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A LINEAR PROGRAMMING ALGORITHM FOR CURVE FITTING IN THE L_ NORM

Abstract -

The L, norm has been widely studied as a criterion for curve

fitting problems. This paper presents an algorithm to solve discrete approx-
imation problems in the L, norm. The algorithm is a special-purpose linear
programming dual method which employs a reduced basis and multiple pivots.
Results of the computational experience with a computer code version of the

algorithm are presented.
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1. Introduction and Problem Statement.

The L, norm problem, also called minimax and the Chebychev

problem, has been widely studied as a criterion for curve fitting.

This procedure mini.mizes the maximum residual, and is particularly

well suited to problems found in numerical analysis (Rabinowitz (1968)),
where a typical application arises when values are truncated to a fixad
number of decimal places; and the resulting errors due to round-off
are assumed to have an underlying uniform distribution. Of particular
interest in numerical analysis is the error between the approximation
of a function and the true function. It is desirable to place a

bound on the error, and in the absence of a priori knowledge of

what the numbers involved will be, it seems reasonable to allow for
the worst case. Then the goal is to utilize a procedure, for approx-
imating the function, which produces the minimum maximum error, hence
the minimax or L norm method (see Ralston (1965)).

Although other procedures are more popular for “"statistical
data analysis,” the L_ norm may be useful in identifying outliers
(Sposito (1976)). Stiefel {1959) developed a method called the
"exchange method" for finding L norm estimates, and he later (1960)
established the equivalence of the method to the simplex procedure.
Harter (1975) and Stiefel (1964) discuss the historical development

of the L_ norm estimation procedure, and Appa and Smith (1973) iden-

tify a number of important properties.

It is generally accepted that some form of linear programming




algorithm provides the most efficient way to determine the L, norm
estimates. The purpose of this paper is to.present a specialized
dual linear programming algorithm for obtaining a Chebychev

approximation to an overdetermined system of linear equations tor

the model C = ATg + €. The algorithm uses a reduced basis, multi-~

ple pivots, and a reduced ratio test.
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1.1 Statement of the problem
The general L_ norm problem may be characterized in the follow-
ing way. Let (ci » 857 5 A5 reees aim)’ i=1,2,...,n represent
the values observed during n repetitions of an experiment, where ¢
is a vector of observed values of the dependent variable and the a's
are the observed values of the independent variables (the predictor
variables). The objective is to determine estimates
for the parameters 8= (B], Bos «ees em) which soive the prcblem:
(1) Minimize the-value of
A = maximum{[c; - 2318y = 24p82 ~ ... = 3ipBplls
i=1,2,...,0
It i a well-known result that (1) may be expressed in a linear pro-
gramming formulation (L. P.) as follows:
(2) Minimize A

m
subject to ¢; =X < E aiij ey td, i 1,2,0..40

=1
where the optimal estimates of 8 will minimize the maximum deviation
().
In matrix notation, the constraints of (2) are
(3) c-ek_<_AT8_<_c+eA,

where e is a vector of ones and AT

is an n by m matrix.

It is assumed that AT has full column rank: that is,
rank (AT) = m. Rank deficiencies can easily be handled within the
linear programming framework (see, for instance, Ben-Israel and
Charnes (1968)), and will not be reviewed here. Each interval con-

straint may be written as two constraints which, when combined

SR s 0 AT s s ¢ 10




with the objective function, results in the following problem.

\4) Minimize A
subject to },Tﬁ +ex>C
ATB -ex<C .

The linear programming dual of (4) may be written as

(5) Maximize chr' + ¢
subject to AT +pT =0
eTn' - el =

™>0,1"<0.

Problem (5) may, of course, be solved using the traditional
simplex method, which will be discussed in the next section. This
discussion is not meant to be a complete description of linear prog-
ramming, but rather is intended to establish notation and terminology.

A short summary of the simplex method follows.

Given a basic feasible solution, correspondinc to an extreme

point of the solution space, a nonbasic variable is selected to enter

the basis. (In this paper the usual terminology will be employed, where

a variable is said to enter (or leave) the basis when, in fact, it is
the vector associated with the variable which enters (or leaves) the
basis. for the vector space R®1.) The variable selected to enter the

basis is a variable whose corresponding constraint in the dual of the

problem being discussed violates feasibility. (In the example of this

paper, for an entering variable of problem (5), the corresponding

constraint of problem (4) would be infeasible.) The variable to leave

the basis is selected by determining the minimum of a set of ratios,

uumml:|||r|.|||i|l!|i||i||1iin'|||I|i|H|il|Il||n|||||I||||x|||||I||||||||i|||'|||Iilu'uE|||(||I||||Iiul|||n|l||||||Il('!u|||||nm|||||||in.u|.mu.nmmmm‘m s
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where the leaving variable is the first variable to become in-

feasible as the value ¢f the eantering variable changes.

