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1. LOTKA-VOLTERRA FOOD CHAINS

Thomas C. Gard and Thomas G. Hallam \\ . ' \7

INTRODUCTION

bf numerous ecosystem stability considerations, none probably

affects ecosystem structure as drastically as the extinction of a bio-

logical species;(e~g., Paine, 1966)1'* As demonstrated by public concern

about projects such as the TVA Tellico Dam Project where the persistence

of the snail darter Percina tanasi is vascillating ( t+denV1 -W7).

extinction of a biotic component of a food chain Is topical as well as

ecologically fundamental.

Viewing the importance of persistence-extinction phenomena, it is

somewhat surprising that the modelling and analysis of ecosystems have

not concentrated foremost upon species survival. The influence of stabil-

ity eventuation in the engineering and mathematical communities was.

undoubtedly, initially too inviting and overwhelming.

Ecosystem stability considerations are maturing and evolving

with practicality and realism in focus (Holling, 1973; May, 1974; Maynard

Smith, 1974, Patten, 1974); however, a general applicable theory of

stability for ecosystems is, at best, in its infancy stage.

Goodman (1975) states that "minimally, stability means persistence."

In this article, we initiate a study of this fundamental aspect of eco-

system stability, persistence-extinction, with emphasis upon development

of a general theory. Persistence attributes of simple deterministic
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food chains of arbitrary length and modelled by Lotka-Volterra dynamics

are determined. Here a simple food chain has a single species composing

each trophic level with its dynamics governed by the levels immediately

preceding and succeeding. Persistence is, in general, a global property

of a dynamical system; it is not solution structure or configuration

oriented. Equilibrium analysis used in conjunction with linearization

techniques has been a principal tool used for studying the survival problem

(Freedman and Waltman, 1977; May, 1974; Rescigno and Jones, 1972). Such

approaches have not been particularly fruitful for higher dimensional

food chains basically due to intrinsic complex analytical and topological

problems- for example, classification of recurrent solutions of higher

dimensional dynamical systems is, at best, difficult. Other techniques,

for example, graph theoretical ones, have been of some utility in higher

dimensional food chains (Yorke and Anderson, 1973).

The qualitative approach employed here introduces the concept of

a persistence or extinction function which is essentially an appropriate

system transformation in the Liapunov tradition. This technique yields

(global) persistence or extinction results from the system structure with-

out a priori information of the asymptotic character of the model solutions.

The conclusions are sharp and depend only upon the model parameter and

food chain length.,

PRELIMINARY TERMINOLOGY AND TECHNIQUES

Let R denote the nonnegative real numbers and Rn the nonnegative

cone in Rn; that is, R n ,x x -(x, . n) where R+,

i 1 , 1 . , n). The positive cone in Rn is RnO R+n

x (xI .... .X) xi - 0" .
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The models considered here are of the form

x xft(x I, x2 , ,.., xn), * 1, 2, ... , n; d/dt; (1)

where each f1 is a continuous function from Rn to R and is sufficiently
i +

smooth to guarantee that initial value problems for equation (1) with

the initial position xi(O) -, 1, , .,., n, have unique solutions.

The primal theme develops persistence of a food chain modelled

by (1) in the following sense.

Definition 1. System (1) is per.istent if each solution f * (t)

of (1) with t(0) -R+ satisfies lim sup 4(t) - 0 for all

, (0,T where (0,T ) is the inaxinal interval of existence of , If
RnOwhe

(1) is not persistent, then there is a solution , with ,(0) ,R where

some component, say *J, satisfies lini 4(t) - 0 for some % in (O,T¢],

As we shall be concerned with persistence of the complete food chain,

any solution of (1) considered subsequently will tacitly have initial value

in RnO.

If it is known that the maximal interval of existence of all

solutions of (1) is [0,-). (that is, Ta I *) then it follows from the

assumed uniqueness of solutions of initial value problems that persistence

of (1) is determined by using only v a - in Definition 1.

In the sequel, the well known comparison technique is employed.

It is convenient to categorize the differential equations employed as

comparison equations in the following terms. Let ,,o be a continuous

function from R+ into R. The differential equation
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u W(U) (2)

is of persistent type provided any solution i = '(t) of (2) with

(0) > 0 satisfies lim sup '(t) > 0 for all T C (0,-]. The equation
t-* T

(2) is of extinction type provided any solution v = v(t) of the initial

value problem (2) with v(O) > 0 satisfies lim v(t) = 0 for some T in
t- t

(0,]. For example, if the right side of (2) is w(u) = au, then (2)

is of persistent type whenever a > 0 and of extinction type if a < 0.

