NEW RESULTS ON THE INNOVATIONS PROBLEM FOR NON-LINEAR FILTERING

JAN 80 D F ALLINGER, S K MITTER

AFOSR-77-3281

AFOSR-TR-80-0131

LIDS-R-964

UNCLASSIFIED

AD-A081 574

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR INFORMA--ETC F/6 9/3

NL
NEW RESULTS ON THE INNOVATIONS PROBLEM FOR NON-LINEAR FILTERING

Deborah F. Allinger
Sanjoy K. Mitter

MIT
Laboratory for Information and Decision Systems
Cambridge, Mass., 02139

Air Force Office of Scientific Research/AF
Bolling AFB, Washington, D. C. 20332

Approved for public release; distribution unlimited.

ABSTRACT
Consider an observed stochastic process consisting of a signal with additive noise. Assume that the signal has finite energy and that the signal and noise are independent. In this paper we show that under the above assumptions the innovations and observations algebra are equal thereby solving a long-standing conjecture of Kailath.
NEW RESULTS ON THE INNOVATIONS PROBLEM
FOR NON-LINEAR FILTERING*

by

Deborah F. Allinger and Sanjoy K. Mitter**

*Submitted to Stochastics.
**The first author is in the Department of Mathematics and the second author is in the Department of Electrical Engineering and Computer Science and the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. The research of the second author was supported by the Air Force Office of Scientific Research under Grant AFOSR 77-3280.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF PUBLICATION TO RECIPIENT
This technical report has been reviewed and is
Approved for Public Release and AD 790-12 (7b).
DISTRIBUTION IS UNLIMITED.
A. D. BLOCK
Technical Information Officer
Abstract

Consider an observed stochastic process consisting of a signal with additive noise. Assume that the signal has finite energy and that the signal and noise are independent. In this paper we show, that under the above assumptions the innovations and observations σ-algebra are equal thereby proving a long-standing conjecture of Kailath.
Introduction.

Let (Ω,\mathcal{F},P) be a complete probability space, $\mathcal{F} = (\mathcal{F}_t), 0 \leq t \leq 1$, a non-decreasing family of sub-σ-algebras and $W = (W_t, \mathcal{F}_t), 0 \leq t \leq 1$, a Wiener process. With a signal process, $\beta = (\beta_t, \mathcal{F}_t)$, and

\[(1) \quad y_t = \int_0^t \beta_s ds + W_t\]

as observations, the innovations problem is to determine whether $y = (y_t, \mathcal{F}_t)$ is adapted to the innovations process, (ν, \mathcal{F}_t^ν). This process, whenever it exists (see, for example, [1]), is a Wiener process defined by the equation

\[(2) \quad \nu_t = y_t - \int_0^t \beta_s ds\]

where $\beta_t = E(\beta_t | y_s, 0 \leq s \leq t)$. The innovations problem, first posed by Kailath in 1967 and subsequently considered by Frost in his thesis [2] can be posed in probabilistic terms; namely, are the σ-algebras generated by these processes the same modulo null sets; i.e. is

$$\sigma\{y_s: s \leq t\} = \sigma\{\nu_s, s \leq t\} \pmod{P}?$$

In this paper, we show that in the form conjectured by Kailath [3] this problem has a positive solution. Our assumptions are that

(a) Signal and noise processes are independent

and

(b) $E(\int_0^1 \beta_s^2 ds) < \infty$.

Our results generalise all known results on the innovations problem ([4], [3]). In [4] the signal process is assumed to be uniformly bounded. The proof given in [2] is incorrect (see [3]). This problem has also been considered by Benes [5] and Kallianpur [6] under slightly weaker hypotheses than ours. Their
proofs however appear to be incorrect. We have been informed that results similar to ours have been independently obtained by J.M.C. Clark and M.P. Ershov.

The problem considered here is a subclass of the more general innovations problem for stochastic differential equations ([7] Page 260). In this more general form, the innovations problem does not have (in general) a positive solution. A counter-example was given by Cirelson ([7], Page 150). In Cirelson's example no "filtering" takes place and thus it cannot be considered to be a counter-example to the innovations problem for non-linear filtering. Cirelson's example however can be modified to obtain examples where filtering does occur (cf. Beneš [8]). The proof presented in this paper utilizes the independence of the signal and noise processes in an essential way. Nevertheless we feel that the assumption of independence can be removed for a wide class of signal processes.

1. The Innovations Result under (a), (b).

Our proof consists of two parts: deriving a jointly measurable functional,

\[\gamma(s,x), \]

\[\gamma : [0,1] \times \mathcal{C}[0,1] + \mathbb{R} \]

with the property that

\[\gamma(s, \theta(\omega)) = \hat{\theta}_s(\omega) \lambda \times P \text{ - a.s.} \]

(\(\lambda \) denotes Lebesgue measure on \([0,1])\), and then showing that any weak solution of the stochastic differential equation

(4) \[d\xi_t = \gamma(t,\xi)dt + d\nu_t \]

is pathwise unique in the sense of Yamada and Watanabe [9]. It is a consequence of their work that (4) has a strong solution (in the sense of Ito) i.e. the observations are a functional of the innovations.

