A TWO-DIMENSIONAL COMPRESSIBLE, NONLINEAR
STABILITY ANALYSIS WITH APPLICATIONS TO
THE STUDY OF BOUNDARY LAYER TRANSITION

Gabriel Miller & Andrew Callegari
NYU/DAS 79-16
OCTOBER 1979
FINAL REPORT

DEPARTMENT OF THE NAVY*
OFFICE OF NAVAL RESEARCH

* Contract No. N00014-76-C-0183
A computer program which can investigate the nonlinear response of a compressible boundary layer on a flat plate to any imposed external disturbance has been produced. The program first computes the boundary condition near the leading edge utilizing linear stability theory and then determines the disturbance field downstream as a function of time, utilizing the Mac-Cormack time splitting explicit technique.

The program originally created to provide a fundamental understanding...
of boundary layer response to acoustical disturbances has been modified so that a wide range of parameters can be varied. The effects of Mach number and wall conditions can be computed utilizing the program.
ACKNOWLEDGEMENT

This technical report is a final report of work performed under Contract N00014-76-C-0183 from 15 September 1977 through 15 May 1978. The program was sponsored by the Office of Naval Research. The authors wish to thank Mr. Morton Cooper for his continuous support during the three years of the investigation.
TABLE OF CONTENTS

I. INTRODUCTION 1

II. METHOD OF ANALYSIS 3
 A. Equations of Motion 3
 B. Initial and Boundary Conditions 5

III. RESULTS UTILIZING PROGRAM 11

IV. PROGRAM CAPABILITIES 13

REFERENCES 14

FIGURE 16-17

DISTRIBUTION 18-25
I. INTRODUCTION

Recent analytical efforts to gain a more comprehensive understanding of boundary layer stability have centered on (1) the coupling between the principle linear wave (the Tollmien-Schlichting wave) and its principle harmonics (for example, [1]) and (2) on the development of computer codes to study the nonlinear effects of disturbances propagating through an incompressible boundary layer field (for example, Refs. 2, 3, 4). Such investigations extended the earlier incompressible and compressible linear stability analyses (for example, Refs. 5-9) which analyzed the linear stability problem both from spacial and temporal growth processes.

The recent efforts have been motivated by analysis10 and experiments11,12,13 which indicated that the process of disturbance growth and instability leading to transition could be subdivided into distinct regions, where first linear, and then nonlinear and three dimensional effects predominate.

Two dimensional nonlinear codes can thus be extremely important tools if one is to properly stimulate the three dimensional bursting phenomenon of transition to turbulence, since such codes can provide the initial conditions for such analysis (similar to the effect of the linear codes which provide the initial conditions for the nonlinear analyses).

While the nonlinear codes available represent a significant advance in computational capability, they have thus far been restricted to incompressible flow calculations. Such programs are unable to analyze the effects of
Mach number, wall temperature, imposed disturbance propagation velocity, etc.

Experiments14, 15 have indicated that imposed acoustical disturbances effect transition in a low speed flow in a manner similar to free stream turbulence, even though the propagation velocity of the disturbances are as much as two orders of magnitude greater. The frequency range which effects transition at a given Reynolds number is similar to the range associated with freestream turbulence, even though there is a mismatch in freestream propagation velocity (and thus in freestream wave number).

The purpose of the study at New York University for the past three years was to ascertain the mechanisms which cause acoustical disturbances to effect transition in this manner and to develop a computer code which includes both nonlinear effects and the effects of compressibility. The unsteady, two-dimensional, compressible second order boundary layer equations (retaining terms of the order of the reciprocal of Reynolds number squared) have been computed numerically16. The system, consistent with the Navier Stokes equations, have been solved by MacCormack explicit scheme with time splitting17. In Section II the equations utilized and the method of analysis is developed. Results utilizing the program are presented in Section III. A description of the program's capabilities can be found in Section IV.
II. METHOD OF ANALYSIS