The concept of a persistence (extinction) function is now intro-

duced. It is tacitly required that the functions p and c used subsequently

be continuous functions from Rn to R+ which are continuously differentiable

on Rno .

Definition 2. A function p is called a persistence function for

system (1) if the following are satisfied:

(i) p(x1, x2, ..., xn) - 0 if x i - 0 for some i, i = 1, 2, ..., n;

(ii) p satisfies the differential inequality w _ c(p) wherein

1n i( 2, .,Xn) i. 7II -i xifi(xl, x2 , ., n) (3

and the associated comparison differential equation u' = w(u) is of per-

sistent type.

Definition 3. A function c is an extinction function for (1) if

the following are satisfied:

(iii) e(xl, x2, ... xn) 0 only if some xi1 0, i 1, 2, ..., n;
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(iv) c satisfies the differential inequality i < w(e) where £

is defined as in (3) and the associated comparison differential equation

us I w(u) is of extinction type.

The existence of a persistence (extinction) function for (1) implies

the persistence (nonpersistence; i.e., extinction of a component species)

of system (1).

Theorem 1. Let p be a persistence function for system (1). Then,

for any solution o = ( I* *2' ... 9n) of (1) with maximal interval of

existence [O,T), lim sup O1(t) > 0 for each T E (0,T ] and each i,
t T

I = 1, 2, ... , n; that is, system (1) is persistent.

Example 1. The function P(Xl,x 2 ) = X1X2/(l+x l) is a persistence

function for the symbiotic model

x x 1. 1  2

xi = x2 (l + x- 2x2);

here, P satisfies the equation p - p(I - p) which is of persistent type

and the condition P(xl,x 2) - 0 if xI - 0 follows by noting that xI -* 0

and x2 - - are incompatible.

The extinction analogue of Theorem 1 is our next result.

Theorem 2. Let c be an extinction function for (1). Then, for

any solution o a (l' 02' ... on) there exists an I, I a 1, 2, ..., n

and a T, 0 < T < -, such that lim o1 (t) 0 0; that is, (1) is not persistent
t0T

and extinction of some component species results.
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Proof of Theorem 1. Suppose that system (1) is not persistent; then,

there exists a T E (O,T and a J, 1 < j < n, such that lim sup j(t) <0.
t0T

Condition (i) leads to the conclusion that lim P(o(t)) - 0. This
t-*

conclusion is not consistent with the assumption that the comparison

equation u' = w(u) has no solution which approaches zero since, from

elementary differential inequalities, it follows that p(o(t)) _ u(t),

where u(t) is the solution of the initial value problem u' - w(u),

u(O) -

The proof of Theorem 2 is similar to that above and is omitted.

Example 2. The system

xi = Xl0 + axI) a 0

xi - -x2(l + bx2) b 0

shows that considerations of the maximal interval of existence in the

above theorems are necessary. The function P(xl,x 2) - X1X2/(l + axI + bx2)

satisfies - 0 and is a persistence function. Solutions of

xi a -x2 (1 + bx2) with positive initial conditions approach zero as

t approaches infinity; however, solutions of the system exist only on

a finite interval.

As will be demonstrated below, the persistence of (1) can sometimes

be verified even if the persistence function does not satisfy the differen-

nOtial inequality throughout the entire region R+ but only a slab of the

nOform (xl, x2  .. ,xn R+ ,0 ,xj j for some J, j 1 , 2, .. ,n29 ..._
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and some Aj > 0. The conclusion in these circumstances is the establish-

ment of a component hierarchy structured by the dominance of the species

which survive the struggle for existence.

To illustrate, in an elementary setting, our technique for

determining species survival, we consider the quadratic model

xi = xl(a + bxI + cx2)

X2 = x2(e + fx1 + gx2 )

where a, b, c, e, f, and g are constants (not necessarily positive).

Define P(x1 ,x2) = xX 2; then

= p[(a + c) + (b + f)x + (c + g)x2].

Suppose we know, a priori, that solutions are bounded. If a + e > 0,

b + f > 0 and c + g > 0 then p > (a + e)p and it follows that the system

is persistent. Whenever a + e > 0 and b + f > 0 then species x2 survives

since > > 0 on the slab {(xl,x 2) : x, e R+0, 0 < x2 < (a + e)/(c + g)}.