The new set of basic variables differs by one from the pre-
ceeding set, and a new extreme point (*gnoring degeneracy) in the
solution space is represented by the basis. Since a finite number
of extreme points exist in the solution space, and an iteration as
described above moves from one extreme point to an adjacent (im-
proving) extreme point, the algorithm will converge to an optimal
solution in a finite number of steps. The convergence difficul-
ties that arise when degeneracy is present will not be discussed
in this paper. The reader is raferred to Charnes (1952) for a
discussion of the resolution to the problem of degeneracy. In

the next section, the steps of the general algorithm described

here wili be discussed further.
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2. Generzl Linear Prograrming Approach
Prior to describing the general L. P. approach and the

specific algorithm presented here, a number of terms are defined.
(Note that the omission of a prime or double prime on a term which
usually has one or the other indicates the term applies to both the
prime and the double prime cases.)

The n constraints of (2) are denoted as "variable

interval® (VI) constraints. This terminology arises

from the fact that the bounds on the interval may be

expanded by increasing A.

n = the number of variable interval constraints in the

primal problem (2);

W ‘]‘ i Iy’li

= the m-dimensional column vector for the j-th
column of A, where A.j is the same for both
3 " .
“j and “j H
the (m+1)~dimensional augmented columr vector for

1]

v%, where a +1 is appended to the vector A.j H

= the augmented vector for ﬂg, where a -1 is

appended to the vector A.j..

W
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the index for the i-th basic variable, i = 1,2,...,

)

-ml. That is, if either n or 17; is basic at the i-th
position, k(i) = r ;

F = the (m1) by (m+1) basis for the dual problem (§) ;

b = the original right hand.side for the dual problem {5),
b= (0, 05e..,0,1)7 3

b = the (m+1)-dimensional updated right hand side of

(5), b = F'lb H

C; = an (m1)-dimensional vector of the original objec- _
tive function coefficients for the basic variables
of problem (5) 3 :

Cj = the original objective function coefficient in the :
dual problem (5) for 1::“ and for "; =

c. = the reduced cost for 1:; ;

'c'; = the reduced cost for n; :

y. j = the representation of ﬁ.*j in terms of the basis F,

so that yij = F'}R".j ;

= the representation of A%; 4 ¥%; = F R 5

= {jh; is nonbasic} , the index set for nonbasic
variables of the type 7' ;

= {jlﬂ; is nonbasic}

= NB'UNB"

= the value of the objective function;

the parameters to estimate in the primal problem (4).
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2.1 Steps of the general L. P. simplex method.

Given a basic feasible solutien, the steps of the general L. P,

simplex problem may be stated as follows.

Step 1. Compute the reduced costs for nonbasic variables; .
=i T 'IA s -
- - = L et : » f 3 !
a CJ !IJ C;F 1I\j or rrj jeNg
“c: = - -,-- -‘\:.. , £, " . : “
b. cJ cs Crr A 3 for "j JeNB

¢. select the variable to enter corresponding to
e} ey | . -—t: "n:
max {cj » €5 >0 ; cJ . cJ < 0}
jeNB
d. if 33 < 0 and 393 > 0 for all j, terminate with the

optimal soluticn;

Step 2. Compute the representation for Tes the entering variable

a. y's = F'}iig for ﬂ; entering the basis ;

b. y", F’lifs for w; entering the basis ;

(]

Step 3. Compute the updated right hand side
a. 5 = Fh
Step 4. Select as the variable to leave the basis that variable
corresponding to the minimum ratio
a. if x; is the entering variable,
nin {f’;__l b so Lietz . m
Yis §  Yis

b. if u; is the entering variable,

min{‘gg—}'i{‘“) s =12, .., m

yjs yss .
c. if the minimum occurs for j = r , T (x) Teaves the basis
Step 5. Update £, C,T;F" » k(r), NB' and NB". Go to Step 1.

gk i e
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3. Reduced Basis Structure

S This section discusses how the full tableau data may be repre-

Wy i

sented with a reduced basis. The traditional approach of the prior

section for solving the L. P. problem (5) may be altered in the follow-

ing ways. Instead of using the (m+1) by (m+1) matrix F to solve the

system of equations, an m by m basis may be isolated to perform

R A A iy

= the usual simplex steps. The primary purpose of this paper is to show
how the reduced basis may be efficiently used to solve {5).

— Throughout the paper, a distinction will be made between two

problem structures: the full structure which has (m*1) basic variables,

= this structure corresponds to the regular simplex tableau; and the re-

duced structure with m basic variables, which are the first m of the

basic variables in the full structure. Consequently, there are two

representations for a nonbasic variable. One representation is in terms

of the {m+1} basic variables of the full structure and the other is in

1ty 0 & 300 G A O 5 o o

terms of the m basic variables of the reduced structure.

g

Mo it

|

Several advantages become evident when the reduced basis

structure is used. The usual simplex steps may be performed in terms ;%

of the reduced basis, and a reduced minimum ratio procedure is pre- %%

sented which provides a simpler- ratio formulation, and which may result %—g

in fewer ratios computed than in the full tableau. Multiple pivots may §

’ be performed, where a multiple pivot allows a movement to an adjacent %
. extreme point without updating the basis. %
B