A. Equations of Motion

The equations of motion, the unsteady, compressible Navier Stokes equations, were written in terms of the nondimensional parameters consistent with the boundary layer equations (but terms of order of the reciprocal of the Reynolds number squared were retained). The equations were transformed by a stretching parameter \(n \) which packs most points in the boundary layer but allows for a significant distribution of data in the freestream. The stretching utilized was:

\[
\eta = 1 - \exp \left(-\alpha y/\delta^* \right)
\]

where \(\delta^* = \frac{\delta}{L} \sqrt{Re_L} \), \(\eta = \frac{y}{L} \sqrt{Re_L} \), and \(\delta(x) \) is the initial boundary layer thickness distribution (the distribution prior to the initiation of perturbed flow). \(Re_L \) is the freestream Reynolds number based on characteristic length \(L \) (for example, plate length).

The resulting equation system, are rewritten here:

\[
\frac{\partial}{\partial \xi} \left(\frac{\bar{\rho} \bar{u}}{\delta^*} \right) + \frac{\partial}{\partial \eta} \left(\frac{\bar{\rho} \bar{u}}{\delta^*} \right) \frac{\partial \eta}{\partial \xi} + (1 - \eta) \frac{\partial \bar{p}}{\partial \xi} \frac{\partial \eta}{\partial \eta} = 0 \tag{1}
\]

\[
\frac{\partial}{\partial \xi} \left(\frac{\bar{\rho} \bar{u}^2}{\delta^*} + \bar{p} \right) + \frac{\partial}{\partial \eta} \left(\frac{\bar{\rho} \bar{u}^2}{\delta^*} + \bar{p} \right) \frac{\partial \eta}{\partial \xi} + (1 - \eta) \frac{\partial}{\partial \eta} \left(\frac{\bar{\rho} \bar{u}^2}{\delta^*} + \bar{p} \right) \frac{\partial \eta}{\partial \eta} - \frac{\alpha^2 (1 - \eta)^2}{\delta^*} \frac{\partial \eta}{\partial \eta} = 0 \tag{2}
\]

\[
\frac{\partial}{\partial \xi} \left(\frac{\bar{\rho} \bar{v}}{\delta^*} \right) + \frac{\partial}{\partial \eta} \left(\frac{\bar{\rho} \bar{v}}{\delta^*} \right) \frac{\partial \eta}{\partial \xi} + (1 - \eta) \frac{\partial \bar{v}}{\partial \eta} \frac{\partial \eta}{\partial \eta} - \frac{2}{3} \left(1 - \eta \right) \frac{\alpha^2}{\delta^*} \frac{\partial \bar{u}}{\partial \eta} \bar{v} + \frac{\alpha^2}{\delta^*} \frac{\partial \bar{u} \bar{v}}{\partial \eta} \frac{\partial \eta}{\partial \eta} \tag{3}
\]

\[
\frac{\partial}{\partial \xi} \left(\frac{\bar{\rho} \bar{R} \bar{v}^2}{\delta^*} \right) + \frac{\partial}{\partial \eta} \left(\frac{\bar{\rho} \bar{R} \bar{v}^2}{\delta^*} \right) \frac{\partial \eta}{\partial \xi} + (1 - \eta) \frac{\partial \bar{R}}{\partial \eta} \frac{\partial \eta}{\partial \eta} - \frac{\alpha^2 (1 - \eta)^2}{\delta^*} \frac{\partial \eta}{\partial \eta} = 0 \tag{4}
\]

\[
\tilde{p} = \bar{p} \tag{5}
\]
where

\[\ddot{x} = \dddot{x} / \ell \; \dddot{y} = \dddot{y} / \ell \; \dddot{t} = \dddot{t} / \ell \]

\[\ddot{u} = u / u_\infty; \; \dddot{v} = v / u_\infty; \; \dddot{p} = p / \rho_\infty \]

