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~Abstract

Techniques and criterion for selection of the "best" subset of

variables to be used in a regression model are reviewed.

A model was developed using the Automatic Interaction Detection (AID)

algorithm as a pre-screening device for locating those variables most

important to the regression including interaction terms.

Five previous models including the one developed by AID and one

developed by Westinghouse on avionic characteristic 
data are used in

cross validation experiments to determine the predictive power of these

models on a new set of dara points using the same set of variables.

A cross validation R2"vaue is discussed as a criterion for choosing

between competing models.
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CROSS VALIDATION OF SELECTION OF

VARIABLES IN MULTIPLE REGRESSION

I Introduction

Background

Long term DoD planning gcals require than operational and support

costs on all projects be reduced. Managers of these projects are

challenged by the need for accurate evaluation of these projects in

the early design stages. A question arises, however, concerning whether

model development and enhancement should be contracted out-of-house or

done using available efforts of Air Force personnel in-house. Performing

a cost analysis in-house would surely reduce costs. Also, performing

an in-house cost analysis would benefit the user of the model by

providing first hand knowledge of the impacts of updates and changes in

the data base on the final results and may discover intermediate

results unknown to a contractor.

One prerequisite for the user to perform in-house analysis is the

availability of the necessary computer packages. Another is the

knowledge of the user in applying other effective methods of analyzing

the goodness of fit of the models other than the R2 value or

F-statistic discussed in the next chapter. Once the user of the model

attains these prerequisites, in-house analysis can be performed.

Since these prerequisites for an in-house capability of cost

estimation were not available at the time, the Systems Evaluation

Branch (AAA-3) of the Air Force Avionics Laboratory at Wright-Patterson

Air Force Base requested that the Westinghouse Electric Corporation

perform a regression analysis on certain characteristics of Line
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Replaceable Avionic Units (LRUs).

The Westinghouse approach was to select "candidate" LRUs for inclusion

in the data base, collect data on design and logistic characteristics

on the LRUs, perform a regression analysis on the data, then use the

resulting cost and parametric relationships to construct a model. The

resulting model was named the Avionics Laboratory Predictive Operations

and Support (ALPOS) model [361.

One of the problems Westinghouse encountered, which most analysts

encounter also, involved the process used in the selection of the data.

Probably the most important element in the research is the nature of

the data which was used. Many different situations can arise from

"bad" data and wrong assumptions about the data such as whether the data

subset collected is statistically different from the underlying

population or whether multicolinearity exists between variables.

In the initial phase, several LRUs were identified and considered

for inclusion in the data base from a wide variety of avionic units

placed on various types of aircraft. The LRU selection was naturally

constrained by the availability of the data and on the number of aircraft

on which the LRU was installed. This initial data base (Phase I)

consisted of sixty-three LRUs from seven different aircraft.

For their regression analysis, Westinghouse used the Linear

Least-Squares Curve Fitting Program (LLSCFP) developed by Daniel and

Wood [8]. This computer program uses over thirty statistics and five

types of plots in assisting the analyst develop meaningful variable

relationships.
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In his Masters thesis, Captain Larry Pulcher attempted to provide

the means for the members of AAA-3 to conduct their own in-house cost-

estimation analysis by developing and testing criterion for selection

of variables in a regression analysis including iterative techniques

using the Statistical Package for the Social Sciences (SPSS), all

possible regressions using the International Mathematical Statistical

Library (IMSQ) routine RLEAP, and the Omnitab computer package used to

compute prediction intervals.

Both Westinghouse and Pulcher had available a set of potential

variables which could be considered for inclusion in the model, however,

both sets of variables were too large (more variables than data points).

Westinghouse used an approach in which "candidate" variables were screened

and tested before admission to the model. Pulcher used a screening

technique to eliminate certain candidate variables before hand.

Focus of this Research

Westinghouse has recently updated the data collected in the initial

phase. This new Phase II data base includes sixty-five additional LRUs

plus six previous ones placed on different aircraft for a total of

seventy-one LRUs. Also, four additional aircraft have been included.

See Table I for a summary of the LRUs investigated.

One objective of this research is to review past research in the

area of selection of variables in a regression analysis in the hope

of stimulating thoughts and ideas of those analysts interested in

combining talents on this subject.

3
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A second objective of this research is to examine the three previous

models developed by Pulcher and the Phase I model developed by

Westinghouse and determine which of the models predicts the Phase II

data the best.

A third objective of this research is to use the Automatic

Interaction Detection (AID) algorithm documented by Sonquist and

Morgan [33, 34] to prescieen variables from the entire data set and

create a model based on the Phase I data and perform the same predictive

tests mentioned above using the Phase II data. A Leaps and Bounds

algorithm was used to assess various AID models to determine which one

should be represented in the subsequent analysis.

Finally, updated coefficients were calculated for the best

predictive model determined in objectives two and three above.

4



TABLE I

Summary of LRUs Investigated

Aircraft PHASE I PHASE II TOTAL

F4E 11 3 14

RF4C 8 - 8

F15A 10 20 30

B52G/H 18 1 19

KC135A 5 - 5

C130E 5 6 11

C5A 6 9 15

F106A 2 2

F111D 20 20

FB111A 10 10

TOTAL 63 71 134

5J
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II Concept Overview

Theory of Least Squares Regression

The fundamental premise of a regression analysis is to build a

model useful in predicting a single dependent or criterion variable from

a set of independent or predictor variables. There are many different

types of models which can be created such as general linear discussed

in the following section, non linear, logarithmic, polynomial, reciprocal

and multiplicative. This research deals mainly with linear, polynomial

and logarithmic models.

Assumptions

Before any statistical inferences can be made and tests performed

on the significance of the coefficient estimates and the independent

variable, certain assumptions must be made about the data and about

the probability distribution of the random error.

The first assumption is that the data is a sample from the target

population. The second assumption is that the random variable e, the

error term, is:

(1) statistically independent

(2) identically distributed

(3) from a population with zero mean

(4) normally distributed

In other words, e" N(O, a2) which means that c is from a normal

probability density function with a mean of zero and a variance

of 02. Also, since nothing is known about the probability distributions

describing these error terms, the Central Limit Theorem guarantees that

6 i
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if we can assume independence, then the sum will tend to be normally

distributed. Also, if we can assume that all the error terms have identical

probability distributions, then we insure that each of them have the

same variance.

Method of Least Squares

The general form of the linear least squares model is

Y - 0o + 8lXl + 02X2 + ""+BJXJ + ".. + kXk+E (1)

where Y is the observed value of the dependent variable

Xj is the observed value of the jth independent variable

8o is the constant term

Oj is the regression coefficient for the jth independent variable

e is the random variable accounting for the error

k is the number of independent variables

Note that Xj can be the transformation of an original observation.

For example, the Product of Powers model

Y M 00 X1 SlX2 82 (2)

can be transformed in a linear sense to

ln(Y) - 0o + 81 ln(Xl) + 82 ln(k) (3)

or

Y* 8o + B1 Xl* +  2 X2* (4)

where the "*" indicates the transformed variable in equation (4).

If there are n dependent variables, equation (1) can be written:

Y- - 8o + BlXil + $2Xi2 + . +. + 8jXij + ... + SkXik + Ci (5)

where i - 1, 2, ...,n

7



Since it is very difficult to discuss the multiple regression case

in algebraic terms, matrix notation will be used. Equation (5) can

be written as:

Y - X0 + C (6)

where Y represents an n-element column vector of observed values of the

dependent variable:

- 2 (7)

X represents an n x K + 1 matrix. The first column contains

all ones representing the constant term. The other columns represent

the Xij values:

1 X 11  . . . XlK

1 X21  X22 . . . X2K

x . . . (8)

1 Xal Xn2- - X

0 represents a K + 1 x 1 column vector of regression coefficients:

so

81

8- 2

(9)

Ok
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c represents the n-element column vector of error terms:

El

C2 (10)

ee

En

The objective of the least squares technique is to fit a line

through a set of data points so that the sume of the squared differences

between Yi (i - 1, 2,...,n), the actual values of the dependent variable,

and Yj, the estimated value of the dependent variable, is minimized.

Y is defined algebraically as:

Yi = Bo + 01 Xil + B2Xi2 + ajXij + ... + SkXk (11)

or in matrix notation as:

__ x8 (12)

The random error term c is the difference between Y and Y and can

be written as follows:

Y - Y (13)

A two-dimensional graphical depiction of a regression line using

three data points is shown in Figure 1.

The ideal situation is to have each of the error terms equal to

zero. That way, the regression model would fit the data points exactly.

In most cases, however, this is not possible so minimizing the sum of

the error terms is the best solution. In order to keep the mathematics

relatively easy, the error terms are made positive by squaring each term



before summation. This sum of squared errors (SSE) can be written as:
n

SSE - E (Ei)2 - E' E (14)
i-

where el' is the transposed matrix E. The objective can now be stated

as follows:

Find $ to minimize:

SSE - E' E = (Y - ) (Y- ) (Y-x)' QL - x) (15)

Using a straightforward application of Lagrange's Multipliers on

equation (15), one estimator of _ which minimizes SSE is:

S(xlx)-1 X'Y (16)

Y3 ------ - ------- --- - 3

y = B + BIXI
Y2

EY22

Y1

/ I

Yl .....

£X

Xl X2 X3

FIGURE I Regression Line

i0

I I
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It is known, however, that a regression model containing these

estimates of 0 will not explain all of the variability in the

dependent variable Y. Some of the variability in Y will be explained

by the regression model and the remaining portion is left unexplained.

This idea can be stated as follows:

SST - SSR + SSE (17)

where SST is the total sum-of-squares or the total variability in

the dependent variable and is defined as:
n n

SST - Z (yi-Y)2 _ Z Y2 -n (18)
i-l i-li

or

SST - Y' Y -
n  2-- (19)

SSR is the regression sum-of-squares or the variability in

the dependent variable explained by the regression model and is defined as:
n

SSR - Z (Yi- )2  (20)
i-l

or

SSR = ' X' Y- nY2  (21)

SSE is the residual or error sum-of-squares or the remaining

amount of variability which is left unexplained and is defined by

equation (15).

Measures of Merit:

Since SST depends only on the values of the dependent variables,

Yi, it is constant for any given set of n observations. Also, since

SSE is being minimized, this makes SSR as large as possible. It is

then reasonable to assume that the ratio of SSR to SST would be an

adequate indicator of the goodness of fit of the model to the data

11
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and a good measure of merit of the regression. This ratio is denoted as

, or simple as R2 , and is called the coefficient of determination or

the multiple R-squared value.

R2 = SSR _ - SS_ E 0 < R < 1 (22)
SST SST - -

According to Theil [35:178], the sample value of R2 is somewhat

biased due to the degrees of freedom used in its calculation. Theil

suggests that a better measure of merit is 2 , defined as the adjusted

multiple correlation coefficient.