Under (a), (b), we may apply the results of Kallianpur and Striebel [10] to show that for \(0 \leq t \leq 1\),
Replacing y_s by x_s for $x \in C_{[0,1]}$, we arrive at $\gamma(t,x)$. The joint measurability of $\gamma(t,x)$ rests upon the measurability in (t,ω,x) of the functional, (or stochastic integral),

$$\int_0^t \beta_s(\omega)dx_s \equiv < D\beta(\omega), x>_t$$

which represents a Gaussian random variable with respect to Wiener measure on $C_{[0,t]}$ whenever $\beta(\omega)$ is in $L^2_{[0,t]}$, for $t \leq 1$. The operator, D, is unitary from $L^2_{[0,1]}$ onto C', the Hilbert Space of continuous function with square integrable derivatives, and

$$Df(s) = \int_0^s f(r)dr.$$

(Further discussion is given by Kuo [11].)

Our hypotheses (a), (b) guarantee that the innovations ν_t can be constructed [1] and so, (4) is satisfied by the observations. To show that any weak solution to (4) is pathwise unique, we will need the following lemmas.

Lemma 1. Let

$$\rho(t,x,\omega) = \exp\left(\int_0^t \beta_s(\omega)dx_s - \frac{1}{2}\int_0^t \beta^2_s(\omega)ds\right)$$

and

$$g(t,x) = \int_\Omega \rho(t,x,\omega) \ dP(\omega).$$

Then

(a) $\mu_w \{ x : \sup_{0<t<1} g(t,x) < \infty \} = 1$
(b) \(\mu_w \{ x : \inf_{0 \leq t \leq 1} g(t, x) > 0 \} = 1 \),

where \(\mu_w \) is Wiener measure on \(C[0,1] \).

Proof: Recall that

\[P(\hat{\omega} : \int_0^1 \beta_s^2 \hat{\omega}(\hat{\omega}) \, ds < \infty) = 1, \]

and for each such \(\hat{\omega} \), the process

\[\{ \rho(t, W(\omega), \hat{\omega}) , F^W_t \} \]

is a (right) continuous martingale. Consequently, \(\{ g(t, W(\omega)) , F^W_t \} \) is a right continuous martingale. For let \(\lambda(W) \) be a bounded \(F^W_s \)-measurable random variable, \(s < t \).

Then

\[
\mathbb{E}_p[\lambda(\omega) \cdot g(t, W)] \\
= \int_C \lambda(x) \, g(t, x) \, \, d\mu_w(x) \\
= \int_\hat{\Omega} [\int_C \lambda(x) \rho(t, x, \hat{\omega}) \, d\mu_w(x)] \, dP(\hat{\omega}) \\
= \int_\hat{\Omega} [\int_C \lambda(x) \rho(s, x, \hat{\omega}) \, d\mu_w(x)] \, dP(\hat{\omega}) \\
= \int_C \lambda(x) \, g(s, x) \, d\mu_w(x),
\]

from which we obtain

\[
\mathbb{E}_p(g(t, W) | F^W_s) = g(s, W) \quad \text{a.s.}
\]

Moreover, since the family of sub-\(\sigma \)-algebra, \(\{ F^W_s ; \ 0 \leq s \leq 1 \} \) is continuous, and
\[\mathbb{E}_p(g(t,W)) = 1, \quad 0 \leq t \leq 1, \]

it follows that \(\{g(t,W), F^W_t\} \) has a right continuous version \([\text{Thm. 3.1, 7}].\)

Thus, we conclude that

\[P(\omega: \sup_{0 < t < 1} g(t,W(\omega)) < \infty) = 1 \]

since \(P(\omega: \sup_{0 < t < 1} g(t,W(\omega)) > \lambda) \leq 1/\lambda \)

for \(\lambda > 0. \) This gives (a).