Similarly, when a + e > 0 and c + g > 0 species x1 survives. These

results are, admittedly, not sharp. They are presented only to demonstrate

a technique utilized subsequently in a more elaborate setting.

LOTKA-VOLTERRA FOOD CHAINS

By employing the techniques developed in the previous section,

we now classify persistence in a simple food chain modelled by Lotka-Volterra

' j A
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dynamics. The results, which depend upon the interspecific and intra-

specific interaction coefficients and the length of the predator-prey

system, determine persistence-extinction up to a single parameter

(bifurcation)value. The presence or absence of a carrying capacity

for the food chain resource (lowest trophic level) has an interesting

effect upon the character of the persistence criterion. The model

considered here is

Xj a x1 (a10 -a,,,, - a1 2x2 )

i ' x2(-a20 +a 2 l1 -a 23x3 )

* (4)

x' "x (-an + al x

n-l ' ,n-ln-,,n-2xn- a n-l,nxn)

'n x n(-ano + an,n-lXn-l),

In (4), all aij are positive constants with the exception of a,, which

is nonnegative. Before proceeding with our main result for (4) with nonzero

carrying capacity we note that limitations on the resource level are pro-

pagated throughout the food chain.

Theorem 3. All solutions of (4) with positive initial conditions

are bounded provided a11 , 0.

Proof. From the first equation in (4), it follows that

x < x1 (a1 0 - a11 xl). The comparison principle establishes the bound
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x1(t) .max txl(O), alO/a,,} for t R,.

We now define the function u by

n n-i
u a : (11 a1 i+l -T ak+l k)xj

Jl ial k-j

wherein any improperly indexed product is defined to be one. From (4)

it follows that

n-I
u' T7 ak+lk Xl(alO - alxl - a,2X2)k-I ~~

n-i n-I
+ a 1  1-T ak+l k)x(-aj 0 + aj j x.-a jIJ l

n-I+T7 a1 1 (a +ann n)
i-li iln(ao n-n-

-mu + b

where

n-I
m min b a max I(2alO - aa) i]"F

lj-_n aJI Ix (Il k1 l ak+l'"

Application of the comparison principle leads to

u(t) _ u(O) exp (-mt) + b/m;

this implies x, i 2, n..o n, is bounded and completes the proof of

the theorem.
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For system (4), the next theorem classifies persistence in terms

of a single parameter u. Writing the food chain length n as 2m + I

if n is odd or 2m if m is even, we define

m Ta
a2i-,2i-

z=l 1,i

V- T7-r a- 1'2i

,=I a2 ,+ i=l a2i+l,2i

Theorem 4. Suppose the resource level in (4) has a positive

carrying capacity (a11 , 0). Then, the food chain as modelled by system

(4) is persistent provided 0 >; it is not persistent if 0.

Proof. First, we review some appropriate properties of the

dynamical system (4). Bounding hyperplanes of R of the form

H. {(x , x, x ... , X) e Rn x = 0} are invariant manifolds for
P2.3,''- n +

(4). The intersection of the w-limit set s> of a solution (which

is bounded by Theorem 3) with such a hyperplane is therefore a compact

invariant set which contains a minimal compact invariant set (Nemytskii

and Stepanov, 1960). A classical result of Birkhoff implies that every

trajectory in this minimal set is recurrent. When extinction of some

constituent of the food chain represented by (4) occurs, its model equiva-

lent is a trajectory approaching a bounding hyperplane. This extinction I

trajectory converges as t - (since, as previously remarked, finite

extinction time is not possible) to a set containing recurrent solutions.

Suppose now that - 0 and, for the purpose of contradiction, that

system (4) has a solution ) = 2 'n) with 4(0) c R+0 which

In
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satisfies lim pt) - 0 for some minimal index j. This assumption can

be rephrased as Hj () i l . . We claim that any recurrent solution in

this intersection lies in some minimal subsurface:

HkO - (xl , x2, .... x n) xi - 0, 1 - i _ k - 1, xi  0 , 1 _ k- .

