
Bb-AC^C 0S5

Interactive Electronic Circuit Simulation
on Small Computer Systems

by Brian L Biehl

0~/\0f6 CSS

U.S. Army Electronics Research
and Development Command

Harry Diamond Laboratories

Adelphi, MD 20783

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturers' or trade names does not constitute
an official indorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Dots Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

HDL-TM-79-30
2. GOVT ACCESSION NO.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

♦ . TITLE (and Subtitle)

Interactive Electronic Circuit Simulation on
Small Computer Systems

7. AUTHORf»;

Brian L. Biehl

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

5. TYPE OF REPORT 4 PERIOD COVERED

Technical Memorandum

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERfs)

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

DA
1T16n01A91A . MT1611

' \1L1621 20AH2501

II. CONTROLLING OFFICE NAME AND ADDRESS

Commander
U.S. Army Materiel Development and Readiness Command
Alexandria, VA 22333

U. MONITORING AGENCY NAME 4 ADDRESSf//d/«oron(from Controlllni Olllce)

12. REPORT DATE
November 1979

13. NUMBER OF PAGES

122
15. SECURITY CLASS, (ol thla report)

UNCLASSIFIED

ISd, DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fo/Ui(« Roporl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abttrect entered In Block 20, II dlllerent from ReportJ

18. SUPPLEMENTARY NOTES

„ „ . rA10796
HDL Project: | A77895 DRCMS:

r61101.91A0011.A1-A1
\612120.H250011

19. KEY WORDS fContinuo on reverse elde II necetemry end Identtly by block number)

Circuit simulation
Computer-aided design
Interactive
Minicomputers
Desktop calculators

20. ABSTRACT fCmrtfiJu* ••» rererme elite H n*c*ae*ry mid Idenllly by block number)
The feasibility is determined of using small computer systems {including programmable desktop

calculators and minicomputers) for interactive electronic circuit simulation. Several aspects of the simulator
architecture are considered: the computer language, the data word format, the computing speed, and the
computer memory configuration.

Interactive circuit simulation on programmable desktop calculators is investigated using simulator
program BIAS-D (BASIC), written in BASIC for an HP9830A desktop calculator. Analysis techniques are
presented which conserve memory and take advantage of the idiosyncrasies of these small computers.

DD .^ 1473 EDITION OF I MOV 65 IS OBSOLETE UNCLASSIFIED
1 SECURITY CLASilFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(H7i»n Data Entend)

Interactive-mode circuit simulation and batch-mode circuit simulation on minicomputers are compared
relative to the simulator architecture and required simulation speed. The more significant speed- and
memory-dependent algorithms used in circuit simulators are compared in detail. Also compared are the
execution speeds of several different minicomputer systems, including the HP2100, the PDP 11 /45, and the
PRIME 400. The speed and memory requirements of these minicomputers executing BIAS-D are compared to
an IBM 370/168 also executing BIAS-D.

A new method for computing small-signal frequency response is introduced. Because complex
arithmetic is not required, this technique is particularly suited to minicomputer simulators and requires
minimal additional memory when implemented in a circuit simulator with a transient analysis capability. The
frequency response of both linear and nonlinear circuits can be modeled, as can that of high-Q circuits.
Magnitude and phase errors of less than 1 percent and 0.5 degrees, respectively, are easily attainable. Speed
ratios between this technique and a conventional ac analysis vary depending on the circuit Q. For circuits
with Q less than 1, this ratio is typically 10:1.

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS PAGEflWiim Data Entered)

CONTENTS

Page

1. INTRODUCTION 9

2. CIRCUIT SIMULATION ON PROGRAMMABLE CALCULATORS 10

2.1 Circuit Simulation—General 10
2.2 Circuit Simulation Using BIAS-D 11

2.2.1 Input Processing 11
2.2.2 Circuit Setup 11
2.2.3 Analytical Procedures 14
2.2.4 Results I7

3. SMALL COMPUTER SYSTEMS FOR CIRCUIT SIMULATION 17

3.1 Minicomputer System 18

3.1.1 Computer Languages 19
3.1.2 Computer Data Word Format 20
3.1.3 Computer Speed 23
3.1.4 Computer Memory Configuration 24

3.2 Programmable Desktop Calculator 24

3.2.1 Calculator Language 25
3.2.2 Calculator Data Word Format 25
3.2.3 Calculator Speed 25

4. CIRCUIT SIMULATION ON MINICOMPUTERS 26

4.1 Simulator Program Operation 26
4.2 Speed-Dependent Simulator Software 28

4.2.1 Test Circuits and Procedures 28
4.2.2 Zero Checking 29
4.2.3 Node Reordering 30
4.2.4 Sparse Matrix Decomposition 31
4.2.5 Processed Element Storage Array 31
4.2.6 Summary of Speed-Improvement Techniques 32

4.3 Memory-Dependent Simulator Software 33

4.3.1 Element Data Storage 33
4.3.2 Sparse Matrix Storage 34

CONTENTS (Cont'd)

Page

4.3.3 Memory Overlay 35
4.3.4 Summary of Memory-Saving Techniques 36

4.4 Comparison of Minicomputer Systems Using BIAS-D 36

5. SMALL-SIGNAL AC FREQUENCY RESPONSE 38

5.1 Traditional Method 38
5.2 Linearized Transieht Analysis (LTA) Method 39

5.2.1 Large-Signal Transient Response 39
5.2.2 Transient Analysis of Linear Circuits 40

5.3 Description of LTA Method 42

5.3.1 Frequency Response of Nonlinear Circuits .43
5.3.2 Solution Convergence at Frequency Point 43
5.3.3 Accuracy of Linearized Transient Analysis Method 44
5.3.4 Comparison with Traditional ac Method 44

6. CONCLUSIONS 48

LITERATURE CITED 49

DISTRIBUTION 121

APPENDICES

A. BIAS-D User's Manual (BASIC Version) and Listing 53

B. Listing of Test Circuits 73

C. BIAS-D Linked-List Storage Structure 77

D. BIAS-D Subroutine Organization 79

E. BIAS-D User's Manual (FORTRAN Version) and Listing 83

FIGURES

1 Flow diagram of input processing for BIAS-D 11

2 BIAS-D input data and results for preamplifier example circuit from an HP9830 calculator . .12

FIGURES (Cont'd)
Page

3 Example circuit showing steps in setup procedure 13

4 Ebers-Moli transistor model 15

5 Nine-node integrated preamplifier example circuit 15

6 Transient analysis flow diagram for BIAS-D 16

7 Transfer curve, dc, for preamplifier example circuit showing BIAS-D, SPICE,
and measured results I7

8 Minimum minicomputer configuration for hosting circuit-simulator programs 18

9 Recommended minicomputer system for hosting circuit-simulator programs 18

10 Flow diagram for interactive batch simulation 27

11 Flow diagram for an interactive circuit-simulator input processor 28

12 Input pulse and pulse response for CKT13 using BIAS-D 29

13 Speed versus circuit nodes for BIAS-D (PRIME 400) using zero test compared with
standard version using test circuits 30

14 Speed versus circuit nodes for BIAS-D (PRIME 400) using node reordering 30

15 Speed versus circuit nodes for BIAS-D (PRIME 400) using sparse decomposition
compared with node reordering 31

16 Speed versus circuit nodes for BIAS-D (PRIME 400) with additional processed-
element storage array 32

17 Comparison of element storage requirements for admittance matrix in BIAS-D

of CKT13 34

18 Comparison of storage requirements for admittance matrix of CKT13 35

19 Memory overlay example for BIAS-D 35

20 Speed overhead of linked-list and sparse storage techniques 36

21 Speed comparison results for different computer systems for transient analysis
simulation using four standard test circuits 38

FIGURES (Cont'd)

Page

22 Flow diagram for traditional ac analysis procedure 39

23 Equivalent circuit for linear time-dependent capacitors or inductors 40

24 Flow diagram of linearized transient analysis (LTA) method for
computing frequency response 41

25 Bandpass filter example circuit 41

26 Sinusoidal response of example circuit to three periods of 100 Hz and three periods
of 110 Hz 42

27 Example circuit sine response for 100 and 110 Hz showing only initial transient 43

28 Sinusoidal response of example circuit at 10 Hz showing total response and
initial transient response 43

29 Frequency response of test circuit CKT10 comparing both methods, computed using
10 points/decade and 20 points/period 45

30 High-Q example circuit 46

31 Frequency response of high-Q example circuit comparing both methods, computed using
100 points/decade and 40 points/period 46

32 Frequency response of high-Q example circuit comparing both methods, computed using
20 points/decade and 20 points/period 47

33 Comparison of frequency response speeds using traditional method and LTA method
in BIAS-D and traditional method in SPICE 2D 47

TABLES

1 Character Symbol Cross Reference between
ASCII, BCD, and EBCDIC codes 20

2 Comparison of Single-Precision Data Formats 22

3 Precision and Range Comparisons: Single-Precision Numbers 22

4 Comparison of Double-Precision Data Formats 23

5 Precision and Range Comparisons: Double-Precision Numbers 23

TABLES (Cont'd)

Page

6 Command Instruction Set from BIAS-D 28

7 Comparison of Test Circuits 29

8 Speed- and Memory-Improvement Algorithms Used in Comparisons 33

9 Summary of Speed- and Memory-Improvement Techniques Implemented in BIAS-D 33

10 Computer System Configuration for Speed Tests 37

11 Comparison of Memory Requirements for BIAS-T9 37

12 Comparison of Computer Speeds for CKT13 (BIAS-T9) 37

13 Summary of Memory Needs for Two Methods 47

1. INTRODUCTION

Electronic circuit simulation has traditionally
been done by batch or semi-interactive batch me-
thods using large host computers. It has been only
within the last two or three years that serious con-
sideration has been given to the possibility of doing
circuit analysis with small computer systems such
as desktop calculators and minicomputers. Pro-
grams such as BIAS-D [1],* MINI-MSINC [2], and
BIASL.25 [3] have been written expressly for these
small computing systems. Although these analysis
programs do not have the analytical capabilities or
speed of simulator programs such as SLIC [4],
ASTAP [5], or SPICE [6,7] used on large computer
systems, they do represent a potentially valuable
design aid for the simulation of small circuits (30 to
50 nodes) [8].

The primary intent of this report is to show the
practicality of using small computer systems for
interactive circuit simulation and to determine the
trade-offs which are necessary to achieve a general-
purpose (ac, dc, and transient) electronic circuit
simulator within the limitations of these small com-
puter systems.

This report shows that interactive circuit simu-
lation is possible on minicomputer systems. On a
dedicated small computer system, the major cost of
interactive circuit simulation is the engineer's or
designer's time. In contrast, in a large computer
system at least an equal cost is contributed by
computer costs. The "interactive" simulation is
emphasized here (as opposed to batch simulation)
since this is the most effective way of completing a
computer-aided engineering design cycle. Compar-
isons of the interactive versus batch simulation
procedures are included in section 4, where the
simulator architecture and the simulator speed are
compared.

One might think that a reasonable initial ap-
proach to developing a circuit simulator for these
small computer systems would be to convert a
program such as SPICE into a minicomputer-

* Numbers in brackets refer to the Literature Cited.

compatible language. There are, however, many
barriers which make this approach both difficult
and uneconomical [9]. Differences in the architec-
tures of large computers such as the IBM's and
CDC's and those of minicomputers such as the
HP's, PDP's, and PRIME'S, as well as computational
speed differences, are the primary contributors to
these programming difficulties. Section 3 includes a
brief description of computer architecture as rela-
ted to circuit simulation.

Most of the work described has evolved in
three phases. The initial work, described in section
2, concentrated on a desktop-calculator simulator,
BIAS-D [1], using a first-generation BASIC language
desktop calculator, the HP9830A. The 16-kbyte
available memory posed a severe limitation (15
nodes, 150 elements) on the size of the circuit
which could be simulated. Although these efforts
were successful in showing that circuit simulation
on programmable calculators is possible, they also
determined that the speed and memory limitations
of these early calculators are too restrictive for a
successful interactive simulator.

The second phase, described elsewhere [10],
involved converting BIAS-D from BASIC into a
minicomputer-compatible FORTRAN IV. Early re-
sults on a PRIME 400 minicomputer attained a
surprising 600:1 speed improvement over the
HP9830A calculator. Significantly more memory
was also available, permitting analysis of 30- to 50-
node circuits at reasonable speed. This FORTRAN
version was used to compare central processor unit
(CPU) speeds of several minicomputer systems: the
HP2100, the PDP 11/45, and the PRIME 400, as
well as the IBM 370/168 [10]. This version of BIAS-
D was essentially a conversion of the original BASIC
version. No attempt was made to incorporate
speed- or memory-saving techniques such as sparse
matrix storage and decomposition.

The third and final phase, described in sec-
tions 4 and 5, brought together, in BIAS-D, the
more significant speed- and memory-saving tech-
niques used in the large computer system circuit-
simulator programs: node ordering, sparse matrix
decomposition, sparse matrix storage, and linked-

list element storage. Detailed comparisons of speed
and memory requirements are made for each of
these techniques (sect. 4.2 and 4.3). The interactive
capabilities of BIAS-D have been enhanced, and
small-signal frequency response has been added;
this was previously unavailable in a general-
purpose minicomputer simulator. Algorithms used
in BIAS-3 [11], SLIC [4], SINC [12], and SPICE [6],
both published and unpublished, were examined
during these efforts.

Section 5 introduces a method for computing
ac frequency response which requires no complex
arithmetic and very little additional memory. This
method uses an extension of the standard transient
analysis procedures used in time-domain simula-
tions. Both this new method and the traditional
method are implemented in BIAS-D for comparison
purposes. Comparisons are made of analytical
speed, memory requirements, and accuracy be-
tween this new method and the traditional
complex-matrix method.

The appendices inc'ude user's manuals and
source listings for both the BASIC version of BIAS-D
for an HP9830A (HP9845) desktop calculator and
the FORTRAN version of BIAS-D. The FORTRAN
version includes ac analysis and will run on almost
any computer system with few if any modifications.
Also included are the four benchmark test circuits
which were used in many of the timed experiments.
A description of the linked-list structure used in
BIAS-D to store circuit elements is given, as well as
a description of the function of each subroutine in
the FORTRAN version of BIAS-D.

CIRCUIT SIMULATION ON PROGRAMMA-
BLE CALCULATORS

Even though the programmable desktop cal-
culator does not have the speed or memory capa-
bilities of minicomputers or large computer sys-
tems, it is still a convenient, low-cost tool for circuit
simulation.

2.1 Circuit Simulation—General

Probably the first general-purpose circuit sim-
ulator for programmable calculators was BIAS-D
[1]. BIAS-D, written in BASIC for an HP9830A with
a 16-kbyte memory, can compute the dc operating
points, small-signal ac gain and input impedance,
and transient response of a circuit of up to 15 nodes
containing resistors, capacitors, current sources,
voltage sources, and npn or pnp bipolar transistors
(15 each). For transistor circuits, BIAS-D converges
to a solution by linearizing the built-in Ebers-Moll
transistor model in much the same manner as that
done in the larger circuit-simulator programs such
as BIAS-3 [11] and SPICE [6].

Subsequently, BIASL.25 [3] was developed for
an HP9825 calculator with 32 kbytes of memory.
BIASL.25 was developed primarily for simulating
metal-oxide-semiconductor (MOS) circuits and
consequently has an advanced built-in MOS
model. Diodes, resistors, capacitors (both linear
and nonlinear), voltage sources, and current
sources are also available. The maximum circuit
configuration of BIASL.25 is not fixed, because
dynamic element allocation is used. A typical cir-
cuit would have 19 equations, 14 MOS devices, 5
diodes, 12 capacitors, 5 resistors, and 10 indepen-
dent sources. The key to BIASL.25's capabilities is a
very fast magnetic-tape cassette on the HP9825
which permits extensive program overlays. This
cassette allows a much larger program within the
limited 32-kbyte real memory. The increased speed
of the HP9825 also makes real-time interaction in
BIASL.25 more practical than in BIAS-D on the
HP9830A. Another feature of these calculators
which made both BIAS-D and BIASL.25 practical
was the use of built-in read-only memories
(ROM's), especially the matrix inversion ROM. The
added speed and memory saving of these ROM's
makes their use in calculators attractive for circuit
simulation. However, incorporation of the features
of these ROM's into the circuit-simulator programs
can greatly alter the architecture of the program.
The use of techniques such as LU decomposition
based on matrix sparsity or sparse storage is no
longer practical. Some of the alternative techniques

10

which can be used are presented in section 2.2. The

analytical procedures used in the BASIC version of

BIAS-D are included here since this was the basis of

the ensuing FORTRAN version.

2.2 Circuit Simulation Using BIAS-D

(BASIC Version)

Any circuit-simulation program can be di-

vided into three major segments; an input proc-
essor, for interpreting the input circuit topology and

error checking; a circuit processor, for reconfigur-

ing the circuit for optimum performance in the

simulator; and the analysis portion, which solves

the circuit equations for each type of analysis.

BIAS-D is written in BASIC for an HP9830A

desktop calculator with a 16-kbyte memory, an 80-

column printer, a matrix-operations ROM, and a

string-variable ROM. However, any calculator sys-

tem which contains the BASIC interpretive lan-

guage could be used. In fact, BIAS-D was run on a
Tektronix 4051 calculator* and an HP9845 with

only minor program changes.

2.2.7 Input Processing

The input language of BIAS-D has been struc-

tured to be easy to use and as interactive as possi-

ble, and yet use a minimum amount of memory.

