is to solve \(\mathbf{Qz} = \mathbf{Y} \) subject to \(\mathbf{T} \mathbf{z} = 0 \). For \(\mathbf{Q} \) of form (2.1), this can be carried out. The equations become

\[
\rho_v (z_i - z_{i-1}) - (i-1)(z_{i-1} - z_{i-2}) = r_{i-1} - m, \quad 1 \leq i \leq v
\]

\[-v(z_v - z_{v-1}) = r_n - m \tag{2.7}\]

\[
\sum_{i=0}^{v} \frac{\rho_i^v}{v} z_i = 0.
\]
One can easily find
\[z_k - z_{k-1} = \frac{\sum_{j=0}^{k-1} \pi_j(r_j - m)}{\rho_v^{\pi k-1}}. \]

We define
\[T_k = \sum_{j=0}^{k} \pi_j(r_j - m). \]

Thus \(T_v = 0 \) and \(z_k - z_{k-1} = T_{k-1}/\rho_v^{\pi k-1} \). Moreover

\[z_k = z_0 + \sum_{j=1}^{k} z_j = z_0 + \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_v^{\pi j-1}}. \]

The \(\sum_{i=0}^{v} \pi_i z_i = 0 \) condition gives

\[z_0 = -\sum_{k=1}^{v} \pi_k \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_v^{\pi j-1}}. \]

The vector \(z \) has now been explicitly determined, and it remains to compute

\[\frac{1}{\mu} \sum \pi R z = \frac{1}{\mu} \sum \pi R (z_0 + (0, u_1, ..., u_v)) \]

with

\[u_k = \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_v^{\pi j-1}}. \]
We find

\[
\frac{1}{\mu} \pi T_{Rz} = -\frac{m}{\mu} z_0 + \frac{1}{\mu} \sum_{k=1}^{V} \sum_{i=1}^{T_{i-1}} \frac{T_{i-1}}{\rho_{v}^{i-1}}
\]

\[
= \frac{1}{\mu} \sum_{k=1}^{V} \sum_{i=1}^{T_{i-1}} \frac{T_{i-1}}{\rho_{v}^{i-1}}
\]

\[
= \frac{1}{\mu} \sum_{k=1}^{V} \sum_{i=1}^{T_{i-1}} \frac{T_{i-1}}{\rho_{v}^{i-1}} (r_{k} - m)
\]

\[
= \frac{1}{\mu} \sum_{i=0}^{V-1} \frac{T_{i-1}^{2}}{\rho_{v}^{i}} = -\frac{1}{\mu} \sum_{i=0}^{V-1} \frac{T_{i}^{2}}{\rho_{v}^{i}}.
\]

We thus derive

\[
\sigma^2 = \frac{1}{\mu} \sum_{i=0}^{V-1} \frac{T_{i}^{2}}{v_{i}}, \quad T_{i} = \sum_{j=0}^{V-1} \pi_{j} (r_{j} - m)
\]

(2.8)

For the special case considered \(r_{j} = S - (c+v-j) \eta \)

\[
= \eta (\rho_{d} - (c+v) + j). \quad \text{One finds}
\]

\[
m = \sum_{i=0}^{V} \frac{\eta (\rho_{d} - (c+v) + j)}{\rho_{v}^{j}} \frac{\rho_{v}^{j}}{j! S_{v}}
\]

\[
= \eta [\rho_{d} - (c+v) + \rho_{v} (1-q)]
\]

where \(q = \rho_{v}^{V}/v! S_{v} \) is the blocking probability. Thus

\[
m = -\eta (c+v) (1-\rho). \quad \text{Plugging into (2.8) we find}
\]
\[
\frac{\sigma^2}{2} = \frac{n^2}{\rho \nu} \left(\sum_{i=0}^{v-1} \left(\frac{\rho \nu}{j!} \left[\rho_d - (c+v) \rho + j \right] \right)^2 \right).
\]

This can be simplified by letting \(q_i = \frac{\rho \nu}{i!} S_i \), the blocking probability for an M/M/i/i system with traffic intensity \(\rho \nu \).

We find

\[
\frac{\sigma^2}{2} = \frac{n^2 \rho \nu}{\mu} \sum_{i=0}^{v-1} \frac{S_i}{S \nu} \left(\frac{q_i - q_v}{q_i} \right)^2, \quad S_i = \sum_{j=0}^{i} \frac{\rho \nu^j}{j!}.
\]

(2.9)

The special case \(v = 1 \) gives

\[
\frac{\sigma^2}{2} = \frac{n^2}{\mu} \frac{\rho \nu}{(1 + \rho \nu)^2}.
\]

We thus have given explicit formulas for the infinitesimal mean and variance of a Wiener process with reflecting barrier at 0. One can therefore use standard results for Wiener processes with reflecting barriers to derive the stationary distribution—it will be exponential with parameter \(2m / \sigma^2 \). The stationary mean queue length will thus be \(\sigma^2 / 2m \); where \(\sigma^2 \) and \(m \) are given by (2.6) and (2.8). For example when \(v = 1 \) and \(c = 0 \)

\[
\frac{\sigma^2}{2m} = \frac{n}{\mu} \frac{\rho \nu}{(1-\rho)(1+\rho \nu)^3}.
\]
This is developed under heavy traffic conditions, i.e., $\rho \not\to 1$.

For such conditions

$$\rho_d + \frac{\rho_v}{1 + \rho_v} + 1$$

or

$$\left| \rho_d - \frac{1}{1 + \rho_v} \right| \to 0.$$

It follows that the above expression is also

$$\frac{\eta}{\mu} \frac{\rho_v \rho_d}{(1-\rho)(1+\rho_v)^2}$$

in agreement with Fischer (1977) and Gaver and Lehoczky (1979).