12= (1-R2) (a-') (23)

or

R2= 1 - (1-R2) n-1 (24)

if a constant term is included in the model, or equivalently as

R2 =R 2 - (1-R ) h--l (25)(nk-)

In either of the cases above, F is always less than or equal to R2 .

It must be noted, however, that R2is not an unbiased estimator, though

it still has some merit because when the number of variables being

estimated, k, becomes large compared to the number of observations or

data points, n, it still gives an optimistic picture of the amount of

variability in the dependent variable explained by the regression model.

can also be defined as:
HSE

12 -1 - HS (26)

SSE
where HSE, mean square error - n-k-1

SST
and MST, mean square total n-i

Thus, HSE M ST* (l-R2), and minimizing MSE maximizes R2.

12
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Mosier [26) has suggested a measure of merit similar to R2which

measures the predicting power of a model. Based on a model using the

original set of old data (Phase I), the estimated value for each data

point, Yi, was calculated. The cross validation SSE (c.v. SSE) was
n

then calculated by the following equation: c.v. SSE = E (Yi - Y
i-l

where the Yis are the actual (observed) values from the new set of

data (Phase II). Notice that the c.v. SSE is not the same as SSE

because both Yi and Yi did not come from the same sample.

The c.v. SSE is then used to calculate the cross validation R
2

by c.v. R2 - 1 c.v. SSE Here, c.v. R2 indicates the predictiveSST

power of the old models on the new data.

13



III Review of Past Research

There is a considerable amount of literature examining the many

efforts that have been made to determine the "best" subset of independent

variables that should be included in a regression model so that the

amount of unexplained variance in the dependent variable is reduced.

Many criteria for selection of these variable subsets have been examined,

yet no one best criterion has been found.

Draper and Smith [10:163] point out two conflicting viewpoints

on this subject. At one extreme, all variables could be included in

the model for predictive purposes, however, though the values predicted

may be reliable, as the number of variables in the model approaches the

number of data points or observations, R2 will naturally become close

to one, thus implying a false sense of importance of the model to the

unexperienced analyst.

At the other extreme, the model could include as few variables

as possible so that the predictions are still reliable and the costs of

maintaining and updating the data base is kept at a minimum. A

compromise between these two viewpoints is suggested and is considered

to be the "best" approach.

One would like to examine all of the 2k possible regressions of

the dependent variable in the search for the best equation, however,

not only would there be computational and time limitations on the

computer which make this approach impractical, but there is the

remaining problem of specifically defining what is meant by the "best"

regression model and when it has been found. This chapter reviews

some of the research that has been done in this subject area.

14
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Probably the most well known research on the subject of variable

selection and regression analysis is that of Draper and Smith. Four

different regression approaches have been devised including all

possible regressions, backward elimination, forward selection, and

stepwise regression.

In the All Possible Regressions technique, all 2k possible

regressions are considered. Thus a ten variable model would require

the examination of 210 or 1024 possible regressions. Each model is

ordered by some criterion such as R2 or j2 and compared. Often for

large data bases, it becomes necessary to compute the residual mean

square error and assess its magnitude to determine the best cut-off

point for the total number of variables in the regression.

Recent research by analysts such as Schatzoff, Tsao, and Fienbert [313

have been able to reduce the number of calculations required from an

order of k3 to k:2, thus making this technique more practical, yet still

relatively expensive to use. However, if the number of variables was

reduced by methods such as the Chow test developed by Gregory Chow [7],

this method becomes even more practical.

In the backward elimination method, a regression equation containing

all possible variables is used as a starting point. A partial-F value

is calculated for each variable and if a value is less than some

specified tabular value, then that variable is removed from the model.

Once a variable is removed from the model it is not susceptible to

further consideration. A new regression is then computed and the

process continues until no more variables can be eliminated from the

model. Although this method is not thought of as the most powerful

15
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methods to use in determining the best regression equation, Mantel [23]

supports the method and points out its many advantages.

The forward selection process operates in a reverse manner from

the backward elimination procedure. Variables enter the model one at

a time until a model has been satisfied. Initially, partial-F

statistics and partial correlation coefficients are calculated between

each independent variable and the dependent variable. The variable

most highly correlated will enter the regression equation. A new

regression equation is then calculated and the process continues. Once

a variable has entered the regression equation, there is no chance that

it will be removed. This, however, is one of its faults. There is no

attempt to determine the effect an entering variable has on the existing

variables in the model.

In the stepwise regression procedure, however, an examination is

made at each stage of inclusion of variables in the model to determine

whether any variable or set of variables introduced previously lose

their significance due to the introduction of a new variable. Thus,

a variable which entered at an earlier stage,yet has been found

unimportant due to the inclusion of a new variable,will be detected

and removed from the model. For this reason, the stepwise procedure

has been determined to be the most powerful regression technique.

In discussing various regression procedures, there are three

important points that need mentioning. The first point is that the

order of inclusion of the variables in the model is irrelevent. Thus,

a variable which entered early in the model does not mean that it is

more important than a variable which entered later. The second point

16
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is that there is no guarantee that any of the previous methods will

arrive at the best regression model. The third point is that there is

also no guarantee that each of the previous methods will arrive at

the same model or subset of variables. This is true between any set

of regression procedures.

There are many more criterion for selecting variable subsets

other than R2 or the partial-F statistic. The remaining portion

of this chapter is dedicated to mentioning those various research efforts.

Aitken (1] discusses the use of the Mean Square Prediction Error

(MSPE) as a criterion for selecting variable subsets if the regression

equation is used for prediction purposes rather than description purposes.

In the later case, he prefers the use of the conventional R2 value as

a criterion. Allen [2] also discusses the use of the MSPE for selecting

variable subsets.

The MSPE is defined as the expected value of the squared difference

between the actual value of the independent variable, Y, and the

estimated value, Y. If all dependent variables are used in the regression

equation, Aitkin defines the MSPE as follows:

MSPE- E[Y- Y]2 = a2[_+(x-' Sx (-) ] (27)

where X is a row rector of X, x is the vector of means, and Sxx is the

matrix of cross products of the k independent variables: Sxx = X'X.

Allen defines the HSPE as follows:

MSPE - E[Y - Y] a2 + Var(Y) + [E(Y) +X]2 (28)

where the last term is the squared bias of prediction and the last

two terms together are the Mean Square Error (ESE) of ',

17



Since the least squares predictor Y is unbiased, its variance is

X(X'X)- x a2. If the last term is dropped, one gets:

MSPEr - a2 + x (X'X) - 1 a2  (29)

which Allen uses for the comparison of other predictors.

Kennedy and Bancroft [22] discuss using the average value of the

MSPE over their sample as a criterion:

1 n n+l
MSPE*= n - + x -(X )ISxx Ox - X)I (30)SE*=n J. U2[

= 2- (n + k- i)
n

where X has been assumed to follow a uniform distribution. Aitken,

however, believed it more realistic to assume that all X values were

independently and identically distributed. In either case, the

objective is to chose the variable subset which minimizes the MSPE.

If the subset of variables to be tested is specified in advance or

simply fixed, the testing hypothesis becomes:

HO : MSPE - MSPE1  > 0
(31)

Ha : MSPE - MSPE < 0

where MSPE1 is the MSPE of the variable subset. If the null hypothesis,

Ho, is not rejected, this means that the subset of variables is not

statistically different from that of the total set of data and the

subset may be considered for use in a prediction equation. A non-

central F-statistic and test have also been developed by Aitken to

estimate (31) depending on the assumed distribution and selection

process of the independent variables. In the cases where the variable

subsets are unknown, a simultaneous procedure, similar to the forward

selection process developed by Draper and Smith, was developed by

Garland (15]. In this procedure, variable subsets are chosen based on

a central-F approximation to the multiple correlation coefficient.

18
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Helms [16] discusses the use of the Average Estimated Variance

(AEV) as a criterion for comparing competing linear models and explains

why the Integrated Mean Square Error (IMSE) used as a criterion is

not very useful in practice. The technique includes the computation

of the AEV for each possible regression and the implementation of a

stepwise procedure using the AEV as a criterion rather than R
2 or

Mallows' Cp statistic. One advantage of the AEV has over R2 and Cp

is that it automatically incorporates information about the tradeoff

between bias and variance when one enters or deletes variables in the

model.

Furnival and Wilson [13] discuss a technique for computing the error

sum of squares (SSE) for all possible regressions with minimal amount

of calculations, and show how it is implemented in a branch and

bound technique which they refer to as the Leaps and Bounds technique.

This technique is useful in determining the best subset, and without

examining all the possible subsets of variables.

The fundamental principal upon which their research is based is

that SSE(A) < SSE(B) where A is any set of independent variables and

B is a subset of A. In other words, it is impossible for any subset

of A to have a lower error sum of squares than A. Because of this,

SSE(A) can be used as a lower bound in the analysis which means that

subsets of A can be ignored in the search for the best given numbered

variable subset.

In their technique, two search variations are described: horizontal

and vertical. The horizontal variation explains regressions in a

probability tree form and in a conventional or natural order so

19
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that all one variable regressions, two variable regressions, etc. are

easily observable. These regression trees are formed by beginning

with all k variables in a regression and branching out on all possible

k-l variable subsets. The value of SSE is computed for each of the

subsets and the subset with the smallest value will be the "best"

k-l variable subset. That subset will not be divided further as it

provides a minimum value for that branch. Branching occurs elsewhere

in the same manner as above until the best possible k-2, k-3, ..., 1

Variable subsets are chosen.

Criterion for selecting these variable subsets is based on either

R2, 2 , or Mallows C p statistic. In a similar fashion, Narula and

Wellington [25] introduce a branch and bound algorithm using the

Minimum Sum of Weighted Absolute Errors (MSWAE) as a criterion for

selecting variable subsets and involves the use of linear programming

to minimize the sum of the absolute values of the residuals subjected

to several constraints.

Andrews [4] discusses the use of regression and model building

by medians and also introduces a robust method of analyzing data

assumed not to have a Gaussian distribution with errors of equal

variances.

Webster, Gunst, and Mason [371 discuss a modified least squares

estimation procedure using latent roots and latent vectors of the

correlation matrix of the dependent and independent variables. This

has been found to be very useful when the matrix of independent

variables is nearly singular.
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In a more recent article, Park [29] discusses a strategy for

selecting subsets of variables from a given linear mixture model

developed by Scheffe (32], and applies the MSE as a criteria for

screening the variables for model reduction.

In another recent article, Ellerton [11] investigates a method

of applying linear programming to determine whether a given subset

of variables is adequate in a regression model.

