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Microscopic observations of the damage produced in three formulations of

CVD ZnS representing variations in grain size, grain shape, and inclusion content
indicated the fracture trajectories and penetration depths were essentially insen-|
sitive to the range of microstructural features which were investigated. The
quality of the surface finish was found to be the dominant contribution to the
fracture response of CVD ZnS. Further modification of the bulk material proper~
tles does not appear warranted: the present production material is satisfactory.
Considerably greater latitude for increased resistance to rain erosion can be
gained from improved polishing procedures and subsequent maintenance of the
initial surface finish.‘q\

H

Since the fracture response of CVD ZnS is controlled by surface polishing
flaws, a continuum mechanics analysis was introduced to estimate the potential
for fracture due to the transient stresses generated by the water drop collision,
Various approximations are considered for illustration purposes. The limitations
of previous analyses are described and the need for an analysis which is appli-
cable within 10 ym from the surface of the target is demonstrated. These condi-
tions motivated a mathematical analysis of the transient stress states due to an
arbitrarily spatially and temporally varying localized pressure on the target's
surface formulated in terms of Green's function and a Greea's theorem relation
derived from the divergence theorem., The Green's function analysis is then
utilized to develop an analysis for surface flaw, stress wave interactions.

o mhn i s

?% Hydraulic penetratvion of the water in a drop impacting over a pre-existing

o surface defect is also modeled mathematically, since this has beei. identified as

2 an important factor in the internal fracture growth observed in CVD ZnS due to
multiple water drop cellisions., In addition, the effect of the internmal frac-
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tures on transmission through the window is analyzed. The significance of the
crack separation distance and crack orientation on the transmittance is evaluated,
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SECTION I
INTRODUCTION

This investigation concentrates on the damage produced in chemically
vapor deposited (CVD) zinc sulfide (ZnS) by water drop impacts on the order
of 1 mm in diameter impinging over a velocity range from 222 to 684 ms-l
(730 to 2240 fps). A combined experimental and analytical study was pur-
sued to determine the relationships between water drop impact damage and
the material properties of CVD zinc sulfide in order to evaluate and guide
efforts to develop erosion resistant window materials for use at 8-12 pm
wavelengths. The general problem can be divided into three major cate-
gories and each of these categories involves a number of experimental and
analytical tasks. The suggested categorization outlined below is essen-
tially our overview of the general problem and places some perspective on

the relative balance between experiment and analysis.

1. Fracture Initigtion

Identification of the material properties associated with fracture

initiation due to a single water drop impact (fracture threshold).

Identification of the material properties associated with fracture
initiation due to multiple water drop impacts below the single water drop

fracture threshold,

Identification of the material properties controlling fracture
initiation and growth at water drop impact velocities well above the single

water drop fracture threshold.

Evaluation of the change in the fracture response due to modification

of a controlling material property.

Development of a model for fracture initiatinnm.

2.  Crack Growth

Identification of the material properties controlling crack growth.

Evaluation of the change in crack growth and crack morphology due

"t6 modification of a controlling material property.
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Evaluation of the relation between crack growth and morphology

and infrared transmittance.

Development of a model for crack growth.

i ’,;,:

VM,,,,
XA O

3. Erosion Pit Nucleation and Grewth

Identification of the erosion mechanisms responsible for mass

removal (erosion pit nucleation).

Identification of the material properties controlling the erosion

process (erosion pit growth).

Evaluation of the change in erosion rate and erosion pit morphology

due to modification of a controlling material property.

Evaluation of the relation between erosion pit growth and morphology

and infrared transmittance.
Development of a model for the general erosion process.

Development of a model for the prediction of the degradation of

infrared transmittance.

Not all of the above tasks are relevant for the specified impact
conditions nor have all that are relevant been addressed in this study.
For example, the first two tasks on fracture initiation are not directly
applicable, since the fracture threshold for zinc sulfide is already ex~-
ceeded at the minimum velocity of interest (222 ms-l). Erosion pit growth
was not investigated extensively, since the objective of the program can
be satisfied without pursuing this complex subject. Analytical and experi-
mental investigations of the events leading to material removel (the in-
cubation period for erosion pit nucleation) are sufficient for providing
the desired material guidance for the development of more erosion resis-
tant windows. The primary emphasis of the program was on crack growth
and to a lesser extent on the events leading to erosion pit nucleation,
The relevant velocity range for this investigation determined from an
initial overview of water drop impact damage as a function of impact veloc—

ity reported in Section III,2 is from 342 to 512 ms-l (1120 to 1680 £ps).
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Water drop impact experiments were carried out on CVD zinc sulfide

O

specimens in the ETI Liquid Drop Impact Facility and are described in Sec-
tion III,l. This facility provides controlled and well characterized
impact conditions. The water drops fall from the tip of a hypodermic
needle and have diameters in the range from 1.5 to 2 mm., Although many
of the qualitative aspects of the rain erosion response of brittle mate-
rials are known, the water drop impact experiments on CVD zinc sulfide are
useful for they provide specimens for detailed materials characterization
in oxder to identify the dominant surface features and microstructural

properties which influence fracture initiation and growth,

Mathematical analyses of water drop impacts on an elastic target with
and without a surface crack have been formulated, The general analysis is
based on Green's theorem formulated for the convolution of the displacement
vector and the stress temsor. It was initially thought that the extension
suggested by Hackworth and Kocher (1978) of the TURBAN computer program
could be used to generalize Blowers' analytic solution for the stresses in
an elastic half-space due to a water drop collision (Blowers, 1969). It
was found upon closer examination that this extension is quite restrictive
and in fact in the form suggested is not valid for the pressure distribu-
tion used by Blowers. A simple generalization of this work is easily found,
however, which is valid for Blowers' pressure distribution but the resulting
distribution is still so restrictive that this extension of Blowers' work
cannot be usefully incorporated into the present program as originally pro-
posed., This led to an independent effort to provide an analytic generali-
zation of Blowers' work in conjunction with consideration of crack growth

in a transient stress field.,

An analytic formulation of the crack growth problem in materials
subject to water drop impact is developed which does not involve explicit
numerical integration of the equations of motion., The latter approach,
while straightforward, has a number of disadvantages not the least of which
is the large expense for the required computer time., Other disadvantages
include the lack of transparency of the solution with regard to parametric

variation and, at a more fundamental level, the problem of disentangling
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subtle physical effects from numerical artifacts of the finite grid size

used, In explicit numerical studies, parametric studies are done by gen-

erating several solutions for a range of values of the parameters, a pro-

== cedure which is usually impractical for more than one or two parameters

W

because of the great expense involved, for example, in finite difference

r

_— schemes. WNevertheless, it is often the case that explicit numerical
Eég schemes are the only alternative (particularly in the case of nonlinear
e

problems for which analytic techniques are generally lacking) and, irres-

pective of the expense, they do have the distinct advantage that solutions

vl

can always be found provided the singularities of the solution are

TR

!

TR

3

understood,

1

Ll

For linear or quasilinear problems the possibility exists, at least

|

in prirncipal, for obtaining analytic solutions to the problems in question.

§§§_J Analytic is used in the sense that it includes the use of numerical methods
= for evaluating integrals and summing series, but excludes the use of large
g? , grids of values of the independent and dependent variables. It is the use
,:; 'z of the latter which accounts for the large cost of the explicit numerical
=3 ; schemes. The two approaches are complimentary in many respects, Parametric
E%% dependence is made explicit by analytic solutions and approximations made to
5§§ ’ achieve a solution are usually better understood so that the accuracy of the

solutions obtained can be better assessed. For interesting problems, on the
other hand, analytic solutions are almost always more difficult to obtain,
If found, however, they provide more information at less expense than do the

explicit numerical methods. For this latter reason, it is always advanta-

geous to expend some effort on any problem to determine if at least an ap-
proximate analytic solution can be found before und2rtaking the development
of an explicit numerical solution. Even if the analytical approach does

~ not yield a solution, one usually benefits from che effort by achieving a

better understanding of the problem, in particular the singularities, which

helps to understand the numerical results generated by the explicit schemes,
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SECTION II
MATERIALS

All of the formulations of chemically vapor deposited (CVD) zinc
sulfide (ZnS) investigated were produced by the Research Division of
Raytheon Corporation. A baseline material was supplied by AFML which
was fabricated as a FLIR window. The piece of material received was
designated Plate A, Run No. MT-207, Section B-2, and was 62x104x17 mm
thick, Subsequently Section G~2 was also received from Run No. MT-207,
This material was selected as the baseline material since it has been
characterized by the University of Dayton Research Institute (Graves,
et al., 1977; Wimmer and Graves, 1977, 1978; Wimmer, 1979). This sample
will be referred to as material A in this report. According to Wimmer and

Graves (1977) it was deposited at 640°C for 250 hours.

Additional formulations of zinc sulfide have been received from the
Research Division of Raytheon Corporation for the purpose of investigating
the influence of different microstructures on water drop impact damage.

Two of the additional formulations deposited at 690 and 728°C (Material B
and C, respectively) were investigated. No physical or mechanical property

data have been received for these materials,
1. INITIAL CHARACTERIZATION

Materials A and B are amber in color, while Material C has a milky
yellow appearance. Visual inspection of these materials reveals bands of
color change and differing inclusion concentrations parallel to the deposi-

tion plane,

Table 1 is a summary of the characterization data generated by
Wimmer and Graves (1977) and Wimmer (1979) for material A. Microhardness
measurements were made on the polished surfaces of the specimens used in

the water drop impact tests. The results are presented in Table 2,
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TABLE 1.

Properties of CVD ZnS, MT-207,
*
Plate A (Material A).

e - — AL e

A
A
/

Lattice Parameter
Density

Grain Size

4-Point Bend Strength

*%

KIC

Weibull Parameters
(surface flaw model)

Knoop Hardness (100 g load)

Young's Modulus

Poisson's Ratio

(]
5.409 A

4090 kg/m>

8-10 um in growth plane; up to

60 um (columnar) in growth direction

100.8 MPa (14,6 ksi)

0.67 MN/m3/2 (609 psi vin )
o, =

stress in pascals)
0'0=

stress in psi)
m = 6,07

74.1 GPa (10.7 x 106 psi)
0.30 (in plane of plate)

0.35 (in growth direction)

Calculated Dilatational Wave 4,960 ms'_1
Velocity
Calculated Distortional Wave 2,600 ms"1
Velocity

Thermal Expansion

Thermal Diffusivity
Thermal Conductivity

Specific Heat

6.33 x 10 °/°K (-67°C to 25°C)

7.42 x 10—6/°K (25°C to 200°C)

0.09 cmzlsec (25°C)
0.146 w/cm/°K (25°C)

0.40 j/g/°K

239 kg/mm2 (growth plane)

29,0 x 106 (dimensions in meters,

14,3 x 103 (dimensions in inches,

*
Taken from Wimmer (1979).

&k
Crack propagation parallel to columnar grains.




TABLE 2.

MATERIAL

TABLE 3.

Knoop Microhardness Measurements (100 g Load)

KNOOP HARDNESS STANDARD DEVIATION
238 kg/mm’ 5 kg/mm?
244 kg/mm2 8 kg/mm2
194 kg/mm2 8 kg/mm2

Characteristic Grain Dimensions
for CVD ZnS Formulations Investigated.

AVERAGE LINEAR INTERCEPT (um)

MATERIAL A MATERIAL B MATERIAL C

Growth plane 3-4 3-5 5~10

Cross section perpendicular 5-30 5-30 10-100
to growth plane in the direction

perpendicular to growth plane

Aspect ratio range 1,25-10 1-10 1-20
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General grain structure and growth patterns were investigated by
chemically etching polished surfaces, The etchant was equal parts con-
centrated HC1l and H20 at 45°C., Etching time was 1 minute. Surfaces
both parallel and perpendicular to the growth plane were etched. Re-
presentative grain structure micrographs are shown in Figure 1 for
Material A. Materials B and C exhibited the same qualitative features

shown in Figure 1.

Due to the highly anisotropic nature and local variations of the
grain size and structure, an average grain size dimension is somewhat
meaningless. Average intercept distances were measured both in the
growth plane and perpendicular to it for quantitative comparison of
the grain sizes in these materials. The grains appear equiaxed in
the growth plane but columnar in the perpendicular plane as can be
seen in Figure 1. The intercept distances are given in Table 3.

No difference in grain structure was noted between Section B-2 and G-2

for the baseline material.

In addition to having columnar grain morphologies, the three ZnS
formulations exhibited local grain structures which will be referred to
as haystacks which describes their general appearance. Examples of the
haystack grain growth patterns are shown in Figure 2, A haystack con-
sists of a nucleation site and localized distortion of the characteristic
columnar grain growth pattern, At the nucleation site, the major axes of
the grains radiate out into the half space above the growth plane. As more
grains are formed, their major axes tend to approach the growth direction
leaving the haystack structure, Partially developed haystack structures
appear to have been noticed by Graves, et al. (1977), in thin zinc sulfide
layers deposited on zinc selenide substrates. They were referred to as
rosettes by these investigators. The haystack structures nucleate at clinker
and rod inclusions. These inclusions, which have a maximum size on the order
of 100 um, tend to exist in growth bands parallel to the growth plane. The
inclusions are of a larger average size (c., 80 ym) in material C and approx-
imately ten times more numerous than in material A or B (average size

c. 50 um).
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a. Growth Plane
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Direction

b.

Section Perpendicular to Growth Plane

Figure 1. Appearance of Columnar Grains in Material A (Baseline).
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a. Haystack Structure in b. Nucleation site of a
Material C. Haystack Structure at a
Clinker Inclusion.

¢, Growth Plane Section at the d., Transmitted Polarized Light
Nucleatisn Site of a Haystack View of Material A Showing
Structure in Material A. the Haystack Structure and
Deposition Bands of Differ-

ing Grain Texture.

Figure 2., Examples of Microstructural Features in CVD' ZnS,
(Arrows indicate growth direction.)
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In addition to bands of inclusions all materials exhibited bands of

altered grain structure. These bands can be seen in Figure 2d photo-

graphed in transmitted polarized illumination,

2, SAMPLE PREPARATION PROCEDURES

Specimens for water drop impact were fabricated in the form of right
circular cylinders 17 mm diameter by 12 mm thick. The specimens of mate-~

rial C were only 4 mm thick due to limited plate thickness,

The circular impact faces were oriented parallel to the growth plane,
and then mechanically polished to optical quality by A.M.F, Optics, Inc.,

Woburn, MA. Additional specimens with their impact faces oriented perpen-

dicular to the growth plane were prepared at ETI,

In the initial phases of the program all of the impact specimens
were polished at ETI. These surfaces were found to contain excessive
polishing induced flaws which interacted strongly with the impact loading,
The quality of the surface finish achieved at ETI with further polishing
experience has approached the level supplied by AM.F. Optics, Inc.

3, POST-TEST EXAMINATION PROCEDURES

After impacting a water drop in the ETI Liquid Drop Impact Facility,

the specimen is carefully removed from the sabot (the experimental procedure

is described in Section III.1l). Recovery debris are removed with methanol
alcohol in a low energy ultrasonic cleaner followed by a methanol and then
ether rinse. The major fractures and outflow damage are photographed in
both reflected and transmitted illumination for future reference, The

specimen is typically etched (50% HCl @45°C) to reveal the fine surface

fractures present. The enhanced fracture pattern is then photographed.
The subsurface morphologies of the fractures are revealed by sectioning

the specimen on a plane that is perpendicular to the impact plane and passes

through the center of the impact. The sectioning is accomplished by first
encapsulating the impact face with Buehler mounting epoxy. The sectioning

11
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é;i process involves rough material removal by wet sanding with progressively
%@é finer grits of SiC paper, terminating with 5 um A1203 in water on nylon.

ﬁg This is followed by removal of approximately 100 um of material with 0.3 um
%%' A1203 in water on nylon and finally polishing the desired section with

%? «05 pym A1,0, on silk wet with 50% HCl, This sectioning method exposes the
v 273

F internal fractures essentially undisturbed for optical microscope examina-
rgf tions using various illuminations.

A :,%

%g&: The finer details of the fracture/grain structure interactions on

the impacted face of the specimen are observed from etched surfaces using

scanning electron microscopy. Surface replication procedures were used

to examine the details of the damage within surface grains using trans-
mission electron microscopy.

12
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SECTION III
WATER DROP IMPACTS

This program concentrates on understanding water drop impact damage
in CVD zinc sulfide. The surface loading conditions associated with a
water drop collision are still somewhat ill-defined, although advances are
being made in analyzing water drop collisions at high subsonic to low super-
sonic impact velocities (Adler, 1979a). Since the water drop impact condi-
tions are not well defined quantitatively, the nature of the loading condi-
tion as well as the response of the target becomes an integral part of the
general problem. The ETI Liquid Drop Impact Facility currently provides
ideal (spherical) water drop impacts at velocities from 222 to 684 ms—l
(730 to 2240 fps) along with well~documented data on individual drops just

prior to collision with the target.

The operation of the ETI Liquid Drop Impact Facility is described in
Section III.l., The system componeuts and instrumentation used in the facility
were for the most part drawn from what was readily available. Quite accept-
able results are presently obtained in this facility as shown in Section III.Z2.
The potential exists, however, for enhanced and extended capability through
additional modifications and component upgrading. These modifications are
being made as justified. The mechanics of water drop collisions required
for better understanding of the internal fracture observations reported in

Section III.2 is described in Section III.S3.
1. DESCRIPTION OF LIQUID DROP IMPACT FACILITY AND PROCEDURES

A schematic of the ETI Liquid Drop Impact Facili.y is shown in
Figure 3, The specimen is mounted at the front end of a saoot which is
propelled down the range by a small charge of gunpowder. Water drops are
formed at the tip of a hypodermic needle mounted above ih: test section
and fall in the path of the moving specimen. A slotted rail system is used
to guide the sabot through the test section and into the r:.:overy tube. As
a single drop falls from the tip of the hypodermic needle it interrupts
dual fiber optics links above the test chamber thereby initiating the
firing sequence. The system is calibrated so the sabot reaches the drop

wher it has fallen to a point within the limits of the exposed surface of

13
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the specimen. After impacting the water drop the sabot enters the recovery
tube where a graded distribution of material controls the deceleration of

the sabot and protects the face of the specimen from extraneous damage.

The barrel of the powder gun has an inside diameter of 30 mm and is
capable of accelerating the sabot to a maximum speed of 1370 ms'-1 (c. 4500
fps). Circular specimens up to 22 mm (0.875 in.) in diameter can be accom—
modated with the existing sabot configuration. Non-circular specimens with
lateral dimensions less than 22 mm and a wide range of thicknesses can also
be used. The zinc sulfide specimens used in this program are 17 mm in diam-
eter and range from 6 to 10 mm thick. These dimensions are adequate to
avoid edge effects and to eliminate any stress wave interactions with the
water drop impact damage due to stress wave reflections from the back face
of the specimen. Specimens of zinc sulfide can be recovered after water
drop collisions over the velocity range of interest, 222 to 684 ms—l (730
to 2240 fps corresponding to an aircraft traveling at 500 mph through mach 2),
without cracking the specimens or producing additional damage which obscures
that due to the drop impact. As shown in Figure 3 the total length of the
recovery system is only 8 m (26 ft.). The extent of the water drop impact
damage on zinc sulfide over this velocity range is described in Section III.2.
Multiple water drop impact damage can be obtained by sequential firings of
the same specimen down the range. Only a few interacting drop impacts are
required at 342 ms"l (1120 fps) to significantly degrade the infrared trans-
mittance of zinc sulfide. The ETI facility (described more fully by Adler
and James, 1979) is ideally suited for documenting each drop impact in con-

junction with its effect on the general degradation process.