Rk
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3.1 Partitioning

The proposal is to construct a reduced basis with which to perform

S A e

“.
!||§|I !

the simplex operations. Since the basis, F, for the full structure (5)

has linearly independent columns, it may be partitioned in the follow-

ing manner:

i

B = the m by m basis for the reduced structure. The columns of
B are those columns of A corresponding to the first m basic

variables of the full structure;

G = the m-dimensional column vector of A corresponding to the

(m+1)-st basic variable in the full structure, so that

G = A-k(m+l)

D = the row vector for the (m+1)-st row of F, so that
ie 4 .
i 1 if "k(i) is basic
Di = ] ] for 1 <1i<m
-1 if «' . is basic - =
k(i)

f = the (m+1)-st element of the column Aok(m+l) associated
with the (m+1)-st basic variable in the full structure,
so that

£ - 1 if T (m+1) is basic

ce u .
-1 if T () is oasic .

Note that appending Di to B.igiVes Ry V7 1,25...,M, and

appending f to G gives A.k(m+1).

R ¢
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Then

LN
F -(D f)’

where B is.m by m, D is 1 by m, G jsmby 1, and f is a scalar.

Let F“] .-.»(bé 2) , and FF.1 =1,

Then,
EIENN
p f} \E g 0 1) .
The components of F:1 may be written as
M= (8 -6 D) N
£ = -f'OM q

el = (B - tSf'.‘f))“]‘-'ﬂ’“‘l
&1 - £ on.




3.2 Updated Right Hand Side
The right hand side values for the basic variables in the full
structure may be described as follows:

Bi = the value for 7 > 12 1,2,000,(m1)

k(i)
where b = F b,
To facilitate the partitioning, B may be separated as b= ( 5) » where

B is the first m entries of b and W is the (m+1)-st entry of b.
The gnal is to write b = (5 W)' in terms of the reduced basis B. It
has been previously noted that Flp = B, soFb=b . Then, using

the partitioning of F from the previous section, and the separation

of b into b and W ,
(8¢)(3) -(8) - »
D f W 1 *

Performing the multiplication,

Bb + GW = 0
b + i = 1.
However, G = A, . .., » so that
-1 - O} - -—
B = B A ) T 2xqmel)

where 31k(n+l) is defined to be the m-dimensional representation for

nk(m*l) in terms of the reduced basis 8. For notat1ona1.conven1-

ence, let

R

2k (m+)
To continue,

B6 = G =0,

= B 'GW = B
= -RW.

k) ' T ke

ol of
'
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Also,

DB+ fd = 1>0(-RW) +f = 1+WFf -0R) = 1.
For notational convenience, define

sumr = (f - DR) ,
so W(f-DR) = 1, W(sumr) = 1,

thus W = 1/sumr .

To sunmarize, the right hand side values for the basic variab‘es,

written in terms of the reduced basis B, are

(5) - (%)~ (Vo) ,

B N el ot £ g
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3.3 Selection of the Entering Variable
The reduced cost, E} or E} , for a variable may be described as
the change in the objective function value per unit change in the value
of the entering variable. The convergence of the simplex algorithm
depends only on selecting a variabie to enter the basis which has a
positive rate of change; however, the implementation used here selects
as the entering variable that variable which has the largest rate of
change.
The reduced costs may be computed by
§ e gy oAy
@ o= ocy - GFRY
and the largast rate of change corresponds to
™

me T ,c>0; -

-
i*C jrcycoy -

The optimality conditions are E} < 0 and c3 > 0 , for every jeNB,
in which case the algorithm terminates with the optimal solution. The
optimality conditions for this dual problem (5) are related to the
feasibility conditions for the primal problem (4) , in the sense that
selecting the entering variable with the largest rate of change in
) is tantamount to bringing feasibility to the primal constraint which

is most infeasible with the current solution.




R
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3.4 Pepresentation of the Entering Variable
: Suppose the method oF the previous section has selected T as

: the entering variable. The following introduces additional notation.

A

a . = the first m elements in the representation for Tes which

s ¥ ¢» in terms of the full basis F ;

P Yy g

v = the (m+1)-st element in the representation for T in

terms of the full basis F ;
S=1a _.= the m-dimensional representation for T in terms of the

reduced basis B, so that B']A s =3

S

Since the augmented column vectors for w; and n; s K‘S and ﬁ“s , differ

only in the last element, which is defined to be 0 , then either y's

or yfs (the representations in terms of the full basis F for n; and
wg) may be partitioned as (3.5 V)T » where the sign of g determines
which of ﬁ:s or 3{5 is being represented.

Then using the partitioned version of F, and separating y.s

into (3_s V)T , we have
(B G) a.s) =(A.s)
D f v g .

so that the element g may be defined as

I

{ 1 if @ is entering the basis
g:

-1 if n_ is entering the basis

Performing the multiplication,
. Ba.s + GV A.s
Da.s +fV = g,
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Solving the first equation for a

5 ?