Whenever possible, the input format has been

modeled after that of SPICE [6]. The circuit data are

entered into BIAS-D in a semifree format—semifree

in that the data must begin in the first column, and a

single space must be used as a delimiter between all

data fields. Since memory is at a premium, the data

images are not stored and, therefore, must be

processed as they are entered. This processing must

be kept to a minimum to prevent an excessive wait

time between data entries. An input flow diagram of

this processing is shown in figure 1. As can be seen

from this figure, the data path through this routine is

determined by the information in one of the first

three columns of each data entry. If a permitted

character other than a dot (.) appears in the first

column, then the ensuing data are those of a circuit

IMTUUZE

vMwafs

HSPIAYFHROR

MESSAGES

ftAT> EIWOBS)-

INPUT
CtnOJIT DAT*

/ENO\
\ST»TIMEHT/

PRHIT

HI
| WSEBT

T / UM \
~~\ DATA /

IffiOHSAMZE I -mr

HBHUBBBH

IMOWS I

UP0A1I
THANS1SI0H

wm

Bt
MPUT

TIME SUP

isffr

ST UP ADMITTANCE
t. CUflHEKT MATTUX

UTOATt
CAPAOTW
cupraiiTS

SOLVE , = ,-' UPDATE
SOUBCES

{CONVERGENCE \

OeTAMED /

I
/ TBANSIENT \ \

\ ANALYSIS /

BWHOlivGLtASr
AND TDANSISmi
OPtBATHIG POUHS

rHCHtMcftT

TIMi

PHNI
TMttltl

'B. Ross, Tektronix, Inc., private communication.

/ A00ITI0NAL \T |
\ ANALYSIS /

Figure 1. Flow diagram of input processing for

BIAS-D.

element (resistor, capacitor, independent voltage or

current source, or model), an END statement, or a

comment statement. If the first column contains a

dot and the second column is a permitted charac-

ter, then the entry is a control statement (Alter,

Insert, Temperature, Transient, Gain, or Output). A

number from 1 to 8 is assigned to a flag variable, F,

depending on which control statement was en-

tered. This flag is used later in the program to

determine which analysis is required. Further data

are requested by the program, if necessary, as the

analysis proceeds. At the end of each analysis,

control is returned to the user for further com-

mands. A sample of this input format is shown in

figure 2 (p 12).

2.2.2 Circuit Setup

After the circuit data have been entered and

the circuit topology reprinted in an ordered format,

BIAS-D then restructures the circuit into a form

suitable for analysis.

11

* PREAMPLIFIER FEST CIRCUIT
Rl 6 1 12880
R2 7 3 7588
R3 4 8 688
R4 7 6 9888
R5 8 8 5888
01 3 1 2 M2
62 3 2 4 (12
83 6 5 4 ri2
04 6 6 5 112
05 7 3 8 (12
V+ 7 8 6.1
VS 9 8 1.8 Ml
RS 9 1 1E8
Nl PUL 1 3 1 36 1 1 1
112 MPH 188 1 5E -15
END

RESI! TORS:
NAME NODES VALUE
Rl 6 1 12008
R2 7 5 7588
R3 4 e 688
R4 7 6 9880
R5 S a 5888
RS 9 i 188880888

V01.THGE SOURCES
MHME +HniiES- VALUE MODEL
V+ 7 0 6, M 8
VS 9 0 1 M 1

TRHH: IST0R3:
NflHE C B E MODEL
Ql 3 1 2 11 2
Q2 3 2 1 M 2
Q3 6 5 4 M 2
Q4 6 6 5 M 2
OS 7 3 8 M 2

NOBELSi
NAME TVPE
111 PUL 1. 300 3.808 1.888E+88 3.888E+81
112 NPH 108. 380 1.000 S.888E-15 1.888E+12

1.000E+06 1.000E+00
0.000E+00 0.000E+00

»»**END OF INPUT DflTft****

ITERATIONS: 10

T= 27 DEC C

NODE VOLTAGES:
V 1
V 2

1.H277
1.2942

V 3 2.5572
V 4 8.6414
V 5 1.2945
V 6 1.8283
V 7 6.1888
V 8 1.9897
V 9 1.0888
TRANSISTOR OPERATING POINIs:
NAME IB IC VBE VBC BETA GM RPI
01 4.594E-0S 4.594E-06 8.533 -8 729 100.00 1.777E-04 5 627E+85
02 4.640E-86 4.648E-04 8.653 -1 263 100.80 1.795E-02 5 571E+83
03 4.699E-0b 4.699E-84 8.653 -8 534 108.88 1.818E-02 5 seiE+es
04 4.652E-e8 4.652E-06 0.534 0 000 188.08 1.888E-04 5 556E+85
05 3.782E-06 3.782E-e4 8.647 -3 543 180.80 1.463E-02 6 83SE+83

.GAIN
INPUT NODE

OUTPUT NODE

GflIN':V.'V)=-9. 733791 498
INPUT IMPEDANCE" 76875.8305

.ALTER
RS 10
END

Figure 2. BIAS-D input data and results for preampli
fier example circuit from an HP9830 calculator.

12

During the element data entries, a node set,
N,, is generated which contains all unique node
numbers in the particular circuit. Since the elements
are entered at random, this node set is not ordered,
but the length is known and equal to the number of
circuit nodes, N (circuit ground, or node 0, is not
included). An additional node set N2, also of length
N, is generated, containing the sequence (1, 2, 3,
. . . N). N, is then ordered into increasing numeri-
cal order. N, and Nj will be used to control the
node mapping between the original circuit and the
newly processed circuit.

The circuit shown in figure 3 will be used as an
example to illustrate the further processing. At this
point the node sets N, and N2 for the circuit in figure

3 a are

N, = [©2 3 5 6@]

N2 = [1 2 3 4 5 6]
(1)

The circled nodes in set N, are the circuit voltage
source nodes. The equivalent voltage source nodes
in N2 are 1 and 6. The source nodes in N2 are then
moved toward the end of N2 by being exchanged
with nonsource nodes. N, and Nj are now

N, = [1 2 3 5 6 10]

N2 = [5 2 3 4 1 6]

(2)

Note that the equivalent voltage source nodes in N2
are now 5 and 6. The circuit element nodes are next
renumbered by converting the original node num-
bers in N, to their equivalents in N2. The results of
this conversion on the example circuit are shown in

figure 3b.

The circuit is now restructured by converting
elements connected to voltage sources into their
Norton equivalents. This is not normally done in the
larger circuit codes but is necessary here to avoid
manipulating the nodal admittance matrix after it is
loaded. For resistors this is accomplished by
grounding the node of each resistor connected to
these sources and adding a Norton equivalent cur-
rent source from ground to the other resistor node;

©O + Vc

vs T a^vc ' A.
2C

2CVS V + IBIJ

fR2 >R1

Figure 3. Example circuit showing steps in setup
procedure.

current source nodes connected to voltage sources
are grounded. A capacitor is represented as a con-
ductance in parallel with a voltage-dependent cur-
rent source, and capacitors connected to voltage
sources are reconfigured by grounding the current
source and treating the conductance as a resistor
element. Transistors are not altered at this time.
Using these conventions, the example circuit
shown in figure 3b can be restructured into that of
figure 3c. Three additional current sources are
added, two for resistors R, and R3 and one for
capacitor Ci. The values of these added current
sources have been stored symbolically, in the form
of either a node number or element value address
location, since either the resistor, capacitor, or
voltage source values may be altered in subsequent
analyses. The circuit is now in its final restructured
form (fig. 3c). The known nodes, those of the
voltage sources, have been eliminated from the
circuit. In the larger circuit-simulator codes, this
elimination is done after the admittance matrix has
been loaded, and it requires partitioning of the
admittance matrix [6]. This is not possible in the
available matrix-operations ROM.

13

2.2.3 A nalytical Procedures

The primary analytical procedures involved in
circuit simulation are the loading and solving of the
matrix equation

Y-V I (3)

The equivalent linear or nonlinear element conduc-
tances must be determined and loaded into the
nodal admittance matrix, Y; the excitation currents
must be determined and loaded into the current
vector, I; and equation (3) must be solved for the
node voltages, V. These voltages are then used to
update Y and I; the procedure is repeated until the
process has converged. This procedure requires the
most analysis time and memory use in a circuit-
simulation program.

Models.—In order to load the nodal admittance
matrix in equation (3), the proper model parameters
must be determined. These parameters can be a
function of time, temperature, or circuit node volt-
ages. In BIAS-D there are five allowable models:
two transient source models, a temperature model,
and two bipolar transistor models (npn and pnp).
For the transistor model, a Newton-Raphson itera-
tive technique is used to determine the parameters.
Each model contains six definable parameters plus
one which indicates its type. The models are desig-
nated by a three-character name as part of a model
entry as follows:

MX YYY F1 F2 F3 F4 F5 F6 ,

where M designates that this is a model with a name
X and type YYY. Fl through F6 are the model
parameters. More details on these parameters and
the transient and temperature models are in the
BIAS-D (BASIC) user's manual in appendix A.

A modified Ebers-Moll [13] transistor model is
used in BIAS-D. A circuit representation of this
model (npn) is shown in figure 4a. The large-signal
terminal currents are given by

IE = -Isd + 1/BF)[exp(VBE/VT)
+ ls[exp(VBc/VT) - 1]
+ lRs[exp(VBE/2VT) - 1]

1|
(4)

lc = ls[exp(VBE/VT) - 1]
+ Isd + 1/BK)[exp(VBc/VT)

IB = It

where

l(

1] ,(5)

(6)

Bp, BR = forward and reverse dc beta, respectively.
Is = short circuit saturation current,

IRS = recombination saturation current, and
Vj = kT/qwith Boltzmann constant, k,

temperature, T, and electronic charge, q.

The last term in equation (4) accounts for the
current dependence of beta at low currents. The
lower collector knee current, lL/ at which BF is half
of its maximum value (assuming high-level injection
effects are negligible in this current range) is [14]

I, BFASZ/IS (7)

In order to include base-width modulation effects,
the saturation current and beta's are multiplied by
the term

(1 + VCB/VA V^ Vr (8)

where VA is the early voltage [15]. During the
analysis procedure, this large-signal model is linear-
ized about the dc operating points determined from
the last computed node voltages. This linearized
equivalent model is shown in figure 4b. The trans-
conductance, gmx, and input conductances, g„x, are
obtained by evaluating the appropriate derivatives
of equations (4) and (5) at the operating points. The
nonlinear junction capacitances are not included in
this model, but could be included as separate linear
capacitors with a value determined by the junction
voltages computed at the circuit operation points.

Matrix setup and inversion.—In addition to the
circuit restructuring, which eliminates the voltage
source nodes as was described earlier, another
method of saving computation time was found. In
this method, the nodal admittance matrix is loaded
as a definite admittance matrix rather than an indef-
inite admittance matrix, which is normally loaded in
a non-sparse-solution method. The memory re-

14

Figure 4. Ebers-Moll transistor model: (a) large-signal
model and (b) linearized model.

quirements for both methods were approximately
the same since the additional coding required to
implement the definite matrix offset the 2N mem-
ory saving because of the elimination of a node. For
the circuit shown in figure 5 the setup and inversion
time for the determinate matrix form was about 25
percent less than that for the indeterminate matrix.

V+ 6.3 ®

Figure 5. Nine-node integrated preamplifier example
circuit.

Convergence.—tor linear circuits, the circuit node
voltages are obtained by a single matrix inversion;
however, for nonlinear (transistor) circuits, BIAS-D
iterates to a solution by updating the transistor
model parameters after each iteration. It is therefore
necessary to determine when the circuit has con-
verged to a proper solution and terminate the itera-
tion process. Ideally, each class of circuit should

have its own convergence criterion; practically,
however, this is not possible.

The criterion used in BIAS-D is similar to that
used in BIAS-M [16]. The criterion uses the square
of the node voltage changes from the previous
iteration summed over all nodes, that is

N
(Vn - Vn_,)2 (9)

where k is the present iteration count, N the total
number of circuit nodes, Vn the present node
voltage at node n and Vn , the past node voltage at
node n. Since S is determined after each iteration,
the values for S at the past two iterations, Sk., and
Sk j, are also available. If, during any three
consecutive iterations, the values of

/WN , and ySk_2/N (10)

are less than 10 pV, then convergence is assumed.
If Sk has increased for three consecutive iterations
and remains below 1 mV, the iteration process is
also terminated with a possible error noted. Other
more elegant techniques, such as those reported by
Nagel [6] and Freret [9], are possible at the expense
of additional speed and memory.

Two other analytical procedures worthy of
mention are those that determine small-signal ac
gain and input resistance and transient analysis.

Small-signal gain and input resistance.—The me-
thod for computing small-signal voltage gain and
input resistance used in large computer programs
such as BIAS-3 and SPICE requires several complex
operations. A dc voltage source is required at the
circuit input node. The value of the source must be
the same as the circuit's dc quiescent operating
point. In a batch-operated environment, this re-
quires an additional computer run. The matrix
equation—equation (3)—is solved for the node
voltages with unity currents entered into the current
vector at the input node locations. The resulting
node voltages are then used to determine the volt-
age gain and input resistance—see equations (11) to

(13).

15

The method implemented in BIAS-D requires
only a simple division and does not need an addi-
tional computer run. No voltage sources are
needed at the input nodes. This method takes
advantage of the true matrix inverse available from
the matrix-operations ROM. After the dc operating
point solution for a given circuit has been deter-
mined, the contents of the admittance matrix, Y
(which has been inverted to obtain the node
voltages), now contains the impedance matrix, Z.
Since the admittance matrix was linearized about
the dc operating points, the resulting impedance
matrix is also linear. This matrix can be used to
calculate the input resistance and gain of the circuit.

The transimpedance between an input port
(node j to datum node) and an output port (node k
to datum node) is

Zki = Vt/lj ,
In = 0 ,
n = 1,2, .
n ^ j ,

(11)

N ,

where Ij is an excitation current. The input imped-
ance at node j is similarly

Zjj = Vj/lj ,
In = 0 ,
n = 1,2,
n ^ j .

(12)

N

The transfer voltage ratio (open circuit transfer
voltage gain) between any two circuit nodes j and k
is found by dividing equation (11) by equation (12)
as

Vk/V, = Z^/Zii (13)

Both Zkj and Z,, are available from the dc operating
point calculations. In fact, the inverted admittance
matrix contains all circuit input resistances and
voltage gains. These are easily obtained with an
interactive program such as BIAS-D.

Transient analysis.—In a transient analysis simula-
tion, the node voltages must be determined as a
function of time. A flow diagram of the transient

analysis procedure used in BIAS-D is shown in
figure 6. In BIAS-D (BASIC), the only time-
dependent element is the capacitor. The voltage
across a capacitor with time is given by

1/C
/

dt (14)

In computer simulation the value of this integral
must be approximated. BIAS-D uses the trapezoidal
integration method [17]. With the trapezoidal me-
thod a capacitor is represented as a conductance in
parallel with a voltage-dependent current source
[18]. The time dependence is introduced by loading
this conductance and current into the admittance
matrix and current vector, solving for the node
voltages, and then using these voltages to update
the equivalent circuit for each capacitor. The local

O

UfOATI

TRAKSJSTOfl

MODEL

FBOM INPUT

Bomw

SET UP ADMrTTAflC£

AM) CUflWKT MATOtt

UPDATE

CAPAOTOfl

CUflfEKTS

SOLVE UPDATE

SOUBCES

<a)l(VEflGENCE \

OBTAINED /
MLHMcNT

TWE

TRANSIENT

ANAtrSK

PBNT

TWt.U)

"BINT NODE VOLTAGES

I TRANSISTOR OPERATING

POINTS

A00IT10NAL

ANALYSIS

TO INPUT

ROUTINE

^STOPJ

Figure 6. Transient analysis flow diagram for BIAS-D.

16

truncation error (LTE) associated with the trapezoi-
dal approximation is proportional to the time-step
squared [19]. Initially (at t = 0 +) this error can be
large, and depends on how the algorithm is started.
In BIAS-D the dc solution is used for the tn_i
solution, and a forced delay equal to the time-step
is used for the tn solution. With this scheme the t
used in the LTE calculations is effectively twice the
time-step—thereby increasing the truncation errors
involved. This procedure was necessary to con-
serve memory.

2.2.4 Results

The amplifier shown in figure 5 [20] is repre-
sentative of the size and type of circuit suitable for
analysis in BIAS-D (BASIC). The input data and
results for a dc analysis of this circuit are shown in
figure 2. The source resistor Rs is initially large to
determine the quiescent dc operating points, input
impedance, and gain. It was subsequently altered to
10 ohms in order to determine the dc voltage
transfer curve shown in figure 7. This figure com-
pares the results from BIAS-D, SPICE 1 (using an
equivalent transistor model), and actual bench
measurements. Results from SPICE agreed to four
decimal places with BIAS-D.

The transient response of this circuit was also
computed. Capacitors of 1 and 10 pF were added
across each transistor collector-base and base-
emitter junction, respectively, to represent collec-
tor junction and base storage capacitances. Results
for a time-step of 50 ps compared closely with
SPICE. The computation times on an HP9830A
calculator for these analyses on this circuit were as
follows:

data input (operator dependent) 2.1 min
circuit restructuring 10.5 s
dc analysis (10 iterations) 2.9 min
dc transfer curve (30 points) 43.2 min
transient analysis (30 time points) 54.2 min

An RCA 3040 integrated wideband amplifier was
also analyzed. This represents the maximum circuit
size for BIAS-D (15 nodes). Results for a dc analysis
of this circuit compared to four significant figures
with SPICE for ail nodes. The total analysis time.

e.Oi-

KEY:

— MEASURED
o BIASD, SPICE

1.2 1.6 2.0 2.4

OUTPUT (Vdc)

2.8

Figure 7. Transfer curve, dc, for preamplifier example
circuit, showing BIAS-D, SPICE, and measured
results.

excluding entering data, for a dc analysis was 25
min (6 iterations).

