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I.  INTRODUCTION 

Long rod kinetic energy penetrators pose an important threat to 
armor. The analysis o£ the impact of a kinetic energy projectile, 
typically a cylindrical rod with large length-to-diameter ratio made 
of a high-density material, should account for the three-dimensional 
aspects of the impact and the failure of materials involved in the 
velocity range of interest. For reasons discussed elsewhere1, very 
little analysis of oblique impacts has been done. Most of the effort 
in this area has been confined to experimental studies. Experiments, 
however, are complex, expensive, difficult to control and yield only 
minimal information. Time resolved data for ballistic experiments 
was generally unavailable. The need to understand the phenomenology 
and details involved in an oblique impact has led to the use of plane 
strain (two-dimensional) computations in the hope of deriving informa- 
tion useful to kinetic energy penetrator and armor designers. The 
use of codes in general has provided greater detail than can be obtained 
from experiments, but this approach leads to another series of 
complications (Table I). 

In this report, we will discuss briefly the nature of the plane strain 
approximation and illustrate its successes and limitations with two 
applications. While some useful information can be extracted from plane 
strain simulation of oblique impact phenomena, much work needs to be 
done before such calculations can be used to support design efforts. 

II,  PLANE STRAIN APPROXIMATIONS 

Computations at normal incidence can be performed routinely and 
economically and can yield excellent results for deformation fields when 
compared with experiments. Figure 1, for example, shows a comparison 
between a HELP2 code computation of a staballoy rod striking 5.08 cm 
RHA plate at 1.0 km/s with results obtained at the PHERMEX facility of 
Los Alamos Scientific Laboratory3. The agreement is generally excellent. 

1 Jonas3  G.  H.  and Zukas3  J, A,3   "Meohanios of Penetration: Analysis and 
Experiment3" Int.  J.  Eng.  Sai.3   V16i  pp. 879-903,   1978. 

2 
Hageman,  L.  J.3   WiZkins3  D.  E.3  Sedguiak3  R.   T.,  and Waddell3  J.3 

fiE&P, a liult%-Hatevial Eulerian Program for Compressible Fluid and 
ElasUa-Plastio Flows in Two Spaae Dimensions and Time3 Revised 
Edition3" System,  Science and Software3  SS&-R-75-.26543  Topical Report 
July 1975. f      i 

^Private Communication from E.  Fugleso3 J.  hi. Taylor and L.  W.  Hantel of 
Los Alamos Scientific Laboratory. 



The bulge at the target impact face in the computational results consists 
mostly of failed material - computational cells which have suffered a 
density reduction of 40% or more. This would normally be seen in a 
radiograph as a cloud of debris particles. However, the masking used in 
the experimental setup precludes recording of either front or rear bulg- 
ing of the target plate. Such computations can be done routinely today. 
The quality of results depends primarily on the availability of dynamic 
material properties and on the material model employed in the code. 

Constraints 

Cost 

Time 

Information 

Table I. Computations versus Experiments 

 Computer Simulation Field Experiments  

Typical 3D simulation costs 
^$6000 for penetration 
simulation. Typical 2D (plane 
strain) simulation costs 
^$1500. 

Up to one week may be needed 
to grid and debug problem, 
several weeks to obtain and 
analyze results. 

Maximal output - displacements, 
stress, strain, strain rate, 
momenta, energies, forces and 
moments. 

Typical cost for one shot 
is $7500 (including 
materials and fabrication 
costs and data reduction). 

Once materials have been 
fabricated, one to two 
shots per day can be 
obtained. 

Minimal - initial and final 
velocity and orientation 
for projectile; residual 
projectile mass; target 
hole size and mass loss. 

Unknowns     Results depend on material model, 
material properties, failure 
model. 

Uncertainties in material 
properties, initial con- 
ditions and boundary con- 
ditions manifested as 
data scatter. 

Utility Excellent base for construction 
of approximate analytical 
models for parametric 
studies. 

Time and cost constraints 
almost never permit 
acquisition of data base 
with enough variation of 
parameters to construct 
unambiguous models. 

