RANGE COMMANDERS COUNCIL WHITE SANDS MISSILE RANGE NM--ETC F/8 17/2.1
RANGE SAFETY TRANSMITTING SYSTEMS, 406-549 MHZ BAND. (U)
NOV 79
UNCLASSIFIED RS5-307-79
RANGE SAFETY TRANSMITTING SYSTEMS
406-549 MHz BAND

RANGE SAFETY GROUP
RANGE COMMANDERS COUNCIL

KWAJALEIN MISSILE RANGE
WHITE SANDS MISSILE RANGE
YUMA PROVING GROUND

NAVAL WEAPONS CENTER
PACIFIC MISSILE TEST CENTER
ATLANTIC FLEET WEAPONS TRAINING FACILITY
NAVAL AIR TEST CENTER

ARMAMENT DIVISION
AIR FORCE FLIGHT TEST CENTER
AIR FORCE SATELLITE CONTROL FACILITY
AIR FORCE TACTICAL FIGHTER WEAPONS CENTER
SPACE AND MISSILE TEST ORGANIZATION
Eastern Space and Missile Center
Western Space and Missile Center
Range Safety Transmitting Systems 406-549 MHz Band

The transmitting systems described herein comprise the basic command destruct transmitting systems in use at the various RCC member and associate member ranges. Sections describing each range's system and configuration and specifications for the various system components are also provided. Users of this document are encouraged to contact the range of interest to determine current configurations and obtain more detailed descriptions.

Key Words
Encoder, RF source, RF final, antennas, monitor receiver, decoder, recording system, ground and airborne flight termination control systems, frequency modulated, unmodulated carrier, quieting, subcarrier channels, latitude, longitude, elevation, transmitting sets, radiation control, failure protection, output power, preset value, station guardian, standby transmitter output.

Abstract
See Block 17
DOCUMENT 307-79

RANGE SAFETY TRANSMITTING SYSTEMS
406-549 MHz BAND

Prepared by
Flight Termination Systems
Ad Hoc Committee
Range Safety Group

14) R SC-304-79

Published by
Secretariat
Range Commanders Council
White Sands Missile Range, New Mexico 88002

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Nov 1979
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction.</td>
<td>1-1</td>
</tr>
<tr>
<td>1.0 Purpose</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 Armament Division (AD) System</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 A-3 and D-3 Site Descriptions</td>
<td>2-4</td>
</tr>
<tr>
<td>3.0 Atlantic Fleet Weapons Training Facility (AFWTF) System</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Outer Range Sites</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2 Cerro Matias, Vieques Site</td>
<td>3-8</td>
</tr>
<tr>
<td>4.0 Kwajalein Missile Range (KMR) System</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Kwajalein Site Description</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Roi-Namur Site</td>
<td>4-12</td>
</tr>
<tr>
<td>5.0 Naval Weapons Center (NWC) System</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Stationary Sites 1 and 2</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2 Mobile Sites</td>
<td>5-8</td>
</tr>
<tr>
<td>6.0 Pacific Missile Test Center (PMTC) System</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Site Descriptions</td>
<td>6-4</td>
</tr>
<tr>
<td>7.0 Western Space and Missile Center (WSMC) Missile Flight Control</td>
<td>7-1</td>
</tr>
<tr>
<td>Termination Control Ground System (MFTCGS) General Description</td>
<td>7-10</td>
</tr>
<tr>
<td>7.1 CCT Sites 1, 3, 4 and 6 Descriptions</td>
<td></td>
</tr>
<tr>
<td>8.0 Eastern Space and Missile Center (ESMC) System</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1 Command Control Transmitter Sites Description</td>
<td>8-9</td>
</tr>
<tr>
<td>9.0 Wallops Flight Center (WFC) System</td>
<td>9-1</td>
</tr>
<tr>
<td>9.1 Mainland System</td>
<td>9-4</td>
</tr>
<tr>
<td>10.0 White Sands Missile Range (WSMR) System</td>
<td>10-1</td>
</tr>
<tr>
<td>10.1 Encoder</td>
<td>10-6</td>
</tr>
<tr>
<td>10.2 RF Source</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3 RF Final</td>
<td>10-6</td>
</tr>
<tr>
<td>10.4 Antennas</td>
<td>10-7</td>
</tr>
<tr>
<td>10.5 Monitor Receiver</td>
<td>10-7</td>
</tr>
<tr>
<td>10.6 Decoder</td>
<td>10-8</td>
</tr>
<tr>
<td>10.7 Recording System</td>
<td>10-9</td>
</tr>
<tr>
<td>10.8 Aleph Systems</td>
<td></td>
</tr>
</tbody>
</table>
FOREWORD

The transmitting systems described herein comprise the basic command destruct transmitting systems in use at the various RCC member and associate member ranges. Sections describing each range's system and configuration and specifications for the various system components are also provided. Users of this document are encouraged to contact the range of interest to determine current configurations and obtain more detailed descriptions.
Chapter 1
INTRODUCTION

1.0 Purpose

This document serves two purposes. First, it provides information to airborne flight termination control system designers which is necessary for the selection of components and design of a system to ensure a compatible link between the ground and airborne flight termination control systems. Second, it provides the ranges, range users and other agencies with a descriptive outline of the system installed at each range.

The transmitting systems identified in this document are frequency modulated sets designed primarily to furnish safety related commands to an airborne receiving system. The unmodulated carrier and selected combinations of the 20 IRIG tones used for modulation provide: (1) airborne receiver quieting, (2) test functions to determine operability of the receiver/decoder, and (3) activation of airborne flight termination system mechanisms.

This document describes usage of the transmitters for flight termination control. In this role, certain subcarriers and the manner in which they are used must be approved by the respective range safety officer.

In all, 20 standard subcarrier channels have been defined and assigned tone numbers for ease of identification. The frequencies were selected to provide for minimal co-channel interference in accordance with the formula

\[
\log_{10} F_N = 0.82275 + 0.05231 N
\]

where

- \(N \) = tone number
- \(F_N \) = frequency in kHz of tone \(N \)

The frequency is rounded off to two decimal places:

<table>
<thead>
<tr>
<th>TONE NO.</th>
<th>FREQ (kHz)</th>
<th>TONE NO.</th>
<th>FREQ (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.50</td>
<td>6</td>
<td>13.70</td>
</tr>
<tr>
<td>2</td>
<td>8.46</td>
<td>7</td>
<td>15.45</td>
</tr>
<tr>
<td>3</td>
<td>9.54</td>
<td>8</td>
<td>17.43</td>
</tr>
<tr>
<td>4</td>
<td>10.76</td>
<td>9</td>
<td>19.66</td>
</tr>
<tr>
<td>5</td>
<td>12.14</td>
<td>10</td>
<td>22.17</td>
</tr>
<tr>
<td>TONE NO.</td>
<td>FREQ (kHz)</td>
<td>TONE NO.</td>
<td>FREQ (kHz)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>11</td>
<td>25.01</td>
<td>16</td>
<td>45.68</td>
</tr>
<tr>
<td>12</td>
<td>28.21</td>
<td>17</td>
<td>51.53</td>
</tr>
<tr>
<td>13</td>
<td>31.83</td>
<td>18</td>
<td>58.12</td>
</tr>
<tr>
<td>14</td>
<td>35.90</td>
<td>19</td>
<td>65.56</td>
</tr>
<tr>
<td>15</td>
<td>40.49</td>
<td>20</td>
<td>73.95</td>
</tr>
</tbody>
</table>

Many of the systems described contain RF equipment which is capable of operation over the entire 406-549 MHz band. However, in most areas, this frequency band is very crowded and the ranges are only authorized to radiate on certain specified frequencies. These frequencies are as follows:

<table>
<thead>
<tr>
<th>RANGE</th>
<th>PRIMARY FREQUENCY (MHz)</th>
<th>SECONDARY FREQUENCY (MHz)</th>
<th>SPECIAL ASSIGNMENT (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFWTF</td>
<td>520</td>
<td>510</td>
<td>425/439</td>
</tr>
<tr>
<td>KMR</td>
<td>445</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>NWC</td>
<td>424</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>PMTC</td>
<td>425</td>
<td></td>
<td>416.5</td>
</tr>
<tr>
<td>WSMC</td>
<td>416.5</td>
<td>406.5</td>
<td></td>
</tr>
<tr>
<td>ESMC</td>
<td>416.5</td>
<td>406.5</td>
<td></td>
</tr>
<tr>
<td>WALLOPS</td>
<td>412</td>
<td></td>
<td>416.5</td>
</tr>
<tr>
<td>WSMR</td>
<td>409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERMUDA</td>
<td>416.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFFTC</td>
<td>483</td>
<td>487</td>
<td></td>
</tr>
</tbody>
</table>
2.0 Armament Division (AD) System

The AD command destruct transmitting system consists of two stations: A-3 located on Santa Rosa Island, and D-3 located at Cape San Blas. Both provide adequate coverage of the entire area as shown in figure 2-1. The stations may be configured to operate independently to control two unmanned systems simultaneously or may be chained together so that control can be passed from one to the other as the mission progresses.

System control is provided from a master site with the option to transfer control to alternate sites or local control. The site in control (except local control) can select and control the carrier, the modulation and the antenna on the prime and backup transmitter.

The range safety philosophy employed permits the use of the transmitter sites for control of targets. When required on target control flights, range safety flight termination commands override the target control commands by use of a "Contractor Disable" function.

Each site is equipped with a Gabriel Model AT-781/U omni antenna and a steerable Secor antenna (beamwidth of 25° to 45' at 420.9 MHz). Pen recorders provide a history of modulating tones, transmitting site and switchover time. Voice communications are also recorded.

Redundant transmitters with both automatic and manual switchover capability exist at each site. Troubleshooting is facilitated by a supervisory feature which detects the absence of a carrier tone on any channel and provides an alarm to indicate such a failure to maintenance personnel. The particular rack and tone channel in which the failure has occurred is indicated by red lights. The channel equipment, relays and subassemblies are contained in plug-in units, thereby expediting repair. A fail-safe option is provided to cause the receiving polar relay to be poled to either the mark or space position with loss of tone.

The locations of the sites are depicted in figure 2-2. Geodetics are as follows:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site A-3 (pad 12)</td>
<td>30°23'25.190"</td>
<td>86°33'26.850"</td>
<td>36.27 ft m.s.l.</td>
</tr>
<tr>
<td>Site D-3</td>
<td>29°40'31.400"</td>
<td>85°20'48.516"</td>
<td>43.055 ft m.s.l.</td>
</tr>
</tbody>
</table>
Figure 2-1 A-3 and D-3 Area Coverage at AD.
Figure 2-2 Location of A-3 and D-3 on AD.
2.1 A-3 and D-3 Site Descriptions

Both sites utilize AN/FRW-2 transmitting sets. Site A-3 has two pairs, while site D-3 has a single pair. Radiation and modulation control can be effected manually or from a remote control site. A block diagram of the system is shown in figure 2-3.

RF failure protection is provided by a station guardian. With the dual installation of radio transmitting set AN/FRW-2, one transmitter operates as a master and the other operates as a standby. When the RF output power falls below a preset value, output from the directional coupler operates the station guardian. The station guardian causes the standby transmitter to be turned on and the antenna to be switched to the standby transmitter output.

