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Abstract

In this paper we will investigate lransformations that serve as tools in the design
of new data structures. Specifically, we study general methods for converting
static structures (in which all elements are known before any searches are
performed) to dynamic structures (in which insertions of new elements can be mixed
with searches). We will exhibit three classes of such transformations, each based
on a different counting scheme for representing the integers, and then "se a
combinatorial model to show the optimality of many of the transformations. Issues
such as online data structures and deletion of elements are also examined. To
demonstrate the applicability of these tools, we will study six new data structures

that have been developed by applying the transformations.)x
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1. Introduction

The design of efficient data structures for searching problems is an important and
difficult problem. In this paper we will investigate a class of transformations that
aid in the design of such data structures, and illustrate the use of those
transformations by describing a number of new structures that have been designed

by applying the transformations.

Specifically, we will examine transformations that convert static stiuctures
{which are buiit once-for-all before any queries are askea) into dynamic structures
(in which queries can be mixed with insertions, and perhaps deletions). These
transformations are applicable to a class of problems we call the decomposable
searching problems. The static-to-dynamic transformations discussed in this paper
are only a few of the known transformations on decomposable searching problems; a
complete paper describing all the transformations is currently being prepared
(Bentley and Saxe [1979]). The static-to-dynamic transformations should,

however, serve to illustrate many of the features of other transformations.

In Section 2 we will examine definitions and notations necessary for discussing
the transformations. The transformations are discussed in Section 3, and a proof of
their optimality is given in Section 4. Oniine data structures and deletion are the

subjects of Sections 5 and 6, and conclusions are offered in Section 7.

2. Definitions and Notation

In this section we will review a number of basic concepts that have to do with
searching problems and give a number of definitions that will be used throughout the
paper. The casual reader may therefore skim most of this section; the only part he

should read in detail is the definition of the decomposable searching problems.

We will use the term searching problem in a fairly restricted sense throughout
this paper. Specifically, we refer to maintaining a set F of objects so that queries
asking the relation of a new object x to set F can be answered quickly. The best
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known example of a query is what we call a Member Query: "is x a member of F?".
If F were a set of reals, we might be interested in the Nearest Neighbor query of
*what is the distance from x to the point in F closest to it?". The general query is
that a question containing a variable of type T1 is asked of a set of elements of
type T2, with an answer that is of type T3. In a Member query, T1 and T2 are the
same, and T3 is boolean. In a Nearest Neighbor query, both T1 and T2 are real, and
T3 is a nonnegative real. In the general case, the query Q can be viewed as a
function mapping a T1 and a set of T2's to a T3, or
Q:T1x225 13,

Throughout this paper we will identify a searching problem by its query; a solution
to a searching probiem is a data structure that allows the query to be answered

quickly.

In this paper we will study data structures for a class of searching problems
called the decomposable searching problems. A searching problem with query
operation Q is decomposable if there exists an efficiently computable binary

operator O satisfying the condition
Q(x,AUB) = O{Q(x.A), Q(x,B)].

(Note that this definition implies that O is both associative and commutative.) For
example, the member searching problem is decomposable because

Member(x,AUB) = V[Member(x,A), Member(x,B)],
and (distance to) nearest neighbor searching is decomposable because

NN(x,AUB) = min[NN(x,A), NN(x,B)].
We will investigate a number of decomposable searching probiems throughout this
paper; a list of many of them can be found in Appendix |. All of the transformations
that we will see later in this paper are applicabie for precisely the decomposable
searching probiems. They exploit decomposability by partitioning a set into subsets,
and answer a query by computing answers on the subsets and then using the O
operator to combine those subanswers to yield a solution to the entire problem.

Note that the 0 operator is essential in this strategy.
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There are two subclasses of the decomposable searching problems that will be of

e Bama o~

|
special interest later in the paper. The first subclass consists of those problems !
whose O operator has a "zero" (or "sticky") element; that is, there exists some
* element z such that for any element x,
O(z,x) = 2.
' For example, false is a zero for A, and true is a zero for V. A second class that will

be of interest consists of the problems for which the OO operator has an inverse (for
example, if O is addition, its inverse is subtraction). We will examine both of these
subclasses of the general decomposable searching problems in detail later in the

paper.

We will make a distinction between two types of data structures for solving
searching problems. A static structulre is built once and then searched many times;
insertions and deletions of elements are not allowed. To describe the performance
of the static structure A we give three functions of N, the number of elements in the
set represented by A:

PA(N) = the preprocessing time required to build A,
QA (N) = the query time required to perform a search in A, and
SA(N) = the storage required to represent A.

(Unless explicitly noted otherwise, throughout this paper we will deal only with
worst-case cost functions.) A second type of data structure is the dynamic

structure. This structure is initially empty, and the three operations available on it

T e ¢ et Gt g i AT £

are for inserting a new element, for deleting a current element, and for performing a
search. We analyze the performance of the dynamic structure B by giving the
functions

ig(N) = the insertion time for B,

Dg(N) = the deletion time for B,

Qg(N) = the query time required to perform a search in B, and
Sg(N) = the storage required to represent B.

Later in this paper we will want to "mix apples and oranges” and compare the

W AL B K e M Pt Vs L e s Sy Ak AN A s e
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performance of the static structure A with that of the dynamic structure B. To
facilitate such comparisons we define the “insertion"” time for the static structure A
as

IA(N) = PA(N) / N,
which is the cost of building an N-element structure amortized over the N elements
it represents. Likewise we define the cost of "preprocessing" the dynamic

structure B to be

Pg(N) = 2 Ig(i).
1SiSN

3. The Transformations _

In this section we will investigate transformations that convert a sfatlc data
structure for a decomposable searching problem into a dynamic data structure. We
will restrict ourseives to the special case of dynamic structures that support only
the operations of /nserting a new element and searching to answer a query; we will

return to the issue of deletion in Section 6.

3.1. The Binary Transformation

In this subsection we will examine a static-to-dynamic transformation that is
based on the binary representation of the integers. We will study the
transformation by first examining its application to the particular probiem of nearest

neighbor searching in the plane, and then discussing its more general properties.

In nearest neighbor searching we must organize a set of N points in the plane so
that subsequent queries can tell the distance froml the query point x to its nearest
neighbor in the set. Therefore, objects of type T1 and T2 are points in IRZ. and
those of type T3 are positive reais. (For ease of discussion we consider only the
problem of finding the distance to the nearest neighbor and not the point realizing
that distance.) Note that nearest neighbor searching is decomposable because it

satisfies
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NN(x,AUB) = min[ NN(x,A), NN(x,B)].
Lipton and Tarjan [1977] have described an elegant static data structure for

nearest neighbor searching (which we will call LT) with performance

QL1(N) = O(ig N), and
Si 7(N) = O(N).

Many applications, however, call for dynamic nearest neighbor searching, and the
Lipton-Tarjan structure does not appear to be suitable for a moﬂification that would
facilitate insertions. We will now investigate a new structure (called DNN for
dynamic nearest neighbor) that uses the Lipton-Tarjan static structure only as a
subroutine, rather than trying to modify the structure. The DNN structure that we
will describe is the best known structure for performing dynamic nearest neighbor

searching in the plane.

The DNN structure will consist of a set of LT's: that is, the elements (points)
currently stored in the DNN will be partitioned into subsets that are themselves
represented by LT's. When there is one element in the DNN, there is an LT
containing that single element. When the second element is inserted, that LT Is
discarded and a new LT of size two is created. At the arrival of the third element, a
new LT of size one is created. This process continues so that when there are N
elements represented by the DNN, there are LT's corresponding to all of the one bits
in the binary representalion of N. For example, when there are 79 elements in the
DNN, there are LT's of size 64, &, 4, 2 and 1. When the 80-th element Is inserted,
the four smallest structures are discarded and a new structure of size 16 is built.
At any time in this process the distance to the nearest nelghbor. of a query point x
can be found by locating its nearest neighbors in each of the LT’s (using the O(lg N)
algorithm) and taking the minimum of the distances; it is here that we make essential

use of decomposability.

This scheme is illustrated pictorially in Figure 3.1 by a diagram commonly used to
represent binary counting. The vertical axis in that figure denotes the number of

elements currently in the dynamic structure. Each rectangie (square) represents a
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particular static LT structure; for exampie, note the four by four square that comes
into existence at time four and is then replaced at time eight. The LT structures in
exlsteﬁce at time T can be found by drawing a horizontal line that intersects the
vertical axis at T; for example, at time seven there are three structures in
existence -- of sizes four, two and one. We will find later that this type of diagram

(which we call a "history diagram") is a handy way of representing transformations.

—
m
|
. 7
|
q
.0 H
1L

Figure 3.1. The binary transform.

It is easy to analyze the performance of the DNN structure given that we know
the performance of the LT structure. Since the LT requires linear storage and the
DNN just partitions its elements into LT’s, the DNN will aiso require linear storage. A
DNN of N elements will keep at most Ig(N+1) LT's (each of size not greater than N),
so the query time of a DNN is bounded above by Ig(N+1) times the cost of querying
an LT. The cost of inserting an element into a DNN is more difficuit to analyze; note
that while inserting the 1023-rd element is essentially free, the 1024-th element is
very expensive, since a new structure of size 1024 must be buiit. We will
therefore count the cost of inserting the first N elements into an initially empty
structure, which is exactly PpyN(N). We will perform this analysis only for the case
that N = 21-1. and discuss later the value of the function for other N. (f we have
_ inserted 2‘-1 elements, then we have built one LT structure of size 21'1. two LT
2k-1

structures of size 21'2. and structures of size Zj'k. (This is a trivial property

of binary counting.) The total cost of inserting these elements is therefore
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Ponn(2)-1) = 1P 12N + 2P 1(2172) « L+ 207 Vp (1)
For N a power of two we can rewrite this as

PONNIN=1) = 1P 1(N/2) + 2P 1(N/8) + ... + (N/2)'P 7(1).
We know that P 1(N) = O(N ig N), which implies that P 1(N) £ cNig N, for some
positive constant c. Substituting this into the above equation yields

PoNN(N=1) £ c'[ 1°(N/2 g N/2) + 2'(N/4 Ig N/4) + ... +(N/2)"(1 1g 1) ]
= (cN/2)"[IgN/2+IigN/d + .. +Ig 1]
< (c/2)N 1g2 N
= O(N 1g2 N).

This completes our analysis of the DNN structure, establishing the following.

New Data Structure 1: (Dynamic Nearest Neighbor)
The DNN structure for dynamic nearest neighbor searching in the plane has

performances
PoNn(N) € PLT(N) * lg(N+1) = O(N g2 N),
QpNn(N) € QLT(N) * Ig(N+1) = O(ig2 N), and
SDNN(N) € S p(N) = O(N).

Note that the cost of doing N pairs of Insert, Query operations in the DNN structure

2

is proportional to N Ig< N; all other known dynamic nearest neighbor structures

require Q(N2) time for the task.

The binary transformation that we have just described for nearest neighbor
searching is applicable to any decomposable searching problem: given a static data
structure for a particular probiem, a dynamic structure is achieved by keeping a set
of static structures, each representing a set whose cardinality is a power of two.
insertion is accomplished by the same technique of binary counting. A query can be
answered by querying all the static structures in existence at the time of the

query, and combining the answers by repeated application of the U operator.

