DEPARTMENT
of
PSYCHOLOGY

Carnegie-Mellon University
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Individual Differences in Memory Span

William C. Chase
Carnegie-Mellon University

Don R. Lyon
University of Dayton and

K. Anders Ericsson
Carnegie-Mellon University

This research was sponsored by the Personnel and Training Research Programs, Psychological Science Division, Office of Naval Research, under Contract No. N00014-79-C-0215, Contract Authority Identification No., NR 157-430. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
One series of experiments examined the correlation between memory span and the speed of symbol manipulation in short-term memory, and another experiment analyzed the effects of extended practice on memory span. In the first study, most of the estimates of processing speed did not correlate with memory span, and it was concluded that short-term memory capacity is not determined by the speed of symbol manipulation in short-term memory. In the second study, memory span greatly increased with extended practice.
but this increase was due to the acquisition of a mnemonic system. Short-term memory capacity was unaffected by practice.
Abstract

One series of experiments examined the correlation between memory span and the speed of symbol manipulation in short-term memory, and another experiment analyzed the effects of extended practice on memory span. In the first study, most of the estimates of processing speed did not correlate with memory span, and it was concluded that short-term memory capacity is not determined by the speed of symbol manipulation in short-term memory. In the second study, memory span greatly increased with extended practice, but this increase was due to the acquisition of a mnemonic system. Short-term memory capacity was unaffected by practice.
Individual differences in memory span are interesting from both a psychometric and an information-processing point of view. From a psychometric perspective, memory span is an important item on IQ tests because of the high correlations between memory span and IQ scores. It has been suggested that memory span is a good index of mental retardation and brain damage, but in the normal adult population, it probably is not a very good predictor of high-school or college grades (Matarazzo, 1972). Some people have even gone so far as to suggest that a pure measure of memory span--span ability--is the best culture-free determiner of intelligence (Bachelder & Denny, 1977a,b).

From an information-processing point of view, memory span is the most often used measure of short-term memory capacity, which in turn is one of the most important human limitations in thinking and problem solving (Newell & Simon, 1972). Recent information-processing studies by Cohen and Sandberg (1977) and Lyon (1977) have ruled out any obvious mnemonic coding strategies as causes of individual differences in short-term memory capacity.

It has been suggested by several people in the information-processing literature that memory span is related to the speed of mental processes in short-term memory. For example, Hunt, Frost and Lunneborg (1973), in their attempt to link psychometric and information-processing theories of intelligence, suggested that verbal intelligence is related to the speed of short-term memory processes. Baddeley, Thompson and Buchanan (1975) suggested that the speed of the rehearsal loop determines the memory span, in large part, because verbal items--those based on a phonemic code--tend to decay away within about 2 sec, and the function of rehearsal is to keep them from decaying. From their analysis of reading rates and memory spans, Baddeley et al concluded that people's memory spans are roughly equivalent to the number of words they can read in 2 sec. In a similar analysis, Cavanagh (1972) has suggested that there is a direct relationship between memory span and short-term memory search rates. From his analysis of memory span and scanning rates, Cavanagh concluded that it takes about 1/4 sec to search short-term memory. The implication is that people's memory search rates are determined by how many items are searched in 1/4 sec.
In this paper we will summarize work in our laboratory on two questions. First, are individual differences in memory span due to differences in the speed of symbol manipulation in short-term memory? And second, is it possible to increase one's short-term memory capacity with extended practice?

Speed of Symbol Manipulation

To summarize in advance our analysis of the first question, we have found very little evidence to support the idea that memory span is determined by the speed of symbol manipulation in short-term memory, at least in the college student population. We have run a series of experiments designed to establish the correlation between short-term memory processing rates and memory span, and one of the most interesting things we found was that the correlation between memory span and rehearsal rate is an artifact. In two studies, no relation was found between people's memory spans and their rehearsal rates for lists of digits well below memory span (3, 4, and 5 digits), but for lists that approach the memory span (6 digits), the correlation is about .50. This correlation is an artifact because people with low memory spans experience difficulties in remembering as memory load increases, and as a result, their rehearsal rate is slowed. There is no relationship between rehearsal rate and memory span for lists of digits below memory span.