Surprisingly enough, very little cross-communication has been

done concerning this very important subject, and I believe a

joint analytical effort should be made testing these various criteria

against various data bases in order to determine if there is one

best method or criterion useful in predicting variable subsets to

be used in a regression model.
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IV Model Development and Selection of Variables

The Westinghouse Data Base

Senior engineers from Westinghouse collected most of the data in

both Phase I and Phase II from on site visits to the Pentagon,

AFLC Headquarters, ATC Headquarters, four Air Logistic Centers (ALCs),

and several Air Force bases. While on site, interviews were conducted

with technicians to verify the appropriateness of the LRUs originally

selected and to identify possible alternatives.

At the completion of the Phase II data collection, the resulting

data base contained 134 LRUs (See Appendix A), and thirty-three elements

(variables plus indicators per LRU) (see Table II). After various

variable transformations and modifications, twenty variables remained.

The first set of variables describe the aircraft type and avionics

area and are indicators (zero or one). Three airc-aft types including

fighter, bomber and cargo and three avionic areas including sensory,

communication and navigation were initially coded as follows:

Bomber 1 0

Cargo 0 1

Fighter 0 0

Sensory 1 0

Communication 0 1

Navigation 0 0

After additional investigation, the following set of indicator
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TABLE II

Westinghouse Data Base Elements

1. Bomber indicator variable (1 indicates Bomber aircraft)
2. Cargo indicator variable (i indicates Cargo aircraft)
3. Sensory indicator variable (1 indicates sensory avaionics)
4. Communications indicator variable (1 indicates comm avionics)
5. Unit Price
6. Volume (in3)
7. Weight (lbs)
8. Component Count
9. Percentage Digital Components

10. Percentage Analog Components
11. Percentage Electro-Mechanical Components
12. Percentage Power Supply Components
13. Percentage Transmitter Components
14. Percentage Solid State Components
15. Power Dissipation (watts)
16. Utilization Factor (Operating hours/flying hour)
17. Percentage Failures Detected by Automatic Test (BIT/FIT FACTOR)
18. Number of Integrated Circuits
19. Number of SRUs in the LRU
20. Mean Time (flight hours) Between Failures
21. Mean Time (flight hours) Between Maintenance Actions
22. Maintenance Manhours - Scheduled (Organizational)
23. Maintenance Manhours - Unscheduled (Organizational)
24. Maintenance Manhours - Shop (Intermediate)
25. Logistic Support Cost - Field
26. Logistic Support Cost - Special Repair Center (Depot)
27. Logistic Support Cost - Packaging and Transportation
28. Logistic Support Cost - Condemnation Replenishments
29. Training Costs
30. Percentage LRUs Not Repairable This Station (%NRTS)
31. Flying Hours (FH) (to normalize MMH and LSC)
32. Percentage Condemned LRUs
33. Specialized Repair Activity (Depot) Costs
34. Quantity per Assembly
35. Flying hours (to normalize Training costs)
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variables was used in the regression analysis to denote interactions

between aircraft type and avionics area:

LRUs in fighter aircraft navigation systems

LRUs in fighter aircraft sensory systems

LRUs in fighter aircraft communication systems

LRUs in bomber aircraft navigation systems

LRUs in bomber aircraft sensory systems

LRUs in bomber aircraft communication systems

LRUs in cargo aircraft navigation systems

LRUs in cargo aircraft communication systems

LRUs in cargo aircraft sensory systems were not included. The above

set of indicators is coded as follows:

Fighter-Navigation 1 0 0 0 0 0 0

Bomber-Navigation 0 1 0 0 0 0 0

Cargo-Navigation 0 0 1 0 0 0 0

Fighter-Sensory 0 0 0 1 0 0 0

Bomber-Sensory 0 0 0 0 1 0 0

Fighter-Communication 0 0 0 0 0 1 0

Cargo-Communications 0 0 0 0 0 0 0

The next four independent variables are measures of physical

characteristics. The Unit Price is measured in 1976 dollars per LRU

and ranges in value from $153 to $220,943. The Volume is measured

in cubic inches and ranges in value from 30 to 8200. The Weight

is measured in pounds and ranges in value from one pound to 8200 pounds.

Component Count is the number of electronic components and ranges in

value from none to 7638.
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The next five independent variables are categories of the

different component types including Digital, Analog, Electromechanical,

Power Supplies, and Transmitter, and are measured as a percentage of

the total number of components having that characteristic. All

values range from zero to 100 percent.

The next independent variables, Fraction Solid State, and the

number of Integrated Circuits in each LRU are measures of LRU

technology, the later ranging in value from zero to 4625.

The sixteenth independent variable is a measurement the Power

Dissipation and is defined as the input power minus the transmit power,

and ranges in value from six to 1640 watts.

The next independent variable represents a percentage of failures

in LRUs detected by the Built-In-Test/Fault-Isolation-Test (BIT/FIT).

The last two independent variables are the Specialized Activity

(Depot) Costs and the Quantity Per Assembly.

Westinghouse also identified several dependent variables. These

include the Mean Time Between Failures (MTBF), the Mean Time Between

Maintenance Actions (MTBMA), the Total Maintenance Man Hours per

Operating Hour (MMH-UNS/OH), the Maintenance Man Hours in the Shop

per Operating Hour (MMH-SHOP/OH), the Total Logistic Support Costs

per Operating Hour (LSC-TOT/OH), the Field Logistic Support Cost per

Operating Hour (LSC-FLD/OH), the Training Costs per Operating Hour

(TRAIN/OH), and the percentage of LRUs not repairable this station

(NRTS).

Only one of the dependent variables mentioned above will be used
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in the analysis; LSC-TOT/OH. A list of all the variables used in

this report and previous reports is contained in Table III.

Previous Models

In this section, five previous models (two developed by

Westinghouse and three developed by Pulcher) are discussed.

The first Westinghouse model (Table IV) was based on the Phase I

data and second (Table V) was based on the Phase II data. All

variables in the first model are in linear form, quadratic form or

logarithmic form.

The three models developed by Pulcher are described in Table VI

and Table VII. Initially, Pulcher was able to create ninety-seven

variables from the Product of Powers model of the form:
13 6 6 13

ln Y = o + Z aiDi + Z Sjoln xj + Z E Oji Diln Xj (31)
i-l jul jul 1=1

The Di are indicator variables, and their function is to allow

for coefficients to be different for subpopulations. For a simplified

example, suppose we had:

ln Y = ao + alDi + llnXl + BllDilnXl (32)

For the subpopulation for which Di - 0, the model is:

ln Y - o + 8llnXl (33A)

while for the subpopulation for which Di - 1, the model is:

ln Y - (ao + al) + (81 + 811) lnXl (33B)

Since there were only 63 data points, a method was needed to reduce

the number of variables. Pulcher chose the Chow Test (also called the

Test of Equality Between Subsets of Coefficients in Two Regressions),
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TABLE III

List of Variables - Abbreviations

Name Westinghouse Pulcher This Report

Bomber IBOM * BOMBER
Cargo ICAR * CARGO
Sensory ISEN * SENSORY
Communication ICOM * COMM
Navigation-Fighter * * FGTNAV
Navigation-Bomber IBMNAV * BOMNAV
Navigation-Cargo * * CARNAV
Sensory-Fighter * SF FGTSEN
Sensory - Bomber * SB BOMSEN
Communication - Fighter IFGCOM CF FGTCOM
Communication - Bomber IBMCOM CB BOMCOM
Communication - Cargo * COMMC CARCOM

Unit Price UP UP UP
Volume V V V
Weight W W W

Component Count CC CC CC
Component Density CD * *Power Dissipation PD PD PD
Fraction Solid State FSS % SS SS
Fraction Digital FDI % DIG DIG
Fraction Analog FAN % AN AN
Fraction Electromechanical FEM % EM EM
Fraction Power Supply FPS % PS PS
Fraction Transmitter RXR % XMTR XMTR
Fraction BIT/FIT BIT/FIT BF BITFIT
Number of Integrated Circuits IC * IC
Specialized Repair

Activity Costs * SRU
Quantity Per Assembly QPA * QPA
Logistic Support Cost/ LSC/OH LSC/OH LSC/OH

Operating Hour
Maintenance Manhours/

Operating Hour MMH/OH
Mean Time Between Failures MTBF * *
Mean Time Between Maintenance * *

Actions
Training Cost/Operating Hour TRAIN/OH * *
Not Repairable This Station NRTS * *

* Not used in the analysis
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TABLE IV

Westinghouse Model - Phase I Data

21
In (LSC/OH) = bo + Z bi Xi

i=l

R2 f .8916 R2 f .9283 F-value - 25.3

i b- X1 Partial-F

0 -8.15108

1 3.86111 (IBOM-.2857142857) 36.0

2 3,66533 (ICAR-.2698412698) 31.4

3 -4.85271 x 10-1 (ISEN-.2539682540) 3.6

4 -2.56663 (IBOM-.2857142857)(ISEN-.2539682540) 37.2

5 -1.66262 (IBOM-.2857142857)(ICOM-.206349206) 12.2

6 -7.67253 x 10-1 (ICAR-.2698412698)(ICOM-.206349206) 3.2

7 1.27356 x 10-2 FPS 6.8

8 2.25967 x 10-2 (FAN-63.349) 36.0

9 -7.42999 x 10- 3  (FSS-61.138) 9.0

10 2.38503 (UF-1.639 27.0

11 -9.20384 x 10-11 (UP-133606.3)2  25.0

12 -1.52864 x 10-4  (W-64.314)2  8.4

13 -1.07105 x 10-3 (FAN-48.895)2  33.6

14 1.20418 x 10-3 (FEM-46.991)2  33.6

15 7.10025 x 10-4  (FXR-40.172)2  10.9

16 -1.61651 x 10- 4  (FSS-51.898)2  2.2

17 -1.11568 x 10-6 (PD-722.249)2  7.3

18 5.009996 (UF-1.681)2 42.2

19 1.70042 x 10- 3  (BF-27.288)2  13.0

20 4.60293 x 10-1 In(UP) 31.4

21 2.35583 x 10-1 1n(V) 4.8
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TABLE V

Westinghouse Model - Phase II Data

18
in (LSC/OH) bo + E biXi

i=1

R2 = .8827 F-Value = 41.0

i b i  X Partial-F

0 -6.97950

1 7.85143 x 10-1 IFGCOM 10.24

2 1.14876 IBMNAV 34.81

3 1.07719 IBMCOM 21.16

4 1.91500 x 10-1 CD 12.25

5 -1.22007 x 10-2 FDI 37.21

6 -1.72307 x 10-2 FEM 24.01

7 -9.49029 x 10- 3  FXR 4.84

8 -8.36154 x 10- 3  FSS 9.61

9 -3.35635 x 10- 4  (V-1333.0) 9.00

10 1.98641 x 10-2 (V-32.3) 17.64

11 6.72953 x 10-8 (V-3222.0)2  6.25

12 -1.05350 x 10-4 (W-65.3)2  4.00

13 -4.24991 x 10-8 (CC-2986)2  5.76

14 -4.36525 x 10-4 (FPS-45.48)2  9.61

15 7.79704 x 10-1 (UF-1.72)2  16.81

16 5.64131 x 10-1 In(UP) 94.09

17 4.61602 x 10-1 in(V) 8.41

18 1.47264 x i0- 1  ln(PD) 6.25
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TABLE VI