The characterization of the data queue as a Wiener process with reflecting barrier allows one to discuss the dynamics of the data queue. For example, suppose the data queue is at level x at time t where x is large. One might wish to study the time that elapses until the queue becomes empty. This is the duration of a busy period started at x, and corresponds to a first-passage time for a Wiener process which we denote by t_x. Moreover one might also be interested in the area beneath the sample path until it reaches the boundary of Q, since this area gives the total time waited by all customers involved in the busy period. We let this area be $A(x)$ and seek to compute $t_x = E(T_x)$ and $a(x) = E(A(x))$. Straightforward backward equation or martingale arguments give
\[t_x = -\frac{x}{m} \]
\[a(x) = -\frac{x^2}{2m} + \frac{\sigma^2}{2m^2} x \]

where \(m \) is negative, and \(m \) and \(\sigma^2 \) are given earlier. The distribution of the first passage time can also be easily calculated; however, its Laplace transform is most convenient to find and is given by

\[E(e^{-st}) = \exp \left[\frac{x^2}{\sigma^2} - \left(\frac{m}{\sigma^2} \right)^2 + 2s \right] \]
4. A Refined Diffusion Approximation

In this section we continue the development of a diffusion approximation for the data queue length process. The analysis is patterned after the important semigroup methods of Burman [1979]. One develops a sequence of Markov processes and studies the behavior of their generators. One shows that the generators converge and hence concludes that the associated semi-groups converge. This entails the convergence of the finite dimensional distributions. The limiting finite dimensional distributions will be those of a certain Brownian motion. The theory underlying this approach is based on theorems of Trotter and Kato, Kurtz and Burman; the reader is referred to Burman (1979) for technical details. We will illustrate the approach in the context of the special case $v = 1, c = 0$. The method applies to the case of general c and v but the details are not given here.

Let $\{V(t), t \geq 0\}$ be the voice process, a Markov process with state space $\{0,1\}$. Let $N(t)$ be the data system size at time t. We study the sequence of Markov processes $\langle(\{X_n(t), V_n(t)\}, t \geq 0)\rangle_{n=1}^{\infty}$ where

$$X_n(t) = \frac{N(nt)}{\sqrt{n}} \quad \text{and} \quad V_n(t) = V(nt). \quad (3.1)$$

The generator of this bivariate process is easy to compute since $V_n(t)$ subordinates $X_n(t)$. Let $f(x,k)$ be a function with domain $[0,\infty) \times [0,1]$ which is smooth as a function of x for each $k = 0,1$. The generator is given by
\[
\begin{align*}
\Lambda_n f(x, k) &= \begin{cases}
\delta n [f(x + 1/\sqrt{n}, k) - f(x, k)]
+ (1-k) n [f(x - 1/\sqrt{n}, k) - f(x, k)] + nQf(x, k)
& \text{for } x \geq 1/\sqrt{n} \\
\delta n [f(1/\sqrt{n}, k) - f(0, k)] + nQf(0, k)
& \text{for } x = 0.
\end{cases}
\end{align*}
\]

where \(Q \) is the generator of the \(M/M/l/l \) voice process and is given by (2.1).

Next expand in a Taylor series and collect terms to rewrite (3.2) as

\[
\begin{align*}
\Lambda_n f(x, k) &= \begin{cases}
\sqrt{n} f_x(x, k) (\delta - (1-k)\eta)
+ \frac{1}{2} f_{xx}(x, k) (\delta + (1-k)\eta) + o(1)
& \text{for } x \geq 1/\sqrt{n} \\
\sqrt{n} f_x(0, k) \delta + \frac{1}{2} f_{xx}(0, k) \delta + o(1)
& \text{for } x = 0
\end{cases}
\end{align*}
\]

where \(f_x(x, k) = \frac{\partial}{\partial x} f(x, k) \) and \(f_{xx}(x, k) = \frac{\partial^2}{\partial x^2} f(x, k) \).

We wish to let \(n \to \infty \) and focus attention on the data queue process alone. To derive a diffusion limit for the data
queue process alone, we introduce a sequence of functions
\[\langle f_n(x,k) \rangle_{n=1}^{\infty} \]
for which \(f_n(x,k) \to f(x) \), where \(f \) is a smooth
function satisfying \(f'(0) = 0 \). We wish to study the limiting
behavior of \(A_n f_n(x,k) \). Let

\[
f_n(x,k) = f(x) + \frac{1}{\sqrt{n}} g(x,k) + \frac{1}{n} h(x,k)
\]

where \(g \) and \(h \) are smooth. Clearly \(f_n(x,k) \to f(x) \). Sub-
stitution in (3.3) gives

\[
A_n f_n(x,k) = \begin{cases}
\frac{nQf(x) + \sqrt{n}[Qg(x,k) + f'(x)(\delta - (1-k)\eta)]}{nQf(x)} \\
+ [Qh(x,k) + g_x(x,k)(\delta - (1-k)\eta)] + \frac{1}{2} f''(x)(\delta + (1-k)\eta) \\
\end{cases}
\]
\[
\begin{array}{ll}
\text{for } x \geq 1/\sqrt{n} & (3.4) \\
\text{for } x = 0 & \\
\end{array}
\]

