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1. Introduction

Geometric programming is a branch of nonlinear programming that

considers certain primal nonlinearly constrained convex programs and their

associated dual linearly constrained convex programs. The development of

geometric programming is largely the work of Duffin, Peterson, and Zener (5].

The strong duality theory [4,5] of geometric programming states that, under

mild conditions, to solve a primal one can solve its dual and then solve a

single system of linear equations, known as the invariance conditions. Since

many practical problems, especially in optimal engineering design, [16,17],

are naturally cast as primal problems, a major computational advantage of

this duality is that, when the dual is solved with a feasible direction

method, the linear equality constraints restrict the choice of feasible direc-

tions. For such methods, the computational effort required to solve the dual

increases with the dimension, called the degree of difficulty, of the dual

feasible region.

To solve a primal, rather than solving its dual directly, we propose

solving the duals of a sequence of approximating primals. Each approximating

primal is obtained from the primal by using the current primal solution

estimate to condense [4) certain torus in the constraints and the objective



function, as specified by a canonical submatrix of the matrix of exponents.

The dual of each approximating primal has fewer degrees of difficulty than

the dual of the given primal. Therefore, our scheme is to solve a sequence

of problems, each posed in the same low dimensional space, rather than solve

one problem in a higher dimensional space.

In this paper, all vectors are column vectors, unless otherwise

specified, and x' and A' denote the transpose of the vector x and the

matrix A, respectively. If x, y E R!, by x - y, x > y, and x > y, we

mean xj - yj, xj > yj, and xj > yi, respectively, for j - 1,2,...,m. The

end of a proof is denoted by QO.

2. Primal and Dual Geometric Programs

Geometric programming studies pairs (P D) of optimization problems.

The primal P is defined on Rm:

minimize h0 (x)

subject to hk(X) _( 1, k -l,2,...,p,

where

aix
h(x) - cie , k - 0,1 .p;

I ([k]

kiare successive blocks of the integers 1, 2, .. ,n: [k) {mk, mk +l,...,n kl
where a. - 1, m1  no + 1, m2 - n1 + ,..., mp n 1 ,np n; ci

is positive for i - 1,2,..., n, and a, - (ail, a12s ... , a)im is a

row vector, with aij unconstrained in sign for each i and J. Here aix

Mang a Each hk is called a posynomial, and hk is said to have
eas J1 k k



I[kJI term, where ISI denotes the number of elements in set S. The

primal is said to have n term, mince n - IP I[kJI.

The dual D is defined on Rn:

maximize V(6 - ( (c±)S p Ak
i-i i k-i

subject to 8 ( D

where

A k 61 for k-=l,2,..., p,

D -(616'A -0, 1 - 1 and 6 > 0)
i [ 01

and

a1
A- 2

n

is the n X a matrix of exponents. Here S'A denotes the r-dimensional row

vector whose JL coordinate is

Clearly, P is a convex program, as is D when v(6) is replaced

with -log v(6) (5J. From [4,51 we learn that if x is feasible for P

and 6 is feasible for its dual D, then h 0( W v(S). Under the same

conditions, equality holds if and only If the invariance conditions

61x
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are satisfied. Taking logarithms of each equation generates a system of

equations linear in x. Since > 1 0 for some I in [k] if and only

if 6 > 0 for each i in [k], the invariance conditions are a set of
I

11011 + k iK+ I[kil nontrivial equations in m unknowns, where

K+ - (k Ak > 0, k - 1,2,...,p).

A program is consistent if its feasible region is nonempty. We say

0 0
P is superconsistent if for some x we have hk(x ) < 1, k - 1,2,..., p.

If P is consistent and has a positive infimum w, then its dual is consistent

and has a finite supremum E, and w - F. If also P is superconsistent,

then C Is attained at a dual feasible point [4,51.

We are interested in uniqueness of solution in geometric programming.

