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ABSTRACT

Self adaptive filters adjust their parameters to perform
an almost optimal filtering operation without apriori know-
ledge of the input signal statistics. Two approaches to the
design of efficient self adaptive discrete filtering algorithms
are considered.

For non-recursive (FIR) adaptive filters, simplified esti-~
mations of the gradient of the performance function to be
minimized are considered. These algorithms result in reduced
complexity of implementation, improved dynamic operating range
with about the same misadjustment errors and convergence time
as the classic LMS (Lease Means Squared) algorithm. An analy-
sis of the simplified gradient approach is presented and con-
firmed experimentally for the specific example of an adaptive
line enhancer (ALE). The results are used to compare the
simplified gradient approaches with each other and the LMS
algorithm. This comparison is done using a new graphic pre-
sentation of adaptive filter operating characteristics and a
complexity index. This comparison indicates that the simplified
gradient estimators are superior to the LMS algorithm for
filters of equal complexity.

For recursive (IIR) adaptive filters a combined random
and gradient search (RGS) algorithm is proposed, analyzed and
tested. Since for the IIR filter, the performance surface is
multimodal in the feedback parameters and unimodal in the

feedforward parameters, random search is used to adjust the




feedback parameters and gradient search to adjust the feed~
forward parameters. Convergence to the globally optimal
filter parameters is guaranteed for sufficiently long
adaptation time. Convergence time estimation for the RGS
algorithm is derived and supported by simulation results for
the ALE example. Finally, apriori knowledge of the optimal
filter structure is taken into account in the formulation of
an improved version of the basic RGS algorithm. This improve-

ment is confirmed with the ALE example.
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I. INTRODUCTION

1.1. BACKGROUND
In a broad sense the term filter implies an operation

on an input signal or collection of data in order to smooth,
predict, or estimate a desired property hidden in the input.
Fig. 1.1-1 presents the block diagram of a discrete time
linear recursive digital filter. An optimal filter is one
designed to be optimum or best with respect to a performance
criterion that measures or expresses its effectiveness. The
most commonly used approach to optimal filter design is the
linear filter optimized with respect to a Minimum Mean
Squared Error (MMSE), where the error is defined as the
difference between the filter output and a desired signal.

This optimal filter is usually called the Wiener filter.
Filter realization may be for: (a) analog signals and con-
tinuous time, (b) analog signals and discrete time, (c) di-
gital signals and discrete time. This dissertation is
applicable to cases (b) and (c). A basic discussion of
discrete Wiener filters is presented by Nahi [28, Ch 5].
As expected the parameters of the optimal filter depend upon
properties of the input and desired signals. For example,
the Wiener filter solution depends upon the second order

statistics of the input signal and the desired signal.

9
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4 ) X (k-1) x(k=2)
E ‘ Input | -1 _ -1 | i

Output 1

y (k)
Y(z)

y(k-2) z —- z
y(k-1)

z - unit delay
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©Jo

Filter operation:

time domain: y (k) aox(k)+als(k—l)+a2x(k—2)

+ bly(k-l);bzy(k-Z)

2
= I aix(k—i)+ T biy(k-i)
i=0 i=1
z - transform domain: vy @ +alz‘1+azz‘2
. H(z) = X(z) = ° -1 -2

Fig. 1.1-1
Discrete Linear Filter
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The performance surface describes the filter performance
criterion as a function of its weights (parameters, coeffi-
cients-ai, bi’ of Fig. 1.1-1). Each point of the surface
is the value of the performance criterion with specific
weights of the filter. The term performance function will
be used to describe the performance criterion values as
function of time during the adaptation process. The optimal
filter weights are those at the global minimum point of the
performance surface.

In those cases where the information (input statistics)
needed to design an optimal filter is not available, or in
those cases where the filter is required to operate under
statistically nonstationary input signal conditions, the
usual optimal design approach is not applicable. In some of
these cases, a self adaptive filter can be used to overcome
this lack of information. The adaptive filter tries to
adjust its parameters dynamically to variations in the sta-
tistics of the input signal. For the weight adjustment, or
adaptation, the adaptive filter uses an error signal.

Ideally this error is the difference between the filter out-
put and a desired signal. In many applications the desired

signal is not available per se, so that a reference signal,

related to the desired signal in some way, is used to develop
the error signal. Fig. 1.1-2 presents a block diagram of an
adaptive filter with its input, output and reference signals.
The adaptive filter thus includes a signal processing section

which is similar to a non-adaptive filter, except that the

il e i
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filter weights are adjustable and controlled by the second
portion of the adaptive filter-namely the weight adaptation
algorithm. The weight optimization algorithm typically
estimates the gradient of the performance surface and

adjusts the weights in the direction of steepest descent.

For a statistically stationary situation, after some tran-
sient, the adaptive filter can be expected to reach a steady-
state condition at which the parameters jitter around the
minimum point of the performance surface.

The generation of the reference signal is a key consi-
deration in adaptive filter implementation. There are
various practical methods as discussed in [1, 2, 3, 7, 22,
24, 26, 29, 32, 37, 38, 39]. In many of these applications
the reference signal is not identical to the signal we would
like to have as output of the filter because if we had the
desired output we wouldn't need the filter. In spite of

the approximations involved, the adaptive filter is still

SN

able to operate and optimize the weights in many practical
applications.
This dissertation investigates two approaches to effi-

cient adaptive filters. Chapter II discusses simplified

gradient estimation methods fcr non-recursive filters and
Chapter III discusses recursive filters based on a combined

random and gradient search adaptation technique.
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1.2 FIR* ADAPTIVE FILTERS

The FIR filter is the simplest form of digital filter.
The processing operation produces an output which in the
linear sum of weighted delayed input samples. The impulse
response of this filter is given by the sequence of values
of the filter weights. Because of its relative simplicity,
the FIR adaptive filter historically was the starting point
for the development of adaptive filters.

A very important property of this filter is that its
performance surface is quadratic so we have one and only one
minimum, i.e. it is a unimodal surface as shown by Widrow (1].
For a unimodal surface, a gradient minimum seeking algorithm
will converge to the minimum (a formal proof is presented in
(11), and this property is the key to the success of the
Least Mean Squared (LMS) algorithm, discussed later. Inter-
est in the area of adaptive filtering started in the late
50's and early 60's. The most successful approach is Widrow's
LMS algorithm. Widrow in [1] presents the classic LMS algori-
thm and summarizes most of the previous work on the subject.
The LMS algorithm and its basic properties are presented
later. In [3] Widrow et al introduces the concept of noise
cancelling which uses a reference signal that is related only

to the noise to estimate the noise portion of the input. The

# FIR (Finite Impulse Response) and IIR (Infinite Impulse
Response) are generally used by the signal processing community
to denote non-recursive' and recursive. filters respectively
and are so used in this work. It is noted though, that some
recursive filters can have a finite impulse response.
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output is produced by subtracting the noise estimate from
the input signal. In [4] Widrow et al extended the analy-
sis to non-stationary operation of the LMS algorith. 1In
this study they identify two sources for Qisadjustment (a
measure of the distance of the actual steady-state error
from the optimal steady-state error) with nonstationary
input signal. The first is due to gradient estimation

errors (or gradient noise) which also exists with stationary

a inputs. The second cause of misadjustment with a non-

if stationary input is due to the changing statistics, and
results in a lag in updating the filter weights after the
‘? ‘ optimal solution. This analysis gives some insight to the

problem and provides basic design information. In [51]

D h—

Widrow and McCool present a random search FIR filter and
compare it to the LMS algorithm. Using the unimodal pro-
i perty of the FIR filter they modify the random search al-
' gorithm so that high performance function value points

(which in regular random search methods are discarded) con-

tribute to convergence towards the optimum. Their con-
clusion is that the LMS is a better algorithm; it converges
faster and produces less steady-state misadjustment. In

< [6] Widrow et al present versions of the LMS algorithm
that operate on complex data. This concept has recently
become important because of the use of adaptive techniques

. in the frequency domain, Dentino [16] énd Zentner [17].

Lucky, [7], introduces a Minimum Magnitude performance

criterion to derive an adaptive equalizer. Digital

15
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communication systems use equalizers to reduce the inter-
symbol interference in a communication channel. Lucky's
solution involves transmission of a special training se-
quence which is known at the receiver and is used there as
the reference signal. Another interesting point in his
solution is the use of quantized variables in the adaptation
algorithm. ;
Finally Frost [26], Owsley [29], Widrow et al [38],

Griffiths and Jim [41] and many others discuss the use of

the LMS algorithm for adaptive control of sensor beamforming

arrays. We will not discuss these applications in this
dissertation because of their specialized nature. However,
it is noted that the simplified algorithms presented here are
general and may be used to advantage in antenna arrays.

From the references the importance of the LMS algorithm
is very clear. Surprisingly enough, very little was done to
improve the basic algorithm, the emphasis being primarily on
applications of the concept. Gersho [40] discusses adaptation
in a quantized parameter space. Gersho's discussion is of a
general nature, i.e. no specific performance criterion was
assumed, and his main results is that for unimodal performance

surfaces and deterministic gradient (i.e. no need for sto-

chastic gradient estimation), the quantized algorithm will
converge to the neighborhood of the optimal solution.
Noschner [27] is the only published attempt to derive

computationally more efficient versions of the basic LMS

weight adaptation algorithm, and these results have not




been used in practice. Griffiths and Jim in a recent paper

(41] discuss a simplified adaptive system from another point

of view. Their concern is to simplify the signal processing

section in order to achieve high frequency operation. They

propose a 3 level weight quantization, with no multiplica-

tions in the signal processing portion. The resulting

weight adaptation scheme is based on the LMS algorithm, and

it is necessary to store past quantizations. Hence it is

more complicated, but the goal of high frequency operation

is achieved.

Summary of LMS Algorithm

Because of its importance, the LMS adaptive algorithm is

presented here following the basic references [1, 2, 3, 4, 5].

The basic filter output is given by:

N_-1

' a
\ y (k) =12z

. a; (k) x (k-1) (1.2-1)
i i

0

where: k is the time index

Na is the number of filter weights

ai(k) is the ith weight at time k

< x(k) = s(k) + n(k) is the input signal consisting of

desired signal s(k) and additive noise n(k).

We want to minimize the performance function:

I = Ele2 ()} = El{y (k) - s(k)}?]




where: es(k) = y(k) - s(k) is the error
In order to perform the adaptation algorithm we need the

gradient of the performance surface:

= aJ(k) i = - -
Va'_i(k) Ta:- i 0,1,...,Na 1l (1.2-3)

In practice we don't have J(k) since s(k) is not known nor
do we have an ensemble of processes to perform the expecta-
tion operation of (1.2-2). Thus we must use an estimate

of the performance function:

30 = €2 =y - )2 (1.2-4)

where r(k) is a reference signal, not necessarily identical

to s(k).

)

The gradient estimate is given by:

- _ 3J(k) r - -
Yaék) Sai aai Zer(k) aal -
dy (k) _ Wy _
= zer(k)-gzz- = 2¢_(k)x(k-i) (1.2-5)

18
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Using the gradient estimate of (1.2-5), the LMS weights

adaptation are given by:

A

ai(k*l) = ai(k) - My Vai = ai(k) - 2uaer(k)x(k-i)
i = 1,2,00., Na-l (102_6)

where Mg is the adaptation gain controlling the convergence
and steady-state properties of the filter.

Reference [4] assumes a stationary input with uncorre-
lated samples and derives formulas for the stability region,
convergence time, and misadjustment as follows.