Local modulation control is exercised manually; however, there are provisions for an automatic sequence of four tones to be initiated. Modulation can also be controlled from a remote site through a frequency shift keying system. Control is achieved by manually providing a switch closure to the transmission system from one of the control sites. The transmission system uses frequency shift keying with the transmission of a one-tone frequency indicating a mark signal and the transmission of another frequency indicating a space signal. A maximum of 23 signals, using a frequency division multiplex system, can be transmitted simultaneously on one voice channel, with the two conditions of information reversible up to 40 Hz (25-ms response time). With time division multiplexing, as many as 32 signals may be transmitted over one frequency division channel. The signal is decoded at the transmitter and converted into individual command closures. These closures activate individual tones in the encoder.
Figure 2-3 Block Diagram of Radio Transmitting Set AN/FRW-2.
2.1.1 Encoder
2.1.1.1 Description - KY 171 (ITTL coder also available)
2.1.1.2 Available Tones 20
2.1.1.3 Number of Simultaneous Tones 6
2.1.1.4 Tone Frequency Tolerance ±1.0%

2.1.2 RF Source
2.1.2.1 Description - AN/FRW-2
2.1.2.2 Frequency Range 406-549 MHz
2.1.2.3 Assigned Operating Frequency 425 MHz
2.1.2.4 Frequency Tolerance (Accuracy and Stability) 0.01%
2.1.2.5 Maximum Modulated Deviation ±300 kHz
2.1.2.6 Maximum Residual Modulation 9 kHz
2.1.2.7 Maximum Driver Output 40 W @ 409 MHz
25 W @ 549 MHz

2.1.3 RF Final
2.1.3.1 Description - AN/FRW-2
2.1.3.2 Power Output 500-1000 W

2.1.4 Antennas
2.1.4.1 Fixed
2.1.4.1.1 Description - Gabriel Model AT-781/U
2.1.4.1.2 Polarization Left circular
2.1.4.1.3 Gain 5 dB over isotropic
2.1.4.1.4 Beamwidth Omni
2.1.4.1.5 Power Rating 1 kW
2.1.4.1.6 Type Feed Power divider
2.1.4.1.7 Impedance
50Ω

2.1.4.1.8 Frequency Range
406-549 MHz

2.1.4.1.9 Voltage Standing Wave Ratio (VSWR)
1.4:1 @ 406 MHz
1.8:1 @ 549 MHz

2.1.4.2 Steerable

2.1.4.2.1 Description - Secor

2.1.4.2.2 Polarization
Left circular

2.1.4.2.3 Gain
10 dB min @ 420.9 MHz

2.1.4.2.4 Beamwidth
25°-45° @ 420.9 MHz

2.1.4.2.5 Sidelobes
<11 dB

2.1.4.2.6 Power Rating
2 kW

2.1.4.2.7 Impedance
50Ω

2.1.4.2.8 Frequency Range
412.9-428.9 MHz

2.1.4.2.9 VSWR
1.2:1 max @ 420.9 MHz

2.1.4.2.10 Type Mount, Mfr, Model
3511M Mount
Type F-198E TM

2.1.4.2.11 Maximum Slew Rates, Azimuth and Elevation
15°/s AZ
10°/s EL

2.1.4.2.12 Positioning Lag
±5% @ max speed

2.1.4.2.13 Pointing Accuracy
±3° (est)

2.1.5 Monitor Receiver

2.1.5.1 Description - R-729/FRW-3 and R-669/URW

2.1.5.2 Frequency Range
406-549 MHz

2.1.5.3 Tuning Method
Manual

2.1.5.4 Antenna Type and Characteristics
Directional coupler
2.1.6 Decoder

2.1.6.1 Description - KY-172

2.1.6.2 Number of Channels 20

2.1.7 Recording System

2.1.7.1 Description - Pen recorders are utilized to record the following data:

- Tones ordered locally - 20 max
- Tones ordered remotely - Any six at one time
- Tones transmitted - Individual tones
- IRIG timing
- Switchover time - 0.5 s

In addition, magnetic recording of voice communications and frequency monitoring of the active transmitter are provided.
The AFWTF command system is composed of five transmitter sites as shown in figure 3-1. The system is configured to cover test areas for control of both surface and airborne targets. Four of the systems are identical and are built around AN/SWR-4D systems (URW-15), the fifth, located at Cerro Matias, Vieques, utilizes AN/URW-14. Area coverage of the various stations is depicted in figure 3-2.

A Milgo Remote Data and Drone Control System (RDDCS) permits remote control of both the carrier and modulation of the high power systems from the RDDCS drone control room in the Range Operations Center (ROC) at Puerto Rico. The fifth system is manually controlled for operations; all sites have local control for maintenance. Each station is configured with one omni antenna and one 12-dB steerable antenna connected to a transmitter so that either configuration may be selected by the controller. The controller also manually selects the active station. Steerable antennas are manually pointed through a motor driven rotator. An automatic switchover activates the redundant transmitter in a station in the event that the primary transmitter fails. System reliability is 98 percent.

A site summary is contained in table 3-1.
Figure 3-1 Flight Termination System at AFWTF.
Figure 3-2 Flight Termination System Area Coverage at AFWTF.

3-3
TABLE 3-1
AFWTF SITE SUMMARY

<table>
<thead>
<tr>
<th>SITE</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEVATION</th>
<th>POWER OUTPUT</th>
<th>STEERABLE</th>
<th>OMNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Delicias (P.R.)</td>
<td>18°13'46.55"</td>
<td>65°39'5.23"</td>
<td>329 ft</td>
<td>1 kW</td>
<td>1-12 dB</td>
<td>2</td>
</tr>
<tr>
<td>St. Thomas (Crown Mt)</td>
<td>18°21'31.47"</td>
<td>64°58'19.24"</td>
<td>1541.99 ft</td>
<td>1 kW</td>
<td>2-12 dB</td>
<td>-</td>
</tr>
<tr>
<td>St. Croix (St. George Hill)</td>
<td>17°43'14.07"</td>
<td>64°51'28.34"</td>
<td>864 ft</td>
<td>1 kW</td>
<td>1-12 dB</td>
<td>2</td>
</tr>
<tr>
<td>Pico Del Este (P.R.)</td>
<td>18°16'14.32"</td>
<td>65°45'32.12"</td>
<td>3418.23 ft</td>
<td>1 kW</td>
<td>1-12 dB</td>
<td>2</td>
</tr>
<tr>
<td>Cerro Matias, Vieques (P.R.)</td>
<td>18°8'0.65"</td>
<td>65°19'3.67"</td>
<td>454.07 ft</td>
<td>100 kW</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
3.1 Outer Range Sites

These sites are remotely controlled from the ROC to provide guidance for drones involved in weapons tests. Control of the Pico Del Este site is achieved through a Command A Relay System through an AN/DRW-29 working with the AN/SWR-4D system. The others are controlled through the RDDCS.

3.1.1 Encoder

3.1.1.1 Description - Babcock, integral with RF source

- Available Tones: 20
- Number of Simultaneous Tones: 6
- Tone Frequency Tolerance: ±1%
- Distortion: 10%
- Composite Signal Amplitude Stability: 1 V
- Tone Off Level: 0.2 V
- Turn On Delay Time (to 90-Percent Level): 10 ms
- Turn On Jitter at Maximum Repetition Rate: None
- Command Function Tone Balance: 300 kHz

3.1.2 RF Source

3.1.2.1 Description - Babcock AN/URW-14

- Frequency Range: 406-549.5 MHz
- Assigned Operating Frequency: 520 MHz
- Frequency Tolerance (Accuracy and Stability): ±0.005% accuracy
- Maximum Modulated Deviation: 300 kHz
- Maximum Total Distortion (at Maximum Deviation): 10%
- Maximum Driver Output: 100 W
3.1.3 RF Final
3.1.3.1 Description - AM263/UR (AN/URW-15)
3.1.3.2 Power Output 1 kW
3.1.3.3 Harmonic and Spurious Outputs 60 Hz @ -80 dBm
3.1.3.4 Bandwidth 143.5 MHz
3.1.3.5 RF Leakage in Standby Mode None

3.1.4 Antennas
3.1.4.1 Fixed
3.1.4.1.1 Description - Gabriel Model AT-781/UC
3.1.4.1.2 Polarization Left circular
3.1.4.1.3 Gain 5 dB
3.1.4.1.4 Beamwidth Omni
3.1.4.1.5 Power Rating 1 kW
3.1.4.1.6 Type Feed Power divider
3.1.4.1.7 Impedance 51Ω
3.1.4.1.8 Frequency Range 406-549 MHz
3.1.4.1.9 Voltage Standing Wave Ratio (VSWR) >1.4:1,<1.8:1

3.1.4.2 Steerable
3.1.4.2.1 Description - 4 Stacked Motorola 3606E-Z
3.1.4.2.2 Polarization Vertical
3.1.4.2.3 Gain 12 dB
3.1.4.2.4 Beamwidth 120°
3.1.4.2.5 Power Rating 2 kW
3.1.4.2.6 Type Feed N connector

power divider
3.1.4.2.7 Impedance 51Ω
3.1.4.2.8 Frequency Range 480-560 MHz
3.1.4.2.9 VSWR 1.2:1
3.1.4.2.10 Type Mount, Mfr, Model Cornell-Dubilier Rotor, Model M
3.1.4.2.11 Maximum Slew Rates, Azimuth and Elevation 1 rpm, AZ only
3.1.4.2.12 Pointing Accuracy ±1°

3.1.5 Monitor Receiver
3.1.5.1 Description - Babcock AN/URW-16
3.1.5.2 Frequency Range 406-549.5 MHz
3.1.5.3 Tuning Method Crystal
3.1.5.4 Modulated Band Pass (3 dB) 500 kHz
3.1.5.5 Antenna Type and Characteristics Omni
3.1.5.6 RF Sensitivity 0.5μV
3.1.5.7 Audio Output Level 0.8-1.5 V rms
3.1.5.8 Audio Output Bandwidth 300 kHz

3.1.6 Decoder
3.1.6.1 Description - Babcock AN/PRW-29
3.1.6.2 Number of Channels 20
3.1.6.3 Receiver Coupled Threshold Sensitivity 10μV
3.1.6.4 Channel Bandwidth 120 kHz
3.1.6.5 Deviation/Input Range 120-300 kHz
3.1.6.6 Signal/Noise Margin 3 dB

3.1.7 Recording System
3.1.7.1 Description - No recording available.
3.2 Cerro Matias, Vieques Site

This site is used for control of surface targets at the Inner Range. Both modulation and radiation are locally controlled. The low power is appropriate to the size of the range. Output power is monitored by the station operator to preclude the need for an automatic switchover.

3.2.1 Encoder

3.2.1.1 Description - Babcock, integral with RF source
3.2.1.2 Available Tones 20
3.2.1.3 Number of Simultaneous Tones 6
3.2.1.4 Tone Frequency Tolerance ±1%
3.2.1.5 Distortion 10%
3.2.1.6 Composite Signal Amplitude Stability 1 V
3.2.1.7 Tone Off Level 0.2 V
3.2.1.8 Turn On Delay Time (to 90-Percent Level) 10 ms
3.2.1.9 Turn On Jitter at Maximum Repetition Rate None
3.2.1.10 Command Function Tone Balance 300 kHz

3.2.2 RF Source

3.2.2.1 Description - AN/JRW-14
3.2.2.2 Frequency Range 406-549.5 MHz
3.2.2.3 Assigned Operating Frequency 520 MHz
3.2.2.4 Frequency Tolerance (Accuracy and Stability) ±0.005% accuracy
3.2.2.5 Maximum Modulated Deviation 300 kHz
3.2.2.6 Maximum Total Distortion (at Maximum Deviation) 10%
3.2.2.7 Maximum Driver Output 100 W
3.2.3 RF Final

3.2.3.1 Description - AN/URW-14

3.2.3.2 Power Output 100 W

3.2.3.3 Harmonic and Spurious Outputs 60 Hz @ -80 dBm

3.2.3.4 Bandwidth 143.5 MHz

3.2.3.5 RF Leakage in Standby Mode None

3.2.4 Antennas

3.2.4.1 Fixed

3.2.4.1.1 Description - Gabriel Model AT-781/UC

3.2.4.1.2 Polarization Left circular

3.2.4.1.3 Gain 5 dB

3.2.4.1.4 Beamwidth Omni

3.2.4.1.5 Power Rating 1 kW

3.2.4.1.6 Type Feed Power divider

3.2.4.1.7 Impedance 51Ω

3.2.4.1.8 Frequency Range 406-549 MHz

3.2.4.1.9 VSWR >1.4:1,<1.8:1

3.2.4.2 Steerable

3.2.4.2.1 Description - None available.

3.2.5 Monitor Receiver

3.2.5.1 Description - AN/URW-16

3.2.5.2 Frequency Range 406-549.5 MHz

3.2.5.3 Tuning Method Crystal

3.2.5.4 Modulated Band Pass (3 dB) 500 kHz
3.2.5.5 Antenna Type and Characteristics
Omni

3.2.5.6 RF Sensitivity
0.5μV

3.2.5.7 Audio Output Level
0.85-1.5 V rms

3.2.5.8 Audio Output Bandwidth
300 kHz

3.2.6 Decoder

3.2.6.1 Description - AN/PRW-29

3.2.6.2 Number of Channels
20

3.2.6.3 Receiver Coupled Threshold Sensitivity
10μV

3.2.6.4 Channel Bandwidth
120 kHz

3.2.6.5 Deviation/Input Range
120-300 kHz

3.2.6.6 Signal/Noise Margin
3 dB

3.2.7 Recording System

3.2.7.1 Description - No recording available.
Chapter 4

KWAJALEIN MISSILE RANGE (KMR)
KWAJALEIN, MARSHALL ISLANDS

4.0 Kwajalein Missile Range (KMR) System

The KMR system consists of two sites; one at Roi-Namur and one at Kwajalein as shown in figure 4-1. The Roi-Namur site utilizes AN/FRW-2 equipment mounted in a van while the Kwajalein site consists of newly designed equipment which provides a 10-kW source.

Each site is interfaced to a CDC 7600 computer in the Central Data Processing Center (CDPC) on Kwajalein to control antenna pointing and modulation control for command destruct, missile guidance and other control purposes. Both sites have redundant transmitters with automatic switchover capability. Manual control can be achieved locally and through interaction with the CDPC.