For (b), note that \(g(t,x) \) is the Radon-Nikodym derivative, \(\frac{d\mu_Y}{d\mu_W}(t,x) \)

where \(\mu_Y \) is the measure induced on \(C[0,1] \) by the observations process, \(y. \)

Since \(\mu_Y \sim \mu_W, \) the proof is analogous to Lemma 6.5 \([7].\)
Proof: Observe that

\[\int_{\Omega} \left[\int_{0}^{1} m(t, W(\omega)) \, dt \right] \, dP(\omega) = \int_{0}^{1} \left[\int_{\Omega} \beta_t(\hat{\omega}) \right] \, dP(\hat{\omega}) \, dt < \infty. \]

We return to the problem of comparing two weak solutions \(\xi_0, \xi_1 \) of (4), assuming that \(\xi_0, \xi_1 \) are both defined on the space \((\Omega, \mathcal{F}, P)\). Moreover, we may assume that \(\mu_{\xi_0}, \mu_{\xi_1} \) are each absolutely continuous with respect to Wiener measure. The proof of Proposition 1 [9] remains valid with respect to the restricted class of solutions \(\xi \) which satisfy the condition

\[P \left(\int_{0}^{1} (\gamma(t, \xi))^2 \, dt < \infty \right) = 1. \]

See, in particular, pg. 161 [9]. From Lemmas 1, 3, it follows that \(\mu_{\xi_0}, \mu_{\xi_1} \) are equivalent to Wiener measure since

\[\mathbb{W} \{ x : \int_{0}^{1} (\gamma(t, x))^2 \, dt < \infty \} = 1. \]

Thus, for \(i = 0, 1 \), we conclude that

\[\sup_{0 \leq t \leq 1} g(t, \xi_i(\omega)) < \infty \]
\[\inf_{0 \leq t \leq 1} g(t, \xi_i(\omega)) > 0 \]
\[\sup_{0 \leq t \leq 1} \alpha(t, \xi_i(\omega)) < \infty \]
and

\[\int_{0}^{1} m(t, \xi_i(\omega)) \, dt < \infty \]

- \(\omega \) a.s.
Theorem 1. If \(\xi_0, \xi_1 \) are weak solutions of (4), then

\[
\sup_{0 < t < 1} | \xi_0(t, \omega) - \xi_1(t, \omega) | = 0 \quad P - \text{a.s.}
\]

Proof. On \([0,1] \times C[0,1]\), define

\[
L(t, \omega) = |\gamma(t, \xi_0) - \gamma(t, \xi_1)| = \left| \frac{d(\xi_0 - \xi_1)}{dt} \right|
\]

\[
= \left| \frac{f(t, \xi_0) - f(t, \xi_1)}{g(t, \xi_0)} \right| + f(t, \xi_1) \left(\frac{1}{g(t, \xi_0)} - \frac{1}{g(t, \xi_1)} \right)
\]

Then

\[
(L(t, \omega))^2 \leq K(\omega) [(f(t, \xi_0) - f(t, \xi_1))^2 + (f(t, \xi_1))^2 (g(t, \xi_0) - g(t, \xi_1))^2]
\]

where \(K(\omega) > \max \left(\frac{1}{\inf_{0 < t < 1} (g(t, \xi_0))^2}, \frac{1}{\inf_{0 < t < 1} (g(t, \xi_0))^2 \cdot \inf_{0 < t < 1} (g(t, \xi_1))^2} \right) \)

For \(0 \leq u \leq 1 \), we write

\[
\int_0^u L(t, \omega) dt \leq K(\omega) \left[\int_0^u \int_{\hat{\Omega}} |\beta_t(\hat{\omega})| |p(t, \xi_0, \hat{\omega}) - p(t, \xi_1, \hat{\omega})| dP(\hat{\omega}) \right]^2 dt
\]

\[
+ \int_0^u (f(t, \xi_1))^2 \left| \int_{\hat{\Omega}} |p(t, \xi_0, \hat{\omega}) - p(t, \xi_1, \hat{\omega})| dP(\hat{\omega}) \right|^2 dt
\]
and because \(e^x \) is convex, it follows for all \(\hat{\omega}, t \), that

\[
|\rho(t, \xi_0, \hat{\omega}) - \rho(t, \xi_1, \hat{\omega})| \\
\leq \frac{1}{2} |\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega})| \cdot |\int_0^t \beta_s(\hat{\omega}) d(\xi_0 - \xi_1(\omega))| \\
= \frac{1}{2} |\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega})| \cdot |\int_0^t \beta_s(\hat{\omega}) L(s, \omega) ds|
\]

Applying Hölder's inequality to the last integral term in (8), and bringing out \((\int_0^t (L(s, \omega))^2 ds)^{1/2} \), yields

\[
\int_0^u (L(t, \omega))^2 \, dt \leq K(\omega) \int_0^u \left[\int_0^t (L(s, \omega))^2 ds \right] \cdot \psi(t, \omega) \, dt - \omega \text{ a.s.}
\]

where

\[
\psi(t, \omega) = \left[\int_\Omega |\beta_t(\hat{\omega})| \cdot |(\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}))| \cdot (\int_0^t \beta_s^2(\hat{\omega}) ds)^{1/2} \, dP \right]^2 \\
+ \left[\int_\Omega \rho(t, \xi_0, \hat{\omega}) dP \right]^2 \\
\cdot \left[\int_\Omega \rho(t, \xi_1, \hat{\omega}) dP \right]^2 \\
\cdot \left[\int_\Omega \left(\frac{\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega})}{2} \right) \left(\int_0^t \beta_s^2(\hat{\omega}) ds \right)^{1/2} \, dP(\hat{\omega}) \right]^2.
\]

