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1. Iatroduction

Geometric programming is a branch of nonlinear programming that
considers certain primal nonlinearly constrained convex programs and their
associated dual linearly constrained convex programs. The development of
geometric programming is largely the work of Duffin, Peterson, and Zener (S].

The strong duality theory [4,5] of geometric programming states that, under

mild conditions, to solve a primal one can solve its dual and then solve a

single system of linear equations, known as the invariance conditions. Since

many practical problems, especially in optimal engineering design, {16,17],
are naturally cast as primal problems, a major computational advantage of
this duality is that, when the dual is solved with a feasible direction
method, the linear equality constraints restrict the choice of feasible direc-
tions. For such methods, the computational effort required to solve the dual
increases with the dimension, called the degree of difficulty, of the dual
feasible region.

To solve a primal, rather than solving its dual directly, we propose
solving the duals of a sequence of approximating primals. Each approximating

primal is obtained from the primal by using the current primal solution

estimate to condense [4) certain terms in the constraints and the objective




function, as specified by a canonical submatrix of the matrix of exponents.

The dual of each approximating primal has fewer degrees of difficulty than
the dual of the given primal. Therefore, our scheme is to solve a sequence
of problems, each pos.d in the same low dimensional space, rather than solve
one problem in a higher dimensional space.
In this paper, all vectors are colummn vectors, unless otherwise
} specified, and x' and A' denote the transpose of the vector x and the
matrix A, respectively. If x, y € R®, by x=y, x>y, and x>y, we

mean x x, > yj, and x, > y,, respectively, for j = 1,2,...,m. The
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end of a proof is denoted by &.

2. Primal and Dual Geometric Programs

Geometric programming studies pairs (P, D) of optimization problems.

The primal P 1s defined on R™:

minimize ho(x)

subject to hk(x)'i 1, k=1,2,...,p,
vhere
ax
h()= ] ce” , k=0,1,...,p;
i1 €[k)
(k] are successive blocks of the integers 1, 2, ... , n: [k] = {mk’ mk+1....,nk},

where nb =1, m =0, +1, m, - n, +1,..., mp - np_1+1, cee y np = n; c1

is positive for 1 = 1,2,..., n, and a = (ail’ 89 +or s aim) is a

tow vector, with a unconstrained in sign for each 1 and j. Here a x

b ) i

means Z;Ll a Each h_ 1is called a posynomial, and h, is said to have

13%3°
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I(k]| terms, where |S| denotes the number of elements in set S. The
primal is said to have n terms, since n = Zz_o lix1l.
The dusl D 18 defined on Rn:

maximize V(§) = I
=]

subject to § €D

A= )8, for k=1,2,..., p,
ko ém) 4

D = {§ls'a=0, |
1€[0

: 6 =1, and & > 0}

is the n X m matrix of exponents. Here &§'A denotes the m~dimensional row

vector whose jsh coordinate 1s §

n
1=1 "1

Clearly, P 1s a convex program, as is D when v(§) is replaced
with -log v(§) [5). From [4,5] we learn that if x is feasible for P
and § is feasible for its dual D, then ho(x)‘z v(§). Under the same

conditions, equality holds if and only if the invariance conditiong

a.x
Kj;)-cie‘ 1 € [0)

Akcie 1 € [k], k=1,2,..., p

i
i
|
i
g
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are satisfied. Taking logarithms of each equation generates a system of

equations linear in x. Since 62 >0 for some 2 in [k] 1if and only

if 61 >0 for each 1 in [k], the invariance conditions are a set of

|{o)l + EkEK |{x]! nontrivial equations in m unknowns, where
+
; x+-{klxk>o, k=1,2,...,p}.

B A program is congistent 1f its feasible region is nonempty. We say

; P 1s guperconsistent if for some x0 we have hk(xo) <1, k=1,2,..., p.
If P 1is consistent and has a positive infimum w, then its dual is consistent

and has a finite supremum £, and w = E. If also P 1s superconsistent,

then £ 1is attained at a dual feasible point [4,5].

We are interested in unigueness of solution in geometric programming.

