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A MODEL FOR THE DEFENSE OF A MINE FIELD

by

P. A. Jacobs

Introduction and Summary

This paper presents and analyzes a simple model for

defense against an attacking force of tanks; the defense is made

up of a mine field and a single defending tank. Extensions that

include many defending tanks are possible, but the algebra becomes

difficult.

The approach of the paper makes use of classical applied

probability notions and techniques, and explicit algebraic solu-

tions are derived that can easily yield numerical results, and

hence interpretable insights into the value of various tactics.

The relative simplicity of the solutions should be attractive and

useful as a supplement to much more realistic, but complex,

simulations, and to time consuming and expensive war games. It

is even possible that the present simple engagement analysis--

and others like it--may be incorporated into more complex war

games as important modular components. ' ,, ......T--X
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Mine Field Assumptions

The field is of length I and width w.

x defending tank

Mine field

In W
w

Wt

The position of mines in the field form a spatially homogeneous

Poisson process with rate rm; that is, the number of mines in dis-

joint subsets of the field are independent random variables and

the distribution of the number of mines in a subset A of the

field is Poisson with mean r mAI where IAI denotes the area

of A (cf. Feller [1971]). Assume tanks are of width wt and

they travel throuqh the field Darallel to the w edge of the

field. (The cross-hatched area of the diagram represents a

typical potential path.) The mines are "invisible" so there is

no evasive action taken by the tanks. By the Poisson assumption,

the probability that a tank gets z units into the field

without hitting a mine equals exp(-rmwtz) Ee-

A.
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Defending Tank Assumptions

* The defending tank is located on the far side of the field,

and can fire on offensive tanks crossing the field. The sweep

rate of a defendinq tank over the field is a (mi/sec). It takes

sec to sweep the entire field. The probability of detectina

an existing tank in the field during a sweep is p. Tanks travel

at c mi per sec. Hence it takes a tank t sec to cross the field.
c

During this crossing time a defending tank that continually sweeps

has approximately w chances to detect the offensive tank. InC k

this situation the probability of detecting the tank before it

crosses the field is approximately

w a

1 - (l-p)C E = 1 - exp{- w c n- n(l-p)]}

1 - exp{-yw}.

An analogous argument can be used to argue that the probability

that a defensive tank that continually sweeps detects an offensive

tank before it is x units into the field is 1 - exp{-yx}. For

simplicity we will assume that when an offensive tank is detected

it is killed.

If there are k tanks traveling on disjoint paths in the

field the probability of detecting at least one of the tanks

before they go a distance x units into the field is approximately

1 - (l-p) 1 - exp{-kyx}.

3]'4q



Procedure of Defending Tank when an Offensive Tank is Killed

If an offensive tank is killed a distance z into the

field by either a mine or the defensive tank, the defensive

tank has the option of doing a limited sweep about z in the

hope of detecting other tanks which are with the killed tank

in a convoy; we will assume that the defensive tank sweeps a

distance d miles about the place z for n times. This

limited sweep takes n sec. During this time an offensive tank

can go T c I n miles. During each sweep there is a prob-a
ability a of detecting another offensive tank if it is in the

limited sweep area. Given that an offensive tank is in the limited

sweep area, the probability of detecting it before it goes

an additional x units into the field is approximately

a

1- (1-a) a 1 -exp{-6x} for x < T

Convoys Assumption

We will assume that the probability of detecting an

offensive tank in a convoy before it goes a distance z into the

field is 1 - exp{-nz} where n > y. The probabilities of

detecting individual tanks in a convoy are independent.

We will assume that tanks in a convoy follow the same path

through the field.
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As a simplifying assumption we will assume that all tanks

in a convoy start at the same time. Different starting times can

be modelled but seem to make calculations more difficult.

As a result, if there are two tanks in a convoy we assume that the

probability of detecting at least one of them before the convoy

goes a distance z is 1 - exp{-2nzl. If a detection occurs,

we assume that only one tank is detected (and therefore killed).

Derivation of Results for a Simple Model

To illustrate the calculations involved we will assume

there are three offensive tanks and one defensive tank. We

will assume that the defensive tank never goes down. Let N

be the number of defensive tanks that get through the mine field.