Recall that the posynomial h is strictly convex if its exponent matrix has

full rank (see p. 31, Zener [171). We write

A 101

A
A"

where A k] contains those rows of A corresponding to hk, for k - 0,1,..., p.

By a Kuhn-Tucker pair (z,u) for P we mean that z solves P and

u is a vector of Lagrange multipliers for P.

4
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Proposition 1. For some Kuhn-Tucker pair (zu) of P, let K be that sub-

matrix of A obtained by deleting A[k) for each k satisfying uk - 0.

If rank R - a, then a is the unique solution of P.

froof. Since (au) is a Kuhn-Tucker pair for P. then a minimises

c .  * 0 uk  c~~

11[o1 k-l it kJ cis

Since u > 0 and rank E - m, it follows that a is the unique minimum of

this function. By Corollary 28.1.1, Rockafellar (12], a is the unique solu-

tion of P. *

Proposition 2. Suppose P is superconsistent and has the unique Kuhn-Tucker

pair (z.u). Let E be as in Proposition 1. If rank E - m, then the dual

D has a unique solution.

Proof. Each Lagrange multiplier uk is related to the variable

A k i( (k) 6 of the dual by Xk - uk/ho(z), k - 1,2,..., p (see p. 119,

Duffin, Peterson, and Zner 151). Since each uk Is uniquely determined,

then so is each Ak" By the strong duality theory, the dual has at least

one solution. Each dual solution is related to a by the invariance con-

ditions. Since a is the unique solution of P and rank E - m, the

invariance conditions generate the unique solution of the dual.

Proposition 1 implies that the ability to determine in advance which

primal constraints must be active at any primal solution can prove a priori

that the primal has a unique solution. The monotonicity analysis of Wilde (161

5



and Papalambros (111 is very useful for determining constraint activity.

Proposition I is important because proving global convergence of our method

requires a priori knowledge that the given primal and each approximating

primal have unique solutions. Proposition 2 asserts that, under reasonable

conditions, the dual has a unique solution if the primal does. This theorem

is useful for our method, which solves only dual problems.

3. Canonical Primals and Degrees of Difficulty

Our method can be applied to a geometric primal P only if P

is canonical, that is, if its solution set is nonempty and bounded It is

reasonable to expect a well-formulated problem to be canonical. If P to

consistent but not canonical, then the solution set is either empty or Un-

bounded. In the latter case, by deleting terms or variables, we can reduce

P to a canonical program [1,5].

Proposition 3. Suppose P is consistent. Then the following are equivalent:

1) P is canonical

2) Ad ( 0 implies d 0

3) rank A - m and 0. - , > > 0 has a solution.

Proof. 1) <--> 2). See Abrams [Il. Notice that "Ad < 0 implies d 0"

says that the objective function and constraints have no colmm direction of

recession. 2) <--> 3). By Stiemke's Theorem [91, Ad ' 0, Ad 0 has nosolu-

tion if and only if 6A - 0, 8 ) 0 has a solution. Moreover, Ad - 0 has

no nonsero solution if and only if rank A - m.

6



We write( AA1
A(~JA = , where A[ O1 A[(21

If P is consistent, its feasible region is bounded if and only if

At, old < 0 implies d - 0[].

Notice that, for a consistent primal, the cost coefficients {c I

play no role in determining whether or not P is canonical. This is a

wonderful feature, since cost coefficients are usually not known exactly,

while the exponent matrix is usually determined from the laws of science

and therefore is often known exactly.

From Proposition 3 and the strong duality theory, it is easy to

prove that, if P is canonical, its dual is consistent and has n-m-l

degrees of difficulty. If, for each dual feasible point, one or more com-

ponents are always zero, then, as discussed in Abrams [1], these components

and the corresponding primal terms can be dropped. In this case, the degree

of difficulty is strictly less than n-m-l.