2 Y - -
ag = BH{A - = 87la -8 ey
A ,1 -1
a = B A -
8 s 7B A
a_ = a,_ -3

*S 3s dk(m-l-l)v ‘

Solving the second of the equations,
Da.s + fY = ¢
D(S - RV) + fV
DS + VY(f - DR)

Recalling that W

g
g.
1/(f - OR) = 1/sumr,

then DS + V/M = g
V/M=g-DS5.
Define sums = 3 -10S,
then V/W = sums ,
V = sums/sumr .

Therefore, the representation for T in terms of the full structure

isyq= (a.S V) T, which has now been written in terms of the reduced

basis, so that

) -

RV \
sums/sumr j

o bt f a2
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4, Simplification with the reduced structure

Solving the dv  oroblem (5) using the reduced basis B offers
several advantages, wh. 1 will be discussed in this section.

The original primal problem (3) had n interval
constraints which were separated into 2n constraints, so the dual
problem (5) has 2n structural variables. However, there are n pairs
of variables, n% and n; » for which the A.j vector is identical, and
the augmented vectors of A. j° A j and ff'.' e differ only in the entry
in the (m+1)-st (last) element. To exploit this pairing, the algorithm
computes reduced costs for n-(m+1) rather than for 2n-(m+1) nonbasic
variables. For any pair 33 and n; the reduced costs
differ by 2 , since Aij and Aﬁj differ only in the sign of the "1"
in the last entry.

Additionally, selection of the variable to leave the basis may
be simplified using the reduced structure. The minimum of ratios of
the form Ri/Si will designate the leaving variable, and some of the
ratios may be ignored, since it may be anticipated they will not be
the minimum.

Also, a multiple pivot may be performed, which includes a
"pivot" where the basis is not changed in the reduced structure
(alchough in the full structure a basis change would occur). This

exchange of variables does not affect the basis and therefore re-

sults in a savings in computation.

hhatd Wowuw%mwuuwd‘m‘hwuwwwm‘Mwwquu Wad b e
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The reduced structure has m basic variables but the (m+l1)-st

=~ basic variable in the full structure, LR will be treated as a .
pseudo-basic variable in the reduced structure. For convenignce, the
variable will be denoted by T (1) 1n'the reduced structure just as

it is in the full structure. This variable will play a role in the
reduced structure as though it were basic, in the sense that a variable,
L entering the basis in the reduced structure will replace a current
basic variable if possible, and otherwise will replace M mtl) If

is replaced by T s NO basis change occurs in the reduced

e (m+1)
structure, although in the full structure an explicit basis change

b I

by

AR AR

would occur. Treating the variable = as a pseudo-basic

k(m+l)
variable in this fashion enables the same extreme point path to be

T
A

followed in the reduced structure as is followed in the full structure.
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4.1. Computing the Reduced Costs

Using the reduced structure may result in some simplification

when determining the reduced costs of the dual problem {5). To see this,

we consider the primal problem (4). In essence, the procedure will be

to compare the i-th residual from the fitted plane {for the current

values of B) to the current value of A. This is analagous to computing,

in the primal problem (4), the amount of infeasibility of a particular
constraint.
To aid in the discussion of the computation of the reduced
&osts, the following terms are defined.
E& is the reduced cost for the j-th nonbasic variable,
which may correspond to either w; or ﬂ; s

depending on the sign of the /2sidual;

_ ~T . -
= cj 8 A.j, so that hj is th?~3 th )
residual from the fitted line ag = (a.‘s7 tag, t ...

* )
then,

o
of
0

oT
‘Cj A’j'-A >

-—3 . -X-
| by

1f hj >0, Es is the reduced cost for w; 3

If hj <0 ,-33 is the reduced cost for n; :

1. suppose hj > 0, so only n% will be a candidate. This

A
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means that the point (a.jsj’alj’aZj""’amj)

on the fitted plane (which will be called the fit) is
below the observed point (cj,alj,azj,...,amj). If
hj - A > 0, then the fit is below the bound ¢y - A;
thus, the primal constraint cj - A f_ATﬁ is infeasible,
and ﬂ3 is the dual variable associated with this
constraint. If hj - X <0, the Tit isiwithin the
_interval bounds and the constraint is feasible.

2. For the case where hj =¢ - éTA.j <0, similar
reasoning suggests that Ej is the reduced cost for n;,
and the reduced cost for 7. may be ignored, as its

)]
associated constraint in (2) must be satisfied.

Then, the variable selected to enter the basis is the variable corres-
ponding to

max {c.} , for Ej >,
JeNB'MNB"
and terminate with the optimal solution if no maximum exists.
(Ir relating the reduced costs described above to those encountered in
the full tableau, the sign of E}, when Es refers to n; » Will be nega-
tive in the tableau but positive in this algorithm.)

Note that when np is basic (either n; or n;), the reduced

cost for its nonbasic compiementé;(either v; or n;) is not considered.
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This will be discussed in detail in the multiple pivot section, where
the procedure is given which determines when the complement of a basic

variable should be consiuered a candidate to enter the basis.
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4.2 Ratios Using the Reduced Basis
In this section it will be shown that utilizing the reduced .
basis may result in the computation of fewer ratios, and that the ratio ‘
test procedure of the reduced structure (computing ratios of the form
Ri/Si) is equivalent to the procedure of the full structure, in the
sense that both procedures select the same variable to leave the basis.
Prior to the discussion of the ratios, it may be helpful to
summarize some of the previous results. The following is a partial
tableau for the full structure, where the entries are written in terms

of the reduced basis.