These results indicate that the simulation
speeds of programmable desktop calculators (at
least the HP9830A) are too slow for practical inter-
active simulation, above the 4 to 5 circuit-node
level. BIASL.25 on the HP9825 offers a significant
speed improvement (approximately 10:1), but the
use of HPL limits its use to the HP9825. Recently
available BASIC language calculators such as the
HP9845 or the Wang PCS-II have greater memory
capabilities and are as fast or faster than the
HP9825. These calculators permit practical interac-
tive circuit simulation at the 10- to 20-node level.

A source listing of BIAS-D (BASIC) is given in
appendix A.

3. SMALL COMPUTER SYSTEMS FOR CIRCUIT
SIMULATION

Small computer systems can be divided into
three distinct categories: the minicomputer, the
programmable desktop calculator, and the micro-
processor. All three systems are capable of circuit
simulation. Only the minicomputer and the pro-
grammable desktop calculator are included here.

17

Each of these systems has its own idiosyncrasies
and application areas. There are several facets of
small computer systems, and in fact all computer
systems, which directly concern the development
of circuit-simulator codes. These are (1) the com-
puter language, (2) the computer data word format,
and (3) the computer speed. Each of these facets is
included in this chapter, in which eight computer
systems are used for comparison; three of these are
minicomputers (an HP2100, a PDP 11/45, and a
PRIME 400), two are large computers (an IBM
370/168 and a CDC 6400), and three are pro-
grammable desktop calculators (an HP9830A, a
Tektronix 4051, and a Wang 2200).

3.1 Minicomputer System

A minicomputer system, as originally con-
ceived, was a small computer system both in size
and cost. Minicomputers began to appear in the
mid 1960's, primarily as controllers for low-cost
original equipment manufacturers (OEM), and have
gradually increased in size and speed. Currently,
some minicomputers are competitive with the mid-
range and even large mainframe computer systems

[21].

Figure 8 shows the configuration of a mini-
mum minicomputer system for hosting circuit-
simulator programs. In this system, the program is
entered into main memory through a punched tape
or magnetic tape. The system console is used as a
terminal to enter circuit data and print out the
results. The addition of a disc would greatly en-
hance the usefulness of this system. It would enable

HOST COMPUTER

MAG, OR
PAPER
TAPE
READER

11 SINGLE USER
OPERATING SYSTEM

21 32 KWORD
RESIDENT MEMORY

I 1

(SYSTEM A
^ CONSOLE J

storage of alternative programs and circuit input cr
output files, as well as allowing the program to be
segmented through the use of overlays. The addi-
tion of several other features to this minimum sys-
tem would make it competitive or superior to the
larger mainframe computer systems. Figure 9
shows such a system. The magnetic-tape unit al-
lows initial loading of programs, as well as long-
term storage of circuit or program files. The system
console, used only for monitoring system opera-
tion, may not be required. The host computer
contains a multi-user operating system which sup-
ports several 300- to 9600-baud remote terminals.
(A baud is the bit transmission rate; 300 baud is
approximately 30 characters per second.) The ter-
minals may be linked to the computer directly (RS-
232) or through modems. These terminals may also
request copies of numerical or graphical output
locally or at the host computer printer/plotter. The
host computer also contains virtual memory
management. This enables execution of large dy-
namically allocatable design-aid programs without
the need for user segmentation. The system operat-
ing speed is enhanced through the use of a small
fast-cache memory which speeds up the computer
throughput. The size of the required real memory
depends on the number of users and their pro-
grams' sizes. At least 64 kwords of memory is
recommended in a multi-user system.

1200
TO
9600
BAUD
LINES

DISC

HOST COMPUTER
WITH

11 MULTIUSER
OPERATING SYSTEM

2) 64 KWORD (MINIMUM!
RESIDENT MEMORY

3) 1 KWORD
CACHE MEMORY

MAG.
TAPE

PRINTER
PLOTTER

Figure 8. Minimum minicomputer configuration for
hosting circuit-simulator programs.

/SYSTEM N
VcONSOLEy1

Figure 9. Recommended minicomputer system for
hosting circuit-simulator programs.

Minicomputer systems have distinct charac-
teristics that make them different from large com-
puter systems. Some of these characteristics are

18

1. smaller word size,
2. slower CPU speeds, and
3. use of an ASCII (American Standard

Code for Information Interchange)
character set in most cases.

Further, minicomputers are economical to run with
a single user; their initial cost is low (usually $10K to
$500K), and they require no special power or air-
conditioning systems. The only characteristics
which directly affect the circuit simulator develop-
ment are the first two.

3.1.1 Computer Languages

There are three basic requirements of a mini-
computer language used in developing a circuit
simulator: (1) the language should be transportable
from one computer system to another with few, if
any, software changes required between systems,
(2) the language should have a relatively fast execu-
tion speed, and (3) the language must be compact
and efficient in order to conserve memory. Pro-
gram transportability is a much greater problem on
small computer systems than on the larger systems
(such as the IBM's and CDC's). Small systems
usually do not have a resident system programmer
to modify software, nor is good software or system
documentation always available.

The execution speed of a program depends
not only on the algorithms used in the program, but
also on the execution speed of the language in
which the program is written. The potential applica-
tions of the program depend not only on the size of
the program but also on how efficiently the com-
piler or interpreter uses memory.

Assembly language.—Assembly language programs
can be 1 to 100 times faster than the same code
written in FORTRAN and also use less memory than
the FORTRAN equivalent, depending on the effi-
ciency of the FORTRAN compiler and the skill of
the programmer. Assembly language code is almost
never transportable to different computer systems.
For this reason, it should not be used as a general
language for circuit-simulator development. In spe-
cial applications, where a short but extremely fast

code is desirable, such as I_U decomposition, it may
be worthwhile to use assembly code written specifi-
cally for a particular machine.

BASIC.—Dartmouth BASIC is available on most
minicomputer systems. BASIC on most systems is
an interpretive language; each line of code is inter-
preted and executed in the exact sequence that it
was written. As a result of this line-by-line interpre-
tation, BASIC is inherently a slow language. For
example, on a PRIME 400 minicomputer, BASIC is
approximately 14 times slower than FORTRAN IV.
BASIC software or hardware decoders can be very
compact (4 to 8 kwords of ROM or random-access
memory—RAM) and, therefore, are well-suited for
programmable desktop calculators. Desktop calcu-
lator languages are described in more detail later.

Two versions of BASIC are usually available
on minicomputer systems: a popular single-
precision version (with 32-bit words) and a double-
precision version, DBASIC (with 64-bit words). Be-
cause circuit simulators require double-precision
word lengths for many calculations [9], the single-
precision BASIC cannot be used. DBASIC makes
very inefficient use of memory in storing single-
precision and integer variables. BASIC (or DBASIC)
makes no distinction between integer and real vari-
ables. Thus, an integer in DBASIC requires four
words of storage when only one word is needed.

In circuit simulators, the use of "string vari-
ables" (alphanumeric characters) is essential. Al-
though string-variable features are becoming more
widely available, string variables are not a standard
subset of BASIC on all computer systems. The use
of BASIC or DBASIC for circuit-simulation programs
is not recommended except when, as with the
desktop calculators, nothing else is available.

FORTRAN /I/.—FORTRAN IV is probably the most
widely used higher-level computer language. FOR-
TRAN is a compiled language; thus, the speed and
efficiency with which this code executes depends
on the particular FORTRAN compiler used. Some
of the smaller minicomputer systems have three-
pass compilers, in which the first pass generates the
assembly or objec.t code on a tape or disc, and the

19

next two passes are needed to convert the assembly
code to machine code. As an example of the
transportability of FORTRAN IV, a FORTRAN ver-
sion of BIAS-D was run on three different minicom-
puter systems and an IBM 370/168 with no
changes in the FORTRAN source code [10]; the
analytical results were the same on all systems.

3.1.2 Computer Data Word Format

Three types of data formats are usually avail-
able in most minicomputer systems: alphanumeric,
integer (fixed-point), and floating point. Each has its
application. The configuration of each of these data
formats determines the magnitude, range, and type
of data which can be manipulated or stored in that
computer system. To show how differences in
these data formats can affect the magnitude and
range of allowable numbers, the data formats of five
computer systems previously mentioned are
compared.

Alphanumeric.—The ability to process alphanu-
meric characters is extremely important in areas
such as circuit simulator input-output languages.
Alphanumeric characters are stored in a computer
word in an ASCII, BCD (binary coded decimal), or
EBCDIC (extended BCD interchange code) code. A
cross reference between these codes is given in
table 1.

Most minicomputer systems use 7-bit ASCII to
represent alphanumeric data. Eight bits are actually
used for this code, with the eighth bit used as a
parity bit. The parity bit is referred to as either
"marked" (1) or "null" (0) parity (the marked parity
notation is sometimes referred to as "8-bit ASCII").
This parity bit is important when programs or data
are transferred between different computer sys-
tems. For example, if the word "NO" were to be
stored in a 16-bit word using 7-bit ASCII in marked
parity it would be represented as a binary

11001110 11001111 (or an octal 147317) ,

whereas if it were stored in null parity it would be a
binary

01001110 01001111 (or an octal 04711 7) .

TABLE 1. CHARACTER SYMBOL CROSS
REFERENCE BETWEEN ASCII, BCD, AND

EBCDIC CODES

Symbol
Format tdecimal)

Symbol
Format (decimal)

ASCII BC) EBCDIC ASCII BCD EBCDIC

(space) 32 16 64 A 65 49 193
| 33 (a; 90 B 66 50 194
" 14 (a. 127 C 67 51 195

35 12 123 D 68 52 196

$ J6 43 91 E 69 53 197

% 37 (a, 108 F 70 54 198

& 38 (ai 80 C 71 55 199

39 (a) 125 H 72 56 200

(40 28 77 1 73 57 201

) 41 60 93 J 74 33 209
• 42 44 92 K 75 34 210

+ 43 48 78 L 76 35 211

44 27 107 M 77 36 212

- 45 32 17 N 78 37 213

46 59 75 O 79 38 214

/ 47 17 97 P 80 39 215

0 48 10 240 Q 81 40 216

1 49 01 241 R 82 41 217

2 50 02 242 S 83 18 226

3 51 03 243 T 84 19 227

4 52 (14 244 U 85 20 228

5 53 05 245 V 86 21 229

6 54 06 246 w 87 22 230

7 55 07 247 X 88 23 231

8 56 08 248 Y 89 24 232

9 57

58

59

09

00

63

249

122

94

z 90 25 233

< (>() 58 76

= 61 11 126

> 62 47 110
? 63 (a) 111

@ 64 (a) 124

''Not permitted

It is possible to convert from null parity to marked
parity (or vice versa) by adding (or subtracting) an
octal 100200 to each 16-bit alphanumeric word.
This cannot be done in ANSII (American National
Standard for Information Interchange) Standard
FORTRAN but is easily done in assembly code.

In the HP2100 [22], PDP 11 /45 [23], and the
PRIME 400 [24] minicomputer systems, alphanu-
meric characters are represented in ASCII format
and stored in a 16-bit word as follows:

20

15 7 • 0
[p][character 1][p][character 2]

where p indicates the parity bits. Two characters
can be stored in a single word. If a single character
is to be stored, it is right justified for the PDP 11 /45
and left justified for the others. The other character
is filled with ASCII blanks (different from zeros).

In the HP2100 and PDP 11 /45/ null parity is
used, whereas, on the PRIME 400, marked parity is
used. The CDC 6400 system [25] uses a 6-bit BCD
code to represent alphanumeric characters. Ten 6-
bit characters are packed into a single CDC 60-bit
word as

59 0
[cl][c21[c3][c4][c5][c6][c7][c8][c9][c10]

If less than ten characters are to be represented,
they are left justified and the remaining characters
filled with BCD blanks.

The IBM 370 system uses 8-bit EBCDIC to
represent alphanumeric characters. EBCDIC is
merely an extension of the 6-bit BCD code and
permits 256 characters rather than the 56 allowed
for BCD. On the IBM 370 system [26], four 8-bit
EBCDIC characters are packed into a 32-bit word
as follows:

31 0
[char 1][char 2][char 3][char 4].

Again, if less than four characters are to be repre-
sented, they are left justified with the remaining
characters filled with EBCDIC blanks.

Integer number.—The integer is used to represent
numbers which do not require decimal fractions. In
most computer systems an integer is represented by
a single computer word. In the minicomputer sys-
tems under discussion, this is a 16-bit word, with
the highest-order bit being the sign bit as

15
[s][

0
number

This can be used to represent an integer number
from -2" (-32768 decimal) to 215 - 1 (32767
decimal) including zero. The IBM and CDC systems

have a similar representation with the IBM 370
using a 32-bit word (sign plus 31 number bits) and
the CDC 6400 using a 60-bit word (sign plus 59
number bits). These larger word sizes allow a much
greater range of integer numbers. However, in
circuit simulation this additional range is almost
never required.

Floating-point numbers.—A floating-point number
is represented by a mantissa (fraction) and a charac-
teristic (exponent). The fraction determines the ac-
curacy of the floating-point number and the expo-
nent to some base determines the range. Both base
2 (binary) and 16 (hexadecimal) are used in mini-
computer systems. There are basically four types of
floating-point numbers: single precision (real and
complex) and double precision (real and complex).
Floating-point hardware is available as an option on
most minicomputer systems. This option always
includes the single-precision hardware, sometimes
the double-precision hardware, but never the com-
plex floating-point hardware.

Single-precision real floating-point number.—
Usually in minicomputer systems two words are
used to represent a single-precision floating-point
number. Table 2 shows the single-precision
floating-point number representation for the
HP2100, the PDP 11 /45, the PRIME 400, the IBM
370/168, and the CDC 6400. Note that in each
case this representation is different. The resulting
precision and range in each case is given as shown
in table 3. Note that the PDP 11 /45 system attains
seven digits of precision with the same number of
bits as the HP2100 and PRIME 400. This is done by
using "hidden-bit normalization" which assumes
that the normalized highest-order bit is always a 1
(unless the exponent is zero) and is, therefore,
unnecessary. This gives an effective precision of 24
bits in the fraction. The large range of the IBM
number is attained by using the hexadecimal num-
ber system rather than binary to represent the
exponent (16M = 1078, whereas 264 = 10'8).

Single-precision complex floating-point number.—
Minicomputer systems which support single-
precision floating-point arithmetic usually support
single-precision complex floating-point arithmetic.

21

TABLE 2. COMPARISON OF SINGLE-
PRECISION DATA FORMATS

Type of system Format'

HP2100 15 0
word 1 [5][fraction]

15 7 0
word 2 [fraction][exp][s]

PDP 11/45 15 6 0
word 1 [s][exp || fraction |
word 2 [fraction]

PRIME 400 15 0
word 1 [s][fraction]

15 7 0
word 2 [fraction |[exp |

IBM 370/168 0 8 31
[s][exponent][fraction]

CDC 6400 59 47 0
[s][exponent |[fraction]

■'s = sign

TABLE 3. PRECISION AND RANGE
COMPARISONS: SINGLE-PRECISION NUMBERS

Computer
Precision
(decimal

digits)

Range
(decimal)

HP2100 6 10" to 1037

PDP 11/45 7 lO"3" to 1037

PRIME 400 6 lO" to 1037

IBM 370/168 6 lO"77 to lO76

CDC 6400 12 lO'307 to lO306

However, this complex arithmetic is usually done in

software (even on the large computers). A complex
floating-point word is represented by two single-

precision floating-point numbers: the first number is

the real part of the complex word, and the second is

the imaginary part. Since the complex number is

actually two real numbers, the magnitude and range

is the same as for the single-precision real floating-

point numbers. On 16-bit per word computers, four

16-bit words are required for a complex number as

follows;

15 0

word 1

word 2

word 3

word 4

real part

imaginary part

On the 32- and 60-bit machines (IBM 370 and CDC

6400), only two words are required, the first for the

real part and the second for the imaginary part.

Double-precision real floating-point number.—The

configuration and execution speed of the double-

precision numbers in minicomputer systems are

very machine dependent. Double-precision hard-
ware or firmware,* if available, is usually an option.

If executed in software, double-precision arithmetic

must be written in assembly or machine code and is

therefore several times slower than its hardware

counterpart. Table 4 gives the double-precision

word configuration for the HP2100, the PDP

11 /45, the PRIME 400, the IBM 370, and the CDC

6400. The resulting precision and range for each of

these systems are given in table 5.

Table 5 shows that the precision and range of

double-precision numbers can vary considerably

between computer systems—more so than the

single-precision numbers.

It is the size of this double-precision word that

limits the maximum circuit size. It has been shown

that with a well-conditioned set of equations,

round-off error can reduce the number of signifi-

cant digits by a factor

1 +2(logN),

where N is the number of circuit nodes [6]. Three to

six significant digits are required for circuit simula-

tion. For all computers listed above, it should be

possible to solve a 50-node equation, and on all but

the HP2100, a 1000-node equation. Techniques

* Firmware is used here to mean software which has been
implemented in microcode or read-only memory.