That is, the solution is in HkO but not in any subsurface on which x i  0

for some 1, 1 1. k - 1. The trivial solution (0, 0, ..., 0) cannot be

such a recurrent solution since it is of hyperbolic type; hence, it is

not in ,. Now, if the claim is false, there is a recurrent solution

"(t) - (.1 (t) ' ' , -n(t) satisfying, for some indices z and m,

t) E 0 and m(t) 1 0. If z is the largest index with .(t) - 0 the

function y'+1 satisfies the differential equation

' ( 'a 0 '+l -a+l, +2 '+2

Thus, ' + 0 for all t, a fact which is not possible for a recurrent

solution. The minimality of Hk0 is ascertained.

We shall now show that -, cannot have its assumed asymptotic

behavior. This is accomplished by showing that for some ri - 0,

1 1, 2, ..., n, and for some \ 0 - 0, j = k, ..., n,

n r.
-T7 xi  is a persistence function on the hyperrectangular slabi-I

S {(xI, x2, ... Xn) n: 0 , x. < Nip ,j k0.
2 -9n + 3

The asymptotic condition required for o to be a persistence function follows

readily from Theorem 3 and the definition of o. It remains to show that
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is a solution of a differential inequality whose comparison equation is of

persistent type.

From (4), we obtain

n-i
Crl(al0  all,, - a l2x2) + r(ao+ aj~_ -~ aj~j 1 xj41)

+ r (-an0 + a nn 1 x n-0

=P(rla 0 - rjajo + (r 2a2 , - rax
j!2

n
+ Y (ra a n.1a - nJ

Now, choose the r.'s, 1 < j < k, so that

r r1= a 11/a 21 and

r rj2= a i-,-/ ii1 = 3, 4, ... , k.

Using these relationships to determine the quotient r i/r, as a function

of the coefficients, we find if j is even and 4 < j <.k

all1 f a 21-2,21-1 .
ra a(62a-r1 21 2 2,2-

while if j is odd and 3 < j < k
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I r I"Ir . (J-I) 2  a21 -1.'2ia2 +  2 (6b)

r1 T- 21+1,2i

Substitution of (6) into (5) leads to

; [lu rjajO + - aja
PrIk-J-kF+1 r ao+J-k1+1 (raJJ-1 " rj-2aJ-2,J-1)xJ-1

jkl kl (7)

- rn-lan-l,nXnl

where if k is odd (k - 2p + 1) or even (k - 2p), wk is given by

vUk " al10 j-I a 2j O  a~i2-

la +- ,0i a21+ ,21~1a2q+1 , , 1 rT:a212
1i1 21+1,21

Since, by hypothesis, Is positive, ik is positive. To establish

that p > 0 in S, we select the remaining ri, I - k + 1, k + 2, ... , n,

and the Nj. I - k, k + 1, ..., n sufficiently small so that the magnitude

of the remaining terms is less than r,1". The expression in the square

brackets in (7) Is positive on S so p 0 and as previously remarked,

extinction cannot occur. This contradiction establishes that P -0 is

sufficient for the persistence of (4).

To demonstrate that i 0 implies extinction, the extinction function

n rI
C C(x1, x2, ... , Xn) FT xi ,where all of the rts are chosen according

1-1
to the scheme (6) used aboveis employed. Then, from (4), it follows that
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c satisfies the inequality

Sc[rl, - rn lanl,nxn * rpI.,

with a comparison equation of extinction type. Theorem 2 implies that

the food chain is not persistent.

We now consider a food chain modelled by (4) in which the resource

level has no carrying capacity; that is, a11 - 0. In this setting, the

persistence parameter wO depends more intricately on the dimension of

the system than the previous case with nonzero carrying capacity. If

the food chain length n is either 2m + 1 or 2m + 2 for some positive

integer m then u0 - alO - a2j " a211,21

Theorem 5. Let a11 = 0. The food chain modelled by system (4)

is persistent provided w 0 > 0; it is not persistent if Po < 0.

Proof. Theorem 3, which established the boundedness of solutions

of (4) assuming a11 - 0, was required in the proof of Theorem 4. The

analogous lemma employed here is that any solution .s of (4) with

,(0) c R+ such that limt .j(t) - 0 for some J, is bounded. To establish

this, we first note that limt (t) - 0 implies limt 4.i(t) a 0 for

i > J. From (4) it follows that for t sufficiently large

0 +l(t) -j+ 1 (t)E-aj+lO + aj+l,j.j(t) -aj+lj+2j+2(t)]

Cj+l(t)[-aj+ 1 ,O/2] .