Notice that, for a fixed number of primal variables, the degree of

difficulty increases with the number of primal terms. Although geometric

programming succeeds with duals of small degree of difficulty, turning to

the dual can in many cases produce unreasonably large problems. Our method

modifies the primal to reduce the number of terms, thus lowering the degree

of difficulty of its dual.

7



4. Condensation and Canonical Submatrices

The key to reducing the number of primal terms is a technique called

condensation, discovered by Duffin 14). Wilde [161 has used condensation to

simplify problems in optimal engineering design.

Condensation maps a posynomial into a one-term posynomlal. Consider

h(x) - c e I For every x, each term of h(x) is positive. Given

the point y, form the vector c - (ci, £2 , ... , n), where

C1 M cIe a/'h(y) , i a 1,2,..., n.

Sinc I> 0 for each i and I

Since i > 0 f 1, the vector C is called a

vector of primal weights for h at y. We define the total condensation

ixof h about y to be the fumction hR(,y) given by it(x,y) = Ze , where

n Iciji n
c .1f and iai

Notice that i(,y) is a one-term posynomial. It Is well-known [2,4]

that h(y) - h(y,y), Vh(y) - V I(y,y) (where V1  denotes the gradient with

respect to the first argument), and h(x) 2 h(xy) for every x.

We now present a scheme for condensing a canonical primal to reduce

the degree of difficulty. Section 3 proved that a consistent primal P

is canonical if and only if its exponent matrix A satisfies Ad < 0

implies d - 0. Suppose now that P is consistent and canonical. One can

often delete rows of A so that the resulting matrix, denoted by Ac,

satlsifos the following conditions:

8



1) ACd 0 implies d - 0

2) at least two rove of A~k) are deleted for some k in {0,,..., p).

If Ac satisfies 1) and 2), we call Ac a canonical submatrix of A. (This

definition differs somewhat from that in Rosenberg 1141.)

The concept of a canonical submatrix has a simple geometric inter-

pretation. Consider a canonical unconstrained P whose objective function

has two variables and five terms. By Proposition 3, the matrix A must have

full rank, and S'A - 0. S) > 0 must have a solution. Such a situation is

shown in Figure 1. Notice that a1 9 a 3, and a5  form a canonical submatrix.

In contrast, a4, a5, and a6 do not.

A canonical submatrix Ac tells which terms of P can be condensed

without P becominS noncanonical. For each k - 0,1,..., p, collect each

term whose exponent vector ai was deleted from A to form Ac . Add these terms

T T
together to build a posynomial, which we call hk. Equivalently, is

obtained by deleting from hk each term whose exponent vector appears in A .

Given the point v in , totally condense h about v to form

-T
h k(,y). For each k - 0. 1, ... , p. let

hk(x.v) - (hk(x) -h(X)) + T

That is, hk( '.y) is obtained from hk by totally condensing about v

c
all terms with exponent vectors not appearing in A . Finally, define the

condensed primal (y):

9



a4

a 65

a
a1  3

Fig. 1. Exponent matrix of a canonical unconstrainedP
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minimize 0 (x,y)
x

subject to hk(xy) < 1, k - 1,2, ... , p

It follow immediately from the above remarks on condensation that,

for every y, (y) has a larger feasible region and a (pointwise) smaller

objective function than P. Moreover, P(y) is canonical for every y,

since the exponent matrix of P(y) has (after possibly reordering the rows)

the form

Ac

for some matrix W(y). Since Acd < 0 implies d - 0, then P(y) is

canonical, by Proposition 3. Moreover, condition 2) of the definition of

a canonical submatrix implies that 9(y) has fewer terms than P, so that

its dual has fewer degrees of difficulty. An example of how to generate a

condensed primal is presented in Section 7, along with numerical results.

5. Obtaining a Canonical Submatrix

The following is a procedure that searches for a canonical submatrix.

Recall that a matrix Ac obtained by deleting rows of A is a canonical

submatrIx if

1) Acd <0 implies d 0 and

2) at least two rows of Alk] are deleted for some k in (0,1,... ,p).