In a larger study of 31 college students, we obtained, in addition to memory spans, reliable estimates of several information processing rates. These estimates included search for the presence of an item in short-term memory (Sternberg, 1966), search for the location of an item in short-term memory (Sternberg, 1967), and metered memory search (Weber & Castleman, 1969) in both short-term and long-term memory. The long-term metered memory search task in this study was alphabet search. In this task, the subject is presented both with a probe and a meter, and he must find the item located \(n \) places from the probe, where \(n \) is the meter. For example, a letter (H) and a number (3) are presented and the task is to name, as quickly as possible, the letter that appears 3 places later in the alphabet (K). This same procedure was used for short-term metered memory search except that the material to be searched is a random list of digits in short-term memory. In addition to these memory
search tasks, we measured the corresponding visual search speeds because we wanted an estimate of processing rates uncontaminated by memory load. Finally, we estimated several components of the rehearsal process, including the time to start rehearsal and the time to execute rehearsal. Start time is the time between onset of a GO signal and rehearsal of the first item, and execution time is the average inter-item time during rehearsal. The correlations between these various processing rates and memory span are shown in Table 1, along with the reliabilities. (Digit span reliability was .96.)

Insert Table 1 about here

None of the visual search speeds correlated with memory span, nor did memory search for presence. The correlation between memory span and rehearsal execution time increased with memory load as before, but even with large memory loads the correlation was only -.41. Finally, the correlation between memory search for location and memory span is due to the same artifact that underlies the correlation between memory span and rehearsal.

There were only three non-artifactual correlations with memory span: metered short-term memory search, metered alphabet search, and rehearsal start time. At this point we can only speculate about the source of these correlations. In the metered short-term memory search task, it is possible that concurrent indexing (counting items until the meter is reached) imposes an additional load on short-term memory. This concurrent memory load could cause people with low memory spans to slow down. The correlations in the other two tasks—alphabet search and rehearsal start time—may indicate that people with low memory spans are also slower at activating information in memory. That is, people with low memory spans seem to be slower at accessing information in long-term memory, in secondary memory, or in whatever inactive storage systems are used when information is not in short-term memory, but once information is activated, they seem to process it at the same rate as people with high memory spans.

The data in these studies provide very little support for the idea that memory span is determined by the speed of symbol manipulation in short-term memory. If anything, our data suggest that memory span may indirectly affect processing rates. That is, people with low
memory spans may experience delays in processing as the memory load increases because they are forced to take extra time to update their short-term memory.

If the speed of symbol manipulation in short-term memory is not the major cause of individual differences in memory span, then what is? A good case can be made that memory span depends upon long-term memory knowledge structures and processes built up with practice (Chi, 1976). In the next section we explore the issue of whether short-term memory capacity can be increased with practice. An illustrative case study shows that digit span can be increased seemingly indefinitely if long-term memory coding structures are built up with practice.

Extended Practice

There are reports in the literature of increases in memory span with substantial amounts of practice (Gates & Taylor, 1925; Martin & Fernberger, 1924). Since memory span is such an essential ingredient both in psychometric theories of intelligence and information processing theories of thinking, it is of some interest to understand the nature of these practice effects. In our laboratory, we practiced one individual for about an hour a day, 3-5 days a week, for a year on the memory span task. In that time, his memory span increased steadily from seven digits to over fifty digits. How did he do it, and did he increase his short-term memory capacity?

Our analysis (Chase & Ericsson, 1978) indicates that this subject developed an elaborate mnemonic system, based primarily on running times for various races (e.g., 339 - three minutes and thirty-nine seconds, near world-record 100-mile time). Our analysis further indicated that there was no increase in short-term memory capacity. The evidence is the following. First, when the subject groups digits together to form mnemonic codes, his groups are almost always 3- and 4-digit groups, and he has never generated a group larger than five digits. Second, the subject always maintains the last few digits (4-6 digits) as an uncoded rehearsal group, and he never allows the rehearsal group to exceed six digits. In fact, a 6-digit rehearsal group invariably is segmented as two groups of three digits. Third, the subject also hierarchically groups his groups together into supergroups. After some
initial difficulty in remembering 5-group supergroups, the subject generally uses 3-group supergroups and he never allows a supergroup to exceed 4 groups. Finally, when the subject was switched from digits to letters of the alphabet, there was no transfer, and his memory span dropped back to about six consonants.