Basis _S RHS Ratios

A CS A
LA S1-R}V -R]/sumr (-R]/sumr)/(S]-R](sums/sumr))
L SZ-RZV -Rzlsumr (-Ralsumr)/(SZ-RZ(sums/sumr))

- 3 . .
. . - L3

. . - .

" @) Su-Rp?  ~Ry/sumr (-Rm/sumr)/(Sm-Rm(sums/sumr))

™ _ sums
k(m+l) V= oo 1/sume 1/sums .

sums # 0

The i-th ratio in the reduced structure is of the form Rilsi ’

and if Rtlst is the minimum ratio in the reduced structure, then the

corresponding variable, =« s is selected to leave the basis.

k{t)
Two variables, L and vj » Will be said to be the same type of

variable if both are restricted to be > 0 (that is, =} and w%) or if

both are restricted to be < 0 (such as w; oor wg). The following function

e S o o . S i

= B e




is defined to determine the sign of a auantity &:
{ 1 ifg>0
-1 ifg<0

sign () =

The above sign function will be used to determine which of
the ratios, Rilsi » should be candidates and which may be ignored.
(For convenience, the following two statements will be considered
equivalent:

(1) a ratio will be considered a candidate...; and
(2) the variable associated with a ratio will be considered
a candidate...).
Recall the scalar f is the (m+l1)-st element in the vector

>

A (m+1) » and f is either +1 (for “'k(h+i))’ or -1 (for w.k(m+1)).

Recall also that g is the (m+1)-st element in the vector
K.s » and g is either +1 (for n:s) or -1 (for wfs) .
Then, the i-th ratio in the reduced problem, Rilsi » will be con-
sidered a candidate when

fg = -sign(R;) * sign(S;) , S;70.
If this condition fails, the associated ratio need not be consid-
ered (nor computed), since the ratio will not be the minimm. In

the computer code, an equivalent condition must be satisfied for

a ratio to be considered a candidate:

D;9 = sign (Si) .




For convenience in isolating terms, the ratio

(-Ri/sumr)!(si-Risums/sumr)
will be written as

1/((-Si/Ri(Sumr + SUmS))’ Ri f 0.
When R; = 0, the results which follow concerning the reiationship
between the reduced and full ratios follow in a trivial manner.

To show that the reduced ratio test is equivalent to the
regular ratio test in the full structure, four lemmas will be
presented. For each lemma, only che case where “ﬁ(m+1) is in the
basis and w; is the entering varijable will be considered. The
other three cases follow similar logic. Since "ﬁ(m+1) is basic,
and variables of the type n' are restricted to be nonnegative,
' - "o

then sumr > 0 , because T (1) 1/sumr > 0. Since w; is the
entering variable, only variables associated with negative ratios

Py ]
will be candidates to leave the basis. Further, because Ty (m+2)
and wg are different types, the i-th ratio in the reduced struc-
ture will be a candidate only when the signs of Ri and Si are the
same.

Lemma 1

If the i-th ratio in the reduced structure is a candidate,
and the corresponding i-th ratio in the full structure is a candi-
date, then the (m+1)-st ratio is not the minimum ratio for the full

structure. ¢

Proof

If the (m+l)-st ratio in the full structure is not a candidate




the lemma is satisfied. If the (m+1)-st ratio is a candidate, sums is
negative, since the (m+1)-st ratio is 1/sums, and only negative ratios
may be considered. If the i-th ratio in the reduced structure is a
candidate, the signs of Ri and Si are the same. Thenthe corresponding
j-th ratio of the full structure is related to the (m+1)-st ratio of

the full structure by

1

’ Ri 0,
(-Si/Ri)sumr + sums

< l_l___
sums

since both terms in the denominator of the i-th ratio are negative.

This result establishes lemma 1.

Lemna 2.

If the i-th ratio in the reduced structure, Ri/si » is not a
candidate, but the corresponding i-th ratio in the full structure is a
candidate, then the i-th ratio in the full structure is not the minimum
ratio in the full structure.

Proof

Since the i-th reduced ratio is not a candidate, the signs of

R1 and $; are different, which means the first term in the denominator

of

(:Si}R;)sumr + sums
is positive, and this requires sums to be negative for the i-th full
ratio to be a candidate. Because sums is negative, the (m+1)-st full
ratio is a candidate, so that the i-th and (m+1)-st ratios in the full

problem are re1ated by

£0 .
(-S. /Riféumr + =ums| lsumsl

This proves lemma 2.
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Lemma 3

If the i-th ratio in the reduced structure is a candidate but
the i-th ratio in the full structure is not, then the i-th ratio in the
reduced structure is not the minimum of the reduced ratios.