We will assume the defense wins if N < 1.

Scenario I. The three offensive tanks go through the field on

disjoint paths. The paths are far enough apart so that a limited

sweep about the area of one will not detect tanks on the other
paths. The offensive tanks all start through the field at the

I
~same time.
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If there is no defensive tank, then the only way an

offensive tank can be killed is by hitting a mine. Since the

tanks go through the field on disjoint paths, the probability

none of them hits a mine before a distance of z into the

field is (e -1z) 3 The density function of the position of the

first mine to be hit is 3pe - 3 z , z < w. Once the first mine

is hit two tanks are still going through the field. By the lack

of memory property for the exponential distribution the distri-

bution of the distance until a mine is hit is a truncated

exponential with rate 2p. Hence,

P{N < 11 - 3zl - 2 (w-z)dz
0
[1 - e - 3pw ] - e - 21 w  e - Pw ]

= 1 - e - 3pw - 3 e - 2 pw [1 - e - Pw]

If there is a defensive tank, then the distance until

the first tank is killed (either by a mine or the defensive

tank) has a density function 3(p + y)e - 3 ( l+y)z for z < w.

Once an offensive tank is detected at a distance z into the

field, the defensive tank does a limited sweep about the detection

area. By assumption the defending tank does not detect the

other offensive tanks during this limited sweep. During a

limited sweep the offensive tanks can go an additional

* °distance of T units into the field unless they hit a mine.

6



By the lack of memory property of the exponential the density

function of the distance before an offensive tank hits a mine

is 2ueje'1, 0 < y < min(rW-Z). If neither offensive tank hits

*a mine during the limited sweep the density function of the

distance until an offensive tank is detected is pye2uyy

0 < Y< W-T-z. Hence

P{N <C 1} 1 3 (y+i) e3(Yp) [ e
W- T

W-T3
+ f 3(Y+W.i e- yei2) [1
0

W-T
+ f 3(y+pi) e-3 (Y+WIz e-2ivrl- -2yp)WTZ

-e2 iw 3(y+') -e3 (y+1I)(wT)-

-e
2 y(W-T) e '2w 3 [1 -e-(1) WT

S Scenario II. All the tanks go through the field in a convoy.

a) If there is no defending tank, then

P{N < 1= e- plweW

7



which is the probability of there being two or more mines in a

rectangle of width wt  and length w.

b) If there is the defending tank, then the distance the

offensive tanks go until one is detected has a truncated

exponential distribution with rate 3n + p. Once an offensive

tank is detected the defensive tank begins a limited sweep.

During the limited sweep the distribution of the distance

the remaining tanks can go before being detected is truncated

exponential with rate 26 + p. If no tank is detected during

the limited sweep and the offensive tanks are still in the

mine field the distribution of the distance the offensive

tanks go before being detected is a truncated exponential

with rate 2n + U. Hence

P{N < 11 f (3n+p) e-(3n+i)z[l - e - ( 2 5+ 1 ) (w-z)]dz

W-T

W-T (3t-+0ez ( 2 6+ P ) T ] d
+ f (3n+v) e- [l - e- dz

0

+ w-Tf (3r+) e(3n+p)z e( 2 6+P)T [ - (2n+)(w-T-z)

0

= 1 -
( 3 + ) w

-e( 2 6+1)w n++ 2 [e( 3 n- 2 6) (w-T) _ e-(3-26) (w)]

- e (2[+1)w 3 l - en(w-T) e-2(6-n)T

n

if 3n 91 26. If 3n = 26, then
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P{N < i = 1 - e(3 n + p )w

-e-(26 +p)w( 3n+) -e-( 2 n+i)w 3T+ [lie-n(w-T) le- 2 (6-)T

Scenario III. Two convoys with two tanks in one and one tank in

the other. The convoys are far enough apart so that at limited

sweep about the area of one will not detect the other. The

convoys start at the same time.