We first note that \(Qf(x) = 0 \) since \(Q \) operates on the
voice or \(k \) component only, not on the data. This eliminates the
first terms \(nQf(x) \) and \(nQf(0) \). We next examine the
\(Qg(x,k) + f'(x)(\delta - (1-k)\eta) \) term. This can be rewritten as
\[Qg(x,k) + f'(x) \left(\delta - (l-k)n - ((\delta-\eta) + \delta \rho_v)/(l + \rho_v) \right) \]
\[+ f'(x) ((\delta-\eta) + \delta \rho_v)/(l + \rho_v) \]
\[= Qg(x,k) + f'(x) \left(-\frac{\rho_v}{1 + \rho_v} + k \right) = f'(x) \eta (l - \rho) . \]

We now select the function \(g(x,k) \) so that
\[Qg(x,k) = -f'(x) \left(-\frac{\rho_v}{1 + \rho_v} + k \right) \eta . \]

The function \(g(x,k) \) must satisfy the equations

\[\lambda (g(x,1) - g(x,0)) = f'(x) \frac{n\rho_v}{1 + \rho_v} \]
\[-\mu (g(x,1) - g(x,0)) = -f'(x) \frac{n}{1 + \rho_v} \]

(3.5)

The above equations are consistent and redundant, thus any \(g(x,k) \) for which
\[g(x,1) - g(x,0) = \frac{f'(x)\eta}{\mu(1 + \rho_v)} \]
will suffice. We select
\[g(x,0) = \frac{1}{2} f'(x) \]
\[g(x,1) = \left(\frac{1}{2} + \frac{n}{\mu(1 + \rho_v)} \right) f'(x) \]

(3.6)

or
\[g(x,k) + \left(\frac{1}{2} + \frac{nK}{\mu(1 + \rho_v)} \right) f'(x) . \]
This choice of g gives

$$
A_n^f_n(x,k) = \begin{cases}
-\sqrt{n} \eta (1-\rho) f'(x) + \left[Qh(x,k) + f''(x) \left(\frac{1}{2} + \frac{\eta k}{\mu (1+\rho_V)} \right) \right] f''(x) (\delta - (1-k)\eta) \\
\quad + \frac{1}{2} f''(x) (\delta + (1-k)\eta)
, \quad x > 1/\sqrt{n}
\end{cases}
$$

$$
A_n^f_n(x,k) = \begin{cases}
\sqrt{n} \left(f'(0)\delta + f'(0) \frac{\eta (\rho_V - k(1+\rho_V))}{\mu (1+\rho_V)} \right) \\
\quad + \left[Qh(0,k) + \left(\frac{1}{2} + \frac{\eta k}{\mu (1+\rho_V)} \right) f''(0)\delta + \frac{1}{2} f''(0)\delta \right]
, \quad x = 0
\end{cases}
$$

Equation (3.7) can be rewritten recalling $f'(0) = 0$ as

$$
A_n^f_n(x,k) = \begin{cases}
-\sqrt{n} \eta (1-\rho) f'(x) + \left[Qh(x,k) + \eta f''(x) \left(\frac{1}{2} + \frac{\eta k}{\mu (1+\rho_V)} \right) \left(\rho_d^{-1} - (1-k) \right) \right] \\
\quad + \frac{1}{2} (\rho_d + (1-k)) \right) \right] + o(1), \quad x > 1/\sqrt{n}
\end{cases}
$$

$$
A_n^f_n(x,k) = \begin{cases}
Qh(0,k) + \eta f''(0) \left(\rho_d \frac{1}{2} + \frac{\eta k}{\mu (1+\rho_V)} \right) + \frac{1}{2} \rho_d \right) , \quad x = 0
\end{cases}
$$

or

$$
A_n^f_n(x,k) = \begin{cases}
-\sqrt{n} \eta (1-\rho) f'(x) + \left[Qh(x,k) + f''(x) \eta \rho_d \left(1 + \frac{\eta k}{\mu (1+\rho_V)} \right) \right] + o(1) \\
\quad x > 1/\sqrt{n}
\end{cases}
$$

$$
A_n^f_n(x,k) = \begin{cases}
Qh(0,k) + f''(0) \eta \rho_d \left(1 + \frac{\eta k}{\mu (1+\rho_V)} \right) + o(1) , \quad x = 0
\end{cases}
$$

22
We rewrite

\[Qh(x, k) + f''(x) \eta \rho_d + 1 + \left(\frac{\eta k}{\mu (1 + \rho_v)} \right) \]

as

\[\phi h(x, k) + f'(x) \frac{\eta^2 \rho_d}{\mu (1 + \rho_v)} \left(k - \frac{\rho_v}{1 + \rho_v} \right) + f''(x) \eta \rho_d \left(\frac{\eta \rho_v}{\mu (1 + \rho_v)^2} + 1 \right) \]

and choose \(h(x, k) \) so that

\[Qh(x, k) = -f''(x) \frac{\eta^2 \rho_d}{\mu (1 + \rho_v)} \left(k - \frac{\rho_v}{1 + \rho_v} \right) \]

The function \(h(x, k) \) must satisfy

\[\lambda (h(x, 1) - h(x, 0)) = f''(x) \frac{\eta^2 \rho_d \rho_v}{\mu (1 + \rho_v)^2} \]

\[-\mu (h(x, 1) - h(x, 0)) = -f''(x) \frac{\eta^2 \rho_d}{\mu (1 + \rho_v)^2} \]

These equations are consistent and redundant so a manifold of solutions are possible. Any one will suffice. This choice of \(h(x, k) \) allows one to rewrite (3.9) as
An \(f_n(x,k) = \begin{cases}
-\sqrt{n} \eta (1-\rho) f'(x) + f''(x) \eta \frac{\rho_v}{\mu (1+\rho_v)^2} + 1) + o(1)
\end{cases} \)

\[x \geq 1/\sqrt{n} \]