A computer program implementing the binary transform is sketched in Figure 3.2.
It assumes the existence of a static structure S with operations Queryg, Buildg and

Unbuildg (Unbuildg returns the elements currently stored in the structure as a linked
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Iist)a. The code implements a dynamic structure D providing routines Initp (which
initializes the structure to be empty), Insertp, and Queryp. it implements the binary
strategy by maintaining a one-way infinite array P with the invariant that P[i] is
either empty or contains a static structure of size 2. The variable High is an
integer that is one greater than the last nonempty structure; P[High] is always
empty. Initp inilializes the structure to have this invariant. Queryp answers a query
by iterating through the structures and combining the answers by the 00 operator.
insertp can be understood most easily by considering incrementing a binary integer
by one: to do so, we scan from right to left, changing ones to zeros untilt we come to
the first zero (which we then make a one). An Alphard program very similar to the
code in Figure 3.2 has been given by Bentley and Shaw [1979]; they also provide
both a precise specification of the transform and a proof that the program
accomplishes it.

The analysis of the general transformation is quite similar to the analysis of the
DNN structure.4 Since at most ig(N+1) static structures exist for an N-element
dynamic structure, if we assume the static query cost is monotone nondecreasing
we have

Qp(N) £ Qg(N) " Ig(N+1).
T6 analyze the storage and processing costs we need the following definition: a
function F is said to grow at least linearly if for every two positive integers, M and
N, where M < N,

F(M)/M < F(N)/N.
A consequence of this definition is that if F is a function that grows at least linearly
and A and B are positive integers, then

F(A+B) = A[F(A+B)/(A+B)] + B[F(A+B)/(A+B)] 2 F(A) + F(B).

3le:ughoul this paper we will reirieve a set of T2's from a structure by unbuilding the structwre. In some
applications it might be more efficient 1o store the set along with the struciure.

4In the analysis of the transformed structure we will count only the costs incurred by operations on the original

structure. Examination of tho code in Figure 3.2 shows that the overhead costs for both Insert and Query are a
small constant times Ig N.




3 September 1979 Static-to-Dynamic Transforms -9 -

proc initp «
P[0] « ¢; High« O

proc Insertp(x) «

S « {x}

1«0

while P[i] # ¢ do
S « S U Unbuildg(P(i]) ; Pli]led
i«i+

P[i] « Buildg(S)

if i=High then
High « High+1; P[High] « ¢

func Queryp(x) «
A « Queryg(x,P[0])
for i « 1 to High-1 do
A « OO(A, Queryg(x, P[i]))
return A

Figure 3.2. Sketch of code for the binary transform.

Since the dynamic structure partitions its eiements among static structures without
replication, if the storage cost Sg of the static structure grows at least linearly we
have the relation

Sp(N) £ Sg(N).
To analyze the processing cost we will first consider the case that N is a power of
two; the reasoning used in our analysis of DNN shows that

Pp(N-1) = Pg(N/2) + 2Pg(N/4) + ... + (N/2)Pg(1).
When Pg grows at least linearly, we know that Pg(2i) 2 2Pg(i) and we can use this
fact inductively to show that

Pp(N-1) £ Pg(N/2) + P5(N/2) + ... + Ps(N/2)
= Pg(N/2) " Ig N.
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We will now use a less accurate (but more general) analytic technique to
establish the value of Pp(N) for N not one less than a power of two. Note that after
N eiements have been inserled, any particular element has been in at most Ig(N+1)
distinct static structures. We will now show that for any transform, if every element
has been built into at most k structures, then the static and dynamic processing
costs are related by

Pp(N) £ Pg(N) " k.
(This immediately yielrds the corollary that

Pp(N) £ Pg(N) " Ig(N+1)
for the binary transform, for any positive N.) Consider the cost that any particular
eiement, E, coniributes to Pp(N). Each time E is built into a new static structure of
size M, we can assign it a share of that cost of Pg(M)/M. Because Pg grows at
least linearly and M is less than or equal to N, we know that

Pg(M)/M < Pg(N)/N,
and we can therefore assign E this latter cost as an upper bound. Muitiplying the
number of distinct elements (N) by the number of times each is built into a static

structure (less than k) by this cost yields the desired result.

To enable us to speak more precisely about transforms on data structures for

decomposable searching problems, we need the following definition,

Definition 3.1: (Admissibie transform)
A transformation on decomposable searching problems is said to be an
admissible (F(N), G(N)) transform if it converts the static structure A to the

dynamic structure B assuming only the property of decomposability, and the
following relations hold between the cost functions:5

5To simplify the analysis, we will count only the costs of calls to operations on the static structure, and not the
costs of bookkeeping aperations nor the cost of combining the results of queries into different static structures.
Careful examination of owr algorithms will show hat these extra costs add only a small constant factor (which
does not depend on F or G) to the compute times, In most cases, this constant will approach unity as N increases.
Similarty, the only storage we charqge to the dynamic structure is that used for storing instances of the static
structure, Again, this is generally the dominant cost.
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Qg(N) £ Qa(N) * F(N),
Pg(N) £ PA(N) * G(N), and
Sg(N) < Sp(N).

We assume here that Qp is monotone nondecreasing and that both P, and Sp
grow at least linearty.6

We can now state precisely the fact that the binary transform efficiently

converts a static data structure to a dynamic structure as Theorem 3.1.

Theorem 3.1: (The binary transform)
The binary transform is an admissible (Ig{N+1), Ig(N+1)) transform.

Proof:
Given in the preceding text. QED.

To illustrate some "tricks" available in using the binary transform, let us consider
its application to the member query problem using the data structure of a sorted
array. Precisely, consider the static data structure for member searching that
stores the elements in increasing order in an array (built by sorting the set), and
answers a query by performing a binary search. The analysis of this structure
(which we call SA, for sorted array) shows

Psa = O(N ig N),
Ssa = O(N), and
QSA = 0('9 N).

Consider the dynamic member searching structure achieved by applying the binary
{ransformation to SA: we always maintain a set of sorted arrays, each of size a

power of two. A particularly efficient representation of this structure (which we will

6F-'or cases where Py, Q,, and S, do not satisfy these criteria, we may choose functions P, Q),and S that (a)
satisty the criteria and (b) dominate Par Qq, and SA. respectively. The relations given above will then hold
between the dynamic cost functions and Pl QixsSia.
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call BL, for binomial list7 ) is to store these sorted arrays sequentially in one large
array, with the largest sorted segment (which we call a run) leftmost in the array.
Two snapshots of a BL are shown in Figure 3.3; the vertical bars In the figure
separate the runs in the array. By the analysis of SA and the effect of the binary
transform, we can easily describe the complexity of the BL structure as follows

PeL = O(N 162 N),
SBL = O(N), and
OBL = 0('92 N).

Note that very little storage is used by a BL: it requires only N array words for the

elements, plus lg N bits to describe the the cardinality of the represented set.
{12 19 23 27 38 41 43 47|27 43|29 |

000
a.) An ll-element binomial list.

|12 19 23 27 38 41 43 47|27 29 36 43|

ooo
b.) Afler inserting 36.

Figure 3.3. Snapshots of a binomial list.

There is a glaring deficiency in the obvious impiementation of this structure: the
obvious insertion routine inserts the 1024~th element by ignoring all the structure
currently in the array and re-sorting from scratch. A far superior strategy for any
insertion is lo consider the inserted element as a one-element run, and merge that
with the rightmost one-~element run giving a two-element run. We then merge that
with its neighbor, giving a four-element run, and so forth. The amount of work In
building a new run in this scheme is linear in the size of the run, and the cost of
inserting N elements is therefore O(NIg N). We have thus avoided paying the

logarithmic penealty factor inherent in the binary transform by observing that runs

7This structure was invented for this application by the use of the binary transform, and was then studied in
detail by Bentley, Detig, Guibas and Saxe {1979]. The name is taken f-om its similarity to the binomial queue data
structure of Vuillemin [1978).
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can be efficiently merged.8

We can sometimes avoid paying the transform penaity of a logarithmic siowdown
in query time, Specilically, we will consider the average cost of performing a
successful member search in a BL (that is, a search that finds the efement it was
looking for). If we assume that each element in the array is equally likely to be
searched for, then the probability of finding the desired element in the first run is at
least one-half. Therefore, half the time we need never search the other runs.
Likewise, at least one-half of the remaining times we find the desired element in the
next structure, so the probability of searching the third run is less than one-fourth.
Summing the cost of searching each run times the probability of performing the
search, we find that a success{ul member search is expected to be at most twice

as expensive in the BL as in the SA.

The arguments that we have just sketched have been given in detaii by Bentliey,

Detig, Guibas and Saxe [1979], who describe the following data structure.

New Data Structure 2: (Binomial Lists)
The binomial list (BL) structure for dynamic member searching has
performances

OgL(N) = O(Ig2 N), and
SgL(N) = O(N).

The linear storage used by this structure consists of exactly N array words
and O(lq N) additional bits, which is minimal.

Bentiey, Detig, Guibas and Saxe [1979] have investigated this structure in detail
and have shown that it is optimal in a certain model of minimum-storage dynamic
member searching. The BL structure provides an interesting point of comparison

with the minimum-storage structure described by Munro and Suwanda [1979]; this

8Oﬂly constant oxtra space is required 10 merge consecutive runs in an array -- see Knuth [ 1973, Exercise
5.2.4.18).
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structure performs substantially better than theirs by working in a different model of

computation.

There is yet another circumstance in which the logarithmic cost penalties of
applying the binary transform do not have to be paid: when the original cost
functions are fast growing. Consider, for example, a static data structure with N2
preprocessing time. Our previous analysis shows that for N a power of two, we will
have

Pp(N-1) = Pg(N/2) + 2Pg5(N/4) + ... + (N/2)P(1)
= (N/2)2 + 2(N/4)2 + ... + (N/2)12
=(N2/2) " [1/2 + 1/8 + ... + 1/N]
= O(N2).

Similar analyses show that the logarithmic penaity in processing cost is not incurred
when the binary transform is appiied to any static structure with preprocessing cost
of (N 1"“), for any positive ¢. Likewise, it can be shown that the logarithmic penalty
in query time will not have to be paid for any static structure with query time of at
least (N€).

The concludes our study of the binary transform. In the next two subsections we
will see that this transform is but one of many possible ways of converting a static
structure to a dynamic structure, at the cost of penalty factors in the preprocessing
and query costs. As we study the other transforms and their performance, it is
important to keep in mind that the penalty factors need not always be paid. In this
subsection we have seen three ways of avoiding them: by merging structures

instead of rebuilding them from scratch, by counting the average search time

instead of the worst-case time (this is appropriate whenever the O operator has a

zero element), and by performing separate analyses for fast-growing functions.

. 3.2. Transformations with Fast Query Time

The binary transform of the last subsection provides us with an exampile of an
admissible (Ig{N+1), Ig(N+1)) transform, and we might wonder if we can.do better. In

this subsection we will investigate a class of transforms that have faster query
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times than the bhinary transform at the cost of slower insertion time. Specifically, we
will see that an admissible (k, (k!N)” K) transform exists for any positive integer k.
We will study this transform by first investigating the case k=2, and then move on to

the general case.

We will call the transform for the case k=2 the triangular transform, because it is
based on the triangular numbers (that is, numbers of the form (S)). The transform is
ilustrated in Figure 3.4. Note that when 5 elements are in the dynamic structure,
there are static structures of size 3 and 2; when the G-th element is inserted,
those structures are destroyed and a new structlure of size 8 is created. At any
point in the history of the dynamic structure, there will be at most two static
structures in existence. The insertion algorithm creates a new "large" static
structure at every trinngular number; otherwise it inserts an element by unbuilding
the smailer structure and buiiding it into a new structure with one additional element.
A query can be answered by searching the two static structures and combining the

answers by the O operator,

15

10

=

T

L

Figure 3.4. The triangular transform.