11A



The procedure uses linear programming to search for a submatrix of A satisfying

1), If the submatrix also satisfies 2), then it is a canonical submtrix.

We observed in Section 3 that P is canonical if A'A 0 , 6 > 0

has a solution and rank A - m.

Consider the Phase 1 [31 linear program:

minimize e 'w + y

m

LP
subject to A'S + w 0

e" +y- n

(IN w, y) 2 0

where e t R is a column vector of ones. Notice that LP has m+I con-
r

straints. Clearly LP is consistent. Let y be the optimal objective function

value of LIP. Then y > 0.

Proposition 4. If P is canonical, then y = 0.

Proof. If P is canonical, then S'A - 0, > > 0 has a solution. Therefore

S'A - 0, e'6 - 1, A > 0 has a solution, so that every solution of LP hasn

w - 0 and y O. Hence y - 0. 0

By Proposition 4, if y > 0 then P is not canonical; hence no

canonical submatrix exists. In this case, reduction may be desirable (see

Abrams (1]). Notice that

1
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A.(

provides a counterexample to the converse of Proposition 4: P is not

canonical, since rank Au 1, yet 4 - (1/2. 1/2)', v - (0,0)', y - 0

solves LP and y - 0.

Suppose the simplex method [31 used to solve LP gives y - 0. if

m+l components of 6 are positive in the optimal solution of LP, then the

corresponding rows of A constitute a canonical submatrix if condition 2)

is satisfied. Unfortunately, degenerate solutions of LP are possible, even

when P is canonical. For example, in Figure 1, where a2 - -a, the

solution a 2 - 5 - 1/2; 6i - 0, i 0 2, 5 is a degenerate solution.

Termination In the degenerate case does not automatically imply failure.

For it may be possible to find alternative nondegenerate solutions of LP by,

for example, bringing into the basis a column with zero reduced cost. It

is possible to systematically determine all basic solutions of LP (see [61

and references therein) but such a procedure is generally unnecessary.

6. The Algorith and a Stopping Criterion

This section presents the condensation algorithm and discusses some

of the details of implementation. We also describe how the algorithm auto-

matically generates a sequence of lover bounds, thus suggesting a stopping

criterion that may substantially reduce computation.

To execute the algorithm for solving P, we require that P be

superconsistnt and that a canonical submtrix Ac  be available. If

13
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P satisfies only these two conditions then the algorithm can be executed.

However, to prove the algorithm globally convergent, we must Impose additional

assumptions. Failure to establish that some given P satisfies these extra

assumptions should not discourage use of the algorithm. To see how the

algorithm might still be of use, suppose that we take an arbitrary point x

as the first solution estimate. Since a canonical submatrix is available,

then O(x) is canonical and has a dual easier to solve than the dual of P.

It might be that a solution of P(x), obtained after relatively small effort

by solving the dual of N(x), also qualifies as an acceptable solution of

P, so that no further computation is necessary. The important word here

is "acceptable." "He that knoveth when he hath enough is no fool." (John

Heywood (1546) as quoted in Wilde 1161.) For example, it is foolish to

compute an extremely accurate solution to a problem formulated with inaccurate

data.

We now discuss the extra assumptions needed to insure global con-

vergence. First is that P have a bounded feasible region. As mentioned

in Section 3, this is true if and only if

A[_ old < 0 implies d 0,

where A[_ 01 is that submstrix of A obtained by deleting the exponent

vector of each objective function term. If our problem fails to satisfy

this condition, we could Impose additional constraints bounding the feasible

region so that no solution of P violates the additional constraints. Also,

14
E-h m



P and each P(x) (that Is, for any x) must be known in advance to have

unique solutions. Sufficient conditions for a primal to have a unique solution

have been derived in Section 2. As mentioned there, verifying that a primal

has a unique solution can often be accomplished by determining constraint

activity.

