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Microscopic observations of the damage produced in three formulations of
CVD ZnS representing variations in grain size, grain shape, and inclusion content
indicated the fracture trajectories and penetration depths were essentially insen-
sitive to the range of microstructural features which were investigated. The
quality of the surface finish was found to be the dominant contribution to the
fracture response of CVD ZnS. Further modification of the bulk material proper-
:ies does not appear warranted: the present production material is satisfactory.
Considerably greater latitude for increased resistance to rain erosion can be
gained from improved polishing procedures and subsequent maintenance of the
initial surface finish.

Since the fracture response of CVD ZnS is controlled by surface polishing
flaws, a continuum mechanics analysis was introduced to estimate the potential
for fracture due to the transient stresses generated by the water drop collision.
Various approximations are considered for illustration purposes. The limitations
of previous analyses are described and the need for an analysis which is appli-
cable within 10 Pm from the surface of the target is demonstrated. These condi-
tions motivated a mathematical analysis of the transient stress states due to an
arbitrarily spatially and temporally varying localized pressure on the target's
surface formulated in terms of Green's function and a Green's theorem relation
derived from the divergence theorem. The Green's function analysis is then
utilized to develop an analysis for surface flaw, stress wave interactions.

Hydraulic penetration of the water in a drop impacting over a pre-existing
surface defect is also modeled mathematically, since this has bee:. identified as
an important factor in the internal fracture growth observed in CVD ZnS due to
multiple water drop collisions. In addition, the effect of the internal frac-
tures on transmission through the window is analyzed. The significance of the
crack separation distance and crack orientation on the transmittance is evaluated.
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SECTION I

INTRODUCTION

This investigation concentrates on the damage produced in chemically

vapor deposited (CVD) zinc sulfide (ZnS) by water drop impacts on the order
-i

of 1 mm in diameter impinging over a velocity range from 222 to 684 ms

(730 to 2240 fps). A combined experimental and analytical study was pur-

sued to determine the relationships between water drop impact damage and

the material properties of CVD zinc sulfide in order to evaluate and guide

efforts to develop erosion resistant window materials for use at 8-12 Pm

wavelengths. The general problem can be divided into three major cate-

gories and each of these categories involves a number of experimental and

analytical tasks. The suggested categorization outlined below is essen-

tially our overview of the general problem and places some perspective on

the relative balance between experiment and analysis.

1. Fracture Initiation

Identification of the material properties associated with fracture

initiation due to a single water drop impact (fracture threshold).

Identification of the material properties associated with fracture

initiation due to multiple water drop impacts below the single water drop

121 fracture threshold.

Identification of the material properties controlling fracture

initiation and growth at water drop impact velocities well above the single

water drop fracture threshold.

Evaluation of the change in the fracture response due to modification

of a controlling material property.

Development of a model for fracture initiation.

2. Crack Growth

Identification of the material properties controlling crack growth.

Evaluation of the change in crack growth and crack morphology due

't'6modlficationi of a controlling material property.

i1
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Evaluation of the relation between crack growth and morphology

and infrared transmittance.

Development of a model for crack growth.

3. Erosion Pit Nucleation and Growth

Identification of the erosion mechanisms responsible for mass

removal (erosion pit nucleation).

Identification of the material properties controlling the erosion

process (erosion pit growth).

Evaluation of the change in erosion rate and erosion pit morphology

due to modification of a controlling material property.

Evaluation of the relation between erosion pit growth and morphology

and infrared transmittance.

Development oE a model for the general erosion process.

Development of a model for the prediction of the degradation of

infrared transmittance.

Not all of the above tasks are relevant for the specified impact

conditions nor have all that are relevant been addressed in this study.

"For example, the first two tasks on fracture initiation are not directly

applicable, since the fracture threshold for zinc sulfide is already ex-

ceeded at the minimum velocity of interest (222 ms-l). Erosion pit growth

was not investigated extensively, since the objective of the program can

be satisfied without pursuing this complex subject. Analytical and experi-

mental investigations of the events leading to material removel (the in-

cubation period for erosion pit nucleation) are sufficient for providing

the desired material guidance for the development of more erosion resis-

tant windows. The primary emphasis of the program was on crack growth

and to a lesser extent on the events leading to erosion pit nucleation.

The relevant velocity range for this investigation determined from an

initial overview of water drop impact damage as a function of impact veloc-

ity reported in Section 111.2 is from 342 to 512 ms (1120 to 1680 fps).

2



Water drop impact experiments were carried out on CVD zinc sulfide

specimens in the ETI Liquid Drop Impact Facility and are described in Sec-
tion III.1. This facility provides controlled and well characterized

S impact conditions. The water drops fall from the tip of a hypodermic

needle and have diameters in the range from 1.5 to 2 mm. Although many

of the qualitative aspects of the rain erosion response of brittle mate-

rials are known, the water drop impact experiments on CVD zinc sulfide are

useful for they provide specimens for detailed materials characterization

in order to identify the dominant surface features and microstructural

properties which influence fracture initiation and growth.

Mathematical analyses of water drop impacts on an elastic target with'5 and without a surface crack have been formulated. The general analysis is

based on Green's theorem formulated for the convolution of the displacement

-" vector and the stress tensor. It was initially thought that the extension

suggested by Hackworth and Kocher (1978) of the TURBAN computer program

could be used to generalize Blowers' analytic solution for the stresses in

an elastic half-space due to a water drop collision (Blowers, 1969). It

was found upon closer examination that this extension is quite restrictive

and in fact in the form suggested is not valid for the pressure distribu-

tion used by Blowers. A simple generalization of this work is easily found,

however, which is valid for Blowers' pressure distribution but the resulting

distribution is still so restrictive that this extension of Blowers' work

cannot be usefully incorporated into the present program as originally pro-

posed. This led to an independent effort to provide an analytic generali-

zation of Blowers' work in conjunction with consideration of crack growth

in a transient stress field.

An analytic formulation of the crack growth problem in materials

subject to water drop impact is developed which does not involve explicit

numerical integration of the equations of motion. The latter approach,

while straightforward, has a number of disadvantages not the least of which

is the large expense for the required computer time. Other disadvantages

S! include the lack of transparency of the solution with regard to parametric

variation and, at a more fundamental level, the problem of disentangling

3
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subtle physical effects from numerical artifacts of the finite grid size

used, In explicit numerical studies, parametric studies are done by gen-

erating spveral solutions for a range of values of the parameters, a pro-

cedure which is usually impractical for more than one or two parameters

because of the great expense involved, for example, in finite difference

schemes. Nevertheless, it is often the case that explicit numerical

schemes are the only alternative (particularly in the case of nonlinear

problems for which analytic techniques are generally lacking) and, irres-F' pective of the expense, they do have the distinct advantage that solutions

can always be found provided the singularities of the solution are

-i understood.

For linear or quasilinear problems the possibility exists, at least

in principal, for obtaining analytic solutions to the problems in question.

Analytic is used in the sense that it includes the use of numerical methods

for evaluating integrals and summing series, but excludes the use of large

grids of values of the independent and dependent variables. It is the use

of the latter which accounts for the large cost of the explicit numerical

schemes. The two approaches are complimrentary in many respects. Parametric

dependence is made explicit by analytic solutions and approximations made to

achieve a solution are usually better understood so that the accuracy of the

solutions obtained can be better assessed. For interesting problems, on the

other hand, analytic solutions are almost always more difficult to obtain.

If found, however, they provide more information at less expense than do the

explicit numerical methods. For this latter reason, it is always advanta-

geous to expend some effort on any problem to determine if at least an ap-

proximate analytic solution can be found before undertaking the development

of an explicit numerical solution. Even if the analytical approach does

not yield a solution, one usually benefits from Lhe effort by achieving a

better understanding of the problem, in particular the singularities, which

helps to understand the numerical results generated by the explicit schemes.

4



SECTION II

MATERIALS

All of the formulations of chemically vapor deposited (CVD) zinc

sulfide (ZnS) investigated were produced by the Research Division of

Raytheon Corporation. A baseline material was supplied by AFML which

was fabricated as a FLIR window. The piece of material received was

designated Plate A, Run No. MT-207, Section B-2, and was 62x!O4x17 mm

thick. Subsequently Section G-2 was also received from Run No. MT-207.

This material was selected as the baseline material since it has been

characterized by the University of Dayton Research Institute (Graves,

et al., 1977; Wimmer and Graves, 1977, 1978; Wimmer, 1979). This sample

will be referred to as material A in this report. According to Wimmer and

Graves (1977) it was deposited at 640%C for 250 hours.

Additional formulations of zinc sulfide have been received from the

Research Division of Raytheon Corporation for the purpose of investigating

the influence of different microstructures on water drop impact damage.

Two of the additional formulations deposited at 690 and 728 0 C (Material B

and C, respectively) were investigated. No physical or mechanical property

data have been received for these materials.

1. INITIAL CHARACTERIZATION

Materials A and B are amber in color, while Material C has a milky

yellow appearance. Visual inspection of these materials reveals bands of

color change and differing inclusion concentrations parallel to the deposi-

tion plane.

Table 1 is a summary of the characterization data generated by

Wimmer and Graves (1977) and Wimmer (1979) for material A. MicrohardnessSmeasurements were made on the polished surfaces of the specimens used in

the water drop impact tests. The results are presented in Table 2.

5
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TABLE 1. Properties of CVD ZnS, MT-207,

Plate A (Material A).

0

Lattice Parameter 5.409 A

Density 4090 kg/mr3

Grain Size 8-10 Jrm in growth plane; up to
60 pm (columnar) in growth direction

4-Point Bend Strength 100.8 MPa (14.6 ksi)

KC 0.67 MN/m 3/2 (609 psi Vi )

Weibull Parameters a = 29.0 x 106 (dimensions in meters,

(surface flaw model) p stress in3pascals)

14.3 x 10 (dimensions in inches,
stress in psi)

m = 6.07

2
Knoop Hardness (100 g load) 239 kg/mm (growth plane)

6
Young's Modulus 74.1 GPa (10.7 x 10 psi)

• IPoisson's Ratio 0.30 (in plane of plate)

0.35 (in growth direction)

Calculated Dilatational Wave 4,960 ms
SI Velocity

-1
Calculated Distortional Wave 2,600 ms
Velocity

Thermal Expansion 6.33 x 10 /°K (-67°C to 25°C)

7.42 x 10-6 /K (25 0C to 200 0 C)

Thermal Diffusivity 0.09 cm 2/sec (25 0C)

Thermal Conductivity 0.146 w/cm/°K (25 0 C)

Specific Heat 0.40 j/g/*K

Taken from Wimmer (1979).

Crack propagation parallel to columnar grains.

6



TABLE 2. Knoop Microhardness Measurements (100 g Load)

MATERIAL KNOOP HARDNESS STANDARD DEVIATION

i A 238 kg/mm2  5 kg/mm2

B 244 kg/mm2  8 kg/mm2

2 2C 194 kg/mm 8 kg/mm

TABLE 3. Characteristic Grain Dimensions
for CVD ZnS Formulations Investigated.

AVERAGE LINEAR INTERCEPT (•jm)

MATERIAL A MATERIAL B MATERIAL C

Growth plane 3-4 3-5 5-10

Cross section perpendicular 5-30 5-30 10-100
to growth plane in the direction
perpendicular to growth plane

Aspect ratio range 1.25-10 1-10 1-20

7



General grain structure and growth patterns were investigated by

chemically etching polished surfaces. The etchant was equal parts con-

centrated HCU and H 20 at 45°C. Etching time was 1 minute. Surfaces

both parallel and perpendicular to the growth plane were etched. Re-

presentative grain structure micrographs are shown in Figure 1 for

Material A. Materials B and C exhibited the same qualitative features

shown in Figure 1.

Due to the highly anisotropic nature and local variations of the

grain size and structure, an average grain size dimension is somewhat

meaningless. Average intercept distances were measured both in the

growth plane and perpendicular to it for quantitative comparison of

the grain sizes in these materials. The grains appear equiaxed in

the growth plane but columnar in the perpendicular plane as can be

seen in Figure 1. The intercept distances are given in Table 3.

No difference in grain structure was noted between Section B-2 and G-2

for the baseline material.

In addition to having columnar grain morphologies, the three ZnS

formulations exhibited local grain structures which will be referred to

as haystacks which describes their general appearance. Examples of the

haystack grain growth patterns are shown in Figure 2. A haystack con-

sists of a nucleation site and localized distortion of the characteristic

columnar grain growth pattern. At the nucleation site, the major axes of

the grains radiate out into the half space above the growth plane. As more

grains are formed, their major axes tend to approach the growth direction

leaving the haystack structure. Partially developed haystack structures

appear to have been noticed by Graves, et al. (1977), in thin zinc sulfide

layers deposited on zinc selenide substrates. They were referred to as

rosettes by these investigators. The haystack structures nucleate at clinker

and rod inclusions. These inclusions, which have a maximum size on the order

of 100 pm, tend to exist in growth bands parallel to the growth plane. The

inclusions are of a larger average size (c. 80 pm) in material C and approx-

imately ten times more numerous than in material A or B (average size

c. 50 pm).

8



a. Growth Plane

Growth
Direction

b. Section Perpendicular to Growth Plane

Figure 1. Appearance of Columnar Grains in Material A (Baseline).

4> I
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a. Haystack Structure in b. Nucleation site of a
Material C. Haystack Structure at a

Clinker Inclusion.

c. Growth Plane Section at the d. Transmitted Polarized Light
Nuc-leati:n Site of a Haystack View of Material A Showing
Structure in Material A. the Haystack Structure and

Deposition Bands of Differ-
ing Grain Texture.

Figure 2. Examples of Microstructural Features in CVD'ZnS.
(Arrows indicate growth direction.)
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In addition to bands of inclusions all materials exhibited bands of

altered grain structure. These bands can be seen in Figure 2d photo-

graphed in transmitted polarized illumination.

2. SAMPLE PREPARATION PROCEDURES

Specimens for water drop impact were fabricated in the form of right

circular cylinders 17 mm diameter by 12 mm thick. The specimens of mate-

rial C were only 4 mm thick due to limited plate thickness.

The circular impact faces were oriented parallel to the growth plane,

and then mechanically polished to optical quality by A.M.F. Optics, Inc.,

Woburn, MA. Additional specimens with their impact faces oriented perpen-

dicular to the growth plane were prepared at ETI.

In the initial phases of the program all of the impact specimens

were polished at ETI. These surfaces were found to contain excessive

polishing induced flaws which interacted strongly with the impact loading.

The quality of the surface finish achieved at ETI with further polishing

"experience has approached the level supplied by A.M.F. Optics, Inc.

3. POST-TEST EXAMINATION PROCEDURES

After impacting a water drop in the ETI Liquid Drop Impact Facility,

the specimen is carefully removed from the sabot (the experimental procedure

is described in Section III.1). Recovery debris are removed with methanol

alcohol in a low energy ultrasonic cleaner followed by a methanol and then

ether rinse. The major fractures and outflow damage are photographed in

both reflected and transmitted illumination for future reference. The

specimen is typically etched (50% HCl @45°C) to reveal the fine surface

fractures present. The enhanced fracture pattern is then photographed.

The subsurface morphologies of the fractures are revealed by sectioning

the specimen on a plane that is perpendicular to the impact plane and passes
through the center of the impact. The sectioning is accomplished by first

encapsulating the impact face with Buehler mounting epoxy. The sectioning

Sii1
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I
process involves rough material removal by wet sanding with progressively

finer grits of SiC paper, terminating with 5 pm Al 0 in water on nylon.2 3
This is followed by removal of approximately 100 )im of material with 0.3 pm

Al203 in water on nylon and finally polishing the desired section with

.05 pmAl203 on silk wet with 50% HCl. This sectioning method exposes the

internal fractures essentially undisturbed for optical microscope examina-

tions using various illuminations.

The finer details of the fracture/grain structure interactions on

the impacted face of the specimen are observed from etched surfaces using

scanning electron microscopy. Surface replication procedures were used

to examine the details of the damage within surface grains using trans-

mission electron microscopy.

12



SECTION III

WATER DROP IMPACTS

This program concentrates on understanding water drop impact damage

in CVD zinc sulfide. The surface loading conditions associated with a

water drop collision are still somewhat ill-defined, although advances are

being made in analyzing water drop collisions at high subsonic to low super-

sonic impact velocities (Adler, 1979a). Since the water drop impact condi-

tions are not well defined quantitatively, the nature of the loading condi-

tion as well as the response of the target becomes an integral part of the

general problem. The ETI Liquid Drop Impact Facility currently provides

ideal (spherical) water drop impacts at velocities from 222 to 684 ms

(730 to 2240 fps) along with well-documented data on individual drops just

prior to collision with the target.

The operation of the ETI Liquid Drop Impact Facility is described in

4 •Section III.1. The system components and instrumentation used in the facility

were for the most part drawn from what was readily available. Quite accept-

able results are presently obtained in this facility as shown in Section 111.2.

The potential exists, however, for enhanced and extended capability through

additional modifications and component upgrading. These modifications are

being made as justified. The mechanics of water drop collisions required

for better understanding of the internal fracture observations reported in

Section 111.2 is described in Section 111.3.

1i. DESCRIPTION OF LIQUID DROP IMPACT FACILITY AND PROCEDURES

A schematic of the ETI Liquid Drop Impact Faci~iL. is shown in
#i• Figure 3. The specimen is mounted at the front end of a saoot which ispropelled down the range by a small charge of gunpowder. Water drops are

formed at the tip of a hypodermic needle mounted above Ch'.. test sectionI and fall in the path of the moving specimen. A slotted rail system is used
to guide the sabot through the test section and into the re ,overy tube. As

a single drop falls from the tip of the hypodermic needle it interrupts

dual fiber optics links above the test chamber thereby initiating the

firing sequence. The system is calibrated so the sabot reaches the drop

when it has fallen to a point within the limits of the exposed surface of

13
-A

I - ~ m m m m m~~m ~ m~muum( m



Vtw

w z

0 0

-. 4 wc
woi0 i La0

CC 0

Lu ~ 6r
A( LU Z 0 L

I.-aIn
Z -,

4ZWI I-

0r44

LL. 0

00
C14

020

144



I/

the specimen. After impacting the water drop the sabot enters the recovery

tube where a graded distribution of material controls the deceleration of

the sabot and protects the face of the specimen from extraneous damage.

The barrel of the powder gun has an inside diameter of 30 mm and is

capable of accelerating the sabot to a maximum speed of 1370 ms (c. 4500

fps). Circular specimens up to 22 mm (0.875 in.) in diameter can be accom-

modated with the existing sabot configuration. Non-circular specimens with

lateral dimensions less than 22 mm and a wide range of thicknesses can also

be used. The zinc sulfide specimens used in this program are 17 mm in diam-

eter and range from 6 to 10 mm thick. These dimensions are adequate to

avoid edge effects and to eliminate any stress wave interactions with the

water drop impact damage due to stress wave reflections from the back face

of the specimen. Specimens of zinc sulfide can be recovered after water

drop collisions over the velocity range of interest, 222 to 684 ms (730

to 2240 fps corresponding to an aircraft traveling at 500 mph through mach 2),

"without cracking the specimens or producing additional damage which obscures

that due to the drop impact. As shown in Figure 3 the total length of the
D

recovery system is only 8 m (26 ft.). The extent of the water drop impact

damage on zinc sulfide over this velocity range is described in Section 111.2.