The triangular structure is very easy to analyze. Because at most two static
structures exist at any time, the dynamic query cost is given by
Qp(N) S 2Qg(N).
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if we assume that the static storage requirements grow at least linearly, we know
that the dynamic structure does not use more storage. To analyze the insertion
time, consider the case that a total of ('\2‘) elements have been inserted. It is easy
to prove by induction that no element has been built into more than M structures
(the proof is based on the recurrence for the triangular numbers). In general, if N
elements have been inserted, no single element has been built into more than
(2l~l)1 /2 static structures. By the arguments in the previous subsection, this implies
Pp(N) S P5(N) - (28172,

These arguments together establisir the following theorem.

Theorem 3.2: (The triangular transform)
The triangular transform is an admissible (2, (2N)1/ 2) transform.

Proof:
Given in the preceding text. QED.

Just as the binary transform is isomorphic to the binary representation of the
integers, so is the triangular transform isomorphic to a representation of the
integers based on triangular numbers. (This system is cailed the "binomial number
system" by Knuth (1968, Exercise 1.2.6.56].) Specifically, an integer N is
represented by a pair of integers i and j (with i>j) by the expression

n=() s ().
Note that both i and j are less than twice the square root of N; this explains the
processing cost of the transform. The general transform, which we will call the
k-binomial transform, is based on a straightforward generalization of this scheme, in
which an integer is (uniquely) represented as the sum of k binomial coefficients,
whose lower parts are the integers 1 through k. This counting scheme is illustrated
for the cases k=2 and k=3 in Figure 3.5. Row 15 of the table is interpreted as
follows: in the 2-binomial representation, 15 is the sum of 15 and O, or (g) and (?)
in the 3-binomial representation, 15 is the sum of 10, 3 and 2, or (g). (g) and (?)




3 September 1979 Static-to-Dynamic Transforms -17 -
Integer (2 Integer (3) (2) (p)
0= 0+0 1 O 0= 0+#040 2 1 O
1= 140 2 0 1= 14040 3 1 O
2= 141 2 1 2= 1+4140 3 2 0
3= 3+0 3 0 3= 1+4141 3 2 1
4= 3+1 3 1 4= 44040 4 1 0
S= 342 3 2 S= 4+1+0 4 2 ¢
6= 640 4 O 6= 4+1+¢1 4 2 1
7= 6+41 4 1 7= 4+3+0 4 3 o0
8= 6+2 4 2 8= 4+3+1 4 3 1
9= 6+3 4 3 9= 44342 4 3 2
10 =10+0 S5 O 10 =10+040 S5 1 0
11 = 10+1 5 1 11 =10+140 S 2 0
12 =10+2 S 2 12=10+141 5 2 1
13 =10+43 S 3 13 21043+0 S 3 O
14 =10+44 S 4 14 = 104341 S 3 1
15=15+0 6 O 15 = 104342 5 3 2
16 = 15+1 6 1 16 = 104640 5 4 O
17 = 15¢42 6 2 17 = 104641 S5 4 1
18 = 15+3 6 3 18 = 104642 S 4 2
19 =1544 6 4 19 =10+6+43 5 4 3
20 = 15+5 6 S 20 = 204040 6 1 O
21 = 2140 7 O 21 = 204140 6 2 O
22 = 2141 7 1 22 = 204141 6 2 1

Figure 3.5. 2-binomial and 3-binomial counting.

With the example of Figure 3.5 as background, we can now describe k-binomial
counting more precisely. We will use an array D[1..k] to store the upper parts of
the binomial coefficients. The invariant of this counting scheme has two parts: first,
the represented integer Is given by j

N = (D‘:(k]) + (DF('S1 ]) LI (D[|1 ]),
and secondly, each coefficient D[i] satisfies the condition
O[i] > D[i-1] ;

for 2<iSk. We can initialize the array to represent zero by assigning each D[i] to

have the value i-1; we will aiso find it handy to assume that the value of D[k+1] is

"infinity". The code for incrementing an integer by one is then as follows.

Sy
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D[1] « D[1]+1

ie1

while D[i] = D[i+1] do
D(i+1] « D[i+1] + 1
D[i] « i1
ieiel

It is easy to prove by induction that this code correctly implements the above

counting scheme.

It is straightforward to modify the above counting scheme to yield an admissible
transform. To do so we will retain the array D (with the same invariant as above),
and add an array P{1.k] of static structures. The number of elements in P[] is
always (9[‘]). The code for this k-binomial transform is given in Figure 3.6, and
Figure 3.7 illustrates the 3-binomial transform.

20 [F

=
o iy '

i1 . |

Figure 3.7 The 3-binomial transform.

The correctness of the code can be proven by induction, and its analysis

establishes the following theorem.

Theorem 3.3: (The k-binomiat transform)
The k-binomial transform is an admissible (k, (k!N)” k) transform.
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proc Initp «
forie 1 tok do
D[i]«i-1; P[i]eo
D[k+1] ¢ w

proc Insertp(x) «
O{1]«O[1]+1; S « Unbuildg(P[1]) V {x); P[1]«¢
ie1
while D[i] = D[i+1] do
D[i+1] « D[I+1] + 1; S « S U Unbuildg(P[i])
O[i] «i-1; P[i]e¢
i+
P[i] « Buildg(S)

func Queryp(x) «
A « Queryg(x, P[1])
forie 2 tok do
A « O(A, Queryg(x, P[i]))
return A

Figure 3.8. Code for the k-binomial transform.

Proof:
Since at most k structures exist at any one time, we have
Qp(N) £ Qg(N) “ k.
Since the space redquirement for the static structure grows at least linearly
with the number of elements, the dynamic structure can be no more expensive.

To bound the processing time of the dynamic structure, we will investigate the
maximum number of structures into which any element may be built during the
first N insertions. Note that after N insertions, we have

N2 (O[K])
2(D[k)-k+1)K/kt,

implying
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TR 2 S A

DK] € (k!N) T/ Kak-1.

This, together with the invariant that
DO(k] > O{k-1]1> ..>D[1]2 1
implies that each D{i] satisfies
0 < D[iJ-i € (keN) VK-

for 1<i<k. Finally, we note that whenever a structure is discarded and its
elements rebuilt into a new structure, the difference between the upper and
lower parts of the binomial coefficient giving the size of the structure
increases by one; that is, a structure of size

™
is always replaced by a structure of size
*
(")
or of size
+2
(52
This implies that no element is ever built into more than (k!N)” Kk static
structures, from which it follows that
Pp(N) < P5(N) - (ki) 17K,
QED.

Note that for all positive k, k!” k < k. For large k, Stirling’'s approximation glves9

k11K~ gre.

To illustrate the application of the binomial transforms, we will consider the

problem of range searching.

In this probiem, the stored set contains points in a

d-dimensional space, and a query asks for all points with each dimension in a

specified range.

{(Note that this problem is decomposable with the ] operator

We use the nolation, "A “ B as a shorthand for "|A-B] = o(B)".
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Interpreted as U.‘o) Bentley and Maurer [1978] give a structure for static range
searching (SRS) with performances

ngs(N) = O(ig N),

Psrs(N) = O(N“s). and

Ssrs(N) = O(N1*%)
for any fixed § > 0. By choosing, for example, k = [2/¢] and § = ¢/2, we can apply

the k-binomial transform to achieve the following structure.

New Data Structure 3: (Dynamic Range Searching)
A dynamic range searching (DRS) structure supporting insertions and queries
for point sets in d-space with performance

Qprs(N) = O(ig N),
Pprs(N) = O(N'*4), and
Sprs(N) = O(N1*4)

can be achieved for any fixed ¢ > O and positive integer d.’

Such a structure is useful for range searching in a situation in which the number of
queries is known to exceed greatly the number of insertions. Specifically, if the
number of insertions in a set of N insertions and queries were known to be O(Np) for
some p < 1, then this structure would allow the operations to be processed in
4(N Ig N) time. The best performance for this task prior to this structure was

achieved by Lueker [1978]; his structure required 8(N Igd N) time.

it is important to observe that the penalties incurred by the k-binomial transform
need not always be paid. Just as in the binomial transform, they can occasionally be
avoided by merging static structures, by counting the expected query cost, or by

performing separate analyses for fast-growing functions.

‘°m order to implement (muitiset) union as a constant-time operation, we ask that a query return a tree whose

leaveos are tho pointa within the spocified range. Two such trees can be combined in constant time by alincating a
new root node contaming pointers to the two trecs,
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3.3. Transfc-rmations with Fast Insertion Time

In the last subsection we investigated a set of transforms that oniy slightly
increase the cuery time at the cost of greatly increasing the processing time. In
this subsection we will study a class of structures dual to those, which only slightly
increase the processing time and greatly increase the query time. Specifically, we
will see that there exists an admissible (k(k!N)”k. k) transform for any positive
integer k. As before, we will first investigate the case that k=2, and then t:rn to

the general case.

The dual trianqular transform is illustrated pictorially in Figure 3.8(a). At time 9,
there are 6 structures (of sizes 1, 2, 3, 1, 1, and 1); when the 10-th element is
inserted it is combined with the last three structures to create a new static
structure of size 4. In general, when the (“ZA)-th element is inserted, M elements are
combined together to form a static structure of size M; other elements are kept in
singleton structures as they are inserted. Since each element is built into only two
static structures (the large and the singleton), we know that

Pp(N) £ 2Pg(N).
it is easy to show that at most 2(2N)1/2 static structures exist at any time, so we
have

ap(N) S ag(N) * 2(2N) /2,

These facts together imply the following theorem.

Theorem 3.4: (The dual triangular transform)

The dual triangular transform is an admissible (2(2N)1 /2

, 2) transform.

Proof:
Given in the preceding text. QED.

That this transform is dual to the triangular transform of Subsection 3.2 Is

intuitively clear from Figure 3.8(a). To make the duality more precise we will study

21y
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{a) The dual triangular transform, (b) The dual 3-binomial transform.

Figure 3.8. Dual binomial transforms.

the dual triangular transform from the viewpoint of the triangular-number counting
scheme of the last subsection. The history of the dynamic structure is shown in a
tabular form in Figure 3.9. The eighth row shows that when 8 elements are in the
dynamic structure, there are 5 static structures: three “targe" structures (of size 1,
2, and 3) and two "small" structures (each of only one eiement). In general, if the
number in the "large" column is (g'). then there are large structures of size
1, 2, 3, ..., M=-1, The number in the "small" column gives the number of unit-sized
static structures. Note that the entries in the number column are identical to the
2-binomial counting depicted in Figure 3.5.
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Structures Number
Large Small Large Small
0 0 0 0
1) 0O 1 0
(1) (1) 1 1
(1.2) 0 3 o
(1,2) (1) 3 1
(1,2) (1,1) 3 2
(1,2,3) 0 6 0
(1,2,3) (1) 6 1
(1,2,3) (1.1) 6 2
(1,2,3) (1,1,1) 6 3
(1,2,3,4) 0O 10 o
(1,2,3,4) (1) 10 1
(1,2,3,4) (1.1) 10 2

Figure 3.9. History of the dual triangular transform.

This duality carries through to the k~binomial transform. for the case of the dual
3-binomial transform, each element will be built into at most three static structures
(which we call small, medium and large). All small structures have exactly one
element, medium structures have an integer number of elements, and large
structures contain a triangular number of elements. At any point in the history of
the transform, each set of existing small, medium and large structures contains
structures of adjacent sizes. The following table shows the history of the dual
3-binomial transform from the insertion of the fourth through the tenth elements; a

history diagram of the dual 3-binomial transform appears in Figure 3.8(b).




v
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N Structures Populations
Large Med Smaii Large Med Smail

4 (1,3) Q0 Q0 a 0 (o]
S5 (1,3) (1) Q0 3 1 0
6 (1,3) (1) (M 4 1 1
7 (1,3) (1,2) O 4 3 o
8 (1,3) (1,2) (1) 4 3 1
9 (1.3) (1,2 (1,1 4 3 2
10 (1,36) 0 10 (o] 0

The extension of this strategy from the dual 3-binomial transform to the dual
k-binomial transform is straighlforward. The code of Figure 3.6 is modified so that

instead of containing a static structure of (D[i] elements, P[i] now contains a list
i

of structures of sizes
1 . -1
(CLE), (o123, .. (D).
Note that the sum of the sizes of the structures is (9[‘]), This allows us to

establish the following theorem.