Thus, limt ,j+l (t) 0 0; an induction completes the argument.
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It, then, suffices to prove the assertion in the case that

is such that limt-@,n(t) 0. To this end, we use the classical Lotka-
n

Volterra auxiliary function v(x1, x2, ... , xn ) - a c(xi- 1 -1 n x1/61),1*1
where ai, ai are positive parameters to be chosen later. Boundedness of

4 will follow if it is shown that v(t) - v(+(t)) is eventually nonincreasing.

Employing (4) with some rearrangement leads to

n-1
v(x l , x2, ... , xn ) " [-iaii+l * i+lai+,,i](xi- l)(Xi+l' i+l)

+ a (x 1-6 1)(a O 0- al262 )

n-1
+ (x- a)(-a1o + aiIi 1 - ai+1

i=2

+ n (xn - 6n)(-ano + an,n an-1).

The parameters ai, I a 1, ... , n are selected so that the first

sum of n - I terms vanishes. If n is even, it is possible to choose the

Bi so that each of the remaining terms is zero; thus, in this case,

ai,a i exist so that v - 0 from which the boundedness of o follows.

Whenever n is odd, we can choose the si parameters in such a way that all

terms vanish with the exception of the last one; hence,

n (n(Xn - € )(-ano + an,n.lan. 1)

m a2i+1,2
" ( n) -- -im
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This leads to

m a

M}t Q On j0  T7l "a2I2 (O~n(t )  a n)
11 a21-1,21

which, since p0 > 0, satisfies (t) < 0 for all t sufficiently large.

Therefore, any solution which does not persist is bounded.

The remainder of the proof is the same as that of Theorem 4 up

through the calculation of p; from (5) with all = 0 we obtain

n r
' > P[rl(a1O -I al°)

1-2 r1 (8)
m
W (rtat 1-1 - rt. 2at. 2 ,t-l)xi.1 - rn.lan.l,nXn3.
1-3

Now let k be written as k - = 2p + 1 or k = z + 1 = 2p + 2

where i is an odd integer. We choose r2j+l, j = 1, 2, ... , p as in (6b):

r 1 a21+1,2i

Since P. > 0, it follows that

Jl a r21+l >O
1 1 - a2j+190  r 0 -

Select the remaining r2  j -I, ..., p (or p + 1 if k 2p + 2) so that

k
alO - j12 rj/r, ajo > 0, (9)

'I
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If q is the largest even index, q . k, we now adjust r2, r4, ... , rq

sequentially (to bound successive terms on the right side of (8) while

preserving inequality (9)) according to the following scheme. Choose

rq.-2 possibly smaller than the original choice so that

rq/rq. 2 2_. aq-,ql/aqq..1.

In a similar manner, choose rq.-4 smaller if necessary so that

r q 2/r q 4  2_ a aq . q_3/a q -,q. 3 .

Continue adjusting r21 until r2 is revised.

We now have

k n
P~rl(alo - (ri/rl)aio) - I riaio1-2 i-k+l

n

+ Z (riaii- - ri- 2 ai-2,i- 1 )xi- 1 - rn-lan-l,nXn ] '

i-k+l

Proceeding as in Theorem 4, we can select the remaining ri 's and the Ats

so that the expression in the brackets remains nonnegative on S. This

leads to the desired conclusion that P0 > 0 implies system persistence.

The proof that v0 < 0 implies nonpersistence is analogous to the

similar portion of the proof of Theorem 4. As an extinction function use

c(xi, x2, *. Xn) ft xr21'1 where ri are determined by (6b). Then,
w nio, te d e il equatin

wh~en n is odd, the differential equation
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results; if n is even, we obtain

S 1rl0 - r n-l a n-l,n Xn],

from which nonpersistence follows.

COMMENT AND COMPARISON

While the above results are independent of system equilibrium

considerations, the conclusions have a positive correlation with the

location of the equilibrium points when they exist. For convenience in

demonstrating these and other relationships, we restrict consideration to

food chains of length four with nonzero resource carrying capacity:

xj = xl(alo - allx, - a12x2 )

xi ' x2(-a20 + a21xI - a2 3x3 )

(10)

x3(-a30 + a32x2 - a34x4)

x= x4(-a40 + a43x3).

The equilibrium points of (1O)are indicated in Figure 1.