\[\dddot{H} = H / u_\infty^2 = C_p T + \frac{u^2 + v^2}{2u_\infty^2}; \; \dddot{\tau} = \frac{F}{u_\infty^2} = \frac{C v T}{u_\infty^2} + \frac{u^2 + v^2}{2u_\infty^2} \]

\[\dddot{\mu} = \frac{\mu}{\mu_\infty} = \frac{T_\infty + 198.6}{T + 198.6} \left(\frac{T_\infty}{u_\infty^2} \right)^{3/2}; \; \dddot{\tau} = \frac{RT}{u_\infty^2} \; \text{Re}_L = \frac{\rho \mu L}{u_\infty} \]

and

\[\phi_s = \frac{1}{\text{Re}_L} \left[\frac{4}{3} \frac{\partial}{\partial x} (\dddot{\mu} \frac{\partial \dddot{v}}{\partial x}) - \frac{2}{3} \frac{\alpha}{\delta x} \frac{\partial}{\partial x} \left[\dddot{\mu} (1 - n) \frac{\partial \dddot{v}}{\partial n} \right] + \frac{4}{3} \frac{\alpha}{\delta x} \frac{\partial n}{\partial x} \frac{\partial}{\partial n} \left[\dddot{\mu} (1 - n) \frac{\partial \dddot{v}}{\partial n} \right] + (1 - n) \frac{\partial}{\partial n} \left(\dddot{\mu} \frac{\partial n}{\partial x} \frac{\partial \dddot{v}}{\partial n} \right) + \frac{2}{3} \frac{\partial}{\partial x} \left(\dddot{\mu} \frac{\partial n}{\partial x} \frac{\partial \dddot{u}}{\partial n} \right) + \frac{2}{3} \frac{\partial}{\partial n} \left(\dddot{\mu} \frac{\alpha}{\delta x} \frac{\partial \dddot{v}}{\partial n} \right) + \left(\dddot{\mu} \frac{\partial n}{\partial x} \frac{\partial \dddot{v}}{\partial n} \right) \right] \]

\[\phi_s = \frac{1}{\text{Re}_L} \left[\frac{\partial}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial}{\partial n} \right] \left[\dddot{\mu} \frac{\partial \dddot{H}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{H}}{\partial n} \right] + \frac{1}{3} \dddot{\mu} \left(\frac{\partial \dddot{v}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{u}}{\partial n} \right) \frac{\partial \dddot{v}}{\partial n} \]

\[- \frac{2}{3} \frac{\alpha}{\delta} (1 - n) \dddot{\mu} \left(\frac{\partial \dddot{u}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{u}}{\partial n} \right) \frac{\partial \dddot{v}}{\partial n} + \frac{2}{3} \frac{\alpha}{\delta} (1 - n) \dddot{\mu} \left(\frac{\partial \dddot{v}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{v}}{\partial n} \right) \frac{\partial \dddot{v}}{\partial n} \]

\[- \frac{1}{2} \left(\frac{\partial \dddot{v}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{v}}{\partial n} \right) \left(\frac{\partial \dddot{u}}{\partial x} + \frac{\partial n}{\partial x} \frac{\partial \dddot{u}}{\partial n} \right) \]
Equations (1) - (4) have been solved by a MacCormack predictor-corrector explicit scheme with time splitting17. At \(t = 0 \), a disturbance field, calculated utilizing linear stability theory (see below), is initiated near the leading edge of a plate. The time dependent flowfield is then calculated numerically from the unsteady, compressible equations, consistent with the imposed initial and boundary conditions.

B. Initial and Boundary Conditions

The investigation has centered on a study of the amplification or damping of acoustical disturbances propagated into a boundary layer. The experiments of Spangler and Wells14 who utilized an air-driven, rotating vane sound generator to create the disturbance without producing any appreciable turbulence, were simulated. Both the frequency and the intensity of the sound source had been varied experimentally. In the experiments, a low velocity boundary layer channel was run at a unit Reynolds number of \(2.4 \times 10^5/\text{ft.} \), the channel wall representing the flat plate. Measurements of transition occurred at distances on the order of 10 - 20 feet, and thus the length Reynolds numbers of interest were in the \(10^6 \) to \(10^7 \) range.