Proof

If the i-th reduced ratio is a candidate, the signs of R1 and Si
are the same and 5;# 0, For'ﬁhe i-th ratio in the full structure to not
be a candidate, the ratio must be positive, so that

]
(-Si/Ri)sumr + sums >0, Ri #0

The first term in the denominator is negative, which requires that
sums > 0 , so that

(Si/Ri)sumr < sums, and

(Ri/Si) > (sumr/sums).
Since the i-th reduced ratio is a candidate, and the i-th full ratio
is not, the (m#1)-st ratio, 1/sums , cannot be a candidate because
only negative ratios may be eligible, and sums is required to be
positive to insure the i-th full ratio is not a candidate. Therefore,
since the i-th and (m+1)-st ratios are not candidates in the full
structure, some other. ratio in the full structure, call it the j-th
ratio, must be a candidate. Then

<0, Rj #0.

]
-S./R. +
( SJ/RJ)sumr sums

Since sums > 0, the first term in the denominator must be negative,

which requires that Rj and Sj have the same signs, which means the j-th




reduced ratio is a candidate. Because the j-th full ratio must be
negative (for it to be a candidate),
l(—Sj/Rj)sumrl > sums ,
/R, > .
(SJ/RJ)sumr sums

(Rj/Sj) < (sums/sumr) , R, , Sj ,sumr # 0 .

Thus the relationship between the :-th and j-th ratios of the full
structure is

(Rj/Sj) < (sums/sumr) < (Ri/si)
and this result proves the lemma.
Lemma 4

Suppose the i-th and j-th ratios in the reduced structure are
candidates, and the corresponding i-th and j-th ratios in the full
structure are candidates. If the absolute value of the i-th reduced
ratio is smaller than the absolute value of the j-th reduced ratio,
then the same relation holds in the full structure.
Proof

Let |Ry/Ss] < ]Rj/Sj] » which means for the case being con- ?
sidered that Ri/Si < Rj/Sj, since the ratios are positive. For the

full structure, the corresponding i-th and j-th ratios are

B and | 1
|(-Si/Ri)sumr + sums I(isj/Rj)sumr + sums
- L - - ' - - - L3 -..
Sumr is positive since M (mel) 1/sumr is basic. Since both the i-th

and j-th reduced ratios are candidates, the first term in the denomin-
ator of both full ratios is negative (the signs of Ri and Si are the

'same). Both full ratios are negative, since both are candidates, and

it is n; which is entering the basis. Therefore, for each full ratio,

]
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|
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either sums is negative, or sums is positive, but less than the abso-
lute value of the first term in the denominator. In either case, sums
may be ignored.
Since Ri/si < RJ./Sj » then Si/Ri > SJ./Rj » SO that
l(-Si/Ri)sumrI > |(-Sj/Rj)sumr! s

which means that

1 1
<
[(=S3/R;Ysume] = TO-S/R;)sumr]

and therefore the i-th and j-th full ratios are related by

]
‘ (-Si/Ri)sumr + sums

<l(-sj}Rj)sumr + sums
which proves the lemma.
Theorem

The ratio test procedure described for the reduced structure
is equivalent to the ratio test procedure for the full structure, in
the sense that both procedures will select the same variable to leave
the basis.

Proof.

It follows from lemmas 1 and 3 that the (m+1)-st ratio of the
full structure wii! be the minimum ratio when none of the reduced
ratios are candidates. Otherwise, from lemmas 2 and 3 it can be
ascertained that oniy ratios which are candidates in both the reduced
and full structures will provide the minimums for the respective
structures. Furthermore, lemma 4 guarantees that these minimums will

occur at the same position in the reduced and full structures.




4.3 Multiple pivots

The general idea of a multiple pivot is thgt when a variable,
say T, enters the basis in place of a current basic variable, say "p’
the increase in the objective function value, A, may be sufficient to
cause the complement of L (call it ;p) to become eligible to enter
the basis. The word complement will be used in the sense that the
complement of n; is ﬂg and vice versa. (wWhen ﬁp becomes a candidate
in this dual problem, this means the corresponding constraint in the
primal problem (2), which was binding at one bound becomes infeasible
at the opposite bound.) Since, for this case, ;p would become a can-
didate to enter at the next iteration if T, enters now, the algorithm
brings ﬁé into the basis immediately in place of L and m_ is still
a candidate to enter in place of some other basic variable. This

results in a computaticnal saving, since the represent “ions of np

and ﬁp are identical in terms of the reduced basis B, thus no basis

s e

change occurs for the reduced structure.
For this discussion, it is assumed that T has been selected
to enter the basis in place of np (where T, may be w; or w;, and

similarly for wp), and that LSRN 1< t<m, the t-th basic

()’
variable. The representation for np in the full structure is a unit

R L R A L e N

o

vector, but the representation for its complement, ﬁp, may be cbtain-~

ed in a manner similar to that used to find the representation for

T_» SO the discussion is abbreviated.