Stable convergence of the adaptation algorithm is limited to

values of My given by:

o<y, < I/mLRxX(oﬂ (1.2-7)

where Rxx(m) = E{x(k)x(k-m)} is the autocorrelation function
of the input. Equation (1.2-7) was derived using the mean
of the gradient estimate. So, in practice, in order to be

stable at all times we need

Ma <<l/£NaRxx(°)]‘

19
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The approximate Mean Squared Error (MSE) convergence time

constant is given by

TMSE =lZ[4uaRxx(o)] (1.2-8)

The misadjustment, M, is defined as the ratio of the excess
Mean Squared Error (MSE), due to adaptive filter steady-

state jitter around the optimal solution, to the minimum

MSE:
_ J steady-state -~ J min _ -
M= J min = U N, Ry (0) (1.2-9)
where
Jss = J steady-state = lim J(k)

k » o

= Minimum MSE

J min = Jss [of~the optima1]

filter

The misadjustment estimate (1.2-9) was derived for an ideal
reference signal, r(k) = s(k), and does not apply to cases
of noisy reference.

The derivations in [1, 2, 3, 4, 5] are based upon the
use of eigenvalue eigenvector analysis. To obtain practical

estimation formulas the eigenvalues based equations are

approximated by correlation functions. The analysis presented

20
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in this dissertation makes the approximations at the start
of the derivations and uses correlation functions throughout.
The advantage of this approach is that it provides better

insight into the nature of the approximations.
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1.3 THE IIR* ADAPTIVE FILTER

An IIR filter uses previous output values to compute

the present filter output:

Na—l Nb
y(k) = ¢ a, x (k-i) + % bi y (k-i) (1.3-1)
i=o i=1l

Because of the feedback in (1.3-1) the impulse response may
be infinite and is designated IIR.

Because of inherent savings due to the use of previous
calculated values (the existence of poles in the transfer
function), the IIR filter is the most efficient filtering
scheme for many applications.

Since it uses feedback, the IIR filter can be unstable.
This presents a design problem for the conventional IIR
filter, and a basic requirement foran IIR adaptation algorithm

is to assure that the resulting filter is stable. A second

disadvantage of the IIR adaptive filter is the multimodal

nature of its performance surface as discussed in section 3.1 .
White (8] was the first to suggest the use of IIR struc-
tures for an adaptive filter. He indicates a possible use of
several performance criteria and derives the gradient ex-
pression for the Minimum Mean Squared Error (MMSE) performance

criterion. In [9], Stearns et al presents an all adaptive IIR

* FIR (Finite Impulse Response) and IIR (Infinite Impulse
Response) are generally used by the signal processing community
to denote non-recursive and recursive filters respectively and

are so used in this work. It is noted though, that some
regursive filters can have a finite impulse response.

22




filtér. Stearns' algorithm is rather complex, i.e. the number
of operations (multiplications and additions) is proportional
1 b+a2Nb2, compared to the relative simplicity of

the LMS where the number of operations is proportional to Na'

to a NaN

Stearns' algorithm is discussed later and its gradient esti-

mation method is presented with details.

A; In [10] Feintuch presents a much simpler adaptive IIR
filter which consists of two LMS adaptive sections, one controls
the feedforward weights adaptation and the second controls the

feedback weights adaptation. Feintuch's algorithm gradient

cammm i e

estimation method 1is presented later on in this section.
Feintuch's algorithm works in some cases but, as pointed out

by several investigators [11, 12], the derivation has errors

and the filter, at least in the examples presented in [111],
does not converge to the optimal solution.

In [13] Parikh and Ahmed used the same examples presented
in [11] to demonstrate the convergence properties of Stearns'
algorithm. Reference [13] shows that Stearns' algorithm does
converge to a minimum point, but with a multimodal performance
surface the steady-state might be around a local minimum or the
global minimum depending upon the starting point of the adapta-
tion process. McMurray, [i4], investigates the dependence of

Feintuch's algorithm stability on the values of its adaptation

gains. The region of stable operation turns out to be a tri-
angle in the adaptation gains space. In [15] McMurray inves-~

tigates the convergence time for Feintuch's algorithm IIR

filtering of narrow band signals and compares operation in the




. A

time and frequency domains. In both cases the convergence

time is inversely proportional to the square root of the 1

multiplication of four factors: feedforward adaptation gain,

feedback adaptation gain, number of feedforward weights, and
the number of feedback weights. An additional conclusion was
that the convergence time is shorter for the time domain
operation. Parker and Ko, [18], extend the adaptive IIR
filter for image processing. In [35] Treichler, Larimore
and Johnson modify Feintuch's algorithm by passing the error
term through a FIR filter. This modification allows for con-
vergence to a minimum (not necessarily global), and its use is
limited by the information needed for the design of the error
term filter. The existing IIR adaptive algorithms are based
upon Stearns' and Feintuchjs algorithms which are summarized
briefly in the following.

In order to have a practical adaptation method we use a

performance function estimate:

~

Jo = e 20 = {y(k) - r)}? (1.3-2)

where r(k) is the reference signal and y(k) is given by
(1.3-1) with weights ai(k) and bi(k) being a function of time.

The gradient estimate is given now:

-~ 2 de_ (k)
Va. = 3J (k) = 2¢ __.’g___ - 2€r aa;k) (1.3-3)
1 aai r ai i
the derivitive 3y (k) is not as simple as in (1.2-5) because
i

of the feedback terms such as bjy(khj) present in y(k).
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The final form of the gradient estimates of Stearns' algorithm
are given by:

Ta (0 = 26,00 o (0 i = 0,1, N, (1.3-4)
i
i
i where:
|
| N
| b
o o, (k) = X(k=-1) + £ b_.(k)a, (k~3) (1.3-5)
g 1 j=1 J 1
F f and:
_5 )
Vbi(k) = Zer(k)Bi(k) is= l,2,...,Nb (1.3-6)
;§ 5 . where:
{
Ny
Bi(k) = y(k-i) + I b.(k)B. (k-3) (1.3-7)
j=t 1 *

Equations (1.3-4, 5, 6, 7) are the gradient estimates of
Stearns' algorithm. Feintuch's, [10], algorithm uses only
the first terms in the ex»ressions for ui (1.3-5), and Bi

(1.3-7) and the resulting gradient estimates are:

7. (k)

| ay 2£r(k) X (k-1i) (1.3-8)
4

E Vbi(k) 2¢ (k) ¥y (k-i) (1.3-9)

With both algorithms the weights adaptation is given by:
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ai(k+l)

it
N
P.
z
!
=
<
———
z

i=0,1,...,Na‘l (1.3-10)

bi(k+l) bi(k) =y Vbi(k) i=l,2,...,Nb (1.3-11)

where My and uy are the feedforward and feedback adaptation
gains. These adaptive IIR filtering schemes are not satis-
factory solutions to the IIR filtering problem. Stearn's
algorithm is not satisfactory because cf the following
reasons:
- The instability problem mentioned by Elliott, Jacklin
and Stearns, [25]; this problem is discussed later.
- The algorithm does not assure convergence to the global
minimum.
- It is a complicated algorithm.
The Feintuch algorithm is not satisfactory mainly because, in
some cases it fails to converge to a minimum point, and in
all cases does not assure convergence to the global minimum

of the performance surface.




INTRODUCTION TO ADAPTIVE FIR FILTERS USING SIMPLIFIED
GRADIENT ESTIMATIONS

The LMS algorithm is being used in many adaptive fil-
tering applications [1:6, 16, 17, 22, 24, 26, 29, 32, 34, 37,
38, 39, 41], with satisfactory results. The possibility of
using simplified algorithms, with hardware and time savings,
has not received much attention. Gersho [40], and Moschner
(27], and recently Griffiths and Jim [41] (which discusses a

somewhat different problem of simplifing the signal processing

portion with more complicated adaptation algorithm) appear

f to be the only publications in this area. All applications,
except [41]), seem to select the classical LMS algorithm and
not a simplified version. A possible reason for this fact
might be the lack of confidence in the performance of a
simplified algorithm, compared Qith the many satisfactory
results obtained with the use of the LMS algorithm. This
dissertation will demonstrate analytically, and by extensive
simulation, the advantages and savings associated with the

; use of the simplified algorithms. One natural simplified
algorithm investigated here is the use of a positive or nega-
tive Fixed Step Correction (FSC) in the adaptation, instead
of the LMS correction which is proportional to the value of

the gradient. This gradient estimation is given by:

A

Vesc

(i,k) = Sgn{GLMS(i,k)}=Sgn{e(k)}Sgn{x(k-i)} (1.4-1)




A SNBSS

where:

1if [-1 >0
Sgnl-1 = {
-1 if [+] <o
The second algorithm investigated here is to use a modified
FSC with the step size proportional to the magnitude of the
error. This algorithm is called here the Simplified LMS
(SLMS), Moschner [27] called this the clipped LMS. The SLMS

has the following gradient estimate:

~

VSLMS(i,k) = e.(k) Sgn{x(k-i)} (1.4-2)

Chapter II discusses these algcrithms and presents an analysis
and simulation of adaptive FIR filter operation using these
algorithms.

The optimal Wiener filter depends upon the statistics of
the input signal and the desired signal, the steady-state be-
havior of an adaptive filter depends upon the corresponding
statistics. Since the desired signal is not available for the
adaptive filter, and it uses a reference signal which is only
related to the desired signal, it is obvious that the pro-
perties of this filter differ depending upon the application
and manner in which the reference signal is provided. 1In
Chapter II an adaptive FIR filter is used as an adaptive line
enhancer (ALE) [3, 34, 37, 39) which is a typical signal

processing application and utilizes a noisy reference.




Appendix A describes the simulation details.

The discussion in Chapter II includes for each algorithm
the following topics:

- convergence and stability, section 2.2.

- convergence time (TC), section 2.3.

- steady-state misadjustment (M), section 2.4.

- implementation complexity, section 2.1.

- dynamic range, seciton 2.6.

Sections 2.3 and 2.4 include derivations of estimation
formulas to the convergence time, TC, and misadjustment, M,
of the FSC and SLMS algorithms.

The simulation experiment, described in Appendix A, shows
good agreement to these misadjustment and convergence time
formulas.

Fig. 1.4-1 presents a typical operation of the adaptive
FIR filter with.LMS, FSC, and the SLMS algorithms. This

figure shows a typical weight, a,, and the Mean Squared

1
Error (MSE), as a function of time for the three algorithms
as noted. On each plot we have drawn the optimal value of
the weight or the MSE, an ensemble average of 100 runs as well
as the convergence of an individual filter (single run). In
Fig. 1.4-1 all of the algorithms perform, on the average,
about the same.

For more accurate comparison, a graphic presentation of
adaptive filter properties is introduced in Section 2.1. This
graphic presentation, the Adaptive Filter Operating Charac-

teristic (AT0C) is used to compare equal degree and equal

complexity filters with different algorithms.
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If one looks ahead to Fig. 2.1-1 it is apparent that the

simplified gradient algorithms (FSC and SLMS), when compared
to the LMS algorithm with equal complexity (cost) and equal
convergence time, are more effective and provide more pro-

cessing gain (processing gain is defined later as a measure

of filter effectiveness). %




1.5 INTRODUCTION TO ADAPTIVE IIR FILTERS USING RANDOM
SEARCH TECHNIQUES

Adaptive IIR filters based on gradient methods have one
major disadvantage which is the multimodal structure of the
performance surface as discussed in section 3.1. Thus there
is no inherent way to assure a steepest descent gradient con-
vergence to the global minimum. The convergence problem
and additional disadvantages of Stearns' and Feintuch's
algorithms, as discussed in section 1.3, suggests that gra-
dient methods may not be the best adaptation scheme for the
IIR filter. Thus a different adaptation technique, namely,
random search, is considered here. The basic concept of
random search is discussed in section 3.2.