Theorem 3.5: (The dual k-binomial transform)
The dual k-binomial transform is an admissible (k(k!N)” k. k) transform.

Proof:
Because each element is built into at most k static structures, it is clear that
the processing cost increases by at nost a factor of k. The analysis used in
the proof of Theorem 3.3 shows that each of the k classes of structures
contains at most (k!N)” K distinct structures at aay point. Therefore at most
k(k!N)1 /K static structures exist at any time, providing the upper bound on the
query time penalty. QED,

To iflustrate the application of this transformation we will again consider the
problem of range searching in a d-dimensional point set. Bentley and Maurer [1978]
describe a second structure for range searching (which we will call SRS') with

properties
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QgrsH(N) = oN),
Psrg(N) = O(N Ig N), and
Ssrsi(N) = O(N),
for any fixed § > 0. By choosing, for example, k = [2/¢l and § = ¢/2, we can apply

the dual k-binomial transform to achieve the following structure.

New Data Structure 4: (Dual Dynamic Range Searching)
A dynamic range searching (DRS') structure supporting insertions and queries
for point sets in d-space with performance

QpRrs(N) = O(N),
PpRrst(N) = O(N ig N), and
Sprs'(N) = O(N)

can be achieved for any fixed ¢ > 0 and positive integer d.

Note that this structure is appropriate when there are many more Insertions than
queries; it reduces the cost of the computation of certain sequences of N insert and
query operations (analogous to those discussed at the end of Subsection 3.2) from
the O(N lgd N) time required by Lueker's [1978] method to O(N Ig N).

3.4. Summary of the Transformations

In ihis section we have seen a number of different static-to-dynamic
transformations on data structures for decomposable searching problems. We will
now spend just a moment reviewing these transformations. The transformations

themselves are summarized in Figure 3.10.

Transformation Query Factor Processing Factor
k-binomial k (ken) /K

Binary Ig(N+1) ig{N+1)

Dual k-binomial  k(k!N)1 /K K

Figure 3.10. Summary of transformations.

.
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There are many other transformations besides those that we have aiready
investigated. A simple way of achieving a new transformation is by isomorphism to a
particular number system (counting scheme). This is illustrated in Figure 3.11 for
the radix-3 number system (ternary counting). Part (a) of that figure shows the
ternary transform: each static structure is of size either a power of three or twice a
power of three, and corresponds to either a one or a two in the ternary
representation of the number of elements in the dynamic structure. This transform
is an admissible ([logg N1, 2floqg N1) transform.' ! Its dual is shown in part (b) of the
figure; every structure in the dual is of size a power of three, and there are O, 1 or
2 structures for any power of three, corresponding to the appropriate digit in the
ternary expression of the integer size of the structure. This is an admissible
(2l10g3 N1, llog3 N1) transform. This scheme can be extended to radix-k counting to
yield a primary (Togy N1, (k-1)logy N1) transform and a dual ((k-1)iogy NI, [logy N1)

transform. An interesting open problem is to examine other counting schemes (such

= Iy
1[]_J 1__}"‘

(a) The ternary transform, (b) The dual ternary transform.

as Fibonacci counting) for their properties as transforms.

Figure 3.11. Radix~-3 transformations.

it is now easy to state formally the relationship of the primary and dual
transforms derived from a particular counting scheme. In the primary transform,

there is a single structure corresponding to each digit, whereas in the dual

"This and tho following claims about radix~k transforms assume N> 1,
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transform each digit corresponds to a set of structures that are the “carries" from

its right neighbor (the units digit is a set of structures of size one).

The transformations of this section together provide a powerful set of tools for
designing new data structures for both particular applications and as a component in
larger algorithms. To design a dynamic structure in a given context, the algorithm
designer first designs a static structure (which is usually much easier than
designing a dynamic structure), and then applies one of the transformations to
achieve an efficient dynamic structure. Which transformation he uses depends on
the relative efficiency of the static preprocessing and query costs and on the

expected frequency of insertions and queries.

As we mentioned before, the cost penalties of the transformations need not
always be paid. One can often avoid them by merging static structures, by
analyzing the average query time, or by performing separate analyses for

fast-growing cost functions.

4. Lower Bounds on Transformations

Our main goal in this section is to prove the optimality, in a certain sense, of some
of the transformations discussed in Section 3. Our path to this goal will have many
steps, and the reasons for each step might not be clear in advance. To aid the

reader, we now briefly sketch the contents of this section.

in Subsection 4.1 we define the model of computation which we will use
throughout the rest of the section. We aiso advise the reader that the use of this
model implies certain limitations on the applicability of the resuits we will obtain. In
Subsections 4.2 through 4.4 we show a method for representing an initial sequence
of insertions under some transform as a binary tree, and show how the efficiencies
of transformations are related to properties of the corresponding trees. To achieve
the correspondence between transforms and trees, we restrict our attention to a
class of transforms which we call the arborea/ transforms. In Subsection 4.5 we

state and solve a recurrence relating the various tree properties defined In
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Subsectlion 4.4, and interpret this result as it applies to the k-binomial
transformations. We then extend the basic result to answe ' questions about other
transformations (including the binary transformation) in Subsection 4.6. In
Subsection 4.7 we discuss the justification of the restriction to arboreal strategies,
and in Subsection 4.8 we return to explore the limitations (implied by our model) of
the preceding results, showing a number of cases in which our "lower bounds" can

be beaten by going outside the model.

4.1, The Model of Computation

The most important assumption of our model is that the transformations under
consideration are not allowed to use any specific knowledge about the originail
problem or static structure except for the fact that the problem is decomposable. It
therefore remains plausible for any particular decomposable searching problem, P,
that there exists a dynamic data structure for P having performance better than
that produced by applying any optimal static-to-dynamic transform to any static
structure for P. For example, AVL trees (see Knuth [1973]) provide a dynamic data
structure for member searching with

Pave = O(N Ig N),
SAVL = O(N), and
Qavt = O(lg N).

The resuits of this section imply that no dynamic structure with this efficiency can
he obtained (in the worst case) by applying a general transform to a static
structure for member searching; the efficiency of AVL trees depends on particular
properties of the member searching problem other than decomposability (in

particular, the ability to maintain the structural invariant under rotation),

Our model of computation is that we have three operations, Build, Query, and (3,
whose inner workings we may not examine. Build works with performance Pg to
create static structures. Query works with performance Ug to search the

structures created by Buiid. The O operator is guaranteed to have the property

O(Query(x.Build(A)),Query(x,Build(B)) = Query(Build(A U B))

BRI et L OB dadabibasal o " praroRpe




3 September 1979 Static-to-Dynamic Transforms - 30 -

The oniy way to answer a cquery is by applying Query one or more times to
structures created by Build and then combining the results using O. It is assumed

that Pg grows at least linearly and that Qg is monotone non-decreasing.

To measure the computation costs (Pp and Qp) associated with a dynamic
structure, we will charge only for the computation time of calis to Bulld and Query. It
should be noted that these costs will generally be the dominant parts of the total
costs of the dynamic algorithms. In any case, this approximation Is certainly
acceptable for the purpose of establishing /ower bounds on the costs of dynamic

algorithms.

Our goal in the search for efficient transformations is to minimize simuitaneously
the penalty functions ‘
F(N) = Max Qp(i)/Qg(i) and
(N) = Mex,Qo()/as

G(N) = Pp(N)/Pg(N).
The bulk of this section will be devoted to showing limits on just how far this
process may be carried in the worst case. Our interpretation of the term "worst
case" in this context is a bit tricky. We have already mentioned that we may
assume no specific knowledge about the problem or the original static structure
except for decomposability. It is also important to note that we do not allow
ourseives to assume any specific knowledge about the efficiency of the underlying
static structu-2, except that P is at least linear and Q is monotone non-decreasing.
(Note, for example, that the improvements in F and G which occur for fast-growing P
and Q are not examples of worst-case behavior, so there is no contradiction in the
tact that our lower bounds deny the possibility of such improvements in the general

case.)

The reader may find it heipful to think of the worst case as that in which P is
linear and Q is constant, the intuition being that it is hardest for the dynamic
structure’s costs to approach the static structure’s costs when the latter are as

small as possible. Since we may not use any specific knowledge about the original
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static problem or data structlure, any solution to the dynamic problem must work by
maintaining a collection of static structures. Whenever an element is inserted, a

new structure must be created containing that element12

and possibly some other
elements. Also, some exisling static structures may be thrown away. When a query
is made to the dynamic structure, it is necessary to search some set of static

structures which together contain all the elements inserted so far.

For the following analysis, we will place a few restrictions on the nature of the
dynamic structures we will consider. We will return later to the problem of justifying

these restrictions. Our first restriction is as follows:

Restriction 4.1: (Dynamic structures partition elements into static structures)
We assume that at any time there exists exactly one static structure
containing each element which has been inserted so far. That is, the static
structures parlition the set of elements represented by the dynamic structure.

With the preceding assumptions in mind, we are now ready to move on to the first

steps of our analysis.

4.2. Computing F and G

We now give some ruies for determining the worst-case values of the penaity

functions F and G associated with a particular strategy.

Definitions: (f and g)
Consider the history of a dynamic structure over the course of any number of
insertions starling when the structure is empty. We define f(N) as the
maximum number of static structures existing after one of the first N
insertions. We define g(N) as the sum of the cardinalities of all sets of
elements built into static structures created over the course of the first N
insertions. ‘

1;"While we may conceive of sirategios in which now static structures are created by queries into the dynamic

structuro, we necd not conuider this possibility -for this worst-case analysis, since Pg could grow much more
rapidly than Qg.
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Note that, while the definitions of f and g actually depend on the specific
transform used, the identity of the transform under consideration will always be

clear from context. We may now bound F and G as follows: ¢

Theorem 4.1: (f bounds F)
For any positive integer N, F(N) £ f(N).

Proof:
After any of the first N insertions (say the i-th), at most f(N) static structures
exist. To compute the cost of answering a query, we charge precisely for
querying these structures. Since each of these structures has cardinality no
larger than i, and since Qg is monotone non-decreasing, the total cost is at
most f(N)Qg(i). QED.

Theorem 4.2: (g/N bounds G)
For any positive integer, N, G(N) £ g(N)/N.

Proof:
We note that any static structure built during the first N insertions will have
cardinality no larger than N. Consider such a structure, S, having cardinality 1.
By the fact that Pg grows at least linearly, we may bound the cost of building C
S by the inequality ‘ !
Pg(i) S iPg(N)/N '
Summing over all static structure, we get
Pp(N) £ g(N)Pg(N)/N,
implying
G(N) = Pp(N)/Pg(N) S g(N)/N.
QED.

By the assumptions' in Subsection 4.1, the preceding bounds are the tightest

possible for the general case. We will therefore concern ourselves henceforth with

P AP
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the problem of minimizing f and g rather than F and G.

4.3. Transforming History Diagrams to Trees

The transforms we discussed In Section 3 are all representable by history
diagrams, such as those in Figures 3.1, 3.4, 3.7, 3.8, and 3.11. It is not the case,
however, that all transforms arc so representable; in order for a static structure to
be represented as a (contiguous) rectangle in a history diagram, it is necessary that
it bhe built from a set of elements which were inserted consecutively during the
history of the struclure. We now impose our second restriction on the class of

dynamic structures to he considered:

Restriction 4,.2: (Contiguity of static structures)
We will restrict our attention to transforms whose histories are representable
by history diagrams.

