AD=AOBL 247 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A==ETC F/8 12/%
COMBINATORIAL SRAPH EMREDDING, (U)
JAN 80 R A DEMILLO» S € EISENSTAT) R J LIPTON DAAS29=76=8-0338
UNCLASSIFIED BIT=-ICS5~79/12 ARO=14690,10=EL NL

o §
=Lk
s 2©

—— 1.8

22 Bt e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

| e |

1

Pa—

[
L]

-

N

'ﬁfommon and

R

a1T-1¢5-79/17
COMBINATORIAL GRAPH EMBEDDING

R.A. DeMillo
S.C. Eisenstat
R.J. Lipton

January, 1980

7
Final Report: ARO Grant No. DAAG29-76G-0338

T A e et & <k ¢ o 13 4 €HA Y

This document he§ peén UPF?°V’d
for public rel-es° ard salo; ile
distribution 19 arlimited.

Contents

PAGE
Introduction e e e e e e e . 2
A. Space and Time Hierarchies for Classes of Control Structures
and Data Structures]
R. J. Lipton, S.C. Eisenstat, and R.A. DeMillo 4
B. Space-Time Tradeoffs in Structured Programming: An
Improved Combinatorial Embedding Theorem2
R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton o « .. 17
C. An Embedding Result for Labelled Programs’
R.A. DeMillo, S.R. Kosaraju . . « . ¢« ¢ v ¢ ¢« o v o o o o o o o » ... 28
D. Preserving Average Proximity in Arrays4
R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton. 4]
E. The Average Length of Paths Embedded in Trees
R.A. DeMillo, R.J. LIiPton ¢ ¢ v v v v v e e e o o o o o s o s 45

F. On Small Universal Data Structures and Related

Combinatorial Prob]ems5
R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton. .

G. A Separator Theorem for Planar Graphs6

R.J. Lipton and R.E. Tarjan
H. Applications of a Planar Separator Theorem7

R.J. Lipton and R.E. Tarjan };?\4\:,u

M

1 ~Ligy,..
JACM, 23(4)(October, 1976) pp. 720-732 e N
23ACM, 21(17(Jan,1980) D1y,
3submitted for Publication ﬁ

4CACM, 21(3)(March,1978) pp. 228-231 \\\\\\\\\\\\\\\\\\\

5Proceedings 1978 Johns Hopkins Conference on Information SyséZEE and Sciences,
Baltimore, Md., March 1978, pp. 421-428

6s1AM J. Appl. Math, 36(2)(April,1979) pp. 177-189

71977 FOCS Conference, Providence, R.1., November 1977, pp. 162-170

M

-y sy LESEESEEY

INTRODUCTION

Let G, G' be directed graphs. A combinatorial embedding of G into G'

is an identification of each x ¢ V(G) with a set of vertices S c V(G')

such that each S is bounded in size by a constant independent of |V(G)]

and each arc in G is carried into a directed path of length bounded by a
constant independent of |V(G)|. This concept (first defined in [A]) has

formed the basis for a number of theoretical studies supported by ARO

Contract No. DAAG29-76-G-0338, and the papers collected here are representative
of - with one major exception - the state-of-the-art with regard to graph

embeddings.

First, a word regarding the subject matter of these papers. By
modelling the control structures of programs as classes of directed graphs,
asymptotic properties of control structure transformations can be obtained.
This is the principle aim of [A,B,C]. Knuth [1] surveys a number of results
concerning control structure transformations and places the graph embedding
results in context. Directed graphs also model data storage structures
(vertices model nodes or records, arcs model logical adjacencies). The notion
of graph embedding can be used to compare the relative storage efficiencies
of classes of data structures [D,E,F]. Several researchers have attempted to
generalize these results to more encompassing notions of data storage and
representation (see e.g., [2,7]) and more sophisticated types of analysis [3].
The purely combinatorial notions involved in data structure embeddings also
make contact with a variety of other theoretical and numerical problems [4].
In fact, one of the principle devices used in the results of [A-F] is the
notion of “"cutting" graphs along boundaries of connected regions. A boundary
which cuts a graph is called a separator and in [G,H] a characterization of
separator graphs is derived and used to obtain results in areas from Turing

Machine complexity to optimization theory.

B Y

T T YRy PR ST O

1T S b a5 e o ey N Al e S B LSt e i A R PR
A e s s Gl e e W s i R A i S M

Graph Embeddings, boundary arguments and graph theoretical models of

computation all appear to be related in sometimes surprising ways [5,6,7,8]. '

Missing from the collection is a coherent account of these connections. It
will have to suffice that the connections run deeper than the surface. We :

anticipate reporting on this aspect of graph embedding elsewhere.

et e e S o0

i. References

T 1. D.E. Knuth

"Structured Programming with goto Statements" in R.Yeh, editor,
Current Trends in Programming Methodology, Volume I, Software
Specification and Design, Prentice-Hall, 1977, pp . 140-194.

2. A.L. Rosenberg
"Data Encodings and Their Costs", Acta Informatica, Vol. 9, 1978,

pp. 273-292.

bod oy

3. A.L. Chow
"Preserving Average Proximity in Arrays with Duplication", M.S. Thesis,
University of I11inois, Urbana, Report No. R-812, Coordinated Science

Laboratory.

1

[S

4. M.R. Garey, R.L. Graham, D.S. Johnson, and D.E. Knuth
"Complexity Results for Bandwidth Minimization", J. Combinatorial Theory,

(to appear).

PSS
. 1

3 5. L.G. Valiant
‘ "Negation can be Exponentially Powerful", Proceedings 11th ACM Symposium
! ; on Theory of Computing, 1979, pp. 189-196. 1

6. G.S. Tseitin
) “On the Complexity of Derivations in the Propositional Calculus" in ;
f A.0. Slisenko, editor, Structures in Constructive Mathematics and
l Mathematical Logic, 1968, pp. 115-125.

, 7. A. George
i "Nested Dissection of a Regular Finite Element Mesh", SIAM J. Numerical

Anal., Vol. 10, No. 2, April 1973, pp. 345-363.

| [8. S. Cook
. "Observation of a Storage-Time Tradeoff", Proc. 5th ACM Symposium on

Theory of Computing, 1973, pp. 29-33.

i

]

THIS D= erny
e e

IS SR

[ad
TR AT ey

PRAOTT CABLE,
AINED A ’

=3 HICH po NOT

Space and Time Hierarchies for Classes of Control Structures
and Data Structures

R. J. LIPTON AND S. C. EISENSTAT
Yale University, New Haven, Connecticwt
AND

R. A. DEMILLO

University of Wisconsin, Milwaukee, Wisconsin

asstaact. Control structures and data structures are modeled by directed graphs. In the control case nodes
represent exccutable statements and arcs represent possible flow of control; in the data case nodes represent
memory locations and arcs represent logical adjacencies in the data structure . Classes of graphs are compared
by a relation sy where G <, ¢ H if G can be embedded in H with at most a T-fold increase in distance between
embedded nodes by making at most S “copies” of any node in G. For both control structures and data
structures, S and T are interpreted as space and time constants, respectively. Results are presented that
establish hierarchies with respect 10 =y r for (1) data structures. (2) sequential program schemata normal
forms. and (3) sequential control structures.

KEY WORDS AND PHRASES: tree. bounded simulation, complexity, control structure, data structure,
direcied graph, do forever program. embedding. go to pro; m, label exit program. normal form programs.
structured programming. while programs

CR CATEGORIES: 4.22.4.34, 5.24,5.25,5.32

1. Introduction

The running time or computational complexity of a sequential process is usually esti-
mated by summing weights attached to the basic operations from which the process is
derived. In practice, however, the complexity of a program is often limited by how
efficiently it can access its data structures and control program flow. Furthermore. it has
been extensively argued [4] that certain limitations on the process sequencing mecha-
nisms available to the programmer result in more “efficient’ representations for the
underlying processes. In this paper we examine these issues in an attempt to assess the
*power” of various data and control structures.

A key observation about sequential processes is that they usually do not reference

Copyright © 1976. Association for Computing Machinery. Inc. General permission 1o republish. but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made 1o the publication. to its date of issue. and to the fact that reprinting privileges were granted by
permission of the Assaciation for Computing Machinery.

Some of these results were presented at the 7th ACM Symposium on the Theory of Computing. Atbuyuerque.
New Mexico, May 1975,

The resecarch was supported in part by the US Army Research Office under Grants DAHC04-74-G-0179 and
DAHC04-75-G-0037 and by the Office of Naval Research under Grant NOOO!4-67-0097-0016. Some of
this work was carried out while DeMillo and Lipton were visitors at the Commumications/ ADP Laboratory of
the US Army Electronics Command, Fort Monmouth. New Jersey.

Authors” addresses: R.J. Lipton and S.C Fiscnstat. Department of Computer Scienee. Yake University. 10
Hillhouse Ave.. New Haven, CT 06520, R.A. DeMillo, School of Informauon and Computer Science,
Georgia Institute of Technology. Atlanta. GA 30312

Journal of the Assntatum for Computing Machincry Vil 21 Nu 3 Uvtolr (1N76 pp 20702

E TR

}

Sheal ;

T 5 i

Yo *my]

Vo, . i

- “""Tr" 4

BN £ i

; ol ‘,"'EDA ABI‘E.; .

o i

Space and Time Hierarchies 0 Nop :

their data randomly . For instance, algorithms that organize their data structures as arrays
often access the array elements in a “local” manner (e.g. the conventional matrix
multiplication algorithm accesses its arrays by rows and by columns). Thus in a paging
environment how one stores an array is especially important (cf. Moler [13]. Rosenberg
[16]). and it is natural to investigate how arrays can be stored so that elements “'near”
one another in the array are stored near one another in memory. Data structures are
compared by the relation <, ;: For data structures G and G*, G <,7 G* if G can be
embedded in G* so that there is at most a T-fold increase in distance between embedded H
objects.

It is somewhat unexpected that an analogous study for control structures uses the same
basic insights. It is well known that process sequencing disciplines found in programming
practice (e.g. go to, while) can simulate each other and are thus equivalent in the sense of
yielding functionally equivalent programs, but are inequivalent relative to the stronger I
requirement of structural isomorphism [1-3, 10, 11]. We argue that the fundamenta!
issue is neither the construction of functionally equivalent programs nor the inability to
preserve structure exactly, but rather the ‘‘naturalness™ of the simulation. Control
structures are compared by the relation =, 5: For algorithms G and G* with distinct
process sequencing mechanisms, G <, r G* if G* simulates G by making at most S copies
of each operation in G and increasing the cost of sequential access of embedded
operations by a factor of at most T.

- Thus comparing the power of data structures and controf structures involves analyzing
: the one-one and many-one aspects of embedding (or simulation) techniques whose

.- efficiency is bounded by § and 7. In a natural way. the relation =g, represents an
intertwining of space and time complexities.
i In Section 2 basic combinatorial definitions are presented, and the combinatorial

models used for representing data structures and control structures are introduced. In
' Section 3 the relation =g is defined by means of graph embeddings. This relation is
; . viewed as an embedding in the data structure case and as a simulation relation in the
control structure case. Section 4 contains the main result for data structure embeddings:
For certain families of structures {G.}i.o and {G?};20. 1 G, =, 7 G, then T = ¢ - log n, (see
footnote 1) for some positive constant ¢ whose choice is independent of n,. the number of
components of G,.

The main theorem in Section 5 generalizes the result in Section 4 by atlowing S = 1. In
this case. if G, <, r G for certain natural choices of {G };20 and {G*}i20. then T + log § =
) c-log n,, where n, is the number of components of G, and ¢ is a positive constant
{ : independent of n,. A direct result of this theorem is that certain schema constructions,
such as Engeler normal form [6], cannot be achieved *‘uniformly™ with respect to the
=y.r relation. More exactly, for any constants § and T there is a go o program G such
that for no program H in Engeler normal form is G <gr H. Thus, the construction of
Engeler normal forms — while always possible - does not preserve time and space in a
bounded way. This result also demonstrates how our results will be asymptotic in their
nature: For any go to program G there are S and T such that G <g; H where H is the
Engeler normal form; however, the values of § and T must grow with the size of the
program G.

In Section 6 the relation =g ; is placed in the context of relations used in previous
studies of control structure simulation. The main simulation results for control structures

| 5 are then developed. giving rise to the hierarchy of control structures shown in Figure 1.
‘ . An important result is that go to programs are strictly more powcrful than label exit
1 programs. Since the class of label exit programs includes many of the standard constructs
] : that are allowed in “'structured™ programs. this result can be viewed as a precise sense in

! When we cstablish results of this form. we are asserting that there is a minimal rate of growth for T as a
function of n, In the sequel we will consisicntly abuse our potation by writing f(S, 7) = gt instead of the less
L . L] convenient fiSia), T = gint 1 will usually be clear from context when 8. T are to be conadered comtants
. . and when 8 and T are parametenzed.

!

[SN
L]

[pey)
-

S 4

’,,1;.\\4’— :

$ -

i A

. . “x: I‘ICABLE.)
| , COTUED A

R -aib ¥alLCH DO HOT

‘¢

R. J. LIPTON, §. C. EISENSTAT, AND R. A. DEMILLO

computed goto or case
|

'
goto with d way branching (d=2)
!

iabel exits

'
do forever

while
Fic. 1

which there is a time-space speedup between go te programs and “structured’” programs:
There are go to programs whose only *'structured’* counterparts explode in either time or
space. This result seems to make precise the comments of Knuth [9] on the efficiency of
g0 to and “structured” programs.

While the results in this paper are motivated by our interest in the power of data and
control structures, they may have interest purely as combinatorial results.

2. The Combinatorial Representations

A directed graph G is an ordered pair (V, E) of nodes and arcs. If there is an arc from x to
y and an arc from y to x, then we say there is an edge between x and y. Moreover, the arcs
shown in Figure 2(a) are represented as in Figure 2(b). A path from x to y is defined by
any sequence of arcs fromx = x,tox, t0X,, . . . , X, to x, = y. We define a metric
dclx, y) on G as the number of arcs in 2 minimal length path from x and y.

A binary tree? is a finite set of nodes that either is a single node or consists of a root x
and an edge between x and the root of each of two binary trees called the lef: and right
subtrees of the root (cf. Knuth [8]). Note that nodes in a binary tree are connected by
edges so that the metric is symmetric. If G is a binary tree, then a node x of G is a leaf of
G if x has no sons.

We represent both control structures and data structures by directed graphs. In the
control case, the nodes of a graph G represent executable statements and the arcs
represent possible flow of control; in the data case, the nodes of the graph represent
memory locations and the arcs represent logical adjacencies in the data structure. Thus in
cither case what is to be modeled is the “difficulty’ of accessing nodes: The complexity
of a control structure® is given by the cost of accessing and sequencing noncontrol
instructions, while the complexity of a data structure is determined by the cost of
accessing successive data elements. Each class of control structure or data structure can
be studied in terms of restrictions on what graphs are allowed in that class.

2.1. Data STRUCTURES. The two classes of data structure we deal with are arrays
and ancestor trees.

Arrays. - G, denotes the data structure corresponding to an n X n array. If the nodes
of G, are indexed by (i, j)) where 1 =i s n and 1 = s a, then there is an edge between
G,/)and(i,j+ 1),forlsisn,1sj<n,andbetween(i,f)and (i + 1,j),forl si<n,
1 =j = n. Thus G, is “'rook connected.” For instance. G, is illustrated in Figure 3.

Ancestor trees. Ancestor trees are binary trees with an additional feature: A node x
of an ancestor tree may be connected by an arc to any of its ancestors. For example, the
graph shown in Figure 4 is an ancestor tree because y is both an ancestor and a successor

¥ 1 x 15 a root with subtree H and y is a root of one of the subtrees of x. then y is a son of x; further. x is anan-
cestor of each node in H, while each node in M is 8 successor of x.

? Some care must be excrcised in viewing control structures that are represented in this way: our representa-
tons do not always correspond to (temporal) flow of control and are aot 1o be looked at as flowcharts. Rather.
what 1s being modeled is the potential control connectivity of an underlying algorithm or process.

T'.

oA f
< WLLCH DO ey
Space and Time Hierarchies
X =y X —
(o)
Fio. 2
(0 (1,2 (1,3
)
! i
(2,1) ———12,2) ——(2,3)
| | !
i i |
(3,1 (3,2) (3,3}
Fic. 3

T vy

o
X L, L,
Fig. 4 Fig. §

of x. Notice, however, that unlike metrics on binary trees, the graph metric d;; is not
necessarily symmetric on ancestor trees. Ancestor trees include linear lists. circular
lists. and threaded lists [14] as special cases.

2.2. ConTroL STRUCTURES. We consider the following five classes of control struc-
tures: computed go to; go to with d-way branching; label exit; do forever; while. In
addition, all of the available classes have access to a sequential flow of control and an
alternative (¢.g. il-then-else) flow of control. Since the constructions described below do
not involve schema manipulation, the details of these features need not be made explicit.
Indeed. there are a number of ways 10 represent these features in our model, and our
later results are invariant under the differing representations. We now present the class
of graphs that represent programs formed from each of the five control structures.

Computed go to programs. go to, programs are programs that allow arbitrary
branching between statements. For instance, we allow for representations of the con-
structgo tei (L,, ..., L,), which branches to the ith label depending on the value of /.
Thus this class of programs is represented by the entire class of directed graphs. The
construct above is represented by the graph of Figure 5. a node with n arcs leading to
nodes labeled by L,. L,.

go 10 programs with d-way branching. go to, programs are programs in which the
amount of branching that is possible in one step is bounded by the integer d. For
example. the Fortran construct IF (E) L,, L,. L, falls in the class go to;. Programs with d-
way branching are represented by the class of directed graphs with a maximum out-
degree d.*

Label exit, do forever, and while programs. Label exit. do forever. and while
programs are defined as certain classes of ancestor trees. In order to define these classes.
we need the following relations, which are defined for any ancestor tree:

x> yifyis the left son of x.
x —» y if y is the right son of x.
x = v if y has an ancestor pointer from x.

* The out-degree of a aode x i f{y - dtr, v) = 1),

TP

. L —

. ook U NOT

i s di @

! R. J. LIPTON, 8. C. EISENSTAT, AND R. A. DeMILLO

We view x 3* y as meaning that statement x can “‘push” into a substructure with first
statement y; X 5* y as meaning that statement x is **sequentially” followed by y; and x 3*
y as meaning that statement x can “‘exit” some structure and return to statement y.

A program is a while program provided it is an ancestor tree that satisfies: y -» x
implies3y,, ..., yxsuchthatx 5>y, 5y 7* - - - 7 ¥x = y. where y is a leaf and no y, for
i < k has an ancestor pointer (see Figure 6{a)). The last restriction reflects the fact that
only the last statement in a while loop is allowed to exit the loop.

A program is a do forever program provided it is an ancestor tree that satisfies: y 3> x
implies 3 y,, ..., ye = y such that x 5» y;, 5 y» 5* 5 ¥x. where each y, can have
ancestor pointers only to x (see Figure 6(b)). The key distinction between while
programs and do forever programs is that in a do forever program all statements in a loop
can potentially exit immediately out of the looping structure. Clearly, do forever
programs correspond to the {1, (n = 1) structures of Bohm and Jacopini [2).

Finally, a label exit program is any program that is also an ancestor tree. Essentially
labe! exit programs allow any jumping out of substructures as long as the return is always
i to an ancestor. The class of label exit programs is therefore quite extensive and includes
% many types of so-called *‘structured” programs (cf. Peterson et al. [15]). For example, all

label exit programs arc reducible in the sense of |7); moreover, they correspond to
programs in Engeler normal form [6].

Example. The following program contains labe! exit, do forever, and while control

structures; its representation using the conventions outlined above is shown in Figure 7.

-,
L: S,
H 'm Bn ‘0
E begin S,;
. de forever
begin Ss; exit L:
do forever begin S,; exit. S, end;

3. S. T Bounded Embeddings

i The following definition is fundamental to what follows. Let G = (V, E) and G*
‘. (V*, E*) be directed graphs with associated metrics d; and d.. We say that G* can simu-
late G (or G can be embedded into G*) with space constant § and time constant T, writ-
ten G <,y G*, if there is a mapping (called an embedding) ® : V* — V U {A} of the nodes

——

TR -

= <

& enrivid

St iy » .

Space and Time Hierarchies

Fie. 7

of G* to the nodes of G and a special node A, so that:

(1) Wv* € V* with ®iv*) £ A,

Vw € V such that dg(d(v*), w) < =,

3 w* € V* such that Diw*) = w and dglv®, w*) < T dg(P(v*), w);
QWeEVO<|d'W|=|p eV :du*)=v)|=<S.

If ® is an embedding and ®(v*) = A, then we refer to v* as a bookkeeping node . If $iv*)
=v # A, thenv* issaid to be acopy of v. If § = 1, we often write <rinstead of =, .

Condition (1) states that when G and G* are control structures (or data structures)
simulation involves at most a T-fold increase in the cost of statement sequencing (or
data element accessing). i.e. the embedding induces at most a T-fold increase in path
length. Condition (2) states that there are at most § copies of any v € Vin G*. Note that
although G =, G* may hold between data structures G and G* when § > 1. it is
unlikely that such a simulation would be of value (e.g. if an array is being stored as a list
strycture with multiple copies of array elements, then selective updating of the array may
involve multiple updating of list nodes). For control structures. however, simulations
with § > 1 are frequently used and are quite natural; this is sometimes called node
splitting.

Example. Consider the flow diagrams shown in Figure 8. Figure 8(b) is the result of
applying a standard “‘restructuring™ algorithm |1} to Figure 8(a) to remove the muitiple
exit loop x,. x4, x5. Viewing both diagrams as directed graphs, the graph in Figure 8(b) is
a 2,2 simulation of Figure 8(a) by defining ® as follows:

Oix?) = xy. dixg) = xy.
D) = x,. dixf) = xg.