\(f''(0) \eta \frac{\rho_v}{\mu (1+\rho_v)^2} + 1) + o(1) \)

We now let \(n \to \infty \). In order for (3.11) to converge to a sensible limit, we must invoke the heavy traffic approximation, that \(\rho + 1 \). Specifically we let \(\rho = \rho_n = 1 - (\theta/\sqrt{n}) \) for some \(\theta > 0 \). Equation (3.11) becomes in the limit

\[Af(x) = \begin{cases}
-\eta^{\theta} f'(x) + f''(x) \eta \frac{\rho_v}{\mu (1+\rho_v)^2} + 1), \quad x > 0
\end{cases} \]

\[f''(0) \eta \frac{\rho_v}{\mu (1+\rho_v)^2} + 1), \quad x = 0 \]

\[f'(0) = 0 \]

This is the generator of a Wiener process with reflecting barrier at 0, drift of \(-\eta^{\theta} \), and

\[\frac{\sigma^2}{2} = \eta \frac{\rho_v}{\mu (1+\rho_v)^2} + 1) \]

The stationary distribution for such a process is an exponential
distribution with parameter

\[\frac{\rho_d}{\theta} \left(\frac{\eta p_v}{\mu (1+\rho_v)^2} + 1 \right) \]

thus the mean queue length is given by

\[\frac{\rho_d}{\theta} \left(\frac{\eta p_v}{\mu (1+\rho_v)^2} + 1 \right) \]

It is informative to try to apply this heavy traffic result to a case in which \(\rho \) is near but less than 1. One might replace \(\theta \) by \(\sqrt{n} (1-\rho) \). Since we have scaled by \(\sqrt{n} \), the stationary distribution of \(N(t) \), the unscaled queue length should be approximately exponential with parameter

\[\frac{(1-\rho)}{\rho_d \left(\frac{\eta p_v}{\mu (1+\rho_v)^2} + 1 \right)} \]

The mean queue length becomes

\[\frac{\rho_d}{1-\rho} \left(\frac{\eta p_v}{\mu (1+\rho_v)^2} + 1 \right) \]

This result is in exact agreement with Fischer (1977) and is therefore exact. The fluid flow approximation treats \(\eta/\mu \) as being large, hence \(\frac{\eta p_v}{\mu (1+\rho_v)^2} \) is assumed to dominate 1. This gives \(\frac{\eta \rho_d^2 p_v}{\mu (1+\rho_v)^2 (1-\rho)} \) as the fluid flow mean queue length found in Gaver and Lehoczky (1979) and in Section 2 of this paper.
The diffusion approximation thus found represents a refinement of the fluid flow diffusion approximation. Even if η/μ is large, σ_v^2 may be small, so the 1 may be important.

Once the Wiener process infinitesimal drift and variance have been found, one can also use the dynamics of the Wiener process to model the dynamics of the data queue process. Busy period distributions, areas, and transient behavior in general can be determined.
BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
<td>2</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>Library Code</td>
<td>2</td>
</tr>
<tr>
<td>Code 0142</td>
<td></td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Library Code 55</td>
<td>1</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Dean of Research</td>
<td>1</td>
</tr>
<tr>
<td>Code 012A</td>
<td></td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
<tr>
<td>Attn:</td>
<td></td>
</tr>
<tr>
<td>A. Andrus, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>D. Gaver, Code 55</td>
<td>25</td>
</tr>
<tr>
<td>D. Barr, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>P. A. Jacobs, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>P. A. W. Lewis, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>P. Milch, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>R. Richards, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>M. G. Sovereign, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>R. J. Stampfel, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>R. R. Read, Code 55</td>
<td>1</td>
</tr>
<tr>
<td>J. Wozencraft, Code 74</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Peter Badgley</td>
<td>1</td>
</tr>
<tr>
<td>ONR Headquarters, Code 102B</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
</tr>
<tr>
<td>Dr. James S. Bailey, Director</td>
<td>1</td>
</tr>
<tr>
<td>Geography Programs,</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>ONR</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 93940</td>
<td></td>
</tr>
<tr>
<td>Prof. J. Lehoczky</td>
<td>5</td>
</tr>
<tr>
<td>Dept. of Statistics</td>
<td></td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, PA 15213</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Program</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS AND PROBABILITY PROGRAM</td>
<td>1</td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH CODE 436 ARLINGTON VA 22217</td>
<td></td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH NEW YORK AREA OFFICE 715 BROADWAY - 5TH FLOOR ATTN: CR. ROGER GRAFMA NEW YORK, NY 10003</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>1</td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH BRANCH OFF 536 SOUTH CLARK STREET ATTN: DEPUTY AND CHIEF SCIENTIST CHICAGO, IL 60605</td>
<td></td>
</tr>
<tr>
<td>LITERARY NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA 92152</td>
<td></td>
</tr>
<tr>
<td>NAVY LIBRARY NATIONAL SPACE TECHNOLOGY LAB ATTN: NAVY LIBRARIAN BAY ST. LGIS MS 29522</td>
<td></td>
</tr>
<tr>
<td>NAVAL ELECTRONIC SYSTEMS COMMAND NAVLEX 326 NATIONAL CENTER NO. 1 ARLINGTON VA 20360</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR NAVAL RESEARCH LABORATORY ATTN: LIBRARY (ORAL) CODE 2006 WASHINGTON, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL INFORMATION DIVISION NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375</td>
<td></td>
</tr>
</tbody>
</table>

29
DISTRIBUTION LIST

No. of Copies

PROF. C. R. BAKER
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NORTH CAROLINA
27514
1