A random search IIR filter is presented and discussed
in section 3.3. It is concluded there that this scheme is
not satisfactory. The fact that the IIR filter's performance
surface is quadratic in the feedforward weights (Elliott et
al L25J) is the key for the hybrid Random and Gradient
Search (RGS) algorithm developed in section 3.4. This new
algorithm provides for satisfactory operation of an IIR
adaptive filter. Convergence analysis of the RGS algorithm
and convergence time estimation for a typical signal pro-
cessing situations is given in section 3.5.

For cases where information is available on the structure
of the optimal filter, a constrained, or apriori structured
filter algorithm can be implemented. This concept is

discussed in section 3.6 and shows good'resultg. Fig. 1.8-1
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presents the error convergence of four filters - the LMS FIR
filter with 20 weights, a RGS IIR filter, an apriori struc-
ture adaptive pole (ASPOL, section 3.6) IIR filter, and
Feintuch algorithm IIR filter. The IIR filters have two
feedback and three feedforward weights. For this example it
is seen that:
1. The LMS algorithm converges fastest.
2. The RGS converges slower but reaches a lower steady-
state error.
3. The ASPOL converges to the lowest steady-state error,
faster than the RGS.
4., Feintuch algorithm converges to the highest steady-
state error.

These examples are typical.
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Error Convergence For Several Adaptive Filters
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II. ADAPTIVE FIR FILTERS USING SIMPLIFIED
' R STIMATLIONS

2.1 TWO SIMPLIFIED GRADIENT ALGORITHMS
Two simplified gradient algorithms are considered:
(a) The Fixed Step Correction (FSC) adaptation scheme

is given by:

ai(k+l) = ai(k) - uaSgn{e (i, k)} (2.1-1)

This formulation is essentially binary and was motivated by
the general success of bang-bang type controllers. The
adaptation gain My is the size of the fixed correction step.

We define the FSC gradient estimate as:

Vrse (i, k) = Sgn {VLMS(i, k)}=Sgn {e(k)} Sgn {x(k-i)}

(2.1-2)
It should be noted that the sign of the gradient, Sgn {V (i,k)}=
Sgn {x(k-i)} Sgn {e(k)}, is identical for both error magnitude

and mean square error estimates, that is

2
Sgn {31%§¥1L} = Sgn {EisiEl} , so that (2.1-2) can be

a .,
1 1

derived from either error magnitude or mean squared error.

Large correction steps result in fast convergence to the steady-
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state near the optimal filter weights with a large steady-

state jitter around the optimal filter. These contradicting
effects call for engineering compromise in choosing the size

of the correction step Mge

(b) The second approach is to use a variable size

step. A natural possibility is to consider

ng =1 etk ]| (2.1-3)

The combination of (1.2-2), (2.1-1), and (2.1-3) gives:

a; (k+l) = a, (k) -u'le(k)|Sgn {e(k)}sgn{x(k-i)} (2.1-4)

We can use the regular adaptation gain symbol My instead of

p' and write

ai(k+l) = ai(k)-uae(k) Sgn {x(k-i)} (2.1-5)

(2.1-5) is the simplified LMS (SLMS) algorithm with the

gradient estimate given by:

-~

VsLms

(i,k) = e(k) sgn {x(k-i)} (2.1-6)




Typical operation of the LMS, FSC and SLMS algorithms are
presented in Fig. 1l.u4-1.

A useful graphic presentation of adaptive filter proper-

ties is given by a plot of processing gain (PG) as a function

Bt X2

of convergence time (TC). The processing gain measures the

P

filter effectiveness and is defined as: i

R &

PG = 10 IOgERBn(O)/Jss] (2.1-7)

where Rnn(O) is the input noise power and Jss’ defined in 1

(1.2-9), is the output error power.
The convergence time, TC, is the time required to reduce

30% of the initial excess MSE. The value of the performance
function at the time TC is:

J(TC) = Jss + 0.1[0J(0) - Jss] (2.1-8)

. This plot, named the Adaptive Filter Operating Character-
istic (AFOC), can be used for design when the number of filter
weights, Na’ is a parameter. It also provides a method of
comparison for different adaptation schemes. Curves for the
LMS, FSC, and SLMS algorithms are presented in Fig. 2.1-1A

< for the ALE experiment of Appendix A.
< We define the following complexity index (CF) for com- 3

paring adaptation schemes.

CF = &) Nyyr * %2 Napp * ©3 Neow
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where NMUL’ NADD’ NCON are the number of multiplication,

addition and control operations used in one iteration. Ay
Gy, a3 are weighting coefficients representing the cost of
each operation. A reasonable approximation which neglects

control operations is

2.1-10)
CF = a Nyyr, * Napp (

Using the equations for LMS, FSC and SLMS techniques we have
the following complexity indices as a function of the number

of the filter weights, Na

CFLMS = (2N + o + 2N+ 1 (2.1-11)
CFFSC = Naa + 2Na+ 1l (2.1-12)
CFSLMS = (Naf o + 2Naf 1 (2.1-13)

As a reasonable numerical example, using o = 5, we have
approximately equal complexity with MLMS = 8, NFSC = 11,
NerMs = 10. The AFOC comparison for this complexity is
presented in Fig. 2.1-1B and indicates that for a given
convergence time the simplified gradient methods provide

higher processing gain.
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2.2 CONVERGENCE AND STABILITY

In this section we discuss conditions for the convergence
and the stability of the simplified gradient estimates. A
stable adaptive filter is one that converges to a near
optimal steady-state. We now define the convergence ratio,

Ci(k):

t ]
a,(k+l) - a,;
c, (k) = = — (2.2-1)
ai(k) - ay

*
where a; is the optimal value for the weight a;.
Following Widrow et al [1, 3, 4] we define the weight

noise, Vi(k)’ as:

*
Vi(k) = ai(k) - ay (2.2-2)

Combining (2.2-~1) and (2.2-2) gives:
Vs (k+1)

v,
1

From (2.2-2) and (1.2-6) we get:

-

Vi(k+l) = Vi(k) - uazﬁ_(k) (2.2~-4)
Combining (2.2-3) and (2.2-4) we get:
7a, ()
Ci (k) =1 ~ ua m (2.2-5)

The steady state average convergence ratio is defined as:

, Ty (K)
Ci = E{Ci(k)} = l-uaE{W} (2.2-6)

where k is large enough for operation of the filter to be in
steady~-state. From this point we proceed with the specific

case of the SLMS, with its gradient estimate given by (2.1-6).
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The error as function of the weight noise is given from (2.2-2)
and (1.2-4) as:

* a
e (k) = e (k) + i Vj(k) X (k-3j) (2.2-7)

*
where er(k) is the optimal error at time k and is given by:

* a *
€ (k) = z a. X(k-i) - r(k) (2.2-8)
r =0 i

Inserting (2.2-7) to (2.1-6) results in the equation:

~

*

VSLMS(i,k) = er(k) Sgn {X(k-i)} +

vj (k) X(k~-3j) Sgn{x(k-i)} (2.2-9)

Inserting (2.2-9) into (2.2-6) we get:

*
_ € (k) Sgnix(k-i)}
C,=1-u_ ({Ef

i a Vi(kff
Na 1 V. (k)
+ I E {\'/JW * X (k-j) Sgn {x(k-i)}}} (2.2-10)
j=o i

e; (k) is independent of x(k-i) and of Vi(k) so that:
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e:(k) Sgn{x(k-i)}

_ * Sgn{x(k=i)},_ -

vi(K)

because E[e*r(k)] = 0,
To continue with the simplification of (2.2-10) we make the

following assumptions:

(a) Vi(k) and x(k-j) are uncorrelated
} (2.2-12)
(b) E{Vj(k)/vi(k)} =1
Assumption (a) is similar to the uncorrelated input assump-
tion used by Widrow in (1] and seems to be justified by his
results. Assumption (b) is made for mathematical convenience
and can be justified by the dependence of the weight noises
on the common error terms and the uniform statistics of the

input signal over the filter memory.

Using (2.2-1l1) and (2.2-12) in (2.2-10) we get:

C. =1-y T E{x(k-j) sgn [x(k-i)1} (2.2-13)

a .
C, =1~y i E |x(k-3)| (2.2-14)

For stationary input signals E{x(k-j)} = E{x(k)} with all

values of j and we get:
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C, <1 -u,N E|x(] (2.2-15)

For stable operation, as well as for convergence to the

optimal weight values, we require

I, <1 (2.2-16)

Manipulating (2.2-15) and (2.2-16) to obtain the stability

condition for Mg yields for the SIMS algorithm:

2
0 < uSLMS < m' (2.2"17)

To express (2.2-17) as function of the input power, Rxx(o),

we can define the input signal form factor, F,, as:
F, = E[x(0[// EXE(K)) (2.2-18)

Now inserting (2.2-18) in (2.2-17) results in:

0 < ugrys < (2.2-19)

For the LMS algorithm we can use (2.2-6) and the LMS gradient
estimate. Following the above derivation and using the

assumptions of (2.2-12) we get

0 < uLMS < N_-ﬁ D) (2.2-20)
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(2.2-20) is equivalent to equation (32) in [4] which was

derived in a diferent manner but with similar assumptions.

To derive the stability region of the FSC algorithm we
use (2.2-17) and the relationship between the FSC and the
SLMS algorithms, we define an equivalent adaptation

gain, u by the formula

eq’
Hpsc = uqu|€r(k)| (2.2-21)
It is interesting to note that we are now using the deriva-
tion process of Section 2.1 for the SLMS algorithm in a
reverse direction. The case of greatest interest is that of

a low signal to noise ratio. For this case we use the

following approximations:

e (k) = y(k) -s (k+1) -n(k+1) *~n(k+1) *-r(k)
and

Ele (k) [=E[r(k) | = E[x(k) | (2.2-22)

Inserting ueq from (2.2-21) into the SLMS relation, given by

(2.2-17), with the use of (2.2-22) results in the following.
0 < Mpge < 2/Na (2.2-23)

The foregoing relationships (2.2-17), (2.2-20) and (2.2-23),

are based upon average behavior af the algorithms. 1In
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g‘ practice, to avoid numerical overflow, we must use adaptation

3 gain values much smaller than the upper limit indicated in the

5" _ above relations. An additional consideration that also results

{ in a smaller adaptation gain is the misadjustment. For all

the algorithms, the use of the upper bound value for the
adaptation gain results in a misadjustment of the order of the
optimal filter gain (PF), which means that practically we are
restricted to much lower values of the adaptation gain. The

results of this section are included in Table 2.6-1,




2.3 CONVERGENCE TIME ESTIMATION

In order to estimate the convergence time of an adaptive
filter one may visualize the process as changing the weights
with some average step, A, taken in most of the iterations
towards the optimal value of the weight. Assuming an initial
value of zero for all the weights, the longest convergence
time will be associated with weight having the largest abso-
lute value, aax® From the above it is reasonable to assume

the following relationship:

a
TC = q, 22X .y (2.3~-1)

where: Na is the number of filter weights, and ¢y, @, are
unknown coefficients. amax/A is the exact number of steps
needed for convergence if the correction is always in the
right direction. 1In practice the gradient estimation causes
errors in the direction, and the number of iterations re-
quired to converge to the optimal value of the weights is
modified by a factor that depends in some non-linear way on
the number of weights Na‘ This modification is represented

a
in (2.3-1) by the factor a; N 2. Also oy depends on the

1 of the initial error

exact definition of TC (i.e. 10% or e
squared). Filter operation involves a linear combination of
input values. Since the reference amplitude is independent

of Na' when we combine more input samples the relative weight

associated with each sample should be smaller, mathematically:
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a
3 (2.3-2)

In general, Gy depends upon the input signal to noise ratio
as discussed in the literature [3, 33]. This dependency is
not taken into account in the derivations which follow in
order to simplify comparison of the new algorithms with
existing algorithms. The results of reference [37] can be

used to modify the results presented here to include the de-

pendence upon input signal to noise.