10 



Figure 1.  Penetration Prcziles for Axisymmetric Impact at 50 Microseconds 
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Oblique impact, however, is clearly the problem of greater practical 
importance in the design of projectiles and evaluation of their effective- 
ness. Oblique incidence is a three-dimensional problem, i.e., the 
geometry involves specification of three space coordinates. There are 
pitifully few analytical models1 which treat oblique incidence and 
these tend to be extremely simple while also relying heavily on empirical 
input. Hence recourse is frequently made to 3D numerical solutions and 
2D plane strain approximations. 

Three-dimensional codes, both finite element and finite difference, 
exist and have been used successfully to study problems involving pene- 
tration, ricochet, crack propagation and the like1,1+'5a However, they 
make severe demands on computer storage and are quite costly, although 
this latter aspect will become less of a problem with the advent of 
the next generation of computers. The codes at present are invaluable for 
phenomenological studies but are not yet working tools for designers 
working in the area of ballistic impact. 

Two-dimensional plane strain calculations are straightforward 
enough, relatively inexpensive and provide some interesting information. 
However, when oblique impact of a long rod penetrator is treated as 
the impact of an infinitely long wedge CFigure 2), important physical 
phenomena are being neglected, i.e., the out-of-plane motions leading 
to lateral stress relaxations. Useful qualitative information (and, 
as will be shown, limited quantitative information} about the early 
stages of an oblique impact can be obtained from plane strain solutions. 
Their utility, however, degrades with increasing time after impact so 
that for late times, when important aspects of penetration and target 
response (i.e., bending, shear failure) are being determined, plane 
strain solutions are speculative at best. 

III.  RESULTS 

Several calculations were undertaken to obtain a better appreciation 
of the utility of plane strain approximations. The first set involved 
the multi-material projectile of Figure 3, a long rod consisting of a 
maraging steel sheath and tungsten alloy core. Computations were made 
with the HELP code in both the axisymmetric and plane strain modes- with 
the projectile striking a 2.37 cm RHA target at Q0 with a velocity of 
1 45 km/s. The second set involved the impact of a 65 gram, L/D - Id, 
hemispherical nose, staballoy penetrator against a 1.91 cm RHA plate at 
60° obliquity with a striking velocity of 1.5 km/s. 

hJohnson,  G.  R.,   "A Neu Computational Technique for Intense Impulsive 
Loads," Proo.   3d Intl.  Symp.  on Ballistias3  Karlsruhe,  Germany,  Marah 1977. 

^Chen,'1. M.,   "Numerioal Solutions of Three-Dimensional Dynamic Crack 
Problems and Simulation of Dynamic Fracture Phenomena By a  'Non- 
Standard' Finite Difference Method," Engr.  Fraat.  Mech.,  V10, pp. 
699-708,   1978. 

12 
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All computational results were obtained with the HELP code, a two- 
dimensional, multi-material Eulerian code for solving material flow 
problems in the hydrodynamic and elasto-plastic regimes. Although the 
code is basically Eulerian, material interfaces and free surfaces are 
propagated in a Lagrangian manner through the calculational mesh as 
discrete interfaces across which material is not allowed to diffuse. 
The material model employed in HELP includes the Tillotson equation of 
state6, modified to give a smooth transition between condensed and 
expanded states, a deviatoric constitutive relation, a yield criterion 
defined to account for the increase in strength at high compressions 
and decrease with increases in internal energy, and failure criteria. 
Failure in tension is based on relative volume. When the relative volume 
in a cell reaches a certain value greater than a specified maximum dis- 
tension, that cell is said to fail and any computed tensions are zeroed 
out. Failure can also occur when the internal energy is greater than the 
melt energy. Material properties used for the computations are given in 
Table II. The projectile material parameters were obtained from 
Dr. Ernest Bloore while a member of the Penetration Mechanics Branch 
and the RHA parameters from the Solid Mechanics Branch, TBD, BRL. 