®ix3) = Pix§) = (xfy) = A, Dxty) = Dty = xq,

Pix]) = Pixg) = x,, Dixt) = D) = xy.

dn) = Gixg) = x,. Dixfel = xy. [}

4. Data Structure Embeddings

In this section we present our main result for data structures. settling nacgatively the
question whether arrays can be stored as arbitrary lists with linvar bounds on proximity
and determining a nontrivial lower bound on the growth rate of T as a tunction of n for
an nxn array. This result generalizes a result of Rosenberg [16] showing that arrays

[e . ' o eTa l’_‘-“\;BI-\El. 10

L o103 DO ROT

R. J. LIPTON, S. C. EISENSTAT, AND R. A. DeMiLLO

N START) x;

RS |

R e 555

(b)

-

* Fic. 8
ZLannot be stored in linear memory with only bounded loss of proximity. But since the
arguments are fundamentally different, it is interesting to compare the two proofs.
Recall that Rosenberg's arguments are essentially “*volumetric’": The number of neigh-
bors within distance n of a node in an array can be quadratic in n, while a node in a linear
list can have at most 2n such neighbors. A volumetric argument then demonstrates that
arrays cannot be stored in a system with such linear neighborhood structure with only
bounded loss of proximity. In contrast. such methods do not seem to apply to our
problems; e.g. a node in a binary tree can have more than 2" neighbors within distance n.
To obtain our result we need a series of lemmas. Let G = (V, E) be a directed graph
with associated metric dg and suppose A C V. We define the boundary of A as follows:

HA)={ve A I x & Asuchthatdg(x.y) = 1}.

sy

In other words. 3(A) is the set of nodes in A reachable from some node not in 4 by an arc

of G.
LemMma 4.1. Let G, = (V,,, E) be an nXn array and suppose that A C V, is such that

|A]=<in®. Then |A | =< 2]|dA) 2

Proor. We assume | A | > 0, since otherwise the lemma is trivially true, and let A,.
...+ A, be the columns of A; thatis. if {(1.i), (2.0,(n, D} is the ith column of G,.
then A, is that subset of the column that is included in A . Let k be the number of columns
A, such that | A, | < n, and let | < k be the number of columns A, with 0 < [A, | < n.
Since | A | = in?. it follows that (n — k)n < In? and hence

k=zin. (1)

Notice that if 0 < | A, | < n, then at least one node in A4, is adjacent to a node not in A
and thus contributes at least one node to #(A); therefore

[aA) [= 1. b))

Suppose that| A, | = 0 for some 5. 1 =< iy < n. We then claim

P
»

Bt

4

Space and Time Hierarchics
| 8A) | = max | A, |. (3)
i

To show this, let A, be maximal in size and assume i, < j. the case j < i, being handled

symmetrically. Select any row r of G, such that (r, j) € A;. Now. (r, i) & A by

assumption. but some one or more of ir. iy + 1). ..., (r,j)is in A. Therefore each row r

of G, for which (r,j) € A, contributes at least one node to 3(A), which establishes (3).
To complete the proof of the lemma we consider two cases.

1. No A, is empty. In this case, ! = k, and by combining (1) and (2),

218V 222 = 2%k = n* = | A |

II. Some A, is empty. Letc,. ..., cn denote the cardinalities of the nonempty columns
A, If some ¢, = n, then the result follows directly from (3). If not, thenm =/ and ¢, +

“+cm=|A[,sothatmax, | A;{=[A [/l. By (2) and (3) it follows that 2 | 3(4) | =/
+ | A |/l. The lemma is now immediate by calculation. O

LemMa 4.2, Let G, = (V,, E) and suppose x,y € V,; then de(x,y) < 2n,

Proor. This is an elementary property of arrays. O

Lemmas 4.1 and 4.2 and the fact that | V, | = n? summarize the basic properties of
arrays that will be used in the proof of our main result.

LemMa 4.3, Let H = (V, E) be an ancestor tree and let H, = (V,, E,) be a subtree of H.
Ifx € Voandy € V ~ V, thend ,ty . x) is greater than or equal to the depth of x in H,.

Proor. Since y & V,, any path from y to x must pass through the root of H,. O

Lemma 4.4, Let H* = (V*, E*) be an ancestor tree: let Hy = (V3 , E}) be a subtree of
H* andlet A =OV3) - (AL If G, < H*and | A | < In* then T = jllog| A | - 1);in
other words, | A | = 2271,

ProoF. - Assume that | 3(4) | > 27 Since the root of H has at most 27 descendants of
depth less than T + 1. there is a =nde x* € V{§ of depth greater than orequal to T + 1 in
H§ such that ®(x*) € A(A). Since dix*) € #A), thereisay € V, — A withdg,(y. Px*)
= 1. Now there exists a y* such that ®(y*) = y and dr. (v*.x*) = T, by the definition of
<y. Since y € A it follows that y* &€ V3. But by Lemma 4.3,d,.(y*,x*) = T + 1, which
is a contradiction. Therefore, | 3(A)| < 27 and by Lemma 4.1 |A| = |dA) | =
2™ 0

THEOREM 4.5. Let H* = (V*, E*) be an ancestor tree If G, =r H* ,then T = Ylogn — 3.

Proor. Assume G, <; H* and for any subtree H, = (V! ,E{)of H* let4, = (V) -
{A}. Let H} and Hf be subtrees of some node in H*. Either | A, | < dnor| A, | = 2,
since ¥ is 1-1. Using this fact, we may assume that H* is of the form shown in Figure 9,
where | A; | < dn?for 1 =i = k. (We have suppressed explicit representation of ancestral
links.) Without loss of generality we assume always that the “*smaller” subtree is on the
right. By Lemma 4.4, | A, | < 2¥*! for all ;.

Let i be the smallest integer such that | A; | # 0, and let j be the largest such integer.
Then St | Al= (¢ — i+ 1028 Since | V, | = n?,

1

eaTAT TN P‘?'L“TICLBI&

'}q--rp §~n~--~v-. e
Som LTHED A /

S L Li Pagas wniCHDQ OB

Y e e JUCHERUEIVY '8 M e wealSae

R. J. LIPTON, S. C. EISENSTAT, AND R. A. DeMILLO

G—i+ N2 =nt (1)

Now letx* € V; and y* € V. Then by Lemma 4.3, d,.(0*, x*) =) ~i.
On the other hand, by Lemma 4.2, d¢ (®(y*), ®(x*)) = 2n; hence, since G, =y H*,
dy *.x*) < 2nT. Thus

j—i=2nT. (2)
Combining (1) and (2). we have 21T + 1 = n?/22™*!, [t follows that T = §logn - §. O

5. Main Theorem

Observe that the § = 1 hypothesis was used at several key points in the proof of Theorem
4.5. Since this restriction is unrealistic in dealing with control structures, we now remove
it by generalizing the previous result.

THEOREM S.1. Let H* = (V*, E®)be an ancestor tree and let G, <g v H® where G, is an
n x narray. Then T + log S = log n — log 82.

Proor. Let ® be the embedding function, and define a new function ¥ mapping
subsets of V* to subsets of V by W(A*) = ®(A*) — {A}. In other words, W(A*) contains
those nodes of V for which copies exist in A*.

As in Theorem 4.5, we decompose H* as follows. Let x;* be the root of H* and write
H* as in Figure 10(a). where we may assume | W(L})| = | W(R) | without loss of
generality . Clearly, this process can be repeated, letting x? ., denote the root of R} and
expanding R} at each stage of the construction. Thus, #* can be written as in Figure
10(b). where | V(L) | = | W(R?)| for 1 =< i = k. Notice that we have ignored all
ancestral links in this construction. Indeed, we assume that all such links exist but
suppress explicit reference to them.

Let HY = (V! E?) denote the subtree of Figure 10(c). We say that H; is small if
| W(V?) | = in?; otherwise H? is large. (The notion of smallness is motivated by the key
to the argument in Theerem 4.5.) Let

D, = Y, W(V?P).
My small
In other words, Dy is the set of nodes in V of which copies exist in some small H?.

LeMMma 5.2. Forsomep, n* = | D,| < n*.

Proor. By convention.| Dy |=0.1f| D,_, | < §n%and|{ D, | = in? then D, = D,_,
U ¥(V3), where Hp is small. so that

= | Dyl < | Dyey | + | VD[< §n% + 4n® = .

Thus we need show only that | D, | = in? for some p.

Since | W(L) | < | W(R?) | and W(V*) = V(L) U ¥(x?) U ¥ (R!), it follows that n?
=WV || WL |+ 1+ WRY) (=2 WRY) |+ I;hence | WIRY) | = §n? - 1) =
in®. We can obviously choose p so large that | ¥(R;) | = 0. We claim that the associated
D, is large.

Let i be the largest integer such that | W(R") | = ¥n?. Since | W(R") | = §n?, such ani

[ypua—

. .
2y
. x; S . .
e, L .
. / \ / “og / :
. . L.. . .l
G @) R (b) (c)
. Fic 10

Space and Time Hierarchies

must exist. Then | W(R?) | < n?fori < j < p, and since W(V}) = W(L}) U ¥(x}), we
have
(WO <1+ WL | <1+ |WRN|<1+in

Thus M is small for i < j < p. But this implies ¥(R) C Uiqssp ¥(V') C D,. By our
choice of i. however. we conclude that | D, | = | ¥(R?)| = in?, establishing our
claim. O

We now introduce a variant of the concept of boundary. If A is a set of nodes of G,..
then the coboundary of A is defined by

3(A) = {y & A: there exists x € A such thatd¢, (x.y) = 1}
=V, — A).

In other words, 3(A) is the set of nodes not in A reachable from some node in A in one
step. The proof of the following result is similar to that of Lemma 4.1 and is omitted.
Lemma 5.3. Let A be a set of nodes of Gy with | A | < dn*. Then | A | < 2 |3A) |*.
Let k satisfy Lemma 5.2. By Lemma 5.3,| 8(Dy) | = | Dy ["?/y2 = n/2y2. Now let! =
[{H? : H} is large) |, the number of large subtrees. Since at most S copies of any node in
G, appear in H*,
In/a< D |W(VP)]| = Snt

tsisk
HY large

Hence ! = 4§.

In order 1o complete the proof we proceed as follows. We have already shown that
| #(Dy) | = n/2J2; we show next that this implies that there are too many paths into the
large trees H? from the small trees for S and T to be bounded.

Let

Qr = {v* € V; : H} is large and there exist H} small andx* € V} such thatdy.(x*,v*) =
T}.
In other words, Q is the set of nodes in large subtrees H that can be reached from some
node in some small subtree H in at most T steps. We define a one-to-one mapping g
from 3(D,) into Qr as follows. Select some y € 3 Dy). Theny &€ D, and, for some x € D,
dg.(x.y) = 1. Let x* be a cupy of x in some small H{. Such a copy exists by the definition
of D,. Since Gn.s.r H*. there is a copy y* of y such thatdy.(x*, y*) = T. Now y*is notin
any smail H since y € D,. Thus we can define g(y) = y*, and g is indeed a mapping from
#(Dy) 10 Or. In order to see that g is one-one, we note that for any y € o(Dy), ®gy) =
®(y*) = y; hence g is one-one, so that | Qr | = | 3(Dy) |-

Thus we have, on the one hand, that| @y | = | 3(D,) | = n/2y2 and, on the other hand,
that

| Or | = | {H* : H! islarge} | - | {v* : v® € large H! within depth T of the root of H} |
=(-2Tx< 45-2".

Combining the upper and lower bounds on | Qy |. we deduce that T + log S = logn ~ log
8,2. O

As an application of Theorem 5.1, we present the following result. Informally a
flowchart is said to be in Engeler normal form if it is represented by a tree augmented by
pointers from nodes to ancestors. or nodes at an earlier level but along the same branch.
More precisely. a go to program G has an S, T Engeler normal formif G =40 H for some
ancestor tree H.

CoRroLLARY 5.4. (1) If G, has an S, T Engeler normal form and T is fixed, then S =
c-n. (2 If G, has an S, T Engeler normal form and S is fixed then T = c-log n.

Thus in the worst casc. either time or space must be unboundced in the construction of
Engeler normal forms.

13

s

-

R. J. LIPTON, S. C. EISENSTAT, AND R. A. DEMILLO

6. Control Structures

In this section we establish our main results for control structures, using the relation <
(see Figure 1). For classes X and Y of control structures. i.¢. classes of graph representa-
tions of programs constructed using only control structures from the indicated restricied
class of control structures, we say that X is more powerful than ¥ when there exist
constants §°. 7' such that (1) for all H € Y there exist G € X such that H = . ;. G, but for
no constants §, T is it true that (2) for all G € X there exists H € Y such that G <, H.

Since for the hierarchy of Figure 1 if X is more powerful than Y. then the control
structures in Y are restrictions of the control structures in X, condition (1) is trivially
satisfied with §' = T = 1. It is, of course. the results that establish condition (2) that
have the greatest novelty.

To place our results in historical perspective, we follow Ledgard [12] in distinguishing
the following extremes in simulations among control structures:

(1) G is funcrionally simulated by H (written G =, H) if, under identical interpreta-
tions. G and H compute the same function.

(2) G is very strongly simulated by H (written G =, H) if G =,, Hand if ® is an
embedding inducing =<, |, then the domain of ® and the range of & are identical sets.

In [2] it is shown that for each go to program G there exists a while program H such
that G =, H. while in [10] it is shown that for some go to program G there does not exist
a while program H such that G =<,, H. Several other notions of simulation intermediate
to =, and =,, have also been used to study the relative power of classes of control
structures [1. 3, 11, 15).

The connection between our refation <y ; and these relations is:

(1) =g.ris weaker than =<,,, since we allow both space and time 1o increase and do not
require ® to have identica) range and domain;

(2) =g.risstronger than </, since we require that paths be preserved in a weak sensc;

(3) =45 deals only with combinatorial aspects of program structure, and thus we
make no assumptions about adding program variables or extra predicates (as were made
for example in [1. 2. 11]).

We thus claim that the hicrarchy theorems presented in this section span the relations
used in previous studies. For the remainder of this section we adopt the notation X £ ¥
to indicate that Y C X but the graphs in X are not uniformly simulated by the grapl.s in
Y.i.e. X is more powerful than Y.

We will make use of the following definitio::s. For any directed graph G lct

NG U, x)y = |v 1 dg (v. x) s 1} NSl x) = H{y 1 dg ix.y) = 1))

Lemma 6.1. Suppose that G <5y G* and let x be a node in G. Then (1) for any copy
x*ofx, Njytl,.x) = N5a Tl x*); and (2) for some copy x* of x, NG (1, x)= §- NG (T, x°)

The proofs of both (1) and (2) follow easily from the definition of <,y and arc left to
the reader.

THeOREM 6.2. do forever £ while.

Proor. Let S, T be such that for all do forever programs G . therc is a while program
H for which G = ; H. By part (2) of Lemma 6.1. for any node x in G there cxists a copy
x* of x such that Nfi, (1. x) = §-N}\ (T, x*). But since H is a while program, nodes in H
have at most one ancestor pointer to them, so that Nif (T.x*) = 27 Thus N (1, 21 = §7
for any do forever program G and any node x in G. This is a contradiction. since the
number of ancestor pointers to nodes in do forever programs can be unbounded 2]

THrorem 6.3 label exit £ do forever.

Proof. Let S. T be such that for any label exit program G therc exists a do forever
program H such that G = ; H. Consider the tabel exit graph G defined as follows

MVl o Q5 = x forall 1l <i<n, (3) x,—x, foralll <i<an.

ey

(Sec Figure 11.) Then, by construction, NGgtl, x,) = n — 1.

14

ot

-

-

Space and Time Hierarchies

Fic. 11

Let H'* be the corresponding do forever program. Then a node x* in H™ has at most
two sons and one ancestor, so that N4™(T, x*) < 37. Thus by part (1) of Lemma 6.1,
n — 1 =NG(1, x,) = NUT, x*) = 37, where x* is any copy of x, in H", a contradic-
tion. O

THEOREM 6.4, Ford = 2, go to, ¥ label exit.

Proor. Notice that arrays are included in go to, for f = 4. Thus, by Theorem 5.1, we
have go to, £ label exit (f = 4), since label exit programs are ancestor trees. To complete
the proof it is sufficient to note that for any array G, there is some H in go to, such that
Gn =1 H. O

THEOREM 6.5. go to, £ go toy for all d =

Proor. Let §. T be such that for all ge to,, programs G. there exists a g0 toq program
H such that G =, H. By part (1) of Lemma 6.1, for all nodes x in G there is a copy x* of
x in H such that N8, (T, x*) = N&,, (1. x). But N¥, (T, x*) = d7. since the out-degree of
any vertex in H is at most d. This is a contradiction, since in go to, NS (1, x) is
unhounded. O

7. Conclusion

The methods for comparing data structures and control structures by the relation =g
appear to be quite general, and there are scveral straightforward extensions of the data
structure embedding results that recover relationships between other data structures.

In the case of control structures, the conclusions to be drawn are perhaps more widely
varying and seem to give direction to further investigations. The observation in Corollary
‘5 4 that a standard schema construction is inherently inefficient leads us to question the
status of other property preserving transformations. We also believe that Theorem 6.5
has implications for the often quoted “theoretical foundations of structured program-
ming™; this is particularly apparent because the go to program that enters the proof is
itself a highly structured object. Indeed. a =5 rembedding into a label exit program fails.
not because G, is ill structured, but rather because of the densely hierarchical nature of
the control flow. We thus offer programs of the form G, as “structured™” go to ptograms
whose structures cannot be maintained by less general control structures. The exact
relationship between ancestor trees and reducible flow graphs [7] is still unsettled. but
somc work has been done to place the reducible flow graphs in the hierarchy of Figure 1
{5]. More Jecent extensions of the results presented here give techniques for uncovering
total space “and time simulation trade-offs. as opposed to the worst-case analyses of this
paper |S]. Finally. the extension of these results to parallel and asyachronous control
structures appears Lo be possible and promises to yield important information about the
relative power of nonsequential mechanisms.

ACKNOWILEDGMENTS. The authors would hike o thank W. Wesley Peterson for his
comments on an carlier version of this paper and Arnold Rosenberyg for a carcful reading
of the paper that led to a material improvement in presentation and to improvements to
several proofs.

e

LA
33 DO NOT

POYS ST T T e T Tay et TS ABLE.

[S

R. }. LIPTON. S. C. EISENSTAY, AND R. A. DEMILLO

REFERENCES

2

.

ASHCROF1. E.. AND MasNA, Z. The translation of GOTO programs to WHILE programs Prac IFIP
Cong. 1971, North-Holland Pub. Co.. Amsterdam. 1972, pp. 250-255.

Bonuu, C.. aND Jacomnt, G. Flow-diagrams, Turing machines, and languages with only two formation
rules. Comm. ACM 9, 3 (March 1966), 366-371.

. Bauno,)., anp SteiGLrtz, K. The expression of algorithms by charts. J. ACM 19, 3 (July 1972}, 517-

525.

. Damt. O-1.. €V AL Structured programming. Academic Press. New York. 1972,
. DEMiLLo. R.A ., EisensTat, S.C.. anND Lirron, R.J. Space-time tradeoffs in structured programming

(to appear).

. ENGeLER, E. Structure and meaning of elementary programs. Lecture Notes in Mathematics, No. 188:

Symp. on Semantics of Algorithmic Languages. E. Engeler, Ed_, Springer-Verlag, Berlin. 1971, pp. 89-
HUR

. Hecut, M.S., aND ULwman. J. D. Characterizations of reducible flow graphs. J. ACM 21, 3 (July

1974), 367-375.

. Knuti, D.E. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-Wesley,

Reading. Mass.. 1968

. Knsume. D.E. Structured programming with GOTO statements. Rep. STAN-CS-74-d416, Computer Sai

Dep., Stanford U .. Stanford. Calif.. 1974.

. KNuTH. D E.. aND FLovp. R.W. Notes on avoiding “'go 10" statements. Jnfor. Process. Letn. | (1971).

23-31.

. Kosarasu.S.R. Analysis of structured programs. /. Computer and Syst."'Sci. 9, 3 (June 1974), 232-255.
. Lencarn, H.F. A geneology of control structures. Research Rep.. Computer and Information Science

Dep.. U. of Massachusetts. Amherst. Mass., 1974,

. Mouer.C. B. Matrix computations with FORTRAN and paging. Comm. ACM 5.4 (April 1972), 26&-

270

. Peauis. A J., AND THornTON, C. Symbol manipulation by thresded lists. Comm. ACM 3. 4 (April

1960). 201-202.

. PetemsoN, W.W., Kasami, T.. aND Toxura, N. On the capabilities of the while, repeat. and exit

statements. Comm. ACM 16, 8 (Aug. 1973), 503-512.
RosenBERG. A.L. Preserving proximity in arrays. Rep. RC-4875, IBM Thomas J. Watson Research

Center. Yorktown Heights, N.Y. 1974,

RECEIVED APRIL 1975, REVISED MARCH 1975

Jowtnal of the Asunrotum fie Computing Mabnery Vol 23 N 4 Oktober 1970

16

B BT s AT e, rmthy S

17

SPACE-TIME TRADEOFFS IN STRUCTURED PROGRAMMING:
AN IMPROVED COMBINATORIAL EMBEDDING THEOREM

Richard A. DeMillo*
Stanley C. Eisenstatt
Richard J. Liptont

* School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

t+ Computer Science Department
Yale University
New Haven, CT 06520

These results were announced at the 1976 Johns Hopkins Conference on Information
Sciences and Systems. This research was supported in part by the U.S. Army
Research Office, Grant Nos. DAHC04-74-~G-0179 and DAAG29-76-G-0338; the Office of
Naval Research, Grant No. N0O0014-67-097-0016; and the National Science Foundation,
Grant No. DCR-74-12870.

Abstract: Let G and G* be programs represented by directed graphs. We

define a relation ss T between G and G* that formalizes the notion of G*®
»
simulating G with S-fold loss of space efficiency and T~fold loss of time
efficiency, and prove that 1if G SS T G*, where G has n statements and G* is
?

structured, then in the worst case T + logzlog2 S 2 logzn + 0(10g210g2n).

Keywords and Phrases: ancestor tree, complexity, control structure,

directed graph, embedding

CR Categories: 4.22, 4.34, 5.24, 5.32

18

!

19

1. Introductiou

In a previous paper [1], we made precise some intuitive observations

concerning the efficiency of structured programs by defining a combinatorial

relation that corresponds to the notion of wniform simulation between programs.
~ Informally, we say that a program G* uniformly simulates a program G if G*

carries out the computation of G (and possibly additional computation which

might be regarded as "bookkeeping") in such a way that the space-time efficiency
of G 1s degraded by a factor that is independent of the size of G. The main
results of [1] indicate that the non-existence of uniform simulations among many

well-known classes of control structures is due to the combinatorial aspects of

program structure and is not at all related to such details of program organi-

zation as choice of data structures or limitations on the form of Boolean

LX]

expressions.
- Indeed, the main result of [1] (Theorem 5.1) provides a non-trivial lower
bound on the loss of space-time efficiency in any structured simulation of a

goto program. This short note extends that result, improving the space-time

-~ -

inequality of [1, Theorem 5.1] by an exponential. Thus we now show that there

are goto programs with n statements such that,for any structured simulation,

-~~~

either:
i 1) the simulation runs at 1east+

c logzn

1

times as slow as the original program,

T - .\

c
I 2) the simulation has at least 2 2 statements. r

.~] t We use ¢ to denote positive constants.