By showing that \(\psi(t, \omega) \) is an integrable function of \(t - \omega \text{ a.s.} \), one may then iterate (9) and conclude that for \(0 \leq u \leq 1 \),

\[
\int_0^u (L(t, \omega))^2 \, dt = 0 - \omega \text{ a.s.}
\]

Hence

\[
\sup_{0 < t < 1} |\xi_0(t, \omega) - \xi_1(t, \omega)| \\
\leq \int_0^1 (L(t, \omega))^2 \, dt = 0 - \omega \text{ a.s.}
\]
and we have established path-wise uniqueness for weak solutions of (11).

To see that \(\psi(t, \omega) \) is integrable in \(t, \omega \) a.s., apply Hölder's inequality to the first term to obtain,

\[
(10) \quad \left(\int_{\hat{\Omega}} |\beta_t(\hat{\omega})| \rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}) \right) \cdot \left(\int_{\hat{\Omega}} \beta_t(\hat{\omega})^2 d\hat{P}(\hat{\omega}) \right)^{1/2} \]

\[
\leq \left(\int_{\hat{\Omega}} \beta_t(\hat{\omega})^2 d\hat{P}(\hat{\omega}) \right)^{1/2} \left(\int_{\hat{\Omega}} \rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}) d\hat{P}(\hat{\omega}) \right)^{1/2}
\]

\[
\leq \sup_{0 \leq t \leq 1} \int_{\hat{\Omega}} \left[\int_{0}^{1} \beta_s(\hat{\omega}) ds \cdot \frac{(\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}))}{2} \right] d\hat{P}(\hat{\omega})
\]

Integrating this product over \(t \) gives

\[
(11) \quad \sup_{0 \leq t \leq 1} \int_{\hat{\Omega}} \left[\int_{0}^{1} \beta_s(\hat{\omega}) ds \cdot \frac{(\rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}))}{2} \right] d\hat{P}(\hat{\omega})
\]

\[
\cdot \int_{0}^{u} \left[\int_{\hat{\Omega}} \beta_s(\hat{\omega})^2 d\hat{P}(\hat{\omega}) \right] \rho(t, \xi_0, \hat{\omega}) + \rho(t, \xi_1, \hat{\omega}) d\hat{P}(\hat{\omega}) dt < \infty \text{ a.s.}
\]

by Lemmas 2, 3.

The second term of \(\psi(t, \omega) \) is handled analogously using Lemmas 1, 2, 3.

This completes the proof.
Thus, the observations process \(\{y_t\}, 0 \leq t \leq 1 \), is the (unique) strong solution satisfying (4) under the restriction that

\[
P(\int_0^1 y(t, t') \, dt < \infty) = 1.
\]

Final Remarks.

Let us rewrite equation (2) as

\[
\nu = (I - N)y, \quad \text{where } N \text{ is a non-linear operator from } C[0,1;\mu_y] \text{ into } C[0,1;\mu_y].
\]

Under assumptions (a) and (b) we have shown that an inverse operator \((I + \hat{N}) \) exists such that \(P - a.s. \)

\[
y = (I + \hat{N})\nu.
\]

Moreover, if \(\pi_t : C[0,1] \to C[0,1] \) denotes the truncation operator defined by

\[
(\pi_t x)(s) = \begin{cases} x_s, & 0 \leq s \leq t \\ 0, & \text{otherwise} \end{cases}
\]

then

\[
(I + \hat{N})(\pi_t \nu) = \pi_t y, \quad \text{that is, the operator } (I + \hat{N}) \text{ is causal.}
\]

Our results in this paper suggest the investigation of causal-invertibility of non-linear causal operators on abstract Wiener Spaces (in the sense of Gross) using methods of stochastic integration and martingales. Such an investigation would also be of importance in the theory of stochastic stability of feedback systems.
Acknowledgments

It is a pleasure for the second author to thank Daniel Ocone of the Mathematics Department, M.I.T. for first noticing that there was a gap in the proof of the innovations conjecture in the paper by Beneš; S.R.S. Varadhan for conversations about the Yamada-Watanabe theorem and other suggestions; V. Beneš, J.M.C. Clark, M.P. Ershov and T. Kailath for discussions on the innovations problem.
REFERENCES

[5] V.E. Benes, Extension of Clark's innovations equivalence theorem to the case of signal r independent of noise, with \(\int_0^T \int_2^r ds < \infty \) a.s., Mathematical Programming Study 5 (1976), 2-7.