The tests were conducted in a helium atmosphere at an ambient pressure
of 300 um Hg in order to minimize distortion of the drop caused by the bow
shock prior to impact with the specimen's surface. This effect is distinct
from that of blow-by which results from the expansion of the gases associated
with the gunpowder burn. Escape of these gases generated by the detonation
of the gunpowder has been eliminated by means of a self-sealing sabot configu-

ration. A considerable developmental effort has been completed to maintain

15
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the integrity of the water drop and to minimize its aerodynamic distortion
prior to impact. While shock wave and boundary layer effects are an inte-
gtal part of the erosion problem for supersonic aircraft, the drop gcometry
prior to impact in actual flight environments is an aerodynamic problem.

The intent here is to understand the material's response to water drop colli-

sions which requires a reproducible and relatively simple drop geometry.

In order to operate at pressures well below the vapor pressure of
water, a solution of 80 volume percent of distilled water and 20 volume

percent ethylene glycol (CZH6O ) is used. From a pragmatic viewpoint this

2
solution behaves essentially the same as pure water during the collision

process.

The water-glycol solution is deaerated. The temperature of the
solution is .ypically slightly below room temperature: approximately
15°C, Chilling the solution has the advantage of lowaring the vapor
pressure, but this advantage has to be balanced against an increase in
viscosity. The deaerated water-glycol solution is placed in a reservoir
above the test chamber where it is drawn into a vertically mounted syringe.
Manually applied pressure to the syringe initiates drop formation at the
tip of the hypodermic needle. If the drops are forming satisfactorily at
the test pressure when viewed through an optical microscope with a magni-
fication of about seven times, a single drop is photographed as it falls
between the guide rails at the elevation of the specimen. The integrity
and general appearance of the drop is checked from this photograph., If
it passes this visual inspection, the pressure in the system is checked
to confirm that it matches the desired test pressure, the pre-set firing
sequence is unlocked, and detonation of the gunpowder takes place as a
subsequent drop interrupts the dual fiber optics links passing above the
test chamber corresponding to station (:) in Figure 3. When the sabot
is 25 wm from the impact point, it passes through a laser beam at station
C) which sends a puise to a delay generator which subsequently triggers
a flash unit to photograph the drop prior to impact. The delay circuit

16
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allows the drop to be photographed as close to the impact site as the

; jitter in the system will permit, In all cases this photograph will
record the water drop when the specimen is less than 25 mm away. Stated
: differently, the sabot will be a maximum of 113 us away from impacting

the water drop when traveling at 222 ms_'l and 36 us away for a 7090 ms—'l

impact condition. The velocity of the sabot is measured by the length

of time required for the sabot to pass through the laser at station (Z)
in Figure 3. Knowing the length of the sabot and this time, the veloc-
ity can be calculated. A second determination of the impact velocity is
made by measuring the time required for the sabot to pass through laser
beams @D and CD in Figure 3. The distance between these stations

divided by the recorded time increment yields a second value for the

impact velocity,

During the initial phases of this investigation the water drops

were tending toward ellipsoidal shapes prior to colliding with the speci-

men due to the interaction with the gas remaining in the gun barrel. The

pumping capability was subsequently improved.

S SAMRRY

At a system pressure of
100 to 200 um Hg in a helium atmosphere, the drop distortions appear to

be negligible prior to impacting the specimen. A series of tests were
carried out for confirmed spherical water drop impacts as shown in
Figure 4. The significance of ellipsoidal drop collisions compared

with spherical drop impacts will be considered along with the nature of

the loading conditions for spherical water drop collisions on ZnS,

2, OVERVIEW OF WATER DROP IMPACT DAMAGE

Water drop impacts have been obtained on the three ZnS materials

described in Section TI.l, and additional impacts were obtained on specimens

from an unidentified ZaS FLIR window over the velocity range from 222 to

684 ms *.

e e B Sy A w

The complete range of test conditions and the general features
of the resulting impact fractures will be described.

[P,
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Figure 4, Typical Appearance of Water Drop Prior to Impact
for Impact Velocities from 200 to 700 ms—l at a
Pressure of 0.1 torr or less.
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a, Test Conditions

Tables 4 and 5 list the impact conditions for each test carried
out within this program.

The impacts obtained from the initial sequence (Table 4) were for
surfaces prepared at ETI. At the time the initial test sequence was under-
taken the drops were deforming to ellipsoidal shupes prior to impact, how~-
ever the water drop impacts listed in Table 5 are for confirmed spherical
drop collisions. An ellipsoidal drop will be considered equivalent to a
spherical drop when they have the same mass. Let bl,b2 be the semi-major
and semi-minor axes of the ellipsoid, then the equivalent spherical drop

radius ro is determined from the relation
r = b,” b (3.1)

The equivalent drop diameter is calculated using the dimensions measured
from the photographs of the drop prior to impact as shown in Figure 4,

The ratlo of the major to minor axis of the elliptical cross section is
listed in Table 4 to provide a measure of the distortion which occurred.

The influence ellipsoidal drop impacts have on the magnitude of the ob-
served damage will be examined in Section III(a). The missing entries under
the heading bl/b2 are for shots in which the drop was already obscured

by the sabot when the photograph of the drop prior to impact was taken;

for these cases which arise due to the inherent jitter in the system the
diameter of the pretest drop is used for the equivalent spherical drop

diameter,

Improvements in the ETI Liquid Drop Impact Facility were made during
the early stages of this program which eliminated drop distortions prior
to impact: spherical drop impacts are now obtained at all impact velocities.
A second series of water drop impact tests were carried out for this condi-
tion for optically polished surfaces as listed in Table 5. The nature of
the impact damage during the initial sequence did not show any change in
its general form over the velocity range from 237 to 640 ms_l, so the second
test series concentrated on two impact velocities: 342 and 512 ms'-l

corresponding to mach 1 and mach 1,5,
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To our knowledge single water drop impacts on zinc sulfide, or zinc
selenide, above 342 ms-l (1120 fps) have not been investigated. Hackworth
and Kocher (1978) have reported single drop impacts on ZnS and ZnSe at
velocities to 340 ms-l. Their experimental facility does not allow veri-
fication of the drop sizes and shapes. A number of multiple drop impact
sequences have been reported in their work (Hackworth and Kocher, 1977,
1978). A series of interacting spherical drop impacts at 512 ms~1 was
initiated in order to assess the erosion pit nucleation process at this
higher velocity (shot numbers 1049, 1051, 1052), However shortly after
obtaining these three shots, the quality of the impacts was declining due
to gun barrel erosion which did not allow the gases generated by the gun-
powder burn to be completely sealed by the sabot. The gun barrel is being
replaced, so the multiple impact sequence has been terminated until the
previous high level of perfection in the water drop collisions is once

again achieved.

Qualitatively the nature of single drop impact damage in polycrystal-
line ZnS over the velocity range investigated (237 to 640 ms-l) shows a
characteristic fracture pattern whose extent depends strongly on the im-
pact velocity, The characteristic fracture pattern as viewed in the direc-
tion of impact with transmitted illumination is apparent in Figure 5.
Both the velocity dependence of damage and the characteristic cross sec-
tional fractures due to single drop impacts can be seen in Figure 6.
Figure 6 shows the dramatic difference in the extent of the damage for

a water drop impact at 299 ms_l compared with a drop impact at 517 ms_l.

The same magnification is used for both micrographs.

When viewed with reflected light single drop impacts characteris-
tically appear as in Figure 7(a). Figure 7(b) is the same impact (as in

Figure 7(a)) but photographed with transmitted illumination. In both

transmitted and reflected illumination, it is apparent that the fracture
pattern in Figure 7 has been altered by interaction with linear surface
scratches., The surface of the specimen in Figure 7 (shot no. 836) is
from the initial sequence which had a high occurrence of surface polishing
scratches. The impact damage for the multiple impact sequence is shown in

transmitted illumination in Figure 8.
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Figure 5. Shot No. 985 (Transmitted Light Illumination).
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a) Photographed with Reflected Light Showing the
Lateral Outflow Chipping Damage,

Figure 7. Impact Face of Shot No. 836 Impacted at 640 ms_1

Note Strong Interaction of Fracture Pattern with
Polishing Marks.
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b) Photographed with Transmitted Light Showing
Radial Extent of Subsurface Fractures.

Figure 7. (continued). Impact Face of Shot No. 836 Impacted
at 640 ms~l, Note Strong Interaction of Fracture
Pattern with Polishing Marks.,
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b Crack Morphologies and Dimensions

In order to obtain data on the nature of the fractures produced in
the interior of a specimen, cross sectional views on a plane normal to the
impact surface passing near and through the center of the damage zone are
employed. Three distinct fracture zones can be identified by the crack
trajectories observed in these cross sections. The three primary fracture
zones are believed to correspond to the nature of the surface loading con-
ditions and the resulting transient stress states within the target. The
fracture zones will be labeled numerically beginning at the point of impact

and moving outward in a radial directiom.

A typical impact fracture pattern at Mach 1 is shown in Figure 9.
A portion of the impact face and the principal cross section is shown.
Readily visible in the center of this figure as a region free of fracture
is zone 1, alternatively called the central undamaged zone. The central
undamaged zone exists since the initial stresses within the material are

predominantly compressive (Adler, 1977).

Radially outward from the undamaged zone is an annulus of densely
spaced (both circumferentially as well as radially) fractures which in
cross section are monotonically increasing in depth with increasing radial
distance. The fractures adjacent to zone 1 are numercus and shallow ranging
from 3 to 50 ym in depth, which is on the order of the columnar grain dimen-
sions (Table 3). Progressing radially outward the fractures become less
densely distributed, deeper, and approach the surface at a shallow angle
(that is, more nearly tangent to the surface). The cross sectional views
of the midplane fractures show a very distinct transition to fractures
which are nearly normal to the impact surface at the face of the specimen
and then penetrate the interior of the specimen in an initially concave
outward direction; however, if the penetration is deep enough, the frac-
ture path will exhibit a reversed curvature, Fracture paths with double
curvature (concave outward near the surface and concave in at greater
depths) are observed for all the velocities and appear to form a transi-

tion from the fractures which are essentially tangent to the surface to

28
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Impact Face and Cross Section of Shot No. 1016
(331 ms~1) Showing Characteristic Fracture Zones.
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ég: taose which tend to be more normal to the surface at larger radial

%E; distances, This fairly well-defined transition in the orientation of

bﬁf the fracture trajectories will define the outer boundary of zore 2,
§§ The general character of the fractures within zone 2 is shown in

Figure 10, The deepest fractures occur predominantly at the outer
radius of zone 2, or occasionally at the extreme inner radius of the
next zone, zone 3, Zone 3 encompasses all of the fractures outside

of zone 2,

The zone 3 fractures are characterized by a nearly vertical approach
to the impact surface for the first 10 to 50 pym of depth depending on the
impact velocity. The innermost fractures which are the deepest in zone 3
exhibit a double curvature as mentioned earlier which can be seen fairly
clearly in Figure 6 . The depth of fracture in zone 3 decreases ini.ially
quite rapidly and the fractures lose their double curvature becoming rela-

tively shallow and both radially and circumferentially sparse.

In addition to bulk fracturing of the target material water drop
impacts also produce lateral outflow chipping at the surface crack open-
ings (Adler, 1979a)., The chipping results from the impingement of the
lateral outflow jets upon the outer upraised edges of the bulk fractures
which are a characteristic feature of water drop impact fractures. The
outflow chipping damage is most readily seen with reflected illumination

as in Figure 7(a).

Characteristic dimensions of the radial extent and maximum fracture
depths for the fracture zones were measured on the impacts which were sec~
tioned as noted in Table 4 and 5, The dimensions of the various fea-
tures of the impact damage described above are summarized in Tables 6

and 7. Due to the level of variability inherent in the fracture forma-

tion process, a considerably greater number of measurements would have to
be made to provide statistical data which could then be used to interpret
; the trends in the observed fracture zones. The measurements in Tables 6
and 7 are simply intended to illustrate the velocity dependence of the

characteristic features of the damage region which have been identified,
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Some of these dimensions are better defined than others, such as the
radius of the central undamaged zone, zone 1, the onset of lateral outflow
damage, and the maximum radius of zone 2, No attempt has been made to

develop a normalization procedure to account for differences in the drop

diameters or shapes.
3. MECHANICS OF WATER DROP IMPACTS

The experimentally observed damage was produced by both spherical
and ellipsoidal shaped drops. The difference between the surface loading
characteristics of ellipsoidal drops will be investigated for comparison
with spherical drop impact conditions. 1In addition, the general features
of the transient stress conditions within the ZnS specimens will be con-
sidered in relation to the impact conditions represented by the experimen-
tal program in order to interpret and correlate the experimental results.
The need for further refinements in the analytical approach is pointed out

and an initial effort to broaden the scope of the stress wave analysis is

undertaken in Section V,

a. Ellipsoidal Drop Collisions

The analysis of ellipsoidal drop impacts on rigid surfaces has been
formulated by Adler and James (1979). This analysis will be extended here,

since it is relevant to the assessment of the water drop impact damage
observed in the ZnS specimens.

The geometly associated with a perfectly compressible ellipsoid

Sy U 1S A T,

colliding with a rigid plane is indicated in Figure 11. The equation for
the elliptical section is

ok

s

3
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. (3.2)
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RES In terms of the relevant impact parameters,
é«z 2 (b, - v t)>
i 2
i Sow 20l ., (3.3)
g; by by
.
and 92
b1
tan o = (——) tan ¢ (3.4)
b
2
where c is the radius of the circular contact area

v is the impact velocity

t is the time elapsed from initial contact

¢ is the contact angle between the surface of the ellipsoid
and the rigid plane.

The time-dependent radius of the contact area is found from Eq.(3.3),

b \
c(t) = (1—)-]2“-) ‘/ZbZVot - (vot)z . (3.5)

Differentiating Eq.(3.5) yields the rate of expansion of the contact radius,

X 2
&) = (E_l.) Volby m VY (ﬁ) Yo®y ¥ (3.6)
bz [Zb?_vot - (vot)?‘]ll2 bz ¢

According to Figure 10, Eq.(3.6) can also be written

. bl ? vo
c(t) = (E;) Ton a0 . *(3.7)

Using Eq.(3.4), Eq.(3.7) becomes

v

. _ o
c(t) = tan 6(t) . (3.8)

)
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The expression in Eq.(3.8) is identical to that for a spherical body.
This observation implies that the velocity of the boundary of the ex-
panding contact area will be the same for these two cases when the con-
tact angles are equal. The corresponding contact radii at which this
occurs can be evaluated. Using the equation for an elliptical section

in Eq.(3.2), it is easy to show
b
1
bl (E;) sing

2

1 +-((;l> -1) sin2¢

2

¢ = rsina =

1/2 . (3.9)

Denoting the radius of the contact zone for a spherical drop collision by
a, then

a= rosin¢ (3.10)

where L is the radius of the spherical drop.

As stated in Section III.2.a2 an ellipsoidal drop will be considered
equivalent to a spherical drop when they have the same mass. The equiva-
lent drop radius is determined from Eq.(3.1). The major and minor semi-
axes of the equivalent ellipse can be hetermined by reorganizing the param-
eters in Eq.(3.1) such that

o
b2 = -3;/-: (3.11)

(b1/b2)2

When the radius and distortion of the spherical drop are prescribed, b2

and bl can be evaluated. As an example, consider when r, = 1 mm and

bl/b2 = 1.5, then b, = 0.765 mm and b, = 1,5b, = 1,145 mm., The

1 2
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dimensions of the equivalent ellipsoid can be found in general from the
graphical representation of the relations for the equivalent ellipsoid
provided in Figure 12, The cross sectional shapes of ellipsoids covering
the general range of possible interest are also shown in Figure 12, so

some idea of the extent of the drop deformation can be realized.

The previous analysis assumes the drop is perfectly compressible
which is a reasonable assumption for the initial stages of the impact
event, However incompressibility effects will become significant in con~
junction with the onset of lateral outflow (Adler, 1979a), and it would
seem that differences in the nature of the lateral outflow velocities
would occur between a spherical and ellipsoidal drop impact, It is our
conjecture that whatever differences may arise would be relatively small,
Furthermore, it is Adler's finding (Adler, 1979a) that an adequate cri-
terion for the onset of lateral outflow for a spherical drop does not

exist, although a number of analyses can be found in the literature. A

fairly wide dicotomy prevails between the elementary analyses, numerical
calculations, and experimental measurements for disc-shaped drops. To
date, there are no direct measurements of the critical lateral outflow
parameters for spherical drop impacts. In view of this situation the
widely accepted lateral outflow condition stipulated by Bowden and Field
(1964) is generally employed. Their criterion is simply

sing = (3.12)

i:nl0<

where Cw is the compressional wave speed for water which is apgsroximately
1.5 mm/us. For the range of impact velocities under investigation the wave

speed Cw should be replaced in Eq.(3.12) by the shock wave speed for water,
- According to Heymann (1968),

Uw = Cw 1+ ZMb) (3.13)
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where M0 = vo/Cw « The relation in Eq.(3.13) is valid for impacts on
a rigid surface when Mo <1,2 . Eq.(3.12) now takes the form

2 ______MO (3.14)
sing =+ ~ T+ M ' .

o

This is a lateral outflow criterion for spherical drops, however the

same condition pertains to elliptical drops, since this is a condition

on velocity components at the periphery of the contact zone, namely

c, + v, = Uw (3.15)

It was already shown that the expansion velocities of the contact zone

were identical for a sphere and an ellipsoid for the same value of the

contact angle ¢ (Eq.(3.8)). The critical contact radii for which this
condition pertains are determined from Eq.(3.9) and (3.10) upon substi-
tution of Eq.(3.14), then

b M
(35
cc b2 1+2M0
= = 173 (3.16)
1 2 2
b M
A ) )
b2 14+2M
[]

Alternatively the condition that

¢, = Uw (3.17)

has also been used as a criterion for estimating the onset of lateral
outflow. However the relation éc=Cw was conjectured to be related
to the location of the peak pressures in the pressure distribution found
from numerical studies of water drop collisions on rigid surfaces (Rosen-
blatt, et al,, 1979)., The cccurrence of the peak pressures at the criti-

. cal radii computed from Eq,(3.17) appears to conform to the experimental
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results obtained for spherical water drop impacts on polymethylmethacrylate
specimens (Adler, 1979b). The critical contact radii for ellipsoidal water

drops are found from

N ]

62 = (3.18)
1 2 2

The numerical evaluation of this expression is quite close to the value
obtained from Eq.(3.16): the values from Eq.(3.16) being slightly higher.
The critical radii are plotted in Figure 13 as a function of the im-

pact velocity v, o

The influence of water drop distortions prior to impact on the
dimensions of the contact zcne between the drop and the target (which is
assumed to be directly related to the central undamaged zone) can now be
evaluated explicitly. Consider a 2 mm spherical water drop impinging at
500 ms—l. The radius of the contact zone is 0,2 mm as determined from
Eq.(3.18). However, based on the plots in Figures 12 and 13, if the
initially spherical water drop deforms into an ellipsoid prior to colli-
sion with the target, the critical contact radius increases to
0.328 mm (bl/b2=1'5)’ 0,466 mm (bl/b2 = 2.0), and 0.734 mm (bl/b2 = 3.0).
It is seen that the size of the contact zone can be increased significantly
for even relatively minor drop distortions assumir.g the stated criteria
for lateral outflow and the location of the peak pressure are applicable

in general,
The time after impact for which the critical contact radii are

reached corresponding to Eq.(3.16) and (3.18) can also be specified.

The critical time t. corresponding to Eq.(3.16) is
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b2 bl 2 ( Mo >2
1 (b—) '1> 1+2M
2 o]
and the critical time (orresponding to Eq.(3.18) is
~-1/2
tcv0 bl 2 ( Mo 2
i +(b—) I ) (3.20)
2 2 o

The duration of the loading time is also greater for ellipsoidal drops

compared with spherical drops.