When looking at specific applications, such as Adaptive
Line Enhancement (ALE), one can determine the value of ag in

(2.3-2) exactly. Inserting (2.3-2) to (2.3-1) and absorbing
aq into ay, we write:

o
al Naz
AN

a

TC = (2.3-3)
A in (2.3-3) depends on the adaptive scheme. It is the
fixed step size in the FSC algorithm and an average step
size for the LMS and the SLMS algorithms. Thus for these
three cases we define:
(2.3-4)

Apsc = Mpsc

Drus = E{luLMs Vims 11 = 2upye E{|e(k)x(k=-i)|} (2.3-5)

bgims = E{IuSLmé%LMé}mSLMSE{[dk)Sgn x(k-1)}|}  (2.3-6)
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Using (2.3-3) and (2.3-4) and the empirical coefficients a, =
1.65 o, = 1/2 as evaluated using the simulations described in
Appendix A, we get the following FSC convergence time to 10%

of the initial squared error:

TC :_l_’§_5__ (2.3=7)

“Fsc’w;

where TC is the time required to reduce the error to 10% as
defined by (2.1-8). Fig. 2.3-1 presents a verification of
(2.3-7) using simulation results with several values of Hrge?
N,» and the input power Rxx(O)'

The significance of these results is that they confirm
that the convergence time is inversely proportional to the
adaptation gain and the square root of the number of weights.

Assuming in (2.3-5) that

E{|le (k)| |x(k-i)|} = E|le(k) |- Elx(k-i)| we get:

A Ele(k)| E|x(k=-i)| (2.3-8)

ws = PMrus

At the start of the adaptation process the initial weights
have a value of zero, so that y(0) = 0 and €(0) = r(0). For

the correlated reference case the reference power is essen-

tially the same as the input power and we have:
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Arms = Mims

Elx(k)| * E|x(k)] (2.3-10)

Using expression (2.3-10) for the LMS average step size in

(2.3-3) with a, = 1/2 we have

a
TC, | = LMS (2.3-11)

ms 2
uLMS(EIx(k)“ Vﬁa

In [4] the classical LMS convergence time estimate is given
by:
ST 0 (2.3-12)

LMS JVULMS Rxx(d)

Based on the simulation described in appendix A we select

drms = .555.

Fig. 2.3-2 presents a comparison of simulation results
with the classical convergence time formula, (2.3-12), and
the new convergence time formula, (2.3-~11l). This figure
indicates clearly that the convergence time depends upon the
number of weights, Na’ as developed in (2.3-11), and that
this formulation is more accurate than that of (3.2-12) which
was developed in reference [4]. In a similar way (2.3-6) and

(2.3-3) gives

TC

a
SLMS | (2.3-13)

SLMS ~ AN E[x(k) |

HsLMs
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Fig. 2.3-3 presents a comparison of (2.3-13) with simula- p
2

tion results, with GoiMs T 1.4, based upon the results of i

simulations described in Appendix A. The comparison confirms

(2.3-13). The key formulas of this section are included in

Table 2.6~1,
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2.4 STEADY STATE ERROR AND MISADJUSTMENT

In order to evaluate the steady-state error we start with

general relationships. First following [1, 4, 3] we define the

weight noise vi(k) as:

*
vi(k) = ai(k) -a; (2.4~1)

-

® . .
where a. is the optimal ith weight.

e e e e e e T e e e e

N, N -1 N -1
.,;.' a a *
y(k) = I ai(k) x(k-i) = a. x(k-i)
i=0 i=0 1
Lo 1l
: 1 Na-
| * L v, (k) x(k-i) (2.4-2)
i=0
Define
1 Na-l
g(k) = y(k)- s(k) = = a;(k) x(k-1) - s(k)
i=o
N -1
a
+ I v, (k) x(k-i) 2.4-3
i=0 % ( )

i ’ We can now define the optimal instantaneous error:

N_ -1
*
es(k) =

i

a: x(k-i) - s(k) (2.4~4)

i=o 1

Using this value the minimum mean squared error is:
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_ * 2 . .
Jnin = B {es(k) }, with k in the steady state. (2.4-5)

From (2.4-3) and (2.4-4) it follows that:
Jeg = J(k)| k in the steady state

N_-1
*
= E{{ss(k) +

IR e )

v, (k) x(k-1)}2)

i=0

2 N_-1
* a
= Ble, ()} + E{2 I

o v, (k) e;(k) % (k-1i) }

v. (k) vi2 (k)x(k—il)x(k-iz)}
(2.4-6)

The foregoing assumes:

(a) The expectation of vi(k) x(k=-i) is factorable.

_ 2 .
( 1l i=3
where §;. =
3 0 i#3j

Assumptions (a) and (b) appear to be well justified in the
case of a correlated reference signal, as confirmed by the
agreement obtained between the derived formulas and the

simulation results.




The second term of (2.4-6) can be factored:

(v, (k) e;(k) x(k-i)} = E{v, (k) }- E{s;(k)-x(k-i)} (2.4-7)

*
However, E{es(k) x(k=1i)} 0 (because of the orthogonality of

the optimal solution) so that the second term is zero and

(2.4-6), using assumptions {(a) and (b), becomes:

Na=t . .
JSS = Jmin + I v® E{x(k~-i) x(k-i)}
i=0
= 7 2 -
qmin + Nav RXx(o) (2.4-8)

- _ 2
Je = Jgg = Jpsn = Nav™ R__(0) (2.4-9)
and the Misadjustment as:
I HuvlR__(0)
M=8 - XX (2.4-10)
J_ . J_. *
min min

the foregoing depends upon Jm ' Na,;7 , and Rxx(O). R__(0)

XX

depends upon the statistics of the input. Jmin depends upon

the input statistics as well as Na. However, ;7 depends upon

in

the nature of the specific algorithm and will now be considered

for the SLMS and FSC algorithms.
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From (2.4-1) and (1.2-6) we have:

vi(k+1) = vi(k) - uaV;;k) (2.4-11)
Squaring both sides we get:
2 _ 2 2 52 _ o _
A (k+1) = vy (k) + My Vai (k) Zuavi(k) Vai(k) (2.4-12)
For the SLMS algorithm:
vi(k) jaék) = Vi(k) e (k) sgn {x(k-1)} =
Na-l
%*
=v.(k{e (k) + T wv,(k)x(k-j)} Sgn {x(k-i)} (2.4-13)
i r 3=0 j
where
er(k) = y(k) - r(k) (2.4~14)
and
N_-1
* a *
e_(k) = b a, x(k-i) - r(k) (2.4-15)
r 1=0 i

*
er(k) and er(k) depend on the reference signal r(k), and in
many cases, including the correlated reference case, those
*
errors and the previously defined es(k) and es(k) have

completely different statistics.

At




*
vi(k) and x(k~i) are independent of er(k) so we have:

E {vi(k)e:(k) Sgn {x(k-i)}} =

E {e,(k)} + Elv, (k) Sgn {x(k-i)}} =0 (2.4-16)

we get:
R Na-l .
E{v (k) V. (k)} = I E{v,(k)v, (k)x(k~j)Sgn{x(k-i)}}
i a; =0 i 3
(2.4-17)

Using assumptions (a) and (b) in (2.4-17) we have:

Elv, (07, (k) = v° E|x (k) | (2.4-18)

1

taking the expectation of (2.4-12) in the steady state and

using (2.4~18) we have:

atvﬁ(k+1)]=z£v§(k)] + uiE{ez(k)Sgnz[x(k-i)]}

- Zu;;r Elx(k) ]

(2.4~-19)
In the steady state E[vi(k+l)] = E[vi(k)] and
2
from (2.4-19) we can express v° as:
-3 uaE'[si(k)] :
ve = (2.4-20)

2 Elx(k)|
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Now we can insert (2.4-20) to (2.4-10) and get:

2
u N._ELe (k)] R__(0)
M=-22_ I xx (2.4-21)

23 ;. Elx(k]

E[ég(k)] depends upon the type of reference used. For the

correlated reference we have:

er(k) = y(k) = r(k) = y(k) ~ [s(k+1l) + n(k+1)] (2.4-22)

By squaring and taking the expectation of (2.4-22) we get:

Ele2(k)] = E{ly () - s(k+1)1%} + Eln® (k+D)]

- 2E {y(k) n(k+l) - s(k+l) n(k+1)}  (2.4-23)

In the third term of (2.4-23), n{k+l) is independent of s(k+l),
and the present output y(k) is independent of the future noise
n(k+l), so this term's expectation is zero. Because of the
correlation of s(k+l) and s(k), which is a basic requirement

for the use of the correlated reference, the first term of

(2.4-23) will be:

E{ly (k) -s (k+1) 1%} = E{ly(k)-s (k) 1%}= Elel () 1= 3
(2.4-24)
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For stationary noise we have

R_(0) = E[n° (k)] = Eln® (k+1)] (2.4-25)

Using (2.4-24) and (2.4-25) and the above reasoning about the

3rd term, (2.4-23) becomes:

2 = -
E [er(k)] = Jss + Rnn(O) (2.4-26)

For reasonable processing gain Jss<<Rnn(0) and
E (201 = R_(0) (2.4-27)
The optimal processing factor (PF) of a filter is defines as:
PF = T (2.4-28)

PF express the optimal noise reduction possible by an optimal
filter of order Na' PF depends upon Na and the signal sta-
tistics, and does not depend upon the adaptatior algorithm
and the adaptation gain.

Inserting (2.4-27) into (2.4-21) we get:

uaNaRnn(O) R, (0)

X (2.4-29)
Z ETx ()] Jmin

M=

Using definition (2.4-28) in (2.4-29) we get:
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TExKT]  FF (2.4-30)

Fig. 2.4-1 presents a verification of (2,4-30), using simula-
tion results with several values of Moimge Ny» and the input
power Rxx(O)‘

Equation (2.4-30) was derived for the SLMS algorithm. To
derive an equivalent expression for the FSC algorithm, we use
(2.4-30) and the relationship between the FSC and the SLMS
algorithms given by (2.2-21). The case of greatest interest
1s that of a low signal to noise ratio, for this case we can
use the approximation given by (2.2-22). Inserting Meq from
(2.2-21) into the SLMS relation, given by (2.4-30), with the

use of (2,.2-22), results in the following:

W N_R__(0)
M= ESCa xx — PF (2.4-31)
2[E[{x(k)]]

Equation (2.4-31) provides an estimate of the misadjustment
of the FSC algorithm and Pig; 2.4-2 illustrates it's agree-
ment with the simulations. It should be noted that because
of the approximation of (2.4-31), the accuracy of (2.2-22), and
the accuracy of (2.4-31) should improve for lower signal to

noise ratios.
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2.5 DESIGM CONSIDERATIONS

The design problem of a FIR adaptive filter involves the

following major points:

(a) Selection of an algorithm: LMS, FSC, SLMS.

(b) Determination of the order of the filter, N,.

(c) Determination of the adaptation gain, Mo
The discussion which follows does not consider the following
points:

(a) A possible IIR filter solution.

(b) Implementation details.

(c) Minimization of a given design critéria, such

as: cost, volume, weight ... etc.