The Kwajalein system is an integral part of the Kwajalein Range Safety System (KRSS). It is designed for operator control of radiation and antenna pointing. Commands for modulation can be derived automatically from software or by manual selection either through a hardware sequence with adjustable duty cycle or through software formatted orders. Both digital and hard-copy recording is provided to allow full coverage of events.

WGS-72 geodetics are as follows:

<table>
<thead>
<tr>
<th></th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>ELEVATION (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roi-Namur</td>
<td>9°21'6.9150"</td>
<td>167°28'4.5087"</td>
<td>6.032 ft m.s.l.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37.132 geodetic</td>
</tr>
<tr>
<td>Kwajalein</td>
<td>8°43'18.3957"</td>
<td>167°43'26.9584"</td>
<td>8.187 ft m.s.l.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39.626 geodetic</td>
</tr>
</tbody>
</table>

4.1 Kwajalein Site Description

The Command Control Transmitter (CCT) subsystem hardware and software are dedicated elements of the KRSS and are located at the Range Safety Center (RSC) on Kwajalein Island. The CCT provides the means to transmit commands to the airborne test vehicle with an effective radiated power of up to 2 MW covering the area shown in figure 4-2. The CCT subsystem consists of two identical high-power RF transmitters with sufficient output power to capture test vehicle receivers at the KMR horizon. Depending on user requirements, the CCT subsystem may also be tuned to any frequency within the UHF destruct band. In addition, tone modulation selection is possible using software techniques which allow the support of in-flight guidance or other command and control functions.
Figure 4-1 Command Control Transmitters at KMR.
Figure 4-2 KRSS CCT Coverage Capability at KMR.
The primary facilities for the KRSS include the CDPC and the RSC. The RSC houses the Flight Safety Display Command (FSDC) and the CCT subsystems. The RSC is the central location from which all KRSS functions may be monitored and controlled by the Flight Safety Officer. The CDPC houses the main KMR computer and is the central distribution point for passing data to and from range instrumentation.

The KRSS is designed to maximize system reliability. Error checking and redundant features are incorporated wherever practical to reach a reliability design goal of 0.991. Polynomial error checking is used on all data links to ensure successful transmission. The CCT subsystem is redundant and contains a hierarchy of failure sensing circuitry. Should a failure be detected, the hardware will automatically switch to the redundant path. In addition, the reliability of the overall system is significantly increased using stringent hardware/software configuration control techniques.

The CCT subsystem consists of two digital subsystems, two radio frequency subsystems, two linear amplifiers, two transmit antennas, two monitor subsystems and an operator's console. A block diagram is shown in figure 4-3.

Each digital subsystem is comprised of two modem communication units, an SEL 810B minicomputer, and a real-time Digital Input/Output Control Unit (DIOCU). The primary modem receives azimuth/elevation pointing angles and command orders from the CDPC to drive the command antennas. The serial data is converted to parallel in 12-bit bytes for transfer to the SEL 810B minicomputer. The SEL 810B minicomputer performs data validity testing and the information is formulated for transfer to the real-time DIOCU. Should primary data to the CCT subsystem be lost from the CDPC, it is possible for the SEL 810B minicomputer to process alternate pointing data directly from one AN/MPS-36 radar using data transmitted on the backup modem link.

The real-time DIOCU performs the primary interface function between most elements of the CCT subsystem. While functioning as a standard computer peripheral, it provides direct communication between the external input/output devices and the SEL 810B minicomputer. The DIOCU provides the digital-to-analog conversion to steer the antennas and the contact outputs to key the tone encoders. The DIOCU also allows the transmission and reception of 16 discrete status bits between the two computers. These status bits may then be interrogated by the software so that each computer knows the status of the other during real-time operation.

The RF subsystems provide the means to encode and modulate commands ordered within the KRSS. Included within each RF subsystem is a tone encoder, an RF generator and a low-power amplifier. The low-power amplifiers receive the carrier signals from the RF generators. The low-power
Figure 4.3 Block Diagram of the KVR Command Control Transmitter Subsystem.
amplifiers which receive carrier signals from the RF generators are linear, wideband and solid state. They are capable of delivering 5 W of RF power to the high-power amplifiers.

The high-power amplifiers provide RF amplification with an output of 10 kW. Modulation is tone frequency with up to ±300 kHz deviation. A redundant system is employed which maintains one amplifier system in standby while one is on-line. In the event of failure, an automatic switchover occurs to place the standby unit on-line within 55 ms. There are two liquid-cooled heat exchangers used for cooling the klystron amplifier tubes; each heat exchanger cools one klystron amplifier tube.

An RF switch network accepts the signals from the high-power linear amplifiers. It also accepts switching signals from the operator's console or the real-time DIOCU, and provides inputs to either the antennas or the dummy loads.

Each of the two 20-foot redundant parabolic antennas uses a two-axis elevation-over-azimuth pedestal on a riser base. Radiation is left-hand circularly polarized (LHCP) with a pointing accuracy of 0.1° and a beamwidth greater than 7° at half power. Operating freedom is shown in figure 4-4.

The monitor subsystem provides the means to monitor the CCT subsystem radiated carrier modulation. The monitor subsystem includes monitor antennas, receivers, decoders and stripchart recorders.

The monitor antennas receive a portion of the radiated signals from the transmitting antennas. The receivers demodulate the signals and output the demodulated signals to the decoders. The decoders output a discrete signal for each IRIG tone present in the modulation. The tone indicator signals are output to the encoder/decoder display panel on the operator's console, the real-time DIOCU and the stripchart recorders. The stripchart recorders provide hard-copy records of system functions, events and switch positions.

The operator's console provides centralized control of the CCT subsystem by furnishing capabilities to turn carriers on, select the prime system, disable automatic switchover and remote controls, manually position the antennas, and transmit individual tones or commands.

Synchronized time code generators provide range timing for the CCT subsystem. The generators receive IRIG B signals from the master timing center, phase-lock their local oscillators to the input signals, and output pulse rates and IRIG time codes to the components of the CCT subsystem.

4-6
NOTES:
1. ANT. #1 LOCATED ON MOUND ADJACENT TO BLDG. #1011
2. ANT. #2 LOCATED ON TOP OF BLDG. #1011

Figure 4-4 KRSS CCT Location on KHR.
4.1.1 Encoder

4.1.1.1 Description - Part of RF subsystem 8695-8696 manufactured by Metric Systems, Fort Walton Beach, Fla., Kentron Spec HV-6020-115-76.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Tones</td>
<td>20</td>
</tr>
<tr>
<td>Number of Simultaneous Tones</td>
<td>10</td>
</tr>
<tr>
<td>Tone Frequency Tolerance</td>
<td>0.1%</td>
</tr>
<tr>
<td>Distortion</td>
<td>1.0%</td>
</tr>
<tr>
<td>Composite Signal Amplitude Stability</td>
<td>±5%</td>
</tr>
<tr>
<td>Tone Off Level</td>
<td>0.05±0.05 V</td>
</tr>
<tr>
<td>Order Repetition Rates</td>
<td>0-100 pps</td>
</tr>
<tr>
<td>Turn On Delay Time (to 90-Percent Level)</td>
<td>0.5 ms max</td>
</tr>
<tr>
<td>Turn On Jitter at Maximum Repetition Rate</td>
<td>±50μs</td>
</tr>
<tr>
<td>Turn Off Delay Time</td>
<td>0.5 ms max</td>
</tr>
<tr>
<td>Composite Transient Output (Switching)</td>
<td>0.1 V peak - 50μs</td>
</tr>
<tr>
<td>Command Function Tone Balance</td>
<td>±5%</td>
</tr>
</tbody>
</table>

4.1.2 RF Source

4.1.2.1 Description - HP 8660C generator with 86602 (extended) RF section and 86632B modulation section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>406-550 MHz</td>
</tr>
<tr>
<td>Assigned Operating Frequency</td>
<td>445/536 MHz</td>
</tr>
<tr>
<td>Frequency Tolerance (Accuracy and Stability)</td>
<td>±0.00005%</td>
</tr>
<tr>
<td>Deviation Linearity</td>
<td>±1% @ 300 kHz</td>
</tr>
<tr>
<td>Maximum Modulated Deviation</td>
<td>±300 kHz</td>
</tr>
<tr>
<td>Maximum Residual Modulation</td>
<td>±2 kHz</td>
</tr>
</tbody>
</table>
4.1.2.8 Maximum Total Distortion (at Maximum Deviation) 2%
4.1.2.9 Maximum Driver Output 10 W

4.1.3 RF Final
4.1.3.1 Description - MCL Model 10533, Kentron Spec HV-6020-165-75
4.1.3.2 Power Output 10 kW
4.1.3.3 Harmonic and Spurious Outputs -60 dB
4.1.3.4 Bandwidth 3 MHz
4.1.3.5 RF Leakage in Standby Mode -60 dB

4.1.4 Antennas
4.1.4.1 Fixed
4.1.4.1.1 Description - None available.
4.1.4.2 Steerable
4.1.4.2.1 Description - Datron Systems, Inc., Kentron Spec HV-6020-015-76
4.1.4.2.2 Polarization Left circular
4.1.4.2.3 Gain 25 dB
4.1.4.2.4 Beamwidth 7°
4.1.4.2.5 Sidelobes -15.6 dB
4.1.4.2.6 Power Rating 15 kW
4.1.4.2.7 Type Feed Coaxial
4.1.4.2.8 Impedance 50Ω
4.1.4.2.9 Frequency Range 406-550 MHz
4.1.4.2.10 Voltage Standing Wave Ratio (VSWR) 1.25:1
4.1.4.2.11 Type Mount, Mfr, Model EL-AZ Datron 8z53
4.1.4.2.12 Maximum Slew Rates, Azimuth and Elevation 15°/s
4.1.4.2.13 Positioning Lag 5° max
4.1.4.2.14 Pointing Accuracy 1°

4.1.5 Monitor Receiver
4.1.5.1 Description - Microdyne AR-1200
4.1.5.2 Frequency Range 406-550 MHz
4.1.5.3 Tuning Method Continuous
4.1.5.4 Modulated Band Pass (3 dB) 1.5 MHz
4.1.5.5 Antenna Type and Characteristics Dipole stub
4.1.5.6 RF Sensitivity -98 dBm/tone
4.1.5.7 Audio Output Level 2 V rms/tone
4.1.5.8 Audio Output Bandwidth 100 kHz

4.1.6 Decoder
4.1.6.1 Description - Metric, Kentron Spec HV-6020-115-76
4.1.6.2 Number of Channels 20
4.1.6.3 Receiver Coupled Threshold Sensitivity 0.25 V rms/tone
4.1.6.4 Channel Bandwidth ±1%/tone
4.1.6.5 Deviation/Input Range ±300 kHz
4.1.6.6 Adjacent Channel Rejection 40 dB
4.1.6.7 Signal/Noise Margin 12 dB
4.1.6.8 Command Output Response Time 5 ms
4.1.6.9 Response Jitter ±0.4 ms
4.1.7 Recording System

4.1.7.1 Description - Magnetic tape and chart

4.1.7.2 Functions Recorded:

- Tones ordered locally
- Tones ordered remotely
- Tones transmitted
- Antenna and transmitter radiating
- Antenna position
- Transmitter fault event
- Switchover time
- Voice communications
4.2 Roi-Namur Site

The command system at Roi-Namur (as shown in figure 4-5) consists of redundant FRW-2 transmitters, modems and an SEL 810A computer with input/output (I/O) interface unit, antenna control and positioning unit, teletype, recorder, and remote and local control positions. The system may be used for any command function which requires an RF signal from 406 to 550 MHz and is tunable in 1.0-MHz intervals.

In the normal operating mode both transmitter filament circuits are on simultaneously; one transmitter supplies power to the antenna and one is switched into dummy load. Either transmitter may be designated to be prime with the other on standby. Modulation can be commanded locally or remotely from the CDPC. Up to five tones may be ordered at a time. Lock-out switches are provided on the master console which can be set to prevent local operation when remote modulation is desired.

A fully steerable tri-helix antenna with 14-dB gain is used to provide mission support. A 14.5-dB gain fixed antenna is available as a backup. Location and coverage is shown in figure 4-6.

