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A NOTE ON SPARSE QUASI-NEWTON METHODS

by

Mukund Thapa

1. Introduction

Consider the unconstrained minimization problem

Min f(x) (1.0)
x€R"

An important class of algorithms used to solve the above problem is that
of Quasi-Newton algorithms [1]. The idea of these methods 1is to
maintain a positive definite symmetric matrix that approximates the
Hessian at each iteration. Given the point X, in lf', the algorithm

obtains a direction of descent, Py» by solving the system of equations

Bk Pk - 'gk ’ (1-1)

where Bk is the approximation to the Hessian at iteration k and
8y is the gradient at X . The next point, %40 is then set to

” ”
Xy + & Py where o 1s chosen to cause a "sufficient" decrease in
the function value at Xy If the new point, X 41? satisfies some
convergence criteria, the algorithm is terminated; else, the above

procedure is repeated after obtaining Bk+1' a new approximation to

the Hessian, as follows:




Bk+1 = Bk + Uk ’ (1.2)

where Uk is a matrix chosen so that Bk+l is symmetric, positive
definite and satisfies the Quasi-Newton condition (henceforth referred

to as the QN condition),

Bis1 %k ™ Yk 1.3
with

Sk T Xkl T K M4 VT By T8 -

There are a number of different ways of choosing Uy in

equation (1.2). Three possible choices are shown below.

T T
Yy, V. B, 8 s B
BFGS Update: U:FGS = -%—5 - —l(:f—k'-‘l(—-—k (1.4)
Sk Yk Sk Bk S

T T
(v, - B, s)y, + 7y (y, =B s)
DFP Update: uzFP -k 'k 'k kT kY ~ Bx Sk
Yk Sk
(1.5)
T T
_ O m B S0 B Vi i
N
(5 8
T T
B, 8, 8. B s v y. ¥
. . __k kK kK k k "k k 'k
Self -Scaling BFGS: Bk+1 Bk T . + X (1.6)




Quasi-Newton methods have been very successful in solving
unconstrained and constrained problems of moderate size. The difficulty
in applying these methods to large problems is that a symmetric n X n
matrix (or a factorization) must be stored. However, many large pro-
blems have a sparse Hessian whose sparsity pattern is known (or can be
determined) a priori. In this case, it seems possible to maintain a
suitably sparse approximation to the Hessian; and, much current research
is being directed to this objective (see [2],[3],[41,([5)).

Updates of the type given by equations (1.4), (1.5) and (1.6)
cause total fill-in (that is, they do not preserve any zeros of the
Hessian approximation). Obtaining updates that preserve sparsity and
satisfy the Quasi-Newton condition (1.3) requires the solution of a
linear system of equations whose coefficient matrix has the same
sparsity pattern as the Hessian. This does not guarantee positive
definiteness; and, in fact, it is not possible to always satisfy the
Quasi-Newton condition (1.3) and preserve positive definiteness while
maintaining sparsity (see [3], for example). Furthermore, sparse
updates are usually of rank n; and, hence it is not possible to easily
update the factorization of the Hessian approximation. This results
in the additional work of refactorizing the Hessian at each iteration.

Shanno [3] showed how the sparse analog of any symmetric update

U, can be derived by variational means. This paper shows how these

k

sparse analogs can be derived as a simple extension of Toint's deriva-

tion of a sparse update,
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2. Definitions and Notation

In the rest of the paper the subscript k will be dropped and
the subscript k + 1 will be replaced by the superscript *,

Let B be the sparse symmetric matrix representing the approxi-
mation to the Hessian at the start of iteration k .

Let N = {(1,3): Bij = 0} that 1s, N represents the sparsity
pattern assumed at the start of the algorithm. Note that the sparsity

pattern 1s assumed to be fixed and any additional zeros created are

treated as non-zeros.
Let
N={({,§): 1, =1, ..., n}\N
= {(1,3): B .. ¥ 0} .

1]

For any symmetric matrix A, define matrices AN and Aﬁ as

follows:

(1,3) €N
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In words, AN is the matrix A with zeros in the positions correspond-
ing to the non-zeros of B; and Aﬁ is the matrix A with zeros in

the positions corresponding to the zeros of B. Then A can be written

as

A=byt iy

Define Di to be a diagonal matrix whose diagonal elements are

} 0 or 1 depending on the sparsity pattern of the ith row of B.

That is,

1 if (1,j) EN

(Di)jj

0 if (L,§)EN.

Finally, define s1 = Di s for any vector s.