The adaotive filter is usually part of a larger system which
sets its design requirements. The adaptive filter specifica-
tions that we consider here are: a desired processing gain
and an upper limit to the convergence time. The additional
information required for the design is some specification of
the expected input signal to the adaptive filter. Realizing
that a complete analysis of adaptive filter behavior is not
possible for complicated signals, we consider a design proce-
dure based upon simulation and a graphic presentation of the
adaptive filter properties, the adaptive filter operating

characteristic (AFOC) as defined in section 2.1l. As an

. example, we considered enhancement of a single sine wave of

unknown frequency with a signal to white noise ratio of 0 dB.
The desired processing gain is 8 dB and the allowed convergence

time is 100 iterations.
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Table 2.5-1 outlines the suggested design procedure and
presents the application of this procedure to the foregoing
example. Since we do not specify implementation details,
step (6) of the procedure cannot be carried out for the

example. Hence the example is done for the SLMS algorithm

only.
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Table 2.5-1

FIR Adaptive Filter Design Procedure

value for the adaptation
gain.

Step Description Example |
1 Define a test signal (or Sine wave plus whit
Test several test signals) for noise with signal t
Signal which the filter performance noise ratio of 0 d4B.
Selectionjwill be evaluated. The dyna-

mic range of the input signal

should be considered at this

point, and might influence

the selection of the test

signals. The test signal

might be average, worst case,

or several typical signals.
2 Use simulation to generate an | Fig. 2.5-1
Simula- Adaptive Filter Operating
tion Characteristic (AFOC) with

N_ as a parameter for the

» FSC, SLMS algorithms

for each of the test signals

selected in step 1.
3 For each of the algorithms In Fig. 2.5-1 we
Determin-j draw, on the AFOC plots, select N_=14
ation of J lines for the desired pro- a
N_ for cessing gain and conver-
e3ch gence time. For each al-
test gorithm select the small-
signal est number of weights that

meets the requirements.

At this point the designer

might consider trade-off

in N_, PG, TC.

a

4 Since each curve on the Fig. 2.5-2 we select
Determin-} AFOC is constructed for u_=.004.
ation of | several values of u_, one a
u_ for can use this data afld the
efch values of N_, TC and PG
test selected in“step 3 to
signal determine the appropriate
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Table 2.5-1 continuted
Step Description Example J
5 Using the information from all] Fig. 2.5-3 we have
Select the test signals we nged to:, } PG=7.9 4B, TC=11l4.
optimal (1) Select a single N_ and u This performance is
para- for each algorithm. a a marginal and a
meters (2) For the three algorithms higher order filter
for each jevaluate the performance with ] should be considere
algorithmlthis N*, u* for each test

signal?

(3) Determine for the LMS and

SLMS algorithms whether ad-

justment for dynamic range is

required.
6 At this noint in order to
Selection]complete the specification of
of the filter the designer can
algorithm] compare the resulting com-

plexity of the three candi-

dates and select the best one.

The decision depends upon

implementation details.
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2.6 CONCLUSION

The simplified gradient estimation algorithms, FSC and
SLMS, have processing gain and convergence time similar to
the classical LMS algorithm as shown in section 2.l1. This
similarity of performance has been confirmed when all the
filters which were compared have the same order, Na' Thus,
when one considers the implementation savings of the simpli-
fied algorithms, the comparison favors the simplified ver-
sions.

Analytical comparison of the/algorithms is possible using
the results in sections 2.2, 2.3, and 2.4, which were developed
for the adaptive line enhancer.

A summary of these properties is presented in Table 2.6-1
and compared with the LMS algorithm properties taken from
[4].

Since E|x(k)|= k /ﬁ;;(O), it is clear from Table 2.6-1
that the dynamic range of the FSC algorithm is the best,
because M and TC are not functions of RXx(O)' The LMS
algorithm has the poorest dynamic range, since M and TC
depend on Rxx(O)' The SLMS algorithm is in the middle
since M and TC depend on the square root of RXx(o)‘ Fiqg.
2.6-1 presents the dynamic range properties of these
algorithms. Finally a sistematic approach to efficient

adaptive filter design has "“een outlined.
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Table 2.6-1

Summary of Algorithms Properties
Derived for ALE Example

Misadjustment-M

Convergence Time-TC

Stability Limit

[u_.N_R__(0) IPF

a a Xx

(see note 2)

1nl0
4uaRxx305
(Eq. 2.3-12,
see note 1)

l/ENaRxx(O)]

(Eq. 2.2-20)

uaNaRxx(o)
2(Elx(Xx)])
(Eq. 2.4-31)

3 JpF

1.65
u_vN
a a
(Eq. 2.3-7)

2/Na

(Eq. 2.2-23)

uaNaRXX

Eix

(Eq. 2.4~30)

(0)
JpF

1.4
Mg NaElx(k)I
Eq. 2.3=14 , with
SLMS = 1.4)

(
a

2/In0 E|x(k)]|]

(Eq. 2.2-17)

Notes:

(1)

A new LMS convergence time estimate, using (2.3-11l) with

aLMs = ,555, is given by:

rc = —0:555

o

W(E|x (k) |7 A

MRy, (0) ;’Sl—a'_

The LMS relationship taken from [4] with modification

for the ALE example.

the derivation of (2.4-30).

This modification is similar to
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III. RANDOM SEARCH IIR ADAPTIVE FILTERS

3.1 IIR PERFORMANCE SURFACE

The performance surface of the IIR filter is much more
complicated than the FIR performance surface because of the
feedback of previous output Qalues used to form the present
output.

Consider the filter:
Na—l Nb
y(k) = I a.x(k=1i) + I b, y(k=-1i) (3.1-1)
i=0 1 i=1 %

and the error es(k) = y(k) - s(k); . The MSE performance

surface is given by:

N_ -1
- 2 _ a .
J({ai}, {bi}) = E[es(k)] = E{[ iio aix(k-l)
Ny,
2
+ I byy(k-i) - s(k)1°} (3.1-2)
i=1 :

In (3.1-2) k is large enough for operation of the filter to
be in steady-state.

Manipulating (3.1-2) we get:
N.-1N -1

a
J({ai}, {bi}) = i a; a; R (i=3) (3.1-3)

J XX

b Np Yy
. . i-j) + R 0)=-2Z b. R j
b1 bJ Ryy(l j) ss( ) ) j SY(J)

a
z . b. R i-j)y=-2 ¢
.z a; by R, (i-3) L




RN §

where the correlation functions are:

R, (M = Elx(k) x(k-m)]
Ryy(m) = Ely (k) y(k-m)]
R_ (m} = Els(k) x(k-m)]
Rsy(m) = Els(k) y(k-m)]
ny(m) = Elx(k) y(k-m)]
R, (0) = Els(k) s(k)]

Equation (3.1-3) appears to be quadratic in the weights, but
actually Ryy(m)' ny(m) and Rsy(m) also depend on the weights.
The dependence of the performance surface (3.1-3) on the
weights is of high order, and the surface has several minima,
only one of which is the global minimum. To demonstrate the
complexity of this performance surface consider the simple

filter:
y(k) = ax(k) + bv(k-1l) (3.1-4)

One can recursively insert successive expressions for y(k-i).

Thus:
y(k) = ax(k) + bl[ax(k-1l) + blax(k=-2) + b[ax(k=3) + .-«

(3.1-5)
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or in a compact form:

k.
y(k) =a I b' x(k-i) (3.1-6)
i=0
J(a,b) = E{ly(k)-s(k)I?}
Kk -
=a’ I $ b'bd Elx(k-i)x(k-3)]
i=0 3j=0
2 ko3
+ EB[s“(kx)] - 2 a I b Elx(k-i) s (k)]
i=0
k k .
.2 i+j ‘e
='a iio jio b Rxx(J i) + RSS(O)
K i
- 2a iio b* R_ (1) (3.1-7)

Since Rxx(m) and Rsx(m) do not depend on the values of the
weights a,b the degree of the performance surface given by
(3.1-7) is already 2k for b and quadratic in a. When the
filter operates for a long time, k + » and (3.1-7) is an
infinite sum and an infinite degree polynomial.

Elliott, Jacklin and Stearns, [25], presents an expres-
sion for the performance surface which is derived for the
general case, with Na forward weights and Nb backwards weights,
this expression is similar to (3.1-7).

The general case also has quadratic depencence on the a's
Thus the

and infinite polynomial dependence on the b's.

use of gradient search methods to optimize multimodal

performance surface can be expected to result in a steady




state around one of the minima point which is not necessarily
the desired global minimum. The steady-state ;inimum point
depends upon the initialization of the adaptive filter. This
behavior has been demonstrated for the Stearns' algorithm

by Parikh and Ahmed. [13]




3.2 THE RANDOM SEARCH CONCEPT

A random search method consists of evaluation of esti-
mates of the performance surface at discrete sets of the
filter weights. After evaluation of these performance surface
estimates, a comparison is made and a minimum point is
selected.

The method of selection of filter weights for which the
performance surface estimate is to be evaluated, is very
important. In order to have a useful adaptation scheme for
non-stationary input signals a continuous search method is
needed, in contrast to possible two phase method that has a
global search phase and then fine tuning. From the several
methods in the literature [19, 20, 21, 23, 30, 31, 33, 36]
the needed continuity of operation is provided by the moving
center method.

The center is the point in the parameter space {Wi} with
the lowest estimate of the performance function among the
points that have been tested so far. The set of filter
weights (or in general, system parameters) to be tested, at
the %2th random search interval, {%i}z' is given by:

~

= W,

1,0t hg for all i (3.2-1)

i,2
where:

i is the parameter index

{wi}l is the value of the center at the 2th random search

interval, Wi 2 is its ith element
’




g is a number independently generated for each weight from

a gaussian random number generator, with zero mean and
unity variance
u>0 determines the range covered by one step of the search
and is taken to be the same for all weights which need

not be the case

-~

3 is a set of randomly selected parameter values

around the center point ﬁwi}z, during the f2th random

search evaluation interval. Wi 2 is its ith element.
14

The test point (the set {wi}l) is tested; that is the

value of the performance surface, Jl’ is estimated as Jz, and

compared to the current center estimated value, Jz.

If Jz-f J, , a new pointﬁin parameter space is selected

L
using equation (3.2-1). 1If Ji < Jz the test point corresponds !

to a lower performance surface value estimate, and the center

~

moves to a new location; that is we set Wi,2+l = wi,£ for all §
i. Now (3.2-1) is used again to evaluate another point to be
tested.

Fig. 3.2-1 presents a two parameter example of a moving
center random search process, It should be noted that 32 and
32 are only an estimate of the performance surface points Jz

~

and Jl because the latter properly involves averaging over an

infinite ensemble.

In order to use the random search method in adaptive
filters we need to specify the performance function and to
define some estimate of that function. Since we are comparing

the performance function and not evaluating it's gradient one
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can select a complex non-analytic performance function. This
possibility might be used to great advantage. However, in
the following discussion we use the standard criteria of
minimum mean squared error.

To evaluate an estimate to the performance surface we
use two filters in parallel. One uses a set of weights that
are the current center, so that this filter produces the
output, y{(k). The second set of filter weights correspond
to a test point in the weight space. The filter output at
the test point, ;(k), is used only during the adaptation
process.

The performance surface estimates are a time average, which
is the only reascnable estimate of the ensemble average that

we can calculate on line, and are given by:

R-1

3, = j.E.o [y (k~3) - r(k-3)1° (3,2-2)
< R-1 - 5

where R is the number of input samples used to estimate the
performance function for a given random search interval.

We have two types of iterations. First filter iterations
which process each new input sample with a fix set of filter
weights and produce the outputs y(k) and ;(k). The second
type of iteration involves the random search selection of a

new set of filter parameters which occurs after R filter
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iterations. For each random search interval a new set of
parameters is selected and tested. Fig. 3.2~2 presents the
relationship of filter iterations to the random search in-
terval.