Recall that the posynomial h 18 strictly convex if its exponent matrix has

full rank (see p. 31, Zener [17]). We write

vhere A[k] contains those rows of A corresponding to hk’ for k = 0,1,...,

By a Kuhn-Tucker pair (z,u) for P we mean that z solves P and

u 1is & vector of Lagrange multipliers for P.
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Proposition 1. For some Kuhn-Tucker pair (z,u) of P, let E be that sudb-

-~

matrix of A obtained by deleting A for each k satiafying = 0.
(k] "

If rank E = m, then 2z {s the unique solution of P,

Proof. Since (xz,u) is a Kuhn-Tucker pair for P, then & minimizes

.1x ax
12[0] c‘c + kgl “k 16%&] cio .

g A

Since u > 0 and rank E = m, it follows that z 13 the unique ainimum of

S e VP e e

this function. By Corollary 28.1.1, Rockafellar [12], 2 {s the unique solu- }

tion of P. ® ?

Proposition 2. Suppose P 1is superconsistent and has the unique Kuhn-Tucker

pair (s,u). Let E be as in Proposition 1. If rank E = @, then the dual

D has a unique solution.

Proof. Each Lagrange multiplier W is related to the variadble
A " I“ (k] 81 Of the dual by X\ = u /ho(2), k= 1,2,..., p (ses p. 119,

Duffin, Peterson, and Zener [5]). Since each u i3 uniquely determined,

NPy w

then so0 is each xk. By the atrong duality theory, the dual has at least

Ty

one solution. BEach dual solution is related to z by the invariance con-
ditions. Since sz {s the unique solution of P and rank E = m, the {

invariance conditions generate the unique solution of the dual. ®

S SR e -

Proposition 1 implies that the ability to determine in advance which

primal constraints must be active at any primal solution can prove a priori

e At e

that the primal has a unique solution. The monotonicity analysis of Wilde [16]

1
£
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and Papalawdros [11] i{s very useful for determining constraint activity.
Propasition 1 {s important because proving global convergence of our method
requires a priori knowledge that the given primal and each approximating
primal have unique solutions. Proposition 2 asserts that, under reasonable
conditions, the dual has a unique solution {f the primal does. This theorem

is useful for our method, which solves only dual problems.

3. Canonical Primals and Degrees of Difficulty

Our method can be applied to a geometric primal P only {f P
is canonical, that is, if its solution set i3 nonempty and bounded. It {a
reasonable to expect a well-formulated problem to be canonical. If P (s
consistent but not canonical, then the solution set is either empty or wm-
bounded. In the latter case, by deleting terms or variables, we can reduce

P to a canonical program [1,5]).

Proposition 3. Suppose P 1s consistent. Then the following are equivalent:

1) P 1is canonical
2) MO implies d =0

3) rank A= m and A =0, § >0 has a solution.

Proof. 1) <(=e> 2)., See Abrams [1]. Notice that "Ad < 0 {mplies d = Q"

says that the objective function and constraints have no common direction of
recession. 2) <w=> 3). By Stiemke's Theorem [9], Ad x 0, Ad ¥ 0 has nosclu-
tion if and only {f &'A =0, § >0 has a solution. Moreover, Ad = 0 haa
no nongero solution {f and only if rank A s m. @
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We write

A
Aro) R
A= ’ where A[~ o] Ld (2] .
A .
(~ 0] :
Alp)

If P 1s consistent, its feasible region is bounded 1if and only if
A[~ 0]d.£ 0 dimplies d = O[1).

Notice that, for a consistent primal, the cost coefficients {ci}
play no role in determining whether or not P is canonical. This 1is a
wonderful feature, since cost coefficients are usually not known exactly,
wvhile the exponent matrix is usually determined from the laws of science
and therefore is often known exactly.

From Proposition 3 and the strong duality theory, it 1is easy to
prove that, if P 1s canonical, its dual is consistent and has n-m-1
degrees of difficulty. If, for each dual feasible point, one or more com
ponents are always zero, then, as discussed in Abrams [1], these components
and the corresponding primal terms can be dropped. In this case, the degree
of difficulty is strictly less than n-m-1.