1’ €20 €

20

I.e., there are goto programs that can only be simulated by either very slow

-~ oo~

or very large structured programs.

In the sequel, we will concentrate on the combinatorial theorem that
achieves these bounds. The programming language significance of the graphs

and relations studied here is discussed extensively in [1].

2. Preliminaries

A directed graph G is an ordered pair (V,E) of vertices V and edges

EcV x V., Apath in G is an ordered sequence of vertices connected by edges.

For vertices x,y ¢ V, let dG(x,y) denote the length of a minimum length path

form x to y. 1If no such path exists, then dc(x,y) = ®,

A binary tree is a directed graph that consists of either a single vertex

Iﬁ or a root x and edges between x and the root of each of two binary trees called

T the left and right subtrees of x. A vertex x in a binary tree is a leaf if it
t - has no sons. If H= (V,E) is a binary tree with root r ¢ V and leaf £ ¢ V, and

; P = (xl,...,xn) is a direct path from X, =T to X, = %, then P is called a

) branch of H. An ancestor tree G = (V,E) is a directed graph with the following

é_ properties:

i 1) There exists a subset Eo ¢ E such that Go - (V,Eo) is a binary tree;

2) 1f (x,y) ¢ E - Eo, then y is an ancestor of x in Go.

! Let Gn denote the n x n rook-connected array of vertices. 1If the vertices
of Gn are indexed by (1,j) for 1<i,js<n, then, except for the obvious extremal
conventions, there are symmetric edges between (1,j) and (i,3+1), (i+l,3).

I l ' For any directed graph G = (V,E), the notion of boundary makes sense.

f let A c V. Then the boundary of A is defined as
3(A) = {yeV-A: IqxeA such that (x,y)e¢E)}

Clearly, 3(A) denotes the set of vertices not in A which are reachable from A by

21

a single edge.+

By a simple improvement of a result from [1], we have the following
important property of arrays:
Lemma 1: (Boundary Lemma) Let A be a set of vertices of G with Al s n2/2.

Then

2]Al s J3(a)12.

3. Graph Embedding

The following relation was defined in [1]. Let G = (V,E) and G* = (V* E*)
be direcsed graphs, and let S,T > 0. Then G SS,T G* if there is a partial
function (called an embedding) ¢:V* + Vu{A}, of the nodes of G* to the nodes of
G and a special node A, such that
1) 0s 19)] s S for all x e V;
2) For all x* ¢ O-I(V), if dc*(Q(x*),y) < w for some v € V, then there exists
y* € ¢-1(y) such that d, (x*,y*) < dG(Q(x*).y)-
If ¢(v*) = A, then we refer to v* as a bookkeeping node. 1If ¢(v¥) = v=A,
then v* is said to be a copy of v. Condition (1) states that there are at most
S coples of any veV in G*. Condition (2) states that the embedding induces at

most a T-fold increase in path length.

: 'S
Theorem 1: (1, Theorem 5.2] If S(n), T(n) are such that Gn SS(n),T(n) G* for
some ancestor tree G*, then
T(n) + logzs(n) 2 log,n + ¢y A (1)

The right hand side of inequality (1) cannot be improved, since with S(n) = 1,
the construction of [2] shows that

T(n) = 0(1032n)

t The notion of boundary used here corresponds to the coboundary of (11].

22

is achievable for any n vertex graph. Theorem 1, however, gives only a linear
bound on S(n), and it has been conjectured that a non-polynomial lower bound on

S(n) exists. In the next section we obtain such a bound.

4. Main Theorem
In this section, we obtain the following improvement of Theorem 1:
. * : *
Theorem 2: If G* is an ancestor tree and Gn SS(n),T(n) G*, then
T(n) + logzlogzs(n) 2 logzn - 0(10321032n).

Proof: For notational convenience, let us systematically confuse a graph with

its set of vertices, so that "x ¢ G" and "x ¢ V" mean the same thing if G = (V,E).

- We assume Gn SS,T G* via an embedding ¢. For any A* c G*, we use ¢(A*) :0
i~ denote the set of x ¢ Gn which are ¢-images of some x* ¢ A*. Henceforth, we
- assume that G* is a binary tree; it will be obvious as we progress that if G*
" contains ancestor edgee, then the proof is completely unaffected.
: Let P = (xf,..., i) be a path of G*. Then P is an adnissible path if it
' is constructed as follows: For each x; (1sisk), let LI denote the subtree of
;‘ xi containing x;+1,and let R; denote the other subtree of x¥*; then either

{ a) O(RY) 2 ¢(LY)
‘ or
1 b) ¢(R%) 2 n?/4.

i Note that the definition of admissjble path is more general than that used in [1].
| . Indeed, it is by proving the existence of many such admissible paths that we obtain
l ‘. our result.
' . We fix an arbitrary admissible path P = (x;,...,xﬁ) and define for 1 = 1,...,k
.; ’ : the subtree H; = L;] {x;}. We shall say that H; is small if |0(H;)| < n/4;
g . othervise HY 1s said to be large. Let

Pd d e

»

W AT R AT UM LT N i U

D, = U o(u) ;

1<i<j

Hi is small

in particular, Dk is the set of vertices in Gn which have copies in some small Hz.

Lemma 3: For some §,

2 2

n
]S‘z—-.

< |D

&19

]

Proof: We need only show that there exists an integer j such that |D | 2 n2/4,

h]

since 1f j is the least such integer, then (assuming lDol = 0)

ID,| < ID

2 2
3 g1l 1D < G=+ 7= = n2/2,

3 4
We claim that IO(RT)I > n2/4. For suppose otherwise, whence I0(L?)I < I@(R?)l

by the definition of an admissible path. Now

(G*) = 0(HY) U S(RY),
so that

n? = Je(C)| < [6(LA)] + 1 + [6RP] s 216RD] + 1,
and thus

I¢(RI)| > n?/4.

Let j be such that IO(RS)] = 0, and let i be the largest integer such that

lo(R;)l > n2/4. Then
TR < n2/4, for L = 14+1,...,5.

Hence,

IO(H:)I <1+ IO(L;)I s 1+ |o(a;)| <1+ n2/4 for all ¢ = i+],...,n.

But then each suclh H* is small, and therefore

2
O(RY) < ‘ ’ o (HY) < Dj‘
isesj
But by the definition of i, {D,| 2 n2/4. 0

b

24

Letting k satisfy Lemma 3, we find that Dk satisfies the hypothesis of the

Boundary Lemma, so that

/2

1 n
a1 2 72D 17 2 55

Lemma 4: 1f zp is the number of large trees H; along an admissible path P, then

Proof: Let

QT = {vk ¢ H*, large: for some small H; and x* ¢ H;, dG(x*,v*) < T}.

i.e., QT is the set of vertices in large H¥* which are reachable from some node in

I i
a small H; by a path of length at most T. We show that la(Dk)I < IQTI by defining
! an injection g : a(Dk) -+ QT' For y ¢ 3(Dk), choose some x ¢ Dk adjacent to y.
Let x* be a copy of x in a small Hg, let y* be a copy of y such that dG*(x*,y*) < T,
I . and set g(y) = y*, Since ¢g(y) = ¢(y*) = y, g is one-one. Thus, from (2),
- ' n
oyl 2 121 2 7,
but
% : H*
1Qp! < I{H} : B} large}|
E : o |{v* : vk ¢ H;, large; v* within distance T of root of H;)I
f
’ < zp . 27 0
? To complete the proof, we now show that there are at least 2 adrissibie

paths. Since each admissible path corresponds to a distinct leaff of G* and

< *
Gn s,T G*, we have

k ! ; n z-T
‘ l : 2] < lo-l(V)] S S]V) = sn?

and the result follows.

* Without loss of generality, we assume that no leaf of G* is a bookkeeping node.

[. s et dw b T Ce e e B i SN SRR 2 A0k N e e v ks R

25

L
Lemma & There exist at least 2 min admissible paths, where lmin = 7% . Z-T.

Proof: We prove the result by showing that at least lmin independent binary

i choices must be made to construct an arbitrary admissible path. Consider a
partial admissible path Xpseoer Xy (i.e., the initial segment of an admissible
- path). If only one subtree of x is large, then the admissible path can only

be extended dowmn that subtree. However, if both subtrees are large, then the

.

admissible path can be extended down either subtree without violating the

condition (a-b). By Lemma 4, there are at least £ n large subtrees along every

mi

admissible path, and, for each such subtree, there is a node in the admissible

path with two large subtrees. D
By using the modeling strategy detailed in [1], we obtain the following:

Corollary: For each n there is an n statement goto program Q such that for any

-~

structured simulation of Q either

1) the simulating program is slower than Q by a factor of y log n, or

or e
3.

con
2) the simulating program is larger than Q by a factor of 2 2

An interesting interpretation of this result as a space~time tradeoff is

shown in Figure 1, which illustrates, for fixed n > 0,

$(T,n) 2 2%/2

For any fixed value K < T < ¢, log n, limiting the loss of time efficiency in

1

the simulating program, the shaded region of Figure 1 shows the only values of
S,T which are achievable.
l - Acknowledgements: We would like to thank Nancy Lynch, Ronald Rivest, Albert Meyer

and Arnold Rosenberg for suggesting that we look for the
' . improved embedding theorem contained in this paper.

S st S il ORISR IR SN SERCIERERR _

References

1. R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo, "Space-Time Hierarchies
for Control Structures and Data Structures,' Journal of the ACM, Vol. 23,

No. 4, October 1976, pp. 720-737.

2. R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, "Preserving Average
Proximity in Arrays,” Communications of the ACM, Vol. 21, No. 3, March

1978, pp. 228-231,

2
-~
—

e Achievable Region

—p—

Impossible Region

N o W A

i

Cq lé)g ol Tn

-T’I
Figure 1. Trading-off Ty for Sp= [277/ 2'5].2
for fixed program size 7.

X

" e

t 24

28

AN EMBEDDING RESULT FOR LABELLED PROGRAMS

Richard A. DeMillo*

School of Information and Computer Science
Georgia Institute [Technology
Atlanta, GA 30332

S. Rao Kosaraju*#*

Department of Electrical Engineering
Johns Hopkins University
Baltimore, MD 21218

Supported in part by the U.S. Army Research Office, Grant Nos.
DAAG29-76-G~0338 and DAHCO4-74-G-0179.

Supported in part by the National Science Foundation, Grant No.
DCR75-09904.

INTRODUCTION

There are two natural methods of limiting the use of labels in

structured programs: bounding the number of labels that can be referenced
by a single statement and bounding the total number of labels which can
appear in a program. It is implicit in an argument of [1] in the former
case and in the unbounded analog of both cases that a genuine limitation

is imposed and power increases with the number of labels. We show here
that, in the latter case, programs with differing bounded numbers of labels

are provably equivalent in the precise sense of [1,2]. From [3] it is known

- that suitable restrictions on the notion of equivalence result in provable
. differences among these constructs; these restrictions, however, rely on the
details of program organization, Hereafter, we deal only with combinatorial

arguments. Further motivation for the combinatorial properties in the

o -~ sequel may be found in [1].

PRELIMINARIES

A directed graph G is composed of a set of vertices, V(G), and arcs
E(G) < V(G) x V(G). The arcs (x,y) and (y,x) together form an edge of G.

Arcs and edges are represented by directed and undirected arrows, respectively.

A path from x to y is a sequence of arcs
(x, xl), (x19 x2)$ v (xn_Z’ xn—l)’ (xn-l’ y),

' and such a path is said to be of length n. We define the distance metric

I dc(x,y) to be the minimum of the lengths of all paths from x to y.

o~
»

an

30

A binary tree with root x is a directed graph that is either a single
vertex x cr contains a vertex x connected by edges to root(s) Yi of
subtree(s) G , i < 2. Note that dG is symmetric on binary trees. Let G be

a binary tree with root x, and consider the path (xo, xl), cee s (xn-l’ xn),

0

where X, $ x, for i $ j. We define the following relations on G:

A

1) X, is a descendent of Xy (0<i<j<n)
(2) Xy is an ancestor of Xy (0<i<j<n)

= fc(x)

3) g is the father of x (0 < 1 < n), and we write x i+l

i+l i

4) Xin is a son of Xy (0 <i<n)

(5) x_ is leaf of G if £(y) $ x_ for all y € V(G)

In a binary tree G, the subtree with root x is denoted by Gx'

An ancestor tree is a directed graph G whose arcs may be partitioned into two
maximal subsets El, E2 such that (V(G), El) is a binary tree and if (x,y) ¢ EZ'
then y is an ancestor of x in the binary tree (V(G), EI)' Thus, in an ancestor
tree a vertex may be connected by an arc to any of its ancestors. We use the
special notation x ; y, if (x,y) € E2. The following terminology is sugpested
by [1]: if y P then x is a label and y is an exit,

We then say that an ancestor tree, G, is a k-label program if it contains at

most k-labels; we also say that G is a k-exit program if it contains at most

k-exits.

31

SPACE-TIME BOUNDED SIMULATIONS

The following definition is from [1}); it introduces a fundamental
mechanism for comparing programs. Let G, G* be directed graphs. We say
that G* simulates G with space dilation § > 0 and time dilation T > O,

written G < G* if there is a map (called an embedding of G in G¥%).

S,T

d: V(G*) +» V(G) u {A}, A ¢ V(G) v V(G¥)

such that:

(1) Vue V()

0 < | <1>_1(u)|_<_S ,
and

(2) Vv v* € V(G*) such that &(v*) # A
v w £ V(G) such that
dG(¢(v*), W) < ™
4 w* € V(G*) such that ®(w*) = w, and
dc*(v*, wk) < T dG(é(v*), w) .

If P is an embedding and ®(u*) = A, then u* is said to be a bookkeeping vertex;
on the other hand, if ¢(u*) = u + A, then u* is said to be a copy of u.
Clearly, in a simulation of G with space dilation S, no vertex of G can have
more than S copies in the preimage of the embedding. 1In the sequel, we will

avoid some notational unpleasantness by agreeing that Al’ A ... always denote

2!
bookkeeping vertices and that ul*, uz*, .o uk*, k < S, always denote copies

u.

-~

32

It is known that for every S, T > 0, there is an ancestor tree which
cannot be simulated with space and time dilation S and T by any l-exit program
and for every S, T there is a l-exit program which cannot be simulated with
space and time dilation S and T by any l-label program. This is very suggestive

of a hierarchy in the number of labels for the <

S.T relation, among ancestor
’

trees.

We can now show that such hierarchies collapse. That is, we show that for
every k > 1, there is a T > 0 such that every k-label program can be simulated
by some l-label program with space dilation S = 1 and time dilation T = T(k).
We begin by considering a general embedding procedure which dilates space by

S(k) > 1, since this result is technically easier.

AN OBSERVATION

Let G be a binary tree with root x and consider a vertex y which is not
the father of two vertices. G can be modified by viewing y as the root and
inverting the father-son relationship along the path from x to y. Obviously,

the resulting graph is still a binary tree; we denote this tree by cY.

MAIN SIMULATION RESULT

Let H be an ancestor tree and choose a vertex x of H such that among the
descendents of x there is exactly one label y. Let H' be obtained from H by
replacing the subtree Hx by the graph shown in Figure 1.

In this graph, K is Hx with its vertices subscripted by "1", L is

(Hx - Hy)fH(Y) with its vertices subscripted by "2", and M is Hy with its

vertices subscripted by "2", Thus o is a "second copy" of fH(y). In addition,

. x

33
each arc u ZYyoruz>x is replaced by uy z 12, u, ; AZ’ while every
u ; v with v + X,y is replaced by ul ; v and u, ; v. Then we have

H < 2,3 H', which may be proved easily by a case analysis of the possible
arcs in H and their copies in H'. Note further that if x is not a label,
then H' has the same number of labels as H, while if x is a label, the
total number of labels is decreased by one.

We now prove that any k-label program (k > 2) can be simulated by a
(k-1)-label program. To this end, let H be a k-label program, k > 2.

Two cases arise.

Case I. Some vertex x contains exactly one label in each of its subtrees.

If the root of either subtree is a label, no transformation is required for
that subtree. In all other cases, replace each subtree as above to yield a
k-label program H', where H < 2,3 H' and in H' the sons of x are both labels.
Let the sons of x by y,z € V(H'). Now, clearly each arc u Zyoruzzcan
be replaced by an arc u X at the expense of dilating path lengths by one
arc. Hence, this transformation has the effect of replacing the pair of

labels y,z by a single label x. If H" is the result of such a transformation,

then since dH"(x,y) = dH" (x,2) = 1, we have H 5.2’3 H".

Case II. Some label vertex x has exactly one label y as a descendent. The

transformation given above when applied to the subtree rooted at x yields a
k-1 label program H' such that H < , 3 H'.
’
Thus, every k-label program is simulated with S = 2, T = 4 by a k-1 label

program. We have immediately that every k-label program H is simulated by

some l-label program G with S, T independent of IV(H)I; more specifically

iy

T e

34

s = 271 1o gkl

It 1s easily seen that for every S, T there Is a
1-1label program which cannot be simulated by any O-label program (i.e.,

by a binary tree).

AN IMPROVEMENT

The vertex duplication in the construction above is somewhat artificial;
it is used only to keep track of "end points" of circuits, and we might try
to use some inherent symmetry in the problem to avoid such duplication. In
fact, such duplication need never be introduced. That is, we can prove that
for every k-label program H, (k > 2) there is a (k-1)-label program H' such

< ',
that H < 1,4 H

Let Bn denote the regular graph on n vertices with degree 2, shown in

Figure 2. If V(Bn) = {al, cee an}, then Bn < 1,3 Go; and Bn 5_1’4G1, when
G0 and Gl are as shown in Figures 3(a) and 3(b), respectively.

The first simulation is apparently the better of the two, but in fact the H

simulation H < 1 AGI is the one which is to be preferred for the simulation to
| T

be described.
Using this transformation, given a tree H, as shown in Figure 4(a), we

cmbed H < 1.4

now have a; and a, relatively close to each other. For obvious reasons, we call

this transformation a folding of H.

H* where H* is as in Figure 4(b). As in the case Bn 5,1 AG’ we

Now suppose that H is a subtree of a k-label program Ho(k > 2) that a, and

a are both labels, V(Hl) has no other label, and none of ays ... 5 A is a

n-1
label. We then form H' by folding H and replacing each u 23, by u % 3 If

no such subtree H of HO exists, then no label is related to any other as either

Gl T SR e e s e Tew el e : ‘ B : - !

s

35

1

[EOo

a descendent or an ancestor. But since each {x,y} g_V(Ho) share a common
- ancestor (viz. the root of HO) choose any two labels x,y and let z be their

o deepest common ancestor, This identifies subtrees of the form H with a, =z

and a € {x,y}. Fold each of these subtrees and replace each arc u Z xor

u ; y by u ; z. Then, if the resulting ancestor tree is H', we have

Note that the passage from a k-label program to a l-label program still

requires T = hk_l. It is not known if this is (asymptotically) the best

possible.

REFERENCES

1. R. Lipton, S. Eisenstat, R. DeMillo, "Space and Time Hierarchies for
Classes of Control Structures and Data Structures', Journal of the ACM,
Vol. 23, No. 4, Oct 1976, pp. 720-732.

2. R. DeMillo, S. Eisenstat, R. Lipton, "Space-Time Tradeoffs in Structured
Programming: An Improved Combinatorial Embedding Theorem" (to appear);
parts of this paper appear as "Space-Time Tradeoffs in Structured
Programming", Proceedings of the 1976 Johns Hopkins Conference in
Information Sciences and Systems, pp. 431-434.

3. S. R. Kosaraju, "Analysis of Structure Programs', Journal of Computer
and System Sciences, Vol. 9, No. 3, Dec 1974, pp. 232-255.

P

e 37

[3]

Figure 1. Modification of H

38

©

Figure 2. The Graph Bn

Figure 3. The Graphs
G0 (upper) and

G1 (lower)

b

Figure 4.

The trees H (upper) and H¥

(lower)

40

Programming $. L. Graham, R. L. Rivest,
Techniques Editors

Preserving Average
Proximity in Arrays

Richard A. DeMillo
Georgia Institute of Technology

Stanley C. Eisenstat and Richard J. Lipton
Yale University

Programmers and data structure designers are
often forced to choose between alternative structures.
In storing these structures, preserving logical
adjacencies or “proximity” is usually an important
consideration. The combinatoriat problem of storing
arrays as various kinds of list structures is examined.
Embeddings of graphs are used to model the loss of
proximity involved in such storage schemes, and an
elementary proof that arrays cannot be stored as linear
lists with bounded loss of proximity is presented.
Average loss of proximity is then considered, and it is
shown that arrays cannot be stored as linear lists with
only bounded loss of average proximity, but can be so
stored in binary trees. The former result implies, for
instance, that row major order is an asymptotically
optimal storage strategy for arvays.

Key Words and Phrases: arrays, graph embedding,
linear lists, proximity, average proximity, trees

CR Categories: 4.34, §.24, 5.25, 5§.32

General permission to mahe fair use in teaching or research of
all or part of this matenal » granted to individual readers and to
nonprofit hibranes acting for them provided that ACM’s copyright
notice 1s given and that reference s made to the publication. to its
date of issuc. and to the fact that reprinting privileges were granted
by permission of the Assoctation for Computing Machinery. To
otherwise reprint a figure. table. other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic of multiple reproduction

This work was supported in part by the US Army Research
Office under grants DAHCO4-74-G-0179 and DAAG29-76-G-
0338, by the Office of Naval Research under grant NOOO14-67-
OONT-0016, and by the National Science Foundation under grant
DCR74-12870 Authors’ current addresses: R DeMillo, School of
Information and Computer Science. Georgia Institute of Technol-
ogy. Atlanta. GA 30332, S Ewenstat and R Lipton, Computer
Science Department. Yale University. New Haven, CT 06520
© 1978 ACM (NN1-0782/78/0300-0228 $00.75

4

1. Introduction

Efficient algorithms often require specific data
structures on which to operate. In many of the algo-
rithms of [1], for instance. the running time depends
critically on the number of probes of the data structure
needed 1o access a single data item. In practical com-
putation, however. many factors interfere with optimal
data organization. Among the most important of thesc
factors is the locality of references in data structures.
Since most data structures are arranged lincarly in
memory, a set of local references to the structures can
require accessing of data elements widely separated in
memory. This is particularly relevant in paging envi-
ronments where a page fault may occur during access
of elements which are logically adjacent in a data
structure.