22

TABLE 4. COMPARISON OF DOUBLE-
PRECISION DATA FORMATS

Type of system Format

HP2100 15
word 1 Ml fraction bits
word 2 1

15

fraction bits
7

word 3 [fraction][exp

POP 11/45 15 6
word 1 |sl(exp][fraction
word 2 f fraction

word 3 1 fraction
word 4 1 fraction

PRIME 400 15
word 1 [sl[fraction
word 2 f fraction

word 3 1 fraction

word 4 1 exponent

IBM 370/168 0 8

1 0

IN

31

CDC 6400

word 1 ls][exponent][fraction
word 2 [fraction

59 47
word 1 [s][exponent][fraction
word 2 [s][exponent][fraction-"

'LSB

TABLE 5.
COMPARISONS:

PRECISION AND RANGE
DOUBLE-PRECISION NUMBERS

Computer

Precision
(decimal

digits)

Range
(decimal)

for minimizing round-off error, such as pivoting

[27] or those developed by Freret [9,28,29], can be

used to increase this node capability. Since the

interest here is at the 30- to 50-node level, the use

of these techniques is not necessary.

Double-precision complex floating-point num-

ber.—Although most minicomputer systems offer

double-precision floating-point arithmetic in hard-

ware or firmware, double-precision complex arith-
metic is not available. Double-precision complex

arithmetic must be done as a software subroutine

call. The primary disadvantage is the resulting

speed of operations. Implementation of double-

precision arithmetic on software is 10 to 100 times

slower than implementation on hardware or firm-

ware. Sometimes, it is possible to implement this

arithmetic into a writable control store (WCS) or

microcode (usually an option) which is essentially a

programmable read-only memory (PROM). For ex-

ample, to execute a single- or double-precision

software complex divide represented as

C = A/B = (AR + jAl)/(BR + jB,) , (15)

where R indicates the real part of the complex and I

the imaginary part, the resulting real and imaginary

parts of C must be computed separately as

CR = (ARBR + AIBI)/(B^ + B?

C, = (ARBI - A|BR)/(B? + Bf)

(16)

(17)

HP2100 10 io-37 to io3" 1.

POP 11/45 17 io-37 to 10" 2.

PRIME 400 13 io-'"5 to 10"" 3.
IBM 370/168 14 IO"77 to 107'

CDC 6400 27 IO"307 to io30'

These operations require six double-precision mul-

tiplies, two divides, two adds, one subtract, and one

store.

3.1.3 Computer Speed

The speed of operation of a minicomputer

system depends on several factors:

the configuration of the system,

the language used,
the type of arithmetic executed and
mode of implementation (software,

firmware, or hardware),
type of memory (core, bipolar, or

MOS) and its access speed, and

CPU clock speed. 5.

All the above factors determine the execution time

of a particular program.

23

The system configuration affects the overall
speed of each job. If a single user is running on a
multi-user system he is penalized in actual run time
(not necessarily in CPU time) because of overhead.
If several users are on a multi-user system and the
computer becomes compute- or memory-bound,
all users will be penalized in overall run time. The
language used and how this language is managed in
the particular computer system can greatly affect
the run time. An interpretive language will always
be relatively slow. The speed of a compiled lan-
guage is determined in part by how efficiently the
compiler-generated machine code executes; this
efficiency depends in turn on the efficiency of the
basic machine instruction set. The type of arithme-
tic being executed also can affect the total run time.
If the execution times on a PRIME 400 of an
assembly ADD instruction are compared for an
integer ADD, a single-precision floating-point ADD,
and a double-precision floating-point ADD, they
would be in the following ratios.

Arithmetic Speed ratio Implementation

Integer
Single-precision

floating point
Double-precision
floating point

hardware
firmware

firmware

These ratios indicate that, on a PRIME 400, integer
arithmetic should be used wherever possible. This
is generally true for all computer systems.

It is difficult to compare the overall speeds of
different computer systems since, as was just men-
tioned, there are many variables which affect this
speed. To compare computer systems for use by
circuit simulators, the best comparison is to run a
circuit-simulator program. Such a speed compari-
son of four computer systems (an HP2100, a PDP
11 IAS, a PRIME 400, and an IBM 370/168) is given
in section 4. This comparison is made using a
FORTRAN version of B1AS-D which runs on all
systems with no source code changes.

3.1.4 Computer Memory Configuration

Another basis for comparison of minicompu-
ters is the configuration of the memory. All present-

day computer systems use two types of memory
storage: small, rapid-access, relatively expensive,
resident-memory storage, and large, slow-access,
disc- or tape-memory storage. The procedures for
managing these two types of memory can greatly
affect the operation of the computer system.

There are two basic memory management
schemes: real memory management and virtual
memory management. Real memory management
restricts the user to a segment of the total available
memory (usually 32 kwords). Within this segment,
the user can control his own memory management
through the use of overlays to disc memory. Virtual
memory management |30], in theory, allows the
user the advantages of both types of memories.
That is, it permits a large memory to be addressed at
access times of the fast memory. In a virtual mem-
ory, "pages" are moved in and out of resident
memory as required. With this memory system,
overlaying of program segments is not necessary.
This results in a program which is easily transporta-
ble to other virtual or large-memory computer sys-
tems. In the computer systems compared previ-
ously, only the PRIME 400 minicomputer and the
IBM 370/168 have virtual memory management.

3.2 Programmable Desktop Calculator

Programmable desktop calculators began to
appear in the mid-1960's, at about the same time as
the minicomputers. The development of these cal-
culators was relatively independent of the mini-
computers. It has been only since the appearance
of the "super" calculators such as the HP9830,
Wang 2200, and Tektronix 4051 that the minicom-
puters and calculators could speak a common lan-
guage—BASIC. Although the computing power of
desktop calculators approaches or exceeds that of
small minicomputers, there are still definite differ-
ences in these systems. Some of the distinguishing
features of the desktop calculators are as follows.

1. The keyboard is an integral part of the
computer.

2. The computer language is permanently
stored in the machine either in hard-
ware or firmware (ROM).

24

3. The programming language is an inter-
pretive language (at present).

4. The desktop calculator comes as a turn-
key* system.

Desktop calculators, unlike minicomputers,
do not provide a wide choice in input language,
data word size, or computational speed.

3.2.1 Calculator Language

In the presently available programmable cal-
culators, the programming language is not an op-
tion. It is permanently stored in the calculator.
There are presently only two minicomputer-com-
patible languages, BASIC and APL, available on
these calculators. Other languages are hybrids be-
tween BASIC and an assembly language. For exam-
ple, HPL (Hewlett Packard Language) is used on the
HP9825. All calculator languages are presently in-
terpretive languages. This means that each line of
the program is interpreted and executed line by line
exactly as it was written. Calculator languages
therefore are relatively slow when compared with
compiled languages.

The BASIC language implemented in the desk-
top calculators is a superset of Dartmouth BASIC.
Several features have been added which greatly
enhance the usefulness of BASIC. String-variable
operations (comparable to alphanumeric or Holler-
ith characters in FORTRAN) are available either in
factory-added hardware/firmware or as a user-
added plug-in ROM. Other plug-in ROM's allow
matrix inversion with a single line of code in a tenth
the time required in software. Also available are
other features, such as bit and byte manipulations,
data packing and unpacking, or variable data word
lengths.

3.2.2 Calculator Data Word Format

Two types of data word formats are generally
available on the programmable calculators: string
variable and numerical.

The string-variable word is used to store or
manipulate alphanumeric data. Seven-bit ASCII is
used to represent these data, and a single character
requires eight bits as in the minicomputers. The
Wang 2200 system [31] permits storing or "pack-
ing" of numerical data into string-variable arrays,
which enables high-density data storage.

The numerical data word is used to store
integer and floating-point data. The data word does
not differentiate between integer and floating-point
numbers. Except for dimensioned variables in the
HP9830, all numerical data require four 16-bit
words for storage and arithmetic operations. This
gives 13 to 14 decimal digits of precision and a
range of 10-'" to 10" for the HP9830A [32] and the
Wang 2200 and 10"306 to 10305 for the Tektronix
4051 [33]. The HP9830A permits specifying full-
precision, split-precision, and integer-precision
words in dimensioned variables. These require 64,
32, and 16 bits, respectively, for storage. The result-
ing precision and range for each of these words is
affected by the shorter word length.

3.2.3 Calculator Speed

The computational speed of the desktop cal-
culator is not as dependent on the calculator config-
uration as is that of the minicomputer. The calcula-
tor systems are always single-user systems with
hardwired or firmware interpretive programming
languages. In some cases, the addition of special-
function ROM's could significantly change the
computational speed of a particular set of opera-
tions, but in most cases the calculator speed is only
a function of the clock cycle time.

As a comparison of the relative speeds of
these calculators, a simple loop containing a multi-
ply and divide operation was executed 10,000
times. The resulting normalized speeds were as
follows.

Calculator Normalized speed

*A turn-key system is a system that is ready to use as soon
as it is delivered and turned on.

HP9830A
Wang 2200
Tektronix 4051

1.0
0.48
0.45

25

As an indication of the speed of these calculators
compared with a minicomputer system, the execu-
tion speed of a FORTRAN version of BIAS-D run-
ning on a PRIME 400 minicomputer is 500 to 600
times faster than a similar BASIC version of BIAS-D
running on an HP9830A desktop calculator.

4. CIRCUIT SIMULATION ON
MINICOMPUTERS

Present-day minicomputer systems have or
exceed the capabilities of the large computer sys-
tems of five or ten years ago. Even so, certain
limitations in both minicomputer hardware and
software must be considered for present-day circuit-
simulator development. Hardware aspects of the
minicomputer circuit simulators were presented in
section 3. This section is oriented toward the soft-
ware aspects of circuit-simulator development.

A large simulator program, such as SPICE, can
be converted to run on a minicomputer system.
Later in this chapter results are given from SPICE2,
run on a PRIME 400 minicomputer.* The conver-
sion of these programs from the larger computer
systems to minicomputer systems is not always
practical, however. Many of these small systems
have limitations (such as 32-kword program bound-
ary limits) that make this approach difficult and
uneconomical.

Another program in which this conversion
was successfully done was Mini-MSINC [2]. Mini-
MSINC, developed for an HP2100 minicomputer
system with a DOS III operating system, was de-
rived from TIME [34], SINC [12], and MSINC [35],
all developed for large computer systems. To fit
Mini-MSINC into the 32-kword memory of the
HP2100, it was necessary to overlay memory
through five overlay segments on disc and to exten-
sively modify the common array allocation with
linked lists [30]. Mini-MSINC is probably the most
widely used minicomputer circuit-simulator pro-
gram at this time. It can do a dc or transient analysis
of MOS circuits containing over 100 nodes and 100
active devices. Although Mini-MSINC has been
restricted to. the analysis of MOS circuits, it is

presently being updated to analyze bipolar transis-
tors and to perform ac and statistical analysis.*

Simulation speed is an important consider-
ation in choosing the type of simulation program to
be used (batch mode or interactive mode). In order
to make this choice, it is necessary to determine the
computational speeds of different minicomputer
systems using a circuit-simulator program. This can
best be done with a circuit-simulator program that
is compatible with all systems being evaluated.
Comparisons of both the speed and memory re-
quirements of several computer systems using
BIAS-D are given in section 4.4.

The architecture of the circuit-simulator pro-
gram is influenced by three basic areas of software
development. These are

1. simulator operation,
2. simulator speed, and
3. simulator memory requirements.

Interaction between each of these areas represents
trade-offs which can affect one or both of the other
areas. For example, a software routine that could
greatly increase the simulation speed may also
require significantly more memory. In the large
computer systems these trade-off problems are less
significant than in minicomputers. The large com-
puter systems usually sacrifice readily available
memory for speed. On many of the larger systems
there is no penalty for using this additional memory.
On the minicomputer systems, additional memory
is not always available and is at a premium. Trade-
offs must be made which hold program memory
requirements within a given bound at the expense
of either the simulator operation or simulator speed.

4.1 Simulator Program Operation

There are basically two types of circuit-
simulator operation: batch and interactive. Both are
software oriented.

In the batch mode, the program or data are
entered into the computer through a "hopper"
which is linked directly to the computer. Results are

"M. Payne, PRIME Computer Corp., private
communication.

*R. W. Dutton, Stanford University, private
communication.

26

returned on a high-speed line printer. No inter-
action with the program is possible in the batch
mode.

Variations of the batch mode include the re-
mote batch and interactive batch modes. The re-
mote batch mode is similar to the batch mode,
except that the hopper and printer are remote,
linked by high-speed communication lines or mo-
dems (4,800 to 120,000 baud). In the interactive
batch mode, an indirect interaction with the pro-
gram is possible through the use of disc files and an
editor. Here, a low-cost terminal is tied to the host
computer, usually through standard telephone lines
and a low-speed modem (110 to 1200 baud).
Figure 10 shows the input processing portion of a
circuit simulator using the interactive batch mode.
Here a previously generated circuit data file is
entered into the program. The data are processed
and checked for errors. Data errors terminate the
job. If the circuit is error free, the circuit is set up
and analyzed, and the resulting output is stored for
future printing or plotting. If a circuit change is
required or a new circuit file is to be generated, an
editor must be used, as shown in figure 10. Once
the circuit file has been updated or generated, it is
stored in memory (disc) and the circuit simulation
restarted.

Circuit simulation using the interactive batch
mode of simulation, although superior to batch, is
still awkward. This is especially true for small mini-
computer systems which have crude editors.
SPICE1 and SPICE2, as they were originally written,
were intended for use as batch mode simulators.
Some modified versions of these programs, such as
ISPICE [36], are interactive batch oriented.

The interactive mode simulator is significantly
different from the batch mode circuit simulator,
which has little or no interaction. The interactive
simulator allows direct interaction with the pro-
gram. An input flow diagram of an interactive
simulator input processor is shown in figure 11.
Here the data are entered, processed, and checked
for errors one line at a time. Syntax errors are
immediately flagged, allowing the data to be reen-
tered. When the data entry is complete, the circuit

(b)

3

(PUniHMIT J

Figure 10. Flow diagram for interactive batch simula-
tion: (a) input processor and (b) typical editor.

is set up and analyzed by the computer. An inter-
rupt flag, set by a predetermined keyboard entry,
can stop the analysis at any time and return to the
input portion of the program. Outputs are either
printed or graphically displayed on the terminal as
they are computed. At the end of an analysis, the
program may be terminated or returned to the input
processor. To better illustrate the flexibility of the
interactive simulator, the command instruction set
from BIAS-D is given in table 6, along with a brief
description of each command.

These commands can be used at the end of
any analysis and allow freedom in the simulation
procedure. This enables the type of analysis or
circuit modification to be determined pending the
outcome of the previous analysis.

Although an interactive circuit simulator is
desirable, it is not always practical. If a computer
system is so slow that the engineer or designer must
wait several minutes or hours for the simulation
results, and then respond to these results, an inter-
active simulation should not be used. In this case a
batch simulator is best. The computational speed

27

INPUT LINE OF
DATA OR
DATA FILE

INFnJT
PROCESSOR

NO

CIRCUIT SETUP
(IF REQUIRED)

ANALYSIS

YES ^INTERRUi
JUG

YES ^MORE
ANALYSIS'

c ERROR
MESSAGE

YES

3

PRINT

PLOT

Figure 11. Flow diagram for an interactive circuit-
simulator input processor.

breakpoint between the interactive simulator and

batch simulators is discussed in section 4.4.

TABLE 6. COMMAND INSTRUCTION SET
FROM BIAS-D

Command Description

.AC Initiates ac analysis

.ALTER Permits altering or sweeping
element values

.END Terminates present circuit analysis and
initializes memory for new circuit

.INSERT Permits insertion of any circuit element
or elements (including models)

.LOAD Permits loading of circuit data from a
disc file

.PRINT Prints present circuit topology

.SAVE Saves present circuit on disc file

.TEMP Permits analysis of circuit at
temperatures other than 27 C

.TRAM Initiates transient response analysis

ing simulation speed are discussed here. The solu-

tion of the matrix equation YV = I for the circuit

node voltages represents a significant portion of the

memory and speed required for a simulation. Zero

checking, node reordering, and sparse decomposi-

tion are three techniques which can be used to

speed up this solution. BIAS-D was used to evaluate

the effect of these techniques and others to be

described subsequently.

An initial test version of BIAS-D did not use

any speed- or memory-improvement techniques.

The matrix equation was solved with a standard

double-precision LU decomposition with forward

and backward substitution [6]. This will be referred

to as the standard version of BIAS-D.

4.2 Speed-Dependent Simulator Software

The relative speed of a circuit simulation pro-

gram is very dependent on the algorithms used.

Some of the more significant techniques for improv-

4.2.1 Test Circuits and Procedures

Four test circuits were used to compare the

analytical speeds of BIAS-D modifications de-

scribed in this section. These test circuits were all

28

modifications of the same test circuit used in sec-
tion 3 to test the BASIC version of BIAS-D. Dia-
grams of these circuits and input listings are given in
appendix B (fig. B-l through B-4). The initial circuit
(CKT10) is a 9-node, 5-transistor integrated pream-
plifier circuit. Capacitors were added across the
collector-base and base-emitter junctions of each
transistor to represent the transistor junction capac-
itances. CKT10 does not include any bulk resistors,
but the other three circuits were obtained from
CKT10 by successively adding resistors to the base
(CKT11), collector {CKT12), and emitter (CKT13) of
each transistor in this circuit. The element count,
number of nodes, and sparsity of each of these
circuits is given in table 7.