All command information, range time and transmitter power output are recorded on magnetic tape. Electrical interconnections are 208 V, 30 and 60 Hz. The electronic control interface is 28 V d.c.
Figure 4-5 AN/FRW-2 Command and Guidance System on Roi-Namur.
Figure 4-6 CDT Location on Roi-Namur.
4.2.1 Encoder

4.2.1.1 Description - KY-171/URW

4.2.1.2 Available Tones

4.2.1.3 Number of Simultaneous Tones

4.2.1.4 Tone Frequency Tolerance

4.2.2 RF Source

4.2.2.1 Description - T-560/FRW-2

4.2.2.2 Frequency Range

4.2.2.3 Assigned Operating Frequency

4.2.2.4 Frequency Tolerance (Accuracy and Stability)

4.2.2.5 Deviation Linearity

4.2.2.6 Maximum Modulated Deviation

4.2.2.7 Maximum Residual Modulation

4.2.2.8 Maximum Total Distortion (at Maximum Deviation)

4.2.2.9 Maximum Driver Output

4.2.3 RF Final

4.2.3.1 Description - AN/FRW-2

4.2.3.2 Power Output

4.2.3.3 Harmonic and Spurious Outputs

4.2.3.4 Bandwidth

4.2.3.5 RF Leakage in Standby Mode

4.2.4 Antennas

4.2.4.1 Fixed
4.2.4.1.1 Description - Sterling Colinear Quad Helix

4.2.4.1.2 Polarization
4.2.4.1.3 Gain
4.2.4.1.4 Beamwidth
4.2.4.1.5 Power Rating
4.2.4.1.6 Type Feed
4.2.4.1.7 Impedance
4.2.4.1.8 Frequency Range
4.2.4.1.9 Voltage Standing Wave Ratio (VSWR)

Left circular
14.5 dB/isotropic
20°x60°
10 kW
Coaxial
50Ω
400-550 MHz
1.5:1

4.2.4.2 Steerable
4.2.4.2.1 Description - ESCO Tri-Helix

4.2.4.2.2 Polarization
4.2.4.2.3 Gain
4.2.4.2.4 Beamwidth
4.2.4.2.5 Sidelobes
4.2.4.2.6 Power Rating
4.2.4.2.7 Type Feed
4.2.4.2.8 Impedance
4.2.4.2.9 Frequency Range
4.2.4.2.10 VSWR
4.2.4.2.11 Type Mount, Mfr, Model
4.2.4.2.12 Maximum Slew Rates, Azimuth and Elevation
4.2.4.2.13 Positioning Lag
4.2.4.2.14 Pointing Accuracy

Left circular
14.5 dB
18°x30°
-12 dB
15 kW
Coaxial
50Ω
406-550 MHz
1.5:1
EL-AZ ESCO
28°/s AZ
12°/s EL
3° max
2°
4.2.5 Monitor Receiver
4.2.5.1 Description - R-669A/URW
4.2.5.2 Frequency Range 406-549 MHz
4.2.5.3 Tuning Method 1-MHz steps

4.2.6 Decoder
4.2.6.1 Description - KY-172/URW
4.2.6.2 Number of Channels 20
4.2.6.3 Receiver Coupled Threshold Sensitivity 0.64 V rms/tone
4.2.6.4 Channel Bandwidth ±5%
4.2.6.5 Deviation/Input Range 30 kHz/tone

4.2.7 Recording System
4.2.7.1 Description - PEC Model 6860-75 7-track magnetic tape
4.2.7.2 Functions Recorded:
 Tones ordered remotely
 Tones transmitted
 Transmitter radiating
 Antenna position
 Transmitter fault
 Switchover time
 Data errors
 Parity errors
Chapter 5
NAVAL WEAPONS CENTER (NWC)
CHINA LAKE, CALIFORNIA

5.0 Naval Weapons Center (NWC) System

The NWC system consists of four transmitting sites; two stationary and two mobile. These are located as shown in figure 5-1. The mobile sites have been selected to optimize coverage for the range but can be relocated, if required, to accommodate special needs of particular programs. Further, the system can be used for control functions other than destruct, with permission.

Each site has omnidirectional antennas and dual transmitters with automatic switchover in case of failure. Event recorders identify the radiating transmitter and tones ordered.

Control of radiation and modulation is manually effected at each site and is under the direction of the Range Safety Officer who exercises direct control of site 1 from the Flight Termination Console in Building 30855. Assistant Range Safety Officers are stationed at each site which is active for a mission.

Site geodetics are as follows:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>35°41'53.2"</td>
<td>117°37'25.0"</td>
<td>2177 ft m.s.l.</td>
</tr>
<tr>
<td>Site 2</td>
<td>35°46'29.8"</td>
<td>117°46'38.1"</td>
<td>2270 ft m.s.l.</td>
</tr>
</tbody>
</table>
Figure 5-1 Command Transmitters at NWC.
5.1 Stationary Sites 1 and 2

The stationary sites are basically assembled from AN/URW-15 equipment. As shown in figure 5-2, the coders and control equipment are located in the fire control centers, while the transmitters themselves are located in adjacent facilities. Sites are linked together by voice communication. Each of the stations provides coverage of approximately 80 percent of the NWC airspace. Commercial and local generator power is provided to them as shown in figure 5-3.
Figure 5-2 Sites 1 and 2 Transmitter Configurations.
Figure 5-3 Transmitter Block Diagram at Sites 1 and 2.
5.1.1 Encoder

5.1.1.1 Description - Part of AN/URW-14A

5.1.1.2 Available Tones 20

5.1.1.3 Number of Simultaneous Tones 6

5.1.1.4 Tone Frequency Tolerance ±1%

5.1.1.5 Tone Off Level 0

5.1.2 RF Source

5.1.2.1 Description - AN/URW-14A

5.1.2.2 Frequency Range 406-549.5 MHz

5.1.2.3 Assigned Operating Frequency 424/439 MHz

5.1.2.4 Frequency Tolerance (Accuracy and Stability) 0.005%

5.1.2.5 Maximum Modulated Deviation ±300 kHz

5.1.2.6 Maximum Total Distortion (at Maximum Deviation) <3%

5.1.2.7 Maximum Driver Output 75 W

5.1.2.8 Maximum Residual Modulation <5 kHz

5.1.3 RF Final

5.1.3.1 Description - AN-2643 (AN/URW-15)

5.1.3.2 Power Output >500 W <1 kW

5.1.3.3 Bandwidth 406-549.5 MHz

5.1.4 Antennas

5.1.4.1 Fixed

5.1.4.1.1 Description - Gabriel AT-571 A/U

5.1.4.1.2 Polarization Left circular

5.1.4.1.3 Gain 5 dB
5.1.4.1.4 Beamwidth
Omni

5.1.4.1.5 Power Rating
1 kW

5.1.4.1.6 Impedance
50Ω

5.1.4.1.7 Frequency Range
400-550 MHz

5.1.4.1.8 Voltage Standing Wave Ratio (VSWR)
<1.8:1

5.1.4.2 Steerable

5.1.4.2.1 Description - None available.

5.1.5 Monitor Receiver

5.1.5.1 Description - AN/URW-16

5.1.5.2 Frequency Range
406-549.5 MHz

5.1.5.3 Tuning Method
Crystal

5.1.5.4 Modulated Band Pass (6 dB)
1.4-2.0 MHz

5.1.5.5 RF Sensitivity
5uV

5.1.5.6 Audio Output Level
1.4-7 V peak

5.1.6 Decoder

5.1.6.1 Description - Part of AN/URW-16

5.1.6.2 Number of Channels
20

5.1.6.3 Receiver Coupled Threshold Sensitivity
5uV

5.1.6.4 Deviation/Input Range
Up to 300 kHz

5.1.6.5 Command Output Response Time
15 ms max

5.1.7 Recording System

5.1.7.1 Description - Event recorders

5.1.7.2 Functions Recorded:
- Tones transmitted
- Transmitter radiating

5-7
5.2 Mobile Relocatable Sites

Mobile sites are provided with generator power permitting them to be located wherever they are required. Both modulation control and signal generation are collocated in a single van. Though not currently configured for remote control, the basic design permits such operation over land lines.

5.2.1 Encoder

5.2.1.1 Description - KY-171

5.2.1.2 Available Tones 20

5.2.1.3 Number of Simultaneous Tones 6

5.2.1.4 Tone Frequency Tolerance ±1%

5.2.1.5 Tone Off Level 0

5.2.2 RF Source

5.2.2.1 Description - AN/FRW-2

5.2.2.2 Frequency Range 406-549 MHz

5.2.2.3 Frequency Tolerance (Accuracy and Stability) 0.01%

5.2.2.4 Maximum Modulated Deviation ±300 kHz

5.2.2.5 Maximum Total Distortion (at Maximum Deviation) 3.5%

5.2.2.6 Maximum Driver Output >25 W

5.2.2.7 Maximum Residual Modulation <5 kHz

5.2.3 RF Final

5.2.3.1 Description - AN/FRW-2

5.2.3.2 Power Output >500W < 1 kW

5.2.3.3 Bandwidth 406-549 MHz
5.2.4 Antennas
5.2.4.1 Fixed
5.2.4.1.1 Description - Gabriel AT-751/U

- Polarization: Left circular
- Gain: 5 dB
- Beamwidth: Omni
- Power Rating: 1 kW
- Impedance: 50Ω
- Frequency Range: 400-550 MHz
- VSWR: <1.8:1

5.2.4.2 Steerable
5.2.4.2.1 Description - None available

5.2.5 Monitor Receiver
5.2.5.1 Description - R669A/URW

- Frequency Range: 406-549 MHz
- Tuning Method: Crystal
- Modulated Band Pass (6 dB): 1.4-2.0 MHz
- RF Sensitivity: 0.05 V
- Audio Output Level: 2 V

5.2.6 Decoder
5.2.6.1 Description - Part of R669A/URW

- Number of Channels: 20
- Receiver Coupled Threshold Sensitivity: 2 V
5.2.6.4 Command Output Response Time

>15 ms

5.2.7 Recording System

5.2.7.1 Description - Event recorders

5.2.7.2 Functions Recorded:

- Tones ordered remotely
- Tones transmitted
Chapter 6

PACIFIC MISSILE TEST CENTER (PMTC)
POINT MUGU, CALIFORNIA

6.0 Pacific Missile Test Center (PMTC) System

The PMTC system consists of three Command Control Transmitter (CCT) sites. These are located at Laguna Peak, San Nicolas Island (SNI) and Barking Sands, Kauai, Hawaii (figures 6-1 and 6-2). The Laguna Peak and SNI sites are fixed stations, while the Barking Sands site utilizes mobile vans. All the sites employ the AN/FRW-2 UHF transmitter and are configured for manual or automatic fail-over capability. The Laguna Peak and SNI stations may be configured to operate independently or chained together so that control can be passed from one to the other as the mission progresses.

The Laguna Peak site has four dual transmitter systems, two local control directional antennas, six Gabriel model AT-781/u omni antennas, four model AT-286000 corner reflectors, and a local control station. The CCTs and the antennas interface into a coaxial patch panel allowing any transmitter to interface with any antenna.

The directional antennas are designed for continuous rotation in azimuth and 90° in elevation. They are Left Hand Circular Polarized (LHCP) with a 16-dB gain and a beamwidth of 15°. The Gabriel model AT-781/u omni antennas are LHCP with a 5-dB gain. The corner reflector model AT-286000 antennas are vertically polarized with a 10-dB gain and a beamwidth of 65°.

Transmitter control and modulation can be directed locally, or by remote control from the Tracking and Control (T&C) rooms in Building 53 via communications land lines. There are six control stations in Building 53 equipped with a 20-channel coder. Each can monitor the transmitter status and off-the-air tone transmissions. The transmitter signals are also monitored at the transmitter site by a self-contained RF monitor and decoder combination.

The SNI site has two dual transmitter systems, one directional antenna, two Gabriel model AT-781/u omni antennas, and one Gabriel model AT-782/u omni antenna. The directional antenna is interfaced with the Sensor Positioning and Readback System (SPARS) and can be slaved to the radars or telemetry. The directional antenna and the Gabriel model AT-781/u antenna have the same specifications as those on Laguna Peak. The Gabriel model AT-782/u omni antenna is LHCP with a 10-dB gain.

The SNI site is remotely controlled from the T&C rooms in Building 53 via the Kinplex and wide band microwave system. Monitoring of
Figure 6-2 Range System Functional Diagram - Hawaiian Area.
transmitter status and tone transmissions is provided in the T&C rooms. The two systems on SNI can be used in conjunction with the four systems on Laguna Peak to provide a six-target control capability.

The Barking Sands site is located on Makaha Ridge. It has two dual transmitter systems, two local control directional antennas, one Gabriel model AT-781/u omni antenna, and one Gabriel model AT-782/u omni antenna. The antenna specifications are the same as those for Laguna Peak and SNI.

The site is remotely controlled from the Range Control Center in Building 105 via FSK and four wide band microwave channels. The system is similar to and operates the same as the SNI system.