The outcome of this study makes it clear that one must distinguish between memory span and short-term memory capacity. Memory span is limited both by the capacity of short-term memory and by coding processes, and the more elaborate the coding processes, the greater will be the discrepancy between memory span and short-term memory capacity. It is certainly possible to increase memory span by learning to code information so that it can be retrieved from long-term memory, but it does not seem possible to increase the capacity of short-term memory. It remains an important question to determine the extent to which the correlation between memory span and IQ is due to short-term memory capacity per se, and the extent to which coding processes are important.
References

Bachelder, B.L., & Denny, M.R. A theory of intelligence: II. The role of span in a variety of intellectual tasks. *Intelligence, 1977, 1*, 237-256. (b)

Footnote

Preparation of this article was supported by contract N00014-79-C-0215 from the Advanced Research Projects Agency. We are indebted to M.T.H. Chi for her helpful comments.

Requests for reprints should be sent to William G. Chase, Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.
<table>
<thead>
<tr>
<th>Task</th>
<th>Reliability Coefficient</th>
<th>Correlation With Digit Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Search for Presence</td>
<td>.90</td>
<td>.23</td>
</tr>
<tr>
<td>Visual Search for Location</td>
<td>.74</td>
<td>-0-</td>
</tr>
<tr>
<td>Visual Metered Search</td>
<td>.84</td>
<td>-.17</td>
</tr>
<tr>
<td>Memory Search for Presence</td>
<td>.95</td>
<td>-.17</td>
</tr>
<tr>
<td>Memory Search for Location</td>
<td>.82</td>
<td>-.63**</td>
</tr>
<tr>
<td>Memory Metered Search</td>
<td>.87</td>
<td>-.62**</td>
</tr>
<tr>
<td>Alphabet Metered Search</td>
<td>.95</td>
<td>-.46**</td>
</tr>
<tr>
<td>Rehearsal Start Time</td>
<td>.99</td>
<td>-.59**</td>
</tr>
<tr>
<td>Rehearsal Execution Time</td>
<td>.99</td>
<td>-.38*</td>
</tr>
</tbody>
</table>

p < .05

p < .01
<table>
<thead>
<tr>
<th>Name</th>
<th>Office and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ed Aiken</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. Robert Blanchard</td>
<td>Navy Personnel R&D Center, Management Support Department, San Diego, CA 92151</td>
</tr>
<tr>
<td>Mr. James S. Duva</td>
<td>Chief, Human Factors Laboratory, Naval Training Equipment Center, Orlando, Florida 32813</td>
</tr>
<tr>
<td>Dr. Pat Federico</td>
<td>NAVY PERSONNEL R&D CENTER, SAN DIEGO, CA 92152</td>
</tr>
<tr>
<td>Dr. John Ford</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>LT Steven D. Harris, MSC, USN</td>
<td>Naval Air Development Center, Warminster, Pennsylvania 18974</td>
</tr>
<tr>
<td>CDR Wade Helm</td>
<td>PAC Missile Test Center, Point Mugu, CA 93041</td>
</tr>
<tr>
<td>CDR Robert S. Kennedy</td>
<td>Naval Aerospace Medical and Research Lab, Box 29407, New Orleans, LA 70189</td>
</tr>
<tr>
<td>Dr. Norman J. Kerr</td>
<td>Chief of Naval Technical Training, Naval Air Station Memphis (75), Millington, TN 38054</td>
</tr>
<tr>
<td>CHAIRMAN, LEADERSHIP & LAW DEPT. DIV. OF PROFESSIONAL DEVELOPMENT</td>
<td>U.S. NAVAL ACADEMY, ANNAPOLIS, MD 21402</td>
</tr>
<tr>
<td>Dr. William L. Maloy</td>
<td>Principal Civilian Advisor for Education and Training, Naval Training Command, Code OOA, Pensacola, FL 32508</td>
</tr>
<tr>
<td>Dr. Kneale Marshall</td>
<td>Scientific Advisor to DCNO(MPT), OP01T, Washington DC 20370</td>
</tr>
<tr>
<td>CAPT Richard L. Martin</td>
<td>USS Francis Marion (LPA-Z49), FPO New York, NY 09501</td>
</tr>
<tr>
<td>Dr. James McBride</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. James McGrath</td>
<td>Navy Personnel R&D Center, Code 306, San Diego, CA 92152</td>
</tr>
<tr>
<td>CDR. MERCER</td>
<td>CNET LIAISON OFFICER, AFHRL/Fly ing Training DIV., WILLIAMS AFB, AZ 85224</td>
</tr>
<tr>
<td>Dr. George Moeller</td>
<td>Head, Human Facors Branch, Naval Submarine Medical Research Lab, Groton, CT 06340</td>
</tr>
<tr>
<td>Dr William Montague</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>U.S. Naval Amphibious School, Coronado, CA 92155</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Naval Health Research Center, Attn: Library, San Diego, CA 92152</td>
</tr>
</tbody>
</table>
Pittsburgh/Glaser&Lesgold November 1, 1979