TABLE 7. COMPARISON OF TEST CIRCUITS

time/iteration = B X 10 m X Nodes
(18)

These circuits were used in all subsequent
speed comparison tests. The computational speed
tests were conducted with 101 timepoints of a
transient simulation run on a PRIME 400 minicom-
puter with a PRIMOS IV (revision 13) operating
system. The input signal for all tests was a single
unity amplitude voltage pulse at node 9 of the test
circuits. A plot of both the input pulse and output
waveform for CKT13 is given in figure 12. A single
test run determined the CPU time per iteration for
each of the four test circuits by dividing the total
CPU time by the number of iterations. The final
analysis times for each run were determined by
averaging these CPU times for three runs. The final
data plots were obtained by fitting these results to a
least square fit. A semilog fit of the nodes and log
time per iteration produced results with the best fit
(largest correlation coefficient). The equation for
this fit is of the form

where 10B is the y-axis intercept and m is the slope.
The objective of the following tests is to minimize
both this intercept and slope. The standard version
of BIAS-D was successively modified to include the
six speed and memory enhancements described
subsequently (BIAS-T1 to BIAS-T6).

NODE 6

Circuit
Nodes

Elemen count Percent
sparsity

<

Name R C V Q O >

CKT10 9 5 10 2 5 55

CKTIl 14 10 11 2 5 70

CKT12 19 15 1 1 2 5 74

CKT13 24 20 11 2 5 79

6.00

5.00

4.00

3.00

2.00

1.00

OUTPUT

X r

/

J
k

\lNPL T

/ -1.00
0 0.17 0.33 0.50 0.67 0.88 1.00

TIME(sx lO"6!

Figure 12. Input pulse and pulse response for CKT13
using BIAS-D.

4.2.2 Zero Checking

The first modification to BIAS-D (BIAS-T1)
involved a simple modification in the matrix inver-
sion process. This modification simply checked the
value of an admittance matrix location for zero
before an operation was performed. An operation is
defined as a multiplication and a subtraction (as
xy - z) in the decomposition process. Both x and y
can be checked for zero; if a zero is found, either
that operation or an entire row (or column) of
operations may be omitted. This procedure was
used in early versions of BIAS-3 [11] and SLIC [4].
Since, in circuit simulation, the admittance matrix is
always sparse (i.e., more than 50 percent of the
entries are zeros), significant time could be saved at

29

the expense of checking each entry for a zero value.
On the PRIME 400 minicomputer there is approxi-
mately a 15:1 CPU time saving between computing
a single zero check and a single operation (in
double-precision arithmetic). The order in which
the circuit nodes are numbered can also determine
whether a single operation or an entire row of
operations is skipped. A Markowitz reordering [37]
scheme can be used to determine a near optimum
circuit node ordering. Figure 13 compares the CPU
time per iteration versus circuit nodes for the stan-
dard test program with no modifications, and BIAS-
T1 with the zero checking modifications. Several
results are given here: those from (1) the standard
version of BIAS-D, (2) BIAS-T1 with zero checking
with random circuit-node numbering, and (3) BIAS-
T1 with the near optimum node ordering as deter-
mined from a Markowitz reordering scheme. The
Markowitz scheme was not actually implemented
in the test program at this time, but was used only to
determine the new node orders. The circuit nodes

z
O

a o

0.01
20

CIRCUIT NODES

were renumbered according to this order before
being entered as input data. All results were ob-
tained from a 101-point transient analysis of the
circuits as described in section 4.2.1.

The results in figure 13 indicate that zero
checking is always faster than the standard method
for any arbitrary node order. It also indicates that
there can be a noticeable difference in analytical
speeds owing to the manner in which circuit nodes
are numbered, unless a node reordering scheme is
used.

4.2.3 Node Reordering

If the Markowitz reordering algorithm is im-
plemented in the simulator program as part of the
setup procedure, then (as indicated in the previous
section) the analysis speeds will no longer be de-
pendent on the operator-assigned node ordering.
Markowitz reordering is used in BIAS-N, which is a
later version of BIAS-3 [11] and SPICE2 [6]. Figure
14 shows a comparison of the speeds of the test
circuits with the Markowitz reordering scheme ac-
tually implemented in BIAS-D (BIAS-T2) and also
the best and worst cases from the test program with
only zero checking implemented (fig. 13). It should

ZERO CHECK
WITH SAME NODE
ORDER AS REORDERING

Figure 13. Speed versus circuit nodes for BIAS-D
(PRIME 400) using zero test compared with standard
version using test circuits.

20

CIRCUIT NODES

Figure 14. Speed versus circuit nodes for BIAS-D
(PRIME 400) using node reordering.

30

be noted that the node reordering scheme imple-
mented here does not always generate an optimal
node order. This can be seen in figure 14 for the 19-
node speed data (CKT12). The "optimal" node
order generated for this circuit is actually worse
than the original node order (discussed again in
sect. 4.2.4). Figure 14 indicates that there is only a
minimal, if any, speed penalty in the analysis time
for using the reordering scheme; however, addi-
tional software and memory are required to imple-
ment this reordering scheme. The cost of this addi-
tional overhead is given in section 4.3.

4.2.4 Sparse Matrix Decomposition

If the matrix LU decomposition process is set
up such that "pointers" indicate the matrix location
of the next nonzero value for each operation, the
time required for a zero check can be eliminated.
This pointer system would also permit storage of
only these nonzero terms. In order to set up this
pointer structure it is necessary to perform a "mock
decomposition" of the admittance matrix. This
mock decomposition again requires additional soft-
ware and memory. BIAS-D was modified (BIAS-T3)
to include this sparse decomposition. This decom-
position process includes a Markowitz reordering
algorithm similar to that used in BIAS-T2. However,
the reordering scheme incorporated in the mock
decomposition results in a more efficient reordering
than in BIAS-T2 because the matrix "fill-ins" are
counted during the mock decomposition process.
These fill-ins were not determined in BIAS-T2 since
the mock decomposition was not required in that
matrix reduction. Sparse matrix storage was not
implemented in BIAS-T3. Figure 15 shows a com-
parison of the analytical speed on a PRIME 400 of
the sparse decomposition version of BIAS-D with
that of the several previous versions. As can be seen
in this figure, the sparse decomposition process
represents a significant increase in speed. Some of
this speed increase can be attributed to the more
efficient reordering just mentioned.

4.2.5 Processed Element Storage A nay

Another apparent speed-up procedure, cur-
rently used in several circuit-simulator programs

o

m

I-

8

0.01

CIRCUIT NODES

Figure 15. Speed versus circuit nodes for BIAS-D
(PRIME 400) using sparse decomposition compared
with node reordering.

[2,4,6,12], is the storage of a processed-element
array. This array contains the present conductance
values to be added to the admittance matrix. The
equations used to compute this array value are
different for each element and are given for linear
resistors, capacitors, and inductors as

Resistors (1/R)Tc (19)

Capacitors (2C/A)Tc (20)

Inductors (A/2L)Tc (21)

where R is the resistance value, C the capacitance
value, L the inductance value, A the present time-
step, and Tc the temperature multiplication factor
(Tc = 1 at 27 C). For resistors, this array need only
be computed once for each analysis. This is also
true for capacitors and inductors unless a "time-
step control" [6] is used in the transient analysis

31

procedure. In this case A may vary with time,
requiring updating of the processed array during a
transient analysis.

8IAS-T3 was modified to include this double-
precision processed-element array (BIAS-T4). Equa-
tions (19) through (21) were used to load this array
once for each transient simulation (BIAS-T4 does
not use time-step control). Figure 16 shows the
results from BIAS-T4 for transient simulations of the
standard test circuits using the PRIME 400 mini-
computer. Also plotted in figure 16 for comparison
are the results without this array. Surprisingly, for
CKT13 there is less than a 0.5-s speed improvement
in the 101-point transient analysis because of this
array. After a second look, however, we can see
that this small improvement is all that should be
expected. The approximate PRIME 400 assembly
language instruction speeds are 26 ys for a double-
precision multiply, 33 ps for a divide, and 2.5 us for
a store. Test circuit CKT13 contains 10 capacitors

0,08

o
F <

1
i~
a o

0.01 20
CIRCUIT NODES

Figure 16. Speed versus circuit nodes for BIAS-D
(PRIME 400) with additional processed-element stor-
age array.

and 20 resistors. Using equations (19) and (20) this
represents a time saving of 1.2 ms for resistors and
1.0 ms for capacitors at each timepoint in the
analysis. For the 101 -point analysis this represents a
total of 0.22 s, which is the approximate difference
shown in the figure. If the analysis is done at a
temperature other than 27 C, the time savings due
to this array are increased. This is because the
calculation of To in equations (19) to (21), involves
evaluation of a second-order polynomial. This same
test using BIAS-T3 and BIAS-T4 was run again at
50 C. These results are also shown in figure 16.
Even at 50 C, this does not represent any significant
speed savings.

If sparse matrix storage is used, then it is also
desirable to store not only the processed-element
array, but also the address location in the admit-
tance matrix where this array is to be added.
Depending on the implementation of the sparse
array storage, resistors, capacitors, and inductors
could require from 2 to 4 address locations for each
element [2,6,38]. If transistors are included, they
could require from 6 to 18 locations. Because of the
poor improvement in speed using the processed-
element array, it was not expected that any signifi-
cant improvement could be achieved by storing the
address locations in Y for this array. The processed-
element array was therefore not implemented.

4.2.6 Summary of Speed-Improvement
Techniques

Each of the above techniques (zero check,
reordering, sparse decomposition, and processed-
element array) reduces analytical times but requires
additional overhead. The circuit setup time was
not included in the previous analysis times, mainly
because this was only done once for each circuit.
Memory requirements due to the added software
and the pointer storage arrays are overheads which
must also be considered. Table 8 summarizes the
speed-improvement techniques for each modifica-
tion of BIAS-D. Table 9 shows the results of these
improvements. Included here are the additional
lines of FORTRAN code required, the increase in
compiled program memory requirements, the in-
crease in memory due to added storage arrays, the

32

net additional memory used or saved (negative
memory indicates a savings), and the relative speed
improvement of each modification at the 24-node
level. Note that the total memory requirement for
BIAS-D is approximately 25k decimal words (in-
cluding system routines, FORTRAN library, and
graphics). Table 9 shows that the addition of any of
these speed-improvement techniques, except the

TABLE 8. SPEED- AND MEMORY-IMPROVEMENT
ALGORITHMS USED IN COMPARISONS

Includes
Algorithm algorithm Description of algorithm

Standard — LU decomposition (no
enhancements)

T1 Standard Zero checking
T2 T1 Reordering of circuit

nodes
T3 T2 Sparse decomposition

of Y matrix

T4 T3 Storage of processed-
element array

T5 T3 Sparse matrix storage

T6 T5 Linked-list element
storage

processed-element array (BIAS-T4), does not re-
quire a significant amount of memory relative to the
speed improvement gained.

4.3 Memory-Dependent Simulator
Software

As was mentioned earlier in this section, many
memory-speed trade-offs can be made in designing
a circuit simulator. The previous section described
some speed-dependent aspects of this software.
This section covers some memory-dependent as-
pects of this software.

Two of the largest dimensioned arrays used in
circuit simulators are required for the storage of the
circuit element data and the admittance matrix
entries.

4.3.1 Element Data Storage

The storage of element data in a circuit simula-
tor involves the storage of (1) the element type,
(2) its name, value, and circuit node connections,
and possibly (3) model information. If a table format

TABLE 9. SUMMARY OF SPEED- AND MEMORY-
IMPROVEMENT TECHNIQUES IMPLEMENTED IN BIAS-D

Relative to standard method at 24 circuit nodes (CKT13)

Additional Increase Increase Net Relative Relative

FORTRAN in in memory increase increase

Method code compiled COMMON increase in in setup

(lines) code
(words)

arrays
(words)

(words) speed time

Standard 0' 0 0 Qb 1,0 r
T1 10 80 0 80 2.5 1

T2 60 360 0 360 2.8 3

T3 100 580 150 730 5.4 4

T4 110 520 650 1170 5.3 4

T5 170 640 -920 -270 5.9 5

T6 240 880 -2240 -1360 5.7 5

■'Standard version of BIAS-D has 1540 linesof FORTRAN, excludingCOMMON declarations and Comment statements.
b Standard version of BIAS-D requires 24,900 decimal words of memory (nonoverlaid) in PRIME 400 minicomputer system;
this includes both the FORTRAN and Graphics libraries.
'For CKT13; setup time is done only once for each circuit; this is a relatively insignificant portion of total analysis time (0.02 s
for standard version of BIAS-D).

33

is used for this data storage, the maximum circuit
size must be predetermined before the program is
compiled. This method has one significant advan-
tage; the program is relatively easy to debug or
modify. The primary disadvantage of this technique
is that the type of circuits analyzed in a general-
purpose simulator can vary greatly. Whereas a
discrete circuit would have many resistors, capaci-
tors, and possibly inductors, with few transistors, an
integrated circuit would have many transistors and
capacitors (transistor junction capacitors) with few
resistors and no inductors. Thus, in order to handle
all circuits, the table storage arrays must be over-
dimensioned—wasting memory for the particular
circuit at hand. An alternative approach is to use a
linked list to store these arrays [6]. Here an entry in
each element list points to the next element of that
type; the following entries contain the element
name, value, etc. This procedure generates a com-
pact single-dimension array in which each particu-
lar element type may be linked throughout the list.
An additional element type can easily be added to
this list with no additional required memory (for list
storage), whereas in the table method considerable
array space could be required. A more detailed
description of how this linked-list array structure is
implemented in BIAS-D is given in appendix C.

Both types of these element storage tech-
niques were implemented in BIAS-D. Figure 17
illustrates the memory arrays required to store test
circuit CKT13 for both techniques. Figure 1 7a illus-
trates the required arrays for the table method,
giving both the required size for CKT13 and the
maximum dimensioned array size. Figure 17b
shows the required array size for CKT13 using the
linked-list method. As can be seen in this figure, the
table method wastes memory. If a memory com-
parison for BIAS-D were based on this circuit
(CKT13) and both methods were dimensioned (in
BIAS-D) such that the minimum dimensions for
each method were used, the memory required for
the table method would be 1420 words and the
memory required for the linked-list method would
be 472 words. This is 2/3 less memory.

4.3.2 Sparse Matrix Storage

The pointer structure used to locate the
nonzero matrix elements in the admittance matrix

74/300

NOT USED

70/40

NOT USED

79/325

NOT USED

80/400

NOT USED

37/150

NOT USED

37/200

NOT USED

ALL
USED

325

(a) (b)
Figure 17. Comparison of element storage require-
ments in BIAS-D for CKT13 (24 nodes) using (a) table
method and (b) linked-list storage.

can also be used to store only the nonzero ele-
ments. This sparse array is then stored as a linear
array rather than a matrix array. Additional array
space plus an INDEX routine is required to encode
the double-dimension address into a linear address.

34

This sparse storage technique was implemented in
BIAS-D (BIAS-T5). Figure 18 graphically compares
the two types of matrix storage techniques. Figure
18a shows the memory arrays required using the
traditional matrix storage approach used in BIAS-T1
through BIAS-T4 and figure 18b shows that re-
quired for the sparse storage approach (in B1AS-T5).
The array sizes shown in this figure are for test
circuit CKT13. Again, if in each case the arrays for
storing the admittance matrix are of minimum di-
mensions (in BIAS-D), the memory required for the
matrix storage of CKT13 is 1936 words and for the
sparse storage method (including pointer storage) is
624 words. The sparse storage thus represents a
reduction in memory requirements of about 66
percent over the traditional storage (CKT13 is 79-
percent sparse).

Yl
Y2

DIAGONAL
TERMS

24x4

24 x 24 x 4
Y ARRAY

(78% SPARSE)

N0TUSEDF0RCKT13

NON-
ZERO

LOWER
TRIANGLE

TERMS

30,30

(a)

NON-
ZERO
UPPER

TRIANGLE
TERMS

320x4

NOT
USED
FOR

:KT13

400x4

(b)

Figure 18. Comparison of storage requirements for
admittance matrix of CKT13 using (a) matrix storage
and (b) sparse storage.

4.3.3 Memory Overlay

An additional technique for reducing the
memory requirements of a program is to use mem-
ory overlay [7,30]. Memory overlay requires the
use of a disc to store the program segments that are
not in use. A single-layer overlay structure for BIAS-
D is shown in figure 19. Both common arrays and
the main program are resident in main memory at
all times. The other overlay segments, the setup
overlay, the analysis overlay, and the ac overlay,
are in main memory only during execution of that
segment. For the example shown in figure 19, the
nonoverlaid BIAS-D required 19,600 words of
memory (without graphics routines). With the over-
lay structure shown (fig. 19), the memory require-
ments are reduced to 14,890 words—a reduction
of 4,700 words.

I
o

COMMON
(4590)

MAIN (1900)

SETUP
(3160)

ANALYSIS
(3230)

AC
(1540)

SYSTEM
(5170)

T
<
>-

cc
IXI
>
O

i

Figure 19. Memory overlay example for BIAS-D.

The primary disadvantage of using memory
overlay is that the implementation of these overlays
is not compatible between different computer sys-
tems, if the memory overlay is not done properly, it
can significantly reduce the simulator's execution
speed.