The aforementioned effects should have relatively little influence
on the pressure distribution applied to the surface of the target, since
lateral outflow for the ellipsoidal drops considered will occur before
In

contrast, note the different conditions which would prevail for a pancake-

the shock wave in the liquid reaches the back surface of the drop.
shaped drop. On the basis of the previous analysis the major difference

is that the direct pressure would be applied over a larger contact zone

for a longer duration fer the ellipsoidal drop as compared with a spheri-
cal drop of the same mass, but the magnitude of the applied pressure should
be roughly the same in both cases. The pressure distribution on the inter-
face would have to be determined from a detailed analysis of the flow con-
ditions at the expanding interface as already carried out by Huang (1971),
Hwang (1975), and Rosenblatt, et al. (1979).

The estimates for the dimensions of the contact zone are derived
for a rigid surface, however the difference for water impacts on a zinc
sulfide surface is not too significant: the difference in the shock wave
velccity for the two cases is less than 6%, The magnitude of the uniform
pressures which develop over the contact zone according to a one-dimensional
wave analysis were determined and are shown in Figure 14 as a function of
the impact velocity.
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Aerodynamic effects should have a perturbing influence on water drop

geometry prior to impacr in all water drop impact facilities employing a
specimen moving at high subsonic to supersonic velocities. If severe per-
turbations are not produced (small eccentricities), it is extremely diffi-
cult to identify the ellipsoidal drop collisions from post-test examinations
of the impact specimens. Therefore, the photographic records of the actual
collision in the ETI Liquid Drop Impact Facility are very useful because
they afford the opportunity to quantify and correct these subtleties in the
water drop impact conditions and the extent of the resulting damage which

have gone unnoticed in most liquid drop erosion studies.

b. Transient Conditions Within the Target Materials

The generation of stress waves due to wate, Jdcup collisions on zinc
sulfide specimens will be considered in order to better realize the manner
by which the material fails and for the development of correlations with
the loading cycle. Blowers' analysis (1969) has been employed by Adler
(1977), Hackworth and Kocher (1977, 1978), and Hackworth, et al. (1979)
to describe the state of stress in an elastic half-space due to a water
drop collision. Rosenblatt, et al. (1977, 1979) have employed finite
difference procedures to address this problem. Representative results from
the analytical approach have been described (Adler. 1977, 1979a) and only a
few observations will be made which will be used to show the relation be-
tween the fracture patterns for the zinc sulfide specimens and the form of
the stresses imposed. A new and more general analytical approach for the
determination of the transient stress states due to an arbitrary, local
pressure distribution has been formulated in Section V., The amnalysis of

the water drop/surface crack interactions is derived in Section VI,

The characteristic fracture psttern for water drop impacts on ZnS
over a velocity range from 222 to 684 ms~* s shown in Figure 6. The
fractures are arrayed along circumferential paths around a central undam—

ag2d zone, zone 1 defined in Section III,2,b, The fracture concentration
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decreases with radial distance. The subsurface character of the fractures

. (depth and general trajectory, also varies with radial distance as shown
on a central cross section in Figure 9. The characteristic fractures
are formed at ovr near the surface; all of the damage produced over the
specified velocity range lies withian an annulus around the central undam-
aged zone and extends to relatively shallow depths within the specimen.
The analyses which follows will acccrdingly focus on the conditions at

and near the surface of the specimen during the water drop loading cycle,

When a spherical water drop strikes the surface the boundary of the
contact zone will expand in accordance with Eq.(3.5) when b1=~-b2=r0 . The
initial velocities of the boundary of the contact zone, Eq.(3.6), are quite
£Y2 | s described by Blowers (1969)

a condition is reached whereby the dilatational wave for the target material

high, but decrease essentially as

moves ahead of the contact zone followed by the shear wave at a later time.
The time and radial distance at which these separations occur can be found
by equating the velocity of the contact zone, a(t) , in turn to the dila-
tational wave speed for zinc sulfide, Cl=4.96 mm/Us , and to the shear
wave speed, Cz=2.60 mm/us . The derivation is analogous to that carried
out for a similar condition in Eq.(3.17). The final results are plotted
in Figure 14, which clearly shows the relation between the propagation of
stress waves and the hypothesized attainment of the peak pressure and the
ensuing precipitous pressure relezse phase of the collision process. It

is interesting to note that for impacts above 550 msm1 this analysis indi-

cates that the shear wave will move ahead of the contact zone boundary after
the peak pressure has been reached. Also due to the increasing shock wave
velocity in water as the impact velocity increases, the time required for
the attainment of the peak pressure remains fairly constant over an extended

range of impact velocities,

The relations provided in Figure 15 provide some perspective on the
size of the loaded region during the pressure buildup phase and the time
duration required for the indicated sequence of events to occur, The tem-

poral development of the radial stresses for a 2 mm water drop impacting a

ZnS target at 200 ms_l is provided in Figure 16, The stresses are ccmputed

at a depth of 5 um below the surface from Blowers' solution to the water
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drop impact problem which is for a uniformly loaded circular region whose
boundary is expanding as the square root of the time after impact. Neg-
lecting the variation in the pressure distribution during the loading phase
the computed stress levels up to 35 ns should be reasonable. The subsequent
decline in pressure predicted from Figure 15 to occur at 27 ns is not re~
flected in these calculations., The succeeding time increments are provided
to show the evolution of the radial stress for this special case and to il-
lustrate the general character of the radial stress as it propagates through
fracture zones 2 and 3. The valley between the two peaks in the tensile
stress distribution scen when the contact time exceeds 35 ns corresponds to
the location of the Rayleigh surface wave: the shear wave is propagating
just slightly ahead of the Rayleigh wave. The maximum extent of the radial
stress values corresponds to the location of the dilatational wave front.
The magnitude of the stress is normalized with respect to the magnitude of
the impact pressure, For a water drop impact on zinc sulfide, Figurel4
indicates the magnitude of the impact pressure is 340 MPa., TFor example the

magnitude of the peak radial tensile stress whem t = 45 ns is 279 MPa.

A significant state of triaxial tensile stress develops in conjunction
with the Rayleigh wave. At a depth of 5 ym and when ¢t = 45 ns, Grr=179 MPa,
Oee=89 MPa, and Ozz=169 MPa. The spatial extent of this stress condition is
on the order of a few micrometers and is quite localized in the vicinity of

the surface of the target,

Referring to Figure 16, it is seen that significant radial tensile
stresses are present at a radial distance of 0.1 mm when t = 25 ns . The
potential exists for the initiation of circumferential fractures. Accord-
ing to the plot in Figure 15, the peak pressure on the surface will be
achieved when ac=0.105 mm, At this time the distortional wave would have
advanced beyond the contact zone, but the occurrence of this condition is
dependent on the magnitude of the stress wave velocities in the target

material.
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4 Similar plots can be given for the higher impact velocities. The

. magnitude of the impact pressure would be increased as shown in Figure 14,

so the magnitude of the stresses would be correspondingly increased; how-
ever the general evolution of the radial stress component follows a pat-
tern analogous to that in Figure 16, The temporal evolution of the
radial stress component for a 2 mm drop impacting at 600 ms-l is shown in
Figure 17. The larger radial distance compared with the collision at
200 ms--1 prior to the development of significant tensile stresses is ap-
parent, This effect would be reflected in the larger dimension of the
central undamaged zone as the impact velocity is increased. When t =45 ns,
the plot in Figure 17 indicates the peak radial temsile stress is 0.75 p
Referring to Figure 14 for the value of P, > the magnitude of the ra-
dial stress is about 1 GPa, This stress level is more than sufficient to
initiate fracture. The time t =45 ns corresponds to the peak pressure
loading as seen from Figure 15 when Vo=600 ms-l . The continued in-
crease in the radial stress components after t =45 ns due to the continu-
ous loading condition inherent in Blowers' analysis has to be viewed with
caution, However for times greater than 45 ns the characteristic form of
the radial stress component is indicated after the Rayleigh wave has

ceparated from the contact zone,

The rapid change in the nature of the radial stress with depth into

the target is shown in Figure 18 when v0=600 ms—l and t=65ns ., The
need for an accurate analysis of the transient stresses at shallow depths

below the surface of the target is amply demonstrated for establishing the

fracture response of the target material,

The development of significant radial tensile stresses should

correspond to the initiation of fractures at the periphery of the central

undamaged zone (zone 1). This condition appears to occur in the vicinity
of the location of the peak pressure on the surface of the target. However
this criterion cannot be taken as a general relationship, since the radial
location of the peak pressure is determined solely from the shock wave re-

laticns for water and the stress state in the target is dependent on the
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stress wave velocities inherent in the target material. With this proviso
the relationship between the location of the peak pressure and the onset of
fracture (boundary of zone 1) will be evaluated from the available data,

The relevant data from Tables 5 and 7 is consolidated in Table 8 along

with the calculated values of the critical contact radii determined from
Figure 15, The comparison between the measured values of the outer bound-
ary of fracture zone 1 and the calculated values of the location of the peak
pressure indicates a fairly close correspondence within the level of cumula-
tive experimental error in the measurements required. The variation in the
measured dimensions is due to the circumferential nonuniformity in the ini-~
tiation of fracture and the differences which arise depending on whether or
not the specimens have been etched. This measure of the fracture response
is independent of the zinc sulfide formulation investigated as demonstrated

by the comparison in Table 8,
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TABLE 8, Comparison of the Calculated and Measured Values
of the Critical Radii for Spherical Drop Impacts
on Zinc Sulfide.
Impact Drop ac ac
Shot No. Material Velocity Radius a /r (calculated) (measured)
(ms—1) (mm) c° (mm) (mm)

1036 B 299 0.85 0.141 0.120 0.115
1016 A(B-2) 331 .85 151 .128 $11-,125
1012 A(G-2) 336 .81 «153 124 «125-.,130
1017 c 338 .78 .153 .119 .105~-,110
1040 FLIR 401 1.01 172 .174 .180
1041 FLIR 497 1.05 .196 .206 .192
1051 A(G~-2) 505 1.05 .198 .208 .200
978 c 512 0.84 .199 .167 .15-,16
1052 A(G-2) 514 1,07 200 214 .200
1048 FLIR 516 1,05 »200 .210 .200-,220
1038 B 517 0.86 +200 172 +160-,165
1049 A(G-2) 518 1,05 .200 .210 .200
1042 FLIR 594 1,05 .216 .227 «215-,225
1050 FLIR 600 1,05 .217 «230 .230
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: SECTION IV
POST~TEST EXAMINATION OF ZINC SULFIDE SPECIMENS

The general features of the grain structure in CVD zinc sulfide have
been described in Section II.l. The influence of the grain size, grain
orientation, grain growth patterns, inclusions, surface imperfections, and
hardness on the nature of the damage produced by water drop collisions has
been considered here., Overviews of water drop impact damage on CVD zinc
sulfide have been given previously, but it does not appear that a system~
matic analysis of the above-mentioned characteristics has been pursued
(Adler and Hooker, 1976, 1978; Graves, et al., 1977; Hackworth and Kocher,
1977; Hackworth, et al., 1979; Peterson, 1975, 1979). Detailed microscopic
examination of both the impact face and cross section of impacts on the
three materials described in Section II.l over the velocity range from 237
to 640 msml have been carried out to examine the most damaging aspects of

the inherent microstructure in CVD ZnS.

Variations in surface finish have the greatest effect upon the
resultant extent and type of fractures observed for a given velocity-drop
size condition. The strong effect of surface scratches upon the fracture
pattern, especially the fractures in zone 3 (the fracture zones were de-
fired in Section III.2,b can be readily seen in Figure 7b. Zone 3 now
contains in addition to fractures decreasing in depth with radius some

large and deep fractures nucleated at surface scratches,

The influence of the surface grain structures and orientation was
investigated using scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) of surface replicas. The results of the SEM
investigation will be discussed first. SEM micrographs of shot no. 838
are provided in Figures 19 and 20, The impact face of shot no, 838 is
oriented to coincide with the growth direction; i.e., along the major

axis of the columnar grains as can be seen in the figures,

The circumferential fractures on the impact face display significant
interaction with the surface grains in fracture zone 2., Figure 19 shows
two views of the fractures in zone 2 of the etched impact face of shot

no, 838 for the major axes of the grains oriented tangent and perpendicular
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a. Major Axes of Grains Tangent to
Circumferential Fractures.

b. Major Axes of Grains Perpendicular
to Circumferential Fractures,

Figure 19, SEM Micrograph of Impact Face (etched) of Zone 2
for Shot No. 838.
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to the stress wave front., The stress wave/grain orientation interaction
controls the character of the circumferential fractures, For the condi-
tions represented in Figure 19, major axes of the grains tangent to the
stress wave propagation direction, the fractures are almost entirely inter-
granular, When tbe grain major axes are perpendicular to the stress wave
propagation direction, Figure 19b, the circumferential fractures tend to
be shorter than in Figure 19a, less continuous, and there is relatively

little tendency for the fractures to follow grain boundaries.

Figure 20 shows the radial variation in the circumferential fracture
concentration in a region nriginating at the boundary of the central un~
damaged zone (right hand side of figure) to the region at which lateral
outflow damage is initiating (left hand side of figure). The compusite
micrograph is along the stress wave propagation direction which is from
right to left. The major axes of the grains are oriented at approximately
50° to the stress wave propagation directions. A higher concentration of
short circumferential fractures is evident at the periphery of the undam-
aged zone than at larger radial distances. The circumferential fracture
lengths tend to increase with radial distance. The onset of lateral out-
flow damage would indicate that the loading phase cof the water drop

collision has terminated.

Two preferential crack orientations can be distinguished in the high
crack concentration annulus (zone 2). One system of fractures represents
intergranular fractures oriented predominantly along the grain boundaries
parallel to the major axes of the grains., These fractures are accordingly
directed at angles from roughly 40 to 60° to the wave propagation direction
extending from lower left to upper right in Figure 20. Th: second system
of fractures is due to a distribution of fine polishing scratches and are
oriented at an angle in the vicinity of 75° to the wave propagation direc-
tion extending from the lower right to uppar left in Figure 20. The orien~
tations of the major axes of the graims and the wave propagation direction

renresent an intermediate condition to those shown in Figure 19a and t.
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As the radial distance from the point of impact increases the
concentration and orientation of the circumferential fractures change.
The orientation of the circumferential fractures becomes normal to the
wave propagation direction thereby essentially ignoring the grain struc-~
ture. The fracture mode is now transgranular with little preference for
grain boundaries, unless the grain orientation is highly favorable, This
mode of fracture prevails in the intermediate fracture zone as the concen-
tration of circumferential fractures drastically decreases and the fracture
lengths increase significantly, The occasional cracks observed far from the
point of impact (at the outer bouadaries of zone 3) generally are associated
with some forxrm of microstructural defect. Some form of stress concentration
is necessary to nucleate and propagate a crack at the low siress levels

which would prevail in this region.

The surface of shot no. 838 contained some polishing scratches which
interacted with the fracture pattern on a very small scale, although the
gross fracture behavior did not show interactions with the polishing flaws,
In contrast shot no, 1012 which was polished by a commercial polisher to
above average optical window tolerances showed no scratch interaction with
the fracture pattern on either a micro or macroscepic scale. Shot no. 1012
was on a surface parallel to the growth plane (i.,e., the columnar grains
were perpendicular to the impact plane) at an impact velocity of 336 ms—l.
The impact surface was examined by TEM microscopy of a shadowed carbon
replica. Figure 21 is a region within zone 2 adjacent to the central un-
damaged zone which appears in the lower left of the figure. The fractures
tend to be of two types: those that are small (<lu) and wholly contained
within the grains and those which are somewhat longer (“3um) and are asso-
ciated with grain boundaries. This behavior is very simiiar to that of
Figure 19b without the perturbing influence of the surface scratches.
Figure 22 shcws che fractures at the inner radius of zone 3 (i.e., adja-
cent to zone 2) in which the fractures arc transgranular with no influence

from the grain structure or orientation.

The critical stress states due to a water drop impact on an elastic
half-space have been described in Section III.3.b, For brittle materials the

magnitude and duration of the radial stress component when it is tensile at
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TEM Micrograph of a Surface Replica of Impact Face
of Shot No. 1012 in the Region of the Inner Radius
of Zone 2. Note the Very Short Circumferential
Extent of the Fractures.
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and near the specimen's surface are the dominant contributions to fracture
initiation and propagation., The magnitude and duration of these tensile
stresses are related to the size of the drop and its velocity at impact.
Once the tensile stresses develop in advance of the expanding water drop/
target interface, they are of a magnitude which more than exceeds the cri-
tical stress intensity factor of the zinc sulfide target. The surface
cracks surrounding the central undamaged zone consisting of the major por-
tions of fracture zones 2 and 3 show relatively little interaction with the
surface grain structure and near surface inclusions. Figure 19a shows that
in this region the grain boundaries provide paths for the crack trajectories
when the major axes of the grains are approximately normal to the stress
wave propagation direction. As the stress waves propagate away from the
impact site, they are attenuated due to the inherent attenuation of the
material as well as due to the energy lost ir creating and extending cracks.
Thus fractures at the more distant points in zone 3 will tend to show the
greatest dependence on the material's microstructural features. The inter-
actions between the fractures found in this region and those features which
are able to provide sites for stress amplification of the low amplitude
stress waves of moderately long duration propagating through zone 3 were
examined in moderate detail., Interactions did occur with some of haystack
structures described in Section II.1, however this contribution to the general

degradation of the specimen is essentially inconsequential.

The fracture interaction with the haystack grain formations may be a
result of the presence of the same inclusion that nucleated the haystack or
could be a result of the grain orientation interface. Wimmer and Graves
(1977) note that the columnar grain structure results in some anisotropy imn
strength, hardness, and Poisson's ratio. Their strength and elastic property
tests were on a macroscopic scale, so it is conceivable that the effects of
local anisotropy could be much greater than their mechanical property eval-
vations indicate. The local anisotropy of the CVD zinc sulfide could in

itself produce critical stress conditions for fracture initiationm,
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The major crack. for specimens with a moderate distribution of fine
polishing scratches are reiitively large semi-elliptical fractures nu-
cleated at surface scratches as cun be seen in Figure 7b. These frac—
ture surfaces exhibit a large orientational dependence between the stress
wave direction and the surface scratch., Surface scratch nucleated cracks
are typically bounded in extent by *he points at which the included angle
reaches 45° between the line of the scratch and the tangent to an expanding
circle centered at the impact site intersecting the scratch. Even if the
scratch is composed of a serizs of small disjointed segments oriented dif-
ferently than the compcsite scratch direction; the resultant fractures will
only interact with these segments very weakly, if at all, until they satisfy
the included angle requirewent described above. The scratch wucleated frac-
tures tend to be more pronounced in fracture zome 3 thau in fracture zone 2.
This may be due to the longer duratiom but decreased amplitude of the stress
pulse. The decreased stress amplitude is compensated by the ease of tracture

nucleation at a fine surface scratch.

In addition to the influence of grain boundaries and surface pelishing
scratches on impact fracture behavior, the influence of grain size, inclusion

content, and harduess were also investigated.