PROF. R. E. DECHHOFFER
DEPARTMENT OF OPERATIONS RESEARCH
CORNELL UNIVERSITY
ITHACA
NEW YORK 14850
1

PROF. A. J. BERSHAD
SCHOOL OF ENGINEERING
UNIVERSITY OF CALIFORNIA
IRVINE, CALIFORNIA
92664
1

P. J. BICKEL
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA
94720
1

PROF. E. W. BLOCK
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA
15260
1

PROF. JOSEPH BLUM
DEPT. OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
THE AMERICAN UNIVERSITY
WASHINGTON, DC
20016
1

PROF. R. A. BRADLEY
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306
1

PROF. R. E. BARLOW
OPERATIONS RESEARCH CENTER
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY
CALIFORNIA 94720
1

MR. C. A. FERRIETT
NAVAL COASTAL SYSTEMS LABORATORY
CON: P. & L.
FARAPH CITY, FLORIDA
22401
30
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. L. N. PHAT</td>
<td>1</td>
</tr>
<tr>
<td>COMPUTER SCIENCE / OPERATIONS RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN METHODIST UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>DALLAS, TX 75275</td>
<td></td>
</tr>
<tr>
<td>PROF. W. R. ELISCHKE</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. OF QUANTITATIVE BUSINESS ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF SOUTHERN CALIFORNIA</td>
<td></td>
</tr>
<tr>
<td>LOS ANGELES, CALIFORNIA 90007</td>
<td></td>
</tr>
<tr>
<td>CR. DERRILL J. BOROELON</td>
<td>1</td>
</tr>
<tr>
<td>NAVAL UNDERWATER SYSTEMS CENTER</td>
<td></td>
</tr>
<tr>
<td>CODE 21</td>
<td></td>
</tr>
<tr>
<td>NEWPORT, RI 02840</td>
<td></td>
</tr>
<tr>
<td>J. E. BOYER JR</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. OF STATISTICS</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN METHODIST UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>DALLAS, TX 75275</td>
<td></td>
</tr>
<tr>
<td>DR. J. CHANDRA</td>
<td>1</td>
</tr>
<tr>
<td>U.S. ARMY RESEARCH</td>
<td></td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td></td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK</td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA 27706</td>
<td></td>
</tr>
<tr>
<td>PROF. H. CHEUNG</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. OF MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>MASS INSTITUTE OF TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>CAMBRIDGE, MASSACHUSETTS 02135</td>
<td></td>
</tr>
<tr>
<td>PROF. C. CERMAN</td>
<td>1</td>
</tr>
<tr>
<td>DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS</td>
<td></td>
</tr>
<tr>
<td>COLUMBIA UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>NEW YORK 10027</td>
<td></td>
</tr>
<tr>
<td>PROF. R. L. DISNEY</td>
<td>1</td>
</tr>
<tr>
<td>VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>DEPT. OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH</td>
<td></td>
</tr>
<tr>
<td>BLACKSBURG, VA 24061</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

MR. GENE F. GLEISSNER
APPLIED MATHEMATICS LABORATORY
DAVID TAYLOR NAVAL SHIP RESEARCH
AND DEVELOPMENT CENTER
BETHESDA
MD 20084

PROF. S. S. GUPTA
DEPARTMENT OF STATISTICS
PURDUE UNIVERSITY
LAFAYETTE
INDIANA 47907

PROF. E. L. HANSEN
DEPT. OF MATH. SCIENCES
STATE UNIVERSITY OF NEW YORK,
BINGHAMTON
BINGHAMTON
NY 13901

Prof. M. J. Hinich
Dept. of Economics
Virginia Polytechnica Institute
and State University
Blacksburg, VA 24061

Dr. D. Depriest,
ONR, Code 102B
800 N. Quincy Street
Arlington, VA 22217

Prof. G. E. Whitehouse
Dept. of Industrial Engineering
Lehigh University
Bethlehem, PA 18015

Prof. M. Zia-Hassan
Dept. of Ind. & Sys. Eng.
Illinois Institute of Technology
Chicago, IL 60616

Prof. S. Zacks
Statistics Dept.
Virginia Polytechnic Inst.
Blacksburg, VA 24061

Head, Math. Sci Section
National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550
No. of Copies

Dr. H. Sittrop
Physics Lab., TNO
P.O. Box 96964
2509 JG, The Hague
The Netherlands

1

CR. R. Flasher
DIAMATHEMATICS
UNIV. OF CALIF.
LOS ANGELES
CALIFORNIA

90024

1

PROF. GEORGE S. FISHMAN
UNIV. OF NORTH CAROLINA
CUR. IN CR AND SYS. ANALYSIS
PHILLIPS ANNEX
CHAPEL HILL, NORTH CAROLINA

20742

1

DR. R. Ganesesikan
BELL TELEPHONE LAB
HOLMOEL, N. J.

07733

1

DR. A. J. Coleman
CHIEF, CR
DIV. 205-CZ, ADMIN. A42E
U.S. DEPT. OF COMMERCE
WASHINGTON, D.C.