Multiple water drop impact damage can be obtained by sequential firings of

¶ the same specimen down the range. Only a few interacting drop impacts are
-1required at 342 ms (1120 fps) to significantly degrade the infrared trans-

mittance of zinc sulfide. The ETI facility (described more fully by Adler

and James, 1979) is ideally suited for documenting each drop impact in con-

junction with its effect on the general degradation process.

The tests were conducted in a helium atmosphere at an ambient pressure

of 300 pm Hg in order to minimize distortion of the drop caused by the bow
• shock prior to impact with the specimen's surface. This effect is distinct

from that of blow-by which results from the expansion of the gases associated

with the gunpowder burn. Escape of these gases generated by the detonation

of the gunpowder has been eliminated by means of a self-sealing sabot configu-

ration. A considerable developmental effort has been completed to maintain
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the integrity of the water drop and to minimize its aerodynamic distortion

,Wprior to impact. While shock wave and boundary layer effects are an inte-

gtal part of the erosion problem for supersonic aircraft, the drop geometry

prior to impact in actual flight environments is an aerodynamic problem.

The intent here is to understand the material's response to water drop colli-

sions which requires a reproducible and relatively simple drop geometry.

In order to operate at pressures well below the vapor pressure of

water, a solution of 80 volume percent of distilled water and 20 volume

percent ethylene glycol (C2 H6 02 ) is used. From a pragmatic viewpoint this

solution behaves essentially the same as pure water during the collision

process.

The water-glycol solution is deaerated. The temperature of the

solution is typically slightly below room temperature: approximately

15*C. Chilling the solution has the advantage of lowering the vapor

pressure, but this advantage has to be balanced against an increase in11 viscosity. The deaerated water-glycol solution is placed in a reservoir

above the test chamber where it is drawn into a vertically mounted syringe.

Manually applied pressure to the syringe initiates drop formation at the

tip of the hypodermic needle. if the drops are forming satisfactorily at[: the test pressure when viewed through an optical microscope with a magni-

fication of about seven times, a single drop is photographed as it falls

between the guide rails at the elevation of the specimen. The integrity

itand general appearance of the drop is checked from this photograph. If

it passes this visual inspection, the pressure in the system is checked

to confirm that it matches the desired test pressure, the pre-set firing

sequence is unlocked, and detonation of the gunpowder takes place as a

subsequent drop interrupts the dual fiber optics links passing above the

test chamber corresponding to station ( in Figure 3. When the sabot

is 25 mm from the impact point, it passes through a laser beam at station

®which sends a pulse to a delay generator which subsequently triggers

a flash unit to photograph the drop prior to impact. The delay circuit
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allows the drop to be photographed as close to the impact site as the

jitter in the system will permit. In all cases this photograph will

record the water drop when the specimen is less than 25 mm away. Stated

differently, the sabot will be a maximum of 113 ps away from impacting

the water drop when traveling at 222 ms and 36 ps away for a 700 ms-1

impact condition. The velocity of the sabot is measured by the length

of time required for the sabot to pass through the laser at station ©
in Figure 3. Knowing the length of the sabot and this time, the veloc-

ity can be calculated. A second determination of the impact velocity is

made by measuring the time required for the sabot to pass through laser

beams and in Figure 3. The distance between these stations

divided by the recorded time increment yields a second value for the

impact velocity.

During the initial phases of this investigation the water drops

were tending toward ellipsoidal shapes prior to colliding with the speci-

men due to the interaction with the gas remaining in the gun barrel. The

pumping capability was subsequently improved. At a system pressure of

100 to 200 pm Hg in a helium atmosphere, the drop distortions appear to

be negligible prior to impacting the specimen. A series of tests were

carried out for confirmed spherical water drop impacts as shown in

Figure 4. The significance of ellipsoidal drop collisions compared

with spherical drop impacts will be considered along with the nature of

the loading conditions for spherical water drop collisions on ZnS.

2. OVERVIEW OF WATER DROP IMPACT DAMAGE

Water drop impacts have been obtained on the three ZnS materials

described in Section -1.1, and additional impacts were obtained on specimens

from an unidentified ZaS FLIR window over the velocity range from 222 to

684 ms . The complete range of test conditions and the general features

of the resulting impact fractures will be described.
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Figure 4. Typical Appearance of Water Drop Prior to Impact
for Impa.ct Velocities from 200 to 700 ms-1 at a
Pressure of 0.1 torr or less.
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a. Test Conditions

Tables 4 and 5 list the impact conditions for each test carried

out within this program.

The impacts obtained from the initial sequence (Table 4) were for

surfaces prepared at ETI. At the time the initial test sequence was under-

taken the drops were deforming to ellipsoidal shapes prior to impact, how-

ever the water drop impacts listed in Table 5 are for confirmed spherical

drop collisions. An ellipsoidal drop will be considered equivalent to a

spherical drop when they have the same mass. Let bl,b 2 be the semi-major

and semi-minor axes of the ellipsoid, then the equivalent spherical drop

radius r is determined from the relation

r bro (3.1)

The equivalent drop diameter is calculated using the dimensions measured

from the photographs of the drop prior to impact as shown in Figure 4.

The ratio of the major to minor axis of the elliptical cross section is

listed in Table 4 to provide a measure of the distortion which occurred.

The influence ellipsoidal drop impacts have on the magnitude of the ob-

served damage will be examined in Section Il(a). The missing entries under

the heading bl/b2  are for shots in which the drop was already obscured

by the sabot when the photograph of the drop prior to impact was taken;

for these cases which arise due to the inherent jitter in the system the

diameter of the pretest drop is used for the equivalent spherical drop

diameter.

Improvements in the ETI Liquid Drop Impact Facility were made during

the early stages of this program which eliminated drop distortions prior

to impact: spherical drop impacts are now obtained at all impact velocities.

A second series of water drop impact tests were carried out for this condi-

thon for optically polished surfaces as listed in Table 5. The nature of

the impact damage during the initial sequence did not show any change in

its general form over the velocity range from 237 to 640 ms-, so the second

test series concentrated on two impact velocities: 342 and 512 ms

corresponding to mach 1 and Tach 1.5.
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To our knowledge single water drop impacts on zinc sulfide, or zinc

selenide, above 342 ms- 1 (1120 fps) have not been investigated. Hackworth

and Kocher (1978) have reported single drop impacts on ZnS and ZnSe at
-1

velocities to 340 ms . Their experimental facility does not allow veri-

fication of the drop sizes and shapes. A number of multiple drop impact

sequences have been reported in their work (Hackworth and Kocher, 1977,
-1

1978). A series of interacting spherical drop impacts at 512 ms was

initiated in order to assess the erosion pit nucleation process at this

higher velocity (shot numbers 1049, 1051, 1052). However shortly after

obtaining these three shots, the quality of the impacts was declining due

to gun barrel erosion which did not allow the gases generated by the gun-

powder burn to be completely sealed by the sabot. The gun barrel is being

replaced, so the multiple impact sequence has been terminated until the

previous high level of perfection in the water drop collisions is once

again achieved.

Qualitatively the nature of single drop impact damage in polycrystal-

line ZnS over the velocity range investigated (237 to 640 ms- 1 ) shows a

characteristic fracture pattern whose extent depends strongly on the im-

pact velocity. The characteristic fracture pattern as viewed in the direc-

.-tion of impact with transmitted illumination is apparent in Figure 5.

Both the velocity dependence of damage and the characteristic cross sec-

tional fractures due to single drop impacts can be seen in Figure 6.

Figure 6 shows the dramatic difference in the extent of the damage for
-i -i

a water drop impact at 299 ms compared with a drop impact at 517 ms .

The same magnification is used for both micrographs.

When viewed with reflected light single drop impacts characteris-

tically appear as in Figure 7(a). Figure 7(b) is the same impact (as in

Figure 7(a)) but photographed with transmitted illumination. In both

transmitted and reflected illumination, it is apparent that the fracture

pattern in Figure 7 has been altered by interaction with linear surface

scratches. The surface of the specimen in Figure 7 (shot no. 836) is

from the initial sequence which had a high occurrence of surface polishing

scratches. The impact damage for the multiple impact sequence is shown in

transmitted illumination in Figure 8.
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a) Photographed with Reflected Light Showing the
Lateral Outflow Chipping Damage.
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-

Figure 7. Impact Face of Shot No. 836 Impacted at 640 ms
Note Strong Interaction of Fracture Pattern with
Polishing Marks.
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b) Photographed with Transmitted Light Showing
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Figure 7. (continued). Impact Face of Shot No. 836 Impacted
at 640 mr1. Note Strong Interaction of Fracture
Pattern with Polishing Marks.
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b. Crack Morphologies and Dimensions

In order to obtain data on the nature of the fractures produced in

the interior of a specimen, cross sectional views on a plane normal to the

impact surface passing near and through the center of the damage zone are

employed. Three distinct fracture zones can be identified by the crack

trajectories observed in these cross sections. The three primary fracture

zones are believed to correspond to the nature of the surface loading con-

ditions and the resulting transient stress states within the target. The

fracture zones will be labeled numerically beginning at the point of impact

and moving outward in a radial direction.

A typical impact fracture pattern at Mach 1 is shown in Figure 9.

A portion of the impact face and the principal cross section is shown.

Readily visible in the center of this figure as a region free of fracture

is zone 1, alternatively called the central undamaged zone. The central

undamaged zone exists since the initial stresses within the material are

predominantly compressive (Adler, 1977).

Radially outward from the undamaged zone is an annulus of densely

spaced (both circumferentially as well as radially) fractures which in

cross section are monotonically increasing in depth with increasing radial

distance. The fractures adjacent to zone 1 are numerous and shallow ranging

from 3 to 50 pm in depth, which is on the order of the columnar grain dimen-

sions (Table 3). Progressing radially outward the fractures become less

densely distributed, deeper, and approach the surface at a shallow angle

(that is, more nearly tangent to the surface). The cross sectional views

of the midplane fractures show a very distinct transition to fractures

which are nearly normal to the impact surface at the face of the specimen

and then penetrate the interior of the specimen in an initially concave

outward direction; however, if the penetration is deep enough, the frac-

ture path will exhibit a reversed curvature. Fracture paths with double

curvature (concave outward near the surface and concave in at greater

depths) are observed for all the velocities and appear to form a transi-

tion from the fractures which are essentially tangent to the surface to

28
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Figure 9. Impact Face and Cross Section of Shot No. 1016
(331 ms-1) Showing Characteristic Fracture Zones.
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those which tend to be more normal to the surface at larger radial

distances. This fairly well-defined transition in the orientation of

the fracture trajectories will define the outer boundary of zone 2.

The general character of the fractures within zone 2 is shown in

Figure 10. The deepest fractures occur predominantly at the outer

radius of zone 2, or occasionally at the extreme inner radius of the

next zone, zone 3. Zone 3 encompasses all of the fractures outside

of zone 2.

The zone 3 fractures are characterized by a nearly vertical approach

to the impact surface for the first 10 to 50 pm of depth depending on the

impact velocity. The innermost fractures which are the deepest in zone 3

exhibit a double curvature as mentioned earlier which can be seen fairly

clearly in Figure 6 . The depth of fracture in zone 3 decreases iniLially

quite rapidly and the fractures lose their double curvature becoming rela-

tively shallow and both radially and circumferentially sparse.

In addition to bulk fracturing of the target material water drop

impacts also produce lateral outflow chipping at the surface crack open-

ings (Adler, 1979a). The chipping results from the impingement of the

lateral outflow jets upon the outer upraised edges of the bulk fractures

which are a characteristic feature of water drop impact fractures. The

outflow chipping damage is most readily seen with reflected illumination

as in Figure 7(a).

Characteristic dimensions of the radial extent and maximum fracture

depths for the fracture zones were measured on the impacts which were sec-

tioned as noted in Table 4 and 5. The dimensions of the various fea-

tures of the impact damage described above are summarized in Tables 6

and 7. Due to the level of variability inherent in the fracture forma-

tion process, a considerably greater number of measurements would have to

be made to provide statistical data which could then be used to interpret

the trends in the observed fracture zones. The measurements in Tables 6

and 7 are simply intended to illustrate the velocity dependence of the

characteristic features of the damage region which have been identified.
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(Shown in Figure 9).
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Some of these dimensions are better defined than others, such as the

radius of the central undamaged zone, zone 1, the onset of lateral outflow

damage, and the maximum radius of zone 2. No attempt has been made to

develop a normalization procedure to account for differences in the drop

diameters or shapes.

3. MECHANICS OF WATER DROP IMPACTS

The experimentally observed damage was produced by both spherical

and ellipsoidal shaped drops. The difference between the surface loading

characteristics of ellipsoidal drops will be investigated for comparison

with spherical drop impact conditions. In addition, the general features

of the transient stress conditions within the ZnS specimens will be con-

sidered in relation to the impact conditions represented by the experimen-
"V•. tal program in order to interpret and correlate the experimental results.

The need for further refinements in the analytical approach is pointed outr and an initial effort to broaden the scope of the stress wave analysis is

undertaken in Section V.

a. Ellipsoidal Drop Collisions

The analysis of ellipsoidal drop impacts on rigid surfaces has been

formulated by Adler and James (1979). This analysis will be extended here,

since it is relevant to the assessment of the water drop impact damage

observed in the ZnS specimens.

The geometry associated with a perfectly compressible ellipsoid

colliding with a rigid plane is indicated in Figure 11 . The equation for

the elliptical section is

r 2sin 2 a + r 2cos = . (3.2)
b 2 b2

1 32
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Figure 11. Ellipsoidal Drop Geometry.
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In terms of the relevant impact parameters,

c2 (b 2 - v 0t) 2

--2 + 2 1 (3.3)
bI b2

and 22
tan a = tan • (3.4)

I where c is the radius of the circular contact area

v is the impact velocity
0

t is the time elapsed from initial contact

4is the contact angle between the surface of the ellipsoid
and the rigid plane.

The time-dependent radius of the contact area is found from Eq.(3.3),

1b1 2

Differentiating Eq.(3.5) yields the rate of expansion of the contact radius,

b 1 b2-vo0t) Ibl12 Vo (b 2- v ot)

~( b 2 () [2b v t- (vt) 2 l1 /2 
= b 2  v c2  (3.6)

0 0

I According to Figure 10, Eq.(3.6) can also be written

2

( k) tan a(t)

Using Eq.(3.4), Eq.(3.7) becomes[ _

0tan ( (3.8)

Ta (t)

[ •36



The expression in Eq.(3.8) is identical to that for a spherical body.

This observation implies that the velocity of the boundary of the ex-

panding contact area will be the same for these two cases when the con-

tact angles are equal. The corresponding contact radii at which this

occurs can be evaluated. Using the equation for an elliptical section

in Eq.(3.2), it is easy to show

b (bk ) sino

c = rsina 2 - (3.9)

[+((bl)2_l) s.n2,]1/

•? j Denoting the radius of the contact zone for a spherical drop collision by

a, then

a = r siný (3.10)"0

where r is the radius of the spherical drop.

As stated in Section III.2.a an ellipsoidal drop will be considered

equivalent to a spherical drop when they have the same mass. The equiva-

lent drop radius is determined from Eq.(3.1). The major and minor semi-

axes of the equivalent ellipse can be ýetermined by reorganizing the param-

eters in Eq.(3.1) such that

• ¶ r
0

b 2 = (3.11)

When the radius and distortion of the spherical drop are prescribed, b2

and bI can be evaluated. As an example, consider when r = 1 mm and1, 0

b /b 1.5 ,then b2 = 0.765 mm and bI = 1.5b2 = 1.145 mm. The
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dimensions of the equivalent ellipsoid can be found in general from the

graphical representation of the relations for the equivalent ellipsoid

provided in Figure 12 . The cross sectional shapes of ellipsoids covering

the general range of possible interest are also shown in Figure 12, so

some idea of the extent of the drop deformation can be realized.

The previous analysis assumes the drop is perfectly compressible

which is a reasonable assumption for the initial stages of the impact

event. However incompressibility effects will become significant in con-

junction with the onset of lateral outflow (Adler, 1979a), and it would

seem that differences in the nature of the lateral outflow velocities

would occur between a spherical and ellipsoidal drop impact. It is our

;onjecture that whatever differences may arise would be relatively small.

Furthermore, it is Adler's finding (Adler, 1979a) that an adequate cri-

"terion for the onset of lateral outflow for a spherical drop does not

exist, although a number of analyses can be found in the literature. A

fairly wide dicotomy prevails between the elementary analyses, numerical

calculations, and experimental measurements for disc-shaped drops. To

date, there are no direct measurements of the critical lateral outflow

parameters for spherical drop impacts. In view of this situation the

widely accepted lateral outflow condition stipulated by Bowden and Field

(1964) is generally employed. Their criterion is simply

1 v
sin0c 0  (3.12)

c C w

where Cw is the compressional wave speed for water which is approximately

1.5 mm/ps. For the range of impact velocities under investigation the wave

speed C should be replaced in Eq.(3.12) by the shock wave speed for water,
w

Uw According to Heymann (1968),

U C ( + 2M) (3.13)

w w 0
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Figure 12. Ellipsoidal Drop Dimensions as a Function
of the Oblateness Ratio.
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where M° v 0 / The relation in Eq.(3.13) is valid for impacts on

a rigid surface when M < 1.2 . Eq.(3.12) now takes the form

00

a M
sinec _ - =.0 (3.14)

r i+ 2M0 0

This is a lateral outflow criterion for spherical drops, however the

same condition pertains to elliptical drops, since this is a condition

on velocity components at the periphery of the contact zone, namely

*2 2 2
"c + v = U (3.15)

It was already shown that the expansion velocities of the contact zone

were identical for a sphere and an ellipsoid for the same value of the

contact angle 4 (Eq.(3.8)). The critical contact radii for which this

condition pertains are determined from Eq.(3.9) and (3.10) upon substi-

tution of Eq.(3.14), then

b1

1/2 (3.16))2
[1 ()2 - 1)+(2M)]

C c =U W(3.17)

has also been used as a criterion for estimating the onset of lateral

outflow. However the relation A=C was conjectured to be relatedc w
to the location of the peak pressures in the pressure distribution found

from numerical studies of water drop collisions on rigid surfaces (Rosen-

blatt, et al., 1979). The coccurrence of the peak pressures at the criti-

cal radii computed from Eq.(3.17) appears to conform to the experimental
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results obtained for spherical water drop impacts on polymethylmethacrylate

specimens (Adler, 1979b). The critical contact radii for ellipsoidal water

drops are found from

/b1 \( M, 0

bc 2 2 1/2 (3.18)
b 1[1+( bl2)2-/

b \l+_2Mo

The numerical evaluation of this expression is quite close to the value

obtained from Eq.(3.16): the values from Eq.(3.16) being slightly higher.

