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Two test problems are presented to show the micro- and the macro-time behaviors
of the thermoelastic slab. The responses to a realistic set of pressure and

temperature pulse inputs simulating the interior ballistic type of action are
also presented.
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where X iz the 3iffusiviey, 7 is the near source and
1= vT? Joex, T is the arbizant <amperature.
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Assume :hat the zody f£orste T oand tha heat sourcs

zan be dropped and that tha disglazem vector u is
of =he form

u = grags+ curl Y (43)
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souple PDE in % and T and an mecouplad ?DE in . des-
sriping the shear wave propagation. These ejuatians
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where m = y{A+2u}, % = |\+201/0 and :3 = ./, . and
1

i
and are “he 2ilatational and %he shear wave speed

T2
respectively. Since the temperacurs fields has no
interaction with =he shear wava, zhe subsequent
analysis will 2irect its antzantion =o {5) and (§).

To specializa the zair of aguations %o 31 slab we
can write (6) in the form
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s, = al (3)
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and (3) as foilows

R I (9)
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Since it is mora convenient %o use %he stress jnstead
the potential : as *he variable in sne-iimensional
problem, we introduce the zonstitutive eguation for
a thermoelastic medium,
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For L = 1, (26) leads %o after integrazion by parcs and
some algebra,
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Substituting (42) into (4l) yields
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From (40, (42) and (44) we finally obtain the x-dis-
cretized equations.
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where !51]' (E,], etc. are the respective coefficient
matrices in (4%) and (46). Notice the equations in
(45) are of the same format as those in (35), only the
coefficient matrices are different.

THE TIME DOMAIN

Since Egs. (35) and {47) are of the identical
format, only (35) will be discussed in detail.
Equation (35) can be further abbreviated as follows.

T o ][] by s ajom [ 4]
{ '

|

1a-

(9] {01 L

M1 1] [
+ o1l |z £
Chz L i L
. | - | (48)
o Lol ls £
. Rl A

To further abbreviate, write (48) as

Mj+Cy+Ky-F=o0 (49)

*]
where i

other symbols are self-iden-

1

(N+n),
tifiable.

In discretizing the time dowain we shall develop
the recurrence schemes via i) Galerkin and ii) back-
ward difference schemes.

Galerkin

Expanind y in an infinite series (6]

1= 1wy
im0

t-ti

At
t

[

where Ni(:)4
L =0, le-t,| > ¢

et | < e

Abbreviating (49) as L(y) = 0 and define
R(y) = L(z). Letting the weighted residue vanish
and performing the necessary inteqrations, we have

M ¢ K
T ZIR e P SPSTAMy e AR, FPUTA LD SN Fp ZNL)

At
T G EELp (51)
Rearranging,
2 2
At At 2 At At
(M+ ?;C + ’zi+1'(2M' sﬂtK)zi+(M- > Y K)
. A
ey HE D (52)

Approximating the First Step

For the recurrence scheme to proceed, both xo and
&) must be known. An approximation of 2} is obtained

by linear interpolation of the function y(t) over the
interval, i.e.

Lle) = N (v)y  + N (B)y) (53)

Again requiring the weighted residue to vanish, i.e.

At
[ rujterae =0
0

we have, after a lengthy calculation,

¢, 8t -4 it
G+rT Ry = G- F O+ G E (54)

Backward Difference

In this scheme a quadratic interpolation between
two successive time increments is used and the weight-
ing function is G(t-tj+1).

The vanishing of the weighted rasidue yields

(M+2%£ C)zi+l-(2M+2At+C)zi+(M+%§C+K)xi_l- Ei+1 (55)

COMPUTATION AND DISCUSSION

In the previous sections methodologies based on
finite element approach have been developed to treat
the boundary value problem of the coupled PDE of
dynamic thermoelasticity. S3ome computational results
will be discussed.

Different combinations of the spatial and time
discretization were implemented. In the graphs pre-
sented at the end of this paper a notation such as
"CD/BK" would mean central difference in spatial dis-
cretization and backward difference in time discreti-
zation. The notation GK stands for Galerkin.

The parameters of the mathematical model are only
suggestive valuas which would provide some idea about




a realistic problem. Within this objective, we have
chosen the Zollowing set of parameters A\, = 1.0,

-3 -2
\2 = 10 (to 10 ), To = 100°F, Bl = 82 = .4,

There are two scales of time for the thermo-
elastic problem. One time scale corresponds to the
time of travel through the slab of a dilatational
wave. The other is related to the time of diffusion
phenomenon. The difference in magnitudes of these
two times span five orders of magnitude. The wave
travel time is unity in the non-dimensional time
defined in Section 3. The "diffusion" time is about

105 non-dimensional units. Therefore, basically there
exist two types of responses in this type of thermo-
elastic problem, which we shall call micro-time and
macro-time behavior respectively. Thus, the time in-
crements At used in the computation also differ by
similar orders of magnitude.