In order to model this problems, a set of initial and boundary conditions must be established, consistent with the propagation of acoustical disturbances and at the same time consistent with the set of differential equations utilized. The initial data, consistent with equations (1) through (5) under steady state conditions, was originally established utilizing numerical techniques for subsonic boundary layer analysis with normal pressure gradients established by the principal investigator and reported previously16. Thus the solution \(\tilde{e} = 0 \) was the solution of the two dimensional steady boundary layer equations with normal momentum equation included.
Consistent with Refs. 2 and 3 similar solutions for the initial profiles were studied. Since no problems were encountered, the final program now utilizes such solutions for the initial field.

At the wall ($\eta = 0$), for a rigid body, one can neglect the effect of the wave on temperature, and for an adiabatic wall one can establish the following relations;

at $\eta = 0$ ($\tilde{x} > \tilde{x}^*$)

$$\tilde{u} = \tilde{v} \quad \frac{\partial \tilde{T}}{\partial \eta} = 0$$

$$\frac{\partial}{\partial \eta} (\ln \tilde{p}) = \frac{\partial}{\partial \eta} \left[(\ln \tilde{p}) \right]_{\tilde{t}} = 0 \quad \exp \left[-Re L \right] \int_{0}^{\tilde{t}} \frac{\tilde{p}}{\tilde{u}} \, d\tilde{t}$$

The outer boundary condition ($\eta = 1$) is established by allowing the wave to travel as a plane wave of arbitrary speed (for the acoustic wave, the speed of sound C_∞).

Much effort was expended on the determination of a proper downstream boundary condition. It was found, consistent with the results of Fasel2, that the boundary condition that yields the least upstream influence, and is thus superior to other possible ones (including a non-reflective condition) is:

$$\frac{\partial^2}{\partial x^2} \tilde{u}'(\tilde{x}_f, \tilde{y}, \tilde{t}) = \tilde{a}^2 \tilde{u}'$$

where $\tilde{a} = f L/V_{ph}$ (f is the frequency and V_{ph} the phase velocity), \tilde{u}' is the perturbation quantity ($\tilde{u} - \tilde{u}_0$), and \tilde{x}_f is the downstream boundary. This condition says that at the downstream boundary, the disturbance has a periodic form. At $\tilde{t} = 0$, a disturbance is initiated
at $\tilde{x} \approx 0$ so that the velocity field at $x = \tilde{x}^* \approx 0$ and $\tilde{t} \approx 0$ can
be written as

$$\tilde{u}(\tilde{x}^*, \tilde{y}, \tilde{t}) = \tilde{u}_0(\tilde{x}^*, \tilde{y}) + f_1(\tilde{y}) \sin (\tilde{\omega} \tilde{t})$$

where $\tilde{u}_0(\tilde{x}^*, \tilde{y})$ is the velocity profile at $\tilde{t} = 0$, $\tilde{\omega} = 2\pi f L / U_\infty$ (f being
the frequency of the imposed disturbance, in cycles per second) and $f_1(\tilde{y})$ is the disturbance profile near the leading edge.

The form of $f_1(\tilde{y})$ can in general be prescribed
and then the eigenfunction associated with the eigenvalue problem
detailed below can be superposed to reconstruct $f_1(\tilde{y})$. The complete
determination of these eigenfunctions is quite complicated in general
depending on the initial boundary layer flow, and leads to a signifi-
cant numerical problem in linear stability theory. Such complications
as the existence of a continuous spectrum of eigenvalues, the presence of
a singularity in the linearized eigenvalue problem, and the existence of
viscous-type eigenstates which behave singularly in the inviscid limit.
[Refs. 18-20] are indicative of studies of such problems.