The geodetic location of the sites is as follows:

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laguna Peak</td>
<td>34°6'27"N</td>
<td>119°3'57"W</td>
<td>1420 ft m.s.l.</td>
</tr>
<tr>
<td>San Nicolas Island</td>
<td>33°14'56.1"N</td>
<td>119°31'16.5"W</td>
<td>850 ft m.s.l.</td>
</tr>
<tr>
<td>Barking Sands</td>
<td>22°7'30"N</td>
<td>159°44'20"W</td>
<td>1500 ft m.s.l.</td>
</tr>
</tbody>
</table>

6.1 Site Descriptions

The sites operate from commercial a.c. power with standby backup generators. The Laguna Peak transmitters are located in Building 93 and are connected in a fail-over arrangement. If the primary transmitter fails due to low incident power or high reflected power, the B+ power is applied to the backup transmitter. The backup system then assumes control of the command/destruct functions. Block diagrams of the system are provided in figures 6-3, 6-4 and 6-5.

The SNI transmitters are located in Building 127. The system works the same as that at Laguna Peak. A block diagram of the system is shown in figure 6-6.

The Barking Sands transmitters are housed in mobile vans located on Makaha Ridge. They operate the same as those at SNI. Block diagrams of the system are shown in figures 6-7, 6-8 and 6-9.
Figure 6-3 Block Diagram of Command Control System.
Figure 6-4 Command Control System at Point Mugu.
Figure 6-5 Command Control System at Laguna Peak.

NOTES:
1. SITE SUPPORTS 4 TARGETS
2. ANY ANTENNA CAN BE PATCHED TO ANY TRANSMITTER.
3. AUDIO INPUTS TO FRW-2 TRANSMITTER VIA PATCH PANEL.
4. AN/FRW-Z: 1 KW. RM3, 400-650 MHZ, FM MODE 150-300 KHZ.
Figure 6-6 Command Control System at San Nicolas Island.

NOTES:
1. SNI supports 2 targets.
2. Pt. Mugu has prime control. Local control is not used except during emergencies.
3. AN/FRW-2: 1 Kw RMS, 400-450 MHz, FM mode 150-300 kHz.
NOTES:
1. Maximum of four targets (two airborne, two AVR) may be controlled simultaneously.
2. Transmitter system rated at 1 kW.
3. This system is also used as a command destruct system for the TOMAHAWK, standard ARM, and HARPOON missiles.

Figure 6-7 Block Diagram of the Command Control System at Barking Sands.
Figure 6-8 Command Control System at Barking Sands.
NOTE: System is same as system 1.

Figure 6-9 Command Control System at Barking Sands.
6.1.1 Encoder

6.1.1.1 Description - KY-171/URW

6.1.1.2 Available Tones 20

6.1.1.3 Number of Simultaneous Tones 6

6.1.1.4 Tone Frequency Tolerance ±0.5% max

6.1.1.5 Distortion 1% max

6.1.1.6 Composite Signal Amplitude Stability ±10%

6.1.1.7 Tone Off Level -36 dB

6.1.1.8 Turn On Delay Time (to 90-Percent Level) 1.0 ms

6.1.1.9 Turn Off Delay Time 1.0 ms

6.1.1.10 Composite Transient Output (Switching) 1 mW

6.1.1.11 Command Function Tone Balance ±1 dB

6.1.2 RF Source

6.1.2.1 Description - T-560/FRW-2

6.1.2.2 Frequency Range 406-549 MHz

6.1.2.3 Frequency Tolerance (Accuracy and Stability) ±0.01%

6.1.2.4 Deviation Linearity ±5%

6.1.2.5 Maximum Modulated Deviation ±300 kHz

6.1.2.6 Maximum Residual Modulation ±2 kHz

6.1.2.7 Maximum Total Distortion (at Maximum Deviation) 2%

6.1.2.8 Maximum Driver Output 50 W

6.1.3 RF Final

6.1.3.1 Description - AN/FRW-2

6.1.3.2 Power Output 500 W
6.1.3.3 Harmonic and Spurious Outputs
-35 dB harmonic
-75 dB spurious

6.1.3.4 Bandwidth
1 MHz

6.1.3.5 RF Leakage in Standby Mode
5.97 e-12
W/m², 36 kft

6.1.4 Antennas
6.1.4.1 Fixed
6.1.4.1.1 Description - Gabriel AT-781/u
6.1.4.1.2 Polarization
Left circular
6.1.4.1.3 Gain
5 dB
6.1.4.1.4 Beamwidth
Omni d/h=5:1
6.1.4.1.5 Power Rating
1 kW
6.1.4.1.6 Type Feed
LC
6.1.4.1.7 Impedance
50Ω
6.1.4.1.8 Frequency Range
406-500 MHz
6.1.4.1.9 Voltage Standing Wave Ratio (VSWR)
1.75:1 max

6.1.4.2 Steerable
6.1.4.2.1 Description
6.1.4.2.2 Polarization
Left circular
6.1.4.2.3 Gain
16 dB
6.1.4.2.4 Beamwidth
18°
6.1.4.2.5 Sidelobes
-14 dB
6.1.4.2.6 Power Rating
1 kW
6.1.4.2.7 Type Feed
Helix
6.1.4.2.8 Impedance
50Ω
6.1.4.2.9 Frequency Range
406-550 MHz

6.1.4.2.10 VSWR
2:1

6.1.4.2.11 Type Mount, Manufacturer, Model
Mp-61 modified

6.1.4.2.12 Maximum Slew Rates, Azimuth and Elevation
45°/s

6.1.4.2.13 Positioning Lag
10°/s

6.1.5 Monitor Receiver

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5.1</td>
<td>R-729/FRW-3 and R-669/URW</td>
</tr>
<tr>
<td>6.1.5.2</td>
<td>Frequency Range</td>
</tr>
<tr>
<td>6.1.5.3</td>
<td>Tuning Method</td>
</tr>
<tr>
<td>6.1.5.4</td>
<td>Modulated Band Pass (3 dB)</td>
</tr>
<tr>
<td>6.1.5.5</td>
<td>Antenna Type and Characteristics</td>
</tr>
<tr>
<td>6.1.5.6</td>
<td>RF Sensitivity</td>
</tr>
<tr>
<td>6.1.5.7</td>
<td>Audio Output Level</td>
</tr>
<tr>
<td>6.1.5.8</td>
<td>Audio Output Bandwidth</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5.2</td>
<td>406-549 MHz</td>
</tr>
<tr>
<td>6.1.5.3</td>
<td>1-MHz steps</td>
</tr>
<tr>
<td>6.1.5.4</td>
<td>600 kHz</td>
</tr>
<tr>
<td>6.1.5.5</td>
<td>As-390 omni</td>
</tr>
<tr>
<td>6.1.5.6</td>
<td>5u V</td>
</tr>
<tr>
<td>6.1.5.7</td>
<td>0-5 V</td>
</tr>
<tr>
<td>6.1.5.8</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

6.1.6 Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6.1</td>
<td>KY-172</td>
</tr>
<tr>
<td>6.1.6.2</td>
<td>Number of Channels</td>
</tr>
<tr>
<td>6.1.6.3</td>
<td>Receiver Coupled Threshold Sensitivity</td>
</tr>
<tr>
<td>6.1.6.4</td>
<td>Channel Bandwidth</td>
</tr>
<tr>
<td>6.1.6.5</td>
<td>Deviation/Input Range</td>
</tr>
<tr>
<td>6.1.6.6</td>
<td>Command Output Response Time</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6.2</td>
<td>20</td>
</tr>
<tr>
<td>6.1.6.3</td>
<td>200 mV</td>
</tr>
<tr>
<td>6.1.6.4</td>
<td>3-5% of 6 dB-point</td>
</tr>
<tr>
<td>6.1.6.5</td>
<td>20 kHz</td>
</tr>
<tr>
<td>6.1.6.6</td>
<td>30 ms</td>
</tr>
</tbody>
</table>

6.1.7 Recording System

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.7.1</td>
<td>Esterline Angus</td>
</tr>
<tr>
<td>6.1.7.2</td>
<td>Functions Recorded:</td>
</tr>
<tr>
<td></td>
<td>Audio tones</td>
</tr>
<tr>
<td></td>
<td>Tones Transmitted</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
7.0 Missile Flight Termination Control Ground System (MFTCGS) General Description

WSMC has four Command Control Transmitters (CCT) located as shown in figure 7-1. Figure 7-2 shows typical launch trajectory area coverage. Of the four CCT sites, two are located on Vandenberg AFB (figures 7-3 and 7-4) with both fixed omnidirectional and steerable directional antennas. The other two are remote sites with steerable directional antennas only. One is located at Pillar Point (figure 7-5), just south of San Francisco, while the other site is located at Laguna Peak (figure 7-6) near Point Mugu U.S. Naval Air Station.

The description in this document pertains only to use of the MFTCGS in support of safety functions. Agreements, however, may be made for the use of this system in support of drone command, satellite command and other nonsafety command functions, provided missile flight safety is given the first order of precedence. Furthermore, if system capabilities are incorporated for purposes other than missile flight termination, the end result will effect no degradation in the capability of the MFTCGS to meet all the requirements for missile flight safety purposes.

At liftoff, support is provided by one of the Vandenberg-located sites in the omnidirectional antenna configuration. At some predetermined time, the antenna configuration is automatically changed from the omnidirectional to the steerable directional antenna. At some later predetermined time, the local site is deactivated and one of the remote sites is activated to provide a better look angle for improved RF illumination. The Pillar Point site is used primarily for westerly ballistic launches and the Laguna Peak site for southerly orbital launches.

Each site is configured with redundant transmitters. During launch, one transmitter is selected as prime with the other transmitter in standby configuration. A station guardian system automatically switches from the prime to the standby transmitter if a condition of high reflected power or low incident power occurs.

During missile flight, the steerable directional antenna is normally operated in the automatic slaving mode from point data provided by the real-time metric data system. In the case of data loss, the antenna can be directed to predetermined azimuth and elevation settings by the site operator.
Figure 7-1 Command Control Transmitter Sites at WSMC.
Figure 7-2 Launch Trajectory Area Coverage at WSMC.
Figure 7-3 CCT Site 1 at NAFB.
Figure 7-4 CCT Site 3 at SVAFB.
Figure 7-5 CCT Site 4 at Pillar Point.
Figure 7-6 CCT Site 6 at Laguna Peak, Point Mugu.
During missile flight, the CCT sites are centrally controlled and monitored from the Missile Flight Control Center (MFCC) at Vandenberg AFB by a digitized communication system linking the MFCC with the CCT sites. In central control, only the Missile Flight Control Officer (MFCO) can initiate the radiation of the flight termination control functions. In the case of a complete failure of the digitized communication link, the site operator can assume control of the site and can initiate the transmission of flight termination control functions when directed by the MFCO on voice direct communication.

Site-to-site switchover is conducted manually by the Command Transmitter Controller (CTC). By operational procedures, planned switchover does not result in a carrier off-the-air time greater than 55 ms or carrier overlap greater than 15 ms. A summary of site characteristics is shown in Table 7-1.

A real-time recorder is provided in the MFCC at the Command Transmitter Controller Console (CTCC). All the events relative to operation and configuration of the system are recorded.

The system is designed so that no single point failure will cause the transmission of an undesired flight termination command control function or prevent the MFCO from initiating the transmission of a flight termination command control function.

The probability of mission accomplishment over a 4-hour operating period (launch countdown and missile flight) is greater than 0.999. The probability of transmitting an undesired command within a 1-hour operating period (launch countdown and missile flight) is less than 1×10^{-5}. Any data links between the MFCC and the sites will in themselves have a probability of less than 1×10^{-7} in misinterpreting an undesired command.
Table 7-1

COMMAND CONTROL TRANSMITTER SYSTEM SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>SITE 1</th>
<th>SITE 3</th>
<th>SITE 4</th>
<th>SITE 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE CODE</td>
<td>038301</td>
<td>028302</td>
<td>218301</td>
<td>008302</td>
</tr>
<tr>
<td>SITE LOCATION</td>
<td>North VAFB</td>
<td>South VAFB</td>
<td>Pillar Point AFS</td>
<td>NAS Point Mugu</td>
</tr>
<tr>
<td>GEODETC COORDINATES (WGS 72)</td>
<td>34°46'12.2" N</td>
<td>34°35'27.1" N</td>
<td>37°29'48.8" N</td>
<td>34°6'26.9" N</td>
</tr>
<tr>
<td></td>
<td>120°30'22.8" W</td>
<td>120°36'43.9" W</td>
<td>122°29'55.9" W</td>
<td>119°3'57.1" W</td>
</tr>
<tr>
<td>ELEVATION</td>
<td>890 ft m.s.l.</td>
<td>1225 ft m.s.l.</td>
<td>177 ft m.s.l.</td>
<td>1402 ft m.s.l.</td>
</tr>
<tr>
<td>POWER</td>
<td>10 kW</td>
<td>10 kW</td>
<td>10 kW</td>
<td>10 kW</td>
</tr>
<tr>
<td>OMNI ANTENNA</td>
<td>Andrew Model 63608</td>
<td>Andrew Model 63608</td>
<td>Datron</td>
<td>Datron</td>
</tr>
<tr>
<td>OMNI ANTENNA GAIN</td>
<td>2.0 dBi</td>
<td>2.0 dBi</td>
<td>Datron</td>
<td>Datron</td>
</tr>
<tr>
<td>DIRECTIONAL ANTENNA</td>
<td>Datron</td>
<td>Steerable</td>
<td>Steerable</td>
<td>Steerable</td>
</tr>
<tr>
<td></td>
<td>Parablic</td>
<td>Parablic</td>
<td>Parablic</td>
<td>Parablic</td>
</tr>
<tr>
<td>DIRECTIONAL ANTENNA GAIN</td>
<td>23.0 dBi</td>
<td>23.0 dBi</td>
<td>23.0 dBi</td>
<td>23.0 dBi</td>
</tr>
<tr>
<td>DIRECTIONAL ANTENNA BEAMWIDTH</td>
<td>10° @ -3 dB</td>
<td>10° @ -3 dB</td>
<td>10° @ -3 dB</td>
<td>10° @ -3 dB</td>
</tr>
</tbody>
</table>

AUTHORIZED OPERATING FREQUENCIES: 416.5 MHz Primary, 406.5 MHz Secondary

2. The CCT antennas radiate LHCP waves whose sense is left handed according to the IEEE definition of sense. (Reference: IEEE Test Procedure for Antennas, Number 149, January 1965, p. 7.)
3. Coordinates for CCT Site 6B (008303) are as follows: 34°6'27.11" N; 119°3'57.0" W. Elevation 1424 ft m.s.l. All other data identical to CCT Site 6A.
7.1 CCT Sites 1, 3, 4 and 6 Descriptions (See table 7-1)

The CCT sites can be operated in central control from the MFCC or in site control. Local site control cannot be taken unless remote central control has been released.