Pulcher's SPSS Model - Phase I Data

R2  - 0.95212 j2 . 0.92388 F = 33.72

In (LSC/OH) = o + Z aiDi + E 8jo in xj + E E 8ji Di In xj
i j j i

Variable No. Coefficient Partial F

1 0.402702 13.63

3 0.084548 0.10

5 0.412407 37.28

8 11.320694 23.80

10 -1.135445 17.68

11 -1.457859 26.48

14 3.710527 7.25

16 -2.950970 9.44

17 -0.092716 0.09

20 0.322015 0.07

23 -0.568085 27.14

26 -0.729848 7.51

27 -1.803242 9.46

28 2.506829 12.27

63 -1.995969 18.20

64 3.034970 17.51

68 -0.272142 7.44

70 -0.758240 8.11

75 0.294839 25.70

90 -0.456146 24.86

94 0.697895 25.90

96 -0.642736 43.88

Constant -5.315378 79.01
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TABLE VII

Pulcher's Leaps and Bounds Models - Phase I Data

ln (LSC/OH) ao + E aiDi + E OjO n xj + E Z 8jiDi ln xj
i j i

Cp Criterion 12 Criterion

R2 = 0.9135 R2 - 0.9323
12 = 0.88347 2 - 0.9001
F = 31.21 F = 29.25

Variable Coefficient Partial-F Coefficient Partial-F

UP 0.245908 8.78 0.313871 14.52

W 0.384075 7.75 0.350494 6.86

SF -1.061926 12.78 -2.878942 14.29

SB -1.822390 30.26 -2.195891 39.06

DIG 4.381530 4.88

NF*W -0.431742 31.61 -0.343076 2.10

NF*CC -0.466254 13.70 -0.470354 15.84

NF*PD 0.738901 16.62 0.672722 14.59

NC*UP 0.285409 5.13 0.254284 4.04

NC*V -0.334677 4.93 -0.292486 3.92

SF*CC 0.293229 6.30

DIG*P -0.584870 12.86 -0.950128 11.70

DIG*V -0.971576 2.25

DIG*W 2.676919 4.93

DIG*PD 1.081951 15.97 0.553008 2.59

AN*W 0.309271 16.60 0.239272 9.98

EM*W 0.698175 13.89 0.705835 13.47

EM*PD -0.555855 21.58 -0.545678 20.61

BF*W 0.866668 28.67 0.828916 27.04

BF*%SS -0.701034 37.03 -0.706378 38.19

Constant -3.855040 53.44 -4.091618 64.16

All other coefficients are zero.
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which prescreens the variables and eliminates those which are unimportant.

The Chow Test also determines which subpopulation really had different

coefficients. Sixty variables remained and were used in conjunction

with the three models.

A stepwise regression procedure using SPSS was used to develop

the first model and the Leaps and Bounds Algorithm was used to create the

second and third models, the second using K2 as a criterion for selection

and the third using Mallows' C p -statistic as a criterion for selection.

All three of these models did a very good job of predicting the old

data as determined by the R2 value, however, in his final conclusion,

prediction intervals were computed using the Omnitab computer package [20],

and it was determined that both the Leaps and Bounds Cp and the Leaps and

Bounds r2 model did a better job of prediction than the SPSS model.

Automatic Interaction Detection

It has been suggested that another method of prescreening variables

prior to regression is the Automatic Interaction Detection (AID) computer

package developed at the University of Michigan's Institute for Social

Research and documented by Sonquist and Morgan [33,34]. This technique

is primarily used in constructing models on sociological or categorical

data and involves a single interval scaled criterion variable and a

mixture of interval, ordinal, and nominally scaled predictor variables.

A typical problem in regression analysis is that one cannot always

know in advance which transformations such as Xi or ln(Xi), or interaction

terms such as XiXj to introduce in the model so that the predictive

power of the model is maximized. A larger error term reported in much
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of today's research may be partly due to the way in which these predictor

variables are combined in the model, and it is this problem of locating

specific interaction effects between variables, if in fact they do

exist, that is the basis for this investigation. Since AID also

determines the variables most important to the model, its main purpose

in this investigation will be as a screening device to locate those

variables most important to the regression model, thus reducing the

number of possible variables considerably.

AID Algorithm and Objective

The AID analysis is somewhat of a branch and bound procedure using

analysis of variance technique that is useful in studying the inter-

relationships among a set of variables and useful in maximizing

the predictive power of a multiple regression model. Unlike most

multiple regression procedures, linearity and additivity assumptions

are not necessary requirements in the AID analysis.

The AID algorithm accomplishes a sequential division of the entire

data into subsets based on that split which causes the greatest

reduction in the unexplained variability of the criterion variable.

On the first iteration, the entire data base is split into two groups

around that variable which allows for the minimum within-group

variability measured by the sum of squared deviations of the criterion

variable from the group means. On each successive iteration, one of

the existing groups is split in the same manner as in the first step.

This process continues until one of the stopping criteria has been

satisfied.

33

p .



The AID model can be written as:

Ymi " Pi + Emi m 1,2,...,n (34)
i "1,2,...,g

where: Ymi is the mth criterion variable observation in group i

Ui is the ith group mean

emi is the random error of the mth criterion variable observation

in_ group 1

This random error term has the same assumptions as the random error term

ci which was discussed in Chapter II.

An estimate for Ui is Yi, the sample mean of the observations in

group i. Letting Y be the sample mean for the criterion variable, the

total variability in the criterion variable (in AID notation) can be

stated as follows:
g ni

TSST - Z z (Ymi - 5)2 (35)
if1. m1l

This value will be constant for any given set of n observations.

Equation (35) can be expanded to:

g n g n g2 n i
Z Z (Ymi - y) - E (Ym -i) 2 + E E (qi - y)2 (36)

i'l m-1 i-i m-1 i-i m-1

or: TSST - WSS + BSS

where: TSST is the total sum-of-squares for the entire sample

WSS is the within-group sum-of-squares

BSS is the between-group sum-of-squares

The last term can be simplified to:
9

BSS - Ui (1i - )2  (37)
i,1

The objective of the AID algorittm at each iterative step is to

split the groups so that BSS is as large as possible thus making WSS
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as small as possible. A good measure of the goodness of the resulting

model is:

R2  SST 0 < R_2 < (38)

where BSS* is the BSS of the existing groups. As in the multiple

regression case, the R2 value indicates the fraction of the variability

in the criterion variable explained by the regression equation. In

AID, an R2 value close to one indicates that the splitting process has

done a good job of grouping observations with nearly identical values

of the criterion variable.

At each split, equation (34) can be written as:

TSSi = WSSi + BSSi (39)

Using this notation, the AID algoritmn at each iteration can be

generalized as follows:

(1) Select that unsplit sample group which has the largest total

sum-of-squares around its own mean as a candidate for further splitting.

(2) For each predictor variable, find the subset of observations

in the group selected in Step 1 which maximizes BSSi (or minimizes WSSi).

(3) Chose the best partition of observations on a predictor and

split the group using that predictor variable.

(4) Repeat Step 1 until a stopping criteria has been satisfied.

The logic of the AID algorithm can be easily summarized in a flow

diagram developed by Gooch [14] and simplified by McNichols [25] in

Figure 2.
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Select subgroup with largest TSS i

a. Check for minimum group size

b. Check limits on minimum TSSi

NO -Further Splitting Possible?

I
Yes

For each predictor variable:

a. Find the criterion mean for

each predictor value.

b. If nominal variable, sort

predictor values by

criterion mean.

c. Find BSS values for splits

between adjacent predictor

values.

d. Select best split (MaxBSS)

for this predictor

Select best split overall predictors.

Perform split if resulting groups are

large enough. Output iteration

results.

Print Split Summary and AID trees [STOP]

FIGURE 2 Logic of the AID Algorithm
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Stopping Criteria

There are four important stopping criteria used in the AID algorithm

which are indicated by the user.

(1) The maximum number of final groups including those which can

and cannot be further split cannot exceed the value MAXGP or termination

will occur.

(2) The number of observations in each group that is split cannot

be less than the value NMIN.

(3) The total sum of the squares in a group, TSSi, cannot be less

than P1 percent of the total sum of squares for the entire sample, TSST.

Numerically speaking, P1 < TSSi/TSST.

(4) Any split must reduce the original within group sum of squares

by P2 percent or the AID algorithm is terminated.

Gooch suggests that:

P1 > .01

P2 > .005

MAXGP < 90

NMIN > 5% of the total number of observations

Analysis of the AID Output

One of the main features of the AID package is the three diagram

which graphically describes the splitting process of each of the groups.

The structure of these trees is very important in determining the nature

of the variable interactions in the model.

Sonquist and Morgan describe two basic structures or shapes of

the trees, the trunk-twig structure, and the trunk-branch structure.

The truck-twig structure allows only one of two groups split to be split

again. The group that is not split is classified a final group.
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There are three basic types of trunk-twig structured trees: top

termination, bottom termination, and alternating termination (See

Figure 3). The top termination structure is referred to by Sonquist

as an "alternative advantage" model, where the nature of the advantage

is determined by the characteristic which split the group. In this

structure, those groups in the upper branches always have a higher

mean value than the lower branches, and once formed, these upper branches

cannot be split any further.

5 a. TOP TERMINATION

" " b. BOTTOM TERMINATION

c. ALTERNATING
6 TERMINATION

4?

FIGURE 3 Trunk-Tvig Structured AID Trees
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Sonquist refers to the bottom-termination structured tree as an

"alternative disadvantage" tree, where the nature of the disadvantage is

determined by the characteristic which split the group. In this case,

the lower branches once formed, cannot be split further.

In the alternating termination structure, the interpretation can

be viewed as a combination of the two preceding structures whereby the

importance of a split depends solely on the characteristics of the

variable which split the group.

The trunk-branch structure is analogous to the trunk-twig structure

except that each group split is a candidate for further splitting. This

type of tree structure is typical of the first few splits in any AID

tree. Once the first few splits on a group have been made, the structure

usually exemplifies that of the trunk-twig structure.