Let (B G) (a.p) ) (A.p) , where ;i-p:(A-p
o f L L L

Y




The results of the multiplication and solving for S.p and L are

a'p = (P -RL),

L = sump/sumr , .
sump= £ -0P, |
P = E.p , the representation for rrp (and ?rp) in terms of

the reduced basis B ,
L - 1 if irp is m!
-1 ifm isw"
P P

Then, a partial tableau for the full problem, written in terms of the

reduced basis B, is shown below.

Basic = By s RHS
A cp = 22 0 cs Py

'ﬂ’k(l) Pl - R]L 0 S] - R«'V -R}/St.tmr
wk(t).= np Pt - RtL 1 St - RtV -Rt/sumr

L m Pm - RmL 0 Sm - va -Rm/sumr

. Sump . Sums
M (m+1) L= Somr 0 V= Same  1/sumr
(Note that Pi =0,i#t, and Pt =1, since A-k(t) is the t-th

= "1
column of Band P =8 A‘k(t) .

Since w_ has been selected to enter the basis in place of

L the change in A, §, which will result when n, enters the basis is

y { i
!llllr!Jlll‘v i gl l|;] !lliﬂl,i; }ﬂl'l il ,|!r|il il !‘r-,!t'“;ml!lh
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[t/ (-Ry/sumr)/ (s, - R

IE;/sumsl .

§

This movement in A , § , may be sufficient to cause %p to become a
candidate to enter the basis. The minimum change in XA , 6* , which
will enable 7 to become a candidate may be shown to be

2 ((-Ry/sumr)/(P.-R,L))

which, with a few sign changes and substitutions, may be rewritten

6*

§* -2ARt/(2Rt + gsumr) ,
Therefore,

a. if 38 < &* , this implies that when T enters the basis,
the change in A is not sufficient to cause %P to become
a candidate to enter the basis. Thus, L replaces "p in
the basis and the usual update operations take place.

b. if 6*< & , this implies that if T enters the basis in
place of ?p , the change in X would be sufficient to
cause ;9 to become a candidate to enter the basis at the
next iteration. Therefore, ?p enters immediately in
place of nb and m is stil1l a candidate to replace some
other variable.

This multiple pivot strategy will not be employed when the

- leaving variable is T (mt1) since if the complement of T (me1) is
brought intoe the basis, the algorithm finds the nonbasic variable
corresponding to the next minimum ratio, and T then replaces this

next variable, and the basis is updated. Howe: the work

AW ey

T e



associated with finding the next smallest ratio and then per-
forming a pivot is more than for the case where the complement of
Ty (mt1) does not enter the basis, and a multiple pivot is not per-
formed.

The muitiple pivot strategy may save corsiderable compu-
tation. As evidenced by the results of the computational exper-
ience, the occasions for multiple pivots‘occur between 17% and 42%

of the time, depending on the problem size.

Al




4,4 Steps for the Reduced Structure

In this section, the steps of the algorithm discussed in

prior sections are summarized. Initially assume that a basic

feasible solution is at hand.

a.

the parameters to estimate in the primal problem (4)
are the g's, which are initially computed by g = Ci8™" .
the value of the objective function, A , may be initially
computed by

A = |c/sums| .
The initial situation is that a reduced basis for (5),
consisting of m variables is obtained. The full structure
has m#1 basic variables and the (m+1)-st variable,-
» is a slack variable. Recall that the variable

T (m+1)
T (mtl) is to be treated as a pseudo-basic variable in
the reduced structure, and at this juncture, the variable
to be called “k(m+1) in the reduced structure has not
been selected. On the basis of reduced costs, suppose

T is determined to be eli.ible to enter the basis.
Instead of replacing a current basic variable in the
reduced structure, LS will become the variable called
@) and A must be adjusted to make this variable
"basic.” In the full structure, however, the entering
variable LA does replace the basic slack (artificial)

variable in the {m+l}-st position. Since initially the
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first m basic variables in the full structure equal zero

g ] L
K (@+1) equals one), either LAPFI L NPT

1<t<m, my be selected to be basic. By proper

(and =

4 1 " 2 3 -
choice of "k(t) or "k(t) as basic variables, the ratio

for the slack variable may be forced to be minimum, so

that the entering L will replace the slack M (L) as

desired. After the slack variable leaves the basis,

the iterative process begins.

Step 1. Conpute the reduced>costs

r = -AT - = -
d. Cj - ICj B A.jl A lhj‘ A .

1. ifh. >0, ¢. is the reduced cost for n%

J J
2. if hj <0, -Es is the reduced cost for n; .

b. determine

max '{53} for Ej >0
JeNB'NB"
and let the variable associated with this stipulation

be m, , the variable to enter the basis. If Es <0,

for all j, terminate with the optimal solution.




Step 2.

Step 3.

Compute the reduced ratios to determine the leaving variable.

Compute:
min {Rilsi} » 1 =1,2,0...m ,

and consider Rt/St a candidate if fg = -sign(Rt) * sign (St) s

and St # 0.

There are two cases which may occur:

a. if the minimum ratio is R,,/St s T leaves the reduced

: b k(t)
basis, 1<t<m;

b. if none of the ratios is a candidate, the entering
variable replaces the ps?udo-basxc variable M (mel) °
and no basis change occurs. In the full structure, of
course, an explicit basis change occurs as T replaces
the basic variable M)

Update the value of X .