Notice that, for a fixed number of primal variables, the degree of
difficulty increases with the number of primal terms. Although geometric
programming succeeds with duals of small degree of difficulty, turning to
the dual can in many cases produce unreasonably large problems. Our method

modifies the primal to reduce the number of terms, thus lowering the degree

of difficulty of its dual.
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4. Condensation and Canonical Submatrices

The key to treducing the number of primal terms is a technique called
condensation, discovered by Duffin [4]. Wilde [16] has used condensation to
simplify problems in optimal engineering design.

Condensation maps a posynomial into a one-term posynomial. Consider

8, x

h(x) = Z:-l cye © . For every x, each term of Hh(x) 4s positive. Given

the point 1y, form the vector € = (cl. €as +on s en). where

a y
€y = ¢ h(y) , {=1,2,..., n.

n
Since € >0 for each 1 and Ei-l €y

vector of primal weights for h at V¥. We define the total condensation

= 1, the vector € 1s called a

of h about y to be the function E('.y) given by h(x,y) = ce®™, where

€

- n ( ci) i _ §
c= I — and ase= €., .
1=1 ‘€4 a1 11

Notice that ﬁ('.yb is a one-term posynomial. It [s well-known ([2,4]
that h(y) = h(y,y), Yh(y) = Vlﬁ(y,y) (where Vl denotes the gradient with

respect to the first argument), and h(x) > h(x,y) for every x.

We now present a scheme for condensing a canonical primal to reduce

the degree of difficulty. Section 3 proved that a consistent primal P

is canonical if and only if its exponent matrix A satisfies Ad < 0

implies d = 0. Suppose now that P 1s consistent and canonical. One can
often delete rows of A s0 that the resulting matrix, denoted by Ac.

satigifes the following conditions:

‘ 1
d . [ ORI SIS VY e ikt




1) A4 <0 implies d =0

2) at least two rows of Alk] are deleted for some Xk in {0,1,..., p}.

If AS satisfies 1) and 2), we call Ac a canonical submatrix of A. (This

definition differs somewhat from that in Rosenberg [14].)

The concept of a canonical submatrix has a simple geometric inter-
pretation., Consider a canonical unconstrained F whose objective function
has two variables and five terms. By Proposition 3, the matrix A wmust have
full rank, and S§'A =0, § > 0 wmust have a solution. Such a situation {is
showm in Figure 1. Notice that .1' 13. and ‘S form & canonical submatrix.
In contrast, a,, ag, and a do not.

A canonical submatrix AS tells which terms of P can be condensed

without P becoming noncanonical. For each k = 0,1,..., p, vollect each

term whose exponent vector a, was deleted from A to form A, Add these terms

i

together to build s posynomial, which we call h'r

e Equivalently, h: is

obtained by deleting from hk
Given the point v {n R‘. totally condense h: about v to form

l_\:(',y). For each k = 0, 1, ... , p, let
B (X,y) = (B (X) - RI(x)) + Rl (xoy)
MR hk x) - k(x k(x.) .

That is, Ek('.y) is odtained from h by totally condensing about v

.3
all terms with exponent vectors not appearing in AS. Finally, define the

condensed primal P(y):

each term whose exponent vector appears in A",




Fig. 1. Exponent matrix of a canonical unconstrained P \




minimize EO(X.Y)
x

subject to Ek(x,y) <1, k=12, ... , p.

It follows immediately from the above remarks on condensation that,
for every y, P(y) has a larger feasible region and a (pcintwise) smaller
objective function than P. Moreover, P(y) 1s canonical for every Yy,
since the exponent matrix of P(y) has (after possibly reordering the rows)

the form

Ac

w()

for some matrix W(y). Since Acd‘s 0 implies d = 0, then P(y) is
canonical, by Proposition 3. Moreover, condition 2) of the definition of
a canonical submatrix implies that P(y) has fewer terms than P, so that
its dual has fewer degrees of difficulty. An example of how to generate a

condensed primal is presented in Section 7, along with numerical results.