A total of nine command functions can be ordered by switch closure in either the central or site control mode. Two automatic command functions can be ordered by the range safety real-time computer. Various scenarios can be preprogrammed into site logic for automatic time-based sequencing and/or multiple function transmissions.

Primary-to-secondary transmitter switchover occurs whenever a specific preset incident or reflected power condition occurs. Carrier off-the-air fail-over time is less than 55 ms.

Station location and coverage is described in paragraph 7.0. Reliability is specified at the system level only and is also described in paragraph 7.0.

The CCT sites have only electrical/electronic control interfaces with the MFCC. Site 6 is configured as two individual transmitters with separate power sources (diesel generators) and antenna systems.
7.1.1 Encoder

7.1.1.1 Description - FEC Model SK11482-AGI audio frequency coder at sites 1 and 3; Rockland 51 systems tone generator at sites 4 and 6.

7.1.1.2 Available Tones

1 through 6 @ sites 1 and 3, 1 Hz to 3 MHz @ sites 4 and 6.

7.1.1.3 Number of Simultaneous Tones

2

7.1.1.4 Tone Frequency Tolerance

±2 Hz

7.1.1.5 Distortion

<0.2%

7.1.1.6 Composite Signal Amplitude Stability

±10%

7.1.1.7 Tone Off Level

0

7.1.1.8 Order Repetition Rates

10 kHz

7.1.1.9 Turn On Delay Time (to 90-Percent Level)

15 ms @ sites 1 and 3,
2 µs @ sites 4 and 6.

7.1.1.10 Turn On Jitter at Maximum Repetition Rate

10 µs

7.1.1.11 Turn Off Delay Time

2 µs

7.1.1.12 Composite Transient Output (Switching)

None

7.1.1.13 Command Function Tone Balance

1 dB

7.1.2 RF Source

7.1.2.1 Description - HP 8660A at sites 1 and 3 fed into Aydin 1650A1 amp, 3 DBM Inc. Model 504-429/10W-36 GP at sites 4 and 6.

7.1.2.2 Frequency Range

406.5-428.5 MHz

7.1.2.3 Assigned Operating Frequency

416.5/406.5 MHz
7.1.2.4 Frequency Tolerance (Accuracy and Stability) ±0.00004%
7.1.2.5 Deviation Linearity <10%
7.1.2.6 Maximum Modulated Deviation 120 kHz peak
7.1.2.7 Maximum Residual Modulation -135 dBc
7.1.2.8 Maximum Driver Output 10 W

7.1.3 RF Final
7.1.3.1 Description - Aydin Model 1206A, Spec DS-25791-ROIT-00041
7.1.3.2 Power Output 10 kW
7.1.3.3 Harmonic and Spurious Outputs -35 dBc, -75 dBc
7.1.3.4 Bandwidth 3 MHz
7.1.3.5 RF Leakage in Standby Mode <100 dBc

7.1.4 Antennas
7.1.4.1 Fixed
7.1.4.1.1 Description - Andrews 63608
7.1.4.1.2 Polarization Left circular
7.1.4.1.3 Gain 2 dBi
7.1.4.1.4 Beamwidth Omni
7.1.4.1.5 Power Rating 15 kW
7.1.4.1.6 Impedance 500Ω
7.1.4.1.7 Frequency Range 400-427 MHz
7.1.4.1.8 Voltage Standing Wave Ratio (VSWR) 1.5:1

7.1.4.2 Steerable
7.1.4.2.1 Description - Tec West Directional PF-15-12 at sites 1, 3 and 4; Andrews Model 60015-40 at site 6
7.1.4.2.2 Polarization Left circular
7.1.4.2.3 Gain 23 dBi
7.1.4.2.4 Beamwidth 10° @ 3 dB
7.1.4.2.5 Sidelobes -12 dB
7.1.4.2.6 Power Rating 15 kW
7.1.4.2.7 Type Feed Helix
7.1.4.2.8 Impedance 50Ω
7.1.4.2.9 Frequency Range 400-427 MHz
7.1.4.2.10 VSWR 1.5:1 max
7.1.4.2.11 Type Mount, Mfr, Model Canoga 8417 pedestal
7.1.4.2.12 Maximum Slew Rates, Azimuth and Elevation 12°/s
7.1.4.2.13 Positioning Lag 2°
7.1.4.2.14 Pointing Accuracy 0.1°

7.1.5 Monitor Receiver

7.1.5.1 Description - York Model D-1062 at sites 1 and 3, FEC Model SK12901-AG-1 at sites 4 and 6.

7.1.5.2 Frequency Range 406.5-427.5 MHz
7.1.5.3 Tuning Method Crystal
7.1.5.4 Modulated Band Pass (3 dB) ±0.5 MHz
7.1.5.5 Antenna Type and Characteristics Omni
7.1.5.6 RF Sensitivity -10 dBm
7.1.5.7 Audio Output Level 1.7 V @ 120 kHz
7.1.5.8 Audio Output Bandwidth 150 kHz

7-13
7.1.6 Decoder

7.1.6.1 Description - Part of monitor receivers

7.1.6.2 Number of Channels

7.1.6.3 Channel Bandwidth

7.1.6.4 Deviation/Input Range

7.1.6.5 Command Output Response Time

7.1.7 Recording System

7.1.7.1 Description - G&S Systems Model GS-SD-05, two-channel synchro-to-digital antenna position printers; FEC Model SK12924, magnetic tape recorders/printer data system.

The two-channel synchro-to-digital antenna position printers which exist at each site provide the following data:

- Azimuth angle
- Elevation angle
- Time of day
- Missile liftoff indication

The magnetic tape recorder/printer data system at each site provides the following data:

- Detailed system functioning
- Performance
- Status

7.1.7.2 The MFTCGS controller console, located in the Range Operations Building, is configured with stripchart recorders depicting the following events:

- Standard operational mode
- ICRS operational mode
- CCT sites 1-6 ON/OFF
- CCT sites 1 and 3 RF power
- Computer enable and armed
- ARM function ordered by computer
- Optional command ordered by computer
- IRIG timing trace
- Missile liftoff

- Carrier radiated
- Check channel ordered
- Check channel radiated
- Optional command ordered
- Optional command radiated
- ARM (engine shutdown) ordered
- ARM (engine shutdown) radiated
- DESTRUCT ordered
- DESTRUCT radiated
Chapter 8

EASTERN SPACE AND MISSILE CENTER (ESMC)
PATRICK AFB, FLORIDA

8.0 Eastern Space and Missile Center (ESMC) System

The ESMC command/control system consists of a network of six radio transmitting systems at the following sites: Cape Canaveral Air Force Station (CCAFS), Grand Bahama Island (GBI), Antigua, onboard the USNS Redstone, and NASA's Bermuda and Wallops Island stations (figure 8-1). The land-based sites are linked to the CCAFS Range Safety Officer (RSO) console located in the Range Control Center (RCC) for center point control operation. For northerly launch azimuths, the NASA Bermuda and Wallops Island stations are used by range safety when additional coverage is needed.

The command destruct system on the USNS Redstone provides the capability for mobile command transmitters. This system primarily supports the USN Fleet Ballistic Missile Programs in conjunction with the Launch Area Support Ship (LASS) from which the request for flight termination is made. In addition, there is a mobile van with a command destruct capability located at Ponce DeLeon Inlet, just south of Daytona Beach, Fla. This system is controlled from the RCC and is used primarily because of flame attenuation problems from the solid rocket boosters of the Space Shuttle. The ESMC command/control system is capable of coverage of easterly launch azimuths from launch to burnout, or orbital insertion of space vehicles.

The ESMC command/control system is used almost exclusively for range safety purposes. Any range-user functions such as the "safe" command will be sent upon user request, but functions such as missile control, etc., are not encouraged and will be approved only on a case-by-case basis.

The configuration for the command remoting system is shown in figure 8-2. The Central Command Message Encoder/Verifier (Central CME/V) accepts switch closures from the RSO console or from a console for the Command System Controller (CSC), which is the checkout console in the RCC. It outputs the corresponding message or messages from memory for serial data transfer to Site Command Message Encoder/Verifiers (Site CME/Vs) located at the command transmitting sites. Similarly, responses from the command transmitting sites and status information is remoted from the Site CME/V to the Central CME/V for display to the RSO and/or the CSC. The CSC console provides for programming the command system for use as required by the RSO mission needs. The Site CME/V interfaces with the Digital Command Terminals (DCT) for generation of range safety commands and with the transmitting subsystem.
Figure 8-2 Command Remoting System Configuration.
Operational redundancy in remotely controlling a downrange site is provided, that is, the local RSO console at a downrange station can provide control of the local command system. Encoder/decoder links are available for this purpose. These links can be inhibited unless a failure should occur in the subcable channel or Site CME/V.

The communication between the Central CME/V and the Site CME/Vs is via 2.4 kb/s modems. The status data from the Site CME/Vs to the Central CME/V use multiplexed features of the modems with a selectable data rate of either 600 b/s or 1200 b/s from each Site CME/V. The encoder/decoders contain modulators and detectors necessary for operation at 600 b/s over land-line circuits.

The functional capability of the remoting system is as follows:

<table>
<thead>
<tr>
<th>Central to Site CME/V Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Requests</td>
</tr>
<tr>
<td>System Control Functions</td>
</tr>
<tr>
<td>Tone Key Requests</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site to Central CME/V Traffic (Per Site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Confirmation</td>
</tr>
<tr>
<td>System Control Confirmation</td>
</tr>
<tr>
<td>Tone Key Confirmation</td>
</tr>
<tr>
<td>Command System Status</td>
</tr>
<tr>
<td>Other System Status</td>
</tr>
</tbody>
</table>

This provides a system which can be programmed to accommodate various operational scenarios with a minimum of hardware changes. For example, a command request activation which must be precisely controlled in time could involve the transmission of a "time-to-activate instruction" to a Site CME/V.

A command request (ARM, DESTRUCT, etc.) effected by the Cape RSO or during checkout from the CSC console causes the appropriate message to be transmitted to the Site CME/V which then activates the corresponding request to the DCT. The transmitted message contains both a primary and verify word which separately activates the primary and verify command request lines of the DCT. Since redundant memory within the DCT is thusly operated, fail-safe command generation is effected from the Central CME/V.

A message containing a particular instruction from Central is repeated three times after which the next ordered priority instruction can be handled. Upon receipt of two of the three messages at the Site...
CME/V, the instruction is acted upon and a verification message is transmitted to Central. If this verification is not received within an allowable time, the message is repeated three times. The site acceptance of a critical instruction (command request, carrier request, etc.) is based upon receipt of two out of three messages. The acceptance rate of messages is maximized by the use of error detection/correction techniques.

The command system status information is periodically remoted to Central. Also any change in the status of a critical confirmation such as command or carrier confirm is transmitted on an interrupt basis.

Carrier handover from one site to another is controlled by the Central CME/V based upon time-after-first-motion, elevation angle of missile to each site and, perhaps, telemetered received signal strength (or slant range). The RSO has override control of the various carriers from the console.