Three different formulations of ZnS (materials A, B, and C) as
described in Section II,1,whose properties are tabulated in Tables 1 to 3,
provided variations in grain size and hardness, Material C has both
a lower microhardness and a larger grain size than hoth material A of B
which are similar in grain size and hardness. Comparison of the impact dam-
age due to single drop impacts on these materials reveals no significant
difference in the extent or nature of the fractures produced, Cross sec-
tional views of the fracture patterns are shown in Figures 6 and 23 for
impact velocities of 517, 515, and 512 ms—l on materials B, A, and C, re-
spectively, It is apparent from these figures that the variations in hard-
ness, grain size, grain shape, and inclusion content reprevented by these
three materials does not significantly affect the impact damage. Comparisons
of the measurements of the fracture zone boundaries and fracture depth dimen-

sions tabulated in Tables 6 and 7 corroborate this conclusion,
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In order to extend the range of available grain structures, specimens
were also cut from material A parallel to the deposition direction to yield

specimens in which the exposed face has the elongated grain structure illus-

v 2 ’%‘g'g?; 2

trated in Figur: la. Comparable water drop impact conditions (shot no. 813
and 838), representing the difference in grain structure shown in Figure 1,
produced no obvious difference in the fracture pattern observable on both a

microscopic and macroscopic scale,
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SECTION V
ANALYSIS OF WATER DROP IMPACTS ON ELASTIC SOLIDS

Knowledge of the stress states in a target material due to a water '
drop collision is an essential prerequisite for analyzing the extent of
the resulting crack growth which occurs when the impact velocity exceeds

the fracture threshold. In general, the motion of the drop and the mate-

b
i? rial is a coupled problem and should be treated as such, since the contact
hil pressure is a function of the deceleration of the drop which depends in

: I turn on the deformation of the surface. This leads to a complex non-linear
-1A" interdependence between the pressure and the surface deformation. We will
%%fh side-step this issue, however, by assuming that for the purpose of calcu-
%é% lating the pressure, the material surface can be assumed to be rigid.

This will result in an c erestimation of the pressure which for materials

AR

with the hardness of zinc sulfide is not too significant. This can be

s
o

/

corrected if desired by using an iterative procedure once the general

oy

:

i
[

solution for the surface deformation has been obtained.

The analytic approach developed here is based on the use of Green's

v

PR
O a ] < A SRS,
N .

functions and a Green's theorem relation derived from the divergence theorem.
For these techniques to be useful, it is necessary that the problem be linear
which imposes some restrictions on the drop speed and material properties.

In particular, deformations must be sufficiently small that a linear stress-—

strain relation is valid. This eliminates from consideration, for example,

those events which result in substantial cratering. The linearity assumption
is bound to fail at crack tips however, since a strictly linear material
would never crack and consequently, some special treatment of these regions
is required. From the ETI experimental work on ZnS, it appears that in the
velccity range of interest, namely 222 to 684 ms-l, the response of the
material is reasorably linear except for the creation of the cracks. This

is deduced from the fact that any permanent deformations of the surface as

a result of the impact are negligible compared to the dimensions of the impact
zone, For simplification, the material will also be assumed isotropic.

This assumption is supported by experiments on ZnS conducted by ETI which

do not show any strong dependence of impact damage on grain orientation

for the typical grain dimensions in the current production of CVD ZnS windows.
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1. PREVIOUS WORK

A few comments concerning some previous work on this problem will be
made. Rosenblatt, et al. (1976,1977), have developed a numerical solution
to the crack growth problem in ZnSe using explicit numerical methods. In
comparing their results with the experimental results obtained in this pro-~
gram for ZnS, it is seen that the numerical solution produces cracks whose
spacial extent essentially encompasses the annulus corresponding to zone 2
cracks (ETI notation) observed in the cross sections in Section IV. The cracks
in tie numerical solution are not as clearly defined as in the experiments:
they tend to appear more in the form of a completely cracked zone than as
a distribution of distinct cracks. Also, the experimentally observed zone 3
cracks appear to be almost completely absent in the numerical solution.
Since ZnS has a greater stremgth than ZnSe, this discrepancy is not likely
to be explained by the difference in the materials., A more likely explana-
tion is that the crack model used by Rosenblatt and co~workers is incomplete,
since according to their fracture criterion only tensile cracks are allowed.
Cracks can occur in any cell in the finite difference grid once the tensile
stress criterion is satisfied. This is not an appropriate representation
for the preferential crack formations controlled by the imposed transient
stresses and a surface flaw distribution. Considerable improvements in the
basic fracture model appear to be required before the finite difference com-
putations can begin to reproduce the physics of the actual impact induced
fracture patterns. This points to an area of concern which requires further
study and points out the danger of relying too heavily on numerical results

alone.

A second point examined by Rosenblatt, et al. (1977) was the pressure-
surface deformation interdependence, It was found that assuming a rigid
surface for the purposes of calculating the pressure does not introduce

intolerable errors over the velocity range of interest.
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The analytic approach used by Hackworth and Kocher (1978) will also
be mentioned, since their analysis was to provide the local stress condi-
tions at various locations within the half-space for the purpose of esti-
mating the crack growth which would occur. However detailed examination
of their work revealed an apparent error in their contribution to an ex-
tension of the initial analysis of the stress wave problem (Blowers, 1969;
Adler, 1977)., Their starting point is the TURBAN computer program which
evaluates the stresses in an elastic half-space due to a pressure distri-
bution given by P(r,t) = Poe(k/flr) where 6(x) is the Heaviside
function

1 x>0

8(x) = ( (5.1)
I 0 =x<0.

The analytic solution was determined by Blowers (1969) for this prcssure
distribution i terms of several integrals which are evaluated by TURBAN.

Hackworth and Kocher's extension of Blowers' idealization of the water

drop impact problem to time~dependent pressure loadings is based cn
Duhamel's superposition relations which utilized Blowers solution, Oo .
They proposed that o(r,z;t) , the solution for the general time-dependent
distribution P(r,t) , is given in terms of the solution, Oo(r,z;t) , for

the restricted distribution Po(r) by the expression

t \
T .
o(r,z;t) = oo(r,z;t) +-J; do(r,z,t—r) (o) dt (5.2)

where the final pressure distribution is given by
P(r,t) = Po(r) P(t) . (5.33)

f’(r) 2 %Iti (5.3b)
t=1
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This is correct as far as it goes, but Eq.(5.2) is valid only for the
limited class of distributions %£.. which the restricted distribution is
independent of time, a point which is not clearly made in the report.
This however excludes Blowers' solution upen which TURBAN is based. A
more general relation similar te Eq.(5.2) can easily be found, however,
which is valid for Blowers' distribution although the final pressure dis-
tribution does not have the simple product form sought by Hackworth and
Kocher. The general solution as will be shown later (see Eq.(5.50)) for
the physical stress matrix at location (;,t) in a half-space due to a

prescribed pressure distribution on the surface is given by

t
oy G, t) =¢; dax{ dt P(X,t-1) Eaig *,7:71) (5.4)

wheregﬂdax: denotes the integral over the surface S , specified by x3=0,
of the"half-space. On this surface the coordinate vector is ; , the pres-
sure distribution is P(§,t) and the appropriate Green's tensor is

E3ij(§,;;1) . Taking the Lapiace transform of this expression, we find

Eij (-;,S) =¢

- > - > >
) daxP(x,s) ZBij(x,y;s) (5.5)

Since the problem is axisymmetric., Eq.(5.5) can be written in cylindrical
coordinates. Thus (dropping the tensor indices and incorporating numerical
constants into the definition of ?(r',s))

(]

o(r,z;e) = [ dr' P(x',s) T(x',r,z230) (5.6)
[o]

In order to reproduce the result given by Hackworth and Kocher (1978), we

will first assume a pressure distribution which is independent of time,

Later, we will extend these results for a general pressure distribution.
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Suppose we know the solution for a constant pressure Po(r) . Then

© P (r)

= -st o] .

P (r ,9) =j; et P (r)ae = -2 {5.7)

and
_ ) ® _ s§(r'.§)—Po(r') ]
o(r,z,8) - 0_(r,2z,8) =.f dr' I(r',x,2z38) [ 3 (5.8)
)
Since
: _dP _ * —st AP, _ 3
P(r,s) = 3¢ —.E e Jeit = sP(r,s) - P(r,0) (5.9)
and provided that Po(r) = P(r,o0)
= - [ oAt S P (r',s)
o(r,z,s) - o _(r,z,s) —}f dr' Z(x',r,z;s)
o A s
® P (") 3
- 1F (! . o'” 7 P (t',s)
.f dr'z(r',r,z;s) S P (ch (5.10)
o )
Tke Laplace transform of Eq.(5.2) gives
- =y _ = B(s)
o(r,z,s) oo\r,z,s) oo(r,z,s) (o) (5.11)

Comparing the expressions in Eq.(5.10) and (5,11), it is seen that Eq. (5.2)

can only be valid for those pressure distributions for which

D 1]
355—122- is independent of r' .
Po(r )
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This requires
B(r,s) = P (r)H(s) . (5.12)
where ﬁ(s) is an arbitrary function of s .
In view of Eq.(5.9), we find
i
: B(r,s) = 7, (r) (2E)) (5.13)
and it follows that
4?‘~ P(r,t) = Po(r) F(t) (5.14)
g -
%%i where
'YZ'
2
e F(t) = 1+ [ H(t)dr . (5.15)
4 A
%%. Thus, Eq.(5.2) is only valid for restricted pressure distributions Po(r)
§g which are functions only of t . This excludes, for example, Blowers'

distribution since it depends on both r and t . It is natural to

ask then whether a product form might in fact be more useful than Blowers'
solution since then one would be able to include the time dependence of

the pressure at any given point. This is not likely to be the case, how-

ever, since such a distribution does not model the expansion of the con-
tact zone of the drop.

B
e

AL

Since the waves are expanding outward from the
contact zone, the fact that the source is expanding is certainly as impor-
tant as the fact that its magnitude changes with time at a fixed point.
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These results are easily extended, howzver, to general distributions
Po(r,t) which do include Blowers' distribution as a special case, although
the resulting final pressure distributions are not simply the products of

the restricted distributions and arbitrary functions of time.

If we know the stress state due to a pressure distribution Po(r,t) .

then
o(r,z3s) - Eo(r,z;s) =.f dr! f(r',r,z;s)[ P(x',s) - ?o(r',s)]
o (5.16)
ad - _ Dt
=.r dr® Z(r',r,z3s) P (r',s) x E(r ') 1
o '
o Po(r »8)

As before, the right hand side of this relation can be factored provided

Pehe) |1 - fige) (5.17)
P (x',s)
o]
in which case
a(r,z;s) - Eo(r,z;s) = Eo(r,z;s) H(s) (5.18)
or
o(r,z;t) = oo(r,z;t) + J;t dt oo(r,z;t-r) H(t) (5.19)
From Eq.(5.17)
P(r,s) = io(r,s) (1+ﬁ(s)) (5.20)
which implies
P(r,t) =P (r,t) + [ © P _(r,t-1) H(r) dr . (5.21)
o o ©
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It is easy to show that this reduces to the previous result when
Po(r,t) is independent of time. In the general case, H(t) is not
equal to the normalized time derivative of the pressure function nor
is the final pressure a simple product of the restricted pressure,
Po(r,t) » and an arbitrary function of time. For example, using
Blowers' distributicn

P (r,t) = P _6(kit-r) (5.22)

where Po is a constant. We find after some manipulation,

P(r,t) = P_(r,t) [1+I(r,t)] (5.23)
where 2
r
t-
I(r,t) = e(k/€-r)f K g H(1) . (5.24)
(o]

This does not have the simple product form sought by Hackworth and Kocher
because of the radial dependence of I(r,t). Using the fact that

2
8 (kVt-r) = e(t- F) (5.25)

we notice that Eq. (523) can be rewritten in the form

P(r,T) = P _(r,7) [1+1(1)] (5.26)
where
r2
T=t - 'k—z' (5.27)
P (r,) = B 6(T) (5.28)
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Thus 1t is apparent that within the confines of Eq.(5.21) generalizations
of Blowers' problem can be generated through the use of Eq.(5.23). If our
only interest was the stress state for the axisymmetric problem and this
rather restricted class of pressure distributions, we would in fact use
these results without introducing the additional complexity of thz Green's
tensor. The latter is central alsc. however, in developing a systematic
treatment of wave diffraction from cracks and for treating asymmetric pres-
sure distributions. An example of the latter is the distribution due to a
drop impact at an angle of incidence other than 90°.

2, A FORMAL SOLUTION TO THE PROBLEM OF CALCULATING THE STRESS DISTRIBUTION
IN AN ELASTIC HALF-SPACE DUE TO AN ARBITRARY PRESSURE DISTRIBUTION ON
ITS SURFACE

The formal solution for the determination of the stresses in a half-
space due to a localized pressure distribution on its surface is formulated
in terms of a Green's theorem derived from the divergence theorem. The de~
rivation of this relation will be outlined because a clear understanding of
its origin will be necessary later. Consider two solutions to the wave equa-

- 1 1
tion in the half-space dencted by (uz,tkz) and (uz ’tkz) where uy and

tkz denote the displacement vector and stress tensor, respectively., (The

physical stress matrix O is not a temsor because it does not transform

as such for curvilinear coordinates. 1I1If needed, the relation between tk2

and o is easily found using the metric tensor for the coordinates

ke
involved. For cartesian coordinates, this tensor is unity.)

Form the quantity

= * L ' %
VicT Bt v T By (5.29)
where * denotes the convolution defined by
t
a*b =f dt a(t-t) b(t) . (5.30)
0
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The upper limit t denotes the limit yig t+e¢ whenever it is necessary
€
to avoid ambiguity in the definition of the integral., 1Im particular,

t
J'G(t—r) b(r) dr = b(t) (5.31)
o
where 6{t) is the Dirac delta function. A repeated subscript such as
in Eq.(5.29) indicates a summation over the range 1 to 3 unless otherwise

indicated,

Taking the divergence of Eq,(5.29) and using the equations of motionm,

Crp, i T ofy = Pl (5.32)
’ ' ' = '
L Lo,k T PEy = Py (5.33)
1
Aéé_ (The notation a Kk denotes the partial derivative %f—-.) we find,
’ k
I
2 = k! - t! % *u' — oli' *
Yk T Tk T et Oke tPUTYy - el Ty
- ' 1%
pfg*u2 + pfz u, (5.34)
where the strain components e, are defined by
€y = 1/2(u91’k + uk,ﬂ.) . (5.35)

But

' = xa! = * ' = *t! = t!' % .
tee*eks = Eromn®mn ks = %kt Biemn®mn = Cke*tky T Tke*eky  (5-36)
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where we have used the general stress-strain relation tk2= Ekzmnemn

and the symmetry property E for the elastic constants.

kimn - Cmnkg
Also, from the definition of the convolution, Eq.(5.30), it is easily

seen that

L1}

WG = (W) - T(0) T - (o) -u’ (5.37)

> >
where v(o) = u(o) . A similar expression holds with the primed and

unprimed variables reversed. Thus

> > > > > > -> > -> >
wk,k.E Vew = —pf*u' + pf'*u - pv(o)*u' + pv'(o)+u
- + > 3
- pu(o) ‘u' + pu'(o)+u (5.38)

The divergence theorem states that for any closed

surface S surrounding a volume 7 ,

> > > a
IVV'W dv = ¢S wen da (5.39)

where n denotes the unit outward normsl vector to the surface. Thus

fda ?m*ﬁ' + fdv p[-f)*:' + z(o) o+ -1:(0) 3]
(5.40)

> > 3 > 3
= fda t&n)*u + fdv p[f'*u + 3'(0)- 3 + ?1'(0) _1:]

where

t(n)k = tkznz = tzknz . (5.41)
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In a later discussion it will be imporcant that this relation is true
for any closed surface in the material and not just for the actual

physical surface of the material.

Now for u' , we chose the solution of the wave equation with the

singular source term

' <> >
pfi = §(t) §(x-€) 6ij ’ (5.42)
vhare 8., is the Kronecker delta, and the initial conditions
i)
-+ >
u'(o) =v'() = 0, (5.43)

We Jenote this solution by Gij(§;t;t) and require

Gyy = 0 for t<0 . (5.44)

The term involving f' is eusily evaluated

~-> t -
‘(; dv, o (£'50), Ldvxa(x~€) J o oanse-n) u &0 6

[¢]

ij

1]

> > ->
_!; dvX 8(x-¢) uj (x,t)
u (%,t) EeV

’

5.45
C E eV ( )

where Vc denotes the complement of V , i.e.. the region outside the

<>
boundary of V . We will define ui(E,t) on the surface as the limilt as
the surface is approached from the inside. Thus using Eq. (5.40) (dropping

- -
the vecto~ notation for x and £ )
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ug(€,t) = ﬁdax [t(n)i (x,£)%Gy , (x,E5¢8) - uA,‘(x,t)*T(n)ij(x,s;t)]

+-j;dvx o[£5 (x40, (0, 6,8 + v, (1,0) Gy5 (3, 858)
+ ui(x,o) . éij(x,g;t)] (5.46)

where the stress matrix T =T,, o, is obtained from G,., by
ijk ij

(n)ij

using the stress-strain relation,

= AG 6, + u(Gij

Tk 23,0 ik (5.47)

&t Gy, )

The partial derivatives are with respect to the x coordinates.

Since both t(n)i and ug cannot be independently specified on
a closed surface, we must impose an additional constraint on the Green's
function to eliminate the dependence on one or the other of these quanti-
ties. Since we wish to specify the pressure on the surface, the natural

choice is to require

T .. =0 onS (5.48)
(n)ij

where S denotes the surface of the half-space. If we further assume
the absence of sources and homogeneous initial conditions, then

u (E,t) = gz da toy: (6,8) % Gy (6,E58) (5.49)

This is the fundamental solution to the half-space problem with a
prescribed stress distributicn on the surface. The stresses in the
material are found by applying the stress-strain relation to both

sides of Eq.(5.49). Thus

£ (E58) = gﬁs da, s () * D (0E5E) (5.50)
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where Eijk(x,s;t) is determined by Eq.(5.47) with the exception that

the partial derivatives are now with respect to the £ coordinates.

These expressions, while providing a formal solution to the
problem are, of course, of no practical value until an explicit ex~
pression for the Green's tensor is found.

3. DERIVATION OF THE GREEN'S TENSOR

The Green's tensor we require is the solution to the wave equation
c.te + (e, 2% 6 -¢c ]=-f (5.51)
Pl iy, g %) Bey,ei T Cay Pyy .

with the source term

> >

pfij = §(t) 6§(x-E) Gij (5.52)
which has homogeneous initial values and satisfies the boundary
condition on the surface of the half-space given by

T =0 . «53

(m)13 (3.33)

The surface stress tensor T(n)jj is given in terms of the Green's
tensor by

Tmyig = [)‘sz,laik+u (Gij,k*ckj,i)] My (5.54)

where A and u are the Lame coefficients which are related to the

longitudinal and transverse wave speeds by

2 A2y (5.55)
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Since the governing equations are linear, we can always express
the Green's tensor as a sum, each term of which satisfies the wave equa-
tion but not the complete set of boundary conditions. By making a judi-
cious choice in this separation, the problem of determining Gij reduces
to several simplier problems whose solutions when added determine Giﬁ .
A familiar example from electrostatics is the problem of determining Ehe
electric field due to a point charge near an infinite conducting plane.
The solution is most easily found by writing it as the sum of the fields
due to the charge alone, which will not satisfy the boundary conditions
at the plane, and that due to a virtual image charge located behind the
plane with properties chosen so that the sum of the two fields does satisfy
the boundary conditions on the plane. The first of these fields will be
singular at the location of the charge, whereas that of the second will be
everywhere regular since the image charge does not lie inside the physical

region.

We will, in fact, use this analogy to write the Green's tensor as a
sum of three fields with the first being the singular field due to the
source Eq.(5,52) with no boundaries. The second term will be the field
due to the image of Eq.(5.52) and the third that which is required to

satisfy the boundary conditions on the plane., These iattec two terms are

regular everywhere inside the material. In view of Eq.(5.53), the boundary

condition for the third term is just the negative of the sum of the

contributions from the first two terms.

fﬂ*ﬁ%’i

i

a

Let us now choose a definite coordinate system, The material will

be assigned to the half-space x.<0 and the origin will be placed directly

3
above the source point E , Figure 24, The solution for an arbitrarily

located source point can be found by a simple translation of coordinates.
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The field due to the source given in Eq.(5.73) is well known,

(S) 1 3r.r. 61. —1—
G, = —{|{—1 - = fct A8 (£=Ar)dA
ij 4mp 3 r
r 1
3
r.r 1
+ X1 _l_(g(t__l_ —-Lé(t——r-.—-)
r3 c2 CSL c2 ct
A t
6i' T I
+ = 8(t-=) (5.56)
re, St ‘

where T = X - 8 . The integral is easily evaluated

1
[ t
t AS(t-Ar)dA = =5 e(t-ci) - 8(t-—>) (5.57)
r L t

[e]
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We see that Gig) is singular at r=0 where it varies as 1/r. The stress

tensor corresponding to this field is found by substituting into Eq.{(5.54).