Navy

1. Naval Medical R&D Command
 Code 44
 National Naval Medical Center
 Bethesda, MD 20014

1. Library
 Navy Personnel R&D Center
 San Diego, CA 92152

6. Commanding Officer
 Naval Research Laboratory
 Code 2627
 Washington, DC 20390

1. JOHN OLSEN
 CHIEF OF NAVAL EDUCATION & TRAINING SUPPORT
 PENSACOLA, FL 32509

1. Psychologist
 ONR Branch Office
 495 Summer Street
 Boston, MA 02210

1. Psychologist
 ONR Branch Office
 536 S. Clark Street
 Chicago, IL 60605

1. Office of Naval Research
 Code 200
 Arlington, VA 22217

1. Office of Naval Research
 Code 437
 800 N. Quincy Street
 Arlington, VA 22217

1. Office of Naval Research
 Code 441
 800 N. Quincy Street
 Arlington, VA 22217

1. Director
 Engineering Psychology Programs
 Code 455
 Office of Naval Research
 800 N. Quincy Street
 Arlington, VA 22217

5. Personnel & Training Research Programs
 (Code 458)
 Office of Naval Research
 Arlington, VA 22217

1. Psychologist
 OFFICE OF NAVAL RESEARCH BRANCH
 223 OLD MARYLEBONE ROAD
 LONDON, NW, 15TH ENGLAND

1. Psychologist
 ONR Branch Office
 1030 East Green Street
 Pasadena, CA 91101

1. Scientific Director
 Office of Naval Research
 Scientific Liaison Group/Tokyo
 American Embassy
 APO San Francisco, CA 96503

1. Office of the Chief of Naval Operations
 Research, Development, and Studies Branc
 (OP-102)
 Washington, DC 20350

1. LT Frank C. Petho, MSC, USNR (Ph.D)
 Code L51
 Naval Aerospace Medical Research Laborat
 Pensacola, FL 32508

1. DR. RICHARD A. POLLAK
 ACADEMIC COMPUTING CENTER
 U.S. NAVAL ACADEMY
 ANNAPOLIS, MD 21402

1. Dr. Gary Poock
 Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93940

1. Roger W. Remington, Ph.D
 Code L52
 NAMRL
 Pensacola, FL 32508

1. Dr. Bernard Rimland
 Navy Personnel R&D Center
 San Diego, CA 92152
1 Dr. Harold F. O'Neil, Jr.
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Attn: PERI-OK

1 LTCOL Michael T. Plummer
Organizational Effectiveness Division
Office of the Deputy Chief of Staff for Personnel
Department of the Army
Washington, DC 20301