35

4.3.4 Summary of Memory-Saving
Techniques

These memory techniques, although reducing
overall memory requirements, require a certain
overhead (both in memory and in analysis speed) to
implement. Figure 20 shows a comparison of the
analysis speeds for both the linked-list element
storage (BIAS-T5) and the sparse storage of the
admittance matrix in BIAS-D (BIAS-T6). Also shown
in this figure is the speed of BIAS-T3 (sparse decom-
position only). Interestingly, the speed improves
because of both memory-saving techniques. The

O.lr

O
P <

o

0.01
30 20

CIRCUIT NODES

Figure 20. Speed overhead of linked-list and sparse
storage techniques.

linked-list technique was expected to be slower
because of the software overhead. Table 9 also
gives a summary of the memory-saving techniques
with the overhead due to the implementation of
these above two techniques in BIAS-D. The table
includes (1) savings in dimensioned arrays, (2) in-
crease in memory due to overhead, dimensioned

arrays, and software, and (3) speed overhead. As
can be seen in table 9, both techniques are worthy
of implementation into a circuit simulator because
they save memory and increase speed.

4.4 Comparison of Minicomputer
Systems Using BIAS-D

BIAS-D was again modified to enable compar-
isons of the minicomputer systems described in
section 3. The version used in these comparisons is
BIAS-T9 and was obtained by successively modify-
ing BIAS-T8 (see sect. 5) to run on a PDP 11 /45/ an
HP2100 (HP21MX), and the IBM 370/168. BIAS-
T8 runs on the PRIME 400 and incorporates all the
speed- and memory-saving techniques included in
the previous sections, as well as having ac analysis
capability. In order to be able to run BIAS-T9 on all
these computer systems without source code modi-
fications, it was necessary to delete the graphics
capability and other system-dependent routines.
Table 10 lists the important details on each of the
computer systems used in this comparison. These
include the particular operating system in use, the
type of memory and its speed, and the version of
FORTRAN IV used. Table 11 gives a breakdown of
the memory requirements for BIAS-T9 on each of
the computer systems. The compiled program size,
the size of the common array, and the size of the
required system routines (which include the FOR-
TRAN library) are given here. The comparatively
large memory requirement of the IBM system is due
partially to its use of 4-byte integer words (by
default) rather than the 2-byte integer words used
by the minicomputer systems. BIAS-D is not depen-
dent on the size of the integer word, and either 2- or
4-byte integers are permissible. The small size of the
common array for the HP2100 is due to the 3-word
double-precision data word size (see sect. 3). In
each computer system, a system-dependent clock
routine was added to obtain timing information.
The FORTRAN IV source program was input into
each computer system via a magnetic tape written
in ASCII format (null parity) by the PRIME 400
system.

All benchmark execution-time data were ob-
tained by using BIAS-T9 for the analysis of the

36

TABLE 10. COMPUTER SYSTEM CONFIGURATION FOR SPEED TESTS

Computer
system

Operating
system

Double-
precision
hardware

Cache/
speed

Virtual
memory

Memory/
speed

HP2100 RTE II yes'1 no no Core/1 us

HP21MX RTE III yes no no Core/1 ys

PDP 11/45 RSX 11D yes no no Core/1 ps

PRIME 400 PRIMOS IV yes 2l</80 ns yes MOS/400 ns

IBM 370/168 MVS2/TSO yes 32k/80 ns yes MQS/320 ns

'Without Fast-FORTRAN read-only memory.

TABLE 11. COMPARISON OF MEMORY
REQUIREMENTS FOR BIAS-T9

TABLE 12. COMPARISON OF COMPUTER
SPEEDS FOR CKT13 (BIAS-T9)

Computer
system

Common
array

(bytes)

Compiled
program
(bytes)

Library
and

system
(bytes)

Total
size

(bytes)

Computer
system

dc
(s)

Transient
analysis

Frequency
response

Time/iter
(s)

Speed
ratio"1

Time
(s)

Speed
ratio''

HP2100 21.0/14 682/437 344 — —
HP2100 7,810 24,880 — 32,768"'

HP21MX 16.4/14 98.2/437 49.6 — —
HP21MX 7,810 — — —

PDP 11/45

PDP 11/45
(a) FOR

(a) FOR 4.75/14 124/441 62.7 41.0 119

9,190 32,600 6,160 47,960 (b) F4P 2.10/14 41.3/441 20.9 13.6 25.9

(b) F4P 9,190 — — 49,880
PRIME 400 1.34/14 28.6/441 14.4 10.3 19.6

PRIME 400 9,190 19,480 11,230 39,900 IBM 370/168
(a) opt = 0 0.125/14 3.10/442 1.56 0.833 1.57

IBM 370/168 (b) opt = 3 0.087/14 1.98/442 1.00 0.525 1.00

(a) opt = 0 10,750 44,920 32,430 88,100

(b) opt = 3 10,750 33,850 32,450 77,050 SPICE 2C.2
(IBM 370/168

''Maximum a vailable memory; without ac analysis.

standard test circuits—CKT10 through CKT13. Ta-

ble 12 gives the execution time for a dc operating

point, a 101-point transient analysis, and a 91-point

ac analysis (traditional method) for CKT13 for each

of the computer systems. The size of the available

memory in the HP2100 system (with the RTE II

operating system) and the HP21MX (with RTE III)
did not permit ac analysis without overlay struc-

tures. These routines were therefore deleted from
the HP2100/HP21MX version of BIAS-T9. Also

given in this table are the speed ratios of each

system for the transient and ac analysis for CKT13.

Speed comparisons should not be made using exe-

cution times for the dc operating points, since for

SPICE 2D.2
(PRIME 400) 2.60/13 37.4/218 18.9 —

■'Relative to IBM3/0/168 (opt=3).

this analysis there is considerable output. In many

cases, execution times are somewhat dependent on

the terminal's communication rate, which in effect

increases execution times.

A comparison of the transient analysis execu-

tion times for each of the test circuits CKT10

through CKT13 is given in figure 21. This figure

plots log of execution time per transient iteration

versus log of the circuit nodes for each of the

37

computer systems under consideration. Also shown
in this figure are the execution times from SPICE1J
and SPICE2C.2 on an IBM 370/168 and SPICE2D.2
on a PRIME 400, again using the same test circuits.
Data from simulator program Mini-MSINC [2], us-
ing the HP2100 minicomputer (with Fast FOR-
TRAN) are also given, and shown as dashed lines in
this figure. Although the Mini-MSINC data are from
different and unrelated circuits (the MOS model in
Mini-MSINC is considerably more complex than
the BJT model in BIAS-D), they do indicate the
minicomputer's speed.

SPICE 2 (IBM 37011681

,BM370nSL

15 20
CIRCUIT NODES

Figure 21. Speed comparison results for different
computer systems for transient analysis simulation
using four standard test circuits.

A comparison of the execution speeds of
BIAS-D and SPICE2 on a PRIME 400 minicomputer
(fig. 21, table 11) indicate that BIAS-D is 50 percent
faster than SPICE2 on the PRIME 400. This speed
difference is due to the large memory requirements
of SPICE2. Whereas BIAS-D requires 40 kbytes of
memory, SPICE2 requires 400 kbytes. This speed
difference demonstrates the advantage gained by
developing a circuit simulator specifically for
minicomputers.

Also given in figure 21 are the baud rates
which could affect output times (wall-clock time

but not necessarily CPU time). These points are
shown on the vertical axis and were computed
based on transmitting a 72-character line with 4.5
iterations between printouts (this was the average
iteration count for the transient analysis of the test
circuits). If a 1200-baud terminal is used, the results
from a transient analysis using BIAS-D on the IBM,
PRIME 400, and PDP 11 /45 computers appear on
the user's terminal at the same wall-clock speed. If a
300-baud terminal is used, results from all comput-
ers (with the proper hardware) in this comparison
appear at the same rate. These baud-rate limiting
points relate only to communication baud rates
while BIAS-D is running, but could easily be extrap-
olated to other simulator programs. The breakpoint
in communication speed between using an interac-
tive circuit simulator and a batch simulator is 1200
baud. This choice is based on personal experience
and on the experiences of several other users of
interactive graphics. The 1200-baud rate is indica-
ted in figure 21. These results indicate that all
the minicomputer systems under consideration
here are capable of interactive circuit simulation
assuming the proper compilers and other hardware
are used (see table 10).

5. SMALL-SIGNAL AC FREQUENCY RESPONSE

The ability to compute small-signal frequency
response of electronic circuits is important in the
design and analysis of linear circuits. There are no
general-purpose minicomputer circuit simulators
with this capability. Two methods for computing
small-signal frequency response have been imple-
mehted in BIAS-D—the traditional method, which
uses complex matrix operations, and a new method
which uses standard transient analysis procedures.

5.1 Traditional Method

The small-signal ac frequency response of an
electronic circuit is traditionally found by solving
the complex matrix equation [6,39]

YV (22)

The complex admittance matrix, Y, is loaded with
the real and imaginary equivalent conductances of

38

the circuit elements evaluated at the frequency of
interest. For active devices, these conductances are
determined at the circuit's dc operating points. A
complex driving current, given either as the input
source or as a Norton equivalent of the driving
voltage, is loaded into the complex current vector,
I. Equation (22) is then solved for the complex node
voltages, V. This method is repeated for each fre-
quency of interest. A flow diagram of the traditional
ac analysis procedure is given in figure 22.

If an equivalent ac model for each resistor,
inductor, and capacitor for this technique were
given, it would be a single complex-value resistor
with impedances as shown.

Resistor impedance = R,
Capacitor impedance = 1/jwC,
Inductor impedance = -juL,

(23)

where w is the frequency in radians, C is capaci-
tance, and L is inductance.

The primary disadvantage of this technique is
that it requires the use of double-precision complex
arithmetic. Double-precision complex arithmetic is
not available on minicomputer systems and there-
fore must be added through software (see sect. 3).

5.2 Linearized Transient Analysis (LTA)
Method

5.2.1 Large-Signal Transient Response

A new method for determining circuit fre-

quency response without using complex arithmetic,

introduced here, uses modified conventional tran-

sient analysis techniques. In order to understand

this method, the linearized transient analysis me-

thod (40), it is important to understand the proce-

dure used to compute large-signal transient re-

sponse for both linear and nonlinear circuits.

In a large-signal transient analysis simulation,

linear capacitors and inductors are modeled by

using a conductance in parallel with a voltage-

dependent current source as shown in figure 23.

The values associated with this model for inductors

FREQ = FREQ+M

(^START)

SOLVE FOR dc
OPERATING POINTS

FREO = fi

9
DETERMINE REAL AND
IMAGINARY EOUIVALENT
ELEMENT CONDUCTANCES
ATa;= 27i*FREa

I
LOAD COMPLEX y MATRIX

i
DETERMINE COMPLEX
NORTON EQUIVALENT
INPUT CURRENT

I
LOAD CURRENT INTO C

I
SOLVE FOR COMPLEX
NODE VOLTAGES

Figure 22. Flow diagram for traditional ac analysis

procedure.

and capacitors are similar; therefore, for simplicity,
only capacitors are considered here. If the trapezoi-
dal integration rule [17] is used to approximate the
integral equation for the voltage across a capacitor.

V.
/'

1/C / idt (At/2C)(il + i,: (24)

39

where A is the time-step, then the equivalent con-
ductance in figure 23 is

gc = 2C/At (25)

and the equivalent dependent current source for
the capacitor model (also in fig. 23) is

I, + (2C/At)Vl (26)

where V, and I, are the values of capacitor voltage
and current at time t. Currents I, and I,, are updated
and stored at each time-point during a transient
analysis. Also at each time-point, the equivalent
capacitor conductance, g0 is loaded into the admit-
tance matrix, Y, and the equivalent capacitor cur-
rent, l0, is loaded into the current vector, I. Other
circuit element conductances and currents are
added into Y and I; and the matrix equation (eq (22)
with Y, I, and V real) is solved for the circuit node
voltages, V. Equation (22) is solved by using the
same procedure as in a dc analysis—that is, LU
decomposition, followed by forward and backward
substitution [6].

Figure 23. Equivalent circuit for linear time-
dependent capacitors or inductors.

If a transient analysis response for a circuit
with a sinusoidal input is examined after several
periods, the circuit transfer voltage gain and phase
shift can be determined. To obtain the overall
circuit frequency response, the magnitude gain and

phase shift is determined at each frequency of
interest. This transient method has several disad-
vantages, however. (1) For nonlinear circuits it is
difficult to choose the input amplitude so that there
will be no distortion at the output. (2) The proce-
dure is relatively slow since the admittance matrix
must be loaded and the solution must be iterated to
convergence for each time-point. (3) It is difficult to
determine when the steady-state solution has been
reached. For the case of a high-Q circuit, this
solution can require many periods [12].

5.2.2 Transient Analysis of Linear Circuits

Looking at the admittance matrix entries for a
linear circuit during a transient analysis, one would
notice that for a fixed time-step. At, all admittance
matrix values are constant with time. This con-
stancy means that Y has to be inverted only once
for each change in At. During a transient analysis
with a fixed time-step, Y is inverted only once for a
complete transient simulation. The circuit response
to any input as a function of time can thus be
determined by updating the current vector I, and by
doing a simple matrix multiplication (or forward
and backward substitution, if LU decomposition is
used) at each time-point. If the transient analysis
input is sinusoidal then the output is of the form

KA sin (uit + $) (27)

where K is the circuit gain at a frequency a)/2TT, A is
the amplitude of the input sinusoid, and $ is the
output phase shift relative to the input. The ampli-
tude, A, of the input sine wave is not critical in this
equation since the circuit is linear. An accurate
method of obtaining the output magnitude and
phase from this waveform is to use the Fourier
approximation for discrete data points [27]. This is
essentially a smoothing operation using many data
points. Numerical errors that could occur with a
single data point are minimized.

Figure 24 is a flow diagram of the procedure to
compute the frequency response of a linear circuit
at several frequency points, using the transient
method just described. Here, rather than the time-
step being specified, it is computed from the fre-

40

quency and the number of computation points per

sine wave period (NPTS). During a conventional

transient analysis, the procedure at each frequency
would include zeroing the capacitor and inductor

currents (not shown in fig. 24). This is because each

frequency point involves a different sine wave input

and is therefore a new analysis.

(START)

SOLVE FOR dc
OPERATING POINTS

| FREQ ^

£
OELTA ■

NPTS • FREO
X

LOAD EQUIVALENT

ELEMENT CONDUCTANCES

INT01Y]

LU DECOMPOSITION

0F1Y1

t = ol

ZERO CURRENT VECTOR

X
UPDATE CAPACITOR AND

INDUCTOR CURRENTS

LOAD EQUIVALENT

CURRENTS INTO C

SOLVE FOR NODE VOLTAGES

BY FORWARD BACKWAHD

SUBSTITUTION

PERIOD
NO

COMPUTE MAGNITUDE 6 PHASE

OF NODE VOLTAGES USING

DISCRETE FOURIER TRANSFORM

FREO = FRED+AF

t = I + DELTA

Figure 24. Flow diagram of linearized transient analy-
sis (LTA) method for computing frequency response.

All circuits have an initial transient response to

any input or change in input. If there is not an input

at t = 0- (dc conditions), then a sine wave applied

at t = 0 + would cause a transient response due not

only to the sine wave; but also to its application.

The effects of this initial transient on the output

response of the circuit must decay to zero before

these results can be used for determining the fre-

quency response. An advantage of using the Fourier

approximation to compute the magnitude of this

response is that any dc shift (zeroth harmonic) due

to this transient is separated from the desired output

(first harmonic).

The simple bandpass filter circuit shown in

figure 25 will be used to illustrate this initial transient

response. The voltage transfer function of this cir-

cuit is given as

Vm„/Vin = As/(1 + Bs + Cs2) ,

where

A = RiCi,

B = R^, + R2C2 + R,C2,and

(28)

®

1MF

vs©

Ikii

IkO

0.1 MF

Figure 25. Bandpass filter example circuit.

For Vin = sin (tot), the time domain transient re-

sponse can be determined using the inverse Laplace

transform as

F(t) = Fl(co)exp(-at) + F2(u))exp(-bt)

+ F,(LO) sin (cot - <t>) (29)

where

CO = 2TTf,

<() = Arctan(b/oj) - Arctan(co/a) + TT/2.

41

a, b = circuit time constants,
F|(cd), F^co), F(w) are dependent on
circuit element values and frequency.

The first two terms in equation (28) represent the
initial transient response of this circuit. In this case
they are both exponential terms decaying in time
and inversely proportional to frequency.

5.3 Description of LTA Method

If the transient response procedure shown in
figure 24 is begun at frequency fi, then after several
periods at this frequency, the circuit time-
dependent currents (I,, in fig. 23) contain the correct
steady-state values. These currents are crucial in
obtaining the proper circuit magnitude and phase
response. At the next frequency point, this proce-
dure is repeated. If this next frequency point is
chosen close to fi, then the values of the time-
dependent currents will be approximately those at
f i. If these currents are used as initial conditions for
the next frequency point, the number of required
periods at each frequency point can be reduced
significantly. The use of these currents as initial
conditions for the next frequency point is the key to
the success of this procedure. Figure 26 shows the
transient output response of the circuit in figure 25
to three periods of a 10O-Hz sine input followed by
three periods of a 110-Hz sine input. In figure 26a,
the capacitor current is zeroed at the end of the
100-Hz input. The 110-Hz sinusoid begins as If it
were at time t = 0, causing a discontinuity at this
point. Figure 26b used the final capacitor current at
100 Hz as the initial current at 110 Hz. Note that
although there is a slight discontinuity here, the
transition between frequencies is relatively smooth.