Indeed, we will further restrict our attention to those history diagrams (such as the
ones in Section 3) in which every rectangle reaches to the “diagonal" of the

diagram. We may state this otherwise as

Restriction 4.3: (Eagerness of static structures)
We will restrict our attention lo transforms in which each static structure is
built as soon as all its elements have been inserted, and in which the elements
of any discarded static structure are always built into a single new static
structure (along with some additionai elements).

Strategies which satisfy Restrictions 4.1, 4.2, and 4.3 will be called arboreal

strategies for a reason that will soon become obvious.

Consider the history diagram for the first N insertions into a dynamic structure
which is maintained hy an arboreal strategy. Any such diagram induces a binary
tree, as shown in Figure 4.1. We may draw this tree by tracing the left and upper

edges of each rectangie in the diagram. The internal nodes of the tree will thus be

at the upper left corners of the various rectangles; each internal node of the tree
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corresponds to a (unique) static structure. We will now go on to study some

relationships between the efficiencies of arboreal strategies and properties of their

| lison(a)] rson(a) I |
15 31_5 —A — T

lrson(a)|

7 JJ_, Ison(a) I l ]
I3 T
T

induced trees.

10

1 I
(a) A partial history diagram {b) The induced tree

Figure 4.1. A history diagram and its induced tree.

4.4, Tree Properties and their Relatjon to Performance

We now introduce some basic vocabulary for discussing properties of binary

trees.

Definitions: (Tree properties)
Let T be a binary tree. Then leaves(T) denotes the set of all leaves of T and
nodes(T) denotes the set of all internal nodes of T. The weight of T, denoted
ITl, is defined as the cardinality of leaves(T). For any internal node, a, of T the
left and right sons of a are denoted Ison(a) and rson(a), respectively. If ais a
leaf of T, then the right depth of a, written rd(a), is defined as the number of
right branches along the path from the root of T to a. The right height of T,
rh(T), is the maximum right depth of any leaf of T. The right path length of T,
R(T), is defined as the sum of the right depths of all leaves of T. Left depth,
left height, and ieft path length are defined analogously.
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We will sometimes identify a (not necessarily internal) node, x, of a tree with the
subtrec rooted at x. For example, we may write |x| to indicate the number of

leaves which are descendants of x,

We now make the following observation:

Theorem 4.3: (Alternate characterization of left path length)
Let T be a tree. Then,

WD = 2, |Ison(n)|
n € nodes(T)

Proof:
Consider any leaf, x, of T. We need only note that the left branches along the
path from the root of T to x emanate precisely from those nodes of T whose
left sons contain x. QED.

With this characterization of left path length in mind, we may now relate the trees

induced by arboreal strategies to the penalty functions associated with those

strategies.

Consider the tree in Figure 4.1(b). To each static structure created during the
partial history represented by that tree, there corresponds a right (horizontal in the
diagram) branch whose length (in the diagram) is proportional to the cardinality of
that static structure. Moreover, for any internal node, n, of the tree, the length (in
the diagram) of the right branch from n corresponds precisely to the number of
leaves in the /eft son of n. By summing over all internal nodes of the tree, we

establish the following resuit:

Theorem 4.4: (Relation of g to left path length)
Let N be a positive integer and let T be the tree induced from the history
diagram representing the first N insertions into a dynamic structure maintained
by some arboreal strategy. Then, L(T) = g(N).

Proof:
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Given in the preceding text. QED.

We may aiso characterize N and f in terms of tree properties:

Theorem 4.5: (Relalion of N and f to tree properties)
Let N be a positive integer and iet T be the tree induced from the history
diagram representing the first N insertions into a dynamic structure maintained
by some arboreal strategy. Then,

[T] =N+ 1 and
rh(T) = f(N).

Proof:
Inspection of Figure 4.1 wili reveal that these results are obvious. QED.

The theorems proven so far in this section allow us to address the problem of
"simultaneously minimizing" F and G by investigating a closely related problem about
trees, namely that of "simultaneously minimizing" the right height and left path
length of a tree with a fixed number of nodes. To discuss this more precisely, we

make the following definition:

Definition: (Minimal left path length)
Let n and k be positive integers. We define

Li(n) = Min {L(T) | T is a tree such that |T| = n and rh(T) £ k}.

Since the only tree with zero right height is the tree of one node (which aiso
has zero left path length), we also define

Lo(1) = 0.
By convention, we will regard Lg(n) as "positive infinity" whenever n>1. A tree

with n leaves, right path length k, and left path length L, (n) will be called an
economical tree.

in the next few pages, we will investigate the behavior of Li(n) as k and n vary,

and then restate our findings in terms of lower bounds on worst-case penaity
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functions.

4.5, The Behavior of Lk(n)

Consider a binary tree, T, with root hode t. Let A and B be the subtrees rooted at
a=lson(t) and b=rson(T), respectively. The weight, right height, and left path length
of T may be recursively computed from properties of A and B by the relations

. |T] = 1Al + |B],
rh(T) = max(rh(A), rh(B)+1), and
L(T) = L(A) + |A] + L(B).

From this, we obtain the following recurrence for Ly(n):

Theorem 4.6: (Recurrence for Ly(n))
Let n and k be any positive integers. Then,

4] n=1
L(n) = {n-14L4(n=1) = (57) k=1, n>1
Min [L () + i+ L_q(n-i)] k>1, n>1
1Si<n-1 ‘

Proof:

The results for k=1 follow by considering the unique binary tree of any weight
which has right height £ 1. For the case k>1, we consider a tree, T (with root
t) having weight n>1 and height k. Let t be the root of T. And let A and B be
the subtrees rooted at a=ison(t) and b=rson(t), respectively. Then we must
have:

1 <M €n,

|A] + 1B] = n,

rh(A) £ k, and

rh(B) £ k-1,
Moreover, if the left path length of T is to be minimal, the left path lengths of A
and B must be minimal. That is, we must have

L(A) = L (JA]) and

L(B) = Lk_1(|B|). H
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These requirements are precisely captured by our recurrence. QED.

We now come to the principal theorem of this section, wherein the behavior of

Lk(n) is precisely characterized in terms of binomial coefficients.

Theorem 4.7: (Characterization of L (n))

Let k and m be non-negative integers such that kK £ m, and iet n be a positive
integer satisfying

(R <n< ()

Then,
L = k(T4) + (m-k-1)N, - )]
where
=n- (k)
Proof:

Our praaof will proceed by induction on k and, for each fixed positive value of k,
by induction on n.

Base Step: (k = 0)
In this case, we have

(®=1=(%).
This implies that n = 1, so the right hand side of (1] reduces to

o{g™y) + (m-0-1X(n-(M) = 0 + (m-1)(1-1).
=0
= Lo(1)

inductive Step: (k > 0)
We now must show that the theorem holds for any k>0 assuming it holds
for all smaller k. We proceed by induction on n. In doing this, we must
take note of the interaction between m and n. Since k is positive, (Q)
increases monotonically with m. Thus, the minimum possible value of n is
('é) = 1, and for any positive value of n, there is at least one possible
value for m (and occasionally there will be two).
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Base Step: (n = 1)
In this case, we must have m = k, so the right hand side of [1]
reduces to

k(%)) + kek-1[1-(5)] = k(0) + (-1)(1-1)
=0
s Lk(”.

Inductive Step: (n > 1)
We first show that the right hand side of [{] gives an upper bound
on L(n). Note that

(D) + @) = (@ 20 (B = (@) + (2.

We now pick a and b such that

(M <as(M, 0]
(1) < b < (). and
a+b=n
By Theorem 4.6, we have
_ Ly(n) £ L(a) + a + Lg.q(b)
] = k(Pr1) + (tm=1)-k-1)(A) +
’ ("‘1('1) +A+
| k-1)("F ") + ((m-1)-(k-1)-1)(8)
= [(Tr )T 1)) + (m-k-1)A+8)
= k(M) + (m=k=1)N,

where,
A=¢1-(".‘<'1 ,
B=b -(ﬁ‘:f). and
N=n-( ,T)

This establishes that our expression is an upper bound on Lk(n). To
establish that this is also a lower bound, we must show that no
other way of expressing n as the sum of two positive numbers, a
and b, will give a smaller value for

Lk(a) +a+ Lk-1(b) (]
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QED.

To show this, we consider the effect on the value of expression
[I1] of increasing or decreasing a by steps of one.‘a Suppose we
start with a and b chosen to satisfy [lIi], and then start
incrementing a and decrementing b by steps of 1. So long as a
remains less than (f) and b remains greater than (?:11 ). the effect
of each increment will be to increase Ly(a)+a by
{(m-1)-k-1) + 1 =m-k-1 and to decrease L,_q(b) by
{(m-1)=(k-1)-1 = m-k-1, leaving the total value of [HlI] unchanged.14
However, as soon as either a or b exceeds the stated bound, one or
more of the following things will happen:

1. The incremental growth of Li(a) will increase while the
incremental shrinkage of L_q(b) decreases or remains
the same,

2. The incremental shrinkage of L _4(b) will decrease
while the incremental growth of Ly(a) increases or
remains the same, or

3. b will diminish to 0.

In any case, a smaller vaiue for [II{] will not be obtained. Similarly,
if we start with a and b as in [Il] and decrease the value of a while
increasing b, then we will have zero or more steps at which [lil]
remains unchanged, zero or more steps where the increase in
Lg-1(b) exceeds the decrease in Ly(a) + &, and finally the step at
which a diminishes to zero. Thus, the rules given in [II] give an
optimal partitioning of n into a and b. This completes the induction
step and the proof.

13
Lo(b) defined.

In the following, we assume that k > 1. If k 2 1 wo must aiways lake b = 1 (and a = n~1), since only then is

141’ho incremental changes givon hero aro found by substitution into the second term of the right hand side of
(1], under the induction hypothesis.
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The use of the auxiliary variable, m, in expression [I] makes it a bit difficuit to
grasp intuitively what is being said about the effects of n and k on Lk(n). To make
the picture clearer, we will briefly study the asymptotic behavior of L (n) as k
remains fixed and n grows without bound. Consider first what happens as n ranges

only over binomial coefficients of the form (ﬂ‘) We note that

ns= (,T) = mk+1 S (n/k) X < m,
So,
L) = k(39
=kn(m-k)/(k+1)
~[k/Ck#1)Jkt 1 /Kn 1 # 1K
Since the growth of Li(n) is very well behaved,15 the preceding may be extended

to cover ail values of n.

Theorem 4.8: (Asymptotic behavior of L, (n))
Let k be any positive integer. Then,

Li(n) ~ [k/(k+1)Jk(1/k)n 1+ 17K,

Proof:
The result follows directly from the preceding text. QED.

By precisely characterizing Lyg(n), Theorem 4.7 gives us a bound on the
efficiencies of arboreal static-to-dynamic transforms. Any such strategy which has
f(N) < k for all N must always have g(N) 2 Lx(N+1). The asymptotic behavior of L, (n)
¢i'ven by Theorem 4.8, and our knowiledge that Theorems 4.1 and 4.2 are the best
possible within our model, tell us that whenever we have

F(N) < k

‘6Givon the values where n is of the form "m choose k", we can find the gxact values at all other n by linear

interpolation.
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for any positive integer k, we must also have
G(N) 2 Li(N+1)/N ~ (kiN) 7%,

This is the precisely behavior achieved by the k-binomial transforms, up to iower
order terms. Note, however, that the exact lower bound is not aiways achievable.
The reason for this is the consideration of immutability of history. f we know in
advance that there will be exactly N insertions, then an optimal strategy can be
devised by working backwards from an economical tree of weight N+1 and right
height k. But if the total number of insertions to be made turns out to be larger,
then a different strategy for the first N insertions may have been called for.
Fortunately, the results of this restriction turn out not to be too severe, since the
k-binomial strategies iave efficiency very close to this theoretical limit. The
following theorem shows that, for any k, the G(N) achieved by the k-binomial
transform is optimal (for F(N) £ k) not only to within lower order terms but actuaily to

within an addive constant of 1.