The critical radii are plotted in Figure 13 as a function of the im-

1' pact velocity v.

The influence of water drop distortions prior to impact on the

dimensions of the contact zcne between the drop and the target (which is

assumed to be directly related to the central undamaged zone) can now be

evaluated explicitly. Consider a 2 mm spherical water drop impinging at-i.

500 ms . The radius of the contact zone is 0.2 mm as determined from

Eq.(3.18). However, based on the plots in Figures 12 and 13, if the

initially spherical water drop deforms into an ellipsoid prior to colli-

sion with the target, the critical contact radius increases to

0.328 mm (b 1 /b 2 =1.5), 0.466 mm (b 1 /b 2 = 2.0), and 0.734 mm (b 1 /b 2 = 3.0).

It is seen that the size of the contact zone can be increased significantly

for even relatively minor drop distortions assumirng the stated criteria

for lateral outflow and the location of the peak pressure are applicable

in general.

The time after impact for which the critical contact radii are

reached corresponding to Eq.(3.16) and (3.18) can also be specified.

The critical time t corresponding to Eq.(3.16) is
c
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C lb = (b1b2)M011+ 2M0)
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and the critical time (orresponding to Eq.(3.18) is

-1/2

t- 1 - 1 ) + _ (3.20)
b2 b2 1

The duration of the loading time is also greater for ellipsoidal drops

compared with spherical drops.

The aforementioned effects should have relatively little influence

on the pressure distribution applied to the surface of the target, since

lateral outflow for the ellipsoidal drops considered will occur before

the shock wave in the liquid reaches the back surface of the drop. In

contrast, note the different conditions which would prevail for a pancake-

shaped drop. On the basis of the previous analysis the major difference

is that the direct pressure would be applied over a larger contact zone

for a longer duration for the ellipsoidal drop as compared with a spheri-

cal drop of the same mass, but the magnitude of the applied pressure should

be roughly the same in both cases. The pressure distribution on the inter-

face would have to be determined from a detailed analysis of the flow con-

ditions at the expanding interface as already carried out by Huang (1971),

Hwang (1975), and Rosenblatt,'et al. (1979).

The estimates for the dimensions of the contact zone are derived

for a rigid surface, however the difference for water impacts on a zinc

sulfide surface is not too significant: the difference in the shock wave

velocity for the two cases is less than 6%. The magnitude of the uniform

pressures which develop over the contact zone according to a one-dimensional

wave analysis were determined and are shown in Figure 14 as a function of

the impact velocity.
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Aerodynamic effects should have a perturbing influence on water drop

geometry prior to impaci. in all water drop impact facilities employing a

specimen moving at high subsonic to supersonic velocities. If severe per-

turbations are not produced (small eccentricities), it is extremely diffi-

cult to identify the ellipsoidal drop collisions from post-test examinations

of the impact specimens. Therefore, the photographic records of the actual

collision in the ETI Liquid Drop Impact Facility are very useful because

they afford the opportunity to quantify and correct these subtleties in the

water drop impact conditions and the extent of the resulting damage which

have gone unnoticed in most liquid drop erosion studies.

b. Transient Conditions Within the Target Materials

The generation of stress waves due to wpte2 diup collisions on zinc

4. 1sulfide specimens will be considured in order to better realize the manner

by which the material fails and for the development of correlations with

the loading cycle. Blowers' analysis (1969) has been employed by Adler

(1977), Hackworth and Kocher (1977, 1978), and Hackworth, et al. (1979)

to describe the state of stress in an elastic half-space due to a water

drop collision. Rosenblatt, et al. (1977, 1979) have employed finite

difference procedures to address this problem. Representative results from

the analytical approach have been described (Adler. 1977, 1979a) and only a

few observations will be made which will be used to show the relation be-

tween the fracture patterns for the zinc sulfide specimens and the form of

the stresses imposed. A new and more general analytical approach for the

determination of the transient stress states due to an arbitrary, local

pressure distribution has been formulated in Section V. The analysis of

the water drop/surface crack interactions is derived in Section VI.

The characteristic fracture pattern for water drop impacts on ZnS

over a velocity range from 222 to 684 ms is shown in Figure 6. The

fractures are arrayed along circumferential paths around a central undam-

aged zone, zone 1 defined in Section III.2.b. The fracture concentration
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decreases with radial distance. The subsurface character of the fractures

(depth and general trajectory) also varies with radial distance as shown

on a central cross section in Figure 9 . The characteristic fractures

are formed at or near the curface; all of the damage produced over the

specified velocity range lies within an annulus around the central undam-

aged zone and extends to relatively shallow depths within the specimen.

The analyses which follows will accordingly focus on the conditions at

and near the surface of the specimen during the water drop loading cycle.

When a spherical water drop strikes the surface the boundary of the

contact zone will expand in accordance with Eq.(3.5) when b =b 2=r . The

initial velocities of the boundary of the contact zone, Eq.(3.6), are quite

high, but decrease essentially as t . As described by Blowers (1969)

a condition is reached whereby the dilatational wave for the target material

moves ahead of the contact zone followed by the shear wave at a later time.

The time and radial distance at which these separations occur can be found

by equating the velocity of the contact zone, A(t) , in turn to the dila-

tational wave speed for zinc su3fide, C1 =4.96 mm/hs , and to the shear

wave speed, C2 =2.60 mm/ps . The derivation is analogous to that carried

out for a similar condition in Eq.(3.17). The final results are plotted

in Figure 14, which clearly shows the relation between the propagation of

stress waves and the hypothesized attainment of the peak pressure and the

ensuing precipitous pressure releEse phase of the collision process. It

is interesting to note that for impacts above 550 ms-1 this analysis indi-

cates that the shear wave will move ahead of the contact zone boundary after

the peak pressure has been reached. Also due to the increasing shock wave

velocity in water as the impact velocity increases, the time required for

the attainment of the peak pressure remains fairly constant over an extended

•• range of impact velocities.

The relations provided in Figure 15 provide some perspective on the

size of the loaded region during the pressure buildup phase and the time

duration required for the indicated sequence of events to occur. The tem-

poral development of the radial stresses for a 2mm water drop impacting a

ZnS target at 200 ms 1 is provided in Figure 16 . The stresses are computed

at a depth of 5 pm below the surface from Blowers' solution to the water
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drop impact problem which is for a uniformly loaded circular region whose

boundary is expanding as the square root of the time after impact. Neg-

lecting the variation in the pressure distribution during the loading phase

the computed stress levels up to 35 ns should be reasonable. The subsequent

decline in pressure predicted from Figure 15 to occur at 27 ns is not re-

flected in these calculations. The succeeding time increments are provided

to show the evolution of the radial stress for this special case and to il-

lustrate the general character of the radial stress as it propagates through

fracture zones 2 and 3. The valley between the two peaks in the tensile

stress distribution seen when the contact time exceeds 35 ns corresponds to

the location of the Rayleigh surface wave: the shear wave is propagating

just slightly ahead of the Rayleigh wave. The maximum extent of the radial

stress values corresponds to the location of the dilatational wave front.1 •The magnitude of the stress is normalized with respect to the magnitude of

the impact pressure. For a water drop impact on zinc sulfide, Figure 14

indicates the magnitude of the impact pressure is 340 MPa. For example the

magnitude of the peak radial tensile stress when t = 45 ns is 279 MPa.

A significant state of triaxial tensile stress develops in conjunction

with the Rayleigh wave. At a depth of 5 pm and when t = 45 ns, o rr=179 MPa,

a =89 MIa, and a =169 MPa. The spatial extent of this stress condition is

on the order of a few micrometers and is quite localized in the vicinity of

the surface of the target.

Referring to Figure 16, it is seen that significant radial tensile

stresses are present at a radial distance of 0.1 mm when t = 25 ns . The

potential exists for the initiation of circumferential fractures. Accord-

ing to the plot in Figure 15, the peak pressure on the surface will be

achieved when a =0.105 mm. At this time the distortional wave would havec
advanced beyond the contact zone, but the occurrence of this condition is

dependent on the magnitude of the stress wave velocities in the target

material.
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Similar plots can be given for the higher impact velocities. The

magnitude of the impact pressure would be increased as shown in Figure 14,

so the magnitude of the stresses would be correspondingly increased; how-

ever the general evolution of the radial stress component follows a pat-

tern analogous to that in Figure 16 . The temporal evolution of the

radial stress component for a 2 mm drop impacting at 600 ms- 1 is shown in

Figure 17 . The larger radial distance compared with the collision at
-1

200 ms prior to the development of significant tensile stresses is ap-

parent. This effect would be reflected in the larger dimension of the

central undamaged zone as the impact velocity is increased. When t =45 ns,

the plot in Figure 17 indicates the peak radial tensile stress is 0.75 Po

Referring to Figure 14 for the value of p0 , the magnitude of the ra-

dial stress is about 1 GPa. This stress level is more than sufficient toI-f initiate fracture. The time t =45 ns corresponds to the peak pressure

loading as seen from Figure 15 when vo=600 ms- . The continued in-

crease in the radial stress components after t = 45 ns due to the continu-

ous loading condition inherent in Blowers' analysis has to be viewed with

caution. However for times greater than 45 ns the characteristic form of

the radial stress component is indicated after the Rayleigh wave has

separated from the contact zone.

The rapid change in the nature of the radial stress with depth into

the target is shown in Figure 18 when v =600 ms-I and t =65 ns . The

need for an accurate analysis of the transient stresses at shallow depths

below the surface of the target is amply demonstrated for establishing the

fracture response of the target material.

The development of significant radial tensile stresses should

correspond to the initiation of fractures at the periphery of the central

undamaged zone (zone 1). This condition appears to occur in the vicinityI; of the location of the peak pressure on the surface of the target. However

this criterion cannot be taken as a general relationship, since the radial

location of the peak pressure is determined solely from the shock wave re-

lations for water and the stress state in the target is dependent on the
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stress wave velocities inherent in the target material. With this proviso

the relationship between the location of the peak pressure and the onset of

fracture (boundary of zone 1) will be evaluated from the available data.

The relevant data from Tables 5 and 7 is consolidated in Table 8 along

with the calculated values of the critical contact radii determined from

Figure 15 . The comparison between the measured values of the outer bound-

ary of fracture zone 1 and the calculated values of the location of the peak

pressure indicates a fairly close correspondence within the level of cumula-

tive experimental error in the measurements required. The variation in the

measured dimensions is due to the circumferential nonuniformity in the ini-

tiation of fracture and the differences which arise depending on whether or

not the specimens have been etched. This measure of the fracture response

is independent of the zinc sulfide formulation investigated as demonstrated

SI by the comparison in Table 8.
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TABLE 8. Comparison of the Calculated and Measured Values
of the Critical Radii for Spherical Drop Impacts
on Zinc Sulfide.

Impact Drop ac ac
Shot No. Material Velocity Radius a c/r (calculated) (measured)

(ms-l) (m) (Cm) (mm)

1036 B 299 0.85 0.141 0.120 0.115

1016 A(B-2) 331 .85 .151 .128 .11-.125

1012 A(G-2) 336 .81 .153 .124 .125-.130

1017 C 338 .78 .153 .119 .105-.110

1040 FLIR 401 1.01 .172 .174 .180

1041 FLIR 497 1.05 .196 .206 .192

1051 A(G-2) 505 1.05 .198 .208 .200

978 C 512 0.84 .199 .167 .15-.16

1052 A(G-2) 514 1.07 .200 .214 .200

1048 FUR 516 1.05 .200 .210 .200-.220

1038 B 517 0.86 .200 .172 .160-.165

1049 A(G-2) 518 1.05 .200 .210 .200

1042 FLIR 594 1.05 .216 .227 .215-.225

1050 FLIR 600 1.05 .217 .230 .230
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SECTION IV

POST-TEST EXAMINATION OF ZINC SULFIDE SPECIMENS

The general features of the grain structure in CVD zinc sulfide have

been described in Section II.1. The influence of the grain size, grain

orientation, grain growth patterns, inclusions, surface imperfections, and

hardness on the nature of the damage produced by water drop collisions has

been considered here. Overviews of water drop impact damage on CVD zinc

sulfide have been given previously, but it does not appear that a system-

matic analysis of the above-mentioned characteristics has been pursued

(Adler and Hooker, 1976, 1978; Graves, et al., 1977; Hackworth and Kocher,

1977; Hackworth, et al., 1979; Peterson, 1975, 1979). Detailed microscopic

examination of both the impact face and cross section of impacts on the

three materials described in Section II.1 over the velocity range from 237

to 640 ms-I have been carried out to examine the most damaging aspects of

the inherent microstructure in CVD ZnS.

Variations in surface finish have the greatest effect upon the

resultant extent and type of fractures observed for a given velocity-drop

size condition. The strong effect of surface scratches upon the fracture

pattern, especially the fractures in zone 3 (the fracture zones were de-

fined in Section !II.2.b can be readily seen in Figure 7b. Zone 3 now

S1 contains in addition to fractures decreasing in depth with radius some

large and deep fractures nucleated at surface scratches.

The influence of the surface grain structures and orientation was

investigated using scanning electron microscopy (SEM) and transmission

electron microscopy (TEM) of surface replicas. The results of the SEM

investigation will be discussed first. SEM micrographs of shot no. 838

are provided in Figures 19 and 20 . The impact face of shot no. 838 is

oriented to coincide with the growth direction; i.e., along the major

axis of the columnar grains as can be seen in the figures.

The circumferential fractures on the impact face display significant

interaction with the surface grains in fracture zone 2. Figure 19 shows

two views of the fractures in zone 2 of the etched impact face of shot

no. 838 for the major axes of the grains oriented tangent and perpendicular

55



S/

411

a. Major Axes of Grains Tangent to
Circumferential Fractures.

1I

b. Major Axes of Grains Perpendicular
to Circumferential Fractures.

Figure 19. SEN Micrograph of Impact Face (etched) of Zone 2
for Shot No. 838.

56

11



l- f

• . I , ,

7%.I K



v X(
ii 77!

, 
ik

I4'

A'

'4 J*4/

Fig re 0 * SE14 Mj crogra -ph Of Impact

Fa gueof S o o 838 f rto m Central U3n- -

damnaged Zone 
(Zone 1 oIiito

of Lateral outflow.

57-58



/ (

to the stress wave front. The stress wave/grain orientation interaction

controls the character of the circumferential fractures. For the condi-

tions represented in Figure 19, major axes of the grains tangent to the

stress wave propagation direction, the fractures are almost entirely inter-

granular. When the grain major axes are perpendicular to the stress wave

propagation direction, Figure 19b , the circumferential fractures tend to

be shorter than in Figure 19a , less continuous, and there is relatively

little tendency for the fractures to follow grain boundaries.

Figure 20 shows the radial variation in the circumferential fracture

concentration in a region originating at the boundary of the central un-

damaged zone (right hand side of figure) to the region at which lateral

outflow damage is initiating (left hand side of figure). The composite

micrograph is along the stress wave propagation direction which is from

right to left. The major axes of the grains are oriented at approximately
500 to the stress wave propagation directions. A higher concentration of

short circumferential fractures is evident at the periphery of the undam-

aged zone than at larger radial distances. The circumferential fracture

2 1lengths tend to increase with radial distance. The onset of lateral out-
flow dam•ge would indicate that the loading phase of the water drop

collision has terminated.

Two preferential crack orientations can be distinguished in the high

crack concentration annulus (zone 2). One system of fractures represents

intergranular fractures oriented predominantly along the grain boundaries

parallel to the major axes of the grains. These fractures are accordingly

directed at angles from roughly 40 to 60' to the wave propagation direction

extending from lower left to upper right in Figure 20. TIT second system

of fractures is due to a distribution of fine polishing scratches and are

oriented at an angle in the vicinity of 750 to the wave propagation direc-

tion extending from the lower right to uppe'.r left in Figure 20. The orien-

tations of the major axes of the grains and the wave propagation direction

represent an intermediate condition to those shown in Figure 19a and b.
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As the radial distance from the point of impact increases the

concentration and orientation of the circumferential fractures change.

The orientation of the circumferential fractures becomes normal to the

wave propagation direction thereby essentially ignoring the grain struc-

ture. The fracture mode is now transgranular with little preference for

grain boundaries, unless the grain orientation is highly favorable. This

mode of fracture prevails in the intermediate fracture zone as the concen-

tration of circumferential fractures drastically decreases and the fracture

lengths increasE significantly. The occasional cracks observed far from the

point of impact (at the outer bou-adaries of zone 3) generally are associated

with some form of microstructural defect. Some form of stress concentration

is necessary to nucleaLe and propagate a crack at the low stress levels

which would prevail in this region.

The surface of shot no. 838 contained some polishing scratches which

interacted with the fracture pattern on a very small scale, although the

gross fracture behavior did not show interactions with the polishing flaws.

In contrast shot no. 1012 which was polished by a commercial polisher to

above average optical window tolerances showed no scratch interaction with

the fracture pattern on either a micro or macroscopic scale. Shot no. 1012

was on a surface parallel to the growth plane (i.e., the columnar grains

were perpendicular to the impact plane) at an impact velocity of 336 ms-1

The impact surface was examined by TEM microscopy of a shadowed carbon

replica. Figure 21 is a region within zone 2 adjacent to the central un-

damaged zone which appears in the lower left of the figure. The fractures

tend to be of two types: those that are small (<ip) and wholly contained

within the grains and those which are somewhat longer (%3pm) and are asso-

ciated with grain boundaries. This behavior is very similar to that of

Figure 19b without the perturbing influence of the surface scratches.

Figure 22 shc.s che fractures at the inner radius of zone 3 (i.e., adja-
cent to zone 2) i.n which the fractures are transgranular with no influence

from the grain structure or orientation.

The critical stress states due to a water drop impact on an elastic

half-space have been described in Section III.3.b. For brittle materials the

magnitude and duration of the radial stress component when it is tensile at
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and near the specimen's surface are the dominant contributions to fracture

initiation and propagation. The magnitude and duration of these tensile

stresses are related to the sizP of the drop and its velocity at impact.

Once the tensile stresses develop in advance of the expanding water drop/

target interface, they are of a magnitude which more than exceeds the cri-

tical stress intensity factor of the zinc sulfide target. The surface

cracks surrounding the central undamaged zone consisting of the major por-

tions of fracture zones 2 and 3 show relatively little interaction with the

surface grain structure and near surface inclusions. Figure 19a shows that

in this region the grain boundaries provide paths for the crack trajectories

when the major axes of the grains are approximately normal to the stress

wave propagation direction. As the stress waves propagate away from the

impact site, they are attenuated due to the inherent attenuation of the

material as well as due to the energy lost in creating and extending cracks.