1 Dr. Robert Sasmor
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Frederick Steinheiser
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 LTCOL Michael T. Plummer
Organizational Effectiveness Division
Office of the Deputy Chief of Staff for Personnel
Department of the Army
Washington, DC 20301

1 Dr. Robert Sasmor
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Frederick Steinheiser
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Attn: PERI-OK

1 LTCOL Michael T. Plummer
Organizational Effectiveness Division
Office of the Deputy Chief of Staff for Personnel
Department of the Army
Washington, DC 20301

1 Dr. Robert Sasmor
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Frederick Steinheiser
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 DR. T. E. COTTERMAN
AFHRL/ASR
WRIGHT-PATTERSON AFB
OHIO 45433

1 DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHT-PATTERSON AFB, OH 45433

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Donald E. Meyer
U.S. Air Force
ATC/XPTD
Randolph AFB, TX 78148

1 Dr. Ross L. Morgan (AFHRL/ASR)
Wright-Patterson AFB
Ohio 45433

1 Research Branch
AFMPC/DPMP
Randolph AFB, TX 78148

1 Dr. Marty Rockway (AFHRL/IT)
Lowry AFB
Colorado 80230

1 Jack A. Thorpe, Maj., USAF
Naval War College
Providence, RI 02846
Air Force

1 Brian K. Waters, LCOL, USAF
 Air University
 Maxwell AFB
 Montgomery, AL 36112

Marines

1 H. William Greenup
 Education Advisor (E031)
 Education Center, MCDEC
 Quantico, VA 22134

1 DR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 HQ, U.S. MARINE CORPS
 WASHINGTON, DC 20380
CoastGuard

1 Mr. Richard Lanterman
PSYCHOLOGICAL RESEARCH (G-P-1/62)
U.S. COAST GUARD HQ
WASHINGTON, DC 20590

Other DoD

12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Craig I. Fields
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301
Civil Govt

1 Dr. Susan Chipman
 Basic Skills Program
 National Institute of Education
 1200 19th Street NW
 Washington, DC 20028

1 Mr. James M. Ferstl
 Bureau of Training
 U.S. Civil Service Commission
 Washington, D.C. 20415

1 Dr. Joseph I. Lipson
 Division of Science Education
 Room W-638
 National Science Foundation
 Washington, DC 20550

1 Dr. John Mays
 National Institute of Education
 1200 19th Street NW
 Washington, DC 20028

1 William J. McLaurin
 Rm. 301, Internal Revenue Service
 2221 Jefferson Davis Highway
 Arlington, VA 22202

1 Dr. Arthur Melmed
 National Institute of Education
 1200 19th Street NW
 Washington, DC 20028

1 Dr. Andrew R. Molnar
 Science Education Dev. and Research
 National Science Foundation
 Washington, DC 20550

1 Dr. Jeffrey Schiller
 National Institute of Education
 1200 19th St. NW
 Washington, DC 20028

1 Dr. H. Wallace Sinaiko
 Program Director
 Manpower Research and Advisory Services
 Smithsonian Institution
 801 North Pitt Street
 Alexandria, VA 22314
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dr. John R. Anderson</td>
<td>1 Mr Avron Barr</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Pittsburgh, PA 15213</td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>1 Dr. John Annett</td>
<td>1 Dr. Gerald V. Barrett</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>University of Warwick</td>
<td>University of Akron</td>
</tr>
<tr>
<td>Coventry CV4 7AL</td>
<td>Akron, OH 44325</td>
</tr>
<tr>
<td>ENGLAND</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Jackson Beatty</td>
<td>1 Dr. John Bergan</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>School of Education</td>
</tr>
<tr>
<td>University of California</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>Los Angeles, CA 90024</td>
<td>Tuscon AZ 85721</td>
</tr>
<tr>
<td>1 Dr. Nicholas A. Bond</td>
<td>1 Dr. Lyle Bourne</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>Sacramento State College</td>
<td>University of Colorado</td>
</tr>
<tr>
<td>Sacramento, CA 95819</td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>1 Dr. Kenneth Bowles</td>
<td>1 Dr. John S. Brown</td>
</tr>
<tr>
<td>Institute for Information Sciences</td>
<td>XEROX Palo Alto Research Center</td>
</tr>
<tr>
<td>University of California at San Diego</td>
<td>3333 Coyote Road</td>
</tr>
<tr>
<td>La Jolla, CA 92037</td>
<td>Palo Alto, CA 94304</td>
</tr>
<tr>
<td>1 Ms. Carole A. Bagley</td>
<td>1 Dr. Bruce Buchanan</td>
</tr>
<tr>
<td>Minnesota Educational Computing Consortium</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td>2520 Broadway Drive</td>
<td>Stanford University</td>
</tr>
<tr>
<td>St. Paul, MN 55113</td>
<td>Stanford, CA 94305</td>
</tr>
</tbody>
</table>
Non Govt