5. Obtaining a Canonical Submatrix

The following is a procedure that searches for a canonical submatrix.
Recall that a matrix AC obtained by deleting rows of A 1s a canonical
submatrix if
1) AS4 <0 implies d =0 and

2) at least two rows of A[k] are deleted for some k in {0,1,...,p}.

)
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The procedure uses linear programming to search for a submatrix of A =satisfying

1), If the submatrix also satisfies 2), then it is a canonical submatvix.

We observed in Section 3 that P {s canonical {f &§'A =0, § >0

has a solution and vank A = m.

Consider the Phase 1 [3] linear program:

minimize e;w +y

LP
subject to  A'S + w= 0

'S -
e +y 1
(“o Wy y) 20
Y
where e € R 1{s a column vector of ones. Notice that LP has wmtl con-
straints. Clearly LP is consistent. Let Yy be the optimal objective function

value of LP. Then 7{2 0.

Proposition 4. If P {8 canonical, then y = 0,

Proof. 1If P {8 canonical, then §'A =0, § >0 has a solution. Therefore
§'A =0, e;5 =1, & >0 has a solution, so that every solution of LP haa

w=0 and y = 0. Hence y = 0. ®

By Propoaition 4, {f y > 0 then P 1is not canonical; hence no

canonical submatrix exists. In this case, reduction may be desirable (=ee

Abrams (1]). Notice that

A,..AA___.._._...“_.‘ .
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provides a counterexample to the converse of Proposition 4: P {s not
canonical, since rank A= 1, yet & = (1/2, 1/2)', w= (0,0)', y = 0
solves LP and vy = 0.

Suppose the simplex method [3] used to solve LP gives y = 0. If
m+l components of § are positive in the optimal solution of LP, then the
corresponding rows of A constitute a canonical submatrix i{f condition 2)
is satisfied. Unfortunately, degenerate solutions of LP are possible, even
when P 1s canonical. For example, in Figure 1, where a, = -ag, the
solution 62 - 65 - 1/2; 61 =0, 142, 5 is a degenerate solution.
Termination in the degenerate case does not automatically imply failure.
For it may be possible to find alternative nondegenerate solutions of LP by,
for example, bringing into the basis a column with zero reduced cost. It
is possible to systematically determine all basic solutions of LP (see [6]

and references therein) but such a procedure is generally unnecessary.

6. The Algorithm and a Stopping Criterion

This section presents the condensation algorithm and discusses some
of the details of implementation. We also describe how the algorithm auto-
matically generates a sequence of lower bounds, thus suggesting a stopping
criterion that may substantially reduce computation.

To execute the algorithm for solving P, we require that P be

superconsistent and that a canonical sudmatrix A be available, If




P satisfies only these two conditions then the algorithm can be executed.

However, to prove the algorithm globally convergent, we muat impose additional

assumptions. Failure to establish that some given P satisfies these extra
assumptions should not discourage use of the algorithm. To see how the
algorithm might still be of use, suppose that we take an arbitrary point x
as the first solution estimste. Since a canonical submatrix is available,
then PB(x) {s canonical and has a dual easier to solve than the dual of P.
It might be that a solution of B(x), obtained after relatively small effort
by solving the dual of P(x), also qualifies as an acceptable solution of

p, so that no further computation is necessary. The important word here
is "acceptable.” "He that knoweth when he hath enough is no fool." (John

Heywood (1546) as quoted in Wilde [16].) For example, it is foolish to

compute an extremely accurate solution to a problem formulated with inaccurate

data.
We now discuss the extra assumptions needed to insure global con-

vergence. First is that P have a bounded feasible region. As mentioned

in Section 3, this is true if and only if
AP” o]dlg 0 implies d=0,

wvhere A is that submatrix of A obtained by deleting the exponent

(~ 0]
vector of each objective function term. If our problem fails to satisfy
this condition, we could {mpose additional constraints bounding the feasible

region g0 that no solution of P viclates the additional constraints. Also,

14
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P and each P(x) (that is, for any x) wmust be lmown in advance to have

unique solutions. Sufficient conditions for a primal to have s unique solution
have been derived in Section 2. As mentioned there, verifying that a primal
.
has a unique solution can often be accomplished by determining constraint
activity.
A solution of B(x) defines a descent direction of an exact penalty
function. These interesting functions have been well studied (see [8]), [13],

and references therein). Here we simply define ep, the exact penalty function

of the primal P, by

E ux(O. hk(X) - 1) »

Gp(X) - ho(x) +0 L

where p 1is a fixed positive number.