An example that illustrates the above definitions and notations

now follows.

Example:
b|
10 1 0 0 25 3 4 5 : |
i
: 1 20 2 0 3 35 2 3
‘; B = A= 1
‘ 0 2 30 3 4 2 45 6
}
| 0 0 3 40 5 3 6 55

-




Then,

(1
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3. Toint's Method

Toint [2] proposed finding a matrix E such that: E 1s closest

*
to B in some sense; B (= B + E) has the same sparsity pattern as

B (thus, E has the same sparsity pattern as B); and B* satisfies

the Quasi-Newton condition (1.3). Formally, the problem can be stated

as:

n n
(P1) Min IEIZ =7 7 EZ , where I:1_ 1is the Frobenius norm (3.0)
F 13 F
1=1 j=1
such that Es = y - Bs (3.1)
E = ET . (3-3)

By variational means, Toint obtained the following result
0 (1,3) €N
E1j - (3.4)
A, 8, +A, 8 (1,j) €N

where )\ = (xl, cves An)T is the solution of the linear system 3

@Y\ =y - Bs (= Eg (3.5) ﬁ




with ¢ defined by

1,2
1y 84y

‘pij = (si) (sj)i +1s ¥1i,j (3.6)

3

and § 13 is the Kronecker delta.
Note that ¢ 1is symmetric and has the same sparsity pattern as

B. Furthermore, ¥ is positive definite if and only if |sil >0

for all 1 (see Toint [2]).

In matrix notation,

n
E= 2 )\:'_[ei(si)T + si

T
e, (3.7)
i=1 i

where e is the unit vector with 1 1in the i.th position, and
¢ =7 tshs, + 18912 ¢ 1 . (3.8)

Toint also obtained a generalization by minimizing |WEWIF where

W 1s a diagonal matrix given by

W= tz with ti >0 for i =1, ..., n . (3.9)




In this case the @ and E matrices are defined by

i i 1.2
@ -(s)l(S)1+ n (S)k

8
13 £ €, ko1 £ £ 1

-1 i h|
B, i tj[li(s PRENCON

(3.10)

(3.11)
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4. Sparse Analogs of Symmecrric Updates

Shanno [3]) showed how sparse analogs of symmetric updates (using
BFGS as an example) could be derived by variational means. This section
shows how these sparse analogs and those using self-scaling can be
derived as a simple extension of Toint's results.

Let B* = nB + U, where U 1is symmetric but in general will not
have the same sparsity pattern as B; n 1s some scale factor; and

*
B s =y, Then, by definition we have

*
BN = UN (4.0)
* U te th B 4.1
B.ﬁ = nBﬁ + 5 (Note that Bﬁ ) (4.1)

*
Now Bﬁ has the same sparsity pattern as B but does not satisfy the

K
Quasi-Newton condition (1.3). Hence, we want to find a B given by
B =B-+E, (4.2)

AR
such that B 1is symmetric, has the same sparsity pattern as B and
satisfies the Quasi-Newton condition (1.3).

Next, note that

. N
B s = (Bf + E)s

%*

*
= (B - BN + E)s

=y - (B; - E)s .

10




% *
Clearly, B s =y 1if and only 1if (BN - E)s =0 or

*
- i
Es BN 8 . (4.4) b
R
Thus B 1is obtained by solving the following problem

n n

2 2
(P2) Min Hell= §7 J E (4.4)
Fooyap jm1 1
such that Es = B§ 8 (4.5)
Egy = 0 (1,j) €N (4.6)
F T
E=E . (4.7)

Problem P2 is almost the séme as problem Pl. The only difference

is in equation (4.5) of P2 and equation (3.1) of Pl. Thus the solution

to problem P2 1is:

0 {,3) €N ;
Eyy = (4.8)

A, 8, + ), 8 (1,j) EN

where 1\ = (Al, ceay An) is the solution of the linear system

11




*
P BN s

with ¢ defined by (3.6) or (3.8).

If the norm to be minimized is chosen to be 'NEwli with W

(= Es)

given by (3.9), then E and ¢ are given by (3.10) and (3.11)

respectively.

(4.9)

ekt
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5. A Note on Computations

*
Shanno (3] indicated that the computation of BNs does not
require the storage of the elements of UN but does require the
computation of the elements of Uy (that is, those elements of U

corresponding to the zero elements of B). However, the following

result shows that the elements of U, need not be computed.