The other boundary conditions at $x = x^*$ are consistent with linear
theory and are to be determined once the form of $f_1(\tilde{y})$ is known.

In order to derive appropriate perturbation profiles for use as
the initial boundary condition in our program (at $\tilde{x} = \tilde{x}^*$) the compressible
analogue of the Orr-Sommerfeld equations must be solved. For purposes
of the present study, we have only considered these equations in the
inviscid limit and under the additional assumption of no temperature
gradient in the mean flow.

Thus, nondimensionalizing all lengths by the boundary layer thick-
ness δ at a suitable station along the plate, all velocities by the
free stream speed of sound, and the pressure by $\rho_\infty c_\infty^2$, the linearized
perturbation system considered is;
\begin{align*}
 i(k u_0 - \omega) p + i k u_0 p_0 + \frac{d}{dy} (\rho_0 V) &= 0 \quad (6) \\
 i(k u_0 - \omega) u + u_0' y + \frac{1}{\rho_0} k p &= 0 \quad (7) \\
 i(k u_0 - \omega) V + \frac{1}{\rho_0} \frac{d p}{dy} &= 0 \quad (8) \\
 i(k u_0 - \omega) T + T_0' V &= i \left(\gamma - \frac{1}{\rho_0} \right) (k u_0 - \omega) p \quad (9) \\
 \frac{\rho}{\rho_0} = \frac{\rho}{\rho_0} + \frac{T}{T_0} \quad (10)
\end{align*}

where bars have been dropped and subscript zero refers to the profile at \(t = 0 \). The appropriate boundary conditions are discussed below.

As is customary the normal mode type decomposition has been used, and hence we note that \(p, u, V, p, T \) are functions of \(y \), the distance normal to the plate. The parameters \(\omega \) and \(k \), the dimensionless frequency and wave number respectively are given by

\[\omega = \frac{\Omega \delta}{c_\infty}, \quad k = \frac{\delta}{\bar{\delta}} \]

where \(\Omega \) and \(\delta \) are dimensional quantities. The mean flow quantities

\[u_0 = M_\infty u_B \text{ and } u_0' = 5.6 \left(M_\infty \frac{d u_B}{d \eta} \right) \]

are the dimensionless velocity and velocity gradient respectively where \(M_B \) is the freestream Mach number, \(u_B \) is the dimensionless (with respect to \(U_\infty \)) Blasius profile and the factor 5.6 results from changing the normal coordinate from \(\eta \) to \(y \).

Several simplifications can be made in equations (6 -10). We have solved for \(p, u, v \) and \(T \) in terms of the pressure \(p \) and find that \(p \) must satisfy the second order equation

\[p'' - \frac{2 k u_0}{u_0' k - \omega} p' + \left[\frac{(u_0 k - \omega)^2}{T_0} - k^2 \right] p = 0 \]

\[(11) \]
we note that the second condition is a normalization condition.

Equations (11) - (12) now provide an eigenvalue problem for the eigenvalue \(k \). Once the possible values of \(k \) are determined, the profiles \(\bar{x} = \bar{x}^* \) (i.e. the \(f_1(\bar{y}) \)) can be determined and thus the initial and boundary conditions for the calculation are entirely prescribed. To treat this eigenvalue problem a program developed by Mack Ref. (23) has been used. The program has the capability of treating cases where the phase velocity of the disturbance equals the base flow velocity (critical layer) by deformation of the integration contour into the complex plane.
III. RESULTS UTILIZING PROGRAM

The nonlinear computer program for the solution of equations (1) - (4) was first run for cases corresponding to the Reynolds number and frequency range of the experiments of Reference 14. Figure (1) presents the results of three such computations for the forced response of the boundary layer to acoustic waves of different frequencies at a freestream R.M.S. level of 0.3%. The results are in line with Tollmien Schlichting amplification rates.