Three test problems will be discussed: (1) re-
sponses to a unit-step stress f£(t), (2) responses to
a unit temperature step g(t), (3) responses <o both
a stress and a temperature pulse, simulating the gas
pressure and temperature in a gun barrel.

A Modified Jnit-Step Stress Input, £(t)=l-e’:t

Uncoupled Problem. The theoretical response
(solution to the wave equation) of a slab to a unit-
step stress input imposed at x = O is given in
Figure 3 by the rectangular waves for x = 0.24. This
theoretical answer is uged for comparing the accura-
cies of the responses to the modified step computed
by the several zombinations of At and Ax as exhibited
in the tabulation in Figure 3. This figqure shows
that decreasing At and Ax improves the accuracy.

The amplitude of the response using 4x = .05 and

At = .002 matches the theoretical solution. Other
combinations show deterioration of accuracy after one
or two cycles.

Figure 4 shows the comparison of the quality
of the computational results based on different
discretization schemes. It is shown that CD/BK and
GK/BK give gquite close results. In other words, the
spatial discretizations by CD and GK do not yield
significantly 3iffarent results. The backward scheme
in time introduces some artificial "damping”, causing
inaccuracy, wher~as the Galerkin scheme in time
jenerates ogcillations of the amplitude about the
exact value. These oscillations can be reduced bv de-
creasing both At and 4x. Figure 4 shows that using
Ax = .05 and At = .02 reduces the oscillations when
compared %o larger Ax and At. The graphs showing the
results of larger increments are omitted for the sake
of space.

Coupled Problem. Figure S shows the stress and
the temperaturs response due to a modified unit stress
applied at x = J and zero temperature input at x = 0
with coupling parameters Al = .01 and Xz = .1,

It is shown the propagation of tha stress wave and
also the temperature wave due to the coupling effect.
The solid lines show the wave front at various time
instants. The dotted lines show the temperature wave
being synchronous with the stress wave. The magnitude
of the non-dimensional temperature is 1/10 of that of
the stress. This ratio is clearly determined by the
coupling parameter A (=0.1). It is also observed that
at the time corresponiding to that of the wave travel
through the slab (micro-time), no diffusion effect is
observed.

A Modified Step Temperature Input, g(t) = 30(l-e'lt)

Uncoupled Problem. Figure 6 shows the temperature
profile for various times due to an input of a modified
temperature step with amplitude 30, for the uncoupled
equation (A, = A_ = 92). Since the thermal problem has
a long time scalé, the result demonstrates that using
At = 20 and 500 yields no significant difference.
Figure 7 shows the time response at two different
field points. On the same figure the instability of
the Galerkin time discretization is demonstrated.

Coupled Problem. Figure 8 and 9 are the rasults
in responses for the coupling specified by 12 = .01

and two values of A, = 0.1 and 10.0. It is observed
that the taemperaturée responses show significant
difference when the coupling parameter Xl is 10.0,
which is an upper bound value.

Dual Pulses, f(t) = .1 te "% g(r) = 8.1548 ce™*2"

Simultaneous inputs of gas pressure and tempera-
ture as approximated by the given set exponential func-
tions yield responses at x = .2 in micro-time as shown
in Fiqure 10. It is observed that the wave front
arrives at x = .2 at t = .2. The successive cycles of
wave travel are depicted by the ripples oscillating
ahout a mean curve following the general input pulse
wave form.

Figure 1l shows the micro-time response in the

temperature and the stress. For Al = 1.0 and Az = ,01

the top figure shows that the coupling effect on
stress is minimal, whereas the lower figure shows that
the coupling has a strong effect on the wave-like tem-
perature profile.

Figure 12 and 13 show the macro~time temperature
vs. time and the temperature profile under the action
of a dual stress and temperature input. Notice that
in macro-time the stress remaining is low. This is
due to the fact that the slab is free to expand.

CONCLUSTON

The theory and the implementation of a finite
element methodology in solving the problem of the
couple dynamic thermoelastic slab has been established.
Tast problems of a unit-gtep stress input as well as a
unit-step temperature input are used to exhibit the
two different types of responses, namely, the micro-
and the macro-time behavior of the slab. In the
spatial discretization both the Galerkin scheme and
the central difference are satisfactory whereas the
backward difference scheme is preferred in the time
discretization. A realistic set of the stress and the
temparature inputs, simulating the interior ballistics
of a gun barrel, is used to generate responses.
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Pigure 11. - Temperature and Stress Profile
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