Theorem 4,9: (Optimality of k-binomial transforms)
For any positive integer, k, the k-binomial transform achieves
f(N) S k and
g(N) S Li(N+1) + N

for all positive N.

Proof:
Examination of the optimal construction given in the proof of Theorem 4.7
shows that the k-binomial strategy achieves the optimal value of

£(N) = Ly (N+1)

when N is of the form

N=(R) -1
for some m2k. For intermediate values of N, we need only note that, after the
first N insertions under the k-binomial strategy, the sum of the cardinalities of
all structures formed so far except those in existence after the N-th insertion
(note that these latter must have a total cardinality of N) will never be greater
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than Li(n). This fact may be established by induction on k, using the fact that
values of Lk(n) are given exactly by linear interpolation between points at
which the k-hinomial transform gives absolutely minimal values of f(N). QED.

4.6. Allowing the Number of Static Structures to Grow

So far in this section we have only considered minimizing g(N) where f(N) is
bounded by a constant. In other words, we have considered only strategies which
allow some tixed maximum number of static structures to exist at one time. In
Section 3, however, we also investigated strategies (the binary and the dual
k-binomial transforms) which allow the the number of static structures to grow
without limit as the total number of elements in the dynamic structure increases.
We will now, therefore, briefly investigate transforms which attow f(n) to grow

" without bound.

To study the efficiency of transforms in which f(N) is unbounded, we may
consider the behavior of Ly (n), where K is allowed to vary with n.“6 We must be
aware of two possible consequences of allowing k to grow:

(1) For any particular k, n may never grow large enough for Lp(n) to
approach the asymptotlic behavior given by Theorem 4.9.

(2) Our previous caveat about the immutability of history may become more
significant. '

Since the asywjslotic approach of Ly(n) / [kl(k+1)]k!1"kn1”/k

to unity (as n grows
and k remains constant) is from below, (1) may be ignored for the purpose of
investigating upper bounds. Since the immutability of history can never make it
easier to devise efficient transforms, this consideration may be ignored for the
investigation of lower bounds. Because of these complicating factors, our results

for transforms with unbounded f are less precise than those for bounded f. A few

16ln accordance with the notational conventions of lhis seclion, we have k = f(n) = f(N+1), since the first N
insertions aiways give a history diagram which induces a tree of weight N+1.
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resuits are nonetheless worth noting. The first of these is the following.
Theorem 4.10a: (Optimality of the binary transform)

For any arboreal transform such that f(N) = O(ig N), g(N) = 2(N Ig N).

Proof:
Since constraining the growth of f can only increase and never decrease the
necessary growlh of ¢, we need only consider the case where f(N) = (Iig N).
We must show that Ley)(N+1) = @(N Ig N). We define the function M by

M(n,k) = Max {m | () < n).

From the fact that 1(N) = 8(ig N), it follows that M(N,f(N)) - f(n) = 8(ig N). This
gives us
g(N) 2 Ly(n)(N+1)
Le(n)(N)
f(,\‘)(M'g::.‘f(m)))
[E(N)Z(T(ND= 1) TN, F(N))-F(N)IN
= 9(N Ig N) = S2(N Ig N).

[\ 4

QED.

This result tells us that the binary transform is optimal in the sense that any
transform that pays as small a penalty in search cost (within a constant factor)
must pay at least as large a penalty in insertion (again within a constant factor);
any arboreal transform which achieves F(N) = O(ig N) in the worst case must also
pay G(N) = (g N).17 The binary transform is also optimal in the sense that any
transform which is actually cheaper (by more than a constant factor) for searches
must be strictly more expensive (again by more than a constant factor) for

insertions. We state this resuit more formally in the following theorem,

Theorem 4,10b: (Optimality of the binary transform)

17This follows from the fact that Theorems 4.1 and 4.2 are the tightest resuits possible within our model.

— . e PR S AW P Y. Y m“ - .
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For any arboreal transform such that f(N) = o(ig N), g(N) = w(N Ig N).

Proof:
Let the function h be defined by

h(N) = (g N)/1(N).

From the hypothesis that f(N) = o(ig N), it follows that h(N) = w(1). Moreover,
since M(N,f(N)) £ Ig N, we have f(N) = o(M(N,f(N)), which means that the
approximation in Theorem 4.8 remains valid.18 This gives us
g(N) 2 Ly(ny(N+1) |

2 Lg(n)(N)

~ [F(N)/(T(N)+1 )J,(N)!1/f(N)N1+1/f(N)

~ [1)(sNy7eIN Y/ EN)y

= [(1g N)/(e h(N))]ZMN)N

= w(N tg N).
QED.

This implies that any arboreal transform which achieves F(N) = o(ig N) in the worst

case must also pay G(N) = w(ig N).

In the preceding proof, we saw that the approximation given in Theorem 4.8 still
serves to provide a lower bound on the growth of g even when f is allowed to grow
without bound, provided that f(N) = o(lg N). The next naturai yuestion is whether
this bound can always be achieved. It turns out that this is not always possible. If
f grows in a very irregular manner, having sudden spurts of growth separated by
intervals of almost no change, then the immutability of history will cause g(N) to be
much larger than Lyn.1)(N+1) for values of N immediately following the sudden
increases. If f grows "smoothly" (the precise meaning of this term is implicit in the
following theorem), however, this lower bound for g(N) is very nearly obtainable. We

state this result formally as follows.

1s‘l'ha\ is, considaration (1) may be disiegarded.

IR LRI 1 DK e P e e e T o e GRAREPYHRR R  M A reas Ll e S

£ s S aE i AR

R i . . incaeabiinigibi e




3 September 1979 Static-to-Dynamic Transforms - 46 -

Theorem 4,11 (Optimizing g for slowly growing f)
Let h be a differentiable function such that

h(x) = w(1) and
h'(x) = o(1/x).

Then, there exists a transform having

£(N) < Th(N)1 and ()]
g(N) ~ (h(N)/e)N 1 +1/h(N), ]

Moreover, given [1], [il] is optimal up to lower order terms.

Proof:
A structure having the performance described may be formed by a process of
"cutting and pasting" from the history diagrams of the wvarious k-binomial
! strategies. We onit the details for brevity and for the sake of keeping the
" reader awake. The optimality of [ll], given [1]), is implicit in the proof of
Theorem 4.10b. QED.

Our results for transforms in which f(N) = w(lg N) are much less complete. In

particular, we know that the performance of the dual k-binomial transforms falls
substantially short of the bound given by the inequality

g(N) 2 Lgn)(N+1).
We conjecture that this is an inevitable penaity of the immutability of history, and
that the dual binomial transforms are in fact optimal in some strong sense, similar to
that of Theorem 4.9 for the ordinary binomial transforms. The problem of finding
optimal transforms in which f(N) grows faster than Ig N but slower than ne for any

positive € remains opt’:n.19

'°w. may view equivalontly viow this as the problem of optimizing f when g(N) grows asymptotically faster

than N but siower than N Ig N.
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4.7, Justification of the Restriction to Arboreal Transforms

in Subsections 4.1 and 4.3, we introduced three restrictions which together
constrained our investigation to arboreal transforms. Whiile we conjecture that
arborgal strategies are optimal, in the sense that for any non-arboreal transform
there exists an arboreal transform which is at least as good (given the "black box"
model described in Subsection 4.1), we have not yet found a rigorous proof. In this
subsection, we will summarize our reasons for considering each of the restrictions

reasonable.

Restriction 4.1 forbids the existence of muitiple structures containing the same
element. Our intuition is that any strategy which permits such overlapping
structures can be improved by omitting the shared elements from ail but one of the
overlapping structures. To justify this intuition would require careful examination of
the consequences of this omission when that one structure is finally destroyed. We
may also forbid overlapping structures on the grounds that transformations which
allow them cannot be optimal for space in the worst case. An even more serious
objection is that there are a number of problems which satisfy the definition of

decomposability only when the unions involved are of disjoint sets.

Our Iintuitive justification for Restriction 4.2 (contiguity of static structures) is the
belief that a partial history which does not satisfy this restriction can be turned into
one that does, at no cost in f(N) or g(N), by a kind of "permutation of the names of
the elements." To show this would justify the restriction at least for the cases
where f is bounded or grows slowly and smoothly, so that the immutability of history

is not a significant problem.

For Restriction 4.3, we can actually give a rigorous justification, at least over the
class of transforms which already satisfy Restrictions 4.1 and 4.2. We express this

in the following theorem:

. Theorem 4.12: (Optimality of eager strategies)
Let N be a positive integer. For any partial history consisting of the first N
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insertions and satisfying Restrictions 4.1 and 4.2, there exist a partial history
which also satisfies Restriction 4.3 and which has f(N) and g(N) no greater
than those for the original partial history.

Proof:
Any partial history which satisfies the first two restrictions may be
represented by a history diagram. We may insure that the rectangie in the
upper left corner of the diagram represents a structure which is formed as
soon as all its elements become available, for any diagram which does not have
this property can be transformed at no cost into one that does. The
construction is as follows:
Let R be the upper left rectangle in the diagram. Consider the leftmost
rectangle immediately below R. [f it is wider than R, then we extend it
upwards to the top of the diagram, obliterating R; if it is narrower than R,
then we extend R downwards by one step. This process is repeated
untii ihe property holds.
But now the rest of the diagram (exciuding the upper-ieft rectangle) must
consist of zero, one, or two staircase-shaped pieces to which the same
process may be applied recursively, finally yielding a diagram saiisfying
Restriction 4.3, No step in this process increases either the total
preprocessing cost or the maximum number of simultaneously existing
structures, so Restriction 4.3 has been formally justified. QED.

4.8. Limitations on the Significance of the Lower Bounds

The lower bounds we have derived in this section are based on the model of
computation given in Subsection 4.1. Before conciuding the section, we will mention

some of the limitations which this implies for the applicability of our resuits.

We have already mentioned that it is often possible to obtain superior dynamic
data structures for individual decomposable problems (e.g.,, Member) by using
specific properties of those problems. Another assumption on which our lower
bounds depend is that Theorems 4.1 and 4.2 are the strongest possible results of
their kind, because we assume no knowledge about the performance of the original

static algorithm. As we saw at the end of Subsection 3.1 the penaity factors, F(N)
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and G(N), may be greally reduced (from 8(ig N) to O(1) in the example of Subsection
“ 3.1 if the cast functions of the static structure are already fast-growing. We now
present some resulls concerning a slightly different way of lowering the penaity

i functions given fast-growing cost functions for the original static structure.

Suppose we are given a static structure for a decomposable searching problem
having preprocessing cost Pg(N) and query cost Qg(N). We will make only the usual
¢ assumption about Qg--that it is monotone non-decreasing. We will, however, make
the assumption that Pg(N) not only grows at least linearly with N, but is actually
0(N2). If we apply lhe 2-binomial (triangular) transform, will obtain a dynamic
structure having cost functions, Pp and Qp, which satisfy

Qp(N) £ 2Qg(N) and
Pp(N) = 8(NS/2),
The reader is advised to go through (he exercise of verifying the latter assertion.