An investigation was initiated to determine what the propagation speed inside the boundary layer was. In all cases, while the disturbances were propagating with the speed of sound along the freestream, the waves within the boundary layer were propagating at a speed of the order of the freestream speed, and thus indeed, the waves are the classical Tollmien Schlichting waves. Such a result is presented in Figure 2.

What is essentially occurring is that the wave propagating along the outer edge has little effect on the boundary layer development. Instead, the major effect is the profile at the leading edge, and thus, the effect of the acoustic wave is only to set up the initial disturbance field (i.e., near $x = 0$), as described previously. The effect of acoustic waves on transition is, thus similar to the effect of other imposed perturbations such as freestream turbulence.

Another numerical experiment was initiated to test this result. The program has the capability to admit freestream disturbances of any speed. Waves were propagated at the freestream velocity, instead of at the acoustic speed, and all other parameters were held constant. The dashed line in Figure 2 indicates that the effect on the boundary layer ($y/8 < 1$) is insignificant, and the outer boundary condition only effects the flow-field through its amplitude.
The boundary layer response to an imposed disturbance is thus determined completely once the initial profile (from linear stability theory), is found through a complete eigen-value search. Nonlinear programs should therefore be coupled to linear stability programs which determine the linear (upstream boundary condition) profiles deduced from the multitude of eigen values which have been found to exist.
IV. PROGRAM CAPABILITIES

A computer program which can investigate the nonlinear response of a compressible boundary layer on a flat plate to any imposed external disturbance has been produced. The program first computes the boundary condition near the leading edge utilizing linear stability theory and then determines the disturbance field downstream as a function of time, utilizing the MacCormack time splitting explicit technique.

The program originally created to provide a fundamental understanding of boundary layer response to acoustical disturbances has been modified so that a wide range of parameters can be varied. The effects of Mach number and wall conditions can be computed utilizing the program.
REFERENCES

\[x=12 \text{ ft}, \ \eta = 0.3, \ \Delta t = 5 \times 10^{-4}, \ \text{Re}/\text{ft} = 2.42 \times 10^5, \ \bar{u}'_{\text{RMS}} = 0.003 \]

Figure 1. Frequency dependence on damping or amplification of acoustical disturbance
FIGURE 2. PHASE SPEED OF WAVES INSIDE BOUNDARY LAYER UNDER THE INFLUENCE OF ACOUSTICAL DISTURBANCE (DASHED LINE INDICATES PHASE SPEED WHEN FREESTREAM WAVE PROPAGATES AT U_{∞})

$Re/ft. = 2.42 \times 10^5$

$f = 27 \text{ c.p.s.}$

$x = 12 \text{ ft.}$
DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS AND REPRINTS ISSUED UNDER
CONTRACT NO0014-76-C-0183 TASK NR 061-232

All addresses receive one copy unless otherwise specified

Technical Library
Building 313
Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

Dr. F. D. Bennett
External Ballistic Laboratory
Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

Mr. C. C. Hudson
Sandia Corporation
Sandia Base
Albuquerque, NM 81115

Professor P. J. Roache
Ecdynamics Research Associates, Inc.
P. O. Box 8172
Albuquerque, NM 87108

Dr. J. D. Shreve, Jr.
Sandia Corporation
Sandia Base
Albuquerque, NM 81115

Defense Documentation Center
Cameron Station, Building 5
Alexandria, VA 22314

Library
Naval Academy
Annapolis, MD 21402

Dr. G. H. Heilmeier
Director, Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Mr. R. A. Moore
Deputy Director, Tactical Technology Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research
Code 411
Arlington, VA 22217

Office of Naval Research
Code 421
Arlington, VA 22217

Office of Naval Research
Code 438
Arlington, VA 22217

Office of Naval Research
Code 1021 P (ONRL)
Arlington, VA 22217 6 Copies

Professor J. C. Wu
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332

Library
Aerojet-General Corporation
6352 North Irwindale Avenue
Azusa, CA 91702

NASA Scientific and Technical Information Facility
P. O. Box 8757
Baltimore/Washington International Airport
Maryland 21240