Thus fractures at the more distant points in zone 3 will tend to show the

greatest dependence on the material's microstructural features. The inter-

actions between the fractures found in this region and those features which

< Iare able to provide sites for stress amplification of the low amplitude

stress waves of moderately long duration propagating through zone 3 were

examined in moderate detail. Interactions did occur with some of haystack

structures described in Section II.1, however this contribution to the general

degradation of the specimen is essentially inconsequential.

The fracture interaction with the haystack grain formations may be a

result of the presence of the same inclusion that nucleated the haystack or

could be a result of the grain orientation interface. Wimmer and Graves

(1977) note that the columnar grain structure results in some anisotropy in

strength, hardness, and Poisson's ratio. Their strength and elastic property

tests were on a macroscopic scale, so it is conceivable that the effects of
local anisotropy could be much greater than their mechanical property eval-
uations indicate. The local anisotropy of the CVD zinc sulfide could in

itself produce critical stress conditions for fracture initiation.

U
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The major cracL. for specimens with a moderate distribution of fine

polishing scratches are reitively large semi-elliptical fractures nu-

cleated at surface scratches as can be seen in Figure 7b. These frac-

Lure surfaces exhibit a large orientational dependence between the stress

wave directicrn and the surface scratch. Surface scratch nucleated cracks

are typically bounded in extent by -he points at which the inctuded angle

teaches 450 between the line of the scratch and the tangent to an expanding

circle centered at the impact site intersecting the scratch. Even if the

scratch is composed of a serias of small disjointed segments oriented dif-

ferently than the compcsite scratch direction, the resultant fractures will

only interact with these segments very weakly, if at all, until they satisfy

the included angle requireD'ent described above. The scratch iucleated frac-

tures tend to be more pronounced in fracture zone 3 than in fracture zone 2.

This may be due to the longer duration but decreased amplitude of the stress

pulse. The decreased stress amplitude is compensated by the ease of fracture

nuzleation at a fine surface scratch.

In addition to the influence of grain boundaries and surface polishing

scratches on impact fracture behavior, the influence of grain size, inclusion

content, and hardness were also investigated.

Three different formulations of ZnS (materials A, B, and C) as

described in Section II.l,whose properties are tabulated in Tables I to 3,

provided variations in grain size and hardness. Material C has both

- a lower microhardness and a larger grain size than both material A of B

which are similar in grain size and hardness. Comparison of the impact dam-

age due to single drop impacts on these materials reveals no significant

difference in the extent or nature of the fractures produced. Cross sec-

tional views of the fracture patterns are shown in Figures 6 and 23 for

impact velocities of 517, 515, and 512 ms-l on materials B, A, and C, re-
spectively. It is apparent from these figures that the vaiiations in hard-

hess, grain size, grain shape, and inclusion content repreuented by these

three materials does not significantly affect the impact damage. Comparisons

of the measurements of the fracture zone boundaries and fracture depth dimen-

sions tabulated in Tables 6 and 7 corroborate this conclusion.
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In order to extend the range of available grain structures, specimens

were also cut from material A parallel to the deposition direction to yield

specimens in which the exposed face has the elongated grain structure illus-

trated in Figuri la. Comparable water drop impact conditions (shot no. 813

and 1338), representing the difference in grain structure shown in Figure 1,

produced no obvious difference in the fracture pattern observable on both a

microscopic and macroscopic scale.
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SECTION V

ANALYSIS OF WATER DROP IMPACTS ON ELASTIC SOLIDS

Knowledge of the stress states in a target material due to a water

drop collision is an essential prerequisite for analyzing the extent of

the resulting crack growth which occurs when the impact velocity exceeds

the fracture threshold. In general, the motion of the drop and the mate-

rial is a coupled problem and should be treated as such, since the contact

pressure is a function of the deceleration of the drop which depends in

turn on the deformation of the surface. This leads to a complex non-linear

interdependence between the pressure and the surface deformation. We will

side-step this issue, however, by assuming that for the purpose of calcu-

lating the pressure, the material surface can be assumed to be rigid.

This will result in an c erestimation of the pressure which for materials

with the hardness of zinc sulfide is not too significant. This can be

corrected if desired by using an iterative procedure once the general

solution for the surface deformation has been obtained.

The analytic approach developed here is based on the use of Green's

functions and a Green's theorem relation derived from the divergence theorem.

For these techniques to be useful, it is necessary that the problem be linear

which imposes some restrictions on the drop speed and material properties.

In pa-ticular, deformations must be sufficiently small that a linear stress-

strain relation is valid. This eliminates from consideration, for example,

those events which result in substantial cratering. The linearity assumption

is bound to fail at crack tips however, since a strictly linear material

' would never crack and consequently, some special treatment of these regions

is required. From the ETI experimental work on ZnS, it appears that in the

N1 velocity range of interest, namely 222 to 684 ms the response of the

material is reasonably linear except for the creation of the cracks. This

is deduced from the fact that any permanent deformations of the surface as

a result of the impact are negligible compared to the dimensions of the impact

zone. For simplification, the material will also be assumed isotropic.

This assumption is supported by experiments on ZnS conducted by ETI which

do not show any strong dependence of impact damage on grain orientation

for the typical grain dimensions in the current production of CVD ZnS windows.
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1. PREVIOUS WORK

A few comments concerning some previous work on this problem will be

made. Rosenblatt, et al. (1976,1977), have developed a numerical solution

to the crack growth problem in ZnSe using explicit numerical methods. In

comparing their results with the experimental results obtained in this pro-
gram for ZnS, it is seen that the numerical solution produces cracks whose

spacial extent essentially encompasses the annulus corresponding to zone 2

cracks (ETI notation) observed in the cross sections in Section IV. The cracks

in tiie numerical solution are not as clearly defined as in the experiments:

they tend to appear more in the form of a completely cracked zone than as

a distribution of distinct cracks. Also, the experimentally observed zone 3

cracks appear to be almost completely absent in the numerical solution.

Since ZnS has a greater strength than ZnSe, this discrepancy is not likely

to be explained by the difference in the materials. A more likely explana-

tion is that the crack model used by Rosenblatt and co-workers is incomplete,

since according to their fracture criterion only tensile cracks are allowed.

Cracks can occur in any cell in the finite difference grid once the tensile

stress criterion is satisfied. This is not an appropriate representation

for the preferential crack formations controlled by the imposed transient

stresses and a surface flaw distribution. Considerable improvements in the

basic fracture model appear to be required before the finite difference com-

putations can begin to reproduce the physics of the actual impact induced

fracture patterns. This points to an area of concern which requires further

study and points out the danger of relying too heavily on numerical results

alone.

A second point examined by Rosenblatt, et al. (1977) was the pressure-

surface deformation interdependence. It was found that assuming a rigid

surface for the purposes of calculating the pressure does not introduce

intolerable errors over the velocity range of interest.

68



/2

The analytic approach used by Hackworth and Kocher (1978) will also

be mentioned, since their analysis was to provide the local stress condi-

tions at various locations within the half-space for the purpose of esti-

mating the crack growth which would occur. However detailed examination

of their work revealed an apparent error in their contribution to an ex-

tension of the initial analysis of the stress wave problem (Blowers, 1969;

Adler, 1977). Their starting point is the TURBAN computer program which

evaluates the stresses in an elastic half-space due to a pressure distri-

bution given by P(r,t) P 0oM(kv-r) where O(x) is the Heaviside

function

( 1 x>O
OW = (5.1)

0 x<0

The analytic solution was determined by Blowers (1969) for this prcssure

distribution it. terms of several integrals which are evaluated by TURBAN.

Hackworth and Kocher's extension of Blowers' idealization of the water

drop impact problem to time-dependent pressure loadings is based on

Duhamel's superposition relations which utilized Blowers solution, 0o

They proposed that o(r,z;t) , the solution for the general time-dependent

distribution P(r,t) , is given in terms of the solution, 0 (r,z;t) , for

the restricted distribution P (r) by the expression

a(r,z;t) = ar + f a (r,z,t-T) d• (5.2)

where the final pressure distribution is given by

P(r,t) = P (r) P0t) (5.3a)

"P de L (5.3b)
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This is correct as far as it goes, but Eq.(5.2) is valid only for the

limited class of distributions E.- which the restricted distribution is

independent of time, a point which is not clearly made in the report.

This however excludes Blowers' solution upon which TURBAN is based. A

more general relation similar to Eq.(5.2) can easily be found, however,

which is valid for Blowers' distribution although the final pressure dis-

tribution does not have the simple product form sought by Hackworth and

Kocher. The general solution as will be shown later (see Eq.(5.50)) for

the physical stress matrix at location (y,t) in a half-space due to a

prescribed pressure distribution on the surface is given by
t

aij(yt) =1 daxf d P(x,t-) Z 3ij(xy;T)

wherefdax denotes the integral over the surface S , specified by x3=0,

of the Shalf-space. On this surface the coordinate vector is x , the pres-

sure distribution is P(x,t) and the appropriate Green's tensor is4 +s

E3j (x,y;T) . Taking the Laplace transform of this expression, we find

a iij(y's) =f daxP(xS) Z31j(xy;s) (5.5)

S

Since the problem is axisymmetric, Eq.(5.5) can be written in cylindrical

coordinates. Thus (dropping the tensor indices and incorporating numerical

constants into the definition of P(r',s))

o(r,z;s) =f dr' P(r',s) E(r',r,z;s) (5.6)
0

In order to reproduce the result given by Hackworth and Kocher (1978), we

will first assume a pressure distribution which is independent of time.

Later, we will extend these results for a general pressure distribution.
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Suppose we know the solution for a constant pressure P (r) . Then
0

0 P (r)
P (r ,s) =f e-St P (r)dt = 0 (5.7)o o5

0

and

00

a(r,z,s) a o(r,z,s) = f dr' T(r',r,z;s) s](5.8)

Since

* dP .t dP (
P(r,s) - =f e-t dPdt sP(r,s) -(r,o) (5.9)dt t

and provided that P (r) = P(r,o)
0

G(r,z,s)- 0o(r,z,s) dr' (r',r,z;s)P
0

O P P ( r'),s)
=f dr'E(r',r,z;s) s P (r') (5.10)

0 0

The Laplace transform of Eq.(5.2) gives

P(s) (.1
a(r,z,s) - o (r,z,s) = o (r,z,s) (5.11)

0 P(o)

Comparing the expressions in Eq.(5.10) and (5.11), it is seen that Eq. (5.2)

can only be valid for those pressure distributions for which

•• • ~P(r' ,s) r
P (r'W) is independent of r'
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This requires

SP (r)(s) (5.12)
0

where H(s) is an arbitrary function of s

In view of Eq.(5.9), we find

P(r,s) Po(r) +R(s) (5.13)

and it follows that

P(r,t) = P (r) F(t) (5.14)F0

where

t
F(t) 1+ H(T)dT (5.15)

0

Thus, Eq.(5.2) is only valid for restricted pressure distributions P (r)
which are functions only of r . This excludes, for example, Blowers'

distribution since it depends on both r and t . It is natural to

ask then whether a product form might in fact be more useful than Blowers'
solution since then one would be able to include the time dependence of

the pressure at any given point. This is not likely to be the case, how-
ever, since such a distribution does not model the expansion of the con-

tact zone of the drop. Since the waves are expanding outward from the
contact zone, the fact that the source is expanding is certainly as impor-
tant as the fact that its magnitude changes with time at a fixed point.

Li
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These results are easily extended, however, to general distributions
P (r,t) which do include Blowers' distribution as a special case, although

0

the resulting final pressure distributions are not simply the products of

the restricted distributions and arbitrary functions of time.

If we know the stress state due to a pressure distribution P (r,t)
then

00

a(r,z;s) - a (r,z;s) =f dr' f(r',r,z;s)[P(r',s) -P (r',s)]
0 (5.16)

f dr' !(r',r,z;s) P (-' s) xP(r'.s) -
0 P (r,s)O0

As before, the right hand side of this relation can be factored provided

P(r',s) 1 H(s) (5.17)

S(r' ,s)

in which case

a(r,z;s) a o(r,z;s) a 0(r,z;s) H(s) (5.18)

or

a(r,z;t) = o(r,z;t) +ft dT ao(r,z;t-T) H(T) (5.19)
0 0fo

From Eq.(5.17)

P(r,s) Po(r,s) (1+(s)) (5.20)

which implies

P(r,t) =P (r,t) +f p (r,t-) H(T) dT . (5.21)
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It is easy to show that this reduces to the previous result when

P0(r,t) is independent of time. In the general case, H(T) is not

equal to the normalized time derivative of the pressure function nor

is the final pressure a simple product of the restricted pressure,

P0(r,t) , and an arbitrary function of time. For example, using

Blowers' distribution

P 0 (r,t) = P e(kE--r) (5.22)

where P is a constant. We find after some manipulation,

"P(r,t) = P (r,t) [l+I(r,t)] (5.23)

"where 2

t-rI(r,t) = e(k/t-r)f P-k dT H(T) (5.24)
0

This does not have the simple product form sought by Hackworth and Kocher

because of the radial dependence of I(r,t). Using the fact that

Lr2

6(k/t-r) = e(t- 2 (5.25)

we notice that Eq. (5.23) can be rewritten in the form

P(r,T) = P (r,T) [+I(T)](5.26)

where

2
' T =t _r__

T t k2 (5.27)

P(rT) = P e(T) (5.28)

S70

74



Thus it is apparent that within the confines of Eq.(5.21) generalizations

of Blowers' problem can be generated through the use of Eq.(5.23). If our

only interest was the stress state for the axisymmetric problem and this

rather restricted class of pressure distributions, we would in fact use

these results without introducing the additional complexity of tha Green's

tensor. The latter is central also. however, in developing a systematic

treatment of wave diffraction from cracks and for treating asymmetric pres-

sure distributions. An example of the latter is the distribution due to a

• drop impact at an angle of incidence other than 900.

2. A FORMAL SOLUTION TO THE PROBLEM OF CALCULATING THE STRESS DISTRIBUTION
X J IN AN ELASTIC HALF-SPACE DUE TO AN ARBITRARY PRESSURE DISTRIBUTION ON

ITS SURFACE

•I The formal solution for the determination of the stresses in a half-

t space due to a localized pressure distribution on its surface is formulated

in terms of a Green's theorem derived from the divergence theorem. The de-

rivation of this relation will be outlined because a clear understanding of

its origin will be necessary later. Consider two solutions to the wave equa-

tion in the half-space denoted by (uA,tk2 ) and (u ',t•) where u and

tkA denote the displacement vector and stress tensor, respectively. (The

physical stress matrix k is not a tensor because it does not transform

as such for curvilinear coordinates. If needed, the relation between tki

and akA is easily found using the metric tensor for the coordinates

involved. For cartesian coordinates, this tensor is unity.)

) Form the quantity

wk = tkt* u t'*uk (5.29)

where * denotes the convolution defined by

a*b f dt a(t-T) b(T) . (5.30)
0
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The upper limit t denotes the limit Lim t+E whenever it is necessary
C40

to avoid ambiguity in the definition of the integral. In particular,

t
f6(t-T) b(r) dt -b(t) (5.31)
0

where 6(t) is the Dirac delta function. A repeated subscript such as

in Eq.(5.29) indicates a summation over the range 1 to 3 unless otherwise

indicated.

Taking the divergence of Eq.(5.29) dnd using the equations of motion,

t k,'k + Pfk = PU (5.32)

t kz + Pft = PUi (5.33)

(The notation a,k denotes the partial derivative 9a we find,

Wk,k tk*e2 - t*ekk + pUi*u' - pUj *u£

i - *u' + Pf'*u (5.34)

where the strain components ekk are defined by

e ek 1/ 2 (u£,k + uk,£) • (5.35)

But

t *e =E e *e' e *EkZmnen ek*t = t* (5.36)
ki k9 k7mn mn kZ ki k mn m k kZ kZek (
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where we have used the general stress-strain relation tk= EktmneMn

and the symmetry property Ekkmn = Emnkk for the elastic constants.

Also, from the definition of the convolution, Eq.(5.30), iL is easily

seen that

t,, -÷,(u* Uu) v()• - U(o)' (5.37)

where v(o) = u(o) . A similar expression holds with the primed and

unprimed variables reversed. Thus

4.. 4.. 4.. 4. 4. 4. 4.
Wk,k Vw = -pf*u' + pf'*u - pv(o)u' + pv'(o).u

- pu(o).i' + U'(o).- (5.38)

The divergence theorem stateýs that for any closed

ji surface S surrounding a volume -j

Lf 
4

[1V .w dv = f wn da (5.39)