28 2L ) 6l |s rody Syt oy Y 83k s
ikj ~ G t 5 3
r b o

1

c r.r.r § r. +6,r,. + s, .r
xf t as(t-Ar)dA + 2 [6 —i-%—l—‘ ik ﬂ;i kj i]

r r

1
€

2
[o4 r.r,r .
X (5(1;-—r ) - =< s(t-— )) + 221k [G(t———r )
c c rl#c c

t

cz - r i 61k cz T . T

-t s@-=) | - i ik {190 L) ls(e-—) + L 5(t-—)

3 3 2 c c c
cz cx 2 2 L

¢, r, +8, .1.) .
L SCagte” T [G(C__r_) s L a(t__r_)] : (5.58)
Ct Ct ct

The surface stresses are

(s) _ oS
'r(n)ij— Tikj o, (5.59)

1
[
|
'
i

where a is the unit outward normal to the surface which in this case is

a = (0,0,1).
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The second contribution to the Green's tersor will be chosen as the
field due to the image of the source Eq.(5.52) found by reflecting in the
x3=0 plane. The reason for including this field explicitly rather than
combining the second and third terms is that when the combined fields of
the source and its image are substituted into the boundary condition
Eq.(5.53), a number of terms cancel. The fields due to the image are given
by Eqs.(5.56) and (5.58) when E is replaced by QZ i.e., E =

S ‘ 2} ,source
(0,0,-&) and gimag = (0,0,&) with £>0 . Thus, since r=x-§

e

T = ( + &)

Toource . (Kps¥peXy t & (5.60)
->

rimage B (xl,xz,x3 - &)

On the boundary, x3=0 s, we find

P4 =T, i=1,2

source, image,
i i

-> _ >

Tsource rimage (5.61)
3 3

> _

lrsourceI - lrimageI *

The combined contribution to the boundary condition is found by adding
the individual contributions. From Eqs.(5.59) and (5.60), it is apparent
that all terms will cancel which are proportional to an odd power of Ty .

By contracting Eq.(5.58) with £=(0,0,1) , we easily find that

(s) , (D)

Ty ¥ Tm)ij

=0 for i,j=1,2 or i=j=3 . (5.62)
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When 1 = 3, § # 3 0or j =3, 1 # 3, the sum is not zero. For example,

for 1 = 1,2,
d
2 c
t
() @ _1) 2. %8 % :
* T3 T Tz "2 )% |° 5 3 [ reema
5 T T 1
5 ¢y
o
Ly 2 2 2
28 x, § X c £, & .

S +2 6t - L {se-F) - L se-E)+ 2 2 foe-E)
e 5 3 c 2 c 4 c
e 4 r r t cz 2 re t

5 :
| e 3. r *y r r . T
- (= §(t=—)| -~ —F |s(t-—) + = §(t-—) . (5.63)
Cy ) e e e ¢

Each term is of the form xi/rn multiplied by either a delta function or its
derivative. The problem of finding the Green's function thus reduces to
finding solutions to the homogeneous wave equation which satisfy these two
types of boundary conditions. When the individual solutions are found,

it only remains to chose the lirear combination which satisfies Eq. (5.53)

to complete the derivation of the Green's tensor.

We seek solutions then to the following problems

2 2 2 - _
o e, Gij,ll + (c2 - ct) Glj,Qi - Gij =0, (5.64)
T(n)ij =0 1, =1,2 ori=3=3
X
=5 L - E =
T(n)13 = A n F(t c) i=1,2 (5.65)
X5 r
Ty ~A FE-D 512
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§(t - =)
where F(t -5 =1, i . (5.66)
§(t - 29

Notice that this problem can be treated by isolating each of the inhomo-

P O Y T R T e T

geneous boundary conditions. For example, one such problem wguld be set

by requiring T(n)ij = 0 for all i and j except for T

- a1 _
(n)i3 A;H F(t c)'

While these problems do not appear to have been solved, the solutions to

PPN TN TER L RO

similar problems do exist.

Yy

First, we notice that since T(n)ij=o for i,j=1,2 and i=j=3 and
there are no sources, we can set
Gij=0 i,j=1,2 and i=j=3 (5.67)

The nonzero components of Gij are then G,q, i=1,2 and C3i’ j=1,2.
We will separate the problem into two parts corresponding to these two cases.
The first will be treated explicitly; the second can be treated in an anal-

ogous manner. In order to simplify the notation, we define

u, = Gi3 (5.68)
tik = Tik3 (5.69)
o aui auk
t(n)i = T(n)i3 = [A Veou (Sik + (-a-ik—’l' -5-{ g (5.70)
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We define cylindrical coordinates (p,$,z)

% (pcosd, psing,z)

= (O’O’~£)

It follows that

r2 = x2+§2+2z€ = p2+zz+£2+22€

The unit vector normal to the surface is
fi = (0,0,1) .

The problem now becomes

Ce t

2 9
t *Avoﬁ*c + u —l-l—j;+—l—1§-
(n)i i3 8x3 axi

with the boundary conditions

Al o) F‘t—-ﬁ—’ cosp i=1
t(“)i|= 2, 2)7 § sing 1=2
2=0 (p +E
t(n)3 0
z=0

88

such that (see Figure 24)

(5.71)
(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)
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Using Eq.(5.76), Eqs.(5.77) to (5.79) become in rectangular Cartesian

coordinates
Bux 3uz Al r
"a‘z"*“a;) = % Pl D) (5.80)
Wola 27 ¢
2=0 p+E
du du Al sind r
3—}*“55) -5 oy rle ) (-89
2,217
z=0 (o +E )
8ux Ju Buz
z=0 2=0

>
We now express U in terms of a scalar and a vector potential

e > -+
v Vn+Vxvy (5.83)
where
-~
v'w=0 . (5084)

>
The wave equation then separates into equations for n and y

2 .-
Vn-—lgn=0 (5.85)
C
%
N 5
vzw - —lf w=0 (5.86)
Ce

The problem thus becomes that of solving Eq.(5.85) and (5.86) with the
subsidiary condition Eq.{5.84) and the boundary conditions Eqs.(5.80)
to (5.82).
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By using the Laplace transform, we can eliminate the time dependence

in these equations. Define

n(s) = e St n(t) de (5.87)
/
HO) =fe'8t Y, (s)dt (5.88)
(o)
= - [~ st I.
F(z,s) —f e Fe- D) a (5.89)
[o]

The latter transform can be given explicitly using the defirnition of

r
F(t" 'E) ’
- I8
e © for F(t- -E) = §(t= ‘z‘)
F(r,s)= _Is (5.90)
[se - cé (r)] for F(t- -E-) = §(t- -E)
Further,
n(s) = s7n(s) - #(0) - sn(0) (5.91)
b,() = 873, () = ¥, (0) = b, (0) . (5.92)
Using the initial conditioms
n(0) = n(0) = v, (0) = ¥, (0) = 0 (5.93)
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N“: z The wave equations, Egs.(5.85) and (5.86), become (omitting the bar
Fy :
Q%f ‘ notation for transformed guantities)
XL
“5'“‘
@ik Hn =0 (5.94)
2 1
oR N
* (Vz-kzz)ui =0 (5.95)
where
=S
2
s
= = 5.
<y <t (5.97)
These equations written in cylindrical coordinates become
@k, %y n=0 (5.98)
oY
2 L1, 2 9 2
va zlj)p 5 3¢ kz“’p‘o (5.99)
P Y
Y
2, _ L 2 "2 _ .
V% 2w¢+ Y k2 \p¢ 0 5.100)
P p
2.2 _
4 —k2 ) wz =0 (5.101)
where
2 "2
V2=-]—'—33—<—3§—)+-L2' _2_3_2__*__0__2_ (5.102)
p 9P p' 0 3 3z
The divergence condition Eq.(5.84) becomes
M v oY oY
Py 0 1 "¢, "2
- + + = + =0 5.103
P p P 3 oz ¢ )
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53
A
:f The boundary conditions can also be expressed in cylindrical coordinates.
*é; The results are
&
B ] ou du F(r s)
. 4] _ é o
3 ( o ap) L ° ——-’-——P- (5.104)
::A z=0) r 2
ol o
Ju 1 auz
('—Qa p + -5 —BT) =0 (5.105)
z=0
du u du du
L, 0,1 ¢ 2| =
A(ap + > + rYs + (A+ 2p) 5> 0 (5.106)
z=0 z=0
where ro2 = p2+£2 and
-> ~ A ~
u = upp + u¢ ¢ + u, 2 (5.107)
oy oY
on 1 "z ¢
oY Y
=1, _po__'z
u¢ %) + 5z " B0 (5.109)
oy v op
=9n, _¢,¢ 1 _p
u, az+ 8p+ 5 Y (5.110)
We notice that the boundary conditions do not depend on ¢ when written
in cylindrical coordinates. This being the case, it is natural to seek
a solution which is also independent of ¢ . Such a solution does in fact
exist.
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The solution in terms of Hankel transforms which satisfies the wave

equations, the divergence condition, and the boundary condition Eq.(5,105)

is

o 82+k12 z

n(s) =f B (8) e 3 (08) d8 (5.111)
[o]
‘o 82+k2 2

¢¢(s) =f B¢(B) e Jl(pB) ds (5.,112)
[o]

wp(s) = wz(s) =0 (5.113)

The coefficients Bn and Bcb are found by substituting into Eq.(5.104)
and (5.106). After some algebra, the result is found to be

Bz\i 82+k§

BT] = _—1-)—(_5—,—8-)-— 1 (5.114)

{022
L (87y/2) i

TN )| (5.115)

where I =J;°°d0 GJl(BO) %-(0—2——0—2—)?1772 F <d0 +£ ,s) (5.116)

+E
D(s,B) = 2 {(82+k§/2)2 - BZJ(Bz-i-ki) (82+k§)] (5.117)
2s
= ;TD(C) (5.118)
[
t
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(5.119)
=)
r = = (5.120)
2
2 _[(et) _ _1-2v
Y -(Cg,) ""‘"""—2(1_\)) . (5.121)

In this last relatidn, v
0<w<1/2 , it follows that

is a value typical of many materials,

is Poisson's ratio.

Since for all materials,

0<Y2< 1/2 . 1In particular, for v=1/3 which

Y2=1/4 or y=1/2 .

From Eq.(5.108) to (5.110), we find (including again the bar

notation),

2,2 2
- B™+k 2 B"+k,” z
up(S) = - [ B, Be b7y B¢VBZ+k,,2 e 2 Jl(Bp)dB (5.122)
0
uy(s) =0 (5.123)
- \[7?—*7? J82+k12 z V82+k22 z
uz(s) = Bn B +kl e + B¢Be Jo(Bp)dB {5.124)
0
The inverse Laplace transform gives the time dependent displacements
1 atie st -
ui(p,z,t) =51 f e ui(s) ds (5.125)

o=ic

This completes the formal solution to the problem.

The remaining

problems are to evaluate the required integrals and to collect the various

contributions to form the complete Green's tensor,
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4, PROCEDURES FOR EVALUATING THE RESULTANT INTECRAL EXPRESSIUNS

We will examine the first iIntegral of Eq.(5.122) for the case
F(r,t) = 8(t-r/c) . The others have the same general form and can be

evaluated in a similar fashion, We define

.1 oti st
H{t) = '211—1.{ eSt H(s) ds (5.126)
o
o ‘465+ki z

H(s)

]

t
-
JU:’

ow

o

Jl(Bp)dB (5.127;

Our intention is to reverse the order of the s and the B and O inte-
grations., In order to justify this step, it is necessary to show that
the integrals converge. We will assume for the present that 2z<0 and

leave until later the limiting case 2z=0 .

FYor s real and positive, it is obvious that the ¢ integra-
tion converges and when in addition 2z<0 , 1t is equally cbvious that
the B integration also converges provided the denominator does not
vanish for B positive and real. It has been shown, however, (Lamb, 1907)
that D(Z) has a simple zero for a value of [<-1 and thus in view of the
definition of ¢ , D(s,B) does not vanish for B in the range of ivnte-
gration and s real. Since both integrals converge for any s positive
and real, the integrated result defines an analytic continuation for s
not real; in particular along the line o-i® to a+i® where a=Re(s)

lies to the right of any singularities in the s plane.

Because the integrals do converge, we can reverse the order of
integration and study the properties of the s integration first. We

define a function G(t)

1 il st L ey |zl - E'HG +
G(t) = '—'}f ds e B(s,B) e e

7T (5.128)
Qi
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then 9
A do o
H(t) = -= 1} dB8 B J (BD) SERSRYA J, (Bo) G(t) (5.129)
* ”‘c': f (o24géyn/2 71

J‘ 1xe
“ - f RSyt
. N (>

, vhere \! BZ +k22

gﬁf“ B(s,B) = D(S:ET (5.130)
P

%‘;_ For notational convenience, we will change the variable of integration

from s to the rcal variable y where s=0+iy . As we will show, all
the singulavities lie along the imaginary s axis or equivalently, the
real y axis and consequently we can set <=0 with the understanding
that the integration contour passes below ail the singularities in the

y plane. In terms of y , the function G(t) becomes

[ \I"l?] \[_—lel

o]
1
G(t) =-2—1;f dy e

3
g% - L
c
5 : - > (5.131)
2 [(82- Y—~2) - 32\/232- Y—z) isz- 12”
2cc cz ct

fYhe sirgularities in y re<ult from the bianch cuts of the two radiais,
the simple zero of D(y,R) at T<-l and the aswmptotic behavior of
D(g) for 1large Z . In the latter case, it happens that D{y,f} {is
propostional to y2 and thus the integrand has a second order pole at
y=0. To show this, wa expand about y=0 (which in view of Eq.(5.120)
is large T )
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2o 4 , 1/2 , 172
D = 2[3“_5.%_+_>'___ g’ (1_—21—2—) (1-—2L2) ] (5.132)
e 2ct B cz B c,
22 2 2
=2 [3“ - §_}’2_ - g (1- y2 5 - y2 2)+ o<y‘*) ] (5.133)
cy 2B cy 287¢c
g2 2] 2 4
- -8 [H ]y + 0™ (5.134)
C
t

As mentioned earlier, D(Z) has a simple pole at a value of real g<-1 .

Bc, \2
Since ¢ = ( i;) , this will result in a pair of simple poles in the ¥y
plane at
BZCtZ
- = -1-¢ &0 , real (5.135)
y
Bct
or y =+ (5.136)
V1+8
The equation which determines & 1is
(1/2+6)% = (1+8) V8(1+8-y9) = 0 (5.137)

and thus & is a function only of Y (where Y=ct/c2) which in turn depends
only on Poisson's ratio.

The remaining singularities are the branch cuts at y=cht and
jﬁcz ., We chose the phase of the two radicals by requiring these to be

real when B and s are real. Then
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9+9 T
J 2 I_ {IB-J-I |B+_L|l 2 (5.138)
6,+6 -7
’ 2 1/2 1(2 3 )
62-25={|B-{—I |B+-c2-|l e 2 (5.139)
ct t t

where the Gi are defined in Figure 25. Also indicated are the branch

cuts, the poles and the integration contour.

Let us first consider the limit of large y in the lower half plane.
By continuing in y between the cuts, (Figure 26), we find

8, =6, > 2r- 8] (5.140)
I;Tg“ 6, =6, > -|o| (5.141)
where 6 = -|6| (5.142)

Thus

,2 2 -ile| |
Lim B™=- z—é = ilyle = EX (5.143)
%

y|+co c,Q,
‘, 2 y2 1
Lim Yg-I5=3L (5.144)
[y]+e "
t
In this same limit
4 1
D(y,B) 27 [1+0(~5) (5.145)
2ct y
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so that the integrand becomes

) iyl VTR Lel
2ic )

We see than that if T< 0 where

0=

Volee? - -If-]- (5.147)

L

then the integrand will vanish everywhere on the semicircle as |y|+°° .
We can thus close the integration contour by including the semicircle
since its contribution is zero. Since there are no singularities in the

lower half plane, by Cauchy's theorem we find that G(t) vanishes for
T<0 . Thus

O Vo2e? - -‘f—L) (5.148)

- )

where 1 50

o(t) = (5.149)
0 t<0

In the upper half plane in the limit of large |y| , we find

I;le:w 61 = 62 = 63 = 94 =0 (5.150)
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and thus
,’ 2 y? -1
Lim Vg I- = (5.151)
‘y|+°° cy L
Lin VE&- 1y =T (5.152)
T: ylre e ¢
N
Bi¥ The integrand becomes
-
e
= i 3 iy[t- -(1; Volt? + lc?l]
t 2
“-,y“ 3 e (5.153)
y
and since

% Vols -U- T + 3{—4 (5.154)
3

the integrand vanishes on the upper semicircle for |y|+°° whenever
T> 0.

We can now deform the integration contour into the upper half-

plane as indicated in Figure 27. From this it follows that

—Zdy =f +f f 'f f +ch +[°B (5.155)

{ -cB-c
+§+$ -9
/F5 VTS

As we have just seen, the integral over the semicircle at |y|+°° vanishes,

{]§= 0 (5.156)
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Integration contour deformed into the
upper half of the complex y plane.