20234

1

Dr. H. Figgin
53 DONN 1, POSTFACH 585
NASESTRASSE 2
WEST GERMANY

1

Dr. P. T. Holmes
DEPT. OF MATH.
CLEMSON UNIV.
CLEMSON
SOUTH CAROLINA

29631

1

Dr. J. A. Hocke
Bell Telephone Labs
Whippany, New Jersey 07733

1

Dr. Robert Hooke
Box 1982
Pinchurst, No. Carolina 28374

33
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. W. H. FIPSC</td>
<td>INSTITUTE OF MATHEMATICAL SCIENCES</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NEW YORK UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEW YORK 10453</td>
<td></td>
</tr>
<tr>
<td>PROF. J. E. KACAN</td>
<td>DEPARTMENT OF STATISTICS CARNegie-MELLON</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PITTSBURGH, PENNSYLVANIA 15213</td>
<td></td>
</tr>
<tr>
<td>DR. RICHARD LAU</td>
<td>DIRECTOR</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OFFICE OF NAVAL RESEARCH BRANCH OFF 1030 EAST GREEN STREET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PASADENA CA 91101</td>
<td></td>
</tr>
<tr>
<td>PROF. A. R. LAUFER</td>
<td>DIRECTOR</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OFFICE OF NAVAL RESEARCH BRANCH OFF 1030 EAST GREEN STREET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PASADENA CA 91101</td>
<td></td>
</tr>
<tr>
<td>PROF. R. LEADBETTER</td>
<td>DEPARTMENT OF STATISTICS UNIVERSITY OF NORTH CAROLINA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHAPEL HILL, NORTH CAROLINA 27514</td>
<td></td>
</tr>
<tr>
<td>ER. J. S. LEE</td>
<td>J. S. LEE ASSOCIATES, INC. 2001 JEFFERSON DAVIS HIGHWAY</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SUITE 802 ARLINGTON VA 22202</td>
<td></td>
</tr>
<tr>
<td>PROF. L. L. LEE</td>
<td>DEPARTMENT OF STATISTICS VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BLACKSBURG VA 24061</td>
<td></td>
</tr>
<tr>
<td>PROF. R. S. LEVENWORTH</td>
<td>DEPT. OF INDUSTRIAL AND SYSTEMS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITY OF FLORIDA CRAWFORDVILLE FLORIDA 2411</td>
<td></td>
</tr>
</tbody>
</table>