A second advantage of retaining the time-
dependent currents at the end of each frequency
point involves the decay of the initial transient
response. Previously, zeroing the time-dependent
currents at the end of each frequency point also
zeroed time. Thus, the initial transient response
began at t = 0+ at each new frequency point. By
saving these currents at the end of each frequency,
time is continued during the entire analysis (fig. 27).
Figure 27 shows only the initial transient response

(a) 1

2 3 4
TIME (S X ID2)

(b) 1

2 3 4 5 6
TIME (S X lO"2)

Figure 26. Sinusoidal response of example circuit to
three periods of 100 Hz and three periods of 110 Hz:
(a) capacitor currents initially zeroed at t = 0 and 110
Hz; (b) capacitor currents zeroed at t = 0 only.

of the results in figure 26. Figure 27a plots the initial
transient response with the capacitor current (and
time) zeroed at the end of the first three 100-Hz
periods. Again note the sharp discontinuity at this
point. This is caused by the new zero initial condi-

42

tions at 110 Hz. Figure 27b shows the same re-
sponse without zeroing the capacitor currents at the
end of the three periods. Here there are no discon-
tinuities. The initial transient decay shown in figure
27 was at a frequency of 100 Hz. If this initial
transient is examined at a frequency of 10 Hz, a
decade lower, the transient decay is much faster
relative to a single 10-Hz period (see eq (29)). This
is shown in figure 28. Both the total transient
response and the initial transient response are plot-
ted here, using equation (25) (at a frequency of 10
Hz). At this lower frequency, the initial transient
response decays about 20 times faster relative to a
single sine wave period than at 100 Hz. Beginning
at a relatively low frequency can insure decay of the
initial transient response. That is, one should
choose a starting frequency for the LTA method
that is well below the frequency of interest.

5.3.1 Frequency Response of Nonlinear
Circuits

The LTA method applied above for linear
circuits can be used also with nonlinear circuits.
Transistors or other active elements are treated in
the same manner as resistors or capacitors; that is,
the equivalent ac conductance and currents are
added to the admittance matrix and current vector.
For transistors, the linearized ac parameters either
are already available from the dc operating point
calculations or can be computed from the dc oper-
ating points. Currents dependent on dc circuit con-
ditions are not added to the current vector. Transis-
tor junction and diffusion capacitor values are de-
termined by the dc operating points and are treated
as linear capacitors. As with linear circuits, these
equivalent conductances are loaded into the admit-
tance matrix once for each frequency point.

5.3.2 Solution Convergence at Frequency
Point

In the LTA method, the sinusoidal input at
each frequency point must be continued until the
time-dependent currents reach their steady-state
values at that frequency. The number of input
periods required depends on the frequency incre-
ment and the Q of the circuit. A rigorous conver-

■*- t

(b)

Figure 27. Example circuit sine response for 100 and
110 Hz showing only initial transient: (a) time zeroed
att = 0 and 110 Hz; (b) time zeroed at t = Oonly.

Figure 28. Sinusoidal response of example circuit at
10 Hz showing total response and initial transient
response.

43

gence criterion to determine when a steady state is
reached would require all time-dependent currents
in the circuit to be within a given tolerance for two
or more consecutive periods. This criterion is analo-
gous to the criterion used in the dc and transient
analyses. The disadvantage here is that additional
storage is required for the past time-dependent
currents. Additional computational time also is re-
quired to check these currents. A simple technique
monitors the change in peak amplitude only at the
output node. If the change in amplitude between
two periods is less than a predetermined level (say,
1 percent) for two or more consecutive periods,
then convergence is assumed. This technique was
implemented in BIAS-D and appears to be satisfac-
tory for both high- and low-Q circuits.

5.3.3 Accuracy of Linearized Transient
Analysis Method

The accuracy of the LTA method is deter-
mined primarily by two factors: the number of
analysis points per sine wave period, and the fre-
quency increment between frequency points.

The accuracy of the amplitude is determined
primarily by the number of analysis points per
period. If the trapezoidal integration rule is used to
approximate time-dependent currents, 20 points
per period are required to maintain less than a 1-
percent numerical integration error in amplitude for
low-Q circuits [12]. For high-Q circuits (Q > 10),
the product of the Q and numerical integration
error must be small. It can be shown that the
required points per period, n, are proportional to
thesquareroot of theQ [41]

Kv/Q

A conservative value for K is 8 [1 2]

(30)

The accuracy in computing the phase is deter-
mined primarily by the frequency increment. If the
circuit phase changes rapidly with frequency, then
a small frequency increment must be used. The
smaller the frequency increment, the smaller the
phase change from the previous frequency point.

Choosing a frequency point close to the previ-
ous point is essential to the LTA method. If the
frequency interval is chosen too large, more periods
are required for the time-dependent currents to
reach equilibrium. If the interval is too small, exces-
sive points are computed. Both could greatly in-
crease computation time. For circuits with a Q less
than one, 10 frequency points per decade appear to
be adequate. However, for high-Q circuits, 100
points per decade may be necessary to achieve the
desired accuracy. For high-Q circuits, a fixed fre-
quency increment is not desirable, since more
points per decade are desired only where the gain
changes rapidly with frequency. In this situation a
variable frequency-step is best. The frequency can
be stepped by a procedure analogous to time-step
control used in conventional transient analysis. That
is, if more than K periods are required for conver-
gence, then the frequency increment is reduced. If
less than M periods are required, then the fre-
quency increment is increased. As in transient anal-
ysis, variables K and M are determined by
experimentation.

Experimental results using the LTA method
have shown magnitude errors less than 5 percent
(typically less than 1 percent) and phase errors less
than 1 degree (typically 0.2 degrees). These errors
were obtained from several low-Q circuits by using
10 computation points per period and 20 frequency
points per decade (see sect. 5.3.4 for examples
showing these errors).

5.3.4 Comparison with Traditional ac Method

The LTA method was implemented in circuit-
simulator program BIAS-D as BIAS-T7. A flow dia-
gram of the LTA procedure is shown in figure 24.
The number of points per period, the number of
points per frequency decade, and the maximum
number of periods were input variables. The con-
vergence criterion required the amplitude differ-
ence among three consecutive periods to be less
than 1 percent. This criterion does not imply that
the magnitude error will be less than 1 percent.

Since dc and transient analysis capability were
already implemented in BIAS-D, only one addi-

44

tional FORTRAN subroutine was required to imple-
ment this method. No additional dimensioned ar-
rays were required.

The traditional method using complex matrix
inversion also was implemented in BIAS-D (BIAS-
T8). This method was used to compare speed of the
memory and accuracy with those of the LTA me-
thod. Seven additional subroutines were required to
implement this traditional method. Most of these
subroutines were identical to existing routines in
BIAS-D but included complex arithmetic opera-
tions. Since minicomputers do not support double-
precision complex arithmetic, these operations
were programmed into the software (see sect. 3).
The storage of the complex matrix equation—
equation (22)—required doubling the size of the
original Y, V, and I arrays. These are double-
precision arrays and require significant additional
memory.

With both the traditional and LTA methods
implemented in BIAS-D it was possible to compare
the accuracy of the LTA method with that of the
traditional. The first comparison was made by using
test circuit CKT10 (app C). Figure 29a plots the
decibel gain of this circuit versus frequency for both
the LTA method and the traditional method (the
LTA method is plotted as solid lines). Figure 29b
plots phase for both methods. Ten frequency points
per decade were used in both cases. For the LTA
method, 20 points per period were used. Excellent
agreement in both gain and phase was obtained
(less than 1-percent magnitude and 0.25-degree
phase differences). A total of 336 periods was
required for the 91 frequency points in the LTA
method. This is an average of 3.7 periods per
frequency point (3 periods is the minimum
allowed). Further, 32 s of CPU time was required
(on a PRIME 400 minicomputer) for the LTA me-
thod, whereas 4.4 s were required for the tradi-
tional method (a 7:1 speed ratio).

The simple tuned circuit (with a Q of 25) [12]
shown in figure 30 was used to compare results for
high-Q circuits. The magnitude and phase of this
circuit to a current input for both methods are given
in figure 31 (the LTA method in solid lines). One

■a:

50

40

30

20

10

la)

!:~

10
-1 0.5 2.0 3.5 5.0 6.5 8.0

LOG FREQUENCY
(b)

2.0 3.5 5.0
LOG FREQUENCY

8.0

Figure 29. Frequency response of test circuit CKT10
comparing both methods computed using 10
points/decade and 20 points/period: (a) magnitude
and (b) phase.

hundred points per decade and 40 points per pe-
riod (as required by eq (26)) were used in the
analysis. Again excellent agreement was obtained.
A total of 1492 periods was required in the LTA
method for 100 frequency points (an average of 15
periods per frequency point). The CPU time for the

45

LTA method was 88.9 s. The time for the standard
method was 0.891 s (a 100:1 speed ratio). Figure
32 shows magnitude and phase results from the
same high-Q circuit with the frequency points per
decade for both methods decreased to 20 and the
points per period for the LTA method decreased to
20. As expected, errors in both magnitude and
phase have increased. The choppiness in this plot is
due to the small number of frequency points plotted
(20 points). These results required 476 periods for
the 20 frequency points or an average of 21 periods
per frequency point. This increase in periods was
expected because of the larger frequency incre-
ment. The CPU time for the LTA method was
13.1 s, whereas the traditional method required
0.194 s (a 68:1 speed ratio).

Figure 30. High-Q example circuit.

An analysis speed comparison of these two ac
analysis techniques was made using BIAS-T7 and
BIAS-T8. Test circuits CKT10 to CKT13 were used
on the PRIME 400. These were the same circuits
used in section 4. Figure 33 shows the results of
these tests. Circuit nodes are plotted versus log-
CPU time. Also shown in this figure is the CPU
execution speed of these circuits using SPICE2 on
the PRIME. As can be seen in this figure, the LTA
method is significantly slower than the traditional
method. The fact that SPICE2 runs more slowly
than BIAS-T8 on the PRIME 400 is due to the large
memory requirements for this system. Comparisons
in section 4 (table 12) indicate that the ac analysis
speed on BIAS-T8 (BIAS-T9) is approximately the
same as SPICE2.

A summary of the reauired memory for imple-
menting both the traditional and LTA methods in
BIAS-Disgivenintable13.

3,000

2,500

2,000

1,500

1,000

500

(a)

/ J V .
0
6.00 6.17 6.33 6.50 6.67

LOG FREQUENCY

6.83 7.00

(b)
180

120

\ 60
1

0

60

"*\

120

IRfl
6.00 6.17 6.33 6.50 6.67

LOG FREQUENCY
6.83 7.00

Figure 31. Frequency response of high-Q example
circuit comparing both methods, using 100
points/decade and 40 points/period: (a) magnitude
and (b) phase.

As can be determined from this table, at the
30-node level, the LTA method does not represent
a significant memory saving (18 percent). However,
at the 100-node level the memory savings increase
to 50 percent (13,000 words) and at the 1000-node
level to 95 percent (250,000 words).

46

Although the LTA method is slower than the
traditional method, the memory savings can be
significant. The savings increase rapidly with in-
creasing circuit size. Whereas the traditional me-
thod requires additional memory to store the com-

■a:
CD

3,000

2,500

2,000

1,500

1,000

500

0

(a)

1
1
■

1

1
_ J V ___

6.00 6.17 6.33 6.50 6.67 6.83 7.00

LOG FREQUENCY

(b)

CO
<

180

120

60
i

0

-60

-120

-180
6.00 6.17 6.33 6.50 6.67 6.83 7.00

LOG FREQUENCY

Figure 32. Frequency response of high-Q example
circuit comparing both methods, using 20
points/decade and 20 points/period: (a) magnitude
and (b) phase.

j

^~^

«

v

^
 ^s

plex admittance matrix, the LTA method needs no
additional memory for frequency response analysis
at any circuit size. The speed of the LTA method

1.0

o
<
DC

0.1

C3
O

0.01

LINEARIZED TRANSIENT
ANALYSIS METHOD

TRADITIONAL
METHOD

10 20

CIRCUIT NODES

30

Figure 33. Comparison of frequency response speeds
using traditional method and LTA method in BIAS-D
and traditional method in SPICE 2D (all on PRIME
400).

TABLE 13. SUMMARY OF MEMORY NEEDS
FOR TWO METHODS

Method
FORTRAN

(lines)
Common

(words)

Compiled
program
(words)

Total"'
(words)

Traditional 400 1840 2100 3940

Linearized
transient 140 0 950 950

analysis

'' rhe total program size for BIAS-D (30 nodes) without acis
12,800 words.

47

could be increased by possibly 25 percent at the
expense of using additional memory. However, the
primary reason for the development of this method
was to minimize memory requirements.

Because of its slow speed, practical use of the
LTA method for frequency response analysis is
limited to the desktop calculators and small mini-
computer systems where memory is limited and
complex arithmetic is not easily attained. Other
application areas should be investigated, such as
determining the steady-state response of lightly
damped circuits or large-signal harmonic distortion
analysis.

6. CONCLUSIONS

Developments in the sections 2 to 5 deter-
mined that circuit simulation on small computer
systems is both practical and desirable. Both inter-
active and batch simulator architectures were de-
scribed, with the interactive simulator being the
most desirable.

The second section concerned circuit simula-
tion on programmable desktop calculators. BIAS-D
has shown that interactive circuit simulation on
desktop calculators is indeed possible; however, as
in the case of the speed limitations of the HP9830A,
it is not practical. BIASL.25 on the HP9825 offers a
significant speed increase (approximately 10:1) but
the use of HPL limits its use to the HP9825. Re-
cently available second-generation "super calcula-
tors" such as the HP9845 or the Wang PCS-II are as
fast or faster than the HP9825 and use the BASIC
language. These calculators should make interac-
tive simulation at the 10- to 20- node level
practical.

The third section introduced facets of small
computer systems useful in development of circuit-
simulator programs—the computer language, data
word format, computer and language speeds, and
memory configuration.

In order for a simulator to be easily transporta-
ble between computer systems, FORTRAN IV
should be used wherever possible. In the case of

the desktop calculator, BASIC should be used, since
FORTRAN is not yet available. The use of virtual
memory in computer systems offers a significant
advantage in increasing software transportability—
especially for large programs.

The data word format used in minicomputers
for alphanumeric, integer, and single-precision vari-
ables should present minimal problems when used
in minicomputer simulators. Simulators which are
to be transportable between several minicomputer
systems should use word-oriented alphanumeric
variables (i.e., one ASCII character per word) rather
than byte-oriented variables. Double-precision data
word formats varied considerably—from 10 digits
for the HP2100 to 27 digits for the CDC 6600. The
10-digit precision of the HP2100 double-precision
arithmetic could present difficulties in some simula-
tor algorithms. In this case the work of Freret
[9,27,28] on word-length limitations should be
considered.

In section 4, on circuit simulation on minicom-
puters, we determined that, for effective interactive
simulation, a relatively fast minicomputer should be
used. Slow computers result in excessive wait times
for the interactive process; for such systems, batch
simulators should be used. Experimental results
from BIAS-D show that the techniques used in
larger simulator programs, such as SPICE, can also
be used efficiently in minicomputer simulators with
no loss in accuracy. The following techniques can
be used in minicomputer circuit simulators to mini-
mize memory requirements and maximize speed:

1. sparse matrix decomposition with node
reordering,

2. sparse matrix storage, and
3. linked-list element storage.

A surprising result was that the storage of element
"templates" [2,6] or locations for adding element
equivalent conductance values to the admittance
matrix used considerable memory with little im-
provement in speed (up to the 50-node circuit
level). Speed comparisons of the HP2100, the PDP
11/45, the PRIME 400, and the IBM 370/168
computer systems indicate that with the proper
software and hardware configurations, all are capa-

48

ble of effective interactive circuit simulation at the
30-to50-nocle level.

Section 5 introduced the linearized transient
analysis method for computing small-signal fre-
quency response, a technique using no complex
arithmetic and significantly less memory than the

conventional method. Because of its speed handi-
cap, the practical use of the LTA method for small-
signal frequency response is limited to smaller mini-
computers and desktop calculators where memory
is limited. Other application areas for this tech-
nique, such as determining steady-state transient
operating points, should be investigated further.

LITERATURE CITED

1. B. L. Biehl, BIAS-D: A Semi-Interactive Circuit
Analysis Program for Desktop Calculators and
Minicomputers, Eighth Annual Asilomar Con-
ference on Circuits, Systems and Computers,
December 1-3, 1974.

2. T. K. Young and R.W.Dutton, Mini-MSINC—
A Minicomputer Simulator for MOS Circuits
with Modular Built-in Models, IEEE J. Solid-
State Circuits, SC-11, No. 5, 730-732, Octo-
ber 1976.

3. A. R. Newton and G. L. Taylor, BIASL.25, A
MOS Circuit Simulator, Tenth Annual Asilo-
mar Conference on Circuits, Systems and
Computers, November 22-24, 1976.

4. T. E. Idleman, F. S. Jenkins, W.]. McCalla, and
D. O. Pederson, SLIC—A Simulator for Linear
Integrated Circuits, IEEE J. Solid-State Circuits,
SC-6, 188-204, August 1971.

5. ASTAP General Information Manual (GH20-
1271-0), International Business Corp., Me-
chanicsburg, PA.

6. L. W. Nagel, SPICE 2; A Computer Program to
Simulate Semiconductor Circuits, Electronics
Research Laboratory, ERL-M520, University
of California, Berkeley, May 1975.

7. E. Cohen, Program Reference for SPICE 2,
Electronics Research Laboratory, ERL-M592,
University of California, Berkeley, June 1976.