The penalty factor in preprocessing is given by

G(N) = P(N)/P5(N) = 8(N1/2),
which is at most a constant factor improvement over the worst-case resuit given in
Theorem 3.2. We appear to get negligible compensation for the fact that the
preprocessing cost is already much more than linear. If we look a little more

carefully, however, we may notice an interesting phenomenon.

in the triongular strategy, we maintain two structures, a large one, having

N1/2). If we break down

cardinality O(N), and a small one, having cardinality O(
Pp(N) into the cost of forming all the large structures built during the first N
insertions and the cost of forming all the small structures built during the first N
ingsertions, we find that the large structures have a total cost of 0(N5/2). while the

total ccst of the small structures is only a(N?). 1 Pg had been linear, then the

costs of the two families of structures would have been equal within a constant
factor, each being 0(N3/2). The present disparity suggests that it might be better
to merge the small structures into the large ones less frequently. And, indeed, if we

adopt the strategy of rebuilding all the elements into a single structure only when

o A el L5,
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the size of the small structure would exceed N2/3

, we achieve a dynamic structure
having

Qp(N) £ 2Qp(N) and

Pp(N) = (N7/3) = o(N/3p(N))
(as the reader may again wish to verify), the total preprocessing cost being split
evenly (within a constant factor) between the two families of structures. The
preceding results may be generalized to arbitrary polynomial preprocessing costs

and arbitrary binomial transforms, as shown in the following theorem.

Theorem 4,13: (Shift-of-strategy speed-ups)

Let k be an arbitrary positive integer and let r be a real numberzo

greater than
1. Suppose that we are given a static structure for a decomposabie searching
problem with cost functions satisfying the foliowing criteria:

Qg(N) is monotone non-decreasing,
Pg(N) grows at least linearly, and

Ps(N) = w(N").
Then, a dynamic data structure can be constructed such that

Qp(N) £ kQg(N) and
Pp(N) = O(N"Pg(N)),

where
R = (r-1)/(rK=1).

Proof:
We maintain a set of structures satisfying the following invariants:

(1) After any inserlion there are at most k static structures.

(2) Let j be a positive integer. After the N-th insertion, the
cardinality, Cj. of the j-th largest structure (if there are at least

2°Tha nit-picking reader will delight in noting that it is not quite correct to allow r to be an arbitrary real number.
in order for the dosired transform to bo implementable, r must be Turing computable. Even then, if r is very
expensive to compute, the bookkeeping cosls may kill us. Similar considerations apply to the function h in
Theorem 4,11,
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i structures in existence) satisfies
cj < N(rk'rj)/(rk'1 ).

When an element is inserted, we see how many structures already exist. I(f
there are fewer than k, we simply build the new element into a static structure
of cardinality one. |If k structures aiready exist, we rebuild the smallest
structure to include the new element. We then repeatedly (zero or more
times) merge the smallest two structures until (2) is satisfied. We leave it to
the reader o verify that this strategy achieves the advertised performance.
QED.

in any strategy based on the construction in the previous proof, the total
preprocessing will be divided evenly (up to constant factors) among k families of
structures. We conjecture that this gives optimal Pp within a constant factor
(which may depend on r and k). Needliess to say, similar improvements are available,
both in preprocessing time and in query time, for a number of other transformations,
given sufficiently fast-growing cost functions. Only a small fraction of the

possibilities have been explored.

5. Online Transformations

All of the transforms in Section 3 have the property that some insertions are very
cheap while others are very expensive. For example, in the binary transform the
1023-rd insertion is much less costly than the 1024-th. While this situation is quite
acceptable in certain applications (such as when the total cost of accessing a
structure throughout an entire aigorithm is counted), it is prohibitive in others (such
as online data bases). In this section we will show how the transforms in Section 3
can be modified to amortize the cost of building static structures over the time of

many insertions.

in Section 4, we worked on the principle that any static structure might as well
be formed as soon as all its elements became available, since the cost of building it

would eventually have to be paid anyway. While this is reasonable If we are
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concerned only with the total cost of all insertions, it is inappropriate if we wish to
make sure that no individual insertion Is inordinately expensive. Figure 5.1 shows a
strategy which is similar to the binary strategy of Subsection 3.1, except that each
structure of cardinality C is completed at the end of the C-th insertion that all its
elements are available, rather than at the end of the first such insertion. A
structure, s, is said to be pending during the N-th insertion if the all elements of s
become available at or before the beginning of the N-th insertion and s is completed
during the N-th insertion or later. (The x’s in Figure 5.1 denote the structures that
are pending during the eighth insertion). A structure of cardinality C will therefore

be pending during exactly C insertions.

A

20 x
19
18

17 -
16
15
14
13
12
i
10 x -

| &

1

is

Figure 5.1. The online binary transform.

-NQLOONOO

To limit the work done in any insertion step, we require that 1/C of the work

. required to build any structure of sizg C be performed during each of the C steps In

which that structure is pending."z‘I We call the resulting transformation the oniine

21Tho exact means by which this is insured are [eft unspecified. We may modify the static algorithm to include
appropriate breakpoints (generally an easier task than totally reworking the algorithm into a dynamic algorithm by
ad hoc methods), or we could assume that we can detormine the required computation time in advance (at
negligible cost) and set a hardware interrupt. For our present purposes, we Will assume that the ability to partition
the compute time of a call to Insert is available by magic. It shouid also be noted that the partitioning of the work
into equal parts will not be exact in in practice; this will lead to slightly greater insertion times than those we are
about to advertise.
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binary transformation. Analysis of this transform’s performance yields the following

thegrem.

Theorem 5.1: (The on-line binary transformation)
Suppaose we are given a static structure, S, for a decomposable praoblem such
that

(1) Qg(N) is monotone non-decreasing,

(2) A structure of cardinatity N may be built by N calls, each of cost
15(N) (recall that I5(N) is defined as Pg(N)/N),

(3) 1g(N) is monotone non-decreasing,

(4) The space used at any point during the formation of a static
structure is at most Sg(N), and

(5) Sg(N) grows at least linearly.

Then, there exists a dynamic structure, D, such that

Op(N) < 2liaiN+1)lag(N),

Ip(N) < Tig Nlig(N), and

SD(N) < GSs(N)
(recall that lD(N) is the worst-case time to insert the N-th element in a
dynamic structure).

Proof:
By assumption {2), application of the online binary transform is well-detined.

We will now show that the resulting dynamic algorithm has the stated:

performance. We first note that all structures which are either active
(completed but not yet discarded) after the N-th insertion or pending during
the N-th insertion have cardinalities which are exact powérs of two and which
are £ N. Moreover, there are never more than two active structures of any
given cardinality. This and assumption (1) justify the claim about Qp. Similarty,
assumption (3) and the fact that there is never more than one pending
structure of any cardinality together justify the claim about ip. Finally, we
note that the sum of the cardinalities of all structures active and pending after
the N-th insertion is no more than 3N (N for the active structures and no more
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than 2N for the pending structures). Together with assumptions (4) and (5),
this fact justifies the claim about Sp. QED.

To illustrate the application of the online binary transformation, we will consider
the problem of d-dimensional maxima searching. A vector is said to be maximal with
respect to a set of vectors if no vector in the set is greater than the given vector
in all coordinates., Preparata [1978] has given a data structure SMS for
d-dimensional maxima searching with performances

Psms(M) = o(N 19972 N),
Ssms(N) = O(N 16972 N), and
Qgms(N) = O(Igd'z N),

for any d23. Applying the online binary transform to this structure yields the

following.

New Data Structure 5: (Dynamic Maxima Searching)
For any fixed d 2 3 there exists a dynamic data structure DMS for
d-dimensional maxima searching with performance

Ipms(N) = O™ ),
OpmsN) = 0(ig?" ! N), and
Spms(N) = O(N 1g9"2 N).

This structure has the same performance as Lueker's [1979], but is substantially
easier to code and prove correct; his structure, however, also supports deletions.

(The two structures were discovered independently.)

The other transforms we have studied may also be modified to give online
versions, as shown by the examples in Figure 5.2. The online trianguiar transform,
shown in Figure 5.2(a), gives the performance

Ip(N) < (2 215(0),
Qp(N) $ 30g(N), and
Sp(N) £ 2Sg(N).

Similarly, the online dual triangular transform, shown in Figure 5.2(b), achieves

Lo o A . i’ AR it 2 i el
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Figure 5.2. Online triangular transforms.

Ip(N) £ 2ig(N),
ap(N) < 3(2n) V/2ag(N), and
Sp(N) ~ Sg(N).
Determination of good lower bounds for the penalty factors associated with online

transformations remains an open problem.

6. Deletion

So far in this paper we have considered dynamic data structures that support
only insertions and queries. In this section we will present two results dealing with
data structures that support deletions and their realization by decomposable
transforms. In Subsection 6.1 we present a negative resuit that says that, in
general, it is impossible to achieve by a transform a data structure that efficiently
supports deletions. In Subsection 6.2 we will examine a transformation that
efficiently achieves deletion, but is applicable only to a subset of the decomposable

searching praoblems.
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6.1. A Lower Bound

in this subsection we will study a lower bound on the efficiency of performing
deletion in a structure achieved by a decomposable transformation. As with all
lower bound proofs, it is important that we accurately define our model of
* computation, which is very similar to that used in Section 4. We assume that there
is a static structure S with operations Build and Query, which have performances Pg
and Qg, respectively. The function Pg grows at least linearly, and Qg is positive
and monotone nondecreasing. There is no way to answer a query other than by
using the Query subroutine (on a structure built by Build) and the O operator. The

only costs that we will count are those of Pg, Qg, and a constant cost for computing

a.

To state the lower bound precisely, we need some definitions. For a dynamic
structure with deletions (which we call DD) we will define the functions IHp(N),
DBD(N), and Qpp(N) for the insertion, deletion and query costs, respectively. To
strengthen our resuit, we let these costs denote not the worst-case times, but
rather the average cost (over a distribution that we will make precise in the proof of
the theorem). We are now ready to state and prove the primary theorem of this

subsection.

Theorem 6.1: (Expense of deletion)
For any dynamic structure with deletions (which we call DD) obtained by a
transformation applicable to all decomposable searching probiems, there exists
a sequence of insertions, deletions and queries for which

[QBo(N)] * [1Dp(N) + DPp(N) + GDp(N)] = S(N).
Note that this implies that at least one of the insertion, deietion and query
costs requires at least Q(N” 2) time.

Proof:
We will prove this theorem by considering a "steady state" in which there is a
structure of size N, and a sufficiently long string of repeated query, delete,
and insert operations is performed. After M repetitions of these operations,
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the structure will still be of size N, and a total of M queries will have been
performed. Each query that is performed must examine some collection of
static structures whose total size is at least N (so that each eiement of the
set is represented in the query); assume that c*(N) such structures are
examined on the average. We therefore know that at least half the queries
examine no more than 2C*(N) static structures each (if more were examined,
then the average would be too high), and in these cases the largest structure
examined must contain at least N/(2C*(N)) elements.

Consider now an adversary who causes each deletion in the sequence to be
deleted from the largest existing static structure -- because of our model of
computation, this structure must now be discarded. For sufficiently long
sequences of operations, static structures must be created as often as they
are deleted. The costs of building the static structure must therefore be paid .
in insertion, deletion, and query costs, yielding

IDOIN) + Dh(N) + Op(N) 2 (1/2) Pg(N/2C*(N)).
(The right hand side is from the fact that at least one-half of the queries

access a structure of size NIZC*(N). and the adversary always deletes that
structure.) We also know that

ODPIN) = (CH(NY),
because each structure queried costs at least some constant. Multiplying
these two inequalities yields
[QDp(NT * [IpD(N) + DHR(N) + QFp(N)]
= Q(C*N) * Ps(N/2c*(N)))
2 R(Pg(N))
= (N).
The last two inequalities both follow from the fact that Pg grows at least
linearly. QED.