In [6]. Rosenberg examined the problem of storing
arrays as a linear structure with bounded loss of
proximity between data elements and showed that an;
such storage scheme must, in the worst case, induce
unbounded loss of proximity. In previous papers {2.
4], we considered the proximity-preserving issue in a
more general setting. We used graphs to represent
data structures as described in |3]: vertices represent
data elements or nodes, and edges represent logical
adjacencies; if G and H are graphs. we write G =, H
if G can be “‘stored” as H so that no adjacent nodes of
G are more than a distance T apart in 4. Using this
model we were able to show that if G, is ann x n
array and H is any of a very general type of structure
(including as subcases lincar lists. binary trees. and
threaded lists [5]). then G, =g, H only if

T(n) = (1/3) logn — 2/3. (h

In particular, (1) shows that arrays cannot be stored
in trees or lists with bounded loss of proximity. extend-
ing the result of Rosenberg [6].

The lower bound represented by inequality (1) is a
worst-case result. Since algorithms which manipulate
data structures tend to “look at™ all of the data. it
seems natural to investigate the average loss of prox-
imity involved in storing arrays as various list struc-
tures. We find a distinction between linear memory
and arbitrary lists: arrays can be stored as nonlincar
lists with bounded loss of average proximity. but cannot
be so stored in linear memory.

2. Graphs and Embeddings

By a graph G = (V, E) we mcan a set V of vertices
and a set E of unordered pairs of vertices. the edges.
Note that all graphs we discuss are undirected. i.e. {x,
y} EE iff{y, x} € E. An edge between two vertices x
and y is represented

X y

(y—

Communications March 1978
of Volume 21

the ACM Number 3

 dbclodittdtion i

A path of length n betweenx,y € V exists if there is a
sequence of edges {x,, x,}, {x;. x5}, . . ., {xa-y, X} With
xo=xandx, =y IfG=(V,E) andx,y € V, then
dg(x, y) is defined to be the length of a minimal length
path betweenx andy . A graph G is intended to model
a data structure; therefore we think of the vertices of
G as nodes of the structure and edges of G as repre-
senting logical adjacencies in the structure.

We shall consider three classes of data structures,
defined by the classes of graphs which represent them.

Lines. A line L is a graph ({x}icis,....n1» E) with
{xi, 5} € E iffj =i + 1. For example,

Xy Xz X3 Xy

(o} (S O crt ©

represents a line withn nodes.

Binary Trees. A binary tree is a graph which is
either empty or consists recursively of a root connected
by edges to the roots of binary trees called the left and
right subtrees of the root. We assume the elementary
properties of trees as described in (1. 3).

Arrays. Ann x n array G, is a graph({x; }i. ;1. ...n10
E) with{x, ;, x;, 3,1} €EE and{x,, x,,,;} EE forall 1 =
i=nand 1 =j<n The 3 x 3 array G, is shown in
Figure 1. Modelingn X n arrays as graphs of the form
G, does not recover the notion of “‘randomly™ access-
ing array elements. But. as noted in {4, 6], algorithms
which operate on arrays tend to access array elements
“locally,” e.g. along rows and columns or, as in the
Strassen matrix multiplication algorithm, as 2 x 2
subarrays [1]. For these purposes the above represen-
tation of arrays is entirely faithful to the adjacency
properties of arrays.

Given two classes of graphs X and Y which repre-
sent distinct data structures, it is often natural to ask
whether or not each G € X can be “‘represented” as
some H € Y in such a way as to preserve the accessing
characteristics of G. Furthermore, we may want such a
representation of G to preserve proximity, that is, the
representation of G in H should be such that adjacent
nodes in G are represented within some tounded
distance of each other in H. The need for preserving
proximity in this fashion has been defended by Rosen-
berg (6].

The combinatorial aspects of this sort of represen-
tation are recovered by the following definition (see
Figure 2):

Definition. Let G = (V, E) and G* = (V*, E*) be
graphs, and let T = 1. We say that G is T-embeddable
in G* (written G =, G*) if there is an injection ®:V
— V* (called an embedding) such that for all {x, y} €
E,d{®x), P(y) s T.

Example. Let K, = ({x,, ..., x.}, E) be the
complete graph onn nodes; i.e.{x,, x;} EE forall 1 <
i,j s n withi # j. Let H be the graph shown in Figure
3. Then it is easily verified that K, =, H via the
embedding ®(x) = y, fori=1,...,n.

42

Fig. |. Graph G;.

Fig. 2. Illustration of G s, G*.

L
path of
Bewoen
e o
G s

A main result of {4) is that arrays cannot be stored
as binary trees with only bounded loss of worst-case
proximity. The precise statement of this result is

THEOREM 1. Let {G,},., be the class of n x n
arrays. If G, =nu, H for some binary tree H, then

T(n) = logn — 3/2.

For completeness, we sketch the proof of Theorem
1 (<f. [4]). We require an additional definition. which
will also be useful in a later resuit.

Definition. Let G = (V, E) be a graph and let A C
V. The boundary a(A) of A is the set of vertices in A
adjacent to vertices inV — A, i.e.

HA)={r€A:forsomey €V - A, {x,y} € E}.

A key property of the boundary operator is given
by the following lemma (see [4]).

BouUNDARY LEMMA. If G, = (V,, E,) is an array
and A C V, is such that |A| = n?/2," then
|Al = 2]a(a).

Proof oF THEOREM 1. Assume G, <pn,, H where
G, = (V,, E,), and let H = (V, E) be as shown in
Figure 4, where H,, . . . , H, are subtrees of H and
H, = (V*, E%)) has the following property:

n?/4 = |{x € V,: d(x) € V*}| < n?/2.

Let A, denote {x € V,: ®(x) € V*}. Then |A,|
satisfies the hypothesis of the Boundary Lemma, and
thus

A = 1/ V)| AL'? = n/22.

By definition, ifx € 3(A,), thendg (x, y) = 1 for some
y € V- A,, and thus, since G, <q,, H,

dy(®(x), B(y)) s T(n).
But
[{v € V. d,fu, v) s T(n)

' I S is a set, | S| denotes the cardinality of §.

Communications March 1978
of Volume 21
the ACM Number 3

e e S ek

Fig. 3. Graph H

r

J

M Y: Yn

Fig 4 Decomposition of M.

H,
H,
Hi., Hi

for some u €V - V¥}| = 2T,
therefore
7 = |a(A)] 2 n/2R,
or
T(m) = logn ~ 3/2. 0

Actually. in [2] we prove a much stronger result: If
we allow embeddings of n x n arrays which not only
preserve proximity by a factor of T{n) but which also
may “'split” a vertex at most S(n) times, then

T(n) + log log S(n) = ¢-logn

where ¢ is a fixed positive constant independent of n .

3. Preserving Average Proximity

The relation <, represents a worst-case analysis of
proximity-preserving transformations. Since data struc-
tures are frequently accessed “uniformly” in that the
probability of access to a particular node by a particular
edge is uniformly distributed. Theorem 1 leaves open
the question of whether or not there are ways to store
arrays as various other structures which, on rhe average .
preserve proximity. To investigate this problem we
need an additional definition.

Definition. Let G = (V, E) and G* = (V*, E®) be
graphs. We say that G is A average embeddable (writ-
ten G <%** G°) if there is an embedding ®:V — V*
such that

23, dud®(x), ®() s A-|E|.

ir.v€

We first consider the case of storing an array as a

linear structure, such as a linear list or in linear
memory.

THEOREM 2. Let {G,)pzy be the class of n X n
arrays. If G, %%, L for a line L, then

A(n) =n/12.

Proor. Assume G =<%% L where L = ({x,, ...,
X}, E) is a line. It is clearly sufficient to assume that
m = n? since, if G, =35, L by an embedding ® and x,
€& ®(V,), then ® also defines an A(n) average embed-
ding of G, into the line with x, removed.

Let D, = {®'(x;):1=j =i} forl =i =<n?2so
that|D;| = i = n?/2 (see Figure S). For eachy € 3(D))
there is an edge between y and some node not in D;;
hence there is a path between ®(y) and some node not
in ®(D,) which must pass through x,. Since |D;| =
n?/2, by the Boundary Lemma each ®(D,) makes a
contribution of at least (| D;]/2)'? to

Y ddDlx), D).
(s VIEE,
For suppose ®-Yx,) and ®-Yx)) (k < I) are adjacent
in G,. Then the ! — k + 1 that this adjacency should
add to the sum accrues by x,’s membership in $(D,),

®(Dy.y), . . ., ®(D,,). each membership contributing
1 to the sum.
Therefore
1 2
2 dd®x), Hy) = —= 2 | D'
(F VIEES V2
1 n2/2) 1 w?r2 n?
= — = — = —.
V2 lgl Vi V2 h (Vixldx 6
Hence
n*/6 = A(n)|E,| = A(n)(2n* — 2n),
which yields A(n) = n/12.]

An interesting interpretation of this result is that
any reasonable sequential method of array storage is
asymptotically optimal with respect to proximity. Con-
sider. for instance. an embedding® of G, into a line L
which places nodes of G, in row-major order; that is.
PD(xiy) = xi-1+y-1m- With this embedding into L,

Gu Sf:fnn L

By Theorem 4.2 of [6]. row-major storage is also
optimal for worst-case proximity.

In contrast to Theorems 1 and 2. we have the
following.

Txeorem 3. When n is a power of 2, there is a
binary tree H such that G, <3** H.

Proor. Let G, = (V,, E,) be given and suppose n
= 2 for some k . We shall describe a recursive method
of embedding G, into a complete binary tree. Divide
G, into fourn/2 x n/2 subarrays (see Figure 6(a)) and
attach the subarrays as leaves of a complete binary tree
H as shown in Figure 6(b)).

Communications March 1978
of Volume 21
the ACM Number 3

Fig. 5. Embedded edges in L.

[1)) X,
i T

[2[:)]

Fig. 6. Nlustration of embedding of Theorem 3. (a) Recursive
decomposition of G, . (b) Embedding G, into complete binary tree.

%
" A, 5 A,

L

Az i Az

A, = V,.E}
/\
Ao Ay Ay Az
Clearly
Y d@w), S(y) s N
ir.viEE, (2)

+2 T du®x), 00,
Ay \xEE,

where N is the sum of the lengths of the 21 paths
between the 4n — 4 nodes along the boundaries of the
Ay. By continuing this process recursively. we can
suppose that the Ay of Figure 6(b) are themselves
complete binary trees. and therefore we may bound ¥
in inequality (2) by

N = 2[2 log(n?/4) + 4] = 8n logn.

This leads to the following recurrence for f(n), the sum
of the lengths of paths which correspond under @ to
embedded edges of ann x n array:

fin=0

f(n) < 4f(n/2) + 8n logn.

The solution to this recurrence satisfies
fin) = 16(4*") — 81 logn — 16n.

Thus
A= 3 4@, o) /IE
ryEl,
fin) 87 —4nlog n— 8n
sz("’_n)s 7 —n =8 0O

For n not a power of 2, Theorem 3 clearly can be
modified to hold with a slightly larger constant.
Even though the number of vertices reachable by a

44

path of length k grows as 2 in a complete binary tree
versus k% in an array, it is important to note that not
any embedding technique will work in the proof of
Theorem 3. Similarly, not every graph in which fewer
than 2 vertices can be reached by paths of length k
can be embedded by using the recursive decomposition
of Theorem 3; the graph must have the property that
it can be ‘‘cut™ into regions with boundaries that are
not too large. A basic question to be resolved is
whether or not any family of graphs with neighbor-
hoods growing slower than 2* are A -average embedd-
able in trees for some constant A .

Acknowledgments. We would like to thank Arnold
Rosenberg for his thoughtful comments on a draft of
this paper and Larry Snyder for several helpful sugges-
tions.

Received March 1976; revised January 1977

Refereaces

1. Aho. A.. Hopcroft, 3., and Ullman.).D. The Design and
Analysis of Computer Algorithms. Addison-Wesley. Reading.
Mass., 1974,

2. DeMillo, R.A ., Eisenstat, $.C.. and Lipton, R.J. Space-time
tradeoffs in structured programming. Proc. 1976 Conf. on Inform.
Sci. and Syst .. Baltimore. Md .. 1976. pp. 431-434.

3. Knuth, D.E. The Art of Computer Programming, Vol. 1:
Fundamemal Algonthms Addison-Wesley, 1968. p. 305ff.

4. Lipton, RJ ., Eisenstat. S.C.. and DeMillo. R A. Space and
time hierarchies for classes of control structures and data structures.
1. ACM 23. 4 (1976). 720-732.

S. Perlis. A.J_, and Thornton, C. Symbol maripulation by
threaded lists, Comm. ACM 3. 4 (1960). 201-202.

6. Rosenberg. A L. Preserving proximity in arrays. SIAM J.
Comping. 4. 4 (1975), 443-460.

7. Rosenberg. A L. Managing storage for extendible arrays. Proc.
S:xth ACM Symp. on the Theory of Comptng.. Seattle. Wash ..
1974, pp. 293-302

Corrigendum. Turing Award Lectures

Michael O. Rabin, “Complexity of Computations,”
Comm. ACM 20,9 (September 1977), 625-633.

Page 626, first paragraph, second sentence: replace
“” after “communications™ by *;”. Ia column |, line 16
should begin “...Considerable...”. In Column 2, the first
term of equation (2) should be a; and the first word that
follows that equation is “of". On page 627, the title to
section 2.5 begins with “Sorting.”

On page 628, in column 2, line 21, u(s) should be u(S).
In column 2 of page 629, line 15 has 2 comma before
“holds™ and on line 18 “E. Blum" should be “M. Blum.”

On page 630, column 1. the expression on the first and
second lines should read “ao(ao,...,an):....@n(G0,...,a:)", and
on line 8 the author is Motzkin. On page 631, column 1,
line 9, “O(n®)" should be “o(n“)". In column 2, line 12
should read “such that for every no < n" and line 14
should read “satisfying (1) ¢ (H) = n, and (2)..". The
theorem’s statement should end with “Here ¢ (H) de-
notes the length of H.™

Line 4 of column 1 of page 633 should read “secrecy.”,
and the following paragraph should end with a question
mark.

Communications March 1978
of Volume 21
the ACM Number 3

45

THE AVERAGE LENGTH OF PATHS

EMBEDDED IN TREES#*

Richard A. DeMillo
School of Information and Computer Science
Georgla Instltute of Technology
Atlanta, Ga. 30332

” Richard J. Lipton

- Department of Computer Science
' Yale University

.- New Haven, Ct. 06520

A graph, G, consists of vertices V(G) and edges E(G); paths are sequences

of vertices cornected by edges, and path length is defined by the number of
edges along the path. For x,y € V(G) we use dG(x,y) to denote the length of a
minimal length path between x and y, if such a path exists. An n X n array,

G,» consists of vertices V(Gn) = {xi J} and edges which, except at the

i,j<n
g obvious extremal conditions, are linked as follows:

* The work of both authors was supported in part by the U.S. Army Research
Office, Grant No. DAAG29-76-G-0338.

i 46

(x) e E(Gn), and

1,5> ¥4,
(xi,J’ xi,J+1) £ E(Gn).

Such graphs are also called rook-comnected. A binary tree is as defined

in [1,2]; that is, a binary tree H is a connected acyclic graph with a

designated root and ancestor - descendent relation defined so that each
x € V(H) has at most two immediate descendents.

Let us write G < .H when there is a one—one mapping (called an em-

-~ bedding of G into H ¢ : V(G) + V(H), such that for all (x,y) € E(G),
- dg(e(x), ®(y)) < T.

As described in {1], it follows from simple volumetric arguments that for

all T > 0, there exists a binary tree H such that H i 7G,» for all n > 1.
The corresponding intuition for Gn < 'I‘H does not hold. It would now seem

, that since in G,

: | {x € V(G): d, (x,y) <k} | = 0k) (1)
! n n

}’ while in a complete binary tree H

| xe M) dy (x| > X7 2)

' that Gn < TH would now be pos. .ble for some bounded T. It 1is therefore

I l somewhat surprising that Gn < ’I’H only if
T >logn-1.5

k : (See [1], for details).

-

>

Tt is still obvious from inspection that neighborhoods in trees can be
much more densely growing than neighborhoods in arrays, and therefore by
choosing a suitably global measure of loss of proximity, this difference
should be distinguishable. In (2] we considered such a measure:

G < %98 g% 1f for sme embedding & : V(G) > V(G*)

ZdG,.w(x), o(y)) <A | E@) |.
(x,y) € E(G)

It follows [2] that for b = 8.5

G < ey
b

for some binary tree H. This upper bound can be improved to b =7 - 0(1)1'
The relation < edAge may be thought of as averaging - with relative
frequencies uniformly distributed to the edges E(G) - over the edges of G.
We now make a more global definition which finally may be used to recover
our original, although imprecise, intuitions about path lengths in binary

trees. We will essentially average over shortest paths:

G < paZhs G* if one is an embedding & : V(G) + V(G¥) such that

where

Iy= Y dox (O(4,0()

o(x),o(y)

¥ L. Snyder, private communlcatlion.

s T T

ax

5 =z dg(%,¥).
X,y

We then have the following theorem.

Theorem. For eachn > 0, let A, be the least real number such that

Gn < piths H,
n

for a binary tree H. Then

1im A =11imT /A = O.
n n

n > o« n -+ «
Proof we first show

A, = 2(°)

Let us choose By, B, ¢ V(Gn) so that

Bl={x1J 11<1i,3<n/ 4}
- . 3n
B2"{xi,j : 7 <1i,j <n}
y
so that IB1 x B2l = [n2 / 16]2. Now clearly, for any (x,y) € B, x B,

d; (x,y) >n /2,
n .

48

| g

$ed

TN DR Ay o o it A e T AR M . 7 e X

49

and hence by definition

b >0’ /512 =)

We now obtain the following upper bound for Fn

Fn = O(nu log n).

. 2
As in [2] let A, € V(G), 1 <1, <2, |Aij| =n /U,

J

Denote the n / 2 x n / 2 decomposition of Gn and notice that

I'(n) <4T g- + nu log n.

o=

Thus T'(n) f_anu log n + Bnu from which the theorem follows directly.

R.J. Lipton, S. Eisenstat, R.A. DeMillo, "Space and Time Hierarchies
for Classes of Control Structures and Data Structures", Journal of
the ACM, Vol. 23, No. 4, Oct. 1976, pp. 720-732.

R.A. DeMillo, S.C. Eisenstat, R.J. Lipton, "Preserving Average Prox-
imity in Arrays", Commnications of the ACM (to appear).

50

ON SMALL UNIVERSAL DATA STRUCTURES
AND RELATED COMBINATORIAL PROBLEMS T

(Preliminary Report)

Richard DeMillo

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

L]

_ Stanley Eisenstat
? Richard J. Lipton
-~

Department of Computer Science
he Yale University
New Haven, CT 06520

‘ ! + Work supported in part by U.S. Army Research Office, Grant No. DAAG29-76-
' G-0338, and by the Mathematics Research Center, University of Wisconsin-

Madison,

51

i INTRODUCTION

One of the most significant changes in theoretical computer science

has been the recent infusion of the methods and problems frem combinatorial
analysis. Among the most powerful combinatorial theorems which have been
imported to computer science are those of extremal graph theory [1]: 1in
extremal graph theory, one is interested in the largest (or in complementary

problems, the smallest) graph which avoids (or contains) a given structure.

Purely combinatorial results (which have significance, e.g., for the design

of circuit boards) have been obtained by Chung and Graham [2] and by Chung,

- Craham, and Pippenger [3]. In this paper, we extend this theory to
4 s encompass results concerning data structures,

I' As motivation for the results to the described, note that many of the
] | large data structures manipulated by the programs described in [4,5] have

two characteristics
- (i) they are sequentially accessed, and

(ii) many distinct structures convolve in the
same physical memory.

1 For applications of this sort, it would obviously be desirable to have
available a universal data structure in which all data structures from a
given class may gracefully reside. 1In view of (i), by "graceful" we mean
that the sequential accessing characteristics of the embedded data structures
are not too drastically altered. Let us measure such alterations by the
dilation of logical adjacencies [6,7] needed to embed all structures from a

b 1 given class into a universal structure; this is then a complementary

extremal graph theory problem: what is the size (number of edges) of the

{ smallest universal graph for a given dilation factor.

The main results contained in this paper address such problems from
a number of points of view.
(1) We give several asymptotically optimal universal data

! . structures for graphs of n vertices when average dilation
[7] is used as a measure.

(2) We discuss a universal data structure for graphs of n
vertices where worst-case dilation is used as a measure [6].

(3) We consider variations of the average dilation measure
which gives favorable comparisons between data structures
studied in [6,7].

(4) We consider the kinds of "sharing" that can take place
between "almost linear”" and "almost complete tree-like"
structures.

(5) Finally, we propose a data structure embedding model which
recovers some aspects of random accessing of data items,

+ and prove a space-time tradeoff which seems to indicate

that no savings is possible in RAM models which assess

accessings costs unitormly [8].

PRELIMINARIES

. < A é

A graph, G, is defined by its vertices, V(G), and edges,
E(G) < V(G) x V(G). Edges are assumed to be wndirected: a pair of vertices
X,y are connected if either (x,y) € E(G) or (y,x) € E(G). A path between
X

0
to be n if there 18 no shorter path than x.,...,x .
0 n

> X is said to be of length n. The distance metric dG(xo, xn) is defined

A graph represents a data structure in the obvious way: vertices
represent nodes or records and connectedness models logical adjacency.

The following relations and their significance for data structures can be

| found in {6,7]. Let G, G* be graphs. We say that G is T-Wworst case
l embeddable in G* (GgTG*) if there is a one-one $:V(G)*V(G*) such that (x,y)

€ E(G) implies ﬁ

doy (0(x), ®(y)) < T. (¢9)

) v .l ‘J - - ' !

53
Similarly, G is A-average case embeddable in G* (G < "Zg G*) 1f there
is a oné-one ¢ as above such that
Z do(0(x), 8(y)) < Ac|ECB)]. (2)
X,y
connected

In [4,5]), comparisons between several natural classes of graphs give
asymptotic bounds on T, A in (1), (2) as functions of |V(G)|. Shortly
after the announcement of the results of [6], R. M. Karp suggested to us
the following class of problems connected with extremal graph theory:
what are the characteristics of <

T

those structures which T-worst case embed all graphs in a given class.

- universal data structures; i.e.,

This paper grew out of considering these problems.