Besides the structure of the tree, the symmetry of the tree, or

lack thereof, concerning the extent to which the same variables appear

in a split on various trunks is important also. Non-symmetry implies

that an interaction exists. Also, if a variable is split on one trunk

and shows no indication of reducing the predictive power in another

trunk, then there is a clear evidence of an interaction effect between

that variable and those used in the preceding splits. The predictive

power of each variable in a group is evaluated by the statistic BSSi/TSSi

and is shown on the selected AID output in Appendix D. This statistic

represents the proportion of the variation in the group to which the

predictor variable is being applied that would be explained if that

group were split.
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Preparation for the use of AID

In order to use the AID computer package, several important steps

had to be followed. First of all, the data had to be transformed so that

an integer format could be used to describe each data element in a six

place field. Since many variables were calculated to as many as 13

decimal places, those variables had to be multiplied or divided by a

specified factor of 10 and then truncated. For example: LSC/OH was

multiplied by 104 then truncated, so LSC/OH(27) - 26.63122286176 became

266312.

It is possible that by reducing the number of significant places,

round off errors and non-comparible values would result.

Secondly, all data points for each variable had to be sequentially

ordered and placed into groups or categories of equal size. (See Table VIII)

This is done so that when the groups are split by AID, each mean will be

stable with respect to the elements in that group.

After the data is transformed to the proper form, the computer

deck can be formed. The itemized input is described in Appendix C.

Results

As stated earlier, the important parameters in the AID input are

P1, P2, NMIN, and MAXGP. Many attempts with various combinations of

these parameters were made and are described in Table IX.

In the first four runs NMIN was set to 4, which means that no

groups will be split unless there are at least 8 data points in that

group (4 for each subgroup split).
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TABLE VIII

Sequential Ordering of Variables

Variable No. Recode

FGTNAV 1 0 LESS THAN
1 1 OR OVER

BONNAV 2 0 LESS THAN
S1 OR OVER

CARNAV 3 0 LESS THAN
S1 OR OVER

FGTSEN 4 0 LESS THAN 1
1 1 OR OVER

BOMSEN 5 0 LESS THAN 1
S1 OR OVER

FGTCOM 6 0 LESS THAN 1
S1 OR OVER

BOBCOM 7 0 LESS THAN
1 1 OR OVER

UNIT PRICE 8 0 LT. OR EQ.TO 2241
1 2242 TO 3914
2 3915 TO 8410
3 8411 TO 19274

19275 OR OVER

VOLUME 9 0 LT. OR EQ. TO 275
1 276 TO 560
2 561 TO 1377
3 1378 TO 1734
4 1735 OR OVER

WEIGHT 10 0 LT. OR EQ. TO 850
1 851 TO 1500
2 1501 TO 3600
3 3601 TO 4900
4 4901 OR OVER

COMPONENTCOUNT 11 0 LT. OR EQ. TO 88
1 89 To 399
2 400 TO 911
3 912 TO 1186
4 1187 OR OVER
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TABLE VIII (Cont'd)

Variable No. Recode

PERCENTDIGITAL 12 0 LT. OR EQ. TO 50
1 51 TO 440
2 441 TO 550
3 551 TO 870
4 871 OR OVER

PERCENTANALOG 13 0 LT. OR EQ. TO 240
1 241 TO 740
2 741 TO 750
3 751 TO 990
4 991 OR OVER

PERCENTEM 14 0 LT. OR EQ. TO 5
1 6 TO 20
2 21 TO 140.
3 141 TO 760
4 761 OR OVER

PERCENTPS 15 0 LT. OR EQ. TO 5
1 6 TO 80
2 81 OR OVER

PERCENTXMTR 16 0 LT. OR EQ. TO 100
1 101 TO 190
2 191 TO 250
3 251 OR OVER

PERCENTSS 17 0 LT. OR EQ. TO 230
1 231 TO 860
2 861 TO 975
3 976 TO 995
4 996 OR OVER

POWERDIS 18 0 LT. OR EQ. TO 60
i 61 TO 150
2 151 TO 270
3 271 TO 500
4 501 OR OVER

BITFIT 19 0 LT. OR EQ. TO 5
1 6 TO 40
2 41 TO 130
3 131 OR OVER
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TABLE VIII (Cont'd)

Variable No. Recode

Ic 20 0 LT. OR EQ. TO 1
1 2 TO 5
2 6 TO 77
3 78 OR OVER

SRU 21 0 LT. OR EQ. TO 3
1 4 TO 9
2 10OTO 12
3 13 TO 16
4 170OR OVER

QPA 22 0 LESS THAN 2
1 2 OR OVER
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TABLE IY

Result of AID Runs

Run Number

Parameters 1 2 3 4 5 6 7 8

P1 .015 .01 .0015 .001 .005 .015 .01 .005

P2 .015 .01 .0015 .001 .005 .005 .005 .005

NMIN 4 4 4 4 3 3 3 5

MAXGP 30 30 30 30 30 30 30 30

.617 .617 .683 .683 .94 69 .64 .9

Variables*

AN X x X X X X X X

w x x x x x x x x

cc x x x x x x x

CARNAV X X X X X X x

XMTR x X X X X x

PD X x X X X X

UP x-

*Those which AID determined.
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This value was lowered to 3 in the following 3 runs. Notice that

when NMIN was increased to 5 in run number 8, R2 decreased from .694

in run number 8 to .596. So indeed, these parameters are important

in modeling decisions.

The two best runs (based on highest R2 values) were runs 5 and 7,

where number 7 contains three parameters recommended by Gooch. Run

number 7 was chosen as the test case to build the regression model

used in this research and two approaches were developed from this run.

The AID tree and results for run number 7 are described in Figure 4

and Table X.

Since the main objective of using AID is to reduce the total

number of variables used and only choose those which are most important

to the regression, a choice can be made as to where to stop considering

variables for analysis purposes.

If the analysis is stopped when N reaches 4, then three variables

remain: V, W, and AN. Considering interaction terms or cross produce

terms, six variables can be used: V, W, AN, V.W, V.AN, and W.AN.

Another choice would be to stop considering variables for analysis

when N reaches 3. In this case, 7 variables remain, V, W, CC, PD, AN,

XMTR and CARNAV. AN and XMTR can be considered partial indicators

in the sense that they can be represented as indicators (0 or 1) where

zero indicates that AN or XMTR equals zero and the value one indicates

that AN or XMTR is greater than zero. These indicator variables

are referred to in the analysis as IAN and IXMTR. CARNAV is a pure

indicator (either 0 or 1). In this case it was decided to use

interaction terms between the first six original variables and the
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Figure 4 AID Tree for Run No. 7
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TABLE X

AID Tree Results for Run No. 7

GROUP VARIABLE RECODE MEAN STD. DEV, N R2

1 - - 13687.90 15871.88 63 -

2 V 0 1 2 6708.97 7352.77 38 .294

3 V 3 4 24295.88 19133.53 25 .294

4 AN 1 3 4 11667.33 9052.37 9 .435

5 AN 0 2 31399.44 19640.68 16 .435

6 CC 1 3 4 25506.08 9193.78 12 .540

7 CC 0 2 49079.50 29540.98 4 .540

8 W 0 1 3 4 4040.72 4309.02 29 .595

9 W 2 15306.67 8460.32 9 .595

10 CARNAV 0 21670.25 9449.06 8 .617

11 CARNAV 1 33177.75 4745.71 4 .617

12 CC 2 4 6328.60 3030.33 5 .638

13 CC 1 3 18340.75 9629.98 4 .638

14 AN 3 4 6313.67 1385.32 3 .661

15 AN 0 1 2 19803.17 6763.90 6 .661

16 PD 4 17311.25 7900.37 4 .670

17 PD 2 3 26029.25 6508.13 4 .670

18 XMTR 0 1 2957.56 3052.07 25 .684

19 XMTR 2 3 10810.50 4820.07 4 .684

20 PD 1 4 16137.67 4832.67 3 .689

21 PD 2 23468.67 6417.00 3 .689

22 W 1 3 943.50 670.84 12 .694

23 W 0 4816.69 3208.98 13 .694
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three indicators variables. A total of twenty-three variables are

created in this case. A list of both sets of variables created in

this case are listed in Table XI.

In order to decide which model should be used, each set of

variables was run through the IMSL-RLEAP (Leaps and Bounds) program

described earlier. Using 2 as a criterion, the 23-variable model

explained 71.8 percent of the variance with 17 of the 23 variables,

while the 6-variable models only explained 50.1 percent of the variance

using all six variables. See Appendix D for a selected AID output

and Appendix F for a selected Leaps and Bounds output.

Next a log transformation was made on the 23-variable model

and run through Leaps and Bounds, and, surprisingly, the results did

not show an improvement over those of the untransformed data. Thus,

the untransformed 17 variables chosen by Leaps and Bounds were accepted

as those AID determined most important. This model will therefore

be used in the cross-validation experiments to follow. This 17-

variable model is described in Table XII.
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TABLE XI

Variables in the Two AID Models Considered

Model 1 Model 2

V V
AN W
w cc

V.W PD

V. AN AN

W .AN XGMTR

CARNAV

V. CARLNAV

W CARNAV

C.CARNAV

PD*CARNAV

XMTlR.CARNAV

V. IAN

V*IXMTR

W. IAN

W.- IXMTR

CC- IAN

CC. IXMTR

PD* IAN

PD. IXMTR

AN. IXMTR

XMTR. IAN

IAN
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TABLE XII

AID Regression Model Determined by Leaps and Bounds

17
LSC/OH - Bo + E Bi Xi

i-

R2 - .718

i Bi  Xi  Partial-F

0 2.658290567 -

1 - .155899 x 10- 2  V 11.7804

2 - .779107 x 10-1 w 22.7635

3 .105464 x 10-2 PD 5.52895

4 .961796 x 10-1 XMTR 8.75757

5 .261128 x 101 CARNAV 7.58031

6 .700891 x 10-1 W.CARNAV 14.4932

7 - .506175 x 10-2 PD.CARNAV 18.0098

8 - .267022 x 10-1 AN*CARNAV 7.62132

9 .878194 x 1o-3 V.IAN 9.5718

10 - .12007 x 10-2 W.IAN 17.8296

11 .143445 x 10-2 W-IXMTR 3.85888

12 .204243 x 10-2 CC.IAN 12.2973

13 - .112446 CC.IXMTR 13.4675

14 .21432 x 10- 2  PD.IAN 15.1695

15 - .402166 x 10-2 PD.IXMTR 22.0968

16 .153848 XMTR.IAN 8.40514

17 - .547619 x 101 IXMTR 7.77109
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V Cross Validation, Conclusions and Recommendations

Cross Validation

Three equations developed by Pulcher and one developed by

Westinghouse have been reviewed, and one model developed by AID

has been analyzed. All have been based on the old Westinghouse

data collected in Phase I containing 63 data points.

A cross validation procedure was used to determine how well

these old models predict the new 71 data points contained in the

Phase II.

The first step was to use the new data in each of the old models

to find the cross validation SSE and SST. They were then used to find

the cross validation R2 described in Chapter II. A summary of

results is given in Table XIII.