Fig. 3.2-3 presents a flow chart of the basic random

search adaptive filter algorithm,
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3.3 OPERATION OF THE RANDOM SEARCH ALGORITHM
We now use the random search algorithm presented in
Fig. 3.2-3 to implement an adaptive IIR filter. The filter

operation is given by:

Na—l Nb
y(k) = z ai(k)X(k-i) + I bi(k)y(k-i) (3.3-1)
i=0 i=1

The weights {ai(k)} and'{bi(k)} are functions of time and
their variation is controlled by the algorithm of Fig. 3.2-3
and equation (3.2-1).

Details of the simulation are given in Appendix A.

Fig. 3.3-1 presents the operation of a random search IIR
filter with Na=3’ Nb=2, ua=.01, ub=.1.

We now discuss these results starting with some basic
filtering considerations.

The poles and zeros of a filter should be located so that the
desired spectral components pass through the filter and the
unwanted components are rejected.

For an adaptive filter we also need to match the filter
output amplitude to the reference signal amplitude, that is
there is a gain factor which must be adjusted accurately in
the adaptive filter.

The filter (3.1-1) has the following transfer function

M,

) (z-q,)

H(z) = a 1;1 1 (3.3-2)
n% (z-p;)

i=1
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where:
q; are the filter zeros. There are Mz zZeros.
p; are the filter poles. There are Mp poles.

The parameter a, controls the gain of the filter. For the

adaptive filter we can't use the concept of transfer func-
tion because the filter weights are time varying. However
we can consider an average steady state transfer function ‘
with weights that are the mean of the time varying weights.

Thus a, is required to match the filter maximum output magni-

-:tude to she reference amplitude.: In order to enhance a desired ]

spectral component the filter should have a pole (or poles)

near the spectral component, close to the unit circle. The

effect of this pole on a signal at the same frequency would

be to multiply its amplitude by a gain factor of (1/1-p)
where p is the pole's magnitude. Thus the output of the
filter at the pole frequency is given by ao/(1~p) times the
magnitude of the input signal multiplied by a factor which

depends upon the location of  the other poles and zeros. If

this output magnitude is to be equal to the reference signal

amplitude,ao/(l-p) must have a specific accurate value
because all the other factors that determine the output
amplitude (namely the location of the other pales and the zeros)

have only one optimal value, and thus for the steady-state

near optimal filter are fixed,
For good selectivity p is only a little smaller than

unity, andab/(l—p) is the ratio of two very small numbers.

It is difficult to achieve accuracy for this ratio with




random search adaptation on the forward weights (the a's)
and the backwards weights (the b's or the poles).

As a result of the mismatch of filter output and refer-
ence signal amplitudes, decision mistakes occur wgen com-

N ~

paring the performance function estimates, Jk >, JL' with
the result that a bad set of weights is sometimes chosen.
These decision mistakes cause slower_-convergence and smaller
value of the steady-state p- (which means lower processing
gain), and possible instability. This type of behavior was
experienced in our simulation. One solution that we tried
was to use smaller variance for the search on the feed-
forward weights. This approach turned out to be inferior

to a new approach (which is presented in the next section)

based on the use of gradient search on the feedforward

weights and random search on the feedback weights.
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3.4 RANDOM AND GRADIENT SEARCH (RGS)

The fact that the IIR filter's performance surface is
a quadratic function of the feedforward weights, as dis-
cussed in section 3.1, means that for non-varying feedback
weights the performance surface with respect to the a's is
unimodal. A unimodal surface may be handled best using a
gradient method, and it is possible to achieve any desired
accuracy to overcome the problem of the purely random
search scheme discussed in section 3.3.

Widrow and McCool [5], have compared a random search

! technique for a FIR filter with the LMS algorithm. The

! random search technique used was tailored to the unimodal
| situation and, nonetheless, resulted in inferior perfor-
é mance compared with the LMS steepest decent gradient search.
i - The question is how to make the feedback weights con-
verge first, so that the feadforward weights would then
: converge to the global minimum.

The cascaded arrangement, as shown in Fig. 3.4-1 is
suggested. The all pole section comes first, and is
adaptively controlled by a random search algorithm. A
second all zeros section is then adaptively controlled by a
gradient algorithm to produce, with suitable values of the
N adaptation gains, the desired effect of pole convergence

followed by zero convergence,
The optimal values of the adaptation gains is a com-

promise of two contradicting considerations. The first factor

is the requirement that the poles converge faster, and calls
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for low L The second factor is a desire to maintain enough
randomness in the weight adaptation process so that we have

a reasonable probability of transition from a local minimum
zone to the global minimum zone., The effect of the later
factor depends upon the specific shape of the performance
surface.

The internal signal ¢ (k) has, at least during the pole
convergence, non-stationary characteristics. In particular,
the magnitude variations of ¢(k) are important to the
adaptation cperation in the all zero section. As discussed
in section 2.6 the FSC algorithm has no dynamic range limita-
tions so that it is ideally suited for the RGS algorithm.

The RGS algorithm is presented in three ways: Fig. 3.4-2
presents its flow diagram, Fig. 3.4-3 presents its block
diagram, and Appendix B is a FORTRAN realization of the RGS
algorithm. Fig. 3.4-4 presents typical operation of this
algorithm and shows the convergence and steady-state operation
of the filter. Some further analysis and more simulation

results are included in the next section.
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é‘ 3.5 CONVERGENCE OF THE RGS IIR FILTER

Convergence of the RGS IIR filter is composed of two
processes: the random search on the feedback weights, and
ﬁ the gradient search on the feedforward weights. These

processes are coupled through the cascade structure of the

filter, the common error expression and the dependency of
the feedforward weights on the poles magnitude, as dis-
cussed in section 3.2. 1In order to analyze this situation

we first assume independent operation and analyze each of

! the sections separately. We then combine the convergence
time estimates with a correction factor to account for the
fact that both processes converge simultanously.

Consider first the analysis of the random search algor-
ithm used in the RGS IIR filter in a general environment.
In the simple case of single parameter, W, define the

; convergence zone:

; jw, = w | < aw (3.5-1)

where:

Wz is the parameter, W, at the f£th random search
interval. W* is the optimal value of W (the global mini-
l mum of the performance surface)
| AW>0 is the limits of the convergence zone around W*.

A test point is selected by:

We=W, +ug (3.5-2)
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where:

~

W, is the test point in the random search's &th interval.
H>0 is convergence control parameter adaptation gain.

g is a number generated by N(1,0) random number generator.

The probability density function of wz given W, is:
exp(- 57 ] (3.5-3)
M

ip(Wz/Wl) =

2T

and the probability of selecting a test point in the conver-
gence zone is:

*
W +AW -

~ * ~
P, = prtlw -w| < AW/W, 1 = P(W,/W,)dW, (3.5-4)

*

W -AW

Fig. 3.5-1 illustrates the situation and the probabilities

defined above.

Selecting a correct value for %2 is not enough. After the
testing of this point we need a correct decision that the
Eested point is better than Wz. Thus we have the estimates
Sz and 32, and the selection of the correct weigh* depends
upon their comparison. The probability of a correct decision

-~

depends upon the values of J, and Jl,their difference, and the

L
estimation parameters, mainly R. To simplify the analysis we
define PCD(l) as the probability of a correct decision given
Wl, averaged over all possible values of %2.

We can write the probability of convergence to the con-

vergence zone (3.5-1), 91+1 at the (2+1) random search interval,

given Wz, as:
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correct deCigion] -
Op41 = Pr[the convergenc& zone r namely W“_l=W2

selection of W, in  y.p [

= pz . PcD(l) (3.5=-5)
The probability, Qz, that the process does not converge in
the first 2 iterations is given by:
no ggnv§r ence no cenv. in
= in e ls o
Ql Pr [R.S. interval ] Pr [sec. inter.]
no conv. in L
P Loth inter. 1 ° 121 [1-81] (3.5-6)
The probability, PQ, that the process does converge in the
first & iterations is given by:
_ L
Pz = 1~Q2 =1 - iEl [(1-651 (3.5-7)

So far we have discussed the single parameter case. It is

now convenient to introduce the general case, namely M

parameters. We can define the multidimensional convergence

) . zone as given by:

*
:. HW, ~w || < aw (3.5-8)




where:
W, is a vector of M parameters, W, i=1,...,M.
pad } i,2
* *
W is a vector of optimal values, Wi i=l,...,M.
AW is a vector of deviations from the optimal values of

the parameters defining the convergence zone.
| || is a norm defined on the parameter space.

The multidimensional version of (3.5-2) is given by:

+ uG (3.5-9)

where:

G is a vector of M independent random numbers each of

which is N(1,0).
Because of the independence of the parameters a multi-

dimensional version of (3.5-4) is given by:
b, = it Pi,z (3.5-10)

where Pi % is the single parameter probability given by
’
3.5-4.
The probability of convergence to the convergence zone at

the 1+l iteration given W, is given by:

-y - (3.5-11)
80e1 = Yy * Pepl¥)
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.Equations (3.5-6) and (3.5-7) remain the same for the multi-
parameter case., An essential property of any optimization
algorithm is it's ability to converge to the optimum. We
will now prove that the random search algorithm used in the
RGS filter, converges to the convergence zone defined in
(3.5-8). To observe this point we examine equation (3.5-7).

Since (l-ei) is a number always less than 1, the multiplication

2
I (l-ei) becomes smaller as % increases. Thus
i=1
A
Pw=lim Pz = 1-1im { I [1-ei]} = 1-0 =1 (3.5-12)
Lr ] i=1

P, = 1 means that after enough time the process converger to
the ccnvergence zone of the global minimum; that is, conver-
gence with probability 1. Equation (3.5-12) does not provide
quantitative information, namely an estimate of the convergence
time. This problem is treated later in this section.

Fig. 3.5-2 presents the results of a parameter identifica-
tion experiment, the details of which are presented in Appendix
A. This example was taken from reference [11] where it was
used to demonstrate how Feintuch's algorithm converges to a
point on the performance surface which is not a minimum. Ref.
(13] uses the same example to demonstrate how Stearns' algori-
thm converges to either a local or global minima depending

upon the initialization point. Our results show that the RGS

IIR filter converges to the dlobal minimum even when started
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in a local minimum point. Fig. 3.5-2 presents two experiments
with typical convergence.
The adaptation of a random search process has two types
of parameter changes, or steps:
- zone transitions -~ where after the movement, the
center is near a new minimum
- small steps - where after the movement, the center is
near the same minimum.
Fig. 3.5-3 illustrates the two step types. 1In signal filtering
it turns out that the performance surface values at the local
minima are typically much higher than at the global minimum,
as shown in Fig. 3.5-4. This difference in the performance
surface value means that the random search process, when
comparing vaiues of the performance surface estimations,
is insensitive to the local minima. 1In terms of step types,
we neglect the analytically complex zone transition steps
and analyze the situation typical of signal processing
applications, assuming convergence with small steps only.

We can define, for the general case of equation (3.5-9),

the average step size, Sav’ as:

Sav = BV p41 7 Wy, 0 (3.5733)
where: W; .., and W;, g are the ith component of W, , and
W, respectively.

Using (3.5-2) as the equation for each component of (3.5-9)

we have -~

1,0 - Wi, g = ng (3.5-14)
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Since in small step convergence the direction of convergence

is always in the same direction towards W*, on the average
only half of the test point are accepted, that is those
where ug>0 (or those with ug<0). This assumes no decision
errors when comparing two points. Using the above reasoning,

from (3.5-13) and the definition of g=N(1,0) we get:

=

P>

Sgy =/ W9 PlQ) dg = u S I .-g%2 9= (3.5-15)

o o /2w m

The above analysis ignores the coupling of the M parameters
through the common error expression. At any interval one
of the parameters is dominant, that is it contributes to the
error term more than the others. As a result the correction
of the value of this parameter dominates even though the
changes in the values of the other parameters may be in the
wrong direction.