1 UNIVERSAL GRAPHS

Let ;n be # given class of graphs G, [V(G)[= n. Let us ask about a

data structure which is <, or S.axg wriversal for L"., In particular, let
us define

w(z®, T) = min {{E@)]|: ¢ e, & < 6} (3)
and

a(z", &) = min {|E(®)]:6" € 2", ¢" < ¥[8 c}.

For T = 1, (3) becomes the complementary extremal graph problem studied

in [2,3].

By an n-tree G, we mean a connected acyclic graph G, with |V(G)| = n.
It {s also convenient to think of trees as rooted in the following sense:
accompanying G, there is an ancestor-descendent relation that assigns
direct ancestors and direct descendents to vertices in the obvious way so

that a vertex with no ancestors can be designated as the root of the tree.

a

e

P

P—

(Obviously thig choice is not going to be unique, but we assume that G
is not characterized until such a choice is made). A d-ary n-tree is an
n-tree in which each vertex has at most d direct descendents. We denote,
respectively, the classes of n-trees and d-ary n-trees by ™ and Tt: .

nl+k(n)

By [2] it is known that #n log n < w(Yn, 1) < s k(n) =

[log log n]_l. T
The upper bound was improved in [3] to

w(Tn, 1) = O0(n log n[log log n]z)

The bounds on a(Fn, 1) are apparently not elsewhere considered.

Superficially, at least, all interest in further characterization of
(3) is destroyed by the following obvious
Theorem. For T > 2

w(f™, 1) =n

Of course, in (3), the "target' graph G may have unbounded degree.
Therefore, it is natural to consider w(®, T, 8) and a(c“, T, S) where in
both cases the target graph G is restricted to be in the set S. Note that

now the theorem just cited is no longer obviously true.

* Thus r; = binary trees on n vertices.

4+ 1In the sequel, we use log x for loszx and fnx for logex.

54

55

The best that is known 1s the upper bound of {3] (S = all cubic

graphs)

2V 2

—= exp (logzn/Z log 2) . (4)

w(r™, 1,) <

It is not obvious that when (i) "targets" are restricted to binary trees
and (ii) w(Fg, T, Pg) is considered, that it is possible to do any better

than the union of all trees in Fg, giving a structure of size hnlzﬂn.

But, we have the following
Theorem. For each T > 1, there is a binary tree H, such that G 27 H

for all G ¢ F;, and

gn’n
2n|E(G) | R eyl

or in other words

(T3, T, I3) = exp &l‘- (2a n)2 + 0((tn m2) .

.. 2°
- A key step in the proof of this theorem hinges on the solution to

the fascinating "almost linear" recurrence

uosu o+ ul-n-' , (5) !
2

] first considered by Knuth {9]. This also establishes a connection
T . between the theorem and ineq. (4): v is also the number of partitions

of 2n of the form Zai 21, o, = 0, 1. Knuth [9]) bounds the partition

i

function

P(m) -l exp ('n’-_,z,-m) .
4/ 3m

Theorem

There are two possibilities for improving the bounds in w(F;, T, Fg).
The first possibility is to introduce circuits to the target graph of the
previous theorem, but this does not appear to give an asymptotically

better bound than (4). The second possibility is to prove that balanced

.trees and unbalanced trees are < . - equivalent. This seems unlikely since

combining such a result with the proof method of the previous theorem
gives a polynomial sized universal tree. However, in trying to improve
the bounds on w(rg, T, P;) it may be desirable to ignore irregular trees,
letting only very balanced or very unbalanced trees reside in the same
universal data structure.

In any case, it seems unlikely that polynomial structures are possible.
We are, however, far from proving this; indeed, the best known lower bound
is the following
Theorem. For alln > N

w(I,

where c(T) > 0 is a constant for fixed T > 1.

T, Pg) > ¢(T) n logn ,

Certain other subcases are also of interest. Erdos, Chung, and GrahamT,
consider w(S,1) and obtain
2

4
W(S,l) i'l—ln .

The following theorem is an improvement, but is sirely not the best

possible bound.

w(S,1) j.% n2

+ Private Communication.

57

A non-trivial lower bound would clearly be desirable. Another class of
interest are graphs of high genus.*+ We conjecture that for graphs of

fixed genus Yy, it is possible to do better than the naive (g) bound %

obtained by embedding in the complete graph.
Our next series of results show impressive improvements by passing

to average dilations. We now get optimal constructions, even in a variety

of limited settings.

We have, for instance, the
) Theorem. For a > 0,
' : a(r}, 3, 8) = 0(

.- Since there is a linear lower bound on a(°*,*,*), this construction is

nlog(2+a)) .

optimal. By a slight modifjication of the construction, this gives

a(T“, A, S) = 0(n), for all A > 1, but this result may be superceeded by

the following
Theorem. For each A > 1, there is a binary tree H, such that
aveg
<
G< " H
for all G e T, and
lE@)| = o) 5

or, in other words

a(I'®, A, rg) = 0(n) .

—
——

++ A graph is of genus y if it can be embedded in a sphere with Y
handles ([10].

58
These results are related to the ability to "cut" graphs in

advantageous ways. ¥or example, a generalization of the planar separator
theorem [11) to graphs of high genus, obtained by Lipton and Tarjan, gives
us the following
Theorem. Let L$ be the class of graphs G with genus y and lV(G)I = n.
Then, for all n > N,

a(Ll, A, I“z‘) < c(A)*n ,

Y
where c(A) does not depend on n.

EXTENDED MDDEL

In comparing classes of data structures (see, e.g., [6,7], the measures
of "efficiency" have implicitly assumed that only sequential accessing is
. important. Thus, when in [6], we bound the efficiency, T, of an embedding
- of n X n array into binary trees by

T>clogn,

the function T(n) captures the dilation factor in an embedding. We now
describe a generalization of this concept which recovers a certain kind of
random accessing. Since the precise definitions are quite complex, we will
settle for a less exact -~ but more picturesque -- rendering. Let us assume
that we have in front of us an illustration of a graph G, and also a number
of friends who agree to lend us their forefingers for use in tracing the
paths of the graph. Our friends oblige us as follows: We may start

traversing at any vertex already visited. The traversal rule is, then,

; that we must either traverse graph edges or "jump" to a vertex pointed to

59

by a friend. The time required to traverse a sequence of vertices is then
simply the number of applications of traversal rules. Notice that the

result of a traversal is not necessarily a path of G. The connection

1
¥
H
%
i
E
i
}

between fingers and random accessing is that traversals requiring k-fingers
also require k-"addresses" for the vertices pointed to.

We then say that G < G* if there is a one-one 9:V(G) + V(G*), so

k,T
that for every x,y € V(G) with dG(x,y) = m, there is a k-finger traversal

A A A RS MPTTV R e

from #(x) = x* to ®(y) = y* with time at most A, and A f_TdG*(x*,).

We have the following
Theorem. 1f Gn is the n X n array [7], H is a binary tree F
o and
- <
X Gn - k,I(n) H,

’t then

k+ T(n) >clogn,

where ¢ is a constant independent of n.

OTHER TYPES OF AVERAGE EMBEDDING

] ' The relation < may be thought of as averaging - with relative

avg
‘ A

: frequencies uniformly distributed to the edges E(G) - over the edges of G.
We now make a more global definition which may be used to recover our
intuitions about path lengths in binary trees [7]. We will essentially

average our shortest paths:

G < P28 G4 4f there 1s an embedding $:V(G) + V(G*) such that
A

J
‘ _ ch* (¢, ¢(¥)) < A ch (x,y) .

®(x), ®(y) X,y

S

60

We then have the following

Theoren, For each n > 0, let An be the least real number such that

G < paths H
[nK

for a binary tree H. Then
‘li}g A =0
n
Thus, we see that if the average embedding is required to work well on

all shortest paths, then the embedding cost goes to zero. In a sense,

then < ave "charges" more heavily than < paths cop any bottlenecks.
A A

REFERENCES

[1] P. Erdos and J. Spencer. Probabilistic Methods in Combinatorics.
Academic Press, 1974.

-~ [2] F. R. K. Chung and R. L. Graham. On Graphs Which Contain Small
: Trees. To appear in JCT.
- [3] R. R, K. Chung, R. L. Graham, and N. Pippenger. On Graphs Which

Contain All Small Trees, II. To appear in JCT.

(4] M. Minsky. Semantic Information Processing. MIT Press, 1969.

[5) L. Uhr. Patternm Recognition Learning and Thought. Prentice-Hall,
1973.

(6] R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo., Space and Time
Hierarchies for Classes of Control and Data Structures. JACM 23(4):
720-732, October 1976.

(7] R. A. DeMillo, S, C. Eigenstat, and R. J. Lipton. Preserving
Average Proximity In Arraye. CACM, Vol. 21(3):228-231, March 1978.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesl:y, 1976.

[9) D. E. Knuth. An Almost Linear Recurrence. The Fibonacci Quarterly,
Vol. 4(1):117-128, February 1966.

{10] F. Harary. Graph Theory. Addison-Wesley, 1972,

[11] R. Lipton and R. Tarjan. A Planar Separator Theorem. Stanford
Research Report CS-77-627, October 1977.

ity

SIAM J. APPL. MATH. © 1979 Socicty {or Industrial and Applied Mathematics
Vol 36, No. 2, Agril 1979 0036-1399/79/3602-0001 $01.00/0

A SEPARATOR THEOREM FOR PLANAR GRAPHS®
RICHARD J. LIPTONt aND ROBERT ENDRE TARJAN$

Abstract. Let G be any n-vertex planar graph. We prove that the vertices of G can be partitioned into
three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more
than 2n/3 vertices, and C contains no more than 2v 2vn vertices. We exhibit an algorithm which finds such
a partition A, B, C in O(n) time.

1. Introduction. A useful method for solving many kinds of combinatorial pro-
blems is “divide-and-conquer™ [1]. In this method the problem of interest is divided
into two or more smaller problems. The subproblems are solved by applying the
method recursively, and the subproblem solutions are combined to give the solution to
the original problem. Three things are necessary for the success and efficiency of
divide-and-conquer: (i) the subproblems must be of the same type as the original and
independent of each other (in a suitable sense); (ii) the cost of solving the original
problem given the solutions to the subproblems must be small; and (iii) the sub-
problems must be significantly smaller than the original. One way to guarantee that
the subproblems are small is to make them all roughly the same size [1].

We wish to study general conditions under which the divide-and-conquer
approach is useful. Consider problems which are defined on graphs. Let S be a class of
graphs’ closed under the subgraph relation (i.c., if G, € S and G; is a subgraph of G,,
then G;€ S). An f(n)-separator theorem for § is a theorem of the following form:

There exist constants @ <1, > 0 such that if G is any n-vertex graph in S, the
vertices of G can be partitioned into three sets A, B, C such that no edge joins a
vertex in A with a vertex in B, neither A nor B contains more than an vertices, and C
contains no more than 8f(n) vertices.

If such a theorem holds for the class of graphs S, and if the appropriate vertex
partitions A, B, C can be found fast, then a number of problems defined on graphs in
§ can be solved efficiently using divide-and-conquer. For a given graph G in §, the
sets A and B define the subproblems. The cost of combining the subproblem solutions
is a function of the size of C (and thus of f(n)).-

Previously known separator theorems include the following:

(A) Any n-vertex binary tree can be separated into two subtrees, each with no
more than 2n/3 vertices, by removing a single edge. For an application of this
theorem, see [13].

(B) Any n-vertex tree can be divided into two parts, each with no more than
2n/3 vertices, by removing a single vertex.

(C) A grid graph is any subgraph of the infinite two-dimensional square grid
illustrated in Fig. 1. A Vn-separator theorem holds for the class of grid graphs. For an
application, see [5).

® Received by the editors August 10, 1977.

+ Computer Scicnce Department, Yale University, New Haven, Connccticut 06520. This rescarch was
supported in part by the U.S. Army Research Office under Grant DAAG 29-76-G-0338 and The National
Science Foundation under Grant MCS 78-81486.

$ Computer Scicnce Department, Stanford University, Stanford, California 94305. This research was
supported in part by National Science Foundation under Grant MCS-75-22870 and in part by the Otfice of
Naval Research under Contract N00014-76-C-0688.

! The Appendix corains the graph-theoretic definitions used in this paper.

61

e 2=t vy e A e IR

A ocoitndasailanhtaesdiindiaion it caa i at bt s e Sl B T i

Ty g

*
'

62

* RICHARD 1. LIPTON AND ROBERT ENDRE TARJAN

.' . .
] hd .
e &8 se e
FIG. 1. Infinite two-dimensional sq grid.

(D) A one-tape Turing machine graph [16] is a graph representing the compu-
tation of a one-tape Turing machine. A Vn-separator theorem holds for such graphs.
For an application, see [15].

One might conjecture that the class of all suitably sparse graphs has an f(n)-
separator theorem for some f(n)=o0(n). However, the following result of Erdos
Graham and Szemerédi {4] shows that this is not the case.

THEOREM C. For every € >0 there is a positive constant ¢ = c(g) such that almost
al? graphs G with n = (2+)k vertices and ck edges have the property that after the
omission of any k vertices, a connected component of at least k vertices remains.

Although sparsity by itself is not enough to Jgive a useful separator theorem,
planarity is. In § 2 of this paper we prove that a Va-separator theorem holds for all
planar graphs. In § 3 we provide a linear-time algorithm for finding a vertex partition
satisfying the theorem. This algorithm and the divide-and-conquer approach combine
to give efficient algorithms for a wide range of problems on planar graphs. Section 4
mentions some of these applications, which we shall discuss more fully in a subsequent

paper.

2. Separator theorems. To prove our results we need to use three facts about
planarity.

THEOREM 1 (Jordan curve theorem {6]). Let C be any closed curve in the plane.
Remouval of C divides the plane into exactly two connected regions, the “inside* and the
“outside” of C.

THEOREM 2 [7). Any n-vertex planar graph with n Z 3 contains no more than 3n -6
edges.

2 By “'almost all' we mean that the fraction of graphs possessing the property tends with increasing » 10
one.

63

A SEPARATOR THEOREM

F16. 2. Kurasowski subgraphs: (3) Ks. (b) Ky 3.

THEOREM 3 (Kuratowski’s theorem [12]). A graph is planar if and only if it
contains neither a complete graph on five vertices (Fig. 2(a)) nor a complete bipartite

graph on two sets of three vertices (Fig. 2(b)) as a generalized subgraph.
From Kuratowski's thcorem we can easily obtain the following lemma and its

corollary. ;

LEMMA 1. Let G be any planar graph. Shrinking any edge of G 1o a single vertex |
preserves planarity.

Proof. Let G* be the shrunken graph, let (x,, x2) be the edge shrunk, and let x be
the vertex corresponding to x, and x, in G*. If G* is not planar then G* contains a
Kuratowski graph as a generalized subgraph. But this subgraph corresponds to a
Kuratowski graph which is a generalized subgraph of G. Figure 3 illustrates the
- possibilities. 0

L e % 5n on
: - ®) @—m @ or >
1

‘ F n x
%

[‘ F1G. 3. Shninking an edge to form a Kuratowski graph. Original graph must contain a Kuratowski graph
as a generalized subgraph.

COROLLARY 1. Let G be any planar graph. Shrinking any connected subgraph of
G 10 a single vertex preserves planarity.
Proof. The proof is immediate from Lemma 1 by induction on the number of
vertices in the subgraph to be shrunk, 0O
In some applications it is useful to have a result more general than the kind of
separator theorem described in the Introduction. We shall therefore consider planar
graphs which have nonnegative costs on the vertices. We shall prove that any such
graph can be separated into two parts, each with cost no more than two-thirds of the
[l total cost, by removing O(J;) vertices. The desired separator theorem is the special
J .' case of equal-cost vertices. *
LEMMA 2. Let G be any planar graph with nonnegative vertex costs summing to no
' more than one. Suppose G has a spanning tree of radius r. Then the vertices of G can be
partitioned into three sets A, B, C, such thar no edge foins a vertex in A with a vertex in
B, neither A nor B has total cost exceeding 2/3. and C contains no more than 2r +1
‘., vertices, one the root of the tree.

s §

—

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

Proof. Assume no vertex has cost exceeding 1/3; otherwise the lemma is true
Embed G in the plane. Make each face a triangle by adding a suitable number of
additional edges. Any nontree edge (including each of the added edges) forms u
simple cycle with some of the tree edges. This cycle is of length at most 2r+1 if i
contains the root of the tree, at most 2r — 1 otherwise. The cycle divides the plane (and
the graph) into two parts, the inside and the outside of the cycle. We claim that at leawt
one such cycle separates the graph so that neither the inside nor the outside contains
vertices whose total cost exceeds 2/3. This proves the lemma.

Proof of claim. Let (x, z) be the nontree edge whose cycle minimizes the maxi-
mum cost either inside or outside the cycle. Break ties by choosing the nontree edge
whose cycle has the smallest number of faces on the same side as the maximum cost. If
ties remain, choose arbitrarily.

Suppose without loss of generality that the graph is embedded so that the cost
inside the (x, z) cycle is at least as great as the cost outside the cycle. If the vertices
inside the cycle have total cost not exceeding 2/3, the claim is true. Suppose the
vertices inside the cycle have total cost exceeding 2/3. We show by case analysis that
this contradicts the choice of (x, z). Consider the face which has (x, z) as a boundar\
edge and lies inside the cycle. This face is a triangle; let y be its third vertex. The
properties of (x, y) and (y, z) determine which of the following cases applies. Figure 4
llustrates the cases.

Fici 4 Cuses tor proof of Lemma 2. Solid vdyes are iree vdges dotied edges are nontree alges

Srf Sd

. -

A SEPARATOR THEOREM

1) Both (x, y)and (y. z) lie on the cycle. Then the face (x, y, z) is the cycle, which
is impossible since vertices lie inside the cycle.

2) One of (x, ¥) and (y. z) (say (x, y)) lies on the cycle. Then (y. z) is a nontree
cdge defining a cycle which contains within it the same vertices as the original cycle
hut one less face. This contradicts the choice of (x, z).

3) Neither (x. y) nor (y, z) lies on the cycle.

a) Both (r, y) and (y, z) are tree edges. This is impossible since the tree itself
contains no cycles.

b) One of (x, y) and (y, z) (say (x, y)) is a tree edge. Then (y, z) is a nontree edge
defining a cycle which contains one less vertex (namely y) within it than the original
cycle. The inside of the (y, z) cycle contains no more cost and one less face than the
inside of the (x, z) cycle. Thus if the cost inside the (y, z) cycle is greater than the cost
outside the cycle, (y, z) would have been chosen in place of (x, z).

On the other hand, suppose the cost inside the (y, z) cycle is no greater than the
cost outside. The cost outside the (y, z) cycle is equal to the cost outside the (x, z)
cycle plus the cost of y. Since both the cost outside the (x, 2) cycle and the cost of y are
less than 1/3, the cost outside the (y, z) cycle is less than 2/3, and (y, z) would have
been chosen in place of (x. z).

c) Neither (x, y) nor (y, z) is a tree edge. Then each of (x, y) and (y, z) defines a
cycie, and every vertex inside the (x, z) cycle is either inside the (x, y) cycle, inside the
(y, z) cycle, or on the boundary of both. Of the (x, y) and (y, 2) cycles, choose the one
(say (x, y)) which has inside it more total cost. The (x, y) cycle has no more cost and
strictly fewer faces inside it than the (x, z) cycle. Thus if the cost inside the (x, y) cycle
is greater than the cost outside, (x, y) would have been chosen in place of (x, z).

On the other hand, suppose the cost inside the (x, y) cycle is no greater than the
cost outside. Since the inside of the (x, z) cycle has cost exceeding 2/3, the (x, y) cycle
and its inside together have cost exceeding 1/3, and the outside of the (x. y) cycle has
cost less than 2/3. Thus (x, y) would have been chosen in place of (x, z).

Thus all cases are impossible, and the (x, z) cycle satisfies the claim. 0

LEMMA 3. Let G be any n-vertex connected planar graph having nonnegative
vertex costs summing to no more than one. Suppose that the vertices of G are partitioned
into levels according 1o their.distance from some vertex v, and that L(l) denotes the
number of vertices on level |. If r is the maximum distance of any vertex from v, let r + 1
be an additional level containing no vertices. Given any two levels |, and 1, such that
levels O through |, — 1 have total cost not exceeding 2/3 and levels 1,+ 1 through r+1
have total cost not exceeding 2/3, it is possible to find a partition A, B, C of the vertices
of G such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
cost exceeding 2/3, and C contains no more than L(l,)+ L(l;)+max {0, 2({>— 1, -1)}
vertices.

Proof. If I, 213, let A be all vertices on levels O through /; -1, B all vertices on
levels /,+ 1 through r, and C all vertices on level /;. Then the lemma is true. Thus
suppose [, <!l;. Delete the vertices in levels /, and /; from G. This separates the
remaining vertices of G into three parts (al) of which may be empty): vertices on levels
0 through /, - 1, vertices on levels /, + 1 through [, — 1, and vertices on levels [+ 1 and
above. The only part which can have cost exceeding 2/3 is the middle part.

If the middle part does not have cost exceeding 2/3, let A be the most costly part
of the three. let B be the remaining two parts, and let C be the set of vertices on levels
[, and [,. Then the lemma is true.

Suppose the middle part has cost exceeding 2/3. Delete all vertices on levels {,
and above and shrink all vertices on levels {, and below to a single vertex of cost zero.

65

66

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

These operations preserve planarity by Corollary 1. The new graph has a spanning
tree of radius /;— [, — 1 whose root corresponds to vertices on levels /; and below in
) the original graph.

Apply Lemma 2 to the new graph. Let A*, B*, C* be the resulting vertex
partition. Let A be the set among A* and B* having greater cost, let C consist of the
vertices on levels /, and {; in the original graph plus the vertices in C* minus the root
of the tree, and let B contain the remaining vertices in G. By Lemma 2, A has total
cost not exceeding 2/3. But AU C* has total cost at least 1/3, so B also has total cost
aot exceeding 2/3. Furthermore C contains no more than L(l,)+L(l,)+2(l.-1,-1)
vertices. Thus the lemma is true. 0O

THEOREM 4. Let G be any n-vertex planar graph having nonnegative vertex costs
summing to no more than one. Then the vertices of G can be partitioned into three sets A,
B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
cost exceeding 2/3, and C contains no more than 2v2Vn vertices.

Proof. Assume G is connected. Partition the vertices into levels according to their
distance from some vertex v. Let L(/) be the number of vertices on level /. If r is the
maximum distance of any vertex from v, define additional levels —1 and r + 1 contain-
ing no vertices.