If there is no defensive tank, then

P{N < D = e- e 2 w - we - 2 p w _ e-PW[1 - e- w

which is the probability of there being at least two mines in

the path of the convoy of size 2 or at least 1 mine in each of

the two paths.

If there is a defensive tank, then the distribution of

the distance until the first detection is a truncated exponential

with rate 2n + y + 2p. If the tank in the convoy of size one

is detected, then during a limited sweep, tanks in the other

convoy can only be detected by encountering a mine; hence, by

the lack of memory property of the exponential, during the

limited sweep the density function of the distance to detection

is a truncated exponential with rate p; if during the limited

.sweep a tank is not detected, the density function of the

distance after the limited sweep until a tank is detected is

a truncated exponential with rate 2n + p. If one of the tanks

L in the convoy of size two is detected, then during the limited

T" ? [ r ... .. ...9



sweep the other tank in the convoy may be detected by the

defensive tank or a mine while the tank in the other convoy

can only be detected by a mine; hence, during the limited sweep

the density function of the distance until an offensive tank

is detected is a truncated exponential with rate 2U + 6; if

no tank is detected during the limited sweep, the density func-

tion of the distance after the limited sweep until a tank is

detected is a truncated exponential with rate 2(p + y)

P{N < 11

fw dy e - ( 2T+Y+ 2 p ) y {(y+P) [l-e "11 (w - y )]+(2l+lj ) [l-e- 6 + 2 p ) (w-y) ]}

W-T

W-T

+ f dy[2n1+p]e - ( 2 Tl+Y+ 2 1j ) y {[le- (6+2p)TI
0

+ e- ( w+ 2- ) T [1-e-2 (y+li) (w-T-y)]

W-T dy-y+u]e-( 2 T+y+ 2 i)y { l P-TJ]+eIT[l -(2T+1) (w-T-y)

0

= - e - ( 2 n + y+ 2 p) w

- e X+2+1+ [e-(y+2n+p) (w-r) _ e-(y+2n+p)w

- e-( 6+24)w 2n+j [e-(21+y-6) (w-T) -(2n+y-6)w

I.
-2n (w-T) -11w (Y+) (w-T)

ee-[- e - ( +

- 2n+p e-2y(w- T ) e-2 pw e - 6T e- (2n-y)(w-T)

10
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if 2rl + y -6 > 0 and 2 n - y > 0. If 2n + y -6 = 0, then

the third term becomes

-(6+20w(2n + v)T e -

If 2n - y = 0, then the last term becomes

e- 2 y(w-T) e- 2 iw e - 6 T (2n + A)(w-T).

Some Numerical Results for the Simple Model

We will now present some numerical results for the three

scenarios above for some different parameter values.

Case I. Parameters: w = 4, V = .1, y = .1, T = 0.

In this case the defending tank does not sweep a more

limited area when an offensive tank is detected. The parameter n,
the rate of detection of a tank in a convoy, is allowed to vary.

P{N < 1)

•cna.2 .3

1 .575 .575 .575 .575

° II .4 .68 .84 1

III .5 .63 .69 1

'I 11



Case II. Parameters: w = 4, = .1, y = .1, n = .1, T = 1.

In this case 6, the rate of detection during a limited
sweep, is allowed to vary

arL .1 .2 .3 0

1 .575 .575 .575 .575

II.4 .504 .58 .8

III .45 -57 67

The best strategy for the offensive is to choose that one

for which the P{N < 1} is the smallest. For Case I, r = .1,

this strategy is Scenario II--send all tanks in one convoy; if

n > .2 the best strategy is to send all tanks in separately.

For Case II, 6 = .1, the best strategy is to send all the tanks

in one convoy; if 6 = .2 or .3, then the best strategy is to use

two convoys; if 6= -, the best strategy is for each tank to go

in separately.

L12
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4 NO6A

Conclusions. The above model is very simple. However, it is

complicated enough to show that for the offense different strategies

are better under different scenarios. Other scenarios that one

might want to include in the model are several defensive tanks;

the firing of offensive tanks at defensive tanks; and offensive

tanks entering the mine field at different times. These situations

can all be modelled at the cost of a more complicated model and

of course more complicated calculations.
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