Since the carriers are under firmware control, various modes are employed such as the following:

Mode 1 - To assure continuous capture of a single vehicle, CARRIER OFF instructions are not transmitted to other sites after a different site has been ordered ON until confirmation that its carrier is radiating.

Mode 2 - To provide rapid switching of carriers (might be required for multiple in-flight vehicles), the Central CME/V can control carriers by transmitting the CARRIER ON message (or command request message) to the desired site and a CARRIER OFF message to that site which is known by the latest status report to be ON.

Since the Central CME/V has the capability of making decisions based upon information from the Central Computer Complex and stored criteria for the selection of sites, an automatic operational mode can be employed. A command request is addressed to the selected site upon a console activation. The addressed command request effects automatic turn ON of that site (if not already on) using Carrier Control Mode 2. The Central CME/V simultaneously initiates a CARRIER OFF instruction to any other site known by the periodic status-reporting feature to have its CARRIER ON. Alternately, all sites could interpret a command request addressed to a different site as a CARRIER OFF instruction.
The command/control antenna system is as follows:

- **CCAFS** - 2 Canoga (steerable)
 - 1 Melpar high-power omni
 - 1 Gabriel low-power omni

- **GBI** - 2 ESCO (steerable)

- **Antigua** - 1 ESCO (steerable)
 - 1 TEMEC dish (steerable)

- **USNS Redstone** - 2 high-power helicon (fixed)

- **Bermuda** - 2 Canoga (steerable)

- **Wallops Island** - 2 Canoga (steerable)

- **Van** - 1 Helix high-power (fixed)

Command designate units are used to slave the steerable antennas to the EFG (Earth Centered Coordinate System) designate circuits. The command designate unit receives the Range Standard 2400 b/s EFG data from the Central Computer Complex and provides elevation and azimuth synchro signals for pointing one or two antennas at a single object. It also accepts EFG data containing two frames per second for four objects. A control/status interface is included to permit real-time assignment of a target to each antenna via the site remoting terminal. Selection can also be made by the operator. In addition, an interface is provided to externally control the antennas by digital data input upon malfunction of the normal designate operation.

A monitoring subsystem is used primarily to provide a record of each ESMC command system performance. This capability also provides a real-time monitor of system performance and display to the operator. There is one monitoring terminal at each command site. The data resulting from system monitoring is logged onto the IBM compatible digital magnetic tape. The monitoring of interfaces and logging onto magnetic tape is controlled by a microcomputer. The capability of the monitoring and recording subsystem is listed below:

Range Timing

Synchro Data

- Antenna 1 Azimuth
- Antenna 1 Elevation
- Antenna 2 Azimuth
- Antenna 2 Elevation
Analog Data

Antenna 1 Radiated Power Level
Antenna 2 Radiated Power Level
Transmitter Incident Power Level
Transmitter Reflected Power Level

Events/Status

Ready
CARRIER ON
W1 Confirm (DESTRUCT Transmitted)
W2 Confirm (ARM Transmitted)
W3 Confirm (SAFE Transmitted)
W4 Confirm
X1 Confirm
X2 Confirm
X3 Confirm
X4 Confirm
Y1 Confirm
Y2 Confirm
Y3 Confirm
Y4 Confirm
8 IRIG Digital Command Terminal Tones
Antenna 1 or 2 Selected
DRS Test/Operate

All downrange sites, including NASA Bermuda and Wallops Island, are essentially the same as those which pertain to the command remoting system. There are only minor differences in antennas and RF exciters used at the different sites. In addition to the normal command destruct system, each site is equipped with redundant digital range safety equipment which interfaces the normal system with the site transmitting subsystem for use with the Space Transportation System.

Command Control Sites Summary:

(1) Station 1, Cape Canaveral AFS, Fla., is located at 28°26'21.3" x 80°35'54.6"; elevation - sea level; power output operating levels - 600 W and 8 kW.

(2) Station 3, Grand Bahama Island, is located at 26°37'4.4" x 78°21'36.9"; elevation - sea level; power output operating level - 8 kW.

(3) Station 91, Antigua, is located at 17°8'11.4" x 61°46'29.6"; elevation - sea level; power output operating level - 8 kW.
(4) Station 67, NASA Bermuda, is located at 32°20'52.8" x
64°39'12.6"; elevation - sea level; power output operating level -
8 kW.

(5) Station 86, NASA Wallops Island, Va., is located at
37°51'59.3" x 75°30'17.9"; elevation - sea level; power output
operating level - 600 W.
8.1 Command Control Transmitter Sites Descriptions

All CCT sites can be operated from the RSO console in the RCC. Although local site control at the downrange sites is inhibited during normal launch operations, local control can be restored in the event of loss of control links from the RCC. Transmitter switchover to downrange stations is automatically preprogrammed according to expected missile trajectory. In the case of a malfunctioning launch vehicle, the programmed switchover can be interrupted and a transmitter site selected manually by the RSO.

8.1.1 Encoder

8.1.1.1 Description - ARF Products Model ASG-8, land sites, KY-171, Bermuda.

8.1.1.2 Available Tones 20
8.1.1.3 Number of Simultaneous Tones 6
8.1.1.4 Tone Frequency Tolerance ±0.1%
8.1.1.5 Distortion 1% max
8.1.1.6 Composite Signal Amplitude Stability ±5% max
8.1.1.7 Turn On Delay Time (to 90-Percent Level) 0.5 ms
8.1.1.8 Turn On Jitter at Maximum Repetition Rate ±50 μs
8.1.1.9 Turn Off Delay Time 0.5 ms

8.1.2 RF Source

8.1.2.1 Description - Reaction Instruments, Inc., Model 6031 at Cape and Bermuda sites; Collins 52Q1-TH at GBI and Antigua.

8.1.2.2 Frequency Range 406-450 MHz
8.1.2.3 Assigned Operating Frequency 416.5 MHz
8.1.2.4 Frequency Tolerance (Accuracy and Stability) ±0.005%
8.1.2.5 Deviation Linearity 5%
8.1.2.6 Maximum Modulated Deviation ±300 kHz peak
8.1.2.7 Maximum Residual Modulation
3 kHz peak

8.1.2.8 Maximum Total Distortion (at Maximum Deviation)
5% max

8.1.3 RF Final

8.1.3.1 Description - Collins 240 D-2 at all ESMC sites, MCL Model 10270 also used at Cape land sites.

8.1.3.2 Power Output
10 kW max

8.1.3.3 Harmonic and Spurious Outputs
<-60 dB

8.1.3.4 Bandwidth
3 MHz

8.1.4 Antennas

8.1.4.1 Fixed

8.1.4.1.1 Description - See paragraph 8.0.

8.1.4.1.2 Polarization
Left circular

8.1.4.1.3 Gain
6-10 dB

8.1.4.1.4 Beamwidth
15°-45°

8.1.4.1.5 Type Feed
Coaxial

8.1.4.1.6 Impedance
50Ω

8.1.4.1.7 Frequency Range
406-450 MHz

8.1.4.1.8 Voltage Standing Wave Ratio (VSWR)
<1.5:1

8.1.4.2 Steerable

8.1.4.2.1 Description - See paragraph 8.0.

8.1.4.2.2 Polarization
Left circular

8.1.4.2.3 Gain
15-23 dB

8.1.4.2.4 Beamwidth
8°-20°

8.1.4.2.5 Power Rating
10 kW
8.1.4.2.6 Type Feed
Coaxial

8.1.4.2.7 Impedance
50Ω

8.1.4.2.8 Frequency Range
406-450 MHz

8.1.4.2.9 VSWR
<1.5:1

8.1.4.2.10 Maximum Slew Rates, Azimuth and Elevation
25° AZ
12° EL

8.1.5 Monitor Receiver

8.1.5.1 Description - Collins R-669

8.1.5.2 Frequency Range
406-450 MHz

8.1.5.3 Tuning Method
Step incremental

8.1.5.4 Modulated Band Pass (3 dB)
±1 MHz

8.1.5.5 Antenna Type and Characteristics
RF probe

8.1.5.6 RF Sensitivity
10 kV

8.1.5.7 Audio Output Level
5 V p-p max

8.1.5.8 Audio Output Bandwidth
5-75 kHz

8.1.6 Decoder

8.1.6.1 Description - KY-172 at Bermuda, AFF-15 at other sites.

8.1.6.2 Number of Channels
20

8.1.6.3 Receiver Coupled Threshold Sensitivity
0.25 V rms

8.1.6.4 Channel Bandwidth
±2.5%

8.1.6.5 Deviation/Input Range
30-300 kHz

8.1.6.6 Adjacent Channel Rejection
>40 dB

8.1.6.7 Command Output Response Time
2.0 ms max

8.1.6.8 Response Jitter
±0.1 ms
8.1.7 Recording System

8.1.7.1 Description - Wango Model 11 magnetic tape unit with a DEC LSI-11 controller

8.1.7.2 Functions Recorded:

- Tones ordered remotely
- Tones transmitted
- Transmitter radiating
- Active antenna
- Power level
- Antenna position
- Transmitter fault
Chapter 9

NASA WALLOPS FLIGHT CENTER (WFC)
WALLOPS ISLAND, VIRGINIA

9.0 Wallops Flight Center (WFC) System

The command/destruct system at Wallops Station (figure 9-1) provides ground control of certain rocket and payload functions for flight safety and/or command purposes. The range user can employ these systems to command payload functions as necessary, within range limitations. Each system consists of two Aleph transmitters with Antlab quad-helix antennas. The RF carrier is frequency modulated by certain preselected tones that correspond to particular functions that are to be performed on the rocket or payload. The transmitter signals are monitored at the transmitter by a self-contained RF monitor and audio decoder combination at the frequency monitoring and interference control site and at the receiver site.

The command/destruct antenna subsystem used at the Transmitter Building and the antenna used with the mobile command/destruct system are identical quad-helix arrays mounted on elevation-over-azimuth pedestals. The antennas can be pointed by local or remote control by using synchro information received from a remote source such as radar. The antennas are designed for continuous rotation in azimuth and 190° in elevation. They are left hand circular polarized with an 18-dB gain and a 20° beamwidth.

The mainland site is located at 37.8665° latitude, 75.5050° longitude (figure 9-2), with an elevation of 48.0325 ft m.s.l.
Figure 9-1. Block Diagram of Command/Destruct System at Wallops Station.
Figure 9-2 Wallops Flight Center.

Figure 9-3 Wallops Flight Center.

Scale of Miles

0 5 10 20 30 40

AIRPORTS
INTERSTATE HIGHWAYS
U.S. HIGHWAYS
STATE HIGHWAYS
9.1 Mainland System

The Wallops mainland command/destruct system is located at the Transmitter Building, U-55, on Wallops mainland. This system consists of two subsystems connected in a fail-over arrangement. If the primary subsystem fails, or if the RF power output falls below a predetermined level, the B+ power is applied to the redundant subsystem. The redundant subsystem then assumes control of the command/destruct functions. Transmitter modulation can be controlled locally or by remote control from the Range Control Center in Building N-159 by Frequency Shift Keying (FSK). The transmitter and antenna pedestal operate from commercial a.c. power with backup generator power supplied to the redundant transmitter. The primary antenna is slaved by means of the Milgo data acquisition bus to the radar providing the most accurate position information on the rocket/payload being tracked. The redundant antenna is positioned remotely using predetermined angle versus time information. The Range Safety Officer (RSO), by the use of an FSK system, can remotely control certain functions of the rocket or payload such as the arming and destruction of a rocket, or specific rocket or payload mission commands that may be required.

The mobile command/destruct system consists of two AN/FRW-2A radio transmitting sets and associated equipment mounted in a mobile unit. The equipment is connected in a fail-over arrangement and can be used downrange for prime operation or as a backup system in support of the Wallops mainland system. The transmitters share one antenna identical to the mainland units which is coaxially switched to the active transmitter. A small, manually pointed, crossed-dipole antenna is used as a spare. Transmitter modulation can be controlled locally or remotely from the Range Control Center, with hardwire interface, using an FSK system.