Let /; be the level such that the sum of costs in levels 0 through !/, —1 is less
i than 1/2, but the sum of costs in levels 0 through /, is at least 1/2. (If no such !, exists.
) the total cost of all vertices is less than 1/2, and B = C = @ satisfies the theorem.) Let

4 k be the number of vertices on levels 0 through /,. Find a level {, such that [=[; and
IL(to)¥+ 2(1y — lo) = 2Vk. Find a level ! such that I + 1=/, and L) +2(l = -1)s
2Vn ~ k. If two such levels exist, then by Lemma 3 the vertices of G can be partitioned

] into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither

A nor C has cost exceeding 2/3, and C contains no more than 2(\/E +vn — k) vertices.
. But 2(Vk+vVn—k)=2(Vn/2+Vn/2Z)=2vV2Vn. Thus the theorem holds if suitable
fevels [, and /; exist.
Suppose a suitable level I, does not exist. Then, for i £1,, L(i);ZJE-Z(I. -i).
Since L(0)=1, this means 1z2vk-2l,, and l,+1/22vVk. Thus [, = |l +1/2}2
|Vk], and

1 !

k =‘2 Loz,)jm 2WVk~2(l ~ i)z @k -2 VR XVE] +1)/2 2 Vk([VE) +1)> k. *
=Q -fy-

This is a contradiction. A similar contradiction arises if a suitable level /; does not
exist. This completes the proof for connected graphs.

Now suppose G- is not connected. Let G,, Gz, -+, G, be the connected
components of G, with vertex sets Vy, V,,-- -, Vi, respectively. If no connected
component has total vertex cost exceeding 1/3, let i be the minimum index such that
the total cost of V,UV,U --- UV, exceeds 1/3. Let A=V,UV,U .- UV, let
B=V, UV, ;U - UV, and let C= . Since i is minimum and the cost of V.
does not exceed 1/3, the cost of A does 'not exceed 2/3. Thus the theorem is
true.
| : If some connected component (say G,) has total vertex cost between 1/3 and 2/3.
f ; ! letA=V, B=VU---UV,_ UV, ,U:-- UV, and C= . Then the theorem i

true. R
Finally, if some connected component (say G;) has total vertex cost exceeding
2/3, apply the above argument to G.. Let A*, B*, C* be the resulting partition. Let A 1
be the set among A* and B* with greater cost, let C = C*, and let B be the remaining
vertices of G. Then A and B have cost not exceeding 2/3 and the theorem is true.

A SEPARATOR THEOREM

This proves the theorem for all planar graphs. In all cases the separator C is
either empty or contained in only one connected componentof G. 0

COROLLARY 2 (J;-separator theorem). Let G be any n-vertex planar graph. The
vertices of G can be partitioned into three sets A, B, C such that ng edge joins a vertex in
A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains
no more than 22vn vertices.

Proof. Assign to each vertex of G a cost of 1/n. The corollary follows from
Theoremd4. O

It is natural to ask whether the constant factor of 2/3 in Theorem 1 can be
reduced to 1/2 if the constant factor of 2v2 is allowed to increase. The answer is yes.

COROLLARY 3. Let G be any n-vertex planar graph having nonnegative vertex
costs summing to no more than one. Then the vertices of G can be partitioned into three
sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B has
total cost exceeding 1/2, and C contains no more than 2\5\/;/ (1 —~/_2/—3) vertices.

Proof. Let G = (V, E) be an n-vertex planar graph. We shall define sequences of
sets (A,), (B)), (C)), (D;) such that:

@i) A, B, C,, D; partition V,

(ii) no edge joins A; with B,, A, with D, or B; with D,

(iii) the cost of A; is no greater than the cost of B; and the cost of B; is no greater
than the cost of A,UC,UD,,

(iv) IDI| 2 2|Di—l|/3-

Let Ag=Bo=Co= @, Dy=V. Then (i)-(iv) hold. If A,_,, B,_:, C',~_l, D;_, have
been defined and D;_, # &, let G* be the subgraph of G induced by the vertex set
Di_,. Let A*, B*, C* be a vertex partition satisfying Corollary 2 on G*. Without
loss of generality, suppose A* has no more cost than B*. Let A; be the set among
Ai_LUA*, B, with less cost, let B, be the set among A,_,UA* B,_, with
greater cost, let C;=C,-,;UC*, and let D, = B*. Then (i), (ii), (iii), and (iv) hold for
A, B, C, D.)

Let k be the largest index for which A., B, C., D are defined. Then D, = .
Let A=A,, B=B,, C=C, By(i), A, B, C partition V. By (ii), no edge joins a vertex
in A with a vertex in B. By (iii), neither A nor B has cost exceeding 1/2. By (iv), the
total number of vertices in C is bounded by

o . V2V
V@3 = = BTN
l.)-_.',02 2Vn(2/3) l—s/f/—S

Another natural question is whether graphs which are “almost” planar have a

n-separator theorem. The finite element method of numerical analysis gives rise to

one interesting class of almost-planar graphs. We shall extend Theorem 4 to apply to
such graphs.

A finite element graph is any graph formed from a planar embedding of a planar
graph by adding all possible diagonals to each face.'(The finite element graph has a
clique corresponding to each face of the embedded planar graph.) The embedded
planar graph is called the skeleton of the finite element graph and each of its faces i, an
element of the finite element graph.

THEOREM 5. Let G be an n-vertex finite element graph with nonnegative vertex
costs summing to no more than one. Suppose no element of G has more than k boundary
vertices. Then the vertices of G can be partitioned into three sets A, B, C such that no
edge joins a vertex in A with a vertex in B, neither A nor B has total cost exceeding 2/3,
and C contains no more than 4|k/2|Vn vertices.

67

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

Proof. Let G* be the skeleton of G. Form G** from G* by inserting one new
vertex into each face of G* containing four or more vertices and connecting the new
vertex to each vertex on the boundary of the face. Then G** is planar. Apply
Theorem 4 to G**. Let A**, B**, C** be the resulting vertex partition. This partition
satisfies the theorem except that certain edges in G but not in G** may join A** and
B**. These edges are diagonals of certain faces of G*; call these bad faces. Each bad
face must contain one of the new vertices added to G* to form G**, and this vertex
must be in C**.

Form G from C™* by deleting all new vertices and adding to G**. for each bad
face, either the set of vertices in A** on the boundary of the bad face, or the set of
vertices in B** on the boundary of the bad face, whichever is smaller. Let A be the
remaining old vertices in A** and let B** be the remaining old vertices in B**, Then
no edge in G joins A and B, neither A nor B contains more than 2n/3 vertices, and C
contains no more than 2v2 {k/2]v'n +a vertices, where a is the number of faces of G*
containing four or more vertices. By use of Euler’s theorem, it is not hard to show that
the number of faces of G* containing four or more vertices is at most n —2. Thus
ICl= lk/ZJ\/;, and the theorem is true. 0O

COROLLARY 4. Let G be any n-vertex finite element graph. Suppose no element of
G has more than k boundary vertices. The vertices of G can be partitioned into three sets
A, B, Csuch that no edge joins a vertex in A with a veriex in B, neither A nor B contains
more than 2n/3 vertices and C contains no more than 4|k/2] Vn vertices.

The last result of this section shows that Theorem 4 and its corollaries are tight to
within a constant factor; that is, if f(n)= o(vn n), no f(n)-separator theorem holds for
planar graphs.

THEOREM 6. For any k, let G = (V, E) be a k x k square grid graph (a k X k square
section of the infinite gnd graph in Fig. 1). Ler A be any subset of V such that
ans|A|Sn/2, wheren = klandaisa positive constant less than 1/2. The the number
of vertices in V-A adjacent to some vertex in A is at least k - min {1/2, \/t_!}

Proof. Without loss of generality, suppose that the number r of rows of G which
contain vertices in A is no less than the number ¢ of columns of G which contain
vertices in A. Then an S|A|Src<r’and r 2+ ak.

Ifrtis the number of rows of G which contain only vertices in A, then kr s|A|l=s
n/2, and r*Sk/2. Let S={xe V: x is adjacent to a vertex of A}. If r*=0, then
IS|zrzVak. If r*#0, thenr=k and |S|Zr-r*=k —r*zkj2. O

It is an open problem to determine the smallest constant factor which can replace
2V2 in Theorem 4.

3. An slgorithm for finding a good partition. The proof of Theorem 4 leads to an
algorithm for finding a vertex partition satisfving the theorem. To make this algorithm
efficient, we need a good representation of a planar embedding of a graph. For this
purpose we use a list structure whose elements correspond to the edges of the graph.
Stored with each edge are its endpoints and four pointers, designating the edges
immediately clockwise and counter-clockwise around each of the endpoints of the
edge. Stored with each vertex is some incident edge. F:gure S gives an example of such
a data structure.

PARTITIONING ALGORITHM,

Step 1. Find a planar embedding of G and construct a representation for it of the
kind described above.

Time: O(n), using the alg. 1of (10]).

= - T ror——

69 :

A SEPARATOR THEOREM

3 2
Vertex incidences Edges and neighbors

€ e, € ¢

= S N E DA DI R

'] . e le]sl=l]
) ' (=] o[e]alalx]
) =] «GLlelel=]1x]
: oGl olalals]
«fsfale]ealeles]

FIG. 5. Representation of an embedded planar graph, (c = clockwise, cc = counter-clockwise.)

Step 2. Find the connected components of G and determine the cost of each one.
If none has cost exceeding 2/3, construct the partition as described in the proof of
Theorem 4. If some component has cost exceeding 2/3, go to Step 3.
Time: O(n) [9].
Step 3. Find a breadth-first spanning tree of the most costly component. Compute
the level of each vertex and the number of vertices L({) in each level /.
Time: O(n).

Step 4. Find the level [, such that the total cost of levels O through /, — 1 does not
exceed 1/2, but the total cost of levels O through I, does exceed 1/2. Let k be the
number of vertices in levels O through /,.

v Time: O(n).

] { Step 5. Find the highest level lp =1, such that L(l, +2(I|—Io)§2\'/z. Fiud the
X lowest level [; =1, +1 such that L(I;)+2(l,=1,-1)=2Vn-k.

' Time: O(n).

Step 6. Delete all vertices on level I, and above. Construct a new vertex -x to
» . represent all vertices on levels 0 through /. Construct a Boolean table with one entry
: per vertex. Initialize to true the entry for each vertex on levels 0 through I/, and

e

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

6
(a)
1
4 5
®©) (1,4), (3:4). (2,6). (2:3), 3:D). (3:6], (3.5), U5)
6
()
0
4 S
F1G. 6. Shrinking a subtree of a planar graph.
(a) Original graph. Subtree denoted by wesese .
(b) Edges sc d 1 subtree. Those forming loops and multiple edges in shrunken graph

are crossed ou!.
(c) Shrunken graph. Vertex O replaces subtree.

initialize to false the entry for each vertex on levels o+ 1 through I>— 1. The vertices
on levels 0 through [, correspond to a subtree of the breadth-first spanning tree
generated in Step 3. Scan the edges incident to this tree clockwise around the tree.
When scanning an edge (v, w) with v in the tree, check the table entry for w. If it is
true, delete edge (v, w). If it is false, change it to true, construct an edge (x, w), and
delete edge (v, w). The result of this step is a planar representation of the shrunken
graph to which Lemma 2 is to be applied. See Fig. 6.

Time: O(n).

Step 7. Construct a breadth-first spanning tree rooted at x in the new graph. (This
can be done be modifying the breadth-first spanning tree constructed in Step 3.)
Record, for each vertex v, the parent of v in the tree, and the total cost of all
descendants of v including v itself. Make all faces of the new graph into triangles by
scanning the boundary of each face and adding (nontree) edges as necessary.

Time: O(n).

Step 8. Choose any nontree edge (v,, w,). Locate the corresponding cycle by
following parent pointers from v, and w,. Compute the cost on each side of this cycle
by scanning the tree edges incident on either side of the cycle and summing their
associated costs. If (v, w) is a tree edge with v on the cycle and w not on the cycle, the
cost associated with (v, w) is the descendant cost of w if v is the parent of w, and the
cost of all vertices minus the descendant cost of v if w is the parent of v. Determine
which side of the cycle has greater cost and call it the “inside”. See Fig. 7.

Time: O(n).

70

71

A SEPARATOR THEOREM

LY - = e e e
b
-

Fi1G. 7. Cycle constructed in Step 8. All vertices have cost .02. Numbers on vertices are descendant costs.
The total cost inside the cycle is 48, outside the cycle is .34, and on the cycle is .18.

Step 9. Let (v, w;) be the nontree edge whose cycle is the current candidate to

" complete the separator. If the cost inside the cycle exceeds 2/3, find a better cycle by
the following method.
- Locate the triangle (v;, y, w:) which has (v;, w;) as a boundary edge and lies inside

the (v, w;) cycle. If either (v,, y) or (y, w;) is a tree edge, let (v;.,, wi.1) be the nontree

edge among (v, y) and (y, w;). Compute the cost inside the (v;+y, wi+1) cycle from the
. cost inside the (v;, w;) cycle and the cost of v, v. and w,. See Fig. 4.

If neither (vi, ¥) nor (y, w;) is a tree edge, determine the tree path from y to the

(v, w;) cycle by following parent pointers from y. Let z be the vertex on the (v;, w;)

cycle reached during this search. Compute the total cost of all vertices except z on this

tree path. Scan the tree edges inside the (y, w;) cycle, alternately scanning an edge in

one cycle and an edge in the other cycle. Stop scanning when all edges inside one of

the cycles have been scanned. Compute the cost inside this cycle by summing the

3 : associated costs of all scanned edges. Use this cost, the cost inside the (v,, w,) cycle,

‘ and the cost on the tree path from y to z to compute the cost inside the other cycle.

) Let (v:i+1, wi+1) be the edge among (v, y) and (y, w;) whose cycle has more cost inside

it

Repeat Step 9 until finding a cycle whose inside has cost not exceeding 2/3.
Time: O(n) (see proof below).

Step 10. Use the cycle found in Step 9 and the levels found in Step 4 to construct a
satisfactory vertex partition as described in the proof of Lemma 3. Extend this
partition from the connected component chosen in Step 2 to the entire graph as

’ { described in the proof of Theorem 4.

Time: O(n).

This completes our presentation of the algorithm. All steps except Step 9
obviously run in O(n) time. We urge readers to fill in the details of this algorithm; we
content ourselves here with proving that Step 9 requires O(n) time.

Proof of Step 9 time bound. Each iteration of Step 9 deletes at least one face from
the inside of the current cycle. Thus Step 9 terminates after O(n) iterations. The total

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

running time of one iteration of Step 9 is O(1) plus time proportional to the length of
the tree path from y to z plus time proportional to the number of edges scanned inside
the (v, ¥) and (y. w;) cycles. Each vertex on the tree path from y to z (except z) is
inside the current cycle but on the boundary or outside of all subsequent cycles. For
every two edges scanned during an iteration of Step 9, at least one edge is inside the
current cycle but outside all subsequent cycles. It follows that the total time spent
traversing tree paths and scanning edges, during all iterations of Step 9, is O(n). Thus
the total time spent in Step 9is O(n). O

By making minor modifications to this algorithm, one can construct an O(n) time
algorithm to find a vertex partition satisfying Theorem 5, and O(n) time algorithms to
find vertex partitions satisfying Corollary 2 and Corollary 4.

4. Applications. The separator theorem proved in § 2 allows us to obtain many
new complexity results since it opens the way for efficient application of divide-and-
conquer on planar graphs. We mention a few such applications here; we shall present
the details in a subsequent paper.

Generalized nested dissection. Any system of linear equations whose sparsity

structure corresponds to a planar or finite element graph can be solved in O(n'*) time
and O(n log n) space. This result generalizes the nested dissection method of George
[s).

Pebbling. Any n-vertex planar acyclic directed graph with maximum in-degree k
can be pebbled using O(~/7:+k log n) pebbles. See [8], [16] for a description of the
pebble game.

The gosr office problem. Knuth's “post office’” problem [11] can be solved in
O((log n)°) time and O(n) space. See [3], [17] for previous results.

Data structure embedding problems Any planar data structure can be efficiently
embedded into a balanced binary tree. See [2], (14] for a description of the problem
and some related results.

Lower bounds on Boolean circuits. Any planar circuit for computing Boolean
convolution contains at least cn’ gates for some positive constant c.

Appendix. Graph-theoretic definitions. A graph G = (V, E) consists of a set V of
vertices and a set E of edges. Each edge is an unordered pair (v, w) of distinct vertices.
If (v, w)is an edge, v and w are adjacent and (v, w) is incident to both v and w. A path
of length k with endpoints v, w is a sequence of vertices v = vg, vy, U3, * *, by = w such
that (v;—s, v;) is an edge for 1 S/ S k. If all the vertices vo, vy, - * -, v -, are distinct, the
pathis simple. If v = w, the path is a cycle. The distance from v to w is the length of the
shortest path from v to w. (The distance is infinite if v and w are not joined by a path.)
The level of a vertex v in a graph G with respect to a fixed root 7 is the distance from r
tov.

If G, =(V\, E:) and G, = (V2, E;) are graphs, G, is a subgraph of G, if V, g V;
and E,c E;. G, is a generalized subgraph of G, if V, < V; and there is a mapping f
from E, into the set of paths of G- such that, for each edge (v, w)e E,, f((v. w)) has
endpoints ¢ and w, and no two paths f((v,, w,)) and f((v2, w;)) share a vertex except
possibly an endpoint of both paths. If G =(V),, E,) is a graph and V, < V,, the graph
G, =(V,, E;) where E, = E:N{(v, w)lv, w € V\} is the subgraph of G, induced by the
vertex set V. If G, = (V), E\) is a subgraph of G, =(V, E;), then shrinking G, t0 a
single vertex in G, means forming a new graph G; from G; by deleting from G, all
vertices in V, and all their incident edges, adding a new vertex x to G,, and adding 2
new edge (x, w) to G, for each edge (v, w)e E, such that ve V, and we V,.

A graph is connected if any two vertices in it are joined by a path. The connected
components of a graph are its maximal connected subgraphs. A clique is a graph such

72

—_

A SEPARATOR THEOREM

that any two vetices are joined by an edge. A Iree is a connected graph containing no
cycles. We shall generally assume that a tree has a distinguished vertex, called a roor. If :
T is a tree with root r and v is on the (unique) simplc path from r to w, v is an ancestor
or w and w is a descendant of v. If in addition (v, w) is an edge of T. then v is the ‘
parent of w and w is a child of v. The radius of a tree is the maximum distance of any
vertex from the root. A spanning tree T of a graph G is a subgraph of G which is a tree
and which contains all the vertices of G. T is a breadth-first spanning tree with respect
10 a root r if, for any vertex v, the distance from r to v in T is equal to the distance
fromrtovin G. :

A graph G =(V, E)is planar if there is a one-to-one map f, from v into points in 3
the plane and a map f; from E into simple curves in the plane such that, for each edge
(v. w)€ E, f2((v. w)) has endpoints f,(v) and fo(w), and no two curves fo((vi, wy)),
fx((v2, w2)) share a point except possibly a common endpoint. Such a pair of maps f;, ,
f: is a planar embedding of G. The connected planar regions formed when the ranges ;
of f, and f; are deleted from the plane are called the faces of the embedding. Each . ‘
face is bounded by a curve corresponding to a cycle of G, called the boundary of the
face. We shall sometimes not distinguish between a face and its boundary. A diagonal
of a face is an edge (v, w) such that v and w are nonadjacent vertices on the boundary
of the face.

Acknowledgments. We would like to thank Stanley Eisenstat, Rich A. DeMillo,
Robert Floyd, Donald Rose, and Daniel Sleator for many helpful discussions and much
thoughtful criticism.

REFERENCES

{1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
2] R. A. DEMILLO. S. C. EISENSTAT AND R. J. LIPTON, Preserving average proximity in arrays,
Georgia Institute of Tech., Tech. Rep., Atlanta, 1976. X
{3] D. DOBKIN AND R. J. LIPTON, Multi-dimensional searching problems, SIAM J. Comput., 5 (1976),
pp. 181-186.
[4) P. ERDOS, R. L. GRAHAM AND E. SZEMEREDI, On sparse graphs with dense long paths, STAN-CS-
75-504, Computer Sci. Dept., Stanford Univ., Stanford, CA, 1975.
{5} J. A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973),
op. 345-367.
{6] D. W. HALL AND G. SPENCER, Elementary Topology, John Wiley, New York, 195S.
|17} F. HARARY, Graph Theory, Addison-Wesley, Reading. MA, 1969.
[8] J. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space. J. Assoc. Comput. Mach., 24
(1977). pp. 332-337.
{9] J. E. HOPCROFT AND R: E. TARJAN, Efficient algorithms for graph manipulation, Comm. ACM, 16
(1973). pp. 372-378.
o) Efficient planarity testing, J. Assoc. Comput. Mach.. 21 (1974), pp. 549-568.
11} D. E. KNUTH, The Ar of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.
[12) C. KURATOWSKL, Sur le probléme des corbes gauches en wpologie, Fund. Math., 15 (1930), pp.

271-283.
' . [13) P. M. LEwis, R. E. STEARNS AND J. HARTMANIS, Memory bounds for recognition of context-free and
l context-sensitive languages. \EEE Conference on Switching Theory and Logical Design, 1EEE,
I New York, 1965, pp. 191-202. ‘
(14] R.J.LIPTON, S. C. EISENSTAT AND R. A. DEMILLO, Space and ime hierarchies for classes of control
' . structures and dara structures,). Assoc. Comput. Mach., 23 (1976), pp. 710-732.
; [15] M. S. PATERSON, Tape bounds for time -bounded Turing machines,). Comput. System Sci.. 6 (1972),
- pp. 116-124.
. . 116} W. 1, PAUL, R. E. TARJIAN AND J. R. CELON, Space bounds for a game on graphs, Maths. Systems
e Theory, 10 (1977), pp. 239-251.

117] M. J. SHAMOS, Problems in computational geomerry, unpublished manuscript.