Practically the value of a parameter can be expected to
jitter around some value until this parameter becomes the
dominant one. Then it's value would be corrected (and other
parameters would jitter). If all the parameters were dominant
for equal portions of the process the average step size would
be 1/M of that given by (3.5-15), but parameters with larger
numerical value get more attention, and the reduction in the

average step size is given by:

T

av Maé

(3.5-16)

A
3

S;p 1s the average step size for the dominant, large
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valued, parameter. 0<a°<l is unknown factor.

Assuming that there is a correct decision, the mean num-
ber of random search intervals needed for convergence is

wmax/§;V’ where wmax is the value of the largest parameter;

' wmax
TC

= 0y gy—— * R (3.5~-17)
av
where: a& is a proportionality constant that depends upon the
exact definition of TC (10%, e © of initial error,
etc.)
TC in (3.5-17) is given in filter iterations. We can combine
(3.5-16) and (3.5-17) and include /27 in @, to yield:
TC = o - ——“ﬁa—’i - % - R (3.5-18)
Equation (3.5-18) provides a convergence time estimation
for a general case of random search operation with the above
assumptions. Let us turn now to the RGS IIR filter and get
a specific expression for its' convergence time estimate.
For the RGS IIR filter case equation (3.5-18), in terms of

the algorithm parameters as defined in section 3.3, becomes

- max a, _
TCb = a, ™ Nb o R (3.5-19)

To get an estimate to b a

max we consider the transfer function

of the filter given by equaiton (3.1-1):




N -1 N_-1
I a.,z T z aiz_1
i=0 - i=o
Hz) = =% "t (3.5-20)
1- 2 bzt 1° (1+20.z.2"1-p% 272
i=1 j= J7] ]

where:

Ns is the number of 2-order sections of the filter, N =

N /2.

pj is the magnitude of the jth pole

Cj = cos(2mf/fs)

f - pole frequency,_fs - the sampling frequency.
For a stable filter pj<l and the largest possible bmax’ is
given by additions of the terms ijcj which is the coefficient

of z"l when the multiplication of (3.5-20) is expanded

N N
= S S = = = -
bmax 'El ZQjCj < _E 2 2Ns 2(Nb/2) N (3.5-21)
i= j=1
Inserting (3.5-21) to (3.5-19) gives:
N, “2
TC, = o R (3.5-22)
b 1 b
where:
a, = ag + 1 is expected to be in the range 1l<uaj<2.

Equation (3.5-22) estimates the convergence time of the feed-
back portion of the RGS IIR filter. To estimate the conver-
gence time of the feedforward portion we can use the FSC

relation (2.3-1). As discussed in section 3.3, the largest
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value of a feedforward weight should be proportional to (1l-p)

aax - a3(l—p) (3.5-23)
where p is the pole's magnitude. 1In addition to the dis-
cussion of section 3.3 which relates the gain factor ag to the
dominant pole magnitude p, it is also noted that the adapta-
tion gain is also related to the pole magnitude because the
smaller the adaptation gain the finer the control of the

ratio ao/(l-p) and the closer the pole magnitude can be
adjusted to the unit circle. Thus we write the following
relationship:

a
(3.5-24)

(1-p) = ayu, =
where Oy and ag are proportionality constants. Fig. 3.5-5
shows the transient and steady state values of the pole
magnitude for several values of My The non-linear
relationship between p and Mys as suggested by (3.5-24) seems
to be reasonable.

Combining (2.3-1), (2.3-4), (3.5-23), (3.5-24) and value
of a1=1/2 in (2.3-1) we get:

nax’Ms qv
TC, = —a— = % Ha " /N—a (3.5=25)

We now determine the convergence time for the RGS IIR filter

by adding (3.5-25) and (3.5-22):
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Fig. 3.5-5
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ub=.1 and R=500.
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Gyr Gyy G, G, are experimentally evaluated constants. The
values of a, and @g can be adjusted to compensate for the
simulataneous convergence of the all pole and all zero sections
. of the RGS IIR filter.

A special difficulty encountered is to confirm the de-

pendence of the random search convergence time upon the

Ia.

fkj number of weights, Nb' in the random search process. A

‘ change in the number of feedback weights in the RGS IIR
filter (with or without changing the input signal) causes
major changes in the nature of the problem to be solved. For

example if there are more poles than necessary, only one of

them needs to converge, and the others are cancelled by the
zeros. Any experiment in which the number of poles is varied,

(with or without changing the signal) will combine the effects

of changes in the nature of the problems to be solved, the
effect of any changes in the input signal statistics, as well
as the effect of more parameters upon the random search con-
vergence time. A simpler approach is to construct a random
search FIR filter and to use this filter to verify the analysis
; . of the random search process and the dependence of its con-

| vergence upon the number of weights.

We start with relation (3.5-18) using FIR notation. Thus

TC=q, X . 5y 9 (3.5-27)
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From Treichler [37] we have:

= SNR _
qmax I+.5Na SNR (3.5-28)

where SNR is the input signal to noise ratio.

Inserting (3.5-28) to (3.5-27) gives:

a~
SNR * N °2. R
a

TC =% I+ 3§ S8 1. (3.5-29)
a a

Fig. 3.5-6 presents a comparison of simulation results with

convergence estimate (3.5-~29) for several values of Na, with o

o]

amial experimentally determined as a, = .4242, o, = 1.557.

1
These, results verify the ability of equation (3.5-18) to
estimate the effect of the number of parameters on the con-
vergence time of a random search filter.

An important assumption used in the convergence analysis
of the RGS IIR filter was that the random seirch process does

A -~

not make mistakes in the comparison of J ><J£. In order

L
to define conditions for filter operation with no decision
mistakes we investigate the effects of the random search
interval, R, on the RGS filter performance. Fig. 3.5-7
presents operation with decision mistakes. This situation is
typical in operation with relatively small random search
interval. In the example of Fig. 3.5-7 we used R = 100.

For larger values of the random search interval, R,

we have slower convergence as given by equation (3.5~26) and

illustrated by the pole convergence of Fig. 3.5-~8, Fig. 3.5-8
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meters in this example are: N_=3, N, =2, ua=3x10-

R=100,
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Effects of random search interval, R, on pole convergence
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and pole's steady-state magnitude,
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also shows that when the random search interval is too large
(R = 800 in the example of Fig. 3.5-8) the pole magnitude

is smaller and the resulting signal processing gain is lower.

This unwanted effect is caused by decision mistakes that occur

because with a long random search interval the feedforwaxd.
weights provides better match for the weights in the center
filter than for the tested filter for which the feedback
feedforward weights are only copied (Fig. 3.4-3). This effect,
of smaller pole magnitude, for long random search interval
depends on the convergence of the all zero section and hence
upon the value of Mgy

The above discussion suggests that there is an optimal
value for the random search interval, which depends upon the

value of Mg From the results obtained in our experiments

6

it seems that for u_ in the range of 30x107°% to 107°, the

optimal values of R are in the range 300 to 500 iterations.

To verify the convergence time estimate of equation (3.5-26)
we present experiments with several values of Mg (Fig. 3.5-9)
and several values of (Fig. 3.5-10); all of them with R=500
to assure that the operation is practically free from decision
mistakes.

The effects of W, as discussed above are clear in Fig.
3.5-9:

(1) The steady-state value of the pole magnitude is

closer to 1 for smaller Hye

(2) The convergence rate of the feedforward weight is

proportional to Myt
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{3) The overall effect of the convergence and steady-

state value of the output MSE is a combination of
(1) and (2).
The effects of ub' as discussed above are clear in Fig.
3.5-10.
(1) The convergence of the pole is proportional to My
(2) The overall effect in the convergence of the output
MSE is mainly the convergence rate.
It is interesting to note in Fig. 3.5-10 that the convergence
rate of the feedforward weight is equal for all the values
of My -

Table 3.5-1 compares the convergence time measured in
the experiments presented in Fig. 3.5-9 and Fig. 3.5-10 to
the estimation given by (3.5~26)‘With experimentally deter-
mined proportionality constants. The modified estimation

formula for Nb=2 is:

TC = 203.12ua’°3392/n—a + 3.8 R/ng (3.5-30)

Table 3.5-1 shows good agreement between experimental
measurements of RGS filter convergence time and the esti-
mations of (3.5-30). This agreement verifies the analysis

of the RAS IIR filter convergence properties.
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Table 3.5-1
RGS Convergence Time Measurement and Estimation

(Results are an average of 32 runs with Na=3, Nb=2)

# ] Results Experiment Parameters] Convergence Time
Presentation Mg My r R Measured ?g;???gfgn
1 | rig. 3.5-9 30x107% | .1 500 | 30,500 |31,079
2 | rig. 3.5-9 10x107% | .1 500 | 41,000 ]36,517
3 | Fig. 3.5-9 3x10°° | .1 500 § 57,000 J45,334
and
Fig. 3.5-10
4 { Fig. 3.5-10 3x107¢ | .os 500 | 66,000 Je64,372
5 Fig. 3.5-10* 3x1‘.0-6 .025 500 100,000 § 102,448
NOTE

* Convergence time for #5 cannot be measured from Fig. 3.5-10

because only part of this experiment data is plotted here.




3.6 APRIORI STRUCTURED ADAPTIVE FILTERS (ASAP)

Motivated by the possibility to reduce the number of
variables under random search adaptation, we now investigate
the relationship of the filter's weights to a smaller set of
variables. In some cases the structure of the optimal filter
is known and only a few parameters are unknown and need to be
evaluated. 1In other cases we might accept a sub-optimal
simpler solution, namely an optimal filter with structural
constraint. For the filter (3.1-1) we might have a smaller

set of parameters, W, such that:

V]
L}

fi(ﬂ) i=0,l,...,Na-l (3.6-1)

(3.6-2)

o
]

g; (W) i=1,2,...,N

where: fi(-) and gi(-) are functions that connect each
filter weight to the parameter vector W.

Since we have a good solution to the feedforward weight
adaptation, it is acceptable to use the same combined random
and gradient search method that was used for the RGS IIR
filter, for the proposed ASAF filter as presented in Fig.
3.6-1.

We will continue the discussion by considering the speci-
fic case of a pole close to the unit circle with adaptation
of it's frequency only, see Fig. 3.6-2.

This type of adaptive filter is useful for the ALE
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application, or when several such sections are cascaded to
enhance a multiple sine wave signal.

Fig. 3.6-3 presents a typical operation of an Apriori
Structured pole, ASPOIL, IIR adaptive filter with pole magnitude
p = .99. Simulation details are presented in Appendix A.

It is clear from Fig. 3.6-3 that this filter has high
processing gain with relatively short convergence time.

These advantages are also shown in Fig. 1.5-1.
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3.7 CONCLUSION

An IIR filter has, in many cases, great advantages over
a FIR filter because of the efficiency associated with the use
of recursion and the existence of poles in the transfer func~ 1
tion. However, realization of an adaptive IIR filter is a
difficult task because of the multimodal nature of the IIR
filter's performance surface, as well as the stability
problem and the complexity of the performance surface
gradient expression.

The proposed Random and Gradient Search (RGS) algorithm
overcomes the complexity of the multimodal performance sur-
face and converges to the global optimum with probability 1.
This convergence is guaranteed for sufficiently large time.
For the important special case of large difference in the
value of the performance function between the global minimum
and local minima, an estimation for the average convergence ;
time has been derived and verified by simulation results.

The convergence time estimate is given by:

@2
Q- N
a

/N + ..b_ . R (3.7-1)

' TC = o U o
a 1l M
b

b

wheneas, a,, Gy, G, are experimentally evaluated constants.