A

where n denotes the unit outward normal vector to the surface. Thus

~~~ f 4 ÷ ÷ .

fda t + fdv p[f*u' + v(o).u' + u(o) '

(5.40)

tda *t + dv p[f'*u + vI(o). u + u ]
ja (n)

•- where
e t (n)k tkZn t kn k 

(5.41)

i~7
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In a later diszussion it will be important that this relation is true

for any closed surface in the material and not just for the actual

physical surface of the material.

Now for u' , we chose the solution of the wave equation with the

singular source term

44-
pf= S(t) 6(x-C) 6ij (5.42)

t•here 6.4 is the Kronecker delta, and the initial conditions
Lj

u'(o) =v'(o) 0 (5.43)

'I

We denote this solution by Gijd•,;t) and require

G 0 for t<O. (5.44)ij

The term involving f' is easily evaluated

dv P(f'*:) = dVx f dr6(t-T) uiGxz) 6ij

0

Sdv 6(x-•) u. (x,t)
x jV

u(,t sV
0 (5.45)

where denotes the complement of V , i.e.. the region outside the

boundary of V . We will define ui(E,t) on the surface as the limit as
the surface is approached from the inside. Thus using Eq.(5.40) (dropping

the vecto!Z notation for x and • )
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ui(,t) ( 0 dax [t(n)i (x,t)*Gij (x,E;t) - u.(x,t)*T(n)ij(x,•;t)]

+jfdvx p[fi(xt)*Gij(x,ý,t) + vi(x,o) Gij(xEt)
V

+ ui(xo) G ij(x,E;t) (5.46)

where the stress matrix T(n)ij Tijk nk is obtained from G.i by

using the stress-strain relation,

Tijk = XG 6j,P 6ik + P(Gijk + Gk ,i) (5.47)

The partial derivatives are with respect to the x coordinates.

Since both t and u. cannot be independently specified on
(n)i I.

a closed surface, we must impose an additional constraint on the Green's

function to eliminate the dependence on one or the other of these quanti-

ties. Since we wish to specify the pressure on the surface, the natural

choice is to require

T(n)ij = O on S (5.48)

where S denotes the surface of the half-space. If we further assume

the absence of sources and homogeneous initial conditions, then

u.(ý,t) dax t(n)i (x,t) * G.(x,ý;t) (5.49)

This is the fundamental solution to the half-space problem with a

prescribed stress distribution on the surface. The stresses in the

material are found by applying the stress-strain relation to both

sides of Eq.(5.49). Thus

t t (C,t) = dax t(n)i(x't) * ikk(x,9 ;t) (5.50)

is
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where E ijk(xE;I:) is determined by Eq. (5.47) with the exception that

the partial derivatives are now with respect to the E coordinates.

These expressions, while providing a formal solution to the

problem are, of course, of no practical value until an explicit ex-

pression for the Green's tensor is found.

3. DERIVATION OF THE GREEN'S TENSOR

The Green's tensor we require is the solution to the wave equation

P[t GdL + (c 2 ct2) G~ Gij = f -pf (5.51)

with the source term

ij= 6(t) 6(,-•) tij (5.52)

which has homogeneous initial values and satisfies the boundary

condition on the surface of the half-space given by

T (n) ij '0 (5.53)

The surface stress tensor T(n)j* is given in terms of the Green's

tensor by

T~ni 2 LXG j 6ik+IJ' (Gij, +GkiJ nk (5.54)
(n~ij I j ,k jj

where X and U are the Lame coefficients which are related to the

longitudinal and transverse wave speeds by

2

S2 Xd2p (5.55)
P
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Since the governing equations are linear, we can always express

the Green's tensor as a sum, each term of which satisfies the wave equa-

tion but not the complete set of boundary conditions. By making a judi-

cious choice in this separation, the problem of determining G.. reduces

to several simplier problems whose solutions when added determine G...

A familiar example from electrostatics is the problem of determining the

electric field due to a point charge near an infinite conducting plane.

The solution is most easily found by writing it as the sum of the fields

due to the charge alone, which will not satisfy the boundary conditions

at the plane, and that due to a virtual image charge located behind the

plane with properties chosen so that the sum of the two fields does satisfy

the boundary conditions on the plane. The first of these fields will be

singular at the location of the charge, whereas that of the second will be

everywhere regular since the image charge does not lie inside the physical

"region.

We will, in fact, use this analogy to write the Green's tensor as a

sum of three fields with the first being the singular field due to the

source Eq.(5.52) with no boundaries. The second term will be the field

due to the image of Eq.(5.52) and the third that which is required to

satisfy the boundary conditions on the pJane. These lattec two terms are

regular everywhere inside the material. In view of Eq.(5.53), the boundary

condition for the third term is just the negative of the sum of the

contributions from the first two terms.

Let us now choose a definite coordinate system. The material will

be assigned to the half-space x3 <O and the origin will be placed directly

above the source point ,Figure 24. The solution for an arbitrarily

located source point can be found by a simple translation of coordinates.
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x 3 x

r=x- F

Figure 24. Coordinate System Used in Green's Tensor
Calculation.
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The field due to the source given in Eq.(5.73) is well known,

G( s) 1 (3r.r. 6

G. = r-13 - " t X6(t-Xr)dX
i 47rp r r f

r 1

1

+ r3 crt •

6.. )

rc
t

where r x - . The integral is easily evaluated

fCt X6(t-Xr)dX t U t)- (~.) (5.57)cr r 2 r

1

tc
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We see that Gi(S) is singular at r=O where it vazies as i/r. The stress

tensor corresponding to this field is found by substituting into Eq.(5. 54 ).

r r r + 6 r +

(Si)d 2 i ,k ikr
x6c r 33

Srr

c£c

-t + 2 X~ (t- )--•r

3 c2

ct r 6 + r(t-

--. 6(t- ) +-- ct(
3 c 2 c ci

r 3

The surface stresses are

(s) Ts n( 
459)

T ikT n(n)ij ikj

where n is the unit outward normal to the surface which in this case is

(0,0,1).
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The second contribution to the Green's tensor will be chosen as the

field due to the image of the source Eq.(5.52) found by reflecting in the

x3 =0 plane. The reason for including this field explicitly rather than

combining the second and third terms is that when the combined fields of

the source and its image are substituted into the boundary condition

Eq.(5.53), a number of terms cancel. The fields due to the image are given
-+ - -*

by Eqs.(5.56) and (5.58) when ý is replaced by -• i.e., •source =

44

(0,0,-C) and C"image = (0,0,E) with ý>0 Thus, since -r=x--E•

rsource 1(XX2 ,X 3 + •) (5.60)

rimage = (Xl,x 2 ,x 3 -

On the boundary, x3=0 , we find

sourceI imagei i=1,2

4 4

SI rimage3
r source 3 riae3 (5.61)

Isourcel I rimagel

SThe combined contribution to the boundary condition is found by adding

the individual contributions. From Eqs.(5.59) and (5.60), it is apparent

that all terms will cancel which are proportional to an odd power of r 3

By contracting Eq.(5.58) with fl=(0,0,1) , we easily find that

T(n)ij (n)ij 0 for i,j=l,2 or i=j=3 . (5.62)
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When 1 3, j # 3 or j = 3, i # 3, the sum is not zero. For example4

for i = 1,2,

C

2. t

c(s 3. 1i xiI rc rStX

r r 1

c£

[6 x5 S(t-I -) -t i (56

r (t-. + -L rt

Each term is of the form x /rn multiplied by either a delta function or its
iderivative. The problem of finding the Green's function thus reduces to

finding solutions to the homogeneous wave equation which satisfy these two

types of boundary conditions. When the individual solutions are found,

it only remains to chose the linear combination which satisfies Eq. (5.53)

to complete the derivation of the Green's tensor.

We seek solutions then to the following problems

P c Gj, c c G G 0 (5.64)

.I t Yjki

ST ~n 0 i,j = 1,2 or i = j = 3
(nij

x
T(n)i3 rnA- F(t -1 i = 1,2 (5.65)

r
T A-1- F(t- j =1,2
(n)3j n c
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r c
where F(t -C) = r) (5.66)

Notice that this problem can be treated by isolating each of the inhomo-

geneous boundary conditions. For example, one such problem would be setX.

by requiring T 0 for all i and j except for T = Ar F(t
(n)ij (n)i3 n Ft cr

While these problems do not appear to have been solved, the solutions to

similar problems do exist.

First, we notice that since T =0 for i,j=l,2 and i=j=3 and
(n)ij

there are no sources, we can set

G. .=0 i,j=1,2 and i-j=3 (5.67)1J

The nonzero components of G ij are then Gi 3 , i=1,2 and CG3i, j=l,2.

We will separate the problem into two parts corresponding to these two cases.

The first will be treated explicitly; the second can be treated in an anal-

ogous manner. In order to simplify the notation, we define

ui = 0 (5.68)

t = Tik3 (5.69)

St(n)i =T (n)i3 = V u ik + ' (xk + : nk (5.70)
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We define cylindrical coordinates (p,ý,z) such that (see Figure 24)

x (pcosý, psinp,z) (5.71)

- (0,0,-C) (5.72)

It follows that

r x +E +2z = p +z +E +2zE (5.73)

The unit vector normal to the surface is

ft= (0,0,1) . (5.74)

The problem now becomes

I Ct22 2-s + 2 2)
ct Vu + (c V (Vu) - u 0 (5.75)

4. 4I (u i u3
t = XVu 6i3+ -•3 + -- i (5.76)

3 xi,

with the boundary conditions

tA A1 p F( ) cos4ý i=l (5.77)

z0 p2+C2 ). sinf i=2 (5.78)

S(n)3 ==0 (5.79)
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Using Eq.(5.76), Eqs.(5.77) to (5.79) become in rectangular Cartesian

coordinates

- +-d!1Sju Pu4 n E (5.80)z axz=O (P 2+2)7r c

; 3u Ax psin
3z ~+2 ) ay psn4 F (t- (5.81)

Sax + + (X+2p) -n 0 (5.82)
( 2 )z=0 z=0(.3

We now express u in terms of a scalar and a vector potential

-+ .

, n + V X (5.83)

where

v.p=O . (5.84)

The wave equation then separates into equations for r and

2 1 =
V 1 0 (5.85)

c 2~£

2 - • 0 
(5.86)

• Ct

The problem thus becomes that of solving Eq.(5.85) and (5.86) with the

subsidiary condition Eq.(5.84) and the boundary conditions Eqs.d5.80)

to (5.82).
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By using the Laplace transform, we can eliminate the time dependence

in these equations. Define

i(s) f e~-st n(t) dt (5.87)

0

yis) e i(s)dt (5.88)

rs = e-st :(t r) dt (5.89)Pr~s
0

The latter transform can be given explicitly using the definition of

F (t-_

rs
I c tr re cfor F -t-r) =c t-c

f-F(r,s)= _t. (5.90)
c r- r[se - c6(r01 for F(t- 6(t-:c

Further,

2-
n(s) = s n(s) - f(0) - sn(0) (5.91)

=i(s) = i(s) - wi(O) - sYi(O) . (5.92)

Using the initial conditions

"n(O) = n(0) = •pi(0) = (i0 ) = 0 (5.93)
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The wave equations, Eqs. (5.85) and (5.86), become (omitting the bar

notation for transformed quantities)

(V2_k ) = 0 (5.94)

2 2
(V2-k 2 2)ip= 0 (5.95)

where

k S (5.96)

S2 t(5.97)

"These equations written in cylindrical coordinates become

(V2-k 1 ) 2 = 0 (5.98)

-•[ ~ V2*-I P O2 ••• k20 = 0 (5.99)

2 1 222 p = 0 '5.100)p 2 p 2 a4 2p

p p

(V-k 2 ) *z =0 (5.101)

where 2 ~2
V -2 i 3+i -+ - (5.102)

p •P ,a p p2  a2 z2

The divergence condition Eq. (5.84) becomes

1 _ 91= (5.103)
ap p p a~ az
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The boundary conditions can also be expressed in cylindrical coordinates.
The results are

au UA F(rs)A + Frs (5.104)P + 2

z=O r" ~0

au au
( + =0 (5.105)

- z=z0

where r =2+2and

:.• up IP + uA~y 1+uz (5:10:)
X L + 1 + (X 20(5.107)

" i ~1 @, _~ a *0  5.09
u = -- + + (5.107)

* p aPa: a

an ai (5.110)
z az a p p ae

"4 We notice that the boundary conditions do not depend on 4 when written
in cylindrical coordinates. This being the case, it is natural to seek
a solution which is also independent of @ . Such a solution does in fact

exist.
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The solution in terms of Hankel transforms which satisfies the wave

equations, the divergence condition, and the boundary condition Eq.(5.105)

is

n(s) B (0) e J (pa) dO (5.111)
f n 0

0

•(S) = B() e JI(pý) d8 (5.112)

CO
0

p(S) = 'K(s) =0 (5.113)

The coefficients B and B are found by substituting into Eq.(5.104)

and (5.106). After some algebra, the result is found to be

BT, D(_s,) I (5.114)

B+ =2 (5.115)

$ D(s,3)

00 ~A Fc 7 s
where I Ad GJ1(aa) p r 2 F)n/2 (5.116)

D(s,O) 2 0(2+k 2/2) 2 2( 2k2( 2+ 2; (5.117)1 2 41 2

- 2 D(Q) (5.118)
c4i~ct
t
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( 1 = (2+l)2 - ; (1+4)7 (5.119)

2
t (5,1l20)

Y = = 2 (5.121)

In this last relation, v is Poisson's ratio. Since for all materials,

0<V<1/2 , it follows that 0<Y2< 1/2 In particular, for V=1/3 which

is a value typical of many materials, Y2_1/4 or Y=1/2

From Eq.(5.108) to (5.110), we find (including again the bar

notation),

I 9

u (s) = 0 (5.123)

- (s) = B k e + B Oe J 0 (Op)dO (5.124)

z 0
0

The inverse Laplace transform gives the time dependent displacements

1 sti -
ui(P,z,t) 0 e u.(s) ds (5.125)
S21Ti efd

a-i-

•i" l~tThis completes the formal solution to the problem. The remaining

problems are to evaluate the required integrals and to collect the various

contributions to form the complete Green's tensor.
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L 4. PROCEDURES FOR EVALUATING THE RESULTANT INTEGRAL EXPRESSIONS

We will examine the first integrai of Eq.(5.122) for the case

F(r,t) = 6(t-r/c) . The others have the same general form and can be

evaluated in a similar fashion. We define

• 1 -+ico s
H(t) -- io e t H(s) ds (5.126)

H(s) = - 8f Bn e Jl(fp)d5 (5.127)
0

Our intention is to reverse the order of the s and the 5 and a inte-

grations. In order to justify this step, it is necessary to show that

the integrals converge. We will assume for the present that z<O and

leave until later the limiting case z=O

For s real and positive, it is obvious that the a integra-

tion converges and when in addition z<0 , it is equally obvious that

the 5 integration also converges provided the denominator does not

vanish for S positive and real. It has been shown, however, (Lamb, 1907)

that D(ý) has a simple zero for a value of ý<-l and thus in view of the

definition of ý , D(s,5) does not vanish for 0 in the range of inte-

gration and s real. Since both integrals converge for any s positive

and real, the integrated result defines an analytic continuation for s

not real; in particular along the line a-ia' to c+i- where a=Re(s)

lies to the right of any singularities in the s plane.

Because the integrals do converge, we can reverse the order of

integration and study the properties of the s integration first. We

define a function G(t)

G(t) = ds est B(s,$) e e 45.128)G- i 2Tri e (5128
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then A 83 o d I •, 2

H(t) f - 2 d J() d / Jl(Ba) G(t) (5.129)
o o 2(a+)

where N•2

B(s,ý) 2s (5.130)

D(s,ý)

For notational convenience, we will change the variable of integration

from s to the rcal variable y where s=ct+iy . As we will show, all

the singularities lie along the imaginary s axis or equivalently, the

real y axis and consequently we can set a=0 with the understanding

that the integration contour passes below all the singularities in the

y plane. In terms of y , the function G(t) becomes

"G(t) = f dye e

c 2c

t .. b h (5.131)

The s'p.gularities in y re,ult from the branch cuts of the two radials,
.•.•" •the simple zero of D(y,8) at ý<-I and the asilmptotic behavior of

D(ý) for large In the latter case, it happens that D(y,e) 1.s

proportonal to y-and thus the integrand has a second order pole at

y-0. To show this, wa expand about y=O (which in view of Eq.(5.120)

is large • )
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ý22 4 / 2 1/2 2 1/2f

2D 1- 42 (+ 2 24 y (5.132)

22 4 2 2 21 2 1
- 2 c+ Bc• ct

2 2 2

tzt

= 2

As mentioned earlier, D(ý) has a simple pole at a value of real C<-l(ac \2
Since C ( -i;1 , this will result in a pair of simple poles in the y

plane dt

2 2

o ths2t = -1- ol 6>0 , real (5.135)
! y

The equation which determines 6 is 0

and 6 is a function y (where yc /c.)
-

only o n Poisson's5ratio

h We chose the phase of the two radicals by requiring these to be

real when and s are real. Then

P, 97



1 4

2 e 2(5.138)
c•

2 ~~~1/2 1 !ý!.'I - ..,.X- I i• L m I e 2 (5.139)

C 2 c t C tIt

where the 0 are defined in Figure 25. Also indicated are the branch
i

cuts, the poles and the integration contour.

Let us first consider the limit of large y in the lower half plane.

By continuing in y between the cuts, (Figure 26), we find

01 = 6 2 2Tr-10 (5.140)

Lim e8 = 0 4 -11 (5.141)
IyI-+- 3 4 o

where 0 = -101 (5.142)

Thus

Lim 2 2 ilyle = ix (5.143)lyl÷ c 2 c 9

F2 T e =
Lim 2 c (5.144)

•:2 ct
1y1-OO c~ t

In this same limit

4
D(y,8) 4 -- 4 1-0 ) (5.145)

2c y
t
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of the complex y plane,

10

1

710



so that the integrand becomes

2ict3 iy t-

S3 e (5.146)
Sy

We see than that if T < 0 where

S1 • Izl (5.147)
T=t-[ - c£

•" then the integrand will vanish everywhere on the semicircle as lyl÷°° .

SWe can thus close the integration contour by including the semicircle

• since its contribution is zero. Since there are no singularities in the

SJ lower half plane, by Cauchy's theorem we find that G(t) vanishes for

ST < 0 . Thus

1iI/-

t
wherel i t>O

, e(t) = I (5.149)
I 0 t<O

i In the upper half plane in the limit of large i Yi , we find

L. Lim @i = 02 = 83 = 04 = 8 (5.150)
Sly[÷ °°

S!' i01

" !
i•k wwJ• •w • • m •w N,• •.m•,•. m, • w• • m. • • • • m .. mml • mm I
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and thus

Lim 2 (5.151)
2

Lim 2 _e_2 (5.152)

Cy"= ct2 c t

The integrand becomes

_2c3 iy t- 1 ;77

-3 e (5.153)
y

and since

I + zL T T+ 21 z 1 (5.154)

C c c

the integrand vanishes on the upper semicircle for jyj-*c whenever

T >T0.

We can now deform the integration contour into the upper half-

plane as indicated in Figure 27. From this it follows that

fdy =ft + + + fct + +f (5.155)
• -*o -oo -ct•_- •co oo ct ct

00 00 _C -C • o 0 0t t t t

+ +~ +#

Ct -Cta

As we have just seen, the integral over the semicircle at lI vanishes,

=0 (5.156)
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Figure 27. Integration contour deformed into the

upper half of the complex y plane.
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Also, since the integrand is proportional t o 2 the two

Sct
integrals around the brhn-'i pulnt. also vanish.

0 (5.157)
i c2 -c2

2 2

The remaining contributions are nonzero. The contribution from the

second order pole at y=O is

9S rioLim d-y I(s) (5.158)
0

where I(y) is the integrand of G(t) ,

t-/ '4 J - 4
i c2

1(y) =-e e[Tr
i4777 4B~2y

I x t (5.159)
I D(y,8)

It is easily determined that

Ii 2

__t-I e (5.160)o (1-y) c

I:; tB

Next, consider the simple poles at y6 =+ i Since D(y,a) has
simple zeros at these points, we can write

D(y,8) = D(y6,a) + (y-y 6 ) D'(y 6 ,$) + ... (5.161)
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where D(y 6 ,8) = 0. The residue theorem gives

i • 2 z 2
+ i e c Y2 - (5.162)

f 2

c 2  -*C 2 f t

c ct

1Y • ) -iy•.

e e
D'(y 6 ) D'(-y 6 )

-2$ sin [6 (1+6\~ ~) (5.163)•i" D'(y6)

Here

r ~ ______2a __3 3+66-46 3 2i c' t•- (1+26•) 2 1+6
i -4y (1-6)

To simplify notation, we will define

E (Y 2 ) ___L6 (1+26) (5.165)

1+6 -4y 2(1-62)
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then _-Y21 -• ••
then= ;• E(y [( 11Ie7+•)] (5.166)

S~Y6 -Y6

The integrals along the right hand cut can be combined to give

cto

4J+ J J dy I( -i I'Y+i' 1  (5.167)Cf f =f_
ct6 ct6
ct 0 cto

This must be separated into the regions c t<Y<C and y>c t

In the region c t<Y<c B , the radicals have the values

2

Sreal (5.168)

2 a2 1i above cut

S2 2- 2 - below cut (5.169)
c t ct

and thus

22
D(y,2) 2 [(0 2L) + i- o -2 2 (5.170)

2c T t cZ ct

with the + sign corresponding to y above or below the cut. The resulting

integral is obtained by substituting into Eq.(5.167). If we include also

SI the contribution from the left hand cut, we obtain
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2 2/
c~ -c 2 2_P 2)

c 2c
1+1 f- dy -tt

cp -c c2
2 2) c

tt

• 2t(5.171)

2
x e sin[y(t i

Next, for y>c2  , we have in addition to Eq.(5.169)

17 2
2 2C i below cut

"and

2 2 2 \2

SD(y,$) = 2 2 + 21 2• -- 2) (5.173)S•;2ct c cc
t C

"Note that D(y,ý) is cut only between ct•<Y<c . The combined

integrals give

&

2 2 c

c I

cf C1 2+ ,

+2= 1 dy (5.174)T )2 2

+ Y
2c 2
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The function G(t) is obtained by adding these contributions.

Defining a new integration variable

w Y/Ct (5.175)

we obtain

G(t) 6 0(T) ______2)_e sin

(5.176)

IA f dw e sin(Tw)

Swhere

t= t -c > 0 (5.177)

The inequality follows froi. T > 0. The integrands of the above integrals

are well defined in the range of integration. H(t) is now found by sub-

stituting into Eq.(5.129). Because of the limits imposed by O(T) , the

range of integration for the C integral becomes
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2 1/2
0 ail _ ý (5.178)

and consequently this integral always converges.

The ý integration of the first three terms of Eq.(5.176)

also converges because of the decaying exponentials. To show