Maurer and Ottmann [1979] describe a static-to-dynamic transformation with
deletion that comes close to achieving this lower bound by always keeping
approximately N” 2 static structures, each of size approximately N" 2.
Fortunately, however, additional information can often be used to achieve more rapid

deletion outside the model for which this lower bound hoids. (Any such transform,
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however, is not applicabie to all decomposable searching problems.)

6.2. A Fast Special Case

Theorem 6.1 shows that any search for an efficient deletion transformation for al//
decomposable searching problems must be in vain. In this section we will see a
transformation that dors in fact efficiently support deletions as well as insertions,
but is not applicable to all decomposable searching problems. We will investigate
this transform by first studying a particular example, and then turn to the general

case,

The particular problem that we will study is that of counting the number of times a
given element occurs in a multiset. A suitable static structure for this probiem is the
sorted array, which we discussed in Subsection 3.1; it has performances

PsA(N) = O(N Ig N),
SSA(N) = O(N), and
QsAN) = O(lg N).

We saw in that subsection that this structure can be transformed to yleld the
binomial list data structure that efficiently supports both insertions and member
queries. It is a trivial modification to have it support count queries as well; the O

operator Is now plus rather than or.

Binomial lists can be modified to support deletion by keeping two binomial lists at
all times, which we will call the real and the ghost structures. Each time an element
is inserted, it is inserted into the real structure. When an element is deleted, we
insert it into the ghost structure. To count the number of times an element occurs in
the set, we count the number of times it occurs in the real structure and subtract
from that the number of times it occurs in the ghost structure. We maintain the
further invariant that the ghost structure always holds less than haif as many
elements as the real structure; when deletion of an element violates this invariant
we destroy the ghost structure, unbuild the set of elements in the real structure
and subtract all defeted elements from it, and finally rebuild that set into a new real
structure (giving an empty ghost structure).
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We must now analyze the performance of binomial lists with deletions. The cost
of inserting an element and of performing a count search remain the same; they are
respectively O(lg N) and O(lg2 N). The “immediate" cost of deleting an element is
O(ig N) (for performing the insertion into the ghost structure); we must also count,
however, the cost of rebuilding the s_tructure. The cost of rebuilding an
M/2-element real structure is incurred only after M/2 elements have been deleted;
since the total cost is O(M Ig M), we can assign each element a share proportional

to lg M. Thus the cost of deletion in an N-element set can be amortized to O(ig N).

The strategy of using real and ghost structures can be generalized to give a
dynamic structure supporting deletions for any decomposable searching problem
whose [ operator has an inverse. The most common case is when O is plus, for
which 0" is minus. If O is and or or, then one can often transform the problem to
involve pius instead (for instance, we could transform member queries to count
queries, whose [J operator is invertible). If O is multiset union, then this scheme
works only when the size of the answer set for the ghost structure is much smaller
than the size of the total answer set (and this is often not the case). Finally, if O is

min or max, this scheme is usually impossible to apply.

To describe the strategy more precisely we will need some notation to describe
the efficlency of structures with deletions. If DD is a dynamic structure supporting
deletions, we let Ppp(M,N) denote the total insertion cost involved in a sequence of
N insertions and M deletions in on initially empty structure. The function Qpp(M.N)
denotes the cost of answering a query in a structure built by N insertions and M
deletions. Finally, Dpgp(M,N) denotes the total time spent in processing deletions in
a series of N insertions and M deletions, and Spp(M,N) denotes the maximum space
required by the structure during the sequence. With this background we can

describe the transformation supporting deletions precisely in the following theorem.

Theorem 6.2: (Transformations supporting deletions)
Assume that there exists an admissible (F(N), G(N)) transformation. Then,
given any static structure S for a decomposable searching problem P such that
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4 the inverse of the OO operator for P is computable in constant time, it is
F possible to achieve a new structure DD with performances
Spp(M\N) £ Sg(2(N-M)) + Sg(N-M),
! Ppp(M.N) € G(N) * P5(N),

Qpp(M.N) £ F(2(N-M)) * Qg(2(N-M)) + F(N-M) - Qg(N-M), and

Dpp(M.N) £ G(M) * Pg(M) + Pg(2M).

We assume here that Qg is monotone nondecreasing and that both Pg and Sg

- grow at least linearly.

I Proof: :
The DD structure maintains two dynamic structures (each achieved by applying
5 the admissible (F(N),G(N)) transform to S): the real structure and the ghost
structure. Both structures are initially empty. To insert a new element into DD,
insert it into the real structure. To answer a query, answer it on the real
structure and subtract from that the answer on the ghost structure (using
Cl'1). To delete an element, insert it into the ghost structure. If the ghost
structure ever becomes half the size of the real structure, rebuild the real
structure with only undeleted elements, and discard the current ghost
structure.

The storage requirements of DD follow immediately from the superlinear growth
of Sg. If a total of N insertions and M deletions have been performed, then at
most N-M elements are "really" stored in the structure. The ghost structure
can therefore contain at most N-M elements, and the real structure contains at
most twice that number. The time spent on insertion is straightforward, and so
is the query time. The time spent on deletion is at most that for inserting M
elements into the ghost structure and then rebuilding the real structure; this
latter action is never carried out on more than 2M elements. These facts
together establish the theorem. QED.

There are two important things to note about the transformation of Theorem 8.2.
The first is that it is not online in the sense of Section 5; as it stands, the expense
of rebuilding the real structure and discarding the ghost structure must occasionally

be paid in a single block of time. The second interesting thing to note is the fact

that there is nothing magic about insisting that the ghost structure be one-half the
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size of the real structure: we could just as well use any constant A in the range
(0,1). For small A, the query time decreases and the storage utilization is higher; for

large A, the deletion time decreases.

As an application of this transformation, we will consider the problem of Empirical
Cumulative Distribution Function (ECDF) searching in a set of N d-dimensional
vectors. One vector is said to dominate another if it is greater than it in all
components; an ECDF query asks for the number of vectors a given vector
dominates. Bentley and Shamos [1977] describe a data structure for d-dimensionai
ECDF searching (for d22) wilh performances

Pecor(N) = 0N g% ),
Secpr(N) = 0N 1991 N), and
Qg cpr(N) = 0(g® N).

We can apply lhe binary lransform of Section 3.1 and the transform of Theorem 6.2

to their structure to achieve the following.

New Data Structure 6: (Dynamic ECDF Searching)
It is possible to achieve a data structure for dynamic ECOF searching in which
performing a sequence of N insertions and deletions requires O(N lgd N) time.
When containing N elements, the structure requires O(N Igd'1 N) space, and an
ECDF query can be answered in O(ig9*1 N) time.

Lueker [1979] later used a different transformation on decomposable searching
problems to achieve an (online) structure with performance identical to this, but with
a logarithmic factor removed from the query time; his structure is more difficult to

code and to prcve correct, however.

7. Conclusions

We will now briefly review the contributions of this paper. The subject
throughout has been general methods for converting static data structures to
dynamic data structures. In Section 3 we saw three distinct classes of

transformations, each hased on a combinatorial representation of the integers.  In

" Section 4 we saw that many of those transformations are optimal, in a very strong
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sense. In Section 5§ we considered structures in which each insertion must be
handled very quickly; this is important in “oniine" applications. Our study of dynamic
structures up to this point concentrated on structures that supported only insertions
and queries; in Section 6 we investigated structures that also support deletions.
We saw that although it is impossible to achieve efficient deletions in the general
case, they can be achieved for an important subclass of the decomposable

searching problems.

The contributions of this paper can be classified on three distinct levels. On the
first level are the new data structures that we have seen. Each one is currently
the best known structure for its task (with the exception of New Data Structure 6),
and each was discovered by conscious application of the transforms described in
this paper. On a second level are the transformations themselves; they are very
interesting from a combinatorial viewpoint, and provide a useful addition to the
algorithm designer’s tool bag. On the third and final level is the new kind of result
represented by the transformations: they are not just a singie solution to a single

probiem, but rather a set of solutions to a broad class of problems.
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l. A List of Decomposable Searching Problems

Throughout the body of this paper we have examined a number of operations on
decomposable searching problems. In this appendix we will list some (twenty-three)
searching problems that have the property of decomposability. For each problem we

will note its [0 operator in square brackets.

The most common kind of searching problems are those defined on totally-ordered
sets. We already saw that Membher searching (which asks "is x an element of F?")
is decomposable with O operator V. Other examples are Successor (what is the
least element in F greater than x?) [min], Predecessor [max], Rank (how many
elements in F are less than x?) [+], and Count (how many elements in muitiset F
have value x?) [+]. Two queries on ordered sets that have no query element are
the priority queue operations Min [min] and Max [max]. These probiems, their
applications, and data structures for their solutions are discussed in depth by Knuth
(1973].

Many of the nroblems that arise in database applications are decomposable. In
this context, the set of elements is usually a file of records, each of which contains
certain keys. An Exact Match query calls for a list of all records that have all keys
equal to specified values [V]. A Partial Match query asks for all records that match
on some subset of the keys [U]. Range queries ask for all records that have each

key in a specified range of values [V]. Intersection queries specify a subset of the

key space and ask for a list of all records in that subset (thus asking for the




3 September 1979 Static-to-Dynamic Transforms - 865 -

intersection of the query space and the record set) [U]. Finally, Best Match queries
specify an "ideal” record and a distance function (often the Hamming distance), and
ask for the record in the set closest to the ideal [min]. These queries and data

structures for answering them are discussed by Rivest [1976].

We saw in the body of the paper two decomposable searching problems that
arise in statistics. Bath of the problems are defined in terms of vectors domination
(one vector is said to dominate another if it is greater in all coordinates). A Maxima
query asks whether the query vector is.dominated by any in the set [V]. The
Empirical Cumulative Distribution Function (ECDF) query asks how many vectors a

given vector dominates [+].

Exampies of decomposable searching problems abound in computational geometry.
Many queries are asked of sets of points in the plane or Euclidean k-space,
including Wearest Neighbor (which point in the set is nearest the query point?) [min],
Furthest Neighbor [max], and Near Neighbor (list all points within distance d of the
query point) [U] queries. Other queries deal with more complicated objects. For
example, we might wish to know whether a given point is in the intersection of a set
of half-planes (this problem arises in linear programming); Feasible Region queries
are decomposabie with the A operator. Other queries include Rectangie Intersection
{(what rectangles in the set does this rectangle intersect?) [U] and Circle
Intersection [U]. These queries and many others have been discussed in detail by
Shamos [1978]. Dobkin and Lipton [1976] investigate a number of decomposable
searching problems in multidimensional space; these include such queries as "is this
point on any of the lines" [V] and "is this point on any of the hyperplanes” (V].
Many of the other problems that we have already mentioned can be cast in

geometric terms; these include ECDF, Maxima and Range searching.

Convex Hull searching is a very interesting problem from the viewpoint of
decomposability. In its simplest form-="is point x within the convex hull of point set
F?"=-=it is simple to prove that it is not decomposable, since whenever F contains at

least two points we can partition F and specify x so that x is not in the hull of
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either part bul either is or is not in the hull of the union. If we ask instead the
query "what does lhe hull of the set look like from here?" (the answer being either
an assertion that the query point is within the hull or a pair of angles giving the
extremal points of the hull as "viewed" from the query point), the problem is now
decomposable. Th; transforms described in this paper are therefore applicable to
any data structure for Convex Hull searching, provided that that structure can be
cheaply modified to answer the more conplicated query. While this result is not of
partibular interest in itself (since it is easy to develop a fast ad hoc algorithm for
dynamic Convex Hull searching), it indicates a possibly fruitful technique for
extending the domain of applicability of the transforms, namely the identification of
any searching problem P such that (1) P may be made decomposable by having the
query provide some extra information and (2) known static algorithms for P can be
altered to yield that extra information at low cost. The identification of other such
"nseudo-decomposable" problems (and other decomposable problems in general)

remains a open problem,
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