35
DISTRIBUTION LIST

No. of copies

1

PROF. G. LIEPERMAN
STANFORD UNIVERSITY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD CALIFORNIA 94305

1

DR. JAMES R. MAAR
NATIONAL SECURITY AGENCY
FORT MEADE, MARYLAND
20755

1

PROF. R. H. MAESEN
DEPARTMENT OF STATISTICS
UNIVERSITY OF MISSOURI
COLUMBIA
MO 65201

1

DR. N. R. MAMA
SCIENCE CENTER
ROCKWELL INTERNATIONAL CORPORATION
P. O. BOX 1093
THOUSAND OAKS, CALIFORNIA 91360

1

DR. W. H. MARLOW
PROGRAM IN LOGISTICS
THE GEORGE WASHINGTON UNIVERSITY
707 22ND STREET, N. W.
WASHINGTON, D. C.
20007

1

PROF. E. NASRY
DEPT. APPLIED PHYSICS AND
INFORMATION SERVICE
UNIVERSITY OF CALIFORNIA
LA JOLLA
CALIFORNIA 92037

1

CPL. BOLCE J. MCNAB
SCIENTIFIC DIRECTOR
SCIENTIFIC LIAISON GROUP
OFFICE OF NAVAL RESEARCH
AMERICAN EMBASSY - TOKYO
AFSC SAN FRANCISCO 96503
<table>
<thead>
<tr>
<th>No. of copies</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Leon F. McGinnis</td>
</tr>
<tr>
<td></td>
<td>School of Ind. And Sys. Eng.</td>
</tr>
<tr>
<td></td>
<td>Georgia Inst. of Tech.</td>
</tr>
<tr>
<td></td>
<td>Atlanta, GA 30332</td>
</tr>
<tr>
<td>1</td>
<td>Dr. D. A. McNeil</td>
</tr>
<tr>
<td></td>
<td>DEPT. OF STATISTICS</td>
</tr>
<tr>
<td></td>
<td>PRINCETON UNIV.</td>
</tr>
<tr>
<td></td>
<td>NEW JERSEY</td>
</tr>
<tr>
<td>1</td>
<td>CR. F. MOSTELLER</td>
</tr>
<tr>
<td></td>
<td>STAT. DEPT.</td>
</tr>
<tr>
<td></td>
<td>HARVARD UNIV.</td>
</tr>
<tr>
<td></td>
<td>CAMBRIDGE</td>
</tr>
<tr>
<td></td>
<td>MASSACHUSETTS</td>
</tr>
<tr>
<td>1</td>
<td>Dr. H. Reiser</td>
</tr>
<tr>
<td></td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td>THOMAS J. WATSON RES. CTR.</td>
</tr>
<tr>
<td></td>
<td>YORKTOWN HEIGHTS</td>
</tr>
<tr>
<td></td>
<td>NEW YORK</td>
</tr>
<tr>
<td>1</td>
<td>Dr. J. Ricciani</td>
</tr>
<tr>
<td></td>
<td>DEPT. OF MATHEMATICS</td>
</tr>
<tr>
<td></td>
<td>ROCKEFELLER UNIV.</td>
</tr>
<tr>
<td></td>
<td>NEW YORK</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Linus Schrage</td>
</tr>
<tr>
<td></td>
<td>UNIV. OF CHICAGO</td>
</tr>
<tr>
<td></td>
<td>GRAD. SCHOOL OF BUS.</td>
</tr>
<tr>
<td></td>
<td>5836 GREENWICH AVE.</td>
</tr>
<tr>
<td></td>
<td>CHICAGO, ILLINOIS</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Paul Schweitzer</td>
</tr>
<tr>
<td></td>
<td>University of Rochester</td>
</tr>
<tr>
<td></td>
<td>Rochester, N.Y. 14627</td>
</tr>
<tr>
<td>1</td>
<td>Dr. V. Srinivasan</td>
</tr>
<tr>
<td></td>
<td>Graduate School of Business</td>
</tr>
<tr>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Stanford, CA. 94305</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Roy Welsch</td>
</tr>
<tr>
<td></td>
<td>M.I.T. Sloan School</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>DR. JANET M. FRYRE</td>
<td>THE INSTITUTE OF DECISION SCIENCE</td>
</tr>
<tr>
<td></td>
<td>FOR BUSINESS AND PUBLIC POLICY</td>
</tr>
<tr>
<td></td>
<td>CLAREMONT MEN'S COLLEGE</td>
</tr>
<tr>
<td>MR. F. N. NISSELSK</td>
<td>BLURAL OF THE CENSUS</td>
</tr>
<tr>
<td></td>
<td>ROCK 2025</td>
</tr>
<tr>
<td></td>
<td>FEDERAL BUILDING 2</td>
</tr>
<tr>
<td></td>
<td>WASHINGTON, D. C. 2032</td>
</tr>
<tr>
<td>MISS B. S. CRLEANS</td>
<td>NAVAL SEA SYSTEMS COMMAND</td>
</tr>
<tr>
<td></td>
<td>(SEA 03F)</td>
</tr>
<tr>
<td></td>
<td>RM 1050</td>
</tr>
<tr>
<td></td>
<td>ARLINGTON VIRGINIA 20360</td>
</tr>
<tr>
<td>PROF. C. E. OWEN</td>
<td>DEPARTMENT OF STATISTICS</td>
</tr>
<tr>
<td></td>
<td>SOUTHERN METHODIST UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>DALLAS</td>
</tr>
<tr>
<td></td>
<td>TEXAS</td>
</tr>
<tr>
<td>Prof. E. Parzen</td>
<td>Statistical Science Division</td>
</tr>
<tr>
<td></td>
<td>Texas A & M University</td>
</tr>
<tr>
<td></td>
<td>College Station TX 77843</td>
</tr>
<tr>
<td>DR. A. PETRASOVITS</td>
<td>RCCH 2078 , FELC AND CRLG BLDG.</td>
</tr>
<tr>
<td></td>
<td>TUNNEY'S P/STRE</td>
</tr>
<tr>
<td></td>
<td>OTTOGA , ENTARIC K1A-CL2 ,</td>
</tr>
<tr>
<td></td>
<td>CANADA</td>
</tr>
<tr>
<td>PROF. S. L. PHOENIX</td>
<td>STIELEY SCHOOL OF MECHANICAL AND</td>
</tr>
<tr>
<td></td>
<td>AEROSPACE ENGINEERING</td>
</tr>
<tr>
<td></td>
<td>CORNELL UNIVERSITY</td>
</tr>
<tr>
<td></td>
<td>ITHACA</td>
</tr>
<tr>
<td>DR. A. L. POWELL</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td></td>
<td>OFFICE OF NAVAL RESEARCH BRANCH OFF</td>
</tr>
<tr>
<td></td>
<td>495 SUMNER STREET</td>
</tr>
<tr>
<td>MR. F. R. FRIECE</td>
<td>CODE 224 OPERATIONAL TEST AND EMS</td>
</tr>
<tr>
<td></td>
<td>EVALUATION FORCE (OPEF)</td>
</tr>
<tr>
<td></td>
<td>MCLEAN, VIRGINIA 20300</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

No. of Copies

PROF. M. L. PURI
DEPT. OF MATHEMATICS
P.O. BOX 6
INDIANA UNIVERSITY FOUNDATION
ELKHART IN 47401

1

PROF. M. ROBBINS
DEPARTMENT OF MATHEMATICS
COLUMBIA UNIVERSITY
NEW YORK, NEW YORK 10027

1

PROF. M. ROSENBLATT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA SAN DIEGO
LA JOLLA CALIFORNIA 92093

1

PROF. S. M. ROSS
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY CA

94720

1

PROF. I. RUBIN
SCHOOL OF ENGINEERING AND APPLIED
SCIENCE
UNIVERSITY OF CALIFORNIA
LOS ANGELES CALIFORNIA 90024

1

PROF. J. R. SAVAGE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN CONNECTICUT

6520

1

PROF. L. L. SCHARF JR
DEPARTMENT OF ELECTRICAL ENGINEERING
COLORADO STATE UNIVERSITY
FORT COLLINS COLORADO

1

PROF. R. SERFLING
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE FLORIDA 32306

1

PROF. W. R. SCHULCANY
DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS TEXAS