Dr. S. A. Berger
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Professor A. J. Chorin
University of California
Department of Mathematics
Berkeley, CA 94720
Professor W. L. Melnik
University of Maryland
Department of Aerospace Engineering
Glenn L. Martin Institute of Technology
College Park, MD 20742

Professor O. Burggraf
Ohio State University
Department of Aeronautical and Astronautical Engineering
1314 Kinnear Road
Columbus, OH 43212

Technical Library
Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, VA 22448

Dr. F. Moore
Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, VA 22448

Technical Library 2-51131
LTV Aerospace Corporation
P. O. Box 5907
Dallas, TX 75222

Library, United Aircraft Corporation Research Laboratories
Silver Lane
East Hartford, CT 06108

Technical Library
AVCO-Everett Research Laboratory
2385 Revere Beach Parkway
Everett, MA 02149

Professor G. Moretti
Polytechnic Institute of New York
Long Island Center
Department of Aerospace Engineering and Applied Mechanics
Route 110
Farmingdale, NY 11735

Professor S. G. Rubin
Polytechnic Institute of New York
Long Island Center
Department of Aerospace Engineering and Applied Mechanics
Route 110
Farmingdale, NY 11735

Technical Documents Center
Army Mobility Equipment R&D Center
Building 315
Fort Belvoir, VA 22060

Dr. W. R. Briley
Scientific Research Associates, Inc.
P. O. Box 498
Glastonbury, CT 06033

Library (MS 185)
NASA Langley Research Center
Langley Station
Hampton, VA 23665

Dr. S. Nadir
Northrop Corporation
Aircraft Division
3901 West Broadway
Hawthorne, CA 90250

Professor A. Chapmann
Chairman, Mechanical Engineering Department
William M. Rice Institute
Box 1892
Houston, TX 77001

Dr. F. Lane
KLD Associates, Inc.
7 High Street
Huntington, NY 11743

Technical Library
Naval Ordnance Station
Indian Head, MD 20640

Professor D. A. Caughey
Cornell University
Sibley School of Mechanical and Aerospace Engineering
Ithaca, NY 14853

Professor E. L. Resler
Cornell University
Sibley School of Mechanical and Aerospace Engineering
Ithaca, NY 14853

Professor S. F. Shen
Cornell University
Sibley School of Mechanical and Aerospace Engineering
Ithaca, NY 14853
Library
Midwest Research Institute
423 Volker Boulevard
Kansas City, MO 64110

Dr. M. M. Hafez
Flow Research, Inc.
P. O. Box 5040
Kent, WA 98031

Dr. E. M. Murman
Flow Research, Inc.
P. O. Box 5040
Kent, WA 98031

Dr. S. A. Orszag
Cambridge Hydrodynamics, Inc.
54 Baskin Road
Lexington, MA 02173

Professor T. Cebeci
California State University, Long Beach
Mechanical Engineering Department
Long Beach, CA 90840

Mr. J. L. Hess
Douglas Aircraft Company
3855 Lakewood Boulevard
Long Beach, CA 90808

Dr. H. K. Cheng
University of Southern California,
University Park
Department of Aerospace Engineering
Los Angeles, CA 90007

Professor J. D. Cole
University of California
Mechanics and Structures Department
School of Engineering and Applied Science
Los Angeles, CA 90024

Engineering Library
University of Southern California
Box 77929
Los Angeles, CA 90007

Dr. C. -M. Ho
University of Southern California,
University Park
Department of Aerospace Engineering
Los Angeles, CA 90007

Dr. T. D. Taylor
The Aerospace Corporation
P. O. Box 92957
Los Angeles, CA 90009

Commanding Officer
Naval Ordnance Station
Louisville, KY 40214

Mr. B. H. Little, Jr.
Lockheed-Georgia Company
Department 72-74, Zone 369
Marietta, GA 30061