A solution of 5(x) defines a descent direction of an exact penalty

function. These interesting functions have been well studied (see [8], [13),

and references therein). Here we simply define 8, the exact penalty function

of the primal P, by

6P(x) - hO(x) + P max(O, hk(x)- 1)
k-1

where p is a fixed positive number.

Notice that 0 is convex and nondifferentiable. Our method forp

solving P requires a line search on 6 at each iteration. Fibonacci orp

golden section [151 or superlinearly convergent [10] line search routines can

be utilized.

Our algorithm is the following. Let the positive numbers p and B

be given. Choose any x0  in Rm.

Alaorithm (PA. For i - 0, 1, 2,

1) solve the condensed primal P(xi) to obtain a solution zi; let

d z - xi I
2) find an a such that

15



a1 Earg min 0 (x + ad)
0< a< 0

let xt+ 1  xi + a dI

3) STOP if x 1  xi; otherwise, go to 1) with i replaced by i+l.

We now present the global convergence theorem.

Theorem 1. Suppose that P is superconsistent and has a bounded feasible

region. Suppose also that P and P(x) have unique solutions for any x.

Then there is a positive number p0  such that, whenever p p0o , algorithm PA

either stops at the unique solution of P or generates a sequence (x i

converging to it.

Proof. Since condensation preserves function value and first partial

derivatives at the point of condensation, and since the objective function

ho is everywhere positive, the result follows imediately from this author's

convergence theory (13]. 0

Notice that the success of algorithm GPA depends on choosing a

sufficiently large value for p. We offer no a priori advice on how to

choose p, since the threshold value p0  is actually a function of the

solution set of P, of course unknown.

An Important feature of algorithm GPA is that it automatically pro-

duces a sequence of lower bounds on 0 , the exact penalty function associated

with P. We now characterize this sequence and explain how to use it as a

very effective stopping criterion.

16



At each iteration i of GPA, ve solve ](x ) (via its dual) to obtain

a solution zi. The optimal objective function value of Nx I) is YO(zi,xi).

Since each function defining (xi) underestimates the corresponding function

defining P. it must be that ho(z)2 h0(zixi), where ho(z) is the optimal
objective function value of P. Also, since ( P(xi )) descreases monotonically

to 0 (z) - h0 (z), then 0P (x)? h0(s). Combining the above, we have

e(x)_>h(z)_) G(zix 1 ). This shows that the sequences {P(x )) and G{0 (zix .I

bound h 0(z) from above and below, respectively. Since z solves O(z), the

bounds are tight, that is, e () - ho(s) (Z.*

We cannot say that the sequence {h0(r-ixi)) }is monotone increasing.

However, non-monotonic behavior occurred in only one test problem, suggesting

that non-monotonic behavior is the exception rather than the rule.

The lower bounds provide an excellent stopping criterion: accept

x as a solution of P if 0P(x )- mex0<_ < R0(zJ'x A CID for some

positive number el" This test is especially useful when the objective

function is not known to great accuracy, as in optimal design problems.

This criterion might be used in conjunction with the requirement that x

not violate any constraint by more than 629 for some positive number 2.

Notice that these lower bounds are not generated when the primal is solved

by the well-known technique of solving quadratic subproblems in an active

set strategy [71 ; indeed, the generation of these lower bounds is a very

special feature of our method.

17Ai



7. Computational Experience

This section discusses computational experience with algorithm CPA.

The algorithm was programed for the Stanford University IBM 360/70 computer

in the language APL, especially suitable because of the ease with which it

handles vectors and matrices. Moreover, since APL is interactive, changing

the data or parameters and conducting sensitivity analysis is easy.

We solve each condensed dual by obtaining a feasible point and

applying a projected Newton-like method (see Chapter 3, Gill and Murray (71).

This feasible direction method requires a line search on the condensed dual

objective function at each iteration. We employ the golden section method [151

to solve the line search. The original interval of uncertainty is chosen to

be min(A,B), where

A w the minimum step along the condensed dual search direction

that causes some component of the solution estimate to hit

zero

and

B - 100 times the length of the condensed dual search direction.