Notice that ep is convex and nondifferentiable. Our method for
solving P requires a line search on ep at each iteration. Fibonacci or
golden section [15]) or superlinearly convergent [10] line search routines can
be utilized.

Our algorithm is the following. Let the positive numbers p and 8

be given. Choose any Xg in R™

Algorithm GPA. For 1 =0, 1, 2, ...
1) solve the condensed primal ?(xi) to obtain a solution 23 let

dy =2 - x

2) find an 01 such that

S P A 1 ARy s BRI T
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a, € arg min 0 (x; + ad,) ;

1 0<ags

let x - X

g tagdy

1+1

3) STOP if «x otherwise, go to 1) with i replaced by i+l.

141 T %43
We now present the global convergence theorem.

Theorem 1. Suppose that P is superconsistent and has a bounded feasible
region. Suppose also that P and P(x) have unique solutions for any x.
Then there is a positive number Po such that, whenever p > Pos algorithm GPA
either stops at the unique solution of P or generates a sequence {xi}

converging to {it.

Proof. Since condensation preserves function value and first partial
derivatives at the point of condensation, and since the objective function
ho is everywhere positive, the result follows immediately from this author's

convergence theory [13]. ®

Notice that the success of algorithm GPA depends on choosing a
sufficiently lurge value for p. We offer no a priori advice on how to
choose p, since the threshold value L is actually a function of the
solution set of P, of course unknown.

An important feature of algorithm GPA is that it automatically pro-
duces a sequence of lower bounds on ep, the exact penalty function associated
with P. We now characterize this sequence and explain how to use it as a

very effective stopping criterion.

16
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At each iteration i of GPA, we solve P(xi) (vis its dual) to obtain
a solution z,. The optimil objective function value of P(xi) is ﬁo(zi,xi).
Since each function defining P(xi) underestimates the corresponding function
defining P, it must be that ho(z)_z ﬁo(zi.xi). vwhere ho(z) is the optimal
objective function value of P. Also, since (Op(xi)} descreases monotonically
to Op(z) - ho(z). then Op(x‘)j ho(z). Combining the above, we have
eo(xl)jho(z)j l-\o(zi.xi). This shows that the sequences {Op(xi)} and {Eo(zi.xi)}
bound ho(z) from above and below, respectively. Since 2z solves P(z), the
bounds are tight, that is, 90(8) = hy(s) = l-lo(!.z)-

We cannot say that the sequence {l-\o(z i,xi)} is monotone increasing.
However, non-monotonic behavior occurred in only one test problem, suggesting
that non-monotonic behavior is the exception rather than the rule.

The lower bounds provide an excellent stopping criterion: accept
x, as a solution of P if ep(xi) - maxy ¢y o<y Eo(zj.xj) £ €,» for some
positive number Cl. This test is especially useful when the objective
function 1is not known to great accuracy, as in optimal design problems.
This criterion might be used in conjuriction with the requirement that x,
not violate any constraint by more than Cz. for some positive number €.
Notice that these lower bounds are not generated when the primal is solved
by the well-known technique of solving quadratic subproblems in an active

set strategy [7) ; indeed, the generation of these lower bounds is a very

special feature of our method.




7. Computational Experience

This section discusses computational experience with algorithm GFA.

The algorithm was programmed for the Stanford University IBM 360/70 computer

in the language APL, especially suitable because of the ease with which it
handles vectors and matrices. Moreover, since APL is interactive, changing
the data or parameters and conducting sensitivity analysis is easy.