Figure 27.
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Also, since the integrand is proportional to Y R™ - z—;

, the two

integrals around the bran~i puint< also vanish,

7( = f = 0 (5.157)

c26 -cZB

The remaining contributions are nonzero. The contribution from the

second order pole at y=0 is

:"‘\ - Lim i 2
}S 2mi w0 dy l y I(y)} (5.158)
o o
> where I(y) 1s the integrand of G(t) ,
‘ég“ \I-Z—-—E-1
eE iy [t—1/2 '\'oz+£2] - \B°- 1—2— |z]
3 I(y) = L e e €2
{ 2T
2 Y3
B -
w4 Ct
S - X ot (5.159)
D(y,B)
It is easily determined that
d (1) S
-t (-2 Ve ) e (5.160)
o B=YD)
ctB
Next, consider the simple poles at Vs = + —— . Since D(y,B) has
simple zeros at these points, we can write 148
D(y,B) = D(y4,B) + (y-y5) D' (y45,8) + ... (5.161)
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where D(yé,B) = 0,

y2
- 82-%lzl
c
+ 95 =1ie . 82
Y146 /1¥8

The residue theorem gives

1
D (}’6)
Here
Lo o3 3466-45°
ctJ1+6 (1+28) 1+5

To simplify notation, we will define

- 2
eyl = /S (1428)

3466-46>

2 2
S =Y (1= )]
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(5.163)

£.164)

(5.165)
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-*%E(Y) e

Dev g

¥
ch R
enf f 1 13 B|2lsin[y5( 1%_2:%‘_)] (5.166)
6 Y

The integrals along the right hand cut can be combined to give

8“‘*5 "

_[ /°° dy [I(y-—io) - I(y+io)] (5.167)
c

B

B e

This must be separated into the regions ct8<y<c28 and y>c28 .
In the region ctB<y<cQB , the radicals have the values

2
B2- 15 = real (5.168)
cz
3 5 -i above cut
\[ SR AN \/-V—— g2 X 6
B~ . 2 2 " i below cut (5.169)

and thus

2
D(y,B) = 2 [(BZ— —1'—27) + 162\[(82 - y—z-z)(y—zf - 82)] (5.170)

th Cz Ct

with the + sign corresponding to y above or below the cut. The resulting

integral is obtained by substituting into Eq.(5.167). If we include also

the contribution from the left hand cut, we obtain
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H 2
: ,_Li 2 2
, CQ,B -CQ'B C}Z,B 2 -8B (B - 'ch 2)
Jr] =53] o= T
¢ B =B 9 2 4l 2 2 2 9
¢ £t (e-—Lz B(B-Y-— Jo-
2c c52,2 e
(5.171)
- | 2]
c
X e % sin [y(t— % V02+£2 )]
Next, for y>c2'B » we have in addition to Eq.(5.169)
\/ 2 2 1 -i above cut
2y _\/z__ 2
B - 2 7 - B x { i below cut (5.172)
¢y ¢y
and
2 42 )2 2 2 V2 2
D{y,B) = 2 {8~ L5 +BY| L5 - 8°)|L5 - 8 (5.173)
2ct ¢y .
Note that D(y,B) is cut only between ctB<y<c28 . The combined
integrals give
i 2 2 1 /2 .2
; -B coq[ 1—7—8 [z'] sin[y(t—— [oa =3 )]
c
j f;"‘f 5 2 (5.174)
cgB ¢, 2 Iyt 2\[y: .2
: €2 (B——Lz)'*'ﬁ (y—?_--B)(l—Z-B)
) 2ct cq c,
;
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The function G(t) is obtained by adding these contributions,

Defining a new integration variable

w = y/ctB (5.175)

14 R MR AL ¥ Iy 4 ) AL s
TR SR T R SN (10 T W SN T
" G Sy RN gt s $ YR
N o R S pal Y] £
o AR e R 2
~

we obtain

V1 i Rlz|

c -8 z| B ™
G(t) = 6(T) —g— {T—%——— - E(YD) e sin[—t
™ 1~y /18

(5.176)

2
2
Ly sz-l (1- %—-) - ~1—Y2w2 B|z|
e

- %f dw A sin(tw)

1w

1 V w2—1 cOS [VYzwz—lB LZ I] sin(tw) }
ki 2 2
1/ (1_%_) + oDy (1)

T=c¢B

t

where
(t— s
c

1 \/02+g§) >0 (5.177)

The inequality follows frow. T > 0, The integrands of the above integrals
are well defined in the range of integration. H(t) is now found by sub-

stituting into Eq.(5.129). Because of the limits imposed by 6(T) , the

range of integration for the O integral becomes
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2 1/2
0<o < jc (c- -CL“—L) - g ! (5.178)
2 ;

and consequently this integral always converges.

The B integration of the first three terms of Eq.(5.176)
also converges because of the decaying exponentials, To show
that the last term results in a convergent integral, we need an esti-
mate of the asymptotic behvaior of the last term of Eq. (5.176). The

denominator is a monotonically increasing function of w and can be

written
A

2 ’ 4 2 1

v 22 2y v o2V o 1y 1
(1“7)+\[(WY“1)(W’1)‘4 (1‘ 2)* 2\/(7‘ 5) (1- %)

w W w W
w4 2
= F(w") (5.179)

where F(wz) is also a monotonic function of w2 (this is not an
obvious conclusion). To obtain a bound on the integral, we can

replace F(wz) by its largest value, namely unity. Also in the numeva-
tor, we can replace the radical by its large w limit and the cosine

by unit, thus

/dw sz—l cos|‘qw2Y2—l B|z|:‘sin Tw

. (5.130)

1/y [(1_ X’;)2+ \szYz-l) (wz:lﬁ)]

continued...
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/v ¥ iy "

Integration by parts shows that this last integral is

(o]
3 4
Af dw §_i__r_1_§_‘§_ww = é%— cos T/Y +'—3l-2— sin /Yy + ... {5.181)
w T
s the leust convergent of the B8 integravions is boundad by

0

[ a8 180 x20lB (5.182)
0

which is a convergent integral [see W.N. Bailey (1936)].
They

We have now shown that the required integrals are convergent,

can be evaluated by a combination of apalytic and numerical techniques,
0 and £= 0 can be studied by consideration

The limiting cases of |z|
of the B and ¢ integrals in Eq.(5.176) as these limits are approached.
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SECTION VI
FRACTURE ASSOCIATED WITH WATER DROP COLLISIONS

The critical fracture problems identified as the major contributors
to the degradation of zinc sulfide infrared-transparent windows are frac-
ture init{ation due to the transient stresses generated by the water drop
impact and crack propagation due to hydraulic penetration of the cracks
which exist after the initial water drop collision. The initial fractures
in polycrystalline zinc sulfide display a high level of insensitivity to
subsequent stress wave interactions as observed microscopically for inter-
secting ring fracture formations, At a limited number of sites, crack bi~
furcation is noted where one fracture surface propagated in the direction
of the critical stress associated with the first drop impact and the second
fracture surface propagated in conformity with the stress states generated
by the second drop in the absence of any initia.. fractures., While limited
crack growth can be assigned to the stress wave interaction mechanism, it
is conjectured that crack growth by hydraulic penetration is the dominant
damage mechanism up to the time at which a significant population of erosion
pits exists on the specimen's surface. At this point, material removal can
be envisioned to be due to both lateral outflow jetting within erosion pits
and hydraulic penetration,

The need for a more precise analysis of these loading conditions and
the associated fracture problems was pointed out in Section III.3.b
to remove the uncertainties in the response of the target to water drop im-
pact collisions have been initiated and are described. Additional work is
required before the results from these analyses will become available, but
the general approach and the type of problem which can be realistically

addressed is clearly indicated,
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1. CRACK/STRESS Wﬁgﬁ INTERACTION

A Green's tensor formulation will be developed for the propagation
of a surface crack into an elastic half-space due to the stress waves gen-
erated in the half-space by a water drop collision. Eventually the propaga-

tion of stress waves in a region containing many cracks will be considered.

Qur starting point is Eq. (5.46). We evaluate the surface integral

over the combined surfaces of the half-space and the crack. Again assuming

no sources and homogeneous initiul conditions, we find,

uy(E,t) = g' da £ Gy * S‘é da_ [t(n)i*Gij-—ui*T(n)ij] (6.1)

where Gij is the same Green's function used previously. With the

exception of the crack opening, the first integral is identical to

Eq.(5.49). Clearly, since the crack opening is small, Eq.(5.49) yields

(o)

uj S da t(n)i*Gij = (6.2)

u

3

X

except for a small region close to the crack opening. Since T(n)ij does

not necessarily vanish on the crack boundary, we obtain an inhomogeneous
integral equation for ui(E,t) when £ 1is evaluated on the crack. We
to vanish on all surfaces thereby

could, of course, simply require T(n)ij
This

reducing the problem formally to Eq.(5.49) with a new Green's tensor.

is not done, however, because the resulting preblem for the new Green's
tensor would be impractical to solve, The idea in this approach is to make
the Green's tensor problem as complete as possible without rendering it in-
soluble. The stress wave propagation problem in Section 5 is complicated

enough without introducing the crack. The remaining part of the problem is
then treated, for this case, by solving an integral equation. While inte-

gral equations are not in general easy to solve in closed form, they are

often amendable to approximation methods.
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The surface stress on the crack boundary t(n)i will be determined

by the details of a particular situation. The simplest case occurs when

the crack is air-filled since then the required boundary conditions are

i

L

3 U(n)i = 0, (In Cartesian coordinates, the physical stress matrix ojj

and the stress tensor tij are identical.) More generally, if the crack

is filled with water, then o(n)i will equal the hydrodynamic stress.

In writing Eq.(6.1), no mention was made of the fact that the crack
is not stationary. We must therefore determine the exact nature of the
integral expressions in this equation. Recall that during the derivation
of the Green's theorem, it was noted that the divergence theorem is valid
for any closed surface. It follows that we can always choose the surface
at any instant of time to coincide with combined surfaces of the half-

space, S' , and the instantaneous surface of the crack.,

The time dependence of the crack morphology only enters into the first
integral of Eq.(6.1) through its dependence on S' and thus this term will
only be affected when evaluated close to the crack opening. Close to the
crack means within a distance on the order of the width of the crack. The
second term is more complicated, however, du:z to the time dependence of the

integrand introduced by the convolution.

Consider the first of these integrals,

= *
Lys EE da, i * i
t

= gi dax .E dt t(n)i(x,t—T) Gij(x,g;r) (6.3)

At time 1=0 , t(n)(x,t-r) = t(n)(x,t) which is the stress on the
crack surface at time t . For t>0 however, t(n)i is evaluated
in the interior of the material since at earlier times t-1 , the

crack is smaller and consequently the points specified by x(t) , the
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N integration surface at time t , lie not on the crack surface of time
t-1 , but in the interior of the material. Thus t(n)i(x,t—t) is not
given by the boundary values on the crack surface, but must be determined
from the dynamic solution at each instant of time as the solution
progresses, It is clear that the required information is available at
any time t to proceed with the calculation, although the need to re-
compute the integrand at each instant would be tedious. Fortunately,
we can simplify this result considerably when the crack width is small.
The integration surface C(t) is independent of 1 and we can
interchange the order of integration (dropping the tensor indices),

t

Il =§é da{ dt t(n)(x,t-r) G(1)

t
dt da t, | (x,t-1) G(7)
{ g)‘c (n)

J.th&ﬁda+ t(n)(x+,t—1) G(x+,T)

o]

+ ida-t(n) (x ,t-1) G(x_,'r)] (6.4)

where (+) and (-) denote the sides of the crack as indicated in

Figure 28, Since the crack width is assumed small, at each x

~

n+ = —n- (6.5)

and
G(xT,1) = G(x,1T) . (6.6)

The latter follows from the fact that the Green's tensor is the

solution to the problem without the crack and is thus continuous

everywhere in the half-space.
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%& Using the continuity of tik and Gij » We now suppose that the
ey

%&. surface of integration can be collapsed to the surface of the crack at
%- -

%gﬁ time t-T and a line extending from the location of the crack tip

i
o

x7
3 "-.h:“. “

at time t-1 to the location of the crack tip at time t . The latter
however vanishes by the continuity of tik and Gij . These concepts

are pictorially represented in Figure 29,

The integral ida+ in Eq(6,7) thus reduces to ﬁda.’-(t-'c)
which denotes the integral over the crack surface C+ at time t-t
+ -
and consequently Atik = tik(x ) - tik(x ) need only be evaluated on
the crack surface. This is a considerable simplification since only
the boundary values of tik are then involved in the calculation. A

similar expression holds for the second integral in Eq.6.1).

t + ) + -
Izjz j; dt ¢da (t-1) [ui(x ,t=1) - ui(x ,t-'r)] Tijk('t) n, (6.8)

Along the crack surface, ui(i+) and ui(x_) generally have opposite
signs so the integrand does not vanish. Thus if we know the Green's
function, we obtain an integral equation for ui(g,t) which depends

only on the values of t(n)i on the crack faces.

The approximation of small crack widths as used above can be examined
by using the two-dimensional, plane strain solution for an edge crack in a
semi~infinite plate subjected to mode I deformations. If ¥ and © are

measured from the instantaneous crack tip, the displacements of the material

point at the location (r,9) are

K
- _L,,_r 14 28
u, = 2(1+v) R B [1 2v+sin 2] (6.9a)
K
- _]_:..—E 1 9— - — 2..6_ AN
uy = 2(1+v) T \lzﬂ sin 3 [2 2v-cos 2] (6.9b)
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Illustration of the Collapse of the Integration

Figure 29,
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Contour to Include just the Boundary of the Crack.
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The location of the crack surface at time t , is determined by setting

c=% and O=+r in Eq«(6.9). (Refer to Figure 30).

=0

K
- - LA (6.10)

With regard to the crack at time t-t , the displacements of the points

o . M-

located at the position of the integration surface at time t are found

by substituting into Eq.(6,9) values of r' and ©' given by

-
|

. 2 0y 2
= \Iuy + (n-2)

-1y
+tan (n_g ) (6.11)

9'

It will be useful at this point to introduce some numbers into these
expressions. The stress intensity factor for this mode I stress condition
is KI = 1,12 o/ra where a is the length of the crack (Paris and Sih,
1965). We chose as a representative value of stress the flexural strength
of Zn$S , 0F=100.8 MPa . Young's modulus for this material is E=74.1 GPa

and Poisson's ratio is 0.3. Thus Eq.(6,10) can be evaluated to yield

W=t 3.9x10 VA T (6.12)

where a' is the length of the crack at time t . Then

u - S
F_ = 4 3951073 22 (6.13)
n-% - n-%
-3
and except for n~% < 0(10 7) ,
u'
J_ << 1 (6014)
n-%
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The integrand in Eq.(6.8) is proportional to Au=ui(x+,t—r)—ui(x-,t-1).
For 6'<m/2 , Eq.(6.9b) is evaluated as before with the assumption that @

is small, so using the previous material properties and formulae,

ul

1/4
- - =3 o (2 gy 2 . g -y) -
bu = Au = 5.6x107 Va¥ (uy +(n-1) ) 1/z(n_2) [2a-v) 1]

6./ a'a"s

= 3,9x10 —T]:Q,—_ (6.15)

except for n-% 5_0(10_3) . For |@"|>n/2,

1 u! 2
sin%=i[1-%(;§z) +...]=11 (6.16)

1/4
and  Au = 5,6x1073 /AW (u;2+(n-2,)2) * 2(1-v) = 7.8x107° VA" /imn (6.17)

Since Tijk is continuous at the crack, the integration around the

crack will be approximately given by

a'
n Tijk j; df Au (6,18)

Breaking the integral into the two regions, 2<n(=a'-a") which
corresponds to 6%w/2 and n<g<a' (Hu/2) , we find

11/2

-6
L Efn de Au = 6,2x10 n[a'(a'—n)J (6.19a)
Oa' ,
=S aau= 530 3 ar-n? (6.19b)
n

and thus except at a'-p < 0(10—3) where I, vanishes because the

crack vanishes,

—n 10 “<<1 (6.20)
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The region very close to the crack tip where In-zl g 0(10—3) must
be re-examined but the general conclusion will not be changed. Consequently
the surface of integration can safely be collapsed to enclose just the crack

at time t-t without introducing appreciable errors.

We now have a procedure then for calculating the stress and displacement

distributions from the Green's function and the boundary stresses provided we
know the morphology of the crack. The remaining steps are then to determine

the Green's tensor and the relation between the dynamic field variables and
the growth of the crack.

2. HYDRAULIC PENETRATION OF SURFACE CRACKS

Hydraulic penetration of existing surface cracks has been identified
as a significant crack extension mechanism (Adler, 1979a) with characteris-
tics distinct from those of the stress wave extension mechanism. One prin-
cipal difference is in the direction of crack growth induced by these two
mechanisms. It has been noticed for example that hydraulically activated
cracks tend to undermine sections of the surface thus weakening large pieces
of the surface which are subsequently removed. This behavior is strongly
dependent on the characteristics of the material and thus the first step
toward understanding and describing this process is to determine the rela-
tionship between the angle of crack extension and the other parameters of
the problem such as the crack depth, inclination angle, and material proper-
ties. In general the analysis of this problem is quite complicated because
of the hydrodynamics of the water flow in the crack and the interaction of
the crack with impact induced stress waves. A much simpler, but relevant
problem is analyzed here: namely, a two-dimensional static, pressurized
surface crack of finite length, L , inclined to the surface at an arbi-

trary angle. The immediate goals of this study are to determine the
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stress distribution surrounding the crack and, using one or more
fracture model, to determine the initial angle of crack extension.
Of particular interest is the effect of the proximity of the surface

on the crack extension angle.

The stress distribution in two dimensions is most conveniently
stndied by introducing complex variables. As indicated in Figure 31, the
material occupies the upper half plane. The location of a point in the
marerial is specified by a complex number =z given by

z=x+1y , (6.21)
Complex conjugates will be denoted by a bar, e.g.,
z=x-1iy . (6.22)

The equation of equilibrium becomes in complex notation

(.3 _
7 2=
9723 2z

(6.23)

where x(z,2) is the Airy stress function. The general solution of this
equation is given in terms of two arbitrary functions ¢(z) and ¥(z) which
are agnalytic in the region interior to the material boundary. In terms of
these, the Airy stress function is

_ _ z
x(z,2) = Re[zﬁ(Z) +/ V(z)dz (6.24)
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Figure 31, Definition of Coordinates and Crack Angle
for Hydraulic Penetration Calculation,
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The stresses are given by

ox + Uy = 4 Red(z) (6.,25)

o - oy + 2t =2 (307G + ‘l’(z)] (6.26)
where

8(2) 24" (2) (6.27)

¥(z) = p' (2) (6.28)

The bourdary condition which determines these fuactions is
N(z)-1T(z) = 8(z) +3(2) - e21[70" (2) + ¥(2)] (6.29)

where N(z) 1is the projection of the surface stress along ﬁ , the
outward unit norwal vector, and T(z) 1is the projection along the
surface tangent poilatiung to the left of n when viewed from inside the
material. The angle between n and the x- axis is denoted by a .

Since we are comsidering hydrostatic forces,
N(z) = -P(z), T(z) =0 (6.30)
where P(z) 1is the pressure which in general will depend on position.

e are thus confronted with the problem of finding two analytic
functions which satisfy the boxndary condition Eq.(6,29). Rather than
approach this problem directly however, we will instead utilize a method
introduced by Muskhelishvili (1953) who showed that by extending the

definition of ¢(z) into the lower half-plane, the function Y¥(z) can

be eliminated.

124




ki

., - - s T4 RAW LD g
7 o TR PTG TR, S Y D d BT A PR AR S
z '\'f?«;‘?ygfn;-g."":fr} R A W * . 0
Tt ¥
H

J———AL

i e R T R AL T T e e e RN 22 AR T
T I L SN L S o A P NSRRI

D R RV S Y N

S - - - -

We define a function ¢(z) analytic in the lower half-plane by

®(2) = - ¥(z) - 28'(2) - ¥(2) zes” (6.31)
Here the bar notation signifies

§(z) = ;(:)- (6.32)
We now set z-9z and take the complex conjugate. Rearranging gives

¥(z) = = ¢(z) - ¥(z) - 28" (2) zes” (6.33)
where now 2z 1is defined in the upper half-plane. Thus by extending
the definition of ¢(z) into the lower half-plane, the function VY(z)

is determined in the upper half-plane. Introducing this result into
Eq. (6.29) we obtain

N(2)-iT(2) = ¢(z)+ 9(z) - eZia [(E—Z) $'(z) - o(z) - 5(2)] (6.34)

Consider now a region of the real axis for which N and T vanish.

Since o= -~ g- along this material surface, we have
0= 8(z) + 0(z) + (z-2)2"(2) - ¢(z) - ¥(2) (6.35)
or
0 = ¢(z) - ¢(z) + (2~2)0" (z) (6.36)

Since z-z=0 on tne real axis, provided &'(z) is not too singular

we obtain

8(z) = ¢(z) atz =z (6.37)
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This means that ®&(z) as extended by Eq. (6.31) is continuous across the
real axis and it follows that &(z) is analytic everywhere in the plane,

except perhaps on portions of the boundary where N and/or T are non-zero.