19 C

*

~c%j

cmJ

C

+

cnJ'JI
U 00

e-c'fe

C-4.Jc.
00
cnJ6

L6~U T o -o
ac0

m 0 CD C

L-5

Q Ucn

0 In

~4~4Z 0*4

C4-

f 0

fa'

cq +

SJ.NIOd WnlU~lnD3



20

If we designate the ith coordinate of equilibrium point I by x, II by

x I . etc., the persistence Theorem 4 may be phrased as (10) is persistent

if the coordinate equilibriums satisfy the inequalities

x < x4V (with the sequential ordering xv < xIV > xIII < x41 > 0);

or equivalently,

xV > x2V (with the sequential ordering x2 > x2V < x2 ll > 0);

or equivalently,

xV <IV , xV <lXV> ;3 3 3  3  );

or equivalently,

xV~o
xv > 0.4

The last inequality is just a restatement of the persistence inequality p > 0.

Analogously, if the coordinate ordering Is reversed, nonpersistence results.

This equilibrium coordinate ordering indicates that introduction

of a new top predator into an ecosystem would result in an order interchange

of equilibrium populations on an alternating scheme. For example, in

an aquatic system with trophic levels composed of phytoplankton, heri-

vores, and primary carnivores, the model conclusion predicts that

the addition of a secondary carnivore reduces the equilibrium levels
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of the phytoplankton and primary carnivores while increasing the herbivore

population.

The component ordering also indicates that the persistence-extinction

mechanism is mathematically one of bifurcation associated with the parameter

u; essentially the equilibrium V for (10) "splits" off from IV as the

parameters transact from the extinction (u < 0) to persistence range

G 0).

In the case of a persistent system, the resource transfer is modu-

lated by trophic level influence factors which determine to some extent the

magnitude of persistence. These factors are indigenous to the specific

trophic level and relate persistence in the food chain hierarchy. If the

model is interpreted as nutrient flow, energy flow, etc., componentwise

throughout the system, trophic level 1 contribution factor, a11/a1 2, is

the persistence multiplicative effect of level I on trophic level 2.

Trophic level 2 has a multiplicative contribution factor of

ala 2 112 on trophic level 3 while level has multiplicative contribution
a11a23

factor a11 23a32 for level 4. The antipodal character of certain of the
a12a1a34

trophic level influence factors might not have been anticipated.

In general, the bifurcation value is persistence indeterminant.

In the noncarrying capacity model, Freedman and Waltman (1977) have shown,

for the three dimensional system, P = 0 implies persistence. On the other

hand, for the four dimensional food chain (10) with a11 = 0 there is a con-

tinuum of critical points in the positive xIx2X 3 space when u0 =O. A

subset of these satisfies x3 < a40/a43. Linearization about any of these
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latter equilibrium points indicates that each has an asymptotically stable

manifold which intersects the positive cone in R4 (the elgenvalue in the

x direction is negative). Thus, there are solutions with positive initialX4

conditions which tend toward these equilibriums as t approaches infinity

and u = 0 corresponds to nonpersistence.

Goh (1977) has recently shown, under certain conditions, that when-

ever systems of form (1) have an equilibrium in the positive cone in Rn,

it is globally asymptotically stable. This is, of course, a persistence

result when it it applicable. To contrast our conclusions with Goh's,

we have found that the existence of an equilibrium in the positive cone

is equivalent to persistence modulo the bifurcation value v = 0.

It is worth noting that for odd dimensional models (4) without car-

rying capacity, persistence (P0 > 0) results even though there is no

positive equilibrium.

SUMMARY

Persistence-extinction in simple food chains modelled by Lotka-

Volterra dynamics is governed by a single parameter which depends upon

the interspecific interaction coefficients, the intraspecific interaction

coefficients, and the length of the food chain. In persistent systems

with nonzero carrying capacity, two new features predominate. Trophic

level influence factors relate persistence on different trophic levels

and determine, in conjunction with the persistence parameter, the

magnitude of persistence. Equilibrium component ordering which results

in persistent systems mandates once again that systems need to be studied
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on the complete ecosystem level; static field measurements reflect species

location in the food chain, the total length of the food chain and assume

characteristics according these factors.

9,
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LEGEND FOR FIGURE 1

Equilibrium points of (10) are listed hierarchically in terms of

coordinates. " : " represents implications for the appropriate

coordinate orderings. Trophic level Influence factors for each level

are listed (see text for explanation).