9.1.1 Encoder

9.1.1.1 Description - Aleph, Inc.

9.1.1.2 Available Tones 20

9.1.1.3 Number of Simultaneous Tones 6

9.1.1.4 Tone Frequency Tolerance 0.03%

9.1.1.5 Distortion 1%

9.1.1.6 Composite Signal Amplitude Stability 10%

9.1.1.7 Tones Off Level 1% of normal output
9.1.1.8 Turn On Delay Time (to 90-Percent Level) <1 ms
9.1.1.9 Turn Off Delay Time <1 ms
9.1.1.10 Command Function Tone Balance 10%

9.1.2 RF Source
9.1.2.1 Description - Aleph, Inc.
9.1.2.2 Frequency Range 406-549 MHz
9.1.2.3 Assigned Operating Frequency 412/416.5 MHz
9.1.2.4 Frequency Tolerance (Accuracy and Stability) 0.0005%
9.1.2.5 Deviation Linearity 0-300 kHz
9.1.2.6 Maximum Modulated Deviation ±300 kHz
9.1.2.7 Maximum Residual Modulation ±2 kHz
9.1.2.8 Maximum Total Distortion (at Maximum Deviation) <2%
9.1.2.9 Maximum Driver Output 50 W

9.1.3 RF Final
9.1.3.1 Description - Aleph, Inc.
9.1.3.2 Power Output 1 kW
9.1.3.3 Harmonic and Spurious Output 70 dB below
9.1.3.4 Bandwidth 3 MHz nominal
9.1.3.5 RF Leakage in Standby Mode Conforms to MIL-STD-461

9.1.4 Antennas
9.1.4.1 Fixed
9.1.4.1.1 Description - None available.
9.1.4.2 Steerable
9.1.4.2.1 Description - Antlab
9.1.4.2.2 Polarization
 Left circular
9.1.4.2.3 Gain
 18 dB
9.1.4.2.4 Beamwidth
 20°
9.1.4.2.5 Power Rating
 10 kW
9.1.4.2.6 Type Feed
 Coaxial-117
9.1.4.2.7 Impedance
 50Ω
9.1.4.2.8 Frequency Range
 400-550 MHz
9.1.4.2.9 Voltage Standing Wave Ratio (VSWR)
 <1.1:1
9.1.4.2.10 Type Mount, Mfr, Model
 Antlab
9.1.4.2.11 Maximum Slew Rates, Aximuth and Elevation
 25°/s
9.1.4.2.12 Pointing Accuracy
 0.25°

9.1.5 Monitor Receiver
9.1.5.1 Description - Various command receivers
9.1.5.2 Frequency Range
 400-550 MHz
9.1.5.3 RF Sensitivity
 3μV

9.1.6 Decoder
9.1.6.1 Description
9.1.6.2 Number of Channels
 20
9.1.6.3 Receiver Coupled Threshold Sensitivity
 -30 dBm
9.1.6.4 Deviation/Input Range
 ±10-300 kHz
9.1.6.5 Adjacent Channel Rejection
 60 dB
9.1.6.6 Signal/Noise Margin
 4.0 dB/3μV
9.1.7 Recording System

9.1.7.1 Description

9.1.7.2 Functions Recorded:

- Tones ordered locally
- Transmitter radiating
- Tones ordered remotely
- Power level
- Tones transmitted
- Transmitter fault
- Voice communications
- Switchover time
Chapter 10
WHITE SANDS MISSILE RANGE (WSMR)
WHITE SANDS MISSILE RANGE, NEW MEXICO

10.0 White Sands Missile Range (WSMR) System

WSMR has six command control transmitter systems, three of which are fixed stations located as shown in figure 10-1. The other three systems are in mobile vans and can be utilized throughout the range as required. The three fixed sites and two of the mobile vans are equipped with Aleph, Inc. Command Transmitter Systems (CTs). The other mobile van is equipped with a Microdot transmitter system. All transmitter sites employ log spiral UHF antennas manufactured by Tecom Industries. All antennas are fixed and provide hemispherical omnidirectional coverage throughout the range extension areas and other off-range sites (McGregor, Utah Launch Complex, etc.).

During missile/target flight tests, the transmitter stations are controlled and monitored by a Missile Flight Test Safety Manager (MFTSM) from either of two control sites. These control sites are Building 300 at WSMR and King 1 at Holloman AFB. A Lynch communication system links the control site(s) with the transmitter stations (figure 10-2) for carrier and transmission of any required flight termination functions. This is a solid-state, frequency-shift, narrow-band communication system designed for transmission of digital data and telegraph information. In case of link problems or failure, the site operator can assume control and initiate transmission of flight termination control functions under the direction of the MFTSM. A block diagram of a typical system is shown in figure 10-3.

All transmitter stations are designed with an emergency a.c. power source, redundant transmitters and antennas, switching units, and associated equipment which minimize failures that will cause a mission to abort, transmit undesired flight termination commands or prevent the transmission of such signals. In addition, each station is equipped with a 20-channel communications receiver and recorder for monitoring purposes. There is also a receiver located at Salinas Peak that is capable of monitoring off-the-air tone transmissions from any of the on-range transmitter stations. These transmissions can then be remoted for evaluation to any of the control sites through a Lynch communication system.
Figure 10-1 Command Control Transmitter Sites at WSMR.
Site geodetics are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C" Station</td>
<td>32°21'21"</td>
<td>106°22'30"</td>
<td>4015 ft m.s.l.</td>
</tr>
<tr>
<td>Clark Site</td>
<td>32°52'27"</td>
<td>106°07'01"</td>
<td>4094 ft m.s.l.</td>
</tr>
<tr>
<td>Salinas Peak</td>
<td>33°17'55"</td>
<td>106°31'51"</td>
<td>8958 ft m.s.l.</td>
</tr>
<tr>
<td>Mobile Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Oscura Peak (NOP)</td>
<td>33°45'10"</td>
<td>106°22'19"</td>
<td>7998 ft m.s.l.</td>
</tr>
<tr>
<td>Red Butte</td>
<td>33°49'33"</td>
<td>106°39'54"</td>
<td>5172 ft m.s.l.</td>
</tr>
<tr>
<td>Mobile Off-Range Sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green River, UT</td>
<td>38°58'</td>
<td>110°06'</td>
<td>4340 ft m.s.l.</td>
</tr>
<tr>
<td>Blanding, UT</td>
<td>37°32'48"</td>
<td>109°28'32"</td>
<td>5775 ft m.s.l.</td>
</tr>
<tr>
<td>Fort Wingate, NM</td>
<td>35°23'40"</td>
<td>108°35'29"</td>
<td>6468 ft m.s.l.</td>
</tr>
</tbody>
</table>
10.1 Encoder

10.1.1 Description - Microdot Model 2702 solid state

10.1.2 Available Tones 20
10.1.3 Number of Simultaneous Tones 6
10.1.4 Tone Frequency Tolerance 0.01%
10.1.5 Distortion 1%
10.1.6 Composite Signal Amplitude Stability ±10%
10.1.7 Turn On Delay Time (to 90-Percent Level) >1 ms
10.1.8 Turn Off Delay Time >1 ms
10.1.9 Command Function Tone Balance 0-15 V

10.2 RF Source

10.2.1 Description - Microdot Model 2435B

10.2.2 Frequency Range 400-550 MHz
10.2.3 Assigned Operating Frequency 409 MHz
10.2.4 Frequency Tolerance (Accuracy and Stability) ±0.0005%, ±0.001%/h
10.2.5 Deviation Linearity 1%
10.2.6 Maximum Modulated Deviation ±300 kHz
10.2.7 Maximum Total Distortion (at Maximum Deviation) 2%
10.2.8 Maximum Driver Output 100 W

10.3 RF Final

10.3.1 Description - Microdot

10.3.2 Power Output 1 kW
10.4 Antennas

10.4.1 Fixed

10.4.1.1 Description - Tecom, Industries log spiral

10.4.1.2 Polarization Left circular

10.4.1.3 Gain 0 dB avg/hemis

10.4.1.4 Beamwidth Hemispherical

10.4.1.5 Power Rating 1 kW

10.4.1.6 Type Feed N-female

10.4.1.7 Impedance 50Ω

10.4.1.8 Frequency Range 406-550 MHz

10.4.1.9 Voltage Standing Wave Ratio (VSWR) 1.75:1

10.5 Monitor Receiver

10.5.1 Description - WSMR-fabricated monitor carrier and first 13 IRIG tones

10.5.2 Frequency Range 409 MHz

10.5.3 Tuning Method Fixed

10.5.4 Modulated Band Pass (3 dB) 200 kHz

10.5.5 Antenna Type and Characteristics Dipole

10.5.6 RF Sensitivity 1μV

10.6 Decoder

10.6.1 Description - WSMR fabricated

10.6.2 Number of Channels 13

10.6.3 Receiver Coupled Threshold Sensitivity -30 dBm

10.6.4 Deviation/Input Range 10-300 kHz
10.6.5 Adjacent Channel Rejection
60 dB

10.6.6 Signal/Noise Margin
4.0 dB @ 3\mu V

10.7 Recording System

10.7.1 Description - Angus Easterling 40-channel recorder

10.7.2 Functions Recorded:
- Tones ordered locally
- Tones ordered remotely
- Tones transmitted
- Carrier control
- Liftoff
- Timing
- Switchover time
10.8 Aleph Systems

The Aleph transmitter systems are comprised of two separate transmitter units. Each unit contains five modular subassemblies mounted in a standard transmitter rack. These five subassemblies are the final amplifier, solid-state unit, encoder, control panel and high voltage power supply. Each system also contains a switching unit which is the antenna-to-dual CTS interface. It contains a coaxial relay and solid-state control circuitry to regulate two CTS units and automatically direct the RF output of the active transmitter to the antenna port. The solid-state unit contains a frequency synthesizer and is capable of providing a 50-W signal output. The final amplifier uses a tunable cavity/triode amplifier to increase the 50-W signal to the ultimate 1-kW output. Antennas and system configurations are shown in figures 10-4 and 10-5.
Figure 10-4 Antenna System (Tecom Industries, Inc.).
10.8.1 Encoder

10.8.1.1 Description - Aleph, Inc.

10.8.1.2 Available Tones 20

10.8.1.3 Number of Simultaneous Tones 6

10.8.1.4 Tone Frequency Tolerance 0.03%

10.8.1.5 Distortion 1%

10.8.1.6 Composite Signal Amplitude Stability 10%

10.8.1.7 Tone Off Level 1% of normal output

10.8.1.8 Turn On Delay Time (to 90-Percent Level) >1 ms

10.8.1.9 Turn Off Delay Time >1 ms

10.8.1.10 Command Function Tone Balance 10%

10.8.2 RF Source

10.8.2.1 Description - Aleph, Inc.

10.8.2.2 Frequency Range 406-549 MHz

10.8.2.3 Assigned Operating Frequency 409 MHz

10.8.2.4 Frequency Tolerance (Accuracy and Stability) 0.0005%

10.8.2.5 Deviation Linearity 0-300 kHz

10.8.2.6 Maximum Modulated Deviation ±300 kHz

10.8.2.7 Maximum Residual Modulation ±2 kHz rms

10.8.2.8 Maximum Total Distortion (at Maximum Deviation) 1%

10.8.2.9 Maximum Driver Output 100 W max

10.8.3 RF Final

10.8.3.1 Description - Aleph, Inc.
10.8.3.2 Power Output 1 kW
10.8.3.3 Harmonic and Spurious Output 70 dB below
10.8.3.4 Bandwidth 3 MHz nominal
10.8.3.5 RF Leakage in Standby Mode

10.8.4 Antennas
10.8.4.1 Fixed
10.8.4.1.1 Description - The antennas are hemispherical log spiral manufactured by Tecom Industries, Inc.
10.8.4.1.2 Polarization Left circular
10.8.4.1.3 Gain 0 dB avg/hemis
10.8.4.1.4 Beamwidth Hemispherical
10.8.4.1.5 Power Rating 1 kW
10.8.4.1.6 Type Feed N-female
10.8.4.1.7 Impedance 50Ω
10.8.4.1.8 Frequency Range 400-550 MHz
10.8.4.1.9 VSWR 1.75:1

10.8.5 Monitor Receiver
10.8.5.1 Description - All transmitter stations are equipped with monitoring receivers. There are also monitoring receivers at Building 300 and King 1 control sites. Salinas Peak is equipped with a Communitronic LTD Model 12-D, wideband, solid-state UHF receiver tunable within the 400-550 MHz band. This receiver is capable of remoting the transmitted IRIG tones to either Building 300 and/or King 1.
10.8.5.2 Frequency Range 400-550 MHz
10.8.5.3 Tuning Method Thumbwheel
10.8.5.4 Modulated Band Pass (3 dB) 200 kHz
10.8.5.5 Antenna Type and Characteristics Dipole
10.8.5.6 RF Sensitivity 3μV

10.8.6 Decoder - Part of Communitronics receiver
10.8.6.1 Description - See subparagraph 10.2.5.
10.8.6.2 Number of Channels 20
10.8.6.3 Receiver Coupled Threshold Sensitivity -30 dBm
10.8.6.4 Deviation/Input Range ±10-300 kHz
10.8.6.5 Adjacent Channel Rejection 60 dB
10.8.6.6 Signal/Noise Margin 4.0 dB/3μV

10.8.7 Recording System
10.8.7.1 Description - Angus Easterling 40-channel inkless stylus recorder
10.8.7.2 Functions Recorded:
Tones ordered locally
Tones ordered remotely
Tones transmitted
Switchover time - 100ms
Carrier control
Liftoff
Timing