1

75222
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. C. C. SIEGMUND</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. OF STATISTICS</td>
<td></td>
</tr>
<tr>
<td>STANFORD UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>STANFORD CA</td>
<td>54305</td>
</tr>
<tr>
<td>PROF. M. L. SIEGMAN</td>
<td>1</td>
</tr>
<tr>
<td>DEPT. OF ELECTRICAL ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>POLYTECHNIC INSTITUTE OF NEW YORK</td>
<td></td>
</tr>
<tr>
<td>BROOKLYN, NEW YORK</td>
<td>11201</td>
</tr>
<tr>
<td>DR. A. L. SLAFKOSKY</td>
<td>1</td>
</tr>
<tr>
<td>SCIENTIFIC ADVISER</td>
<td></td>
</tr>
<tr>
<td>COMMANDANT OF THE MARINE CORPS</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D. C.</td>
<td>20360</td>
</tr>
<tr>
<td>DR. C. E. SMITH</td>
<td>1</td>
</tr>
<tr>
<td>DESMATICICS INC.</td>
<td></td>
</tr>
<tr>
<td>P. O. BOX 618</td>
<td></td>
</tr>
<tr>
<td>PENNSYLVANIA STATE COLLEGE</td>
<td>16801</td>
</tr>
<tr>
<td>PROF. W. L. SMITH</td>
<td>1</td>
</tr>
<tr>
<td>DEPARTMENT OF STATISTICS</td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF NORTH CAROLINA</td>
<td></td>
</tr>
<tr>
<td>CHAPEL HILL, NORTH CAROLINA</td>
<td>27514</td>
</tr>
<tr>
<td>Dr. H. J. Solomon</td>
<td>1</td>
</tr>
<tr>
<td>ONR</td>
<td></td>
</tr>
<tr>
<td>223/231 Old Marylebone Rd</td>
<td></td>
</tr>
<tr>
<td>London NW1 5TH, ENGLAND</td>
<td></td>
</tr>
<tr>
<td>MR. GLENN F. STAHLY</td>
<td>1</td>
</tr>
<tr>
<td>NATIONAL SECURITY AGENCY</td>
<td></td>
</tr>
<tr>
<td>FORT MeADE, MARYLAND</td>
<td>20755</td>
</tr>
<tr>
<td>Mr. J. Gallagher</td>
<td>1</td>
</tr>
<tr>
<td>Naval Underwater Systems Center</td>
<td></td>
</tr>
<tr>
<td>New London, CT</td>
<td></td>
</tr>
<tr>
<td>Dr. E. C. Monahan</td>
<td>1</td>
</tr>
<tr>
<td>Dept. of Oceanography</td>
<td></td>
</tr>
<tr>
<td>University College</td>
<td></td>
</tr>
<tr>
<td>Galway, Ireland</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DR. R. M. STARK</td>
<td>STATISTICS AND COMPUTER SCI. UNIV. OF DELAWARE COLUMBUS, DELAWARE</td>
</tr>
<tr>
<td>PROF. RICHARD VANSLYKE</td>
<td>RES. ANALYSIS CORP. BEER CREEK COL. TAPPEN PO/C GLEN CREEK, NEW YORK</td>
</tr>
<tr>
<td>PROF. JOHN W. TUKEY</td>
<td>FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY</td>
</tr>
<tr>
<td>PROF. THOMAS C. WARDEN</td>
<td>OFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON VA</td>
</tr>
<tr>
<td>PROF. G. WATSON</td>
<td>FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY</td>
</tr>
<tr>
<td>MR. LEE C. SMITH</td>
<td>ADVANCED PROJECTS GROUP CODE 1103 NAVAL RESEARCH LAB. WASHINGTON DC</td>
</tr>
<tr>
<td>PROF. WENDELL G. SYKES</td>
<td>ARTHUR C. LITTLE, INC. ACCRIL PARK CAMBRIDGE MA</td>
</tr>
<tr>
<td>PROF. J. R. THOMPSON</td>
<td>DEPARTMENT OF MATHEMATICAL SCIENCE RICE UNIVERSITY HOUSTON, TEXAS 77001</td>
</tr>
<tr>
<td>PROF. K. A. THOMPSON</td>
<td>DEPARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI 65231</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Department/Institution</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROF. F. A. TILLMAN</td>
<td>Dept. of Industrial Engineering</td>
<td>Kansas State University, Manhattan, KS</td>
<td>66506</td>
</tr>
<tr>
<td>PROF. P. A. TUKEY</td>
<td>Department of Statistics</td>
<td>Princeton University, Princeton, NJ, 08540</td>
<td>1</td>
</tr>
<tr>
<td>PROF. A. T. VEINOTT</td>
<td>Department of Operations Research</td>
<td>Stanford University, Stanford, CA, 94305</td>
<td>1</td>
</tr>
<tr>
<td>DANIEL H. WAGNER</td>
<td>Station Solare One</td>
<td>Palisades, Pennsylvania, 15301</td>
<td>1</td>
</tr>
<tr>
<td>PROF. GRACE HAABA</td>
<td>Dept. of Statistics</td>
<td>University of Wisconsin, Madison, WI</td>
<td>53706</td>
</tr>
<tr>
<td>PROF. R. T. WALLENIUS</td>
<td>Department of Mathematical Sciences</td>
<td>Clemson University, Clemson, South Carolina, 29631</td>
<td>1</td>
</tr>
<tr>
<td>PROF. BERNARD MIDRICK</td>
<td>Stanford Electronics Lab</td>
<td>Stanford University, Stanford, CA</td>
<td>94305</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>No. of Copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO AREA OFFICE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>740 MARKET STREET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO, CALIFORNIA 94102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAL CREW GUIDANCE STATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIAN HEAD, MARYLAND 20640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAL SHIP ENGINEERING CENTER</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILADELPHIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVISION TECHNICAL LIBRARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILADELPHIA, PENNSYLVANIA 19112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUREAU OF NAVAL PERSONNEL</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF THE NAVY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROF. M. ADELLIS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF MATHEMATICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIVERSITY OF NORTH CAROLINA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHARLOTTE, NC 28223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROF. T. KNOWLTON ANDERSON</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF STATISTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANFORD UNIVERSITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANFORD, CALIFORNIA 94305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROF. E. J. ANSCOMBE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF STATISTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YALE UNIVERSITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW HAVEN, CONNECTICUT 06520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROF. L. A. ARCIN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTITUTE OF INDUSTRIAL ADMINISTRATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNION COLLEGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHENECTADY, NY 12308</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43