Let X be the current value of A and L has been selected as

the entering variable. There are three cases to consider.

a. I the variable leaving the basis (of either the reduced
or full structure) is =«

x(t)
A+ X+ S (-R)/(Ssumr - R

» 1< t<m, then
tsums)l

b. If the variable being replaced is “k(m-l) N
X« X+ e /sums| .
c. For the case where a multiple pivot occurs, the process
for updating A is more complicated. Suppose the com-
plement of a current basic variable enters the basis,

say =, replaces L (which in the full structure would be




g ) 6 b ORATRD ) 0 A

described by k(t) =p, 1 <t<m.
1. When the exchange occurs (Qp repiacing np), A is

updated by computing

and ¢, is updated by
EgeCg - *|sums - (S./R,)sumr|.

2. After this exchange and updating, the iteration is
still not complete since the variable T which was
to have replaced np , must now enter the basis in
place of some other basic variable. 7o effect this,
the next smallest ratio is determined (wp had the
minimum ratic previouslyj, and the variable associat-
ed with this next smallest ratio is replaced by LI
Then A is further updated to reflect this change.
There are three cases to consider.

a) If L8

® s 1<t<m, is replaced by 7_ ,

AeX+ IES(-Rt)/(Stsunr - Rysums)|

b) If L replaces the pseudo-basic variable T @el)

in the reduced structure (and in the full

structure T replaces the basic variable LS

in an explicit basis change), then

XX+ [c/sums| ;
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Go to Step 1.

c) If a mitiple pivot occurs here {within a

multiple pivot), the process as described above

repeats.

Step 3. Update the values of 8 , by computing

B =(cf e,
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5.0 Computational Results

The special-purpose algorithm for obtaining L norm
estimates of the purameters for the modei C = ATQ + € is compared
to the publishzd algorithm of Barrodale and Phillips (1975).
Our algorithm has been coded in FORTRAN as a callable subroutine,
which requires an n-dimensional array and an n by m matrix for
the input data, an m by m matrix for ihe LU decomposition, and
six m-dimensional airrays.

An LU decomposition procedure is used to solve the
system of equations, and since much of the original data are
preserved, the incidence of rouad-off error is diminished.

A1l runs were performed on a CDC 6600 with a sixty bit word,
the tolerance value for zero was set at 1.E-8, and the runs
were made within a few minutes of each other, so the machine
load was 2pproximately the same. The reported times were from
using the MNF compiler, although the algorithms were tested
using the FTN and RUN compilers as well. The IMSL Library was
utilized to generate an array (n-dimensional) for the dependent
variable C, and an m by n matrix A, containing data which were
randomly drawn from a uniform distribution. For each problem
size (each combination of m and n), the reported time is an
average of § problems. The results are summarized in table 1.
Our code is denoted AS and the Barrodale and Phillips code is

denoted BP.
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TABLE 1: A summary of computational testing comparing the
special-purpose dual method algorithm (AS) and the Barrodale and
Phillips algorithm (BP) is given. Five problems were solved at
each Tevel and the reported times are the means of the results
in milliseconds, using & CDC 660U. The average number of

iterations is also reported.

Average
Problem Execution Time Number of
Size (milliseconds) Ratio Iterations
mn AS BP BP/AS AS BP
5 200 88 408 4.64 8.6 14.6
400 183 830 4.54 9.8 .15.0
600 317 1479 4.67 11.8 18.0
800 378 1835 4.85 10.6 16.6
1000 530 2441 4.61 11.4 17.8
10 200 429 1090 2.54 22.0 25.6
400 714 2687 3.76 26.4 31.8
600 957 4528 4.73 26.0 36.0
800 1285 5721 4.45 27.2 34.0
1000 1769 7748 4.38 28.2 36.8 -
15 200 1163 2820 2.42 34.0 49.6
400 1820 6315 3.49 38.2 56.0
600 2469 9859 3.99 40.6 58.2
800 3421 13,460 3.93 46.0 59.4
1000 4049 17,867 4.41 47.6 63.4
20 200 2733 4303 1.57 49.0 60.0
400 3863 9936 2.57 53.0 69.4
600 5542 16,585 2.99 61.8 77.4
800 6755 23,128 3.42 64.4 81.0
1000 8206 29,312 3.57 67.0 82.2
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Conclusions:

In this paper we have presented an algorithm and FORTRAN
code for determining Lco norm parameter estimates for ihe curve
fitting model C = AT§ + €. This algorithm is a special-purpose
linear programming dual method, and the code is compared to
the special-purpose code of Barrodale and Phillips.

We have indicated how to partition the A matrix to
form a compact or reduced basis, and how the usual simplex
tableau entries may be written in terms of this reduced basis.
Special ratios are developed for determining the vector to
leave the basis, which are of a simplier structure than the
usual simplex ratios. A multiple pivot is developed, where
movement is made to a new extreme point solution without

requiring the usual basis update computations.
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