¢ n e e oo ot e P s na = i
N H "
1 Y T
! THIS DOCT™TNT 15 PEST AUATITY PRACTICABLES
.. THE COPY Vimmiyer—rn wo o CONTAINZED A 74
SIGNIFIC w7 "0 - % W 7mS wICH DO ROT
RV~ .
' APPLICATIONS OF A PLANAR SEPARATOR THEOREM
. » P
Richard J. Lipton—/ Robert Endre Ta.r.jan—/
. Computer Science Department Computer Science Department
! Yale University Stanford University
| i New Haven, Connecticut 06520 Stanford, Celifornia 94305
August 1977
Abstract. efficient approximation algorithm for finding maximum
Any n-vertex planar graph has the property that independent sets in planar graphs to lower bounds on
it can be divided intocomponents of roughly equal size the camplexity of planar Boolean circuits. The last
by removing only O(+n) vertices. This separator section lgentions two additional epplications whose
theorem, in combination with a divide-and-conquer description is too lengthy to be included in this
strategy, leads to many new complexity results for paper.
planar graph problems. This paper describes same of
these results.
2. Approximation Algorithms for NP-Complete Problems.
Divide-and-conquer in combination with Theorem 1
Keywords: algorithm, Boclean circuit complexity, can be used to rapidly find good approximate solutions
divide-and-conquer, geometric complexity, to certain NP-complete problems on planar graphs. As
‘ graph embedding, lower bounds, maximum an example we consider the maximum independent set
.- independent set, non-serial dynamic problem, which asks for a maximm number of pairwise
programming, pebbling, planar graphs, non-adjacent vertices in a planar graph.
-- separator, space-time tradeoffs,
i Theorem 2. Let G be an n-vertex planar graph with
e non-negative vertex costs sumning to no more than one
. and let 0< e <1. Then there is some set C of
. 1. Introduction. 0(rJn7e) vertices whose removal leaves G with no
: One efficient approach to solving computational connected camponent of cost exceeding ¢ . Further-
- problems is "divide-and-conquer" [1]. In this method, ROre the set C can be found in O(n log n) time.
the original problem is divided into two or more
smaller problems. The subproblems are solved by Proof. Apply the following algoritim to G .
i applying the method recursively, and the solutions to .
) the subproblems are combined to give the solution to Initislization: Let C=p.
- the original problem. Divide-and-conquer is especially General Step: Find same connected component K in
. efficient when the subproblems are substantially G minus C with cost exceeding ¢ . Apply
. smaller than the original problem. Corollary 1 to K, producing a partition
i In [14] the following theorem is proved. Ay » By , Gy of its vertices. Let C=CyC .
‘ b sex ol If one of A; eand B, (say A,) has cost
Theorem 1, Let G be any n-vertex planar graph with ,
non-negative vertex costs summing tc no more than one. exceeding two-thirds the co;t of ‘Kd, agp%y "
Then the vertices of G can be partitioned into three Theorem 1 to the subgraph of G induced by the
sets A, B, C, such that no edge joins a vertex in A vertex set A, , producing a partition A, , B,
with a vertex in B, neither A nor B has total c, of Al . Let C= cuc2 .
vertex sj_exceeding 2/3 , and C contains no more 2
than 2\F2 n vertices, Furthermore A, B, C can be Repeat the general step until G minus C has
found in O(n) time. no component with cost exceeding e .
In the special case of equal-cost vertices, this The effect of one execution of the general step
theorem becomes is to divide the component K into smaller components,
each with no more than two-thirds the cost of K and
Corollary 1. Let G be any n-vertex planar graph. each with no more than two-thirds as many vertices
The vertices of G can be partitioned into three sets as K . Consider all components which arise during
A, B, C, such that no edge joins a vertex in A with the course of the algorithm. Assign a level to each
a vertex in B, neither A nor B contains more component as follows. If the camponent exists when
tvn /3 vertices, and C contains no more than the algorithm halts, the component has level zero.
‘ 2424n vertices. Otherwise the level of the component is one greater
than the maximum level of the components formed when
: Theorem 1 and its corollary open the way for it is split by the general step. With this definition,
efficient application of divide-and-conquer to a any two components on the seme level are vertex-
variety of problems on planar graphs. In this paper disjoint.
| e e et or Bach Level one component has cost greater then <,
| { divide-and-conquer. The results range from an since it is eventually split by the general step. Tt
., : Y This research partially supported by the U, S. Army Research Office, Grant No. DAAG 29-76-G~0338.
' -
. L/ This research partially supported by National Science Foundation grant MCS-75-22870 and by the Office of
/ Naval Research contract NOOOlL-76-C-0688,
: ~. Reproduction in whole or in part is permitted for any purpose of the United States govermment.

b, aded

THIS DOCIRP™T IS RFST AUALITY PRACTICABLE.
TEE CODY w0 UL T2 DO OOUTAINED A 75
SIGNITIC/NT N BER OF PAGES WHICH DO ROT

RETRODINCE LFRTELY.

follows that, for i > 1, esch level i component
has cost at least (}/2)1' ¢ and contains at least

(3/2‘)i vertices, Since the total cost of G is at
most one, the total mumber of camponents of level i

1s at most (2/3)14/ €.

The total running time of the algorithm is
O(Z {|x| | X 15 a component split by the general
step]) . Since a component of level i contains at
least (5/.?)1 vertices, the maxismum level k must
satisfy (5/2)k <n,or k< 10;5/2 n . Since

components in each level are vertex-disjoint, the
total running time of the algorithm is
o(n 1055/2 n) = 0(n logn) .

The total size of the set C produced by the
algoritim is bounded by

o(Z (v |K| | X 45 & camponent split by the general

step])
Llog, > B) 2/3 i-1
<ol ¥ owlt®E M
ial =1
L(2/3§'1/€J }
| ny <n and ny >0
J=1
< o i]2{2!1'1 ne
= 12 € @/t

O(Jn/—e 1730 (2/5)‘/2) - o(¥o/e) . O

The following algorithm uses Theorem 2 to find an
approximately maximm independent set I in a planar
graph G = (V,E) .

Step 1. Apply Theorem 2 to G with
e = (log log n)/n and each vertex having
cost 1/n to find a set of vertices C

containing O(n/ylog log n) vertices whose
ramoval leaves no connected component with
more than log log n vertices.

Step 2. In each connected component of G minus C,
find a maximm independent set by checking
every subset of vertices for independence.
Form I a&s & union of maximum independent
sets, one from each camponent.

let I* be a maximum independent set of G . The
restriction of I* to one of the connected components
formed when C 4s removed from G can be no larger
than the restriction of I to the same camponent.

Trus |1%|- |1] « O(n/Yiog log n) . Since G 1is
plenar, G is four-colorable, and |I"l > n/b .

Thus (|1#|-|1})/ |I1*| = O(1/41og log n) , and the
relative error in the size of I tends to gero with

increasing n .
8tep 1 of the algorithm requires O(n log n)

n
time by Theorem 2., Btep 2 requires o(n1 2 1) time
on & connected component of ng vertices. The total

time required by Step 2 is thus

n n, n
Oux{EniZ |En1-n and
i.l

ial
Osnisloglogn =
0| =8 —— (log log n)21% 1o€ n o(n 1
Iog Tog n og log - n log n) .

Hence the entire algorithm requires 0O(n log n) time,

3. Nonserial Dynamic Programming.

Many NP-camplete problems, such as the maximm
independent set problem, the graph coloring problem,
and others, can be formulated as non-serial dynamic
programming problems [2,20]}. Such a problem is of
the following form: minimize the objective function
f(xl,...,)sl) , where f is given as & sum of terms

fk(-) , each of which is a function of only s subset

of the variables., We shall assume that all variables
xg take on values fram the same finite set S, and

that the values of the terms fk(-) are given by

tables, Associated with such an objective function f
is an interaction graph G = (V,E) , containing one
vertex vy for each varigble Xy in £, and an
edge joining x; and x 5 for any two variables x;
and xy which appear in a cammon term fk(-) R

By trying all possible values of the variables,
a nonserial dynamic programming problem can be solved

in 2°() time. We shall show that if the inter-
action graph of the problem is planar, the problem

can be solved in 20() time. This means that

substantial savings are possible when solving typical
NP-complete problems restricted to planar graphs.
Note that if the interaction greph of f is planar,
no term fk(-) of f can contain more than four

varimbles, since the camplete graph on five vertices
is not planar.

In order to describe the algorithm, we need one
additional concept. The restriction of an objective
m
function f= L f, toa set of varisbles
k=1l

xi ,...,xi is the objective function
1 3
£ - '[,[fk | £ depends upon one or more of xil,“"xijl'

Given an objective function f(ﬁ,...,xn) -

m
le f, and a subset § of the varisbles x),...,X,
-

vhich are constrained to have specific values, the
following algorithm solves the problem: maximize £
subject to the constraints on the variables in § .
In the presentation, we do not distinguish between
the variables XyreenrXy and the corresponding

vertices in the interaction graph.

Step l. If n <9, solve the problem by exhaustively
trying all possible assigmments to the
unconstrained varisbles. Otherwise, go to
Step 2.

b e il

v e

TIOVALITY PRACTY N BLk.

SEERGDUCL LESLSLY.

Step 2. Apply Corollary 1 to the interaction gragh
G of £ . Let A,B,C be the resulting

vertex partition, Let fl be the restric-

tionof £ to AUC and let 1‘2 be the

restriction of £ to BUC . For each
possible assigmment of values to the
variables in C-S , perform the following
steps:

(a) Maxdimize fl with the given values for

the variables in CyS by applying the
method recursively;

(v) Maximize f, vith the given values for

the variables in CyS by applying the
method recursively;

(¢) Combine the solutions to (a) and (b) to
obtain a maximm value of f with the
given values for the variables in CyS.,

Choose the assigmment of velues to variables
in C-S which maximizes f and return the
appropriate value of f as the solution.

The correctness of this algoritim is pbvious. If

n » 9, the algorithm solves at most 20(n) sub-
problems in Step 2, since C is of O(w/;) size.
Each subp 3_1@ contains at most

2n/3 + a¥2yn < 29n/30 variables. Thus if t(n) 4s

the running time of the f.gorithm, we have
t(n) < 0(n log n)+2o(n) «t(29n/30) if n>9,
t(n) = 0(1) if n< 9. An inductive proof shows

o(vn)

that t(n) <2

L, Pebbling.

The following one-person game arises in register
allocation problems (21}, the conversion of recursion
to iteration [16], and the study of time-space trade-
offs {4,10,18]. let G = (V,E) be a directed acyclic
graph with maximm in-degree k ., If (v,w) is an
edge of G, v is a predecessor of w and w is a
successor of v . The game involves placing pebbles
on the vertices of G according to certain rules.

A glven step of the game consists of either placing a
pebble on an empty vertex of G (called pebbling the
vertex) or removing a pebble fram a previously pebbled
vertex. A vertex may be pebbled if all its
predecessors have pebbles. The object of the game is
to successively pebble each vertex of G (in any
order) subject to the constraint that at most a given
number of pebbles are ever on the graph simultaneously.

Jt is easy to pebble any vertex of an n-vertex
graph in n steps using n pebbles. We are
interested in pebbling methods which use fewer than n
pebbles but possidbly many more than n steps, It is
known that any vertex of an n-vertex graph can be
pebbled with 0O(n/log n) pebbles [10] (where the
constant depends upon the maximum in-degree), and that
in general no better bound is possible (18], We shall
show that if the graph is planar, only 0(\’5) pebbles
are necessary, generalizing a result of {18]. an
example of Cook [L] shows that no better bound is
possible for planar graphs.

Theorem 3, Any n-vertex planar acyclic directed
&ra) th maximmm in-degree k can be pebbled using
o(von + k log, n) pebbles,

Proof. let Qw2V2 and B=2/3, let G be the
graph to be pebbled, Use the following recursive

TIR OF PAGES Wi

V R v e - .

N TN

LJH DO NOT 76

pebbling procedure, If o < ng , where

B, (az/(l-ts))2 , pebble all vertices of G without
deleting pebbles. If n > oy » find & vertex
partition A, B, C satisfying Corollary 1. Pebble

the vertices of G 4in topological order.:/ To pebble
a vertex v , delete all pebbles except those on C .
For each predecessor u of v, let G(u) be the
subgraph of G induced by the set of vertices with
pebble-free paths to u ., Apply the method recursjively
to each G(u) to pebble all predecessors of v,
leaving a pebble on each such predecessor. Then
pebble v . '

If p(n) is the maximum number of pebbles
required by this method on any n-vertex graph, then

p(n) = n
p(n) < aVn + k + p(en/3 + avn) if n>n,.

if n<n, o

An f_nductive proof shows that p(n) is
o(vn + klog, n) . O

It is also possible to obtain a substantial
reduction in pebbles while preserving a polynomial
bound on the number of pebbling steps, as the
following theorem shows.

Theorem L, Any n-vertex planar acyclic directed
graph with maximm in-degree k can be pebbled using

o(n"/3+k) pebbles in o(kn5/3) time.

Proof, Let C be a set of 0(n2/3) vertices whose
removal leaves G with no weakly connected

»/ 2/3

component containing more than n vertices,
Such & set C exists by Theorem 2. The following
pebdling procedure places pebbles permanently on the
vertices of C . Pebble the vertices of G in
topological order. To pebble a vertex v , pebble
each predecessor u of v and then pebble v . To
pebble a predecessor u , delete all pebbles from G
except those on vertices in C or on predecessors
of v . Find the weakly connected component in G
minus C containing u . Pebble all vertices in
this camponent, in topological order.

The total number of pebbles required by this
strategy is o(n2/ 5) - to pebble vertices in C plus

n2/ 3 to pebble each weakly connected component plus
k to pebble predecessors of the vertex v to be
pebbled, The total number of pebbling steps is at

most 0(ken-n??) = o(®’?) . O

5, lower Bounds on Boolean Circuit Size.

A Boolean circuit is an acyclic directed graph
such that each vertex has in-degree gzero or two, the
predecessors of each vertex are ordered, and
corresponding to each vertex v of in-degree two is
a dinary Boolean operation bv . With each vertex of

the circuit we associate a Boolean functiom which the
vertex computes, defined as follows. With each of
the k vertices v, of in-degree gero (inputs)

Y That is, in an order such that if v is a
predecessor of w, Vv is pebbled before w .

ﬂ A weakly connected component of a directed graph
is a connected component of the undirected graph

formed by ignoring edge directions.

Le i

PP

o .

we associate a varisble x; and an identity fmction

fv (’1) -x . With each vertex w of in-degree two
i

having predecessors u, v we associate the function
T, = bv(t“, !‘v) . The circuit camputes the set of

functions associated with its vertices of out-degree
zero (outputs).

We are interested in obtaining lower bounds on
the size (number of vertices) of Boolean circults
which campute certain common and important functions.
Using Theorem 1 we can obtain such lower bounds
under the assumption that the circuits are planar.

Ay circuit can be converted into a planar circuit by
the following steps. First, embed the circuit in the
plane, allowing edges to cross if necessary. Next,
replace each pair of crossing edges by the crossover
circuit illustrated in Figure 1. It follows that any
lower bound on the size of planar circuits is alsc &
lower bound om the total number of vertices and edge
crossings in any planar representation of a nan-planar
circuit. In a technology for which the total mmber
of vertices and edge crossings is a reasonable measure
of cost, our lower bounds imply that it may be
expensive to realize certain commonly used functions
in hardware.

A superconcentrator is an acyclic directed graph
with m inputs and m outputs such that any set of
k inputs and any set of k outputs are joined by k
vertex-disjoint paths, for all k in the range
l<k<nm.

Theorem 5. Any m-input, m-output planar supercon-
centrator contains at least m2/72 vertices,

Proof. let G be an m-input, m-output planar
superconcentrator. Assign to each input and output

of G a cost of 1/(2m) , and to every other vertex
a cost of zero, let A, B,C be a vertex partition
satisfying Theorem 1 on G (ignoring edge directions),
Suppose C cantains p I1nputs and outputs. Without
loss of generality, suppose that A 1s no more costly
than B, and that A contains no more outputs than
inputs. A contains between 2m/3 - p and m - p/2
inputs and outputs. Hence A contains at least

®/3 - p/2 inputs and at most m/2 - p/k outputs,

B contains at least m-p- (m/2 - p/L) = m/2 - 3p/k
outputs., Let k = min{(m/3 - p/217,Tm/2 - 3p/41} .,
S8ince G 4s & superconcentrator, any set of k
inputs 4in A and any set of k outputs in B are
Joined by k vertex-disjoint paths, Each such path
must contain & vertex in C which is neither an

in nor an output., Thus

2J2¥n - p > min{w/3 - p/2,m/2 - 3p/4} > n/3 -p,
anl n > of/72. O

The property of being a superconcentrator is a
1little too strong to be useful in deriving lower
bounds on the camplexity of interesting functions.
However, there are wesker properties which still

require n(ne) vertices, let Gw (V,E) be an
acyclic directed graph with m mumbered inputs

Vs VpreserVy and m numbered outputs '1"2"""m .

G is said to have the shifting property if, for any
kK in the range 1 <k<m, any { Iin the range

0 < f <m-k, and any subset of k sources
[vil'”"vik} such that 11, eeni, Smet, there

are k vertex-disjoint paths joining the set of
inputs {v; y...,v;] with the set of outputs
1 k

(vil"' .'.’vik"] .

PRV

s 1A DO NOR -
JRNCOI Ly

Theorem €. Let G be & planar acyclic directed
graph with the shifting property. Then G contains

at least Lu/2J2/162 vertices.

Proof. Suppose that G containg n vertices,
Assign & cost of 1/m to each of the first |m/2]
inputs and to each of the last |m/2) outputs

of G, and a cost of zero to every other vertex

of G . Call the first |m/2] d4nputs and the last
Lm/2) outputs of G costly. let A,B,C bea
vertex partition satisfying Theorem 1 on G
(ignoring edge directions).

Without loss of generality, suppose that A 1is
no more costly than B, and that A contains no
more costly outputs than costly inputs. Let A’ be
the set of costly inputs in A, B' the set of
costly outputs in B, p the mmber of costly
inputs and outputs in C, and q the number of
costly inputs and cutputs in A , Then
2 m/2)/3 -p < ¢ < |w/2) - p/2 . Hence

A"l > o/2 > m/2)/5 - p/2 . Also

jarleier] > |af-(Lw/2) - p - (a- AT

o/2 - (Lw/2) - p - g/2)

> (Lm/2)/3 - p/2)(\w/2) - p -
Lm/2 /3 + p/2)

(Lm/2)/3 - p/2)(2\m/2,/3 - p/2)

2\ n/2)%/q - plu/2)/2 .

v

tv

For vizA' » chB‘ , and ¢ in the range

1<e<|m/2), call v, W, ! @ match if

J-i = 1 . For every vieA' and wJeB‘ there is
exactly one value of { which produces a match; hence
the total number of matches for all possible Vi "_1 N
t 1s |a'|-(B'| 2 2Lm/2_|2/q~ p|m/2]/2 . since
there are only |m/2] values of ¢ , some value of
t produces at least 2|m/2)/q - p/2 matches. Thus,
for k= 2{m/2]/q - p/2 , there is same value of 1

add same set of k inputs A" = {vil'viz"“'vik} c
A' such that B" .- {vil”,viaﬂ,...,vik”] cB .
Since G has the shifting property, there must be k
vertex-disjoint paths between A" and B" . But each
such path must contain @ vertex of C which is
neither an input nor an output. Hence

2\2vn - p > 2\m/2)/q - p/2 , and
n > |m2,%162. O

A shifting circuit is a Boolean circuit with m
primary inputs x)."?’”"xm , zero or more susiliary
inputs, and m outputs 2yrZyreensZy s such that, for

any k in the range O < k < m, there is some
assignment of the constants O, 1 to the auxiliary
inpute so that output 2341 computes the identity

function x; , for 0<4 <m-k, The Boolean
convolution of two Boolean vectors ("1"9' ve .,xm)
and (yl,ye, . .,ym) is the vector (22, Zyyenes z?m)

glvenby ¢, = 14.12 . Xy, .

Corollary 2. Any planar shifting circuit has at
least Lm/2J2/162 vertices.

Proof. Any shifting circuit has the shifting
property. See [23,2k]. O

Corollary 3. Any planar circuit for computing
Boolean convolution has at least Lm/2J2/162
vertices.

Proof, A circuit for camputing Boolean convolution
c a shifting circuit if we regard xl,...,xm as the

primary inputc and z as the outputs. (O

2"“'2111"’1

Corollary 4, Any planar circuit for computing the
product of two m bit binary integers has at least

L m/2] /162 vertices.

Proof. A circuit for multiplying two m-bit binary
integers is a shifting circuit. O

N

The last result of this section is an f(m)
lower bound on the cize of any planar circuit for
multiplying two mxm Boolean matrices, We shall
assume that the inputs are Xi5 0 ¥y for 1<4,j<m
and the outjputs are 244 for 1<i,j<m. The
circuit computes Z = X.Y , where Z = (zij) R
X = (xij\ , and Y = (yij) . We use the following
property of circuits for mudtiplying Poolean metrices,
celled the matrix concentration property (23,2L]., For

any k in the range 1 <k < n2 , any set
(xi j]1<r<k} of k inputs from X, and ary
r'r

permutation ¢ of the integers one through n , there
exist k vertex-disjoint paths from
{rr|l<r\k] to {ZicJ\ll r<kj.
Similarly, for any k in the range 1 <k < n2 , any

set [yij i< r<k} of k inputs from Y, and
r'r
any permutation ¢ of one through n , there exist k

vertex-disjoint paths from (y; 4 [1<r<k} to
rr

{zo(ir)‘jr |1<r<k}.

Theoren 7. Any planar circuit G for multiplying two

mxm Boolean matrices contains at least om vertices,
for some positive constant c¢ .

Proof. This proof is somewhat involved, and we make
no attempt to maximize the constant factor. Suppose
G contains n vertices, and that m 1s even,

Assign a cost of 1/(%2) to each input Xy and
each input Vijr @ cost of 1/(2m2) to each output
zy 5° and a cost of zero to every other vertex. There

is a partition A, B, C of the vertices of G such
that neither A nor B has total cost exceeding

1/2 , no edge joins a vertex in A with a vertex

in B, and C contains no more than

2\/5&/;/ @-42/3) = cls/; vertices. This is &
corollary of Theorem 1; see [1L], Without loss of
generality, suppose that B contains no fewer outputs
than A, and that A contains no fewer inputs X4
thnn inputs yiJ . Then B contains at least

(n - clwf-)/E outputs, which contribute at least

THYE PO 717w e nmsn AT T Ty PRAATTOARLE, 78

1/ - cl~f;/(hm2) to the cost of B . Thus inputs
contribute at most 1/L - cls/;/(th)

of B, and B contains at most metc

to the cost

1\/_ inputs.

A contains at least 2u° - (m ‘e Icy! -clf; =
-201\/; inputs, of which at least m /2 - c J-

are inputs Xy One of the following cases must
hold.