that the last term results in a convergent integral, we need an esti-

mate of the asymptotic behvaior of the last term of Eq. (5.176). The

denominator is a monotonically increasing function of w and can be
written

4" 2

4_-- F(w2 ) (5.179)
4

:[j where F(w ) is also a monotonic function of w (this is not an

obvious conclusion). To obtain a bound on the integral, we can7 replace F(w 2) by its largest value, namely unity. Also in the numeira-
tor, we can replace the radical by its large w limit and the cosine

by unit, thus

/dw cos [)rw 2 Iz 1sin TOwd (5.130)

continued...
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du w sin Tw 4 wS in Tw(510d-W4flTW 4 f dw -- f-- (5.180)

1/y W 1/y w

Integration by parts shows that this last integral is

-0p 34 w i -
4w s cos T/y + 2 sin T/Y + ... (5.181)

•" 1/Y

Thus the 'Least convergent of the ý integrations is bounded by

da f 0 J U1(P) J (ýCu) ,x cos(r a) (5.182)

0

which is a convergent integral [see W.N. Bailey (1936)].

We have now shown that the required integrals are convergent. They

can be evaluated by a combination of analytic and numerical techniques.

The limiting cases of Izi = 0 and E = 0 can be studied by consideration

of the 8 and a integrals in Eq.(5.176) as these limits are approached.
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SECTION VI

FRACTURE ASSOCIATED WITH WATER DROP COLLISIONS

'The critical fracture problems identified as the major contributors

to the degradation of zinc sulfide infrared-transparent windows are frac-

ture initiation due to the transient stresses generated by the water drop

impact and crack propagation due to hydraulic penetration of the cracks

which exist after the initial water drop collision. The initial fractures

in polycrystalline zinc sulfide display a high level of insensitivity to

subsequent stress wave interactions as observed microscopically for inter-

secting ring fracture formations. At a limited number of sites, crack bi-

furcation is noted where one fracture surface propagated in the direction

of the critical stress associated with the first drop impact and the second

I fracture surface propagated in conformity with the stress states generated

by the second drop in the absence of any initia.. fractures. While limited

crack growth can be assigned to the stress wave interaction mechanism, it

is conjectured that crack growth by hydraulic penetration is the dominant

damage mechanism up to the time at which a significant population of erosion

pits exists on the specimen's surface. At this point, material removal can

be envisioned to be due to both lateral outflow jetting within erosion pits

j and hydraulic penetration.

The need for a more precise analysis of these loading conditions and

the associated fracture problems was pointed out in Section III.3.b

to remove the uncertainties in the response of the target to water drop im-

pact collisions have been initiated and are described. Additional work is

required before the results from these analyses will become available, but

the general approach and the type of problem which can be realistically

addressed is clearly indicated.
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1. CRACK/STRESS WkX INTERACTION

A Green's tensor formulation will be developed for the propagation

of a surface crack iJto an elastic half-space due to the stress waves gen-

erated in the half-space by a water drop collision. Eventually the propaga-

tion of stress waves in a region containing many cracks will be considered.

Our starting point is Eq. (5.46). We evaluate the surface integral

over the combined surfaces of the half-space and the crack. Again assuming

no sources and homogeneous initial conditions, we find,

u(t) J) da t *Gi + dax d *G -ui*T (6.1)

~, x(nYii J' (n)-t ni

where Gij is the same Green's function used previously. With the

exception of the crack opening, the first integral is identical to

Eq..(549). Clearly, since the crack opening is small, Eq.(5.49) yields

(0o)
uj dax t(n)i*G ij = u (6.2)

except for a small region close to the crack opening. Since T(n)ij does

not necessarily vanish on the crack boundary, we obtain an inhomogeneous

integral equation for ui( ,t) when E is evaluated on the crack. We

could, of course, simply require T(n)ij to vanish on all surfaces thereby

reducing the problem formally to Eq.(5.49) with a new Green's tensor. This

is not done, however, because the resulting problem for the new Green's

tensor would be impractical to solve. The idea in this approach is to make

the Green's tensor problem as complete as possible without rendering it in-
soluble. The stress wave propagation problem in Section 5 is complicated

enough without introducing the crack. The remaining part of the problem is

i Vthen treated, for this case, by solving an integral equation. While inte-

gral equations are not in general easy to solve in closed form, they are

often amendable to approximation methods.

I1V
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The surface stress on the crack boundary t(n)i will be determined

by the details of a particular situation. The simplest case occurs when

the crack is air-filled since then the required boundary conditions are

a = 0. (In Cartesian coordinates, the physical stress matrix a
(i

and the stress tensor tij are identical.) More generally, if the crack

is filled with water, then a(n)i will equal the hydrodynamic stress.

In writing Eq.(6.1), no mention was made of the fact that the crack

is not stationary. We must therefore determine the exact nature of the

integral expressions in this equation. Recall that during the derivation

of the Green's theorem, it was noted that the divergence theorem is valid

for any closed surface. It follows that we can always choose the surface

at any instant of time to coincide with combined surfaces of the half-

space, S' ,and the instantaneous surface of the crack.

The time dependence of the crack morphology only enters into the first

integral of Eq.(6.1) through its dependence on S' and thus this term will

only be affected when evaluated close to the crack opening. Close to theWI crack means within a distance on the order of the width of the crack. The

second term is more complicated, however, dua to the time dependence of the

integrand introduced by the convolution.

Consider the first of these integrals,

I~ da t *G.i lj = C x (n)i ij

t

d = f d dT t(i Xt-T) Gi (X,E;T) (6.3)

C A

SAt time T=0 t t(n) (X,t-T) = t (n) (x,t)j which is the stress on the

crack surface at time t . For T>O however, t is evaluated

in the interior of the material since at earlier times t-T , the

crack is smaller and consequently the points specified by x(t) , the
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integration surface at time t , lie not on the crack surface of time

t-T , but in the interior of the material. Thus t ni (x,t-T) is not

given by the boundary values on the crack surface, but must be determined

from the dynamic solution at each instant of time as the solution

progresses. It is clear that the required information is available at

any time t to proceed with the calculation, although the need to re-

compute the integrand at each instant would be tedious. Fortunately,
71 we can simplify this result considerably when the crack width is small.

Z j The integration surface C(t) is independent of T and we can

interchange the order of integration (dropping the tensor indices),

t

I , da f dT t(n)(x,t-t) G(T)
SC 0

t +

-- da t (x ,t-t) G(x)f (n
0

+ da-t(n) (x-,t-T) G(x-,T)] (6.4)

where (+) and (-) denote the sides of the crack as indicated in

Figure 28. Since the crack width is assumed small, at each x

n+ = -n_ (6.5)

and

G(x+,t) = G(x-,r) . (6.6)

The latter follows from the fact that the Green's tensor is the

solution to the problem without the crack and is thus continuous

everywhere in the half-space.
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crack at time
(t-T

1, - '"

"I crack at time

I t
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A

Figure 28. Schematic of the Variation of the Crack
, Boundary with Time.

115



Thus

S~t
i 1  f nk tik(xt-T) tik (xt-T) Gij(T) (6.7)

0

Using the continuity of tik and G , we now suppose that the

surface of integration can be collapsed to the surface of the crack at

time t-T and a line extending from the location of the crack tip

at time t-T to the location of the crack tip at time t . The latter

however vanishes by the continuity of tik and Gi. . These concepts
ik 1J

are pictorially represented in Figure 29.

The integral •da+ inEq.(6.7) thus reduces to fda (t-r)

which denotes the integral over the crack surface C+ at time t-T

and consequently Atik = tik(x) - tik(x) need only be evaluated on

the crack surface. This is a considerable simplification since only

the boundary values of tik are then involved in the calculation. A

similar expression holds for the second integral in Eq.(6.1).

S12j= f dT da+(t--) [ui(x+,t--T) - u(x-,t-,r) Tijk(-) nk (6.8)[ 0
+

Along the crack surface, ui(x) and ui(x-) generally have opposite
signs so the integrand does not vanish. Thus if we know the Green's

function, we obtain an integral equation for ui(E,t) which depends

only on the values of t(ni on the crack faces.

The approximation of small crack widths as used above can be examined

by using the two-dimensional, plane strain solution for an edge crack in a

semi-infinite plate subjected to mode I deformations. If r and 0 are

measured from the instantaneous crack tip, the displacements of the material

point at the location (r,G) are

ux 2(l+v) I cos ' Ll- 2v+sin 2 1 (6.9a)Ux E W 2F 2 jI6.a

uy 2( 1v ) sin 2-22-cos 2(6
E - (6.9b)
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Figure 29. Illustration of the Collapse of the Integration
Contour to Include just the Boundary of the Crack.
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The location of the crack surface at time t ,is determined by setting

r=t and O=+f in Eq.(6.9). (Refer to Figure 30).

u' = 0
x KI I

y = +4(1-v E (6.10)

With regard to the crack at time t-T , the displacements of the points

located at the position of the integration surface at time t are found

by substituting into Eq.(6.9) values of r' and 0' given by

r' 42 + (T)-9) 2
y

±'+tan-I (6.11)

It will be useful at this point to introduce some numbers into these

expressions. The stress intensity factor for this mode I stress condition

is KI = 1.12 c •a where a is the length of the crack (Paris and Sih,
1965). We chose as a representative value of stress the flexural strength

of ZnS , a,=100.8 MPa . Young's modulus for this material is E=74.1 GPa

and Poisson's ratio is 0.3. Thus Eq.(6.10) can be evaluated to yield

u' = + 3.9xi0-3v'a' (6.12)S~y

where a' is the length of the crack at time t . Then

_• = + 3.9xl0- n-k (6.13)

and except for n-1 < 0(10,3

~u'
J <<«1 (6.14)
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crack boundary at time (t-T)

+

- yI

ix

Scrack boundary at time t

S,1

Figure 30. Coordinate System Used in Argument Justifying
the Collapse of the Integration Contour to
Include just the Crack Boundary.
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The integrand in Eq.(6.8) is proportional to Au-ui(x ,t-T)-ui(x-,tT).
For 0'<ir/2 , Eq.(6.9b) is evaluated as before with the assumption thats
is small, so using the previous material properties and formulae,

32 21/4 /U\-Au Au 5.6xl• 3  a ul +(fl-z) 1/2 y 2(1-v) -1

"3.9xi06  a (6.15)
pm

except for nm- < 0(i0-) • For I1'I>w/2 ,[l 2
sin = + 1 + + 1 (6.16)2 4R

1/4
and Au =5.6x103  a"~T (ut+(nTI)2 2(1-v) 7.8xlcF a'" /k _ (6.17)

Since Tijk is continuous at the crack, the integration around the
crack will be approximately given by

f a'
nk Tijk f dt Au (6.18)

Breaking the integral into the two regions, £<n(=a'-a") which
corresponds to 6'<v/2 and n<k<a' (OT/2) , we find

S1/2I< dZ Au 6.2x0- (6.19a)

! ia
• > f dt Au =5.3x10-3(a'-n)2 (6.19b)

and thus except at a'-n < 0(10-3 where I vanishes because the
crack vanishes,

10-<< 1 (6.20)
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The region very close to the crack tip where <n-Ri O 0(1O-) must

be re-examined but the general conclusion will not be changed. Consequently

the surface of integration can safely be collapsed to enclose just the crack

at time t-T without introducing appreciable errors.

We now have a procedure then for calculating the stress and displacement

distributions from the Green's function and the boundary stresses provided we

know the morphology of the crack. The remaining steps are then to determine

the Green's tensor and the relation between the dynamic field variables and

the growth of the crack.

2. HYDRAULIC PENETRATION OF SURFACE CRACKS

S~Hydraulic penetration of existing surface cracks has been identified

as a significant crack extension mechanism (Adler, 1979a) with characteris-

tics distinct from those of the stress wave extension mechanism. One prin-

cipal difference is in the direction of crack growth induced by these two

mechanisms. It has been noticed for example that hydraulically activated

¶ cracks tend to undermine sections of the surface thus weakening large pieces

of the surface which are subsequently removed. This behavior is strongly

dependent on the characteristics of the material and thus the first step

toward understanding and describing this process is to determine the rela-

tionship between the angle of crack extension and the other parameters of

the problem such as the crack depth, inclination angle, and material proper-

ties. In general the analysis of this problem is quite complicated because

of the hydrodynamics of the water flow in the crack and the interaction of

A tthe crack with impact induced stress waves. A much simpler, but relevant

problem is analyzed here: namely, a two-dimensional static, pressurized

surface crack of finite length, L , inclined to the surface at an arbi-

trary angle. The immediate goals of this study are to determine the
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stress distribution surrounding the crack and, using one or more

fracture model, to determine the initial angle of crack extension.

Of particular interest is the effect of the proximity of the surface

on the crack extension angle.

The stress distribution in two dimensions is most conveniently

sti!ed by introducing complex variables. As indicated in Figure 31, the

material occupies the upper half plane. The location of a point in the

material is specified by a complex number z given by

z = x + iy . (6.21)

Complex conjugates will be denoted by a bar, e.g.,

z= x - iy . (6.22)

The equation of equilibrium becomes in complex notation

a4 X(z'Z) = 0 (6.23)

Sza2-

where X(z,z) is the Airy stress function. The general solution of this

equation is given in terms of two arbitrary functions p(z) and *(z) which

are analytic in the region interior to the material boundary. In terms of

these, the Airy stress function is

X(zs) = Re 2(z) + f (z)dz (6.24)
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Figure 31. Definition of Coordinates and Crack Angle
for Hydraulic Penetration Calculation.
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The stresses are given by

a + =4 ReO(z) (6.25)
x y

- x + 21Ti2w 2 [1Z'(z) + I(z)] (6.26)

where

0 (z) -'(Z) (6.27)

T (Z) (z) (6.28)

The boundary condition which determines these fu~actions is

N(z)-iT(z) = O(z)+ (z- - e2 ia[zt (z) + (6.29)

where N(z) is the ?rojection of the surface stress along n , the

outward unit normal vector, and T(z) is the projection along the

surface tangent pointing to the left of n when viewed from inside the

material. The angle between n and the x- axis is denoted by a

Since we are considering hydrostatic forces,

N(z) = -P(z), T(z) 0 (6.30)

where P(z) is the pressure wbich in general will depend on position.

We are thus confronted with the problem of finding two analytic

functions which satisfy the boundary condition Eq.(6.29). Rather than

approach this problem directly however, we will instead utilize a method

introduced by Muskhelishvili (1953) who showed that by extending the

definition of ý(z) into the lower half-plane, the function T(z) can

be eliminated.

124



We define a function O(z) analytic in the lower half-plane by

O(z) - i(z) - zl'(z) - ý(z) ZES (6.31)

Here the bar notation signifies

ý(z) -_ P(-z) (6.32)

We now set z-*z and take the complex conjugate. Rearranging gives

I+
Y (z) = - (z) - O(z) - z$'(z) zES+ (6.33)

where now z is defined in the upper half-plane. Thus by extending

"the definition of O(z) into the lower half-plane, the function '(z)

is determined in the upper half-plane. Introducing this result into

Eq. (6.29) we obtain

N(z)-iT(z) = D(z)+ 1(z) - e Z-z) 4"(z) - 4(z) - 4(z)] (6.34)

V IConsider now a region of the real axis for which N and T vanish.

Since a = - 2 along this material surface, we have
2

0 = 4(z) + 4P(z) + (z-z)V'(z) - 4(z) - •(z) (6.35)

or

0 = P(z) - •(z) + (z-z)4'(z) (6.36)

Since z-z=0 on the real axis, provided V'(z) is not too singular

we obtain

O(z) = (z) at z z (6.37)
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This means that 4'(z) as extended by Eq. (6.31) is continuous across the

real axis and it follows that D(z) is analytic everywhere in the plane,

except perhaps on portions of the boundary where N and/or T are non-zero.

The asymptotic behavior of 4(z) has been investigated by

Muskhelishvili (1953) who showed that

-(X+iY) 1 + r + 4l(z) (6.38)
27r(l+ K) z1

K = 3-4v

where r is related to the limit of the stresses as z-* , X+iY is

the resultant of the surface stresses over the finite boundaries, and v is

' ~-IPoisson's ratio. If the stresses vanish as z-'- , r=o and if the surface

I stresses are self-equilibrating, then X+iY=O . The function l (z) is analy-
-2

tic everywhere except at the origin and vanishes as z as z3 0. In order

to simplify the calculations as much as possible, we will suppose that the

pressure is self-equilibrating and further that the pressure vanishes every-

where on the real axis. Clearly by superposition, other more general solu-

tions can be found by the addition of solutions for the cases in which this

pressure is not zero.

Along the crack (see Figure 31) , we have

=e = e = -e (6.39)

with the plus or minus sign depending on which side of the crack ue are

1 "considering. Thus the boundary condition becomes

iitX i1Tx
v ¢(z) 1-ei + '(z) - e 4D(z) + e (z-z) 4' (z) + P(z) 0 (6.40)
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The boundary condition is not in a convenient form because

the crack shape does not allow a simple power series expansion for i(z)

To remedy this problem, we introduce a conformal mapping which maps the

crack into a unit semicircle (Figure 31) . The mapping which accomplishes

this is (Bowie, 1973),

= A1  X 2-X*11 z w(4) :A -•(4-1)' (;+l)-} (6.41)

where

A= L (6.42)

2A (2-X)

The angle 00 defined by

% = tan-, (2X-2)) (6.43)

determines the location of the crack tip on the unit circle in the

4 plane. It is easily shown that the positive and negative real axes

in the z plane map into the corresponding real axes for 1tj>l in

the ý plane. The crack maps into the unit semicircle in the g plane.

Introducing the notation

S! 0w(O) - W(• (6.44)

V w'() (6.45)

the boundary condition becomes (on the unit circle -:a=e )

in !(eiX - in).
.f(a) (-e ) + ( -e •(a)

i (2
+ (l-e irA) O(2-1) V'(W) +P(a) = 0 0_<9< r (6.46)

2+2(X-i)o+l
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The coefficient of V'(a) has poles at

.= 1-_.+i 4 (6.47)

By counting singularities, one finds that writing t(Q) in the form

G (C) C4 (6.48)

defines a function G(C) which is analytic external to the unit circle and

has no severe singularities on the unit circle. It follows that G(C) can

. •be represented by a power series of the form

-kI G~i= Ak~ (6.49)

The inversion of this expression gives

n 2- dQG(e i 0- (6.50)

f A n> 2
An

Thic integral can be separated into two regions

i•• (eg)ing 1 2 G~ig) in@Jn= iG O e if2 dO eG m(6.51)
n dO 4 G G(e ) e d- G(e e e651

In the firat of these, we introduce Eq. (6.49) to find

1 iG iA 1 n(•••l
1 O(eie) e = -n + 1 A (6.52)

k#n
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I In the second of these integrals, G , which is evaluated in the lower

half-plane, is given by the boundary condition Eq.(6.46). If we define

v a=21-0 , we obtain

Ai inO i -inaERdO G(e) e = da G(e-'c) e

e -ine

dO G(e ) e (6.53)
•€ 0

I From the boundary condition, it follows after some algebra (recall

G(0) =(a) , = - ,etc.)
a

G(o)=G(a) FI(a) + G(a) F2 (a) + G'(a) F3 (a) + P(a) F4 (a)

I 00 _< 0 <_ (6.54)

where 2

F (a) a0 a-~ el¶ (6.55)

F2 (a) = (ei•-l) 2 0[a+) + (4)+-3a.+l-G_) (6.56)

i•x -2 4
Fei:)-1) (ae2) _ (O-a+)SF3F(a) = )

3 (a-a (6.57)

iw)X 2 3"F F(a) e= e o_(0-0+) (0-0_ (6.58)

"4
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Substituting Eq.(6.49) into (6.54) and the result into (6.53) yields

.4T

1 lde G(a) e2 lA l(k+n) + A I ~(k-n)-kI (k-n)1I+I (n) (6.59)

where w h e r i /- i ( k + n ) @ F l e io
1l(k+n) =f dO e F (e ) (6.60)

12 (k-n) 1 7dO ei(k-n)e F2 (ei) (6.61)

0

i1 F4(ei ) (6.2i)
I (n) - dO P(ie i e 

(6.63)
0