Table II. Material Parameters 

Material E 

CGPa) 

V ay 
CGPa) 

au 
CGPa) 

P 

Ocg/m3) 

Staballoy 195.8 0.203 1.036 1.45 18,62xl03 

90-7-3 tungsten 372.0 0.269 0.553 1.14 17.04xl03 

MAR-M-300 steel 180.7 0.264 1.827 1.945 8.07xl03 

RHA 209.9 0.3 1.220 1,35 7.8xl03 

E    - Young's modulus 

v    - Poisson's ratio 

a    - yield strength 

a    - ultimate strength 

p    - density 

Computed deformation profiles for the normal impact multi-material 
penetrator from the axisymmetric and plane strain computations are shown 
in the Appendix. Shown also are plots of s-tate variables Q^inetic energy. 

&TiUotson3 J.  ff.j "MetalUa Equations of State for Eypewelooity Impact," 
General Atomic Report GA-3216,  July 1962. 

15 



momenta, plastic work, and internal energy) as functions of time. The 
differences between the exact (axisymmetric) and plane strain cases are 
readily apparent. Differences between the two computations become 
quite pronounced with time, as is evident from both the state variable 
plots and deformation plots. At late times, the plane strain calculation 
clearly shows greater deformation and failure than the axisymmetric case. 
The plots of'penetrator kinetic energy and axial •momentum also indicate a 
relationship between plane strain and axisymmetric results exists and 
can readily be found by considering the difference in volumes for the two 
cases.  Denoting by V the volume per unit depth of the round under the plane 

strain approximation (unit thickness slab) and by Va the actual volume 

(axisymmetric case), then the kinetic energy and linear mccmentum of the pro-, 
jectile become coincident upon application of a s-caling factor of 

X = 
<-\

/V
P\ "Mj * tVVM2 \ m 

where p represents density and M and M,, refer to the two materials of 

the composite round. Note that for a single material projectile 
(p.. = p.. = p), the scaling factor reduces to 
Ml   M2 

X = V /V (2) 
a p 

If actual dimensions are used in (1), one is led to the conclusion that 
the plane strain velocity should be reduced by ^/2,  i.e., 

v ^   v//2 (3) 
P   a' 

to achieve comparable energies (and therefore, hopefully, damage levels). 
This is in agreement with conclusions reached by Bertholf et al7 who 
obtained the same expression based on considerations of comparable 
target damage for the two cases. 

The results for the target behavior and for projectile plastic work 
and internal energy indicate that there is no simple relationship between 

7Bertholf3  L.  D.3  Kipp,  M.  E.3  BTCWH,  W.  T,t   "Two-Dimensional Calculations 
for the Oblique Impact of Kinetic Energy Projectiles with a Multi- 
Layered Target",  BRL-CR-2ZZy  March 1977.    (AD #B017358L) 

16 



plane strain and exact results for these state variables, and that con- 
siderable additional work needs to be done before plane strain calculations 
can supplant fully three-dimensional calculations in assisting kinetic 
energy projectile designers, a point made also by others8' . 

The stated data in the Appendix also shows that, for sufficiently 
energetic impacts, which in this case is a projectile at ordnance velocity 
and considerable higher density than the target, and for short time inter- 
vals after impact, good quantitive, as well as qualitative, information 
may be extracted from plane strain results. Another example of this is 
the near-perfect agreement between plane-strain results and experiment 
for deformation fields obtained by Norris et al10 who were able to estab- 
lish the mechanisms leading to target defeat and ricochet in long rod 
impacts. Once the effects of lateral relief waves (not accounted for in 
plane strain computations) become significant, increasing divergence between 
plane strain and exact results is to be expected. 

Results for the oblique impact computation and their PHERMEX3 counter- 
part are shown in Figures 4 through 6. At the later time (Tigure 5) they 
are both surprising and fortuitous considering the underlying differences 
between the slab approximation and the exact three-dimensional case.  It 
is probable that such excellent agreement can be partially attributed to 
the tendency of the projectile material Qdepleted uranium} to erode con- 
tinuously at the impact end. This computation was repeated withEPlC3, a 
three-dimensional finite element Lagrangian code1. The agreement be- 
tween experiment, plane strain and three-dimensional results for de- 
formation fields, residual length and velocity is excellent, the 
measured quantities being within a few percent of eacR other. Profile 
comparisons of these three results are shown in Figure 7. 