Case 1. A contains at least }m?/S inputs X5
Let p be the numder of columns of X which contain
at least Lm/7 elements of A . Then

pm+ (m-p) (bw/7) > 3m?/5 , and p >m/15 .

the number of columns of Z which contain at least

Let q be

Lm/y elements of B . Then qu+ (m-q){im/q' >
ns - cl'/;/E , and q >m/10 - 9c1\rr;/(10m)
Let k= min{n/15,m/10-9c;Vn/(10m'} . Choose

any k coluzns of X , each of which contains at
least Lm/7 elements of A . Match each such columy
2f X with a column of Z which contains at least
km/9 elements of B . For each pair of matched
columns X,y » Z, select a set of lm/7+kn/Y-m =
" is in A and z”. is
in B ., Such a selection gives a set of km/t3
elements in X~ A @and a set of Ikm/c% elements in
Z"R which must be joined by km/c3 vertex-disjoint
raths, since (has the matrix concentration property.
Each such path must contain a vertex ot‘ C . Thus

/3 < e \/— which means either n /(15 3 <
clwl; (1 e., (m /(15-03(:)) <nor

m/¢3 (n 10 - 9cl\/—/(10m)\ <ec J_ (i.e.,

(m /(9- 09c M2 <n).

m/t* rows { such that x

Case 2, A contains fewer than }m /5 inputs x,
Then A contains at least 2w /S - 2y Vo inputs
Let S be the set of m/2 col\mns of Z which

e

ij :
contain the most elements in B ,
Subcase 2a. S contains at least 3m2/10 elements

in R, Let p be the number of columns of X which
contain at least Um/9 elements of A . Then

m+ b(m-p)m/9 > m2/2 -y o,

P > /10 - 9cl\/-/(5m) let g be the number of
columns of Z which contain at least Lm/7 elements
of B. Then agu+L{m/2 - Q'm/T > 5m2/10 , and

q > m/30 . A proof similar to that in Case 1 shows
that n > cm for some positive constant c .

Subcase 2b. S contains fewer than sz/lo elements
in B . Then the m/2 columns of Z not in S
contain at least mE/S - clw/;/e elements in B . Let

q be the number of columns of Z not in S which
contain at least m/10 elements in B . Then

@+ (n/2 - q)(m/10) > m2/5 - clJ—/2 , and

q 2 8/6-5¢,V8/(9m) . If 0>q2m/6 - 5c,Vn/(%m),
then (}m /(10c))2 >n . Hence assume q > o . Then
all columns in S must contain at least m/10

elaments in B, and 2m/3 - Sclﬁl_/(al) columns of

s L A AUNATEAS €3 4 33 - ik b e e

T

AT ke e e

Z must contain at least m/10 elements in B .

Let p be the pumber of columns of Y which
contain at least m/25 elements of A . Then

pe+ (m-p) (m/25) > /5 - 2c1~/; , and
p > 3m/8 - 25¢,Vn/(12m) .

For any input yij ¢ A and integer ¢ in the

range -n+l < f <n-1, call yij’ 1 a nmatch if

"ht,J eB .
at least 2m/3 - Sclﬁ/(%) + 3m/8 -25cl'\/;/(12m) -m
- m/25 - 9’5Cl\/;/()6m) = m/25 - cl\/’;/m columns j
such that y,, contains m/25 elements of A and
L contains m/10 Each such
column produces m2/250 matches; thus the total
nuzber of matches is at least m5/6250 - mclsfrT/QSO .

same value

By the previous computations, there are

elements of B .

Since there are only 2m-1 values of !,
of ¢ produces at least k = m2/12,500 - c2\/x_1/500

matches. Since G has the matrix concentration
property, this set of matches corresponds to a set of
k elements in YNA and & set of k elements in
ZNnB which must be joined by k vertex-disjoint
paths. Each such path must contain a vertex in C .

Thus k < cl~/;, which means
L
B'/(12,500(c; + ¢,/500))° < n .

In all cases n > cmh for some positive constant
¢ . Choosing the minimum ¢ over all cases gives the
theorem for even m . The theorem for odd m follows
immediately. (O

The bounds in Theorems 5 -7 and Corollaries 2 - L

are tight to within a constant factor. We leave the
proof of this fact as an exercise,

6. FBmbedding of Data Structures.

Let Gy = (V),E)) and G, = (V,,E;) be

An embedding of Gl in G2 is a
one-to-one map #: Vl - V2 . The worsi-case proximity
of the embedding 1s max{d,(B(v}, #(v)) { (vwieE],
where d.a(x, y) denotes the distance between x and
y in 62 . The average proximity of the embedding is

Téll—| z [dz(ﬂ(v),ﬂ(v)) | {vsvle H] . ‘These notions
arise in the following context. Suppose we wish to
represent some kind of data structure by another kind
of data structure, in such a way that if two records
are logically adjacent in the first data structure,
their representations are close together in the second.
We can model the data structures by undirected graphs,
with vertices denoting records and edges denoting
logical adjacencies. The representation problem is
then a graph embedding problem in which we wish to
minimize worst-case or average proximity. See
{5,13,19] for research in this area.

undirected graphs.

Theorem 8. Any planar graph with maximum degree k
can be embedded in a binary tree so that the aversge
proximity is a constant depending only upon k .

Proof, let G be an n-vertex planar graph. Embed G

Ih a dinary tree T by using the following recursive
procedure.

If G has one vertex v , let T be the

PRMRETR TG RROm ATATYTY PP ANTICABLE,

oo T T

- ~ .u‘v‘- v - o 4
<ol LT DULETL OF FaGls widlCH DQ NOT 7
m;\oh:vﬁ T WIITRT ’ -

\ODUCE LEGIBLY L

method recursively.

1o

T A

tree of one vertex, the image of v .

Otherwise, apply
Corollary 1 to find a partition A, B, C of the

vertices of G ., Let v be any vertex in C (if C
is empty, let v be any vertex). Embed the subgraph
of G induced by AyC-{v] in a binary tree ‘I‘l by

applying the method recursively. BEmbed the subgraph of
G induced by B 4n a binary tree 'I‘2 by applying the

Let T consist of a root (the

imege of v) with two children, the root of 'I‘l and
the root of '1‘2 . Note that the tree T consgpucted
in this way has exactly n vertices.

Let h(n) be the maximum depth of a tree T of
n vertices produced by this algorithm., Then

h(n) <9 if n<9,

n(n) < h(2n/3 + 24240 - 1) < k(29730

if n>9.,
1t follows that h{n) is 0(log n) .

let G = (V,E) be an n-vertex graph to which the
algorithm is applied, let Gy be the subgraph of G

induced by AQYC , and let G2
by B. If s5(G)=2 [dz{w(v),ﬂ(w)) | (v,w) ¢ E}, then
s(G) =0 if n=1, and

5(6) < s(G)+s(G +k[Clh(n) 4f n>1. This
follows fram the fact that any edge of G not in G

be the subgraph induced

1
or 02 must be incident to a vertex of C .

If s(n) is the maximum value of s(G)
n-vertex graph G , then

for any

s(1) = 0 ;

s(n) < max{s(i)+ s(n-i)*ck\/; log n |
n/5 - 2¥2vn < 1 < 2n/3 « 2V2n)

if n >1, for some positive constant c¢.

An inductive proof shows that s(n) is O{kn) .

If G is a connected n-vertex graph embedded by
the algorithm, then G contains at least n-1 edges,
and the average proximity is O(k) . If G 4is not
connected, embedding each connected component
separately and cambining the resulting trees
arbitrarily achieves an O(k) average proximity. O

It is natural to ask whether any graph of bounded
degree can be embedded in a binary tree with 0O(1)
average proximity. (Graphs of unbounded degree cannot
be so embedded; the star of Figure 2 requires ((log n)
proximity.) Such is not the case, and in fact the
property of being embeddable in a binary tree with
0(1) average proximity is closely related to the
property of having & good separator.

To make this statement more precise, let S be a
class of graphs. The class S bas an f(n) -separator
theorem if there exist constants a <1, 8 >0 such
that the vertices of any n-vertex graph in S can be
partitioned into three sets A, B, C such that
m, [B] < an , |{c| < Bf(n), and no vertex in A 1is

acent to any vertex in B .

let S be any class of graphs of bounded degree

closed under the subgraph relation (i.e,, if Gy€ 8

and G, is a subgraph of G, then G, ¢§) Suppose
S satisfies an ng(n)/(log n)2 separator theorem for

some non-decreasing function g(n) . Using the idea
in the proof of Theorem 8, it is not hard to show that
any graph in S can be embedded in a binary tree with
0(g(n)) average proximity. Conversely, suppose any
gréph in a class 5 can be embedded in a binary tree
with 0(g(n)) average proximity. Then § satisfies
an ng(n)/log n separstor theorem. In particular, if
S satisfies no o(n) -separator theorem, then
embedding the graphs of S 1in binary trees requires
(log n) average proximity. ErdSs, Graham, and
Szemerédi [7] have shown the existence of a class of
graphs of bounded degree having no o(n) -separator
theorem,

7. The Post Office Problem.

In [11], ¥nuth mentions the following problem:
given n points (post offices) in the plane;
determine, for any new point (house), which post
office it is nearest, Any preprocessing of the post
offices is allowed before the houses are processed,

Shamos [22] gives an 0(log n) -time, 0(n2) -space

algorithm and an 0O((log n)2) -time, O(n log n)
-space slgorithm. See also [6]. Using Theorem 2

we can give a solution which requires 0(log n) time
and O(n) space, both minimm if only binary
decisions are allowed.

A polygon is a conpected, open planar region
vounded by a finite set ¢f line segments. (For
convenience, we allow the point at infinity to be an
endpoint of & line segment; thus a line is & line
segment.) A polygon partition of the plane is a
partition of the plane into polygons and bounding line
segments. A triangulation of tbe plane is a polygon
partition, all of whose polygons are bounded by three
line segments. A triangulation of a polygon partition
is a refinement of the partition into a triangulation.
Two polygons in & polygon partition are adjacent if
their boundaries share a line segment. A set of
polygons is connected if any two polygons in the set
are joined by a sequence of adjacent polygons.

We shall solve the following triangle problem:
given an netriangle trianguletion and a point,
determine which triangle or line segment of the
triangulation contains the point. The post office
problem can be reformulated as triangle problem; the
set of points closest to each post office forms a
polygon (22]., We shall make use of the following
lemma, which we do not prove,

Lemma 1. Any n-polygon partition has a refinement
whose total number of triangles is bounded by n plus
the number of line segments bounding non-triangles
plus a constant (a line segment bounding two non-
triangles counts twice in this bound).

We shall build up a sequence of more and more
complicated (but more and more efficient) algorithms,
the last of which 18 the desired one.

Theorem 9. Given an O(log n) -time, o(nl“) -gpace
algorithm for the triangle problem with ¢ > O, one
can construct an O(log n) -time, o(nl'z‘/a) -space
algorithm.

Proof. Let T be a triangulation and v bve a

vertex for which the triangle problem is to be solved.
By Theorem 2 there is a set of 0(n2/3) triangles Co
vhose removal from T leaves no connected set of more

than o(n2/3 } triangles.

~yoson o e

, N
CL bk A

. eich DO MO 80

rloaled

Merge pairs of adjacent triangles which are not
in C0 to form a polygon partition PO . Po
containsg at most O(n2/ 5) line segments, since each
such line segment must be a bounding segment of a
triangle in T . Find a triangulation To of Po

with 0(n2/3) triangles, which exists by Lemma 1,
Using the given algorithm, determine which triangle or
line segment of To contains v ,

If v 1s in some triangle of co ; the proplem

is solved, Otherwise, v is known to be in same
connected set C:l of triangles in T minus C. .

Merge pairs of adjacent triangles which are not in Ci
to form a polygon partition !»’i . Since P1 contains
at most 0(n%/>) line segoents, there is & trisngula-
tion Ti of Pi with 0(n2/3) triangles. Using the

given algorithm, determine which triangle or line
segment of Ti contains v . This solves the problem.

The sets C; , polygon partitions Pi , and
triangulations Ti are all precumputed., Thus the
time required by the algorithm is 0(log n2/ 3) to
discover which triangle of 'rO contains v , plus
0(1og n2/3) to discover which triangle of Ty
contains v . The total time is thus O(log n) . The
total space is o(f, 1% < om*2</3y | o

Corollary 5. For any ¢ > O there is an 0(log n)
-time, O(nl‘e) ~-space algorithm for the triangle
problem.

Proof. Immediate fram Theorem 9, using the O(log n)
~time, 0(n2) -space algorithm of [22] es a starting
point, O

Theorem 10. There is an O(log n) -time, O(n) -space
solution to the triangle problem.

Proof. Let T be a triangulation and v a vertex
for which the triengle problem is to be solved. If T
contains no more than ny triangles, where ng is a

sufficiently large constant, determine which triangle
contains v Dby testing v against each line segment
bounding a triangle of T ., Otherwise, let C bve a

set of O(na/s) triangles whose removal from T

leaves no connected set of more than O(nh/s)
triangles. Group the connected sets of triangles in

T minus co into sets Ci , each containing within a
constant factor of n triangles.

Merge pairs of adjacent triangles which are not
in Co to form a polygon partition Po . PO

contains at most O(nj/s) line segments. Find a
triangulation T, of F, with o(n:'/s) triangles.

Using an O(log n) -time, 0(n7 } -space algorithm,
determine which triangle of To contains v .

If v is same triangle of Co ,» the problem is
solved, Otherwise v {s known to be in same set Ci .
Merge pairs of adjacent triangles which are not in C1
to form a polygon partition F1 . Each line segment
bounding a non-triangular polygon of Py wust bound a
triangle of Co ., Thus there is a trianguio*ion ‘K‘1

cemi

of F; containing |c1|+o(n5/5) triangles. Apply

the algorithm recursively to discover which triangle
of Ty contains v . This solves the problem,

The sets Ci , polygon partitions l»"1 , and
triangulations T, are all precamputed. If t(n)

is the worst-case time required by the algoritim on an
g-triangle triangulation, then

t(n) =« O if ng<ny »
t(n) = t(O(nl‘/s)) +0(log n) otherwise,
Ar inductive proof shows that t(n) is 0(log n) 1f

r.. 1s chosen sufficlently large.

1f s(n) is the worst-case storage space
required by the algorithm on an n-triangle triangula-
tion, then

s(t) = 0(1) o !

s(n) < 0(n7/lo)+max{z s(ni+0(n3/5)) 1z n, <n

if n<n

and clnl‘/s' <n; & cenu/s]

and ¢

for same positive constants ¢ o

An inductive proof shows that s(n) 4s o(n) . O

The preprocessing time required by the algorithm
of Theorer: 10 is O(n log n) . See [22]. We do not
advccete this algorithm es a practical one, but its
existence suggests that there may be a practical
algorithm with an O{log n) time bound and 0O(n)
space bound,

£, other Applications.

As illustrated in this paper, Theorem 1 and its
ccrollaries have many interesting applications, and
the paper does not exhaust them., We have obtained two
additional results which require fuller discussion
than is possible here. One is the application of
Theorem 1 to Gaussian elimination. George [8] has

jro;~ced an O(n log n) -space, O(nj/z) -time method
of carrying out Gaussian elimination on a system of
equations whose sparsity structure corresponds to a
f?lux n square grid. We can generalize his method so
that it applies to any system of equations whose
sparsity structure corresponds to a planar or almost-
planar graph. Such systems arise in the solution of
two-dimensional finite-element problems [15]., We
shall discuss this application in a subsequent paper;
we hope that it will prove of practical, as well as
theoretical, value,

Another application involves the power of non-
1ecerrinism in one-tape Turing machines. We can prove
tnat any non-deterministic t(n) -time-bounded one-

*aje Turing machine can be simulated by a t(n)7
alternating one-tape Turing machine with a constant

- arer nf alternations, where y < 1 is a suitable
‘ons*ant and t{n) satisfies certain reasonable
res*ri~%ions. Alternation generalizes the concept of
cr-ieterminimm and is discussed in [3,12), Our

<* s*rengthens Paterson's space-efficient

».. ea*, v f one-tape Turing machines {17].

rec

X LU BOT 81

References,

(1}

[2]

(3]

(4]

(51

(6]

{7]

18]

[9]

[10]

1)

[12)

(13]

(18]

[15]

(16]

(17)

(18]

(19]

. [20}

[21]

A. V. Aho, J. E. Hopcroft, and J. D, Ullman,

The Design and Analysis of Efficient Camputer

Algorithms, Addison-Wesley, Reading, Mess., 197k.

U. Bertele and F. Brioschi, Nonserial amic
Programming, Academic hess,Trm-E%?T

A. K. Chandra and L. J. Stockmeyer, "Alternation,"
Proc. Seventeenth Annual Symp. on Foundations of
Computer Science (1976), 9‘&%08.

S. A. Cook, "An observation on time-storage
trade-off," Proc, Fifth Annual ACM Symp. on
Theory of Computing (1973), 29-33.

R. A. DeMillo, S. C. Eisenstat, and R. J. lipton,
"Preserving ‘average proximity in arrays,” School
of Information end Computer Science, Georgia
Institute of Technology (1976).

D. Dobkin and R, J. Lipton, "Multidimensicnal

searciing problems,” SIAM J. Camput. 5 {2976),
181-186.

P. Erdds, R. L. Graham, and E. Szemerédi, "On
sparse graphs with dense long paths,"
STAN-CS-75-50L, Computer Science Dep*
University (197°).

J. A. George, "Nested dissection of a regular
finite element mesh,” SIAM J. Numer. Anal. 10
(1973), 345-363.
L. Goldschlager, "The monotone and planar circuit

value problems are log space complete for P,"
ACM SIGACT News 9, 2 (1977), 25-29.

J. Hopcroft, W, Paul, and L. valiant, "On time
versus space," Journal ACM 2k (1977), 332-337.

D. E. Knuth, The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley,
Reading, Mass., 1973.

D. Kozen, "On parallelism in Turing machines,"”
Proc. Seventeenth Annual S . _on Foundations of
Computer Science {1976}, ©9-97.

R. J. lLipton, S. C. Elsenstat, and R. A. DeMillo,
"Space and time hierarchies for control
structures and data structures,” Jourral ACM 23
(1976), 720-732.

R. J. Lipton and R. E. Tarjan, "A separator
theorem for planar graphs," to appear.

H. C. Martin and G. F. Carey, Introduction to
Finite Element Analysis, McGraw-Hill, New York,
1973.

M. S. Paterson and C. E, Hewitt, "Comparative
schematology," Record of Project MAC Conf, on
Concurrent Systems and Parallel Computation
(1970), 119-128,
M. S. Paterson, "Tape bounds for time-bounded
Turing machines,” Journal Computer and System
Sciences 6 (1972), 116-12L,

W. J. Paul, R. E. Tarjan, and J. R, (loni,
"Space bounds for a game on graphs," Math,
Systems Theory 10 (1977), 239-251.

A. L. Rosenberg, "Managing storage for extendible
arrays,” SIAM J, Comput. L (1975), 287-306.

A. Rosenthal, "Nonserial dynamic programming is
optimal," Proc. Ninth Annual ACM Symp. on Theory

Stanford

of Computing (1977, 98-105.
R. Sethi, "Complete register sllocation problems;
SIAM J. Comput. b (1975), 226-218.

— ‘-—————l——m
e 1
=y

82

[22] M. J, Shamos, "Geometric camplexity," Proc.

Seventh Annhual ACM Symp. on The of C 121
(19755; 22L-233,

{23] L. G. valiant, "On non-linear lower bounds in
computational complexity," Proc. Seventh Annual
ACM Symp. on Theory of Computing (1975), 45-53.

[24] L. G. valiant, "Graph-theoretic arguments in
low-level camplexity,” Computer Science Dept.,
University of Edinburgh (1977).

Figure 1. Elimination of a crossover by use of three "exclusive or" gates,
Reference (9] contains a crossover circuit which uses only "and" 4

and "not",

Figure 2. A star.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dals Entered)

REPORT DOCUMENTATION PAGE BEFORE COUPL BTt oY

1. REPORT NUMBER 2. 30VY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
- .

AkIT-1C5-79/12

& TITLE (end Subtitle) s.ég; OF REPORT & PERIOD COVERED
9) Final
& Combinatorial Graph Embedding » |] =)""&P S ¢

6. PENTORMING-ORG- REPORT MUMBEN

7. AUTHORC(s) a. NTHACT OR GRANT JUMBER(s)
(‘ r
\Ol R.A./DeMi]'lo s.c./ Eisenstat R.J/Lipton { AG29- 76538
il - o - e e oLt e oA g]
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Georgia Institute of Technology AREA S oRE ST oM
School of Information and Computer Science le 9 s’/’
Atlanta, Georgia 30332 - LA B
11, CONTROLLING OFFICE NAME AND ADORESS REPCRT DATE--- . “ay
U. G&. Army Research Nffice iy o C P
F. 5. Box 10211 -

Research Triangle Fark, ..T 27709 82
14 MONITORING AGENCY NAME & ADDRESS(I different from Controlling Oflice) 15. SECURITY CLASS. (of thie report)

@,{QRO -'-«" 'S.Unclassif‘ied

. DECLASSIFICATION/ DOWNGRADING
. SCHEDULE

H
\<

16. DISTRIB'ITION STATEMENT (of this Report)

ApFroved ror pubtlic release; distributi~n unlimited.

17 ODISTRIBUTION STATEMENT (of the abstrect entered in Block 20, I different from Report)

D TRVEV ST

18 SUPPLEMENTARY NOTES

The ‘:i-?'{, pinizns, ana, or findings contained in this repcrt are those of the
auther.s, and Shoult ot be construed as an official Department of the Army

prsition, peolicy, r i-cision, unless sr lecirnated by cther documentaticn.

19 KEY WORDS (Confinue on reverse side if neceasary and Identily by block number)
~+ Y i~

an e wwsn” " 6 subseT e

ABSTRACY (Continue on reverse yolda i necessery and identlly by block number)

Let G, G' be directed fgraphs. A combinatorial embedding of G into G' is an iden-
tification of each x & V(G) with a set of vertices S. mV(G') such that each § is
bounded in size by a constant independent of {V(G)} and each arc in G is carried
into a directed path of length bounded by a constant independent of {V(G)}. This
concept {first defined in [A]Y has formed the basis for a number of theoretical

studies supperted-by—ARQ Contract No. DAAG29-76-G-Q338%5 and the papers collected
here are representative of - with one major exception - the state-of-the-art with

regard to graph embedding.
DD ,"S3%. 1473 €0iTiON OF ! NOV 6% 15 OBSOLETE

JAN 7Y

CCrBITY I ASCIFICATIAN AF TuIG PARE fWhan Nats Fotaran

rclassified] ‘f“lOO‘f‘f JU’