21 Combining Eqs.(6.50), (6.51), (6.52) and (6.59) yields an infinite set of

nonhomogeneous linear simultaneous equations for the infinite number of

complex coefficients A . Uniqueness of the solution is assured by the
n

uniqueness of analytic functions for a given set of boundary conditions.

Since the complex coefficients A represent an infinite set
n

governed by an infinite set of nonhomogeneous linear simultaneous equa-

tions, there is a degree of arbitrariness in the selection of a trunca-

Ii tion procedure for determining the coefficients, The first attempt in-

volved solving n complex equations, equally divided into the groups

n>2 and n<2 , for n complex coefficients A , k=2,3,..on+l . It was

found however that the coefficients so determined increased rapidly with

increasing n and thus did not lead to a convergent expression for the

function G(Z) 'in Eq.(6.49). In order co inhibit this tendency,
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additional equations were included so that n' equations (n'>n) were

solved for n coefficients in a least squares sense. For Xz , this

procedure results in a rapidly converging sequence of coefficients when

n'>2n , the accuracy of which was checked by comparing with the coeffi-

cients determined by Bowie (1973) for the case of a crack normal to the

surface X=1 . For X much less than unity, on the other hand, some

practical problems remain with this procedure because the number of coef-

ficients required for convergence appears to grow as X decreases and, as

a consequence, the amount of computer time required becomes excessive.

We have not yet exhaustively studied the possible variations within this

class of algorithms and thus further work may yield a more efficient pro-

cedure which will reduce the amount of computer time required to obtain

a solution. An alternate method for determining the stress near a crack

tip has been discussed by Hussian, et al. (1974), for a related problem.

This method, which is based on the solution of an integral equation in

the limit as the crack tip is approached, will be discussed briefly below

after some other aspects of this same paper which are relevant to the

present problem are discussed.

Before doing so, however, we will derive the expressions which relate

the stress intensity factors and the function G(') . For fracture Modes I

and II, the stress near the crack tip is known to have the form

Mode I

K1  0
,1 - sin sin

y = - cos - + s in-t sin (6.64)

K1 0 . 36
Txy, =__ Cos sin cos -2
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Mode II

K
gx KII sin -c 2s+ cos 30os•

aKy Vr-f 2 2 2 (.5K 1I 1  e -sin

Co t (I1 - sint sin
Tvy v-co- 2 2 2Sx'y' , 2

where Lhe parameters r,e are defined in Figure 33 . If we set 0=0

and use Eqs. (6.25) and (6.26), we find

KI Lim 2:27 Re P (z) (6.66)

After some algebra, these reduce to

K +iK = V(- (Re Ei G(O+')3] +i Im[i G(Y+) 3 (6.68)
WK 4sin4 o

which allows us to calculate the stress neai the crack tip from G(a+)

or equivalently, the An's

The next problem is to relate the stress near the crack tip to the

growth of the crack. Many models have been proposed to describe the rela-

tion between stress and crack growth but most are too limited in scope to

Streat combined mode cracking. Two models which deal specifically with com-

bined mode cracking are those of Sih (1973) and Hussain, et al. (1974).

In Sih's model, the crack is assumed to extend in the direction of the maxi-

mum potential energy density where the potential energy density P is given

by

S (6.69)
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Figure 33. Definition of Parameters r,O
and (x',y') Coordinate System.
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is the elastic free energy in the limit as the crack tip
r

approaches (r-+)

S Lim 1 (G4x+2+) -- E +a az+a

r-+0 1  2E x y y E x y x z y z

+ -LT2+r2+r (6.70)

Since S is a quadratic function of the stress intensity factors at the

crack tip, the direction of crack growth predicted by this model can

easily be calculated once these factors are known. In fact, since

S (3-4v-cosG) (l+cos6) K2

sine (cos - (1-2vKK (6.71)

+(4(l-v) (1-cose) + (l+cose) (3cose-1) K 2

SI the condition that P be a maximum yields

a- = 0 ; u S> 0 (6.72)
'62

or

aos[n2e + a cos2e - a sine - a Cosa =0 (6.73)

2a1 COS2e - 2a 2 sin20 - a 3cos + a4sine > 0 (6.74)

where

2 2a K -3KJ 1 I II

a2 = 4KIK1 1  (6.75)
S~2 2

a3 = 2(1-2V) (Kl-E-K1 )

a4 = 4(1-2v) K I KE
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• Thus given K1 and K1 1 , a crack extension angle can be determined. Crack

extension is supposed to occur when S reaches a critical value charac-

r teristic of each material.

More recently, Hussain, et al. (1974), proposed a model for mixed mode

crack extension. In some respects, it is similar to Sih's model although
the crack extension criterion is stated in terms of the energy release rate

given by the invariant J integrals rather than in terms of the elastic

free energy, The important difference however is that Hussain, et al.,

treat the stress in the neighborhood of the crack tip as chat for a deflected

crack in the limit as the propagation branch of the crack shrinks to zero

length. They found that the stress determined by this limiting procedure is

dependent on the angle between the propagation and main branches of the

crack. Consequently the energy release rate also depends on this angle and

they argue that the crack will extend in the direction of maximum energy re-

lease. This extension criterion is more difficult to apply in general be-

cause a more complicated boundary value problem must be solved to determine

the appropriate stress intensity factors.

The procedure used by Hussain, et al., is to convert the boundary

value problem for the stress function into an integral equation. This step

is useful because aui exact solution can be found in the double limit as

the propagation branch shrinks to zero length and the crack tip is approached.

This yields sufficient information to calculate the stress intensity factors.

It is felt that this technique might also prove useful for determining the

stress intensity factors for the present problem. If this is indeed the case,

then the convergence problems discussed earlier with regard to the series solu-

tion would be circumvented. Further work will be required to verify this sup-

position. We emphasize that the use of integral equation techniques is dis-

tinct from the concept of calculating the stress in the limit of zero propa-

gation branch length. The deflected crack problem could also be solved using

the series expansion techniques discussed earlier if the integral equation

method proved to be too cumbersome. The remaining question is to determine

whichif either of these models is correct and this can only be done by

comparison with experiment.
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SECTION VII

TRANSMISSION LOSSES DUE TO CRACKS

It is intuitively obvious that optical degradation will occur when

the surface of an infrared-transmitting window becomes pitted on the scale

of the diameter of a typical rain drop since then the transmitted infrared

radiation with a wavelength X on the order of 1 to 10 jim will be scat-

tered in various diracions vis a vis Snell's law. This is particularly

true for materieis such as zinc sulfide and zinc selenide which have rather
large indices of refraction. At X=3.3 Jim, nz =2.3; and for X=8-13 pm,

nZnSe=2 . 4 . A more important observation with regard to the subsurface

fractures described in Section 4, however, is that significant degradation

occurs before there is a measurable mass loss from the surface. This iL-

dicates the importance of light scattering by the internal fracture sur-

faces which develop due to single and multiple water drop collisions.

It is easy to understand tha origin of the transmission degradation

by considering the optical properties of an idealized crack as indicated

in Figure 34 . The crack faces are taken to be parallel in order to avoid

unnecessary complication in the elementary analysis which follows. When-

ever electromagnetic radiation is incident on an intarface between two

¶! regions with differing indices of refraction, generally both cransmitted

and reflected waves result, Figure 35a. If the index of refraction of

the second medium, n2 , is less than that of the first, n, , then a
critical angle of incidence a exists such that the reflection is total

I c
for angles of incidence c>a , Figure 35b.

c

This angle is given byJn
sinc= (7.1)

For the interface between zinc sulfide and air and water, respectively,

this angle has the values
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INCIDENT BEAM

REGION 2

I

a~ 2

TRANSMITTED BEAM

Figure 34. Geometrical Relations for the Transmission of
Radiation Acrcss an Idealized Crack.
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Incident Beam

n 2
' Reflected Beam

a) nI > n2

a c Region 1
C I

Transmitted Beam \Region 2 InterfaceRegio

iii
Incident Beam

n2  "1 ac

a Region 1
b) nI > n2

X C // Reflected Beam

Region 2

j ,Interface

Figure ?5. Transmission of Electromagnetic Radiation

at the Interface between Two Media,
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f 25.80 ZnS - air

c =(7.2)

34.40 ZnS - water

For the case of a crack which has two interfaces, the situation is

more complicated because transmission can occur for angles greater than

a by a process analogous to quantum mechanical tunneling, provided the
c

crack width d is not too large. For the electromagnetic field does not

vanish instantaneously at the interface in Figure 35b under conditions of

total internal reflection, but instead attenuates exponentially according

to

r~~2 1/2
-k 2 Isina)-1

e a>ac (7.3)

where Z is the distance normal to the interface in region 2 and

k2 = 2 is the wave number in region 2. It is easily shown that even
2

though the field is nonzero in region 2, no energy is propagated in the

Z-direction by this field. if, however, a second interface is placed

close to the first in the region where the field is nonzero, then energy

can flow across the gap and some transmission will occur. The transmis-

sion coefficient, T , defined to be the ratio of the transmitted energy

to the incident energy, for the crack is determined by solving the bound-

ary value problem for the geometry shown in Figure 34 . For unpolarized

light, the transmission coefficient is

4 i T = 1/2(I + 1 (7.4)
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where for a< ,

2 Cosa Cosa2sinac 2 (7.5a)

Cos Y+1/4 •coail + 2 - sin2y
(Cosa sina cCosa 1

I~ii111ý 2 /~~sn ot (7.5b)

cos 21/4 1  Cs + c°Sl 2n sin 2 5

Cosa Cosa Sna

y= k 2 d Cosa 2  (7.5c)

! and for a>c
C

SIcli2 _____ ___ ,ý 12no) (7.6a)
cosh2r+1/4 (q sina I sinh r

"2 1

H1 )s coh+/( q -cs~ slsina q 2(7.6b)Scosh 2 +!/4[ 1 cOC lna sinh2 r

q Coa1,iaC

CC

r= kd q (7.6d)
2
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The subscripts J and 11 refer to polarization 1,f the electric fieldI perpendicalar and parallel to the planL of incidence, These expressions

ir.'ýude -,he effects of multiple reflections in the crack. Notice that

since Iý I , the transmitted light will in general be partially

polarized.

Some representative evaldations of Eq.(7.4) are provi4ed in
Figures 36 to 39 . Figure 36 shows the dependence of T on a for

iixed values of the ratio d/X . X refers to the wavelength in air.

For values of d/Xl , essentially no transmissioa occurs for a>a as
c

expected. The rapid fluctuations in T for a<a are due to the con-
c

structive and destructive interference of the primary and reflected waves

emerging from the crack. For small values of d/I , on the other hand,

"significant transmission can occur for c>ac . Figures 37 and 38 showiI c

the dependence of T on d/X for fixed angle. Figure 38 shows theL results from Figure 37 on an expanded scale. It is seen that for c<ac

T oscillates indefinitely as a function of d/X in response to the in-

terference effects mentioned above never dropping below about .55; but for

c>ac , T decays rapidly to zero as d/X is increased. Notice also that1c
T approaches unity for all angles if d/X is sufficiently small which

would be the case if the crack were to close after its formation.

The results in Figures 36 to 38 were calculated assuming the

crack to be filled with air. For comparison, the analogous resiilts for

water filled cracks are shown in Figure 39 . For ease of comparison, the

dependence of T on d/X for air when ai=50Q is also plotted Jr

Figure 39. It is apparent that the transmission coefficient is enhanced

by the water which is expected since increasing ac decreases the atter.-

uation coefficient r , Eq.(7.6d). This shows incidently that improved

transmission will be obtained for a given crack width by decteasing the

index of refraction of the material.
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Figure 38. Transmission Across an Air-filled Inclined Gap
in Zinc Sulfide as a Function of Gap Width
(expanded scale)
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- j To relate these results to the net transmission of a window, it is

EMN apparent anomaly of zero transmission at aI=900 since then the projected

e'rea of the crack is also zero and the crack does not cause a loss of
- transmission.

The calculations presented here do not yet include the effects of

attenuation in the material and reflections at the window surfaces. Sinýe

these later effects are multiplicative, the influence on radiation trans-

mission of the cracks developed during water drop impacts can be adequately

addressed without treating these other effects in detail.

If the incident radiation is normal to the window surface, a simple

expression is obtained for the time dependent loss of transmission due to

crack formation. Denoting the incident and transmitted energy per unit

area per unit time by e. and ET : respectively, a transmission coeffi-

cient I is defined for an uncracked window by

: _T = T 0. (7.7)

T 0 includes the effects of reflection at the window surfaces and energy

__ absorption by the window material. When cracks are present, the total

energy transmitted will be the sum of that transmitted by the uncracked

and cracked regions. Thus,

A T - A + A (7.8)

To 1 io on n) n R Tn n

where A is the total surface area of the window, A is the area
0thtanprojected onto the window surface of the n crack at time t , and

C Tn is the energy transmitted through this area. 6Tn will include

the attenuation effects of T in addition to that of the crack and0

it follows that
ON

-Tn iToTn 
(7.9)
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th
where T is the transmission coefficient for the n crack. Introducingn
the definition in Eq.(7.9) into Eq.(7.8),

o= iTC [AA-nZ A (1-T) (7.10)

We have assumed that cracks do not overlap. If they do, the total crack

attenuation is found by substituting for T the appropriate products of
n

transmission coefficients for the particular cracks involved. The time-

dependent transmission coefficient due to crack generation is determined

from Eq.(7.10),

ET A O 1( 
. 1T(t) To (7.11)

In order to proceed further, we need an estimate of the average crack

inclination angle. Experimental studies show that the majority of the

crack surfaces are inclined to the surface at angles greater than 450
• ! ~except for those in fractur-e zone 2. A representative angle of yi55'

an angle which is much greater than a for either air- or water-filled( c

cracks will be selected for the purpose of considering an explicit example.

Referring to Figure 38, we see that such cracks will be almost totally

opaque for d/X>0.3. Suppose for simplicity that all the cracks are formed

at the same angle with the same projected area and are created at a con-

stant rate of N cracks per unit time, then the transmission coefficient

for the window, Eq.(7.11), reduces to

T(t) = T t[- t (1-T)1 (7.12)

P A\~where to = [N(•_j/] is the time required to completely obscure the

surface.
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A is the projected area of a single crack,c

T is the transmission coefficient for a single crack.c

The implications of this result are that no incubation period is required

before degradation begins and that the transmission loss will increase

linearly with exposure time. The expression in Eq.(7.12) is valid only

for times small relative to t
0

Figure 40 shows the degradation of transmission for it =550 for
1

several values of d/X . It is apparent from this figure that the value

of d/X has a significant effect on the rate of degradation. The line

labeled (Tc=0) is the limiting line for the case of completely opaque

cracks which is reached for d/X>.3 (see Figure 38) . Thus, for example,

Sfor a crack width of d=.2 pm , the crack would be essentially opaque for

wavelengths of X=lpm and nearly transparent for X=20m. Behavior of

this sort has been observed by Hackworth and co-workers (Hack7orth and

Kocher, 1977; Hackworth, et al., 1979). According to their work, the

infrared transmittance of zinc sulfide decreased almost linearly with in-

cremental exposure to the standard rainfield in the AFML/Bell rotating

arm erosion facility for wavelengths in the range 0.5 to 2.1 pm. However

they indicate that there is a definite incubation period associated with

the development of surface pitting for the degradation of transmittance in

the range of 2.5 to 25 pm. Once erosion pits are nucleated the rate of

transmittance loss was approximately proportional to the growth rate of

the total cross-sectional area of the pits. Hackworth and co-workers

speculate that the same relations apply to zinc selenide and gallium

arsenide, however the rate of material removal was too great for ex-

posures to the standard rainfield to experimentally confirm this

1 • conjecture.

Obviously this model is oversimplified since many effects such as

nonparallel crack surfaces and overlapping cracks were not considered. It

is expected however that a more complete model which includes these and other

effects and the statistical nature of the particle field would yield a
similar result for the transmission coefficient.
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Figure 40. Time-dependence of the Transmission Losses

in Zinc Sulfide due to Idealized Crack Growth

in Air When the Angle of Incidence is 55'.
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SECTION VIII

DISCUSSION

The objective of this effort was to determine the relationships

between water drop impact damage and the material properties of infra-

red-transparent materials in order to evaluate and guide the development

of erosion resistant window materials. A combined experimental and analy-

tical approach was undertaken to determine and describe primarily the

water drop impact response of CVD zinc sulfide, however the results of

this program are of more general utility.

The impact damage mechanisms were investigated for water drop impacts

at velocities from 222 to 684 ms-I (730 to 2240 fps) with the major empha-

sis on the velocity range from 342 to 512 ms . Both experimental and com-

putational procedures were utilized to relate the dominant damage modes to'- the material's surface condition, microstructure, and bulk properties. The

most productive analysis for evaluating the bulk response of the material

to the water drop impact loading involves continuum representations of the

target material.

I I The complete description of the impact process entails the solution

of a coupled problem including the deformations of both the incident par-

ticle and the target material. At the relatively low velocities of interest

and for highly deformable particles the problem can be uncoupled as a first

approximation. The effect of the incident particle can then be treated as

a known temporally and spatially dependent pressure distribution on the un-

deformed surface of the target material. This pressure distribution has

been determined using finite difference procedures and expsrimentally for

water drop impact simulations as reviewed by Adler (1979a). The analytical

representation of the surface pressure distribution developed by Rosenblatt,

I I et al. (1977) with minor modifications will be adequate for the initial im-

plementation of the computational program which will be an outgrowth of the

completed analysis described In Section V. The reasons for undertaking this

analysis are outlined in Section V.1. While the scope of this analysis is
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beyond the original intent of this program, the approach adopted affords

a broader ringe of generalization than would otherwise be possible and Is

the basis for describing crack growth due to surface flaw interactions

with the dynamic stress field (Section VI.l).

Thp solution to the general problem of an elastic half-space

subjected to an arbitrary pressure distribution on its surface will pro-

vide the trar.sient stress states within the half-space. The only materi-.l

properties included in this analysis are the density, Young's modulus, and