Although at early times agreement for hole profiles and residual 
length of the penetrator was quite good, it should be noted that the 
tabular data arising from the computer runs showed spurious signals 
in the "form of small radial velocities within the first microsecond 
in regions where no genuine signal could have propagated. Also found 
for the multimaterial penetrator were regions where internal energy 
and plastic work were negative. These anomalies affect the values 
of pressure, stress and energy in some areas of the calculation. A 
more thorough discussion of HELP code problems can be found elsewhere_ . 
It can be concluded that although useful results have been obtained with 

8Kipp3 M,  E.  and Bevtholf,  L.  D.3  -private aornmunication. 
^Sedgwiak, R.  T.3  Wdddellj J.t and Eageman, J.  L.3   "A Comparison of 
Results from Two Long Rod OElique Ifrrpaot Calculations3" BRL-CR-2883 

February 19.76.   (AD #B009783L) 
10Norris3  D.  M.3  Saudder3  J.  K*3  Ma'Ma3ter3   W.  A.3  Wilkins3 M.  L.3 

"Meahanias of Long Rod Penetration at High Obliquity3 " in Proa.  High 
Density Alloy- Penetrator Materials Conf.3 AMMRC-SP-77-33  1977. 

11 Jonas3  G.  H.3  and Zukas3 J. A.3   "Cap Design for Kinetic Energy 
Penetrators3" BRL-R-18133 August 1975.   (AD #B006902L) 

17 



Figure 4.  Comparison of Plane Strain and Experimental Results 
at 12 Microseconds 



Figure 5.  Comparison of Plane Strain and Experimental Results 
at 25.6 Microseconds 
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HELP, the code is essentially unreliable in its present form for ordnance 
velocity impacts.  It also requires excessive human intervention for 
readjusting tracer points, correcting pure cell problems and other 
anomalies during long computations. A reformation of the basic equations 
to make them second-order accurate might do much to enhance the code's 
stability and utility. 

IV.  CONCLUSIONS 

Based on the results shown here and the findings of other researchers, 
we may conclude that a fair amount of qualitative insight may be obtained 
from plane strain simulation of oblique impact phenomena and such studies, 
with suitable caution, can be profitably employed for parametric studies. 
At sufficiently early times after impact, reasonable quantitative 
results for deformation and projectile orientation can be obtained. 
However, for computation of local variables (stress, strain, temperature), 
recourse must be made to three-dimensional calculations. These in turn 
will be useful only if the materials in question have been adequately 
characterized at the strain rates in question. 

Additional work needs to be done to relate plane strain to exact 
results in order to make plane strain computational results useful to 
projectile and armor designers. Since the cost of plane strain 
computations is some one-quarter those for three-dimensional calculations, 
the incentive for such work should be self-evident. 

22 
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APPENDIX 
AXISYMMETRIC/PLANE STRAIN COMPARISONS 

The following pages consist of deformation profile plots and graphs 
of the state variables as functions of time for the axisymmetric and 
plane strain calculations of a normal impact by a long rod consisting 
of a maraging steel sheath and tungsten alloy core against a 2.37 cm RHA 
target at 1.45 kra/s, It should be noted that the HELP code being 
Eulerian is set up with a computational grid in which the material 
passes through the cells. Because of limited storage the grid is set 
up so that there is a fine zone where most of the activity occurs and 
a coarser grid elsewhere.  Deformation plots can be obtained either 
in actual dimensions or cell dimensions. The choice of cell dimensions 
was made for a clearer picture of what is happening at the interface. 
For each failed cell an x  is placed in that cell. Furthermore, the 
option was made to draw only the exterior of the projectile. 

25 
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Figure A-9.  Penetration and Target Kinetic Energy as a Function of 
Time for the Axisymmetric and Plane Strain Mode 
Calculations 
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Figure A-10.  Penetration and Target Axial Momentum as a Function ot 
Time for the Axisymmetric and Plane Strain Mode 

Calculations 
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Figure A-ll.  Penetration and Target Radial Momentum as a Function of 
Time for the Axisymmetric and Plane Strain Mode 
Calculations 
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Figure A-12.  Penetration and Target Plastic Work as a Function of 
Time for the Axisymmetric and Plane Strain Mode 
Calculations 
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