Stable operation of the RGS IIR filter was demonstrated
in many hours of computer simulation without overflow
problems. This stability is attributed to the detection of
excessive MSE at the tested points, and the fact that the

algorithm discards such points before overflow, which is

causes by unstable filter weights, can be developed. Thus
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the RGS is a practical candidate to realize an adaptive IIR
filter.

The Apriori Structured Adaptive Filter (ASAF) uses the
random search method and additional structure information
to improve adaptive IIR filter performance. The moving

pole example, for instance, is guaranteed to be stable and

has fewer parameters in the adaptation process.




Iv. SUMMARY

Two approaches to efficient adaptive filtering have been
investigated; a FIR filter with simplified gradient estima-
tion methods, and IIR filters with a combined random search
and gradient adaptation scheme.

Two simplified algorithms, the Fixed Step Correction (FSC)
and the Simplified LMS (SLMS), are derived and compared to the
classical ILMS algorithm for the FIR filter. The comparison
includes analysis of filter properties, and extensive simu-
lation results are presented to verify the analysis.

Because the adaptive filter properties depend upon the
statistics of the input signal, the desired signal, and the
reference signal, when analyzing the operation of an adaptive
filter one must assume some statistics for the above signals.
Hence, the analysis is valid for a specific case or a class
of cases.

Thus algorithm comparisons and the adaptive filter pro-
perties analysis has been carried out here for the applica-
tion of the adaptive line enhancement (ALE). The analysis
includes convergence time estimate, steady-state misadjustment,
and filter processing gain. Estimates to these properties
have been derived and verified by simulation results which

compare the three algorithms (LMS, FSC, SLMS). The conclu-

sion of the comparison is: that for equal filter order the LMS




algorithm is somewhat better. However when one considers an
equal complexity, which allows the use of a higher degree
filter for the simplified gradient estimations, the result is
that the FSC and the SLMS are better than the classical LMS.
The IIR filter offers, in many cases, computational
savings over a FIR filter. However, the IIR filter has
a multimodal performance surface and may be unstable. Be-
cause of these two problems, and the complexity of the gra-
dient expression, the algorithms which have been proposed for
the IIR adaptive filter by Feintuch and Stearns do not provide
a satisfactory solution. The Random and Gradient Search
algorithm (RGS) proposed here has the ability to converge
to the global minimum of the multimodal performance surface,
and convergence with probability one is guaranteed for suf-
ficiently large time. For the important class of cases
characterized by a global minimum much lower than the local
minimum, an average convergence time estimate has been de-
rived and verified with simulation results. The use of
structure information of the optimal solution when known
allows the construction of an Apriori Structured Adaptive
Filter (ASAF). This version of the RGS IIR filter optimizes
a smaller set of parameters and is advantageous in some prac-
tical applications. In summary this research has demonstrated
that with the RGS scheme it is possible to realize an adaptive
IIR filter which will operate properly and have a practical

implementation.
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At the end of this dissertation it is appropriate to

indicate some of the subjects that call for further work:

In the area of FIR adaptive filters with simplified gradient

estimation, some topics are:

Effects of finite arithmetic.

The study of variations of convergence and steady-
state behavior around the mean.

The dependence of convergence and steady-state behavior
on input signal to noise ratio.

Operation with complicated signals.

Extension of the discrete algorithms developed here to
analog systems, including adaptive antenna arrays.
Consideration of non-stationary input signals.

Applications.

In the area of RGS IIR filters, topics include:

The study of random search decision error dependence
upon filter parameters.

Analysis of possible processing gain dependence upon
filter parameters.

The effects of cperation with an inaccurate random
number generator.

Possible configurations for apriori structured adaptive
filters.

Operation with complicated signals.

Consideration of non-stationary input signals,

Applications




APPENDIX A

SIMULATION

A.l THE SIMULATION METHOD

Simulation was used to provide experimental data for
comparison of adaptive filtering algorithms, and for veri-
fication of analytié formulas., The simulation program includes
four basic functions:

(1) Execution initialization: Signal parameters (fre-

quency, signal to noise ratio, power,..etc.) and filter

i parameters (filter type, number of weights, adaptation gain,

: ..., etc.) are loaded interactively into the computer to con-
-% trol the forthcoming execution.

| (2) Experiment configuration and signals generation:

A signal generator subroutine, determined by the signal
parameters loaded in the execution initialization, prepares
sequences of 100 samples of input and reference signals to

be processed by a filter subroutine. The relationship of the
; input and reference samples determines the adaptive filter
simulation to be evaluated, i.e. ALE or parameter identifica-
tion.

(3) The filtering function: As controlled by the filter

parameters loaded during the execution initialization, a

filter subroutine is called upon to process the data in blocks 1
of 100 samples. q
(4) Experiment data extraction and storage: The program

stores the values of J (k) and 200 values (spread equally
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over the time of the experiment) of up to six parameters,
and at the end of the experiment the program evaluates the
processing gain and the convergence time for that experiment.
The foregoing information, together with the experiment
parameters, are stored on disk files and are available for
off-line use.

A simplified flow diagram of the simulation program is

presented in Fig. A.l-1l. It should be noted that although

the FIR and IIR simulation programs have identical structure
" there are some differences as discussed in sections A.2 and
j A.3.
| A data handling program is used to access the data files
j : and present experimental results in tabular or graphic forms.
The graphic option includes plots of variables as function
of time and as functions of a filter or a signal parameters.
1 The simulation was done on a PDP-11/50 minicomputer under

! RSX~11M multiuser operating system.
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A.2 FIR SIMULATION PROGRAM

The FIR simulation uses the Adaptive Line Enhancement
(ALE) configuration as presented in Fig. A.2-1, The desired

signal is:

- - -
s (k) v 2Rss(05' cos wk (A.2-1)
where Rss(o) is the desired signal power.

And:
x(k) = s(k) + n(k)

where n(k) is a white gaussian noise with variance Rnn(o).
The execution initialization controls the parameters Rss(o),
Rnn(o), and w. For each Na and signal statistics used, the
program evaluates the optimal values of the mean squared

*
. i . lows:
error, Jmln' and weights a; as follows

Jmin = lim J(k) (A.2-2)
Ua"o
k + o

* .
a; = lim ai(k) for i=0,l,...,Na-l (A.2-3)
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For 200 points spread equally over the time of the experiment -

the program evaluates the performance function, J(k):

gy =3 .+ (a-A"1T R A -a"] (A.2-4)

where

A is the vector of filter weights at time k.

é* is the vector of optimal weights determined by (A.2-3).

R is the input signal autocorrelation matrix.

At the end of the experiment the program evaluates:

(1) The steady-state MSE, Jss' as the average value of
J(k) in the last 10% of the experiment.

(2) Convergence time, TC, directly from the definition
as the time required for the error (J(k)-JSS) to be
reduced to 10% of its initial value.

(3) Misadjustment, M:
J - J .
M = _SS min

= 22 0 (A.2-5)
Jmin

(4) Processing gain, PG:
(o)

R
PG = 10 log [—Bg-——] (A.2-6)
ss

The program includes filter subroutines that perform the .LMS,

FSC, and the S1IMS algorithms,
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A.3 IIR SIMULATION PROGRAM

Three configurations were used for IIR adaptive filters

simulation:

- ALE configuration as discussed in Section A.2. Dif-

ferences from the FIR program are indicated later.

- Parameter Identification example as shown in Fig.
A.3-1. This example was used to demonstrate conver-
gence to the global minimum of a multimodal performance
surface. This example is taken from Johanson and

Larimore [11] and was used also by Parikh and Ahmed [131].

;
O S U

- Stability test, as shown in Fig. A.3~2, This test was
used with the optimal location for the pole near the

unit circle to demonstrate the stability of Feintuch

and the random search algorithms, and the lack of
stability of the Stearns' algorithm.
: The ALE IIR experiments are similar to the FIR except for
: the following:
(1) The optimal values of (A.2-2) and (A.2-3) are not
used.
(2) The MSE, J(k), is evaluated by:

N -1
av

1 Ik = I Cy(k=3) - s(k=3)1%m (A.3-1)
N 3=0

where Nav is an averaging interval, the values used were

between 100 and 500. Obviously J(k) is evaluated only once in

each averaging interval.
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The performance surface has two minima:

local minimum at a=0.114, b=0.519
global minimum at a=-0.311, b=0.906

Fig. A.3-1

Parameter Identification Example
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Data extracted from the test:

if stable:

if unstable:

the steady state value
of the pole

the iteration at which

the threshold was
excited.

Fig. A.3-2

Stability Test

138

Terminate
the test

OO N




(3) The misadjustment, M, of (A.2~5) is not used.
The program includes filter subroutines that use the
following IIR algofithms:

- Feintuch

- Stearns

- Random Search

- RGS

= Apriori Structured Pole.

In order to present the algorithm details and as an example
1 of a filter subroutine, the RGS subroutine is given in

Appendix B.

— A
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APPENDIX B

SUBRQUTINE RGS

>
(3 2333303383033 0330338330333 3383033323383 333 esasy
c b
c RANDOM AND GRADIENT SEARCH SUBROUTINE x
c x
c X(100) INPUT DATA IN 100 ELEMENTS ARRAY
c R(100) REFERENCE DATA x
c Y(100) OUTPUT DATA
c A( . ) FEEDFORWARD WEIGHTS x
c B( . > FEEDBACK WEIGHTS
C x
000 2000 3000 00 0 30200 2000 200 20 200 2 30 200 30 300 00 0 300 30 0020 20 20020 20000 30 30 200 30 o 300 o 2 30 30 20 3 3 o 3 o 3 o o K oK oK
c
c THE COMMON BLOCK
INCLUDE ‘AR.CMN”
DO 100 K=1,100
c FEEDBACK SECTION PROCESSING»
c BT(.) IS THE TESTED POINT,
YN=X(K)
YTN=X(K)
DO 101 J=1,NB
YN=YN+B(J)XYB(J)
YTN=YTN+BT(JIRYT(J)
101 CONTINUE
c SHIFTING THE SIGNAL IN THE FILTER’S MEMORY
DO 102 J=1sNAB-1
YB(NAB~J+1)=YB(NAB-J)
YT(NAB=-J+1)=YT(NAB-J)
102 CONTINUE
YB(1)=YN
YT(1)=YTN
c FEEDFORWARD SECTION PROCESSING
Y(K)=0,0
ZT=0.,0
DO 103 J=1,NA
Y(K)=Y(K)+A(JIXRYB(J)
ZT=ZTH+ACIIRYT(J)
103 CONTINUE
c THE ERROR TERMS
ER=aY(K)-R(K)
ET=ZT-R(K)
c FEEDFORWARD WEIGHTS’ ADAPTATION
DO 104 J=1sNA
A(I)=A(J)-GAXSIGN(1.,0,ER)XSIGN(1.0,YB(J))
104 CONTINUE
c PERFORMENCE FUNCTION ESTIMATION

140
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203
201

205

111

100

EC=EC+ERXER
ECT=ECTH+ETXET
IF(ECT.GT.TH) L=LL
L=L+1
IF(L.LE.LL) GO TO 111
COMPARISON AND RANDOM SEARCH DECISION MAKING
L=0

IF(ECT.LT.EC) GO TO 200
GO TO 201
CONTINUE
DO 203 J=1,NB
B(J)=BT(J)
YB(J)=YT(J)
CONTINUE
CONTINUE
NEW TEST POINT SELECTION
DO 204 J=1,NB
BT(J)=B(J)+GBXGAUSS(0)
CONTINUE
DO 2035 J=1,NAB
YT(J)=YB(J)
CONTINUE
EC=0.0
ECT=0.0
CONTINUE
EXPERIMENT DATA EXTRACTION
CALL AVERR(K)
IF(IOUT.EQ.2) CALL WTPR
CONTINUE
RETURN
END
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