The asymptotic behavior of ¢(z) has been investigated by
Muskhelishvili (1953) who showed that

_-(Hn_ 1

o(z) = 27146 Z + T+ ¢l(z) (6.38)

K= 3=4v

where I is related to the limit of the stresses as z*o , X+iY is

the resultant of the surface stress:s over the finite bouundaries, and Vv is
Poisson's ratio. If the stresses vanish as 2z+» , I'=0 and if the surface
stresses are self-equilibrating, then X+i¥Y=0 . The function ®l(z) is analy-
tic everywhere except at the origin and vanishes as z“2 as z*®, In order
to simplify the calculations as much as possible, we will suppose that the
pressure is self-equilibrating and further that the pressure vanishes every-
where on the real axis. Clearly by superposition, other more general solu-
tions can be found by the addition of solutions for the cases in which this

pressure is not zero.
slong the crack (see Figure 31) , we have

24 iArw
e

= e = —e (6039)

with the plus or minus sign depending on which side of the crack we are

considering. Thus the boundary condition becomes

3(z) (1-e1™) + TGy - 1™ F(2) + ™ (-2)0" (2) + P(2) = 0 (6.40)
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The boundary condition is not in a convenient form because
the crack shape does not allow a simple power series expansion for @(z) .
To remedy this problem, we introduce a conformal mapping which maps the

crack into a unit semicircle (Figure 31) . The mapping which accomplishes
this is (Bowie, 1973),

1 A -
z=w@ =A7 @D @) (6.41)
where
A= ""X‘L“‘"A (6.42)
7 =3
26 % (2-1)

The angle 90 defined by

2 1/2
8 = N~ -‘%—3—1 (6.43)

determines the location of the crack tip on the unit circle in the

¢z plane. It is easily shown that the positive and negative real axes
in the 2z plane map into the corresponding real axes for {;l>1 in

the ¢ plane. The crack maps into the unit semicircle in the ¢ plane.
Introducing the notation

e(w(T)) = 9(2) (6.44)
¢! (z) = %;—%— (6.45)
16

the boundary condition becomes (on the unit circle z=Zo=e )

inx

8(0) (1-e¥™y + TG) -ei™ F(0)

2
+ (1-ei"}‘) oo =1) $'(0) +P(0) =0 0<0<T

5 (6.46)
o 4+2(A=1)o+1
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¢'(0) has poles at

= 1-ati Vara2 (6.47)

that writing ¢(Z) in the form

The coefficient of

%

By counting singularities, one finds

4
G(C) g (6.48)

(t-0,) (z-0_)°

¢(z) =

defines a function G(z) which is analytic external to the unit circle and
has no severe singularities on the unit circle. It follows that G(Z) can

Gdlanti

2 be represented by a power series of the form
43
: w k
7 _ -
b 6(x) =2 A & . (6.49)
.%’ k=2
5
éﬁ The inversion of this expression gives
=
‘ 27 0 n<l
1.2 g [ ol & = (6.50)
T
o A n> 2
n Z
Thic integral can be separated into two regions
1/ 19, im0 1 [*7 i0, 1in@
J = o de G(e ) e + - de G(e") e (6.,51)
T 2n
In the first of these, we introduce Eq. (6.49) to find
i
a o n=k _\
1 i6  in® _ "m 1 (-1 o
5o a8 6T) T =4 Ez A — ) (6.52)
k#n
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In the second of these integrals, G , which is evaluated in the lower

half-plane, is given by the boundary condition Eq.(6.46). If we define
0=2T-0 , we obtain

2w T
'117. de G(eig) eing -11;/ da G(e—ia
T 0

%f 40 G(e10) (~in® (6.53)
0

From the boundary condition, it follows after some algebra (recall
6oy = G(o) , 0= ,ete.)

[ o

G (0)=G (o) Fl(o) + G(o) F,(0) + G'(0) F,(0) + P(0) F, (o)

a
0<@c<m (6.54)
where o= 2
_ 4 2 + inA
Fl(o) =00_ (c-a ) (6.55)
_ o
F,0) = (F™-1) — [(o.a )+ 2(1—‘” (40—3o+-0_)] (6.56)
(o=0_ ) (0-0_ )
™1 (1-6%0_* (-0,
(6~0 ) (6.57)
F,(0) = '™ 2om0)° (3023 (6.58)
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Substituting Eq.(6.49) into (6.54) and the result into (6.53) yields

T oo
1 -, =inf -
= dd G(0) e = I (k+n) + [I (k-n)-kI (k—n)] +I,(n) (6.59)
- f EQ \Ak 1 Al Io 3 4
where
T
I (chn) = 2 { 48 e‘i(k*'“)epl(eie) (6.60)
I(kn) = 2 f"de 1(k-n)® Fz(eie) (6.61)
(o]
I(k)"-l-“de 1(k-n)6 16 6.62
3(k-n) = 17.!)' e 3(e ) (6.62)
'
I, () =-11;{ a6 p(el? F4(eie) g~iné (6.63)

Combining Eqs.(6.50), (6.51), (6.52) and (6.59) yields an infinite set of
nonhomogeneous linear simultaneous equations for the infinite number of
complex coefficients An « Uniqueness of the solution is assured by the

uniqueness of analytic functions for a given set of boundary conditions.

Since the complex coefficients An represent an infinite set
governed by an infinite set of nonhomogeneovs linear simultaneous equa~-
tions, there 1s a degree of arbitrariness in the selection of a trunca-
tion procedure for determining the coefficients. The first attempt in-
volved snolving n complex equations, equally divided into the groups
n>2 and n<2 , for n complex coefficients Ak s k=2,3,..ontl o [t was
found Lowever that the coefficients so determined increased rapidly with
increaslng n and thus did not lead to a convergent expression for the
function G(Z) 'in Eq.(6.49). In order co inhibit this tendency,
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additional equations were included so that n' equations (n'>n) were
solved for n coefficients in a least squares sense., For A% 1 , this
procedure results in a rapidly converging sequence of coefficients when
n'%Zn » the accuracy of which was checked by comparing with the coeffi-
cients determined by Bowie (1973) for the case of a crack normal to the
surface A=l , For ) much less than unity, on the other hand, some
practical problems remain with this procedure because the number of coef-
ficients required for convergence appears to grow as A decreases and, as
a consequence, the amount of computer time required becomes excecsive.

We have not yet exhaustively studied the possible variations within this
class of algorithms and thus further work may yield a more efficient pro-
cedure which will reduce the amount of computer time required to obtain

a solution. An alternate method for determining the stress near a crack
tip has been discussed by Hussian, et al. (1974), for a related problem.
This method, which is based on the solution of an integral equation in
the limit as the crack tip is approached, will be discussed briefly below
after some other aspects of this same paper which are relevant to the

present problem are discussed.

Before doing so, however, we will derive the expressions which relate
the stress intensity factors and the function G(3) . For fracture Modes I

and II, the stress near the crack tip is known to have the form

Mode 1
K
Ox' = L cos %'(1 - sin %-sin %?)
v2ur
K -
O 4 = L cos %-(] + sin %—sin-%?) (6.64)
y Vanr
K
Tx' g T —— COS E-sin %-cos %?
y V27
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Mode II
K
3
o'=- 11 sin g-(Z + cos g-cos ;%—)
X 27r 2 2 “
K
- U N S
Ogr = — sin 3 cos 3 cos 5 (6.65)
K
T gy = L1 cos g-(l - s:’Ln~9 sin 29-)
V' o 2 22

where the parameters r,0 are defined in Figure 33, If we set 6=0

and use Egqs. (6.25) and (6.26), we find

K; = 1;13 [2/51}? Re (z)] (6.66)
Kyp = Lin [-i 7 (7 07 (2) + o(2)) eZi"‘] (6.67)

After some algebra, these reduce to

. VL VA (2=\ . .3 . . 3
KI +1KH - /AL VAQ2ZA) Re [1 G(O+/ C‘+] +i Im[l G(0+) oL (6.68)
. 4
4sin ©
o
which allows us to calculate the stress near the crack tip from G(G+)

or equivalently, the An's .

The next problem is to relate the stress near the crack tip to the
growth of the crack, Many models have been proposed to describe the rela-
tion between stress and crack growth but most are too limited in scope to
treat combined mode cracking. Two models which deal specifically with com-

bined mode cracking are those of Sih (1973) and Hussain, et al, (1974).

In Sih's medel, the crack is assumed to extend in the direction of the maxi-

mum potential energy density where the potential energy demsity P is given

by

p=-S (6.69)
r
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%} is the elastic free energy in the limit as the crack tip

approaches (r0)

_ Lim 1,22 2 v
S T (ZE (c"+0 +07) - 7 (c.o+o 0 +oyoz)

T 0 Xy ¥ Xy Xz
1,2 .2 .2
T xz*ryz)) } (6.70)

Since S 1is a quadratic function of the stress intensity factors at the
crack tip, the direction of crack growth predicted by this model can

easily be calculated once these factors are known. In fact, since

D N PPN 2
S = Teu (3-4v=~cosB) (1+cosb) KI
1 .
+-Zﬁ-51n6 (c038 - (1-2\)))KIKII (6.71)
+(4(1—v) (1-cos) + (l+cosd) (3cose-l))K§I
the condition that P be a maximum yields
2
—g%=o;§-—2§>o (6.72)
96
or
a,5in26 + 0,cos20 - a3sin6 - a4c056 =0 (6.73)
2a1c0526 - Zazsin26 - a3cose + a431n6 >0 (6.74)
where
2 2
¢ =Ky = Ky
Gy = 4R;Kpy (6.75)
~ 22
a3 = 2(1-2V) (KI—KII)
a4 = 4(1-2v) KI KII
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Thus given KI and KII » a crack extension angle can be determined. Crack
extension is supposed to occur when S reaches a critical value charac-
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More recently, Hussain, et al. (1974), proposed a model for mixed mode

crack extension. In some respects, it is similar to Sih's model althcugh

A

the crack extension criterion is stated in terms of the energy release rate
given by the invariant J integrals rather than in terms of the elastic
free energy. The important difference however is that Hussain, et al.,
treat the stress in the neighborhood of the crack tip as chat for a deflected
crack in the limit as the propagation branch of the crack shrinks to zero
length. They found that the stress determined by this limiting procedure is
dependent on the angle between the propagation and main branches of the
crack. Consequently the energy release rate also depends on this angle and
they argue that the crack will extend in the direction of maximum energy re-
lease. This extension criterion is more difficult to apply in general be-
cause a more complicated boundary value problem must be solved to determine

the appropriate stress intensity factors.

The procedure used by Hussain, et al., is to convert the boundary
value problem for the stress function into an integral equation. This step
is useful because au exact solution can be found in the double limit as
the propagation branch shrinks to zero length and the crack tip is approached.
This yields sufficient information to calculate the stress intensity factors.
It is felt that this technique might also prove useful for determining the
stress intensity factors for tne present problem. If this is indeed the case,
then the convergence problems discussed earlier with regard to the series solu-
tion would be circumvented. Further work will be required to verify this sup-
position. We emphasize that the use of integral equation techniques is dis-
tinct from the concept of calculating the stress in the limit of zero propa-
gation branch length. The deflected crack problem could also be solved using
the series expansion techniques discussed eariier if the integral equation
method proved to be too cumbersome. The remaining question is to determine

which, if either, of these models is correct and this can only be done by

comparison with experiment.
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SECTION VII
TRANSMISSION LOSSES DUE TO CRACKS

It is intuitively obvious that optical degradation will occur when
the surface of an infrared-transmitting window becomes pitted on the scale
of the diameter of a typical rain drop since then the transmitted infrared

radiation with a wavelength A on the order of 1 to 10 ym will be scat-

tered in various direccions vis a vis Snell's law. This is particularly

true for materiszis such as zinc sulfide and zinc selenide which have rather

large indices oy refraction. At A=3.3 um, nZnS=2.3; and for A=8-13 um,

nZnSe=2.4. A more important observation with regard to the subsurface
fractures described in Section 4, however, is that significant degradation
occurs before there is a measurable mass loss from the surface. This ip-
dicates the importance of light scattering by the internal fracture sur-

faces which develop due to single and multiple water drop collisions.

It is easy to understand the origin of the transmission degradation

by considering the optical properties of an idealized crack as indicated

The crack faces are taken to be parallel in order to avoid

in Figure 34.
When-~

unnecessary complication in the elementary analysis which follows.
ever electromagnetic radiation is incident on an intarface between two

regions with differing indices of refraction, generally both transmitted

and reflected waves result, Figure 35a, If the index of refraction of

the second medium, n, is less than that of the first, ny then a

critical angle of incidence ac exists such that the reflection is total

for angles of incidence a>ac s Figure 35b.

This angle is given by

n
= (7.1)

sing =
c

SN

Yor the interface between zinc sulfide and air and water, respectively,

this angle has the values
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25.8° 2ZnS - air

a, = (7.2)

34.4° 2ZnS - water

For the case of a crack which has two interfaces, the situation is
more complicated because transmission can occur for angles greater than
ac by a process analogous to quantum mechanical tunneling, provided the
crack width d is not too large. For the electromagnetic field does not
vanish instantaneously at the interface in Figure 35b under conditions of
total internal reflection, but instead attenvates exponentially according

to

9 1/2
(sina
-kZ z (sinac) -1

e a>o (7.3)

where Z 1is the distance normal to the interface in region 2 and

2
2= Xl is the wave number in region 2. It is easily shown that even
2

k

though the field is nonzero in region 2, no energy is propagated in the
Z-direction by this field, If, however, a second interface is placed
close to the first in the region where the field is nonzero, then energy
can flow across the gap and some transmission will crcur. The transmis-
sion coefficient, T , defined to be the ratio of the transmitted energy
to the incident energy, for the crack is determined by solving the bound-
ary value problem for the geometry shown in Figure 34 . For unpolarized

light, the transmission coefficient is

2 2
T = l/Z(IC-LI + |CH| ) (7.4)
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where for u<ac R

2 1
g 1% =
gl 9 cosa, cosazsina 2 9
cos”y+1/4 cosa,.Sina cosa sin’y
2 c 1
19 12 = :
R cosa, sina cosa 4
cos2r+1/4 1 < 2 sinzY
coso cosa, sina
2 1 c
Y = kzd cosa,
and for a>ac
9 1
|?LI = cosa q sina <
2 1 c 2
cosh T+1/4 - - sinh'T
q sing coso.
c 1
2
i | = .
I cosa_sina q Z
cosh2F+1/4( l_¢_ ) sinh?T
q cosa,sina |
1 c
2 1/2
sina -1
(sina
c
T = kzd q
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(7.5b)

(7.5c¢)

(7.6a)

(7.6b)
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The subscripts 'L and !I refer to polarizacion ~f the elactric field
perpendicular and parallel to the planc of incidence, These expressions
include ihie effects of multiple reflections in the crack. Notice that
since ;?llqﬁ IClll , the tranemirted light will in general be partially
polarized.

Some representative evalaations of Eq.(7.4) are providad in
Figures 36 to 39 . Figure 36 shows the dependence of T on o for
fixed values of the ratio d/A . ) refers to the wavelength in air.
For values of d/k%l » essentially no transmissioa occurs for a>ac as
expected., The rapid fluctuations in T for a<ac are due to the con-
structive and destructive interference of the primary and reflected waves
emerging from the crack. For small values of d/A , on the other hand,
gsignificant transmission can occur for u>ac . Figures 37 and 38 show
the dependence of T on d/X for fixed angle., Figure 38 shows the
results from Figure 37 on an expanded scale. It is seen that for a<aC s
T oscillates indefinitely as a function of d/A in response to the in-
terference effects mentioned above never dropping below about .55; but for
a>ac » T decays rapidly to zero as d/A 1is increased. Notice also that
T approaches unity for all angles if d/A is sufficiently smgll which

would be the case if the crack were to clcse after its formation.

The results in Figures 36 to 38 were calculated assuming the
crack to be filled with air. For comparison, the analogous results for
water filled cracks are shown in Figure 39. TFor ease of compsrison, tite
dependence of T on d/A for air when al=50° is also plotted ir
Figure 39, It is apparent that the transmission coefficieat is enhanced
by the water which is expected since increasing o decreases the atter~
uvation coefficient T , Eq.(7.6d). This suows incidently that improved
transmission will be obtained for a given crack width by decieasing the

index of refraction cf the material.
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To relate these results to the net transmission of a window, it is

A

S

U
3
3

necessary to consider the length of the crack., This will eliminate the

*.,

apparent anomaly of zero transmission at al=90° , since then the projected

3
Ty

crea of the crack is also zero and the crack does not cause a loss of

0

transmission.

§

s
(e

T

The calculations presented here do not yet include the effects of

5

atteanuation in the material and reflections at the window surfaces, Sin:ze
these later effects are multiplicative, the influence on radiation trans-
mission of the cracks developed during water drop impacts can be adequately

addressed without treating these other effects in detail.

If the incident radiation is normal to the window surface, a simple

X

expression is obtained for the time dependent loss of transmission due to

[T
,?5,? g‘ Al
£
VL Wy

¢

crack formation. Denoting the incident and transmitted energy per unit

9

area per unit time by € and € respectively, a transmission coeffi-

%

5 T *
g? cient To is defined for an uncracked window by
B
E%
&=, €, =T E, (7.7
- T 01
%% T0 includes the effects of reflection at the window surfaces and energy
§§ ; absorption by the window material. When cracks are present, the total
| energy transmitted will be the sum of that transmitted by the uncracked
&
& and cracked regions. Thus,
L
- i
=3 = - + T e. A 7.8
% | rho E1To(Ao z An) A Tnn (7.8)
S
=

where Ao ig the total surface area of the window, An is the area

: . th
¢ projected onto the window surface of the n~ crack at time t , and

1

I N

eTn is the energy transmitted through this area. ETn will include

%?, the attenuation effects of To in addition to that of the crack and

55 - \

B S it follows that

=

= E 7.9
, €Tn = eiToTn (7.9)
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where Tn is the transmission coefficient for the nth crack. Introducing
the definition in Eq.(7.9) into Eq.(7.8),

erhy = €T [Ao-g A (l—Tn)] (7.10)

We have assumed that cracks do not overlap. If they do, the total crack

attenuation is found by substituting for Tn the appropriate products of
transmission coefficients for the particular cracks involved. The time-

dependent transmission coefficient due to crack generation is determined

from Eq.(7.10),

() = 2 = To[l—z_lg L An(l—Tn)] (7.11)

In order to proceed further, we need an estimate of the average crack
inclination angle. Experimental studies show that the majority of the
crack surfaces are inclined to the surface at angles greater than 45°
except for those in fracture zone 2, A representative angle of al=55° .
an angle which is much greater than o, for either air- or water-filled
cracks will be selected for the purpose of considering an explicit example.
Referring to Figure 38, we see that such cracks will be almost totally

opaque for d/A%O.B. Suppose for simplicity that all the cracks are formed

at the same angle with the same projected area and are created at a con-~

stant rate of N cracks per unit time, then the transmission coefficient

for the window, Eq.(7.11), reduces to

t
T(t) = To[l— -Eo(l-Tc)] (7.12)

-1
A
where to = [N(Kﬁ)] is the time required to completely obscure the
o

surface,
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Ac is the projected area of a single crack,

Tc is the transmission coefficient for a single crack.

The implications of this result are that no incubation period is required
before degradation begins and that the transmission loss will increase
linearly with exposure time. The expression in Eq.(7.12) is valid only

for times small relative to to .

Figure 40 shows the degradation of transmission for al=55° for
several values of d/A . It is apparent from this figure that the value
of d/A has a significant effect on the rate of degradation. The line
labeled (TC=O) is the limiting line for the case of completely opaque
cracks which is reached for d/A%-S (see Figure 38) . Thus, for example,
for a crack width of d=.2 pym , the crack would be essentially opaque for
wavelengths of A=lum and nearly transparent for A=20um. Behavior of
this sort has been observed by Hackworth and co-workers (Hackworth and
Kocher, 1977; Hackworth, et al., 1979). According to their work, the
infrared transmittance of zinc sulfide decreased almost lirnearly with in-
cremental exposure to the standard rainfield in the AFML/Bell rotating
arm erosion facility for wavelengths in the range 0.5 to 2.1 um. However
they indicate that there is a definite incubation period associated with
the development of surface pitting for the degradation of transmittance in
the range of 2.5 to 25 um. Once erosion pits are nucleated the rate of
transmittance loss was approximately proportional to the growth rate of
the total cross-sectional area of the pits. Hackworth and co-workers
speculate that the same relations apply to zinc selenide and gallium
arsenide, however the rate of material removal was too great for ex-
posures to the standard rainfield to experimentally confirm this

conjecture.