1 DR. JOHN D. FOLLEY JR.
 Applied Sciences Associates Inc
 Valencia, PA 16059

1 Dr. John R. Frederiksen
 Bolt Beranek & Newman
 50 Moulton Street
 Cambridge, MA 02138

1 Dr. Alinda Friedman
 Department of Psychology
 University of Alberta
 Edmonton, Alberta
 Canada T6G 2J9

1 Dr. R. Edward Geiselman
 Department of Psychology
 University of California
 Los Angeles, CA 90024

1 DR. ROBERT GLASER
 LRDC
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213

1 DR. JAMES G. GREENO
 LRDC
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213

1 Dr. Harold Hawkins
 Department of Psychology
 University of Oregon
 Eugene OR 97403

1 Dr. Barbara Hayes-Roth
 The Rand Corporation
 1700 Main Street
 Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
 The Rand Corporation
 1700 Main Street
 Santa Monica, CA 90406

Non Govt

1 Dr. Dustin H. Heuston
 Wicat, Inc.
 Box 986
 Orem, UT 84057

1 Dr. James R. Hoffman
 Department of Psychology
 University of Delaware
 Newark, DE 19711

1 Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 Champaign, IL 61820

1 Library
 HumRRO/Western Division
 27857 Berwick Drive
 Carmel, CA 93921

1 Dr. Earl Hunt
 Dept. of Psychology
 University of Washington
 Seattle, WA 98105

1 DR. KAY INABA
 21116 Vanowen St
 Canoga Park, CA 91303

1 Dr. Wilson A. Judd
 McDonnell-Douglas Astronautics Co. East
 Lowry AFB
 Denver, CO 80230

1 Dr. Steven W. Keele
 Dept. of Psychology
 University of Oregon
 Eugene, OR 97403

1 Dr. Walter Kintsch
 Department of Psychology
 University of Colorado
 Boulder, CO 80302

1 Dr. David Kieras
 Department of Psychology
 University of Arizona
 Tuscon, AZ 85721
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 DR. PETER POLSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80302 | 1 Dr. Allen Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323 |
| 1 DR. DIANE M. RAMSEY-KLEE
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265 | 1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314 |
| 1 Dr. Peter B. Read
Social Science Research Council
605 Third Avenue
New York, NY 10016 | 1 Dr. Robert Singer, Director
Motor Learning Research Lab
Florida State University
212 Montgomery Gym
Tallahassee, FL 32306 |
| 1 Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
12 Hill Hall
Columbia, MO 65201 | 1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903 |
| 1 Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720 | 1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305 |
| 1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007 | 1 Dr. Kathryn T. Spoehr
Department of Psychology
Brown University
Providence, RI 02912 |
| 1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974 | 1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520 |
| 1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92093 | DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138 |
| 1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820 | 1 Dr. Thomas Sticht
HumRRO
300 N. Washington Street
Alexandria, VA 22314 |
1 Mr. William Stobie
McDonnell-Douglas
Astronautics Co.
P. O. Box 30204
Chico, CA 95926

1 Dr. J. Uhlaner
Perceptronics, Inc.
6271 Varie1 Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. William B. Whitten,
Department of Psychology
University of California
Los Angeles, CA 90021

1 Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024
Non Govt

1 Dr. Karl Zinn
Center for research on Learning and Teaching
University of Michigan
Ann Arbor, MI 48104

23