N
B¥ s =uU_s (from (4.0))
NS N rom .
= (U - Uﬁ)s (by definition of UN)
= Us ~ qu s
* *
= (B - nB)s - U=s8 (since B =nB + U)

N

=y - nBs - Uﬁ s .

6. Conclusion

This paper has shown how the sparse analogs of Quasi-Newton
updates can be derived as a simple extension of Toint's results; and,
how the computation of B; s can be done efficiently. At present,
research on the computational and theoretical aspects of sparse Quasi-

Newton algorithms is continuing, and further results will be described

in a later technical report.

13

. ¢ e v s st i
RSN % NI A o Ou - -5

- e - - . e B T aye




7. Acknowledgements

I would like to thank Dr. Margaret H. Wright and Dr. Philip E.
Gill, without whose motivation, guidance and enthusiasm this research

would not have been possible,

8. References

(1] J.E. Dennis, Jr., and J.J. More, '"Quasi-Newton Methods, Motiva-
tion and Theory," Siam Review, 19 (January 1977), pp. 46-89.

[2] P.L. Toint, "On Sparse and Symmetric Matrix Updating Subject
to a Linear Equation,'” Math. Comp., 140 (October 1977),
PP. 954-961.

3] D.F. Shanno, "On Variable-Metric Methods for Sparse Hessians,"
MIS Technical Report (August 1978), University of Arizona,
Tucson, Arizona 85721.

(4] J.E. Dennis, Jr. and R.B. Schnabel, '"Least Change Secant Updates
for Quasi-Newton Methods," Technical Report (TR 78-344),
Department of Computer Science, Cornell University, Ithaca,

New York 14853.

{51 E.S. Marwill, "Exploiting Sparsity in Newton-like Methods,"
Ph.D. Thesis (1978), Cornell University, Ithaca, New York 14853.

14




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEr AP INSTRUCTIONS -
Y. ii’o'i NUMBER 2. GOVY ACCE ,SION NO| 3. RECIPIENT'S CATALOG NUMBER
79-13
& TITLE (and Subdtitle) S. TYYPE OF REPORT & PERIOD COVERED

I ST PP

A Note on Sparse Quasi Newton Methods Technical Report

l e. ’5:'1?“"4.0 ORG. REPORT NUMBER

f 7. AUTHON(S) S CONTNACT ON GRANT NUMBERTS) |

Mukund Thapa DAAG29-79-C-0110 -
: 9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAN ELEMENT. PROJECT, TASK
| Operations Research Department - SOL . AREA & WORK UNIT NUMBERS
s Stanford University
L Stanford, CA 94305
.[ ' 15. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATSE
| Mathematics Division September 1979

U.S. Army Research Office, Box CM, Duke Station [73. womsEr oF pacEs

Durham, NC 27706 14
[ T3 MONITORING AGENCY NAWE & ADDRESS(Il different from Controlling Office) | 18. SECURITY CLASS. (of thie report)

UNCLASSIFIED
| T8a DECL ASSIFICATION/DOWNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; i
its distribution is unlimited.

17. DISTRIBUTION STATEMENTY (of the abatract sntered in Block 20, i1 ditferent from Repert)

18. SUPPLEMENTARY NOTES

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORYT
ARE THOSE OF THE AUTE O™ T) AND SHOUI D NOT BE CONSTRUED AS
~N OFFICIAL DEPARTMENT OF THE ARMY POS!TION, POLICY, OR DE-
SISION, UNLESS 8O DESIGNATED BY OTHER DOCUMENTATION,

19. KEY WORDS (Continue on reverse elde I 'y and identify by block number)

Sparse

Quasi Newton
Unconstrained
Computation

20. ABSTRACT (Continue on reverse side If y and | fy by Meck »

| SEE ATTACHED

0D , %' 1473  «oirion of 1 wov es 18 ossoLeTe UNCLASSIFIED
S/N 0102-014- 6601
SECURITY CLABSIPICATION OF THIS PAGE (hen Dore Bntered)

B ISR UK NE oY SU LT ST : e o




IF
SECUMITY CLASHMPICATION OF THIS PASE (When Dase Bniered

SOL 79-13, Mukund Thapa
A NOTE SPARSE QUASI NEWTON AETHODS

i e el e =

quantity efficiently.

“‘5§>Shanno's derivation of the sparse analog of any symmetric Quasi-Newton
update is obtained as a simple extension of Toint's derivation of a

sparse update. Furthermore, it is shown how to compute an intermediate

UNCLASSIFIED
SECURNITY GLASPICATION OF THiS PAGS(Then Base Baieredd