In both the Westinghouse model and the AID model, the cross

validation SSE was greater than the SST. This would tend to imply

that neither of the two models predict the new data very well. This

is a surprising result especially for the Westinghouse model.

One possible explanation for this is that the Westinghouse model

was developed in such a way that much of the idiosyncrecies of the

data were explained. Notice the vast difference between the first

model described in Table IV and the second described in Table V. This

could also be the reason why the AID model failed to predict the

new data.

51

PP WPOW.W



TABLE XIII

Cross Validation Results

Model c.v. SSE SST c.v. R2

L & B - i2 157.9096802275 1227.701363 .3065053361

L & B - C p 112.4418454273 227.701363 .50618720

SPSS 89.457779054 227.701363 .6071269467

Westinghouse * 227.701363 *

AID 1755.2523798

* c.v.SSE was greater than SST
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The best model determined by the cross valtdation criterion was

Pulcher's SPSS model which had a c.v. R2 value of .607 (see Table XIII).

Using those variables, updated coefficients have been computed

(see Table XIV). This new model using the old variables and just

the Phase II data has an R2 value of .780 indicating that 78% of

the variance in the dependent variable is explained by the model.

With the complete set of data (134 data points) 70.9% of the variance

was explained by the model. Table XV describes this model. (See

Appendix E for selected outputs from SPSS.)

Conclusions

A review of past research indicates that much literature is

available on criterion in the selection of variables in a multiple

regression thus indicating that it is an important subject not only

for mathematicians or operations researchers, but is important to

anyone attempting to develop valid models both for description and

prediction purposes. As a result, these criteria give the statisticians

a useful index of how well various models fit the data, however,

experience shows that the result of using a single criterion should

not be accepted as a final answer, but should be used with other

available statistics and individual's intuitive judgement in

developing a sound analysis.

This cross validation R2 value was useful in evaluating the

prediction capabilities of the five models discussed. The three

models which used log transformed data and were developed by

Pulcher for description purposes on the old Westinghouse data
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TABLE XIV

Pulcher's SPSS Model fitted to the New Data Points

in LSC/OH - o + Z aiDi + Z Ojo In xj + Z Z OjiD i in xj

i j ii

2 .67923 R2 - .78004 F - 7.73752

Variable Name Coefficient Partial-F

UP .36000615 .17946696

w .60315963 .43885436

SS 1102.0708 280.30031

NB 8.2056618 17.346404

SF -.33287310 .39887747

SB .99001459 .83450842

DIG -1.3736140 2.5219780

EM 2.6000225 1.6961873

PS .12680075 .31751393

NF * UP .13008302 .15751183

NF * CC -.13099197 .22804494

NB * UP -.34773058 1.1390687

* NB V - -

NB * W -.75005236 2.6271934

DIG * V -.14280299 .60250900

DIG * W .49276704 .61187387

AN * UP .06467638 .13817898

AN * W -.13646127 .43869986

EM* V -.35382193 .25552978

XMTR * CC -.36370529 .46191312

XMTR * SS 531.35247 667.96390

BF * W .0559571 .2229430

BF * SS 59.533507 207.10304

Constant -10.43849 1.4928598

**Removed from the equation by SPSS.
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TABLE XV

Pulcher's SPSS Model Variables fitted to the Entire Data Set

(Phase I & Phase II)

In LSC/OH ao + E *Di + E Eo in xj + E Z Oj± Di in xj

± j -i

j2 . .64868 R2 - .70944 F = 11.67717

Variable Name Coefficient Partial-F

UP 7.1760834 2.6076596

W - .58168533 2.8060750

SS - .31049321 .45804725

NB - .12129190 .00539864

SF -1.0966765 .78704103

SB .20884626 .69860270

DIG .16839348 3.1550771

EM .50533178 16.807697

PS .43488570 2.1115964

NF * UP .036039607 .13695163

NF * CC - .048746736 .11610925

NB * UP - .11413454 .22280423

NB * V -1.7249398 2.2502326

NB * W 2.17249398 2.2513077

DIG * V - .19976096 .23782540

DIG * W .32683368 .50702946

AN * UP .024885722 .0627402

A * W .032724716 .012309140

EM * V .14565893 .59932259

XMTR * CC .29069072 7.6961250

XM4TR * SS - .38171889 5.9613262

BF * W .028545024 .31109000

BF * SS - .008700618 .0471961

Constant - .70977903 85.146786
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had adequate predictive capabilities; the other two models (the

Westinghouse model and the AID model) were determined not to have very

good predictive capabilities.

The Automatic Interaction Detection Algorithm was useful in

prescreening important variables and reducing the total number of

variables to be used in a multiple regression, however, it did not

prove to be the best technique in developing regression models, for

the maximum R2 value was only .780.

Recommendations

In his research, Pulcher used the Chow Test as a screening device

to determine the most important variable subset using a Product of

Powers model. However, one assumption in using the test is that of

equal variances on the error term. In future analysis, I would

recommend the use of a technique developed by Jayatissa [21] of Tests

of Equality Between Subsets of Coefficients in Two Multiple Regressions

assuming unequal variances. This can be used as a prescreening device

to locate important variables. Then stepwise regression procedures

using SPSS can be used to develop a multiple regression model.

To the personnel at the Avionics Laboratory, I would recommend

that cross validation studies be made to insure that models developed

by contractors be able to predict new data so that new models do not

have to be developed every time new data is obtained.

All techniques used on this analysis were based on minimizing

the sum of squared errors. The many criterion for selection of

variables mentioned in this report should be given further consideration.
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APPENDIX A

LRU Description

No. LRU-ID AIRCRAFT DESCRIPTION

1 71B20 F4E Amplifier, Computer

2 73530 F4E Ballistics, Computer

3 71LBO F4E Receiver-Transmitter

4 71HKO F4E Platform, Gyro, Stab.

5 7IPKO RF4C Receiver-Transmitter

6 71PBO RF4C Amplifier, P.S. RCVR

7 71710 RF4C P.S. Leveling, Amplifier

8 724G0 RF4C Power Supply

9 71G50 RF4C Computer, Navigation

10 71FAO F15A Amplifier, Electronic

11 71FBO F15A Gyroscope, Displacement

12 71CAO KC135A Receiver-Transmitter

13 71DAO FI5A Receiver-Transmitter

14 71ABE B52H Receiver

15 71ADA B52H Receiver-Transmitter

16 73DBA B52H Receiver-Transmitter

17 71ACC B52H Receiver

18 73CBO B52H Amplifier

19 73CEN B52H Computer, A2 and EL

20 73CFK B52H Receiver-Transmitter

21 73DAH B52H Amplifier, Electronic Control

22 73EBA B52H Amp, Astrotrack, Servo

23 73EBF B52H Signal Amplifier

*24 71CA0 F15A Receiver

25 72EAA KC135A Receiver-Transmitter

26 72ECA KC135A Amplifier, Electronic Control

27 72BPO C5A Measurement Unit, IMU

28 71JA0 C5A Receiver, VHF Navigational

29 71LAO C5A Receiver-Transmitter

30 72DNO C5A Processor Data

* DUPLICATE LRU-ID - Placed on a Different Aircraft
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APPENDIX A

LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION

31 72ACO C5A P.S., Thermal Control

32 7171A C130E Receiver

33 7131D C130E Receiver-Transmitter

34 72RFO C130E P.S. Power Supply

35 72RB0 C130E Amplifier

36 51EAO F15A Computer, Air Data

37 52AAO F15A Computer, Flight Control

38 52ABO F15A Computer, Flight Control

39 63BDO F15A Control Panel, Int Nay

40 71AEO FISA Inertial Measurement Unit

41 71AK10 F15A Control Indicator, Nay

42 74JAO F15A Indicator, Multiple Air Nay

43 74JCO F15A Processor, Signal Data

44 52GAI F106 Amplifier-Interface

45 71JCE C5A Control Panel VHF Nay

46 72AEO C5A Computer-Primary, IDNE

47 72CCO C5A Computer-Analog/Digital

48 71ZAO C130E Receiver-Transmitter

49 71ZBO C130E Digital/Analog Converter

50 71ZDO C130E Control Unit
*51 71ZAO F111D Receiver-Transmitter

*52 71ZBO F111D Digital/Analog Converter

53 71ZCO F111D Control

54 73EGO FlIID Computer, General Purpose

55 73EPO FII1D Converter-Multiplexer

56 73HAO flllD Stabilizer Platform

57 73HCO F1ID Navigational Computer

58 73NAO F111D Indicator, Horizontal Display

59 73NBO F111D Processor, Horizontal Display

60 73QB0 F11D Electronic Unit, Radar

* DUPLICATE LRU-ID -- Placed on a Different Aircraft
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APPENDIX A

LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION

61 73SC0 FI1D Indicator, Digital Display

62 73K3 F1lID Antenna-Receiver

63 73KE0 F11D Amplifier, Power Supply

64 73KFO Fl1D Synchronizer-Transmitter

65 73DDO F111D Computer, Terrain Following

*66 71CAO FBI11A Receiver Unit

67 73EGO FBI11A Computer, General Purpose

68 73HCO FBI1IA Navigational Computer Unit

69 73LAO FB11A Electronic Unit

70 75930 F4E Weapons Release Control

71 74BDO F4E Computer

72 74BF0 F4E Transmitter

73 74810 F4E Gyroscope, Lead Comp.

74 76A10 RF4C Analyzer, Pulse

75 76GAO RF4C Signal Processor

76 74FF0 F15A Processor

77 74FAO FI5A Transmitter

78 74FRO F15A Power Supply

79 74FUO F15A Antenna

80 77ECO B52H Flir Signal Proc.

81 77EE0 B52H Flir Turret Drive

82 77DCA B52H STY Camera, Electronic

83 77DBO B52H STV Turret Drive

84 73CRO F4E Laser Control, Electronic

85 73CGO F4E Two Axis Gimbal Assembly

86 65BR0 F15A Processor, Radar Target Data

87 74FCO FISA Receiver, Radar

88 74FJO PiSA Oscillator-RF

89 74FKO FISA Radar Set Control

90 74FQO FISA Processor, Radar Data

* DUPLICATE LRU-ID -- Placed on a Different Aircraft
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APPENDIX A

LRU Description (Con't)

No. LRU-ID AIRCRAFT DESCRIPTION

91 74KAO F15A Display Unit, Read Up

92 74KC0 F15A Processor Signal Data

93 75AEO FI5A Converter-Programer

94 74CAO F4E Indicator, Control

95 74CBO F4E Indicator, Pilot

96 74CCO F4E Indicator, PSO, 10

97 74FAl F106

98 74EBO F15A Lead Computing Gyro

99 76AEA B52H Transmitter

100 73KAO FB11IA Computer, TFR

101 73PRO F111D Power Supply, LV

102 73PBO Fl1D Processor, Electronic

103 73PDO F1lID Radar Transmitter

104 73PF0 F11ID Signal Data Converter

105 73PMO F1liD Reference Signal Gen.