Dr. C. Cook
Stanford Research Institute
Menlo Park, CA 94025

Professor E. R. G. Eckert
University of Minnesota
240 Mechanical Engineering Building
Minneapolis, MN 55455

Library
Naval Postgraduate School
Monterey, CA 93940

McGill University
Supersonic-Gas Dynamics Research Laboratory
Department of Mechanical Engineering
Montreal 12, Quebec, Canada

Librarian
Engineering Library, 127-223
Radio Corporation of America
Morristown, NJ 07960

Dr. S. S. Stahara
Nielsen Engineering & Research, Inc.
510 Clyde Avenue
Mountain View, CA 94043

Engineering Societies Library
345 East 47th Street
New York, NY 10017

Professor A. Jameson
New York University
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, NY 10012
Mr. L. I. Chasen, MGR-MSD Lib.
General Electric Company
Missile and Space Division
P. O. Box 8555
Philadelphia, PA 19101

Mr. P. Dodge
Airesearch Manufacturing Company
of Arizona
Division of Garrett Corporation
402 South 36th Street
Phoenix, AZ 85034

Technical Library
Naval Missile Center
Point Mugu, CA 93042

Professor S. Bogdonoff
Princeton University
Gas Dynamics Laboratory
Department of Aerospace and
Mechanical Sciences
Princeton, NJ 08540

Professor S. I. Cheng
Princeton University
Department of Aerospace and
Mechanical Sciences
Princeton, NJ 08540

Dr. J. E. Yates
Aeronautical Research Associates
of Princeton, Inc.
50 Washington Road
Princeton, NJ 08540

Professor J. H. Clarke
Brown University
Division of Engineering
Providence, RI 02912

Professor J. T. C. Liu
Brown University
Division of Engineering
Providence, RI 02912

Professor L. Sirovich
Brown University
Division of Applied Mathematics
Providence, RI 02912
Dr. S. M. Yen
University of Illinois
Coordinated Science Laboratory
Urbana, IL 61801

Dr. K. T. Yen
Code 3015
Naval Air Development Center
Warminster, PA 18974

Air Force Office of Scientific Research (SREM)
Building 1410, Bolling AFB
Washington, DC 20332

Chief of Research & Development
Office of Chief of Staff
Department of the Army
Washington, DC 20310

Library of Congress
Science and Technology Division
Washington, DC 20540

Director of Research (Code RR)
National Aeronautics and Space Administration
600 Independence Avenue, SW
Washington, DC 20546

Library
National Bureau of Standards
Washington, DC 20234

National Science Foundation
Engineering Division
1800 G Street, NW
Washington, DC 20550

Mr. W. Koven (AIR 03E)
Naval Air Systems Command
Washington, DC 20361

Mr. R. Sievert (AIR 320D)
Naval Air Systems Command
Washington, DC 20361

Technical Library Division (AIR 604)
Naval Air Systems Command
Washington, DC 20361
Code 2627
Naval Research Laboratory
Washington, DC 20375

SEA 03512
Naval Sea Systems Command
Washington, DC 20362

SEA 09G3
Naval Sea Systems Command
Washington, DC 20362

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code AX)
Washington, DC 20380

Director
Weapons Systems Evaluation Group
Washington, DC 20305

Dr. P. Baronti
General Applied Science
Laboratories, Inc.
Merrick and Stewart Avenues
Westbury, NY 11590

Bell Laboratories
Whippany Road
Whippany, NJ 07981

Chief of Aerodynamics
A'CO Corporation
Missile Systems Division
201 Lowell Street
Wilmington, MA 01887

Research Library
AVCO Corporation
Missile Systems Division
201 Lowell Street
Wilmington, MA 01887

AFAPL (APRC)
AB
Wright Patterson, AFB, OH 45433

Dr. Donald J. Harney
AFFDL/FX
Wright Patterson AFB, OH 45433