Each line search is stopped when the values of the function at either end

of the current interval of uncertainty differ by no more than 10- 8 . Each

condensed dual optimization is stopped when successive line searches yield con-

densed dual objective function value estimates that differ by no more than 10- 8

Our experience indicates that these tolerances cannot be greatly

increased, since changing them to 10-3 led to jaming at xI. That Is,

w obtained xl - 2 3..

18
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We also used the golden section method for each exact penalty

function line search. We choose B - 10; this value is more than adequate.

Each exact penalty function line search is stopped when the values of

the function at either end of the current interval of uncertainty differ

by no more than 10 .  Our experience indicates that this tolerance may be

increased to 10 - 3 with no significant detrimental effect. However, we chose

to use the former value.

For our test problems we chose p - 400. This choice was found to be

adequate. According to the theory in [13). nothing is gained by increasing 0

beyond the threshold value p0 . Indeed, increasing p to 1000 in one problem

produced a sequence of solution estimates identical to the fifth decimal place.

Representative computer results are given below. By 0 we mean the

exact penalty function corresponding to the given primal P. All entries in

the table are rounded to five significant figures. At each iteration i, we

supply

a. 0lz where zIx solves P(xi)

b. eO(xi+1 ), where x i 1  solves the line search on 0

c. the objective function and constraints of P at xi+l

d. the lower bound O(al,xi)

19
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Probles
xI +X2minitmize 12

subject to fy + 2 + 3+ T e < 1

5 -x2 6 1-x2 7 x-2x + 8 2xx2 <
7e + - + 7 + 27 e1.

This problem is superconsistent, canonical, and has six degrees of difficulty.

Both constraints are active at the unique solution.

Method. Condense the last three terms of each constraint. Given y,

A(y) is

, hini, ze a

1 I - a1x
subject to 1"0 + el < 1

5 7e - x 2 + a2e x <1

where

-1 (2/11) c /1 L )2 (411) 3
C € / 2 / 3

&I (l C2 1 1al (" 1€' 2' 3 1 -1 I )
2 1

20



(i,2'3) -1( ~ Y +2y 2 , 3 e 2 1 ,l 2yi+Y 2)

2 Y1+2Y2  3 Y2 Y1  4 2Y1+Y2Sinye + -e + e

and
727 ~ 2 8,2)3

-- 6/27~ 72 ~ (/7
2 Bi / 2 / 83

a2 - (01, 82, 83) 1 -2
(2 -1

(Bl, 82, 83) - 7l-1  e1 ' 27 e 27Y )

6 Yl-Y2 7 Y1-2Y2 8 12-Y2
T -e + eF7 e + - e

27 27 27

Each P(y) is superconsistent, canonical, and has two degrees of difficulty.

We chose p - 400 and x0 - (4,6) which yields ep(x0 ) - 8.2 x 108,

h1(xO) - 2.0 x 106, and h2(xO) - 2.2. The following table shows that four

iterations produce an x4  feasible for the original problem such that h0(x4 )

is within 0.1 percent of the optimal objective function value. Notice that the

lower bounds h0(Zi,xi) proved very useful in determining when an acceptable

solution is at hand.

21



i (z) 6(x i+) ho(xi+I) hl(xi+I) h2 (xi+1) ho(Zixi)

1 535.13 30.636 0.21623 1.0761 0.49853 0.017098

2 29.496 7.7871 0.089265 1.0192 0.85597 0.065315

3 0.67405 0.25104 0.073065 1.0004 1.0000 0.072943

4 0.078688 0.073136 0.073136 1.0000 0.99989 0.073124

In conclusion, we have shown that solving condensed geometric programs

in our globally convergent scheme, combined with a lower bound stopping

criterion using the knowledge of how accurate a solution it is worthwhile

to compute, provide a powerful new means of solving geometric programs.
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