We solve each condensed dual by obtaining a feasible point and
applying a projected Newton-like method (see Chapter 3, Gill and Murray (7]).
This feasible direct{on method requires a line search on the condensed dual

objective function at each iteration. We employ the golden section method [15]

to solve the line search. The original interval of uncertainty is chosen to

be min(A,B), where

A = the minimum step along the condensed dual search direction
that causes some coumponent of the solution estimate to hit
gero

and

B = 100 times the length of the condensed dual search direction.

Each line search is stopped when the values of the function at either end

of the current interval of uncertainty differ by no more than 10-8. Each

condensed dual optimization is stopped when successive line searches yield con-

densed dual objective function value estimates that differ by no more than 10-8.

Our experience indicates that these tolerances cannot be greatly

increased, since changing them to 10‘-3 led to jamming at x That is,

1.

we obtained x, =Xy " X,

18




We also used the golden section method for each exact penalty
function line search. We choose B8 = 10; this valve is more than adequate.
Bach exact penalty function line search is stopped when the values of
the function at either end of the current interval of uncertainty differ
by no more than 10-8. Our experience indicates that this tolerance may be
increased to 10-3 with no significant detrimental effect. However, we chose
to use the former value.

For our test problems we chose p = 400. This choice was found to be
adequate. According to the theory in [13], nothing is gained by increasing »
beyond the threshold value Po* Indeed, increasing p to 1000 in one problem
produced a sequence of solution estimates identical to the fifth decimal place.

Representative computer results are given below. By ep we mean the
exact penalty function corresponding to the given primal P. All entries in
the table are rounded to five significant figures. At each {teration {, we
supply
a. eo('i)' wvhere 2, solves ?(xi)
b.

), where x solves the line search on ep

0, (x1n1 141

c. the objective function and constraints of P at X4l

d. the lower bound io(li.xi).

19




Problewn

x X,
aininize e
-X +2x X, =%
1 1.2 [{™% 3 %%
subject to it ® +-ﬁ-o ""ff‘ +-1—1e
- - -2x
s TR T2 7 X2 8
?7’ e + 27 [ ] + 27 e + 27 e

x.+
1“231

2x,-x
1 2(

1.

This problem is superconsistent, canonical, and has six degrees of difficulty.

Both constraints are active at the unique solution.

Condense the last three terms of each constraint. Given

Method.
P(y) 1
x,+
minimize e 12
-x a.x
1 ) 1
subject to 11 ® + ¢ e <1
s "X - %
27 e + c2° <1
where
€ €
- 2/11
1 ‘l

Y.




(el, €5 e3) - § i1 ® ' 11 e ' 11 .

and
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N
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-
R~
w
-
[
U
nN
-

(Bl' 823 83) =T 27 e » 27 e » 37 e ’
y,~y y,~2y 2y.-y
- 6 1°2 7 1 2 8 172
T 27 © +-§7 e + 27 .

Each PB(y) 1is superconsistent, canonical, and has two degrees of difficulty.

We chose p = 400 and Xy = (4,6) which yields Gp(xo) = 8.2 x 108,
hl(xo) = 2.0 x 106. and hz(xo) = 2.2. The following table shows that four
iterations produce an x, feasible for the original problem such that ho(xa)
is within 0.1 percent of the optimal objective function value. Notice that the

lower bounds Eo(zi,xi) proved very useful in determining when an acceptable

solution is at hand.




8, (zy) 8, (xg41) | Molxyy) [ hy(xy ) hy(xigy) | Bg(zyux))
535.13 30.636 0.21623 | 1.0761 |0.49853 0.017098
29.496 7.7871 0.089265| 1.0192 |0.85597 0.065315
0.67405 | 0.25104 0.073065 | 1.0004 |1.0000 0.072943
0.078688| 0.073136 | 0.073136] 1.0000 |0.99989 0.073124

In conclusion, we have shown that solving condensed geometric programs
in our globally convergent scheme, combined with a lower bound stopping
criterion using the knowledge of how accurate a solution it is worthwhile
to compute, provide a powerful new means of solving geometric programs.
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