106 71NAO F4E Receiver-Transmitter

107 71QUo RF4C Receiver-Transmitter

108 63AA0 FISA Receiver-Transmitter

109 65AA0 F15A Receiver-Transmitter

110 63BAA B52H Receiver-Transmitter

il 63CAA B52H Receiver-Transmitter

112 65BAA B52H Receiver-Transmitter

113 61BBA B52H Receiver

114 65BAA KC135A Receiver-Transmitter

115 63AF0 KC135A Receiver-Transmitter

116 63AAO C5A Receiver-Transmitter

117 63121 C130E Receiver-Transmitter

118 63AAA C130E Receiver-Transmitter

119 55ALO C5A Central Multiplex Adapter

120 55AVO C5A Computer Digital, Madar

64



APPENDIX A

LRU Description (Con't)

NTo. LRU-ID AIRCRAFT DESCRIPTION

121 61AAO C5A Exciter Receiver, HF/SSB

122 clAC0 C5A Amplifier/Antenna Coupler

123 61AEO C5A Panel, Control, RF/SSB

124 62AAO C5A Transceiver, VHF Comm

125 63A60 F15A Radio Receiver

126 63BCO F15A Control Panel, Int Comm

127 63BF0 FI5A Control Panel, IFF

*120 61AAO FBIlIA Receiver-Transmitter

129 61ABO FB11IA Amplifier-Power Supply

*130 61ACO FB11IA Control

131 72AAO FB11IA Control, Radar Transponder

132 72ACO FB11IA Receiver Transmitter

133 64211 C130E Intercom Set

134 64212 C130E Control Panel

* DUPLICATE LRU-ID -- Placed on a Different Aircraft
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APPENDIX B: PART 1

LISTING OF PHASE I DATA
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DIG A 01 cM FS X.4T
SS PO 1IT=IT IC SPU Q2FA LSC/OH
UF

22 73E3A L. . .
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8asrf 34., d U "i too , C 13t 0 C63939

23 r 3L.F . ( o
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37.0 130° t.j U,0 3.L 1.3 1.332736 111b447
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2;.0 164uoo.; 39.( 1.0 3.1L25257254178

2. 7 2EC4 . 1 • , L o
23-51. 424. L3. 36 43E,3,

0.9 16 0. 1 . 61to 0 48L2 "3.
2 1 9' 2J1. , 1. L,

A247 419,. 12. : 8,' 'kli ISO

93.3 175o L.,0 03 au I1*. 2.. It o -10 i6 3 1 E
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29 7lLAo 1, ,. L.

34t3 2 1.- 3.,L Er 2t#3s

9o.6 205au LT. 1 '1* 2.L 3.i27228b 1125 F
1o23

30 72'"NT r , U. "o
iJG45.r1. L'it •1 39. &L i,-
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31 72ACu If Jo L.e i

32M 432L 5'. 201IA. *32 71 . . 2Z,
n0 -9, lo .
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N LKU-1D 30'49FR CARGO SF NtOkY CM'3N
UO q W CC
nI!G AN r4 P3 X iTi

SS PD 91TPIT IC S;IJ OPA LSC/OH
UF

33 7'310 '. 1. ,1
2 7 , 113, .. Cu 924.

i, , t v tj V a , 21 ,
001 5., be 9.r u . 3f; 1.0 2*6654)7 9 27 6 26

1.20
34 72F ' 1. Lo u.

1 2 . 3'i 9* 14 Co 13
p, 1 ° eoU 1Jo Ij

sbc .1. 5b. 1 4.f .0 u 3TF-9 12 I19 31.20
35 72Rg 3 1.

2L35, 33C. c, ,3o
j,3 RIBU. ,o. U.G £, 10

1.23
66 71 e 1, ' ,.

2)1f. 27: * "{.3 L 29).
0.0 .:' c . 3. 26 ,

70 7593n , J, , .

lij , 0 7. J.0 i.U 2.' 1.0

2.3u
7 74800 0. . 1 v"

il2-8. ±37 t 3. 7 9L

Go . ) . ,l

2.3073 748 1, . 0 . 5 7 03' u -75f "3 I E3,;.

2.33 6257 l 1. o 1* 1 , ,, o

I. U
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1 3o• 33se- , j. 560 l rJ P , 312 1228121-

7 5 7 6G A U q . . .

".I ,q l'o a '9 40 lie, "1 1,0 2o 25.J 157 57214 L7
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N LRU- I0j 30mgER CARGr SE.NSORY C)MM
UP iI W CC
DIG AN Fv- CS X MT

SS PO RITFIT IC SPU QPA LSU/OH
UF

7u t) 1FF'£. u
220 31. 2 27 4i U 7633.

1I. o0 1300. £1.G 4 2i 370"'^ 8~324.3Ij
2.3910 8 32-477

77 74FAO no 3. Is.

0.00 (In es L1 orJ I'u
-90 27C., -Iqj It.U.~ U it ~ Zo 6 ? 2 35 7-T1u7C
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78 74FHU~ .0 1* L

0. je 1300 iJ4?3756.7

2*.3
79 74FUlu -%o ~ .

I J 2 55& 3 iiCL~ C.

80 77ECO . 1

11. 3 'sL 0. *' of 0
9+07 350e ~ j. 310 u 1. 1.0 1*. 21179123P7

1#31
82 770CA 1 . 1

3L1598. 1223. 2L.a~ 14 '',

If)0. a L~ 143 E73 SoC 3. '+3333 4,,2 7 9
1.33

83 77D91 i. . c.

Ijus. '. V3U 3 1 U s313323 S, I 52 ij3

84 73CRO . . i r

'00 J. 90 Is 13 I~ 1.-U s. ?4 iI1 73524

6. Cu. Jo j 0,u 2. 193 *;61
.83

iLDE T1NAO C~
7131. 13:. 0 Z 6.t,.

37.6~ 2. 1
J .0 0j~ iu 20 35513L 182?i4iL7
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ss PO 3IT--r rIC SFU QF'A LSC/OH
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197 7 lu " 1.

S0 
I1. 2 u

9 6 Z56 
1 °-!' 5517 42 J326 5 GZ430
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p~. 7.. .. t- 37. 
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72 9i Z 75

110 63SAA i, . , 1.
35*, . 9. jj 1143.

0.0 V 2 '. 1

23*n 5 5 b. uoJ ,d le 3,4 •1 70 i

Il 6 3 'J
11 1 I , L. 1.3o SO 0.0 

T.. 7. 
2 

17G.3.

1 9 30

2 3. '] %2 . 3 9 1 .Z ~ 1~ J 3 b 2

11Z 6594A 1 . 1.33L4 
12 23: 5, ,

31.0 
1...• 

7 
C13 

±2.f 2.0
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10* Itsr c, 
I, U, 25C232 6 61. 3 .0 l ! . . 1
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N LRU-10 3nm8ER 0ARGO SE4SO-Y CJM 4
UP v W CC
DIG at) EM FS X NTF,

SS P 3IT;'£r IC S!-.U QPA LSC/OH
UF

117 32i o .3.12
33 + 1So ; , '-9°ab 1I13.

2393 FO Uo Vo ] 0u a 7.[ C 1.0 i.*P 2-4L 7749e53
1.20

116 65AAA I'o l L ,

I-),.+ , 1. 35. c,3 a LloU 1.70 1( 1* 0,223U 3 1i 50 (f A V
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13. 2 C1 It " .. 1S
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ILI .u 13 1. o 12S 12.1 .P1 512 68,11586
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2314. 7t, 2,u 7 .
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N LRu-In 30MBER CA!:GO SENI. (YY CJMM
UD V W Cc
DIG AN E4 P S X tiT,:

SS PD SIT"IT IC SrfU OPA LSC/UH
UF

44 52GAi. . . t i.
4,1. 2 . ?aU 27;9.7.0 'T h.J. b.j (-'o o

10 go 25. 3.6 7.. Io0 061 C-6 326 35 r"6 18
3.1
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1.20. 72?AEj r. 1 0 :
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8!.o 0 . 70. '* 10 92~~~~
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015 AN E0 XiiTF
SS PO SITrT IC SPIJ OPA LSC/OH
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50.0 Ve0 iis 1~ r.15d2 .2

340533. 3iU . ~'L L 2';.-
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57 73HCJ is r, Le

&1.7 39. io' 0~3
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5b ?3NAJ ~ .~ . . U.
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5 3 a 82 r , 27obL 2:29
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2,30

65 ?3KK3 C, q, Lo L,251 7, 622, 160 11b 315: ,t
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91.3 12. Z 3.0 3r 1.0 3.4393S 2w5i±5

8"J ? tFX~i re "1o Is 0.
4F27;, 11l .  3o 3L 2,.

930.3 200 uj 8.0 i.r l.e 15f63441?rOLC
2.3,

78

tr

1r ,; -..,
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134.0 e)37* Neou 2392.0 31o( 1. o0 7.973956157S9525
2.,33

56)337.o 232F 38* Lt- 522o
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96 14.CCO io 641. L
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2.30
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99.8 LoU .2 0 s
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10 06 5300~. . 4 . 3140. 7

103 1.~q0
134 4j72. 03a . 721*
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q 45 8. 0. 2. 1.,j ;.653a12Uc
140 60300
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1.20 o0 26 312~r,

SR 1 1 1 too £9.1

1030 29 , .,40j 2 ,0a 2 .1
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0 1 a 4 E M PS X tl K
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123 6iAEj I. 1 . 1
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124. 62AAD ( .is I o i
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3301 o.b r 39.! 10
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UP V W Cc
DIG A N EM PS XH.F
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UF

13 4 b4212 a. I* 1- 10
* 51. 204e 1330

coo " I o): 8ol0,1(*
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APPENDIX C

ITEMIZED INPUT FOR AID*

*Extracted from McNichols [251
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APPENDIX C

Itemized Input for AID

1. Title Card

Card
Column(s) Use Description

1 Card Type Must contain the numeric value "I".

2-49 Job Title Up to 48 alphabetic and/or numeric
characters used to label the run.

50 IRUN Numeric "0" for normal AID operation

51-56 NCPERM Number of cases in the data file. May
be omitted when data is from a disk or
tape file,

79-80 IFPM The number of cards used for the FORTRAN
format statement (the next card or set of
cards in the control card deck). Up to 4
cards may be used.