Poisson's ratio for the target material which enter the solution through

the characteristic wave velocities for the waterial. The approach taken

is to determine the 'reen's tensor for the elastic half-space. The tran-

sient stress states are then found in terms of a surface integral of the

convolution of the pressure distribution and the Green's tensor. The for-

mal problem of determining the Green's tensor has been solved and has been

reduced to evaluating several definite integrals as described in Section

V.4. In some cases singularities occur in these integrals which have been

treated analytically to preserve the accuracy of the results. The singular-

ities are understood and isolated so the resulting integrals cat, be evalu-

ated numerically with a high degree of accuracy. The solution is essen-

tially complete; it now has to be programed for digital computer evaluation.

The alternative method for determining the stress waves is the

completely numerical finite element approach. We have avoided using these

methods because of the large expense and the fact that these methods do

not give a very detailed picture of the stress waves unless a very small

grid size is used. One is then beset with problems resulting from the dis-

parity in the size of the regions important for stress wave propagation

and the size of the crack tip.

Within a continuum context the fracture problems to be addressed

involve introduction of the fracture toughness and the distribution of

critical flaw sizes for the target material. For purely elastic material

response conditions the fracture tsughness, KIC is considered to be a
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material constant, and as such is used to define the critical stress

intensity factor for a wide variety of crack configurations and loading

conditiona. The fracture problems identified as being most significant in

relation to the water drop impact damage produced in CVD zinc sulfide are

the stress wave/surface flaw interactions and hydraulic penetration of pre-

existing surface cracks. It was originally thought that the stress wave/

microstructure interactions would be much more significant than the experi-

mental results indicate. The general observation from the experimental

data is that the fractures produced during water drop collisions on CVD

ZnS are essentially insensitive to the material's general microstructure

and inclusion content over a representative range of grain size variations.

Stress wave/surface flaw interactions will be the first step in

utilizing the available iracture data in a model, This model will also be

considered in terms of the experimental data obtained for water drop impacts

on CVD zinc sulfide. Some simple examples of how this data can provide use-

4. ful estimates of the fracture response of CVD ZnS will be described.

The critical stress intensity factor (fracture toughness) for CVD ZnS

has been determined by Evans (data referred in Evans and Wilshaw, 1976),

Wimmer and Graves (1977), and Shockey, et al. (1977). Evans found

KIc = 1 MPa m /2 for a material with an average grain size of 10 pm with

essentially equiaxed grains (Evans, 1979). According to Wimmer and Graves,
1/2KIC = 0.67 MPa m . This value was determined for the baseline material

for this investigation, material A, using a four-point bend test. Wimmer

and Graves' grain size measurements showed that the material had columnar

grains with a cross sectional diameter of 8 to 10 pm and a length up to

) 60 pm in the growth direction. They also determined that the bend strength
1/2

was 100.8 MPa. Shockey, et al., found K 0.75 MPa m based on four

tests using a modified expanded ring test technique. The material used by*1 Shockey, et al., was composed of columnar grains with average cross sec-

tional diameters of 7 pm and lengths of approxiiately 56 Pm.
I*

The grain size was reported to be 30 pm in Evans and Wilshaw (1976), however
in a recent communication with Dr. Evaus (Evans, 1979) the grain size was
restated as being 10 pm and equiaxed grains. Representatives from Raytheon
Corp. uo not lecall producing equiaxed grain material and have only been
able to achieve a minimum average aspect ratio of about 3 with the CVD process.
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There are two crack genD-etrtes which are relevant to the water drop

impact conditions: an edge crack in a plate and q eemicircular crack in a

half-space as illustrated in Figure 41. The stress int-.isity factors for

each of the~a cv'ses when the cracks are subjected to an uniax.al. stress,

a , are

SEl = 1.1l2 araT.1

[Paris and Sih, 1965] and

K 2 C (8.2)KI = -T

[Smith, et al., 1967] where C = 1.03 when 6 = 0* and C = 1.21 when

0 = 900 (refer to Figure 41).

We note in passing that Shockey and co-workers (1977) incorrectly

evaltuated Eq.(8o2) using their value of KC . They equated a to the

flexual strength of 110 MPa and computed the magnitude of the critical

flaw size which they define as ac = 2 a where a is the value cores-

ponding to Eq.(8.2). Shockey, et al., find that a* = 0.73 mm . However

tiey made an arithmetic error; the value of ac should be 0.073 mm. Fur-

thermore if the critical flaw size is properly interpreted, then ac (the

depth of the flaw as shown in Figure 41b ) is 36 vim. This result indicates

the critical flaw size is approximately five times the cross sectional diam-

eter of the average grain in contrast to the value determined by Shockey

and co-workers which is 100 times this dimension.

The relations in Eq.(8.1) and (8.2) can also be used in conjunction

with the transient stress ites due to particulate collisions. Since our

evaluation of the transient stresses is not yet operational for digital

computations, some of the published results will be used as approximations

to the stresses imposed on the crack.
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a, An Edge Crack in a Semi-Infinite
Sheet Subjected to Uniaxial Tension

•- -

i'r

b. Semicircular Edge Crack in a Semi-Infinite
Solid Subjected to Uniaxial Tension

Figure 41. Crack Geometries for Stress Intensity Evaluations.
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* Adler and Hooker (1976) showed that Blowers' model and analysis of

a water drop impact could be used to estimate the stresses in an elastic

half-space (Blowers, 1969). For brittLe materials the critical stress

conditions occur at and near the surface of the half-space outside of the

expanding water drop contact zone. Hackworth and Kocher (1977) used the

computer program for Blowers' analytical solution to evaluate many impact

conditions including the spatial and temporal development of the radial

stress component for low velocity water drop impacts on zinc sulfide.

Hackworth and Kocher recorded the values of the peak radial tensile stresses,

however they ignored any criterion for the onset of pressure release. Their

subsequent work (Hackworth and Kocher, 1978) attempted to incorporate the

pressute profile developed by Rosenblatt, et al. (1977) into Blowers' formu-

lation of the water drop impact problem. The deficiencies in their modifi-

> -cation of Blowers' original derivation arc discussed in Section V.1. The

radial stress levels they report are for relatively long times after the

initial contact with the target. More representative conditions for the

near-field stress levels were provided in Section III.3b.

Assuming as a first approximation that the radial tensile stress is

responsible for crack prupagation, the magnitude of this stress will be

used in conjunction with Eq.(8.1) and (8.2) to estimate the potential for

significant stress wave/surface flaw interactions. Representative stress

levels will be considered in relation to the critical flaw size, a , whichC

may be responsible for Lne observed cracks in water drop impacted zinc sul-

fide. Since the critical stress intensitv fa'ctor is known and estimates of

the applied tensile stress can be made, a can be evaluated using Eqs.(8.1)
c

and (8.2). The parameters associated with the two-dimensional case, Eq.(8.1),

will be denoted by primes and those associated with the semicircular flaw by

double primes, Eq.(8.2,. When C = 1.03 the fracture 5trecs for the semi-

circular flaw is considerably larger than that requ: red for an edge crack

where a' a the depth of the crack is tha same for both cases.
c c

= Ki
F' 0.505 - I(8.3)

C
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al = 0.856 KIC (8.4)
F% c

According to Hackiorth and Kocher (1977), the radial tensile: s.resses forl-1
a 2 rm drop impacting at 222 ms acting long enough to propagate cracks

rench a level of 170 UPa with a peak value of X96 MPa at a de'th of 12.7 jim

below the surface. 5ettin? a = 17..7 pm ia Eq.(8.3) and (8.4), we finde C

a' = 95 ý4Ta and G',' ",62 IMPa. The fracture stresses when a = 5 11m are

(Y' = 151 MPa and a'" 256 MPa, The transient radial tensile stresses for
~1F F

this case attain an effective level of 255 MIPa with a peak value of 285 MPa.
The magnitude of the tensile stresses generated depends or. the impact veloc-

ity and drop size, however these calculations indicate that the potential

"for crack growth does prevail for the applied stress conditions and flaw

sizes which appear to be consistent with our experimental observations.

The comparable teet condition would be shot no. 815 which Is a 1.60 mm

water drop impact at 237 ms- . The observed maximum fracture depth is

40D pm and several cracks on the order of 5 pm were seen.

The plots of the radial stress component in Section III.3.b indicate

that appreciably larger 8tresses are generated for higher impact veloc-
-1ities. At 700 ms radial stresses on the order of 1 GPa occur in the

target at a depth Gf 5 pm. These stress levels have the potential for

propagating cracks from critical flaws on the order of 0.2 Jim. The magni-

tude of the radial stress will also increase as Lhe surface of the target

is approached. Thus the surface finish has a strong influence on the propa-

gation of cracks into the substrate. Concentrating on (cracks which do not

appear to originate from surface scratches, it would seem reasonable to

speculate that a large proportioa of the cracks originate from nucleating

flaws less m1an the grain size. The correlation of the radial distance at

which fractures are first observed and the development of significant radial

tensile stresses as described in Section ll.3.b appears to be consistent with

the experimental data over the impact velocity range from 200 to 700 ms 1-

as su5marized in Table 8.
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Rosanblatt and co-workers (1976, 1977) have also considered the

problems outlined here for a zinc selenide target material with a mean

grain size of 50 Pm. The smallest grid sizes used in this work for the

finite difference representation of the target material was 25 Pm for a

1 mm water drop which would be equivalent to 50 pm for a 2 im water drop.

The typical grid used in this work for a 2 mm water drop was 100 Pm. Sub-

sequent calculations (Rosenblatt and Ito, 1978) use a 12.5 pm grid size

for a 2 mm water drop. The peak radial tensile stresses were evaluated as

a function of depth into the target. This computation would only supply

the values of the stresses averaged over a distance of 12.5 pm from the

surface and applied to the midpoint of this cell. The available analytic

solution indicates there is a significant gradient in the radial stress

with distance into the target over the 12.5 Um cell dimension, so a con-

siderably finer grid would be required to provide comprehensive stress data

jI for zinc sulfide. The analytic solution can compute the values of the

9tress components in increments of hundredths or thousandths of a micrometer

if desired with computational times running on the order of seconds for
each depth over the complete range of radial distances that these stresses

are significant. The approach used by Rosenblatt and Ito for the surface

crack interaction is different than that being pursued here.

One of the central issues pertaining to hydraulic penetration is to
understand -he mechanism by which hydraulic penetration of cracks leads to

crack growth and erosion pit nucleation. Obviously, this problem is com-

plicated in general because of the combined effects of the hydrodynamics

of the water in the crack and the interaction with the locally induced

stress waves generated during the penetration process. As a first step

toward describing this process, a much simpler problem has been considered:

namely, a two-dimensional pressurized surface crack inclined to the -urface.

The result of this calculation is the stress distribution surrounding the

cr&ck with particulaz emphasis on the effect froduced by the proximity of

the surface. From this streGs distribution, the initic! direction and pbs-

sibly the velocity cf crack pzopagatio1± as a function of initial crack

angle and depth will be determined using currently available fracture Wod~ls.
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N- It is )ur contention that the fracture problems identified and

presently being analyzed in terms of a continuum mechanics approach are the

critical problems which must be addressed in order to formulate a productive

analytical framework for describing the particle impact response of CVD zinc

sulfide. These analyses have been carried out in a balanced association

with observations of the actual effects of the water drop collision process.

Experimental procedures have been utilized to gain understanding of the re-

lationships between the material's surface condition and microstructure and

the nature and extent of the resulting crack patterns.

The experimental observations of the fractures produced by water drop

impingement indicate a relative insensitivity to the grain size and general

¶ !grain structure in CVD ZnS. On the other hand, Hackworth and Kocher (1978)
- I

report seeing a significant reduction in damage coincident with reduction

of grain size in ZnSe. This result, seemingly in conflict with the present

finding, is easily reconciled by the following observations. The grain size

used in Hackworth and Kocher's (1978) work, although not reported numerically,

* appears in their micrograph to be a large grain size possibly on the order

"of 100 pm intercept distance in the plane shown and unresolvable at the

stated magnification of 135 (presumably <10 'pm) for the micrograph of the

fine grained material. This grain size variation represents not only a

much larger range than this study, but the larger grain size is cn the

order of the impact fracture pattern dimensiGns. Combining this observation
with the observations made on ZnS would indicate that reductions in grain

size beyond an order of magnitude below the fracture size will not yield a

signifi(.•nt erosion resistance.

Examination of the micrographs of water drop impacts presented by

Hackworth and Kocher (1978) to illustrate that the fine grain ZnSe has

better erosion resistance than the large grain ZnSe reyeals that although

the fractures are smaller in the small grain material thete are also many

more of them. This indicates that most probably a &imilar armzunt of frac-

ture surface area was created for each impact; i.e., a similar amount of

energy dissipated in fracturing the specimen bat the form of the fractures
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changed. Hackworth and Kocher (1978) also report that although the resist-

ance of ZnSe improved with reduced grain size it did not equal that of ZnS.

This indicates that erosion resistance is governed by a more intrinsic

material variable than grain size or hardness.

The effect of grain size and microhardness on the erosion resistance

of zinc sulfide has been described by Adler and Hooker (1978). It is pointed

out that substantial strengthening would be anticipated when the grain bound-

aries effectively resist fracture propagation, when fracture propagation is

confined to crystallographic cleavage planes, and when the grain size is

much smaller than the drop size. With the exception of confirmation of

fracture propagation along crystallographic cleavage planes these condi-11 tionq are satisfied by the CVD ZnS formulations which have been investi-

"gated. Furthermote Adler and Huoker iudicated that the standard mechanical

fracture tests evaluate the response to the largest flaw present, however

the erosion process depends upon the concurrent propagation of a surface

flaw p3pulation. The largest flaw may not be representative of the average

behavior of the population. It is also showm here that the magnitude of

the imposed radial stresses for 2 mm water drops impacting at velocitiesIa -l
in excess of 300 M's is many times the c.alculated fracture stress levels

for reasonablo flaw dimensions ab identified from the tVD Zný specimens
evaluated, In view of the overwhelming amount of energy available and the

imposed stress levels, it is unlikely that further modification of the bulk

material will significantly improve the erosion resistance of CVD ZnS.

Considerably greater latitude for increased resistance to rain

erosion can be gained from irproved polishing procedures and subsequent

maintenance of the initial surface finish. The specimens used in this

program were polished to better than average FLIR window specifications.

but 6he capability of the water drop to interact with the polishing defects

j iremaining even for this level of surface preparation iz clearly evident in

the water drop oxperiments. Submicrometer flaw depths will have to be

anhieved and maintained. The application of the antireflectant coating over

this surface quality will certainly have a positive influence on improving

the erosion resistance.
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SECTION IX

CONCLUSIONS

The general fracture behavior of CVD ZnS due to water drop impingement

has been investigated. Three zinc sulfide formulations have been considered

representing a range of graiu sizes, grain shapes, and inclusion content.

The microscopic observations of the damage produced by 2 mm diameter water

drops impacting from 222 to 684 ms-1 indicate that there is no discernable

difference in the fracture trajectories or penetration depths for the micro-

structural variations examined. It is found tiat no significant improvement

in the erosion resistance will accrue from further modification of the bulk

properties of the CVD processed ZnS. The dominant fracture mode is trans-

granular, and the grain size is small enough in relation to the loaded

region of a 1 mm or larger water drop that no benefit will be gained from

further grain refinement.

The most important factor in relation to the fracture response of the

curren.tly produced CVD ZnS was the quality of the surface finish. Calcula-

tions were provided which indicated the imposed tensile stress levels for
J -i

2 mm water drops impacting at 200 ms were comparable to the fracture

stress for reasonable surface scratch dimensions to several times the esti--l
mated fracture stress as the impact velor'ity approached 700 ms . On the

basis of these straightforward estimates of the critical stress levels, a

significant increase in the erosion resistance appears to be possible if

the surface polishing defects do not exceed a depth of 1 pm and preferably

0.1 Pm.

The need for evaluating the transient stress states at and near the

surface of the specimen was an outgrowth of the experimental program where

it appears that the fracture nucleating surface flaws are on the order of

5 pm or less. The available analytical and numerical stress wave analyses

were to be used for modeling the observed fracture response of CVD ZnS, how-

ever these analyses were found to be inadequate for various reasons which

have been enumerated. This survey of available approaches motivated the
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development of the mathematical analysis of the transient stresses due to

a water drop collision presented in Section V. Further work is required

to obtain numerical results, however a generalization of Blowers' analyti-

cal approach is now available which should be applicable to a spatially

and temporally varying loading function applied to the surface of the

target.

Two fracture conditions have been identified as being the most

relevant to the general degradation of infrared transmitting windows.

The first is the interaction of the transient stresses generated by the

impact with surface flaws, and the second is hydraulic penetration of the

water from an impacting water drop into a pre-existing surface crack.

Stress analyses for both of these critical problems have been initiated as

described in Section VI.

I The transmission degradation which may arise due to cracks in the

material once they are formed also has been treated analytically. The

.significance of the crack face separation distance and the crack orienta-

tion is estimated in the preliminary calculations presented in Section VII.

1I
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