Obviously this model is oversimplified since many effects such as
nonparallel crack surfaces and overlapping cracks were not considered. It
is expected however that a more complete model which includes these and other
effects and the statistical nature of the particle field would yield a

similar result for the transmission coefficient,
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SECTION VIII
DISCUSSION

The objective of this effort was to determine the relationships
between water drop impact damage and the material properties of infra-
red~transparent materials in order to evaluate and guide the development
of erosion resistant window materials. A combined experimental and analyv-
tical approach was undertaken to determine and describe primarily the
water drop impact response of CVD zinc sulfide, however the results of

this program ave of more general utility. ya

The impact damage mechanisms were investigated for water drop impacts
at velocities from 222 to 684 ms-'1 (730 to 2240 fps) with the major empha-
sis on the velocity range from 342 to 512 ms_l. Both experimental and com-
putational procedures were utilized to relate the dominant damage modes to
the material's surface condition, microstructure, and.bulk properties, The
most productive analysis for evaluating the bulk response of the material
to the water drop impact loading involves continuum representations of the

target material.

The complete description of the impact process entails the solution
of a coupled problem including the deformations of both the incident par-—
ticle and the target material. At the relatively low velocities of interest
and for highly deformable particles the problem can be uncoupled as a first
approximation., The effect of the incident particle can then be treated as
a known temporally and spatially dependent pressure distribution on the un-
deformed surface of the target material, This pressure distribution has
been determined using finite difference procedures and expsrimentally for
water drop impact simulations as reviewed by Adler (1979a). The analytical
representation of the surface pressure distribution developed by Rosenblatt,
et al. (1977) with minor modifications will be adequate for the initial im~
plementation of the computational program which will be an outgrowth of the
completed analysis described in Section V, The reacons for undertaking this

analysis are outlined in Section V.1, While the scope of this analysis is

i s i e ==
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beyond the original intent of this program, the approach adopted affords
a broader range of generalization than would otherwise be possible and is
the basis for describing crack growth due to surface flaw Interactions
with the dynamic stress field (Section VI.1).

The solution to the general problem of an elastic half-space
aubjected to an arbitrary pressure distribution on its surface will pro-
vide the trarsient stress states within the half-space. The only materi-l
properties incliuded in this analysis are the density, Young's modulus, and
Peisson's ratio for the target material which enter the solution through
the characteristic wave velocities for the material. The approach taken
is to determine the Green's tensor for the elastic half-space. The tran-
sient stress states are then found in terms of a surface integral of the
convolution of the pressure distribution and the Green's tensor. Tne for-
mal problem of determining the Green's tensor has been solved and has been
reduced to evaluating several definite integrals as described in Section
V.4, 1In some cases singularities occur in these integrals which have been
treated analytically to preserve the accuracy of the results. The singular-
ities are understood and isolated so the resulting integrals cau be evalu-
ated numerically with a high degree of accuracy. The solution is essen-

tially complete; it now has to be programed for digital computer evaluation,

The alternative method for determining the stress waves is the
completely numerical finite element approach. We have avoided using these
methods because of the large expense and the fact that these methods do
not give a very detailed picture of the stress waves unless a very small
grid size is used. One is then beset with problems resulting from the dis-
parity in the size of the regions important for stress wave propagation

and the size of the crack tip.

Within a continuum context the fracture problems to be addressed
involve introduction of the fracture toughness and the distribution of
critical flaw sizes for the target material, For purely elastic material

response conditions the fracture tcughness, KIC s 1e considered to be a
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material constant, and as such is used to define the critical stress
intensity factor for a wide variety of crack configurations and loading
conditions, The fracture problems ideutified as being most significant in
relation to the water drop impact damage produced in CVD zinc sulfide are
the stress wave/surface flaw interactions and hydraulic pemetration of pre-
existing surface cracks. It was originally thought that the stress wave/
wicrostructure interactions would be much more significant than the experi-
mental results indicate, The general observaticn from the experimental
data is that the fractures produced during water drop collisions on CVD

ZnS are essentially insensitive to the material's general microstructure

and inclusion content over a representative range of grain size variations.

Stress wave/surface flaw interactions will be the first step in
utilizing the available tracture data in a model, This model will also be
considered in terms of the experimental data obtained for water drop impacts
on CVD zinc sulfide. Some simple examples of how this data can provide use-

ful estimates of the fracture response of CVD ZnS will be described.

The critical stress intensity factor (fracture toughness) for CVD ZnS
has been determined by Evans (data referred in Evans and Wilshaw, 1976),

Winmer and Graves (1977), and Shockey, et al. (1977). Evans found
1/2

KIC =1 MPa m for a material with an average grain size of 10 pym with
*

essentially equiaxed grains (Evans, 1979). According to Wimmer and Graves,

KlC = 0.67 MPa ml/Z. This value was determined for the baseline material

for this investigation, material A, using a four-point bend test, Wimmer
and Graves' grain size measurements showed that the material had colummnar
grains with a croes sectional diameter of § to 10 um and a length up to

60 gm in the growth direction. They also determined that the bend strength
was 100.8 MPa, Shockey, et al,, found K_, = 0,75 MPa ml/2

IC
: tests using a modified expanded ring test technique. The material used by

based on four

Shockey, et al., was composed of columnar grains with average cross sec-

tional diameters of 7 um and lengths of approximately 56 um.

*The grain size was reported to be 30 um in Evans and Wilshaw (1976), however

‘ in a recent communication with Dr. Evaus (Evans, 1979) the grain size was
restated as being 10 um and equiaxed grains., Representatives from Raytheon
Corp. uo not itecall producing equiaxed grain material ard have only been
able to achieve a minimum average aspect ratio of about 3 with the {VD process,
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There are two crack geowetries which are relevant to the water drop
ihpacc conditions: an eidge crack in a plute and a2 remicircular crack in a
half-space as 1llustrated in Figure 41, The siress intcasity factore for
each of thesa ceses whern the cracks are suhjected to an uniaxial stress,

¢ , are

K} = 1.120var (8.1)

[Paris and Sih, 1965] and

-c 20
K = €5 yam (8.2)

[Suith, et al., 1967] where C = 1.03 when 6 = 0° and C = 1.21 when
8 = 90° (refer to Figure 41),.

We note in passing that Shockey and co-workers (1977) incorrectly
evalvated Eq.(8.%Z) using their value of KIC . They equated 0 to the
flexual strengih of 110 MPa and compuied the magnitude of the critical

%
flaw size which they define as a = 2 a, where a, is the value corres-

ponding to Eq.(8.2). Shockey, etcal., find thit a: = (0,73 mm . However
tiey made an arithmetic error; the value of a, should be 0,073 mm. Fur-
thermore if the critical flaw size 1s properly interpreted, then a, (the
depth of the flaw as shown in Figure 41b) is 36 um. This result indicates
the critical flaw size is approximately five times the cross sectional diam—
eter of the average grain in contrast to the value determined by Shockey

and co-workers which is 100 times this dimension.

The relations in Eq.(8.1) and (8.2) can also be used in conjunction
with the transient stress :. .tes due to particulate collisions. Since our

evaluation of the transient stresses is not yet operational for digital

computations, some of the published results will be used as approximations

to the stresses imposed on the crack.
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a. An Edge Crack in a Semi-Infinite
Sheet Subjected to Uniaxial Tension

;
%
b. Semicircular Edge Crack in a Semi-Infinite
Solid Subjected to Uniaxial Tension

o
Figure 41, Crack Geometries for Stress Intensity Evaluations.
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Adler and Hooker (1976) showed that Blowers' model and analysis of
a water drop impact could be used to estimate the stresses in an =lastic
half-space (Blowers, 196C), For brittie materials the critical stress
conditions occur at and near the surface of the half-space outside of the
expanding water drop contact zone. Hackworth and Kocher (1977) used the
computer program for Blowers' amalytical solution to evaluate many impact
conditions including the spatial and temporal development of the radial
stress component for low velocity water drop impacts on zinc sulfide.
Hackworth and Kocher recorded the values of the peak radial tensile stresses,
however they ignored any criterion for ths onset of pressure release. Their
subsequent work (Hackworth and Kocher, 1978) attempted to inccrporate the
pressure profile developed by Rosenblatt, et al. (1977) into Blowers' formu-
lation of the water drop impact problem. The deficiencies in their modifi-
cation of Blowers' original derivation arc discussed in Section V.l. The
radial stress levels they report are for relatively long times after the
initial contact with the target., More representative conditions for the

near-field stress levels were provided in Section III.3b.

Assuming as a first approximation that the radial tensile stress is
responsible for crack prupagation, the magnitude of this stress will be
used in conjunction with Eq.(8.1) and (8.2) to estimate the potential for
significant stress wave/surface flaw iuteractions. Representative stress
levels will be considered in relation to tke critical flaw size, a, » which
may be responsible for .ne observed cracks in water drop impacted zinc sul-
fide, Since the critical stress intensity factor is known and estimates of
the applied tensile stress can be made, a, can be evaluated using Eqs.(8.1)
and (8.2). The parameters associated with the twc~dimensional case, Bq.(8.1},
will be denoted by primes and those associated with the semicircular flaw by
double primes, Eq.(8.2,, When C = 1.03 the fracture strescs for the semi-
circular flaw is considevably larger than that required for an edge crack

whes aé = ac" ¢ the depth of the crack is th2 same for both cases.

K

ol = 0.505 -y (8.3)
Jat
[of
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According to Hackworth and Kocher (1977), the radial tensile siresses for
a 2 om drop impacting at 222 ms"1 acting long enough to pcopazate cracks
reésch a level of 170 MPa with a peak walue of 196 MPa at a deonth of 12,7 um
below the surface. 3Jetting a, = 12.7 ym ia Eq.(8.3) and (8.4), we find

0% = 95 MPaz and 0; = 162 MPa., The fracture stresses when a, = 5 ym are
0% = 151 MPa and 0; = 256 MPa. The transient radial tensile stresses for

this case attain an effective ievel of 255 MPa witl a peak value of 285 MPa.
The magnitude of the tensile stresses generated dspends or the impact veloc-
ity and drop size, however these calculations indicate that the potential
for crack growth does prevail for the applied stress conditions and flaw
sizes which appear to bLe consistent with our experimental observations.

The comparable teet condition would be shot no. 815 which Zs a 1.60 mm
water drop impact at 237 ms-l. The observed maximum fracture depth is

40 um and several cracks on the order of 5 um were seen.

The plots of the radial stress component in Section III,3.b indicate
that appreciably larger stresses are generated for higher impact veloc-
ities. At 700 ms-1 radial stresses on the order of 1 GPa occur in the
target at a depth ¢f 5 um. These stress levels have the potential for
propagating cracks from critical flaws on the oxrder of 0.l um., The magni-
tude of the radial stress will also increase as the surface of the target
is approached. Thus the surface finish has a strong influencz on the preopa-
gation of cracks into the substrate. Concentrating on cracks which do not
appear to originate from surface scratches, it would seem reasonable to
speculate that a large prnpurtion of the cracks originate from nucleating
flaws less tnan the grain size. The correlation of the radial distance at
which fractures are first cobserved and the development of significant radial
tensile stresses as described in Section I11.,3.b appears to be consistent with
the experimental data over the impact velocity range from 200 to 700 ms--l

as summarized in Table 8.
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Rosanblatt and co~workers (1976, 1977) have also considered the
problems outlined here for a zinc selenide target material with a mean
grain size of 50 ym. The smallest grid sizes used in this work for the
finite difference representation of the target material was 25 um for a
1 mm water drop which would be equivalent to 50 um for a 2 rm water drop.
The typical grid used in this work for a 2 mm water drop was 100 pym, Sub-
sequent calculations (Rosenblatt and Ito, 1978) use a 12.5 um grid size
for a 2 mm water drop. The peak radial tensile stresses were evaluated as
a function of depth into the target., This computation would only supply
the values of the stresses averaged over a distance of 12,5 pm from the
surface and applied to the midpoint of this cell. The available analytic
solution indicates there is a significant gradient in the radial stress
with distance into the target over the 12.5 uUm cell dimension, so a con-
siderably finer grid would be required to provide comprehensive stress data
for zinc sulfide. The analytic solution can compute cthe values of the
stress components in increments of hundredths or thousandths of a micrometer
if desired with computational times running on the order of seconds for
each depth over the complete range of radial distances that these stresses
are significant, The approach used by Rosenblatt and Ito for the surface

crack interaction is different than that being pursued here.

One 0f the central issues pertaining to hydraulic penetration is to
understand the mechanism by which nydraulic penetration of cracks leads to
crack growth and erosion pit nucleation. Obviously, this problem is com~
plicated in general because of the combined effects of the hydrodynamics
of the water in the crack and the interaction with the locally induced
stress waves generated during the penetration process. As a first step
toward describing this process, a much simplier problem has been considercd:
namely, a two-dimensional pressurized surface crack inciined to the rurface.
The result of this calculation is the stress distribution surrounding the
crack with particulac¢ emphasis on the effect produced by the proximity of
the surface., From this stress distribution, the initige} direction and pos-
sibly the velocity cf crack przopagation as a function of initial crack

angle and depth will be determined using curyvently available frzcture wmodels,
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It is our contention that the fracture problems identified and
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presently being analyzed in terms of a continuum mechanics approach are the
critical problems which must be addressed in order to formulate a productive
analytical framework for describing the particle impact response of CVD zinc
sulfide. These analyses have been carried out in a balanced association

with observations of the actual effects of the water drop collision process.
Experimental procedures have been utilized to gain understanding of the re-
lationships between the material's surface condition and microstructure and

the nature and extent of the resulting crack patterns.

The experimental observations of the fractures produced by water drop
impingement indicate a relative insensitivity to the grain size and general
grain structure in CVD ZnS. On the other hand, Hackworth and Kocher (1978)
report seeing a significant reduction in damage coincident with reduction
of grain size in ZnSe. This result, seemingly in conflict with the present
finding, is easily reconciled by the following observations. The grain size
used in Hackworth and Kocher's (1978) work, although not reported numerically,
appears in their micrograph to be a large grain size possibly on the order
of 100 um intercept distance in the plane shown and unresolvable at the
stated magnification of 135 {presumably <10 um) for the micrograph of the
fine grained material. This grain size variation represents not only a
much larger range than this study, but the larger grain size is cn the

order of the impact fracture pattern dimensicns. Combining this observation

with the observations made on ZnS would indicate that reductions in grain
size beyond an order of magnitude below the fracture size will not yield a

signific.nt erosion resistance,

Examination of the micrographs of water drop imnacts presented by

Hackworth and Kocher (1978) to illustrate that the fine grain ZnSe has

e, ke

better erosion resistance than the large grain ZnSe reveals that although
the fractures are smaller in the small grain material there are also many
more of them. This indicates that most probably a gimilar amcunt of frac-—
ture surface area was created for each impact; i.e., a similar amourt of

energy dissipated in fracturing the specimen but the form of the fractures
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changed. Hackworth and Kocher (1978) also report that although the resist-
ance of ZnSe improved with reduced grain size it did not equal that of ZnS.
This indicates that erosion vesistance is governed by a more intrinsic

material variable than grain size or hardness.

gx

The effect of grain size and microhardness on the erosion resistance
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of zinc sulfide has been described by Adler and Hooker {1978). It is pointed

€
-

out that substantial strengthening would be anticipated when the grain bound-

4

4
T4
%

aries effectively resist fracture propagation, when fracture propagation is
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36

confined to crystallographic cleavage plares, and when the grain size is
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2 ;z £ é 35
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much smaller than the drop size. With the exception of confirmation of
fracture propagation along crystallographic cleavage planes these condi-
tions are satisfied by the CVD ZnS formulations which have been investi-
gated. Furthermors Adler and Huoker iundicated that the standard mechanical
fracture tests evaluate the response to the largest flaw present, however
the erusion process depends upon the concurrent propagation of a surface
flaw population., The largest flaw may not be representative of the average
behavior of the population. t is also shown here that the magnitude cf
the imposed radial stresses for 2 mm water drops impacting at velocities

in excess of 300 ms-l Is many times the calculated fracture stress levels
for rezsonable flaw dimensions as identified from the ¢'VD ZnbS specimens
evaluated. In view of the overwhelming amount of energy available and the

imposed stress levels, it is unlikely that further modification of the bulk

material will significantly improve the erosion resistance of CVD ZnS,

Considerably greater latitude for increased rasistance to rain
erosion can be gained from irproved polishing procedures and subsequent
maintenance of the initial surface finish. The specimens used in this
program were polished to better than average FLIR window specificationms,
but tie capability of the watew drop to interact with the polishing defects
remaining even for this icvel of surface preparation i:c clearly evident in
the water drop cxperiments. Submicrometer flaw depths will have to be
athieved and maintained. The applicarion of the antireflectant coating over
this surface quality will certainly have a positive influence on improving

the erosion resistance,

160




Y 2
o R

S e e N e . o

Fbﬁﬁii‘ﬁfh?ﬁ:‘iwthg‘eﬁm»»-»;»W,\;,«W& T
* ' - * o T A

SECTION IX
CONCLUSIONS

The general fracture behavior of CVD ZnS due to water drop impingement

has been investigated. Three zinc sulfide formulations have been considered
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representing a range of graiun sizes, grain shapes, and inclusion content.

¥

The micruscopic observations of the damage produced by 2 mm diameter water

=

drops impacting from 222 to 684 ms_1 indicate that there is no discernable

SN difference in the fracture t.ajectories or penetration depths for the micro-

structural variations examined. It is found ttat no significant improvement

& . .
B in the erosion resistance will accrue from further modification of the bulk
%f} properties of the CVD processed ZnS. The dominant fracture mode is trans-

- granular, and the grain size is small enough in relation to the loaded
region of a 1 mm cr larger water drop that no benefit will be gained from

further grain refinement,

1 The most important factor in relation to the fracture response of the

PR

currently produced CVD ZnS was the quality of the surface finish. Calcula-

tions were provided which indicated the imposed tensile stress levels for

o

2 mm water drops impacting at 200 ms"l were comparable to the fracture
stress for reasonable surface scratch dimensions to several times the esti-
mated fracture stress as the impact velocity approached 700 msml. On the
basis of these straightforward estimates of the critical stress lesvels, a
significant increase in the erosion recistance appears to be possible if
the surface polishing defects do not exceed a depth of 1 um and preferably

0.1l ym,

wrag A vy

The need for evaluating the transient stress states at and near the
surface of the specimen was an outgrowth of the experimental program where

it appears that the fracture nucleating surface flaws are on the order of

© e ot ek gt 5

5 um or less. The available analytical and numerical stress wave analyses
were to be used for modeling the observed fracture response of CVD ZnS, how-
ever these analyses were found to be inadequate for various reasons which

have been enumerated. This survey of available approaches motivated the
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a water drop collision presented in Section V.

development of the mathematical analysis of the transient stresses due to

Further work is required

to obtain numerical results, however a generalization of Blowers' analyti-
cal approach is now available which should be applicable to a spatially
and temporally varying loading function applied to the surface of the

target,

Two fracture conditions have been identified as being the most
relevant to the general degradation of infrared transmitting windows.
The first is the interaction of the transient stresses generated by the
impact with surface fiaws, and the second is hydraulic penetration of the
water from an impacting water drop into a pre-existing surface crack,

Stress analvses for both of these critical problems have been initiated as

described in Section VI,

The transmission degradation which may arise due to cracks in the

material once they are formed also has been treated amalytically. The

significance of the istance and the crack orienta-

crack face separation d
tion is estimated in the preliminary calculations presented in Section VII.
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