2. FORTRAN Foramt Card(s)

Card
Column(s) Use Description

1-78 Data FORTRAN format statement beginning with a
Format left parenthesis and ending with a right

parenthesis. Only integer fields of the
form: 1w, where w is the number of characters
used to describe a variable, can be specified.
The characters: X can be used to skip columns,
T to tab to a desired character position, and
/ to indicate the beginning of a new record
for multiple record cases. Warning: be
careful not to extend the format statement
beyond column 78 as these characters are
not processed by AID. If more than 78
characters are needed for the format
statement, use another format card and
change the count in column 80 of the title
card.
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APPENDIX C

Itemized Input for AID (cont'd)

3. Description Card

Card

Column(s) Use Description

1 Card Type Must contain the numeric value "3"

2-6 Stopping Minimum value of TSSi/TSST to consider
Rule:Pl group i for splitting. (Section 8.2.2,

paragraph 2). A decimal point is implied
to the left of col. 2.

7-11 Stopping Minimum value of BSSi/TSST to permit
Rule:P2 group i to split (Section 8.2.2, paragraph

3). A decimal point is implied to the
left of column 7.

12-16 Stopping Maximum number of subgroups into which
Rule the set of data will be split.
MAXGP

17-21 Stopping Minimum number of observations which must
Rule: be in a group after it is split. Value
NMIN must be at least 2.

22-26 Iteration Number of AID iterations for which detailed
Print: information will be printed. Only sumnary
KSTOP results for iterations will be output after

this point.

27-29 No. of Specifies number of variables to be read
Variables from each case. This will be the total
NV number of variables described by the format

statement.

33 Rewind: Should be the numeric value "1" if input
KRW data is on a disk or tape file, left

blank otherwise.

34 Missing Set to "1" if a case with any out-of-range
Values: predictor values is to be rejected, blank or
IOPT zero otherwise. The "l" value is analogous

to listwise deletion in SPSS, as far as the
predictor variables are concerned. There is
no capability in AID which corresponds
directly to a pairwise deletion option. The
IOPT setting must be considered when
predictor cards (type 4) are coded.
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Column(s) Use Description

37 Input If zero or blank, the data file is assumed
Medium: to be a disk or tape file with the local
ICARD file name "TAPE25". If set to "l", data

is assumed to be on punched cards which
follow the AID control cards.

38 Tree This parameter controls the output of
Control: computer printed tree diagrams summarizing
ITREE the splits. If set to zero or blank, no

diagrams are generated. If set to "l",
only a detailed tree is generated, If
set to "2", both a detailed and a skeleton
tree will be produced.

4. Predictor Card(s)

Card
Column(s) Use Description

1 Card Type Must contain the numeric value "4"
There will be one predictor card for each
predictor variable to be used in the AID
run. However, all predictors described by
the format statement do not need to be used
in the AID run. The NV parameter (card 3)
has a value associated with the number of
variables described by the format statement,

not the number of predictor cards used in
the run.

2-19 Predictor Up to 18 alphabetic or numeric characters
Name used to label the predictors in the AID output.

20-22 Field A variable number which must correspond to
Number the variable sequence provided by the format

statement. This is, the third variable
described by the format statement represents
field number 3 for predictor variable numbering
purposes

23 Predictor Zero or blank for predictors to be treated
Type: as nominally scaled, "" for variables to
KBLl be treated as ordinally scaled. The

example in section 8.1 illustrates the
nature of the treatment of nominal and
ordinal variables in AID.
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Column(s) Use Description

24 Predictor This parameter, used in conjunction with
Definition: the IOPT value on card 3, tells AID how
KBL2 to interpret the values on the remainder

of the predictor card. A zero value indicates
that the range of possible values for this
predictor variable will be divided into
intervals of fixed length. A value of
"" means that the range of values for
this predictor will be divided into
intervals of varying length. When KBL2
is set to zero, minimum and maximum values
and an interval length will be provided.
When KBL2 is set to "1", boundaries for
the intervals into which the range of
predictor values will be divided will be
specified. Figure 8.7 summarizes the
interpretation of IOPT/KBL2 value combinations
and should be referenced in choosing the
desired values and predictor card format.

A. IOPT Equal Zero and KBL2 Equal Zero:

Card
Column(s) Use Description

25-30 Minimum Predictor variable values less than or equal
Predictor to this value will be recoded to an internal
Value:MIN value (recode category) of 00.

31-36 Maximum Predictor variable values greater than or equal
Predictor to this value will be recoded to the highest
Value:HAX recode category value used for this predictor.
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Column(s) Use Description

37-42 Interval The length of the range of values for
Length: this predictor to be recoded into a
INT single recode category. The recode

Predictor Card Provides:
a) Minimum value of predictor--

MIN
Blank/Zero: b) Maximum value of predictor--
Recode Equal MAX
Interv 18 c) Interval length--INT

1 Note: Number of intervals:
• KBL2 ](MAX-KIN)/INT + 1

Values < MIN recode to 00
One. Values > MAX recode to highest
Specified Recode recode category
Categories

Blank/Zero: Predictor Card Provides:
Retain Cases a) Upper boundary for each
With Out of predictor value range
Range Predictor b) Recode values (00 to 39)
Valuer for each predictor value

range

Oe: Predictor Card Provides:
Reject Cases a) Minimum value of predictor--
With Out of MIN
Range Predictor Blank/Zero: b) Maximum value of predictor--
Values Recode Equal MAX

Inte als c) Interval length-INT
Note: Number of intervals:

KL21 (MAX-KIN)/INT
Values <MIN or >MAX lead

One: to rejection of case
Specified Recode
Categories

t r'Predictor Card Provides:
a) Minimum value of predictor

variable
b) Upper boundary for each range

of predictor values
c) Recode values (00 to 39)

for each range of predictor
values

Predictor Card Coding: Interpretation of IOPT/KBL2 Values
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APPENDIX C

Itemized Input for AID Ccont'd)

Card
Column(s) Use Description

category assigned to a specific predictor
value between the MIN and MAX value will
be:

Recode Categor- Predictor Value-MIN
INT

The number of recode categories will be:

NCAT - MAX-MIN + 1INT

The highest numbered recode category will
be NCAT-l, and values greater than or equal
to MAX will be assigned this value.

44-45 In a basic application of AID, each of
53-54 these pairs of columns should contain the
62-63 value "-1". These columns can be used in

conjunction with other predictor card
parameters to alter the recoding process by
assigning specific recode categories to
specific numeric values of the predictor
variable. Since this is a less often used
capability, it will not be discussed in detail
here.

B. IOPT Equal Zero and KBL2 Equal One:

25-27 Lowest A value between 00 and 39 which is the numeric
Recode value to be used internally by AID to represent
Category predictor variable values less-than-or-equal-

to the first specified input value.

28-33 First A value of the predictor variable--used with
Specified lowest recode category.
Input Value

34-36 Second A value between 00 and 39 which is the value to
Recode be used internally by AID to represent
Category predictor variable values strictly greater

than the first specified input value, and
less-than-or-equal-to the second specified
input value.
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APPENDIX C

Itemized Input for AID Ccont'd)

Card
Column(s) Use Description

37-42 Second A value of the predictor variable-- used
Specified in conjunction with the seond recode category
Input as the boundary of the predictor variable
Value values to be recoded to the value specified

by the second recode category.

43-45 Third A value between 00 and 39 which is the
Recode value to be used internally by AID to
Category represent predictor variable values

strictly greater than the second specified
input value and less-than-or-equal-to the
third specified input value.

46-51 Third A value of the predictor variable--used in
Specified conjunction with the third recode category.
Input
Value

52-54 Fourth & The descriptions of these field are comparable
61-63 Fifth to those given for the first, second and

Recode third recode categories and specified input
Categories values.

C. IOPT Equal one and KBL2 Equal Zero:

25-30 Minimum Predictor variable values strictly less than
Predictor this value will cause the case to be rejected.
Value:MIN

31-36 Maximum Predictor variable values greater than or equal
Predictor to this value will cause the case to be rejected.
Value:MAX

37-42 Interval The length of the range of values for this
Length: variable to be recoded into a single recode
INT category. The recode category assigned to a

specific predictor variable between MIN and
MAX will be:

Recode Category -Predictor Value-MIN
INT
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Colwj.s) Use Description

The number of recode categories will be:

MAX-MINNCAT -
INT

44-45 In a basic application of AID, each of these
53-54 pairs of columns should contain the value"-l".
62-63 These columns can be used in conjunction with

other predictor card parameters to alter the
recoding process by assigning specific
recode categories to specific numeric values
of the predictor variable. Since this is a
less often used capability, it will not be
discussed in detail here.

D. IOPT Equal One and KBL2 Equal One:

25-27 Recode Used only when more than one predictor card is
Category required to describe the predictor variable.

On the first predictor card for a variable this
field should be blank.

28-33 First Predictor variable values less-than-or-equal-
Specified to this value will cause the case to be
Input rejected.
Value

34-36 Second A value between 00 and 39 which is the value
Recode to be used internally by AID to represent
Category predictor variable values strictly greater

than the first specified input value, and less-
than-or-equal-to the second specified input
value.

37-42 Second A value of the predictor variable associated
Specified with the second recode category.
Input
Value

43-45 Third A value between 00 and 39 which is the value to
Recode be used internally by AID to represent predictor
Category variable values strictly greater than the second

specified input value and less-than-or-equal-to
the third specified input value.
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Column(s) Use Description

46-51 Third A value of the predictor variable associated
Specified with the third recode category.
Input
Value

52-54 Fourth & The descriptions of these fields are
61-63 Fifth comparable to those given for the first,

Recode second, and third recode categories and
Categories specified input values.

5. Criterion Card

1 Card Type Must contain the numeric value "5"

2-19 Criterion Up to 18 Alphabetic or numeric characters
Name used to label the criterion variable in the

AID output.

20-22 Field A variable number which must correspond to
Number the variable sequence provided by the format

statement. That is, the third variable
described by the format statement represents
field number 3 for criterion variable
identification purposes. The criterion
variable does not have to be the field which
is physically last in each case as long as
the proper field numbers are used to identify
predictors and the criterion.

23-24 Weight A variable number representing a weight field
Field in each case, used to weight the values in

AID computations. This field can be left
blank, causing all cases to be equally weighted,
and this is the normal mode of operation.

25-30 Maximum If the criterion variable value is strictly
Criterion greater than YMAX in a case, the case is
Value: rejected. Values up to "999999" can be
YHAX specified for YMAX.
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APPENDIX C

Itemized Input for AID (cont'd)

Card
Column(s) Use Descriptioa

31-36 Hintmum If the criterion variable value is strictly
Criterion less than YHIN in a case, the case is
Value: rejected.
YMIN

37-42 Deletion If the criterion variable value is equal
43-48 Values: to either of these values, the case is

MD1,MD2 rejected. If the use of deletion values
is not desired, or only one deletion value
is desired, setting MD1 and/or MD2 to
values outside the range of YhIN to YMAX
deactivates their use.

6. AID End-Of-Job Card

1 Card Type Must contain the numeric value "9"
Indicates the end of all of the AID control
cards.

t
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SELECTED AID OUTPUT
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