8. A. R. Newton and D. O. Pederson, The State
of Integrated Circuit Simulators, Proc. Mid-
west Or. Theory Symp., August 1977.

9. J. P. Freret, Jr., Overcoming Wordlength Limi-
tations in Minicomputer Aided Circuit Analy-
sis, Ph.D. Dissertation, Stanford University,
Stanford, California, May 1976.

10. B. L. Biehl, Circuit Simulation on Minicompu-
ters, Asilomar Conference Digest, November
1976.

11. W. J. McCalla and W. G. Howard, Jr., BIAS-
3—A Program for the Nonlinear dc Analysis

49

LITERATURE CITED (Cont'd)

of Bipolar Transistor Circuits, IEEE J. Solid-
State Circuits, SC-6, 14-19, February 1971.

12. S. P. Fan, Sinc-S: A Computer Program for the
Steady-State Analysis of Transistor Oscillators,
Ph.D. Dissertation, University of California,
Berkeley, September, 1975.

13.).). Ebers and J. L. Moll, Large Signal Behavior
of Junction Transistors, Proc. IRE, 42, 1761-
1772, December 1954.

14. H. C. Lin, Integrated Electronics, San Fran-
cisco, CA, Holden-Day, 1967.

15. J. M. Early, Effects of Space-Charge Layer
Widening in Junction Transistors, Proc. IRE,
46, 1141-1152, November 1952.

16. R. Barham, E. Cheung, and E. Cohen, BIAS-M,
An Experimental Circuit Simulator for the IBM
1800, Integrated Circuits Croup, University of
California, Berkeley, June 1973.

1 7. H. W. Dommel, Digital Computer Solution of
Electromagnetic Transients in Single and Mul-
tiple Networks, IEEE Trans. Power Appar.
Syst., PAS-88, 378-385, August 1970.

18. L. O. Chua and P. M. Lin, Computer-Aided
Analysis of Electronic Circuits: Algorithms and
Computational Techniques, Englewood Cliffs,
New Jersey, Prentice-Hall, 1975.

19. T. K. Young and R. W. Dutton, Local Trunca-
tion Error Control for Circuit Simulators, Proc.
Midwest Or. Theory Symp., August 1977.

20. M. J. Hellstrom et al. An Integrated Circuit
Preamplifier with Nonlinear Bootstrapped In-
put Impedance, Proc. Natl. Electronics Conf.,
Z?, 321-324, 1967.

21. G. J. Vosatka, The Minicomputer—Evolution
or Revolution, Minicomputer Trends and Ap-

plications 1973 Symposium Record, April 4,
1973.

22. Hewlett Packard FORTRAN IV Reference
Manual, Hewlett Packard Corp.

23. PDP-11 FORTRAN Language Reference Man-
ual Dec-11-LFLRA-B-D, Digital Equipment
Corp., Maynard, MA, 1974.

24. PRIME FORTRAN IV Users Guide Revision D
MAN1674, PRIME Computer Corp., June
1976.

25. Control Data 6400/6500/6600 Computer
Systems FORTRAN Reference Manual, Con-
trol Data Corp., 1969.

26. IBM System/370 Principles of Operation GA
22-7000-5, International Business Machines
Corp., 1974.

27. A. Ralston, A First Course in Numerical Analy-
sis. New York, McGraw-Hill, 1965.

28. J. P. Freret, Minicomputer Calculation of the
Dc Operating Point of Bipolar Circuits, Tech-
nical Report No. 5015-1, Stanford University,
Stanford, CA, May 1976.

29. J. P. Freret and R. W. Dutton, Successful
Circuit Simulation using Minicomputers, 19th
Midwest Symposium for Circuits and Systems,
Milwaukee, Wl, August 1976.

30. H. S. Stone, Introduction to Computer Archi-
tecture, Chicago, Illinois: Science Research
Associates, Inc., 1975.

31. Wang 2200A/B BASIC Programming Manual,
Wang Laboratories Inc., 1974.

32. Hewlett Packard 9830A Calculator Operating
and Programming Manual, Hewlett Packard
Calculator Products Division, 1973.

50

LITERATURE CITED (Cont'd)

33. Tektronix 4051 Graphic Systems Reference
Manual, Tektronix Inc., 1976.

34. F. S. Jenkins and S. P. Fan, Time—A Nonlinear
DC and Time-Domain Circuit Simulation Pro-
gram, IEEE J. Solid-State Circuits, SC-6, 182-
188, August 1971.

35. T. K. Young and R. W. Dutton, MSINC, Stan-
ford Electronics Laboratories, SU SEL-74-038,
TR501U,July1974.

36. ISPICE Reference Guide, form 968-2, Na-
tional CSS, Inc., Norwalk, CT, 1974.

37. H. M. Markowitz, The Elimination Form of the
Inverse and its Application to Linear Program-
ming, Management Sci., J, 255-269, April
1957.

38. A. R. Newton and D. O. Pederson, Analysis
Time, Accuracy, and Memory Requirement
Tradeoffs in SPICE2, Eleventh Annual Asilo-
mar Conference on Circuits, Systems and
Computers, November 1977.

39. D. A. Calahan, Computer-Aided Network De-
sign, Revised Edition, New York, McGraw-
Hill, 1972.

40. B. L. Biehl, A Linearized Transient Analysis
Technique for Computing Frequency Re-
sponse in Circuit Simulators, Eleventh Annual
Asilomar Conference on Circuits, Systems and
Computers, November 1977.

41. T.). Aprille, Jr., and T. N. Trick, Steady-State
Analysis of Nonlinear Circuits with Periodic
Inputs, Proc. IEEE, 60, 108-114, January
1972.

51

APPENDIX A. BIAS-D USER'S MANUAL
(BASIC VERSION) AND LISTING

A-1. INTRODUCTION

BIAS-D is a computer-aided circuit-analysis
program written in BASIC for desktop calculators
and minicomputers with a minimum of 8 kwords of
internal memory. It can perform dc and transient
analysis of a 15-node circuit that contains up to 75
elements—resistors, capacitors, voltage sources,
current sources, and transistors (15 each). For tran-
sistor circuits, BIAS-D converges to a solution by
linearizing the built-in Ebers-Moll transistor model
about an operating point in much the same manner
as done in larger circuit-analysis programs such as
BIAS-3,SLIC, and SPICE.

Circuit data are typed into the keyboard in a
semifree input format. Error messages are given for
recoverable data errors enabling immediate correc-
tions. Transistor parameters, temperature coeffi-
cients, and transient sources are entered by specify-
ing one or more of five available model types.

BIAS-D executes in a semi-interactive mode in
which elements or models are altered, temperature
varied, and elements inserted between existing
nonsource nodes. BIAS-D is structured so that the
circuit size and element capacity can be easily
modified in accordance with the available memory
size. Execution time for a dc solution of a 10-node,
5-transistor circuit is approximately three minutes
on an HP9830A desktop calculator.

A-2. INPUT DATA

The input data are divided into two categories:
circuit data and control statement data. The circuit
element data (e.g., resistors, transistors, etc) are
input by specifying the element symbol (R, Q, M,
etc) followed by the required data for that element.
The control statement data are characterized by a
dot (.) followed by the desired operation (.TRAN,
.ALTER, etc). Control statements do not affect the
results of the analyses—they only enable the user to
direct the analysis procedure.

A-2.1 Circuit Data

Certain general instructions must be followed
to input circuit data.

a. Each circuit element must begin in col-
umn 1.

b. Single spaces are used as delimiters
between data fields (multiple spacing
may result in errors).

c. Abbreviated notation cannot be used
(i.e., 2U#2E-6).

d. Scientific notation may be used (i.e.,
1000 = 1E3).

e. Decimal points are not required (i.e., 2
= 2.0).

f. The ground node must be node 0
(zero).

g. Compact node numbering is not re-
quired (i.e., node numbers may be
skipped).

h. The maximum allowable node number
is 99.

i. Element values are to be in basic units
(i.e., ohms, farads, volts, amperes,
hertz, seconds).

A-2.J.J Resistors, Capacitors

General form:

RX N1 N2 VALUE
CX N1 N2 VALUE

where X is any character, N1 and N2 are node
numbers (order not important), and VALUE is the
resistor or capacitor value in ohms or farads. Note:
VALUE cannot be zero.

A-2.J.2 Independent Sources:
Voltage, Current

General form:

VX N-|- N-
IX N+ N-

VALUE M#
VALUE M#

53

APPENDIX A

where X is any character, N+ and N- are the
positive and negative source nodes, and VALUE is
the source value in volts or amperes. The letter M
followed by an integer from 1 to 5 denotes the
model name (see sect. A-2.1.4).

For voltage sources, either N + or N- must be
grounded (node 0). For example.

and
V+ 3 0 5 Ml

V+ 0 3 -5 Ml

are equivalent.

For current sources, current flows from the
positive node through the source to the negative
node. The letter M followed by the model name
may be omitted. However, a default number of
zero is assigned.

A-2.1.3 Transistors

General form:

QX NC NB NE M#

where X is any character, and NC, NB, and NE are
the collector, base, and emitter node numbers,
respectively. The letter M followed by an integer
from 1 to 5 denotes the model name (see sect. A-
2.1.4). The letter M followed by the model name
may be omitted. However, a default number of
zero is assigned.

A-2.1.4 Model

General form:

M# YYY F1 F2 F3 F4 F5 F6

where # is an integer from 1 to 5 corresponding to
the model number designated by the source or
element. YYY is a three-letter name designating one
of five available model types as follows:

1. NPN npn transistor parameters
2. PNP pnp transistor parameters

3. PUL pulse source specifications
4. SIN sinusoidal source specifications
5. TEM element temperature coefficients

F1, F2, . . . , F6 are the data fields for
specifying the above model parameters. These
fields are defined below.

1. NPN—transistor parameters

ield Parameter Default
value

Fl Forward dc beta (BF) 100
F2 Reverse dc beta (BR) 1
F3 Saturation current (Is) 1E-15
F4 Early voltage (VA) 1E + 12
F5 Recombination current

parameter (collector current
at which beta = BF/2) 0

F6 Not used

2. PNP—transistor parameters (same as NPN)

3. PUL—pulse source specifications

ield Parameter Default
value

Fl Initial source value
at t = 0 0

F2 Pulsed value 0
F3 Pulse delay time 0
F4 Pulse rise time 0
F5 Pulse duration (width) 0
F6 Pulse fall time 0

4. SIN—sinusoidal source specification

ield Parameter Default
value

Fl dc source value (offset) 0
F2 Source amplitude (0-P) 0
F3 Source frequency (Hz) 0
F4 Time delay Tstep

F5 Phase shift (deg) 0
F6 Not used

The value of the sinusoidal source is deter-
mined by the equation

54

APPENDIX A

F(t) = F1 + F2 sin [27TF3(t- F4) + F5|

5. TEM—element temperature coefficients

Field Temperature Default
coefficient value

F1 Resistor (To) 0
F2 Resistor (Tea) 0
F3 Capacitor (To) 0
E4 Capacitor (la) 0
E5 Transistor beta (To) 0
F6 Transistor beta (Tc2) 0

commands described in the following sections; all
control commands are prefixed by a dot(.).

A-2.2.1 ALTER

The .ALTER command enables element val-
ues, models, and model parameters to be altered.
This is done as follows.

.ALTER
RX VALUE
VX VALUE

The element value at temperature T is deter-
mined by the equation

E(T) = E(T„)[1 + (T-To)Tci + (T-T„)zTc2]

where To = 300 K. Tci and Ta are the element's
first- and second-order temperature coefficients,
respectively. The dimensions of Tci and Ta are in
decimal percentages per degree Celsius (a decimal
percent of 0.002 = 2000ppm/C).

A-2.1.5 Comment Statement

General form:

* any comment

A comment may be inserted at any line in the
input circuit by using an asterisk (*) in column 1
followed by any message up to 80 characters long.

A-2.1.6 END Statement

END terminates the inputting of circuit data. If
a default transistor model is used, it may be neces-
sary to use END twice in succession. (Note: on the
HP9830 this is not the same as the END key.)

END

where X is a valid element name (i.e., has been
previously defined) and Value is the new element
value. One or more element values may be altered
using a single .ALTER command. An END statement
terminates the alter operation. Models and model
parameters can be altered in the same manner as
the elements. Model types may be changed by
entering a different three-letter designation (see
sect. A-2.1.4). For example, a pulse source PULcan
be changed to a sinusoidal source, SIN, etc. All
model parameters must be entered or they are set
to their default values. Both models and elements
can be altered at the same time.

A-2.2.2.INSERT

The .INSERT command permits elements or
models to be inserted into an existing circuit. The
use of this command is limited to insertion of
elements and current sources between existing
nodes which are not connected to a voltage source
(except node 0). Any type of model may be in-
serted. The .INSERT command is used as follows.

A-2.2 Control Commands

After each type of analysis is completed, pro-
gram control is returned to the operator. This is
indicated by "INPUT CARD" appearing on the
display. At this time it is possible to initiate a new
analysis. This is done by using one of the control

.INSERT
RX N1 N2 VALUE
QX NC NB NE M#
M# YYY F1 F2 F3 F4 F5 F6

END

55

APPENDIX A

The format for the elements and models is the
same as described at the beginning of section A-2.

A-2.2.3.CAIN

The small-signal ac gain and input impedance
between any two nodes (and ground) can be deter-
mined using the .GAIN command. This is done as
follows.

.GAIN
"INPUT NODE"
(enter input node)
"OUTPUT NODE"
(enter output node)

Gain and input impedance are printed out. This
procedure is repeated for each new gain calcula-
tion. (Note: gain cannot be computed at a source
node.)

A-2.2.4.TEMP

added once the initial circuit has been entered;
however, source models can be inserted or altered,
except for MO (see also sect. 2.2.6). A dc transfer
curve can be obtained using the .TRAN command.
This is done using the PUL model with such param-
eters that the pulse rise-time is long compared to
the circuit time constants.

A-2.2.6.OUTPUT

The output voltages of up to five nodes may be
simultaneously printed for each timepoint in a tran-
sient analysis. This is done using the .OUTPUT
command as follows:

.OUTPUT
"OUTPUT NODE?"
(type desired output node)

This procedure is repeated for each output node (to
a maximum of five outputs).

The analysis of the circuit at a temperature
other than 27 C is obtained as follows.

.TEMP
"TEMPERATURE(DEG C)?"
(enter temperature)

This procedure is repeated for each new tem-
perature. If a TEM model has not been defined,
"ILLEGAL CHARACTER" will be displayed. This
model can be inserted using the .INSERT com-
mand. (Note: any subsequent analysis is performed
at the last temperature specified.)

A-2.2.5.TRAN

A transient analysis can be obtained using the
.TRAN command as follows:

TRAN
"TIMESTEP=?"
(enter time-step)

In order for the transient analysis to be mean-
ingful, one or more source models (SIN, PUL) must
have been specified. Voltage sources cannot be

A-3. MISCELLANEOUS (HP9830A)

A-3.1 Early Termination

In some cases it may be necessary to termi-
nate an analysis before completion. This can be
accomplished using the END key if the program has
stopped or the STOP key if the program is running.
This terminates program control. Variable values
can be examined at this time. Program control can
be regained by one of the following sequences.

1. CONTINUE EXECUTE: This continues the
program at the point the END key was
depressed.

2. CONTINUE 140 EXECUTE: The old analysis is
terminated (the circuit is still retained, how-
ever) and the program waits for a new control
command (i.e., .ALTER, .TRAN, etc).

A-3.2 Mean Error Printout

Sometimes convergence to the desired accu-
racy is not attained. If this happens, a "MEAN
ERROR:" printout will occur. These results may or

56

APPENDIX A

may not be correct. If, during a dc analysis, a more
accurate solution is desired, the following proce-
dure can be used.

.ALTER
END

This does not change the circuit but allows at least
four more iterations to occur.

A-4. BIAS-D SOURCE LISTING (BASIC)

A listing of the BASIC version of BIAS-D is
given here. This listing is directly compatible with
an HP9830A desktop -calculator with a string-
variable ROM and a matrix operations ROM. Minor
modifications are required for execution on a Wang
2200 or a Tektronix 4051.

10 REM ***************** BIAS-D *****************
26 REM CIRCUIT RNflLYSIS PROGRAM-VERSION 2 MOD S 11-14-74
30 REM B.EIEHL, HRRRY DIAMOND LABS WASHINGTON DC
35 OPTION EASE 1
40 DIM R<25> , (K25,3> , E<25, 2>, K25,2>, T<25, 1), PCS, 7)
50 DIM N<32,2>,K<25,5),L<25,5>,M<25,S),G<25,4)
60 DIM Y<30,30),V<31),U<31>,C<30)
70 DIM fl$[65],E*[9],D* C 9]? Rt[25],C*[25],V*[25] , I *[25],Q* C 25],H*[5],H*[25]
80 Rl^Cl=Vl = Il=Ql=Ml=M2=I2 = T9 = H = T0 = T2 = T3 = N'::i,2>=M4 = 0
90 REDIM C<30>
100 B*»"RVICQME*."
110 D*="flIDG0TPHS"
120 F=T4=1
130 DISP "INPUT CARD";
135 EEEP
140 INPUT fit
150 PRINT fl*
160 FOR 1=1 TO 9
170 IF A*tl;l]=B*CI;1] THEN 220
100 NEXT I
190 DISP "ILLEGAL CHARACTER: RE-";
200 GOTO 130
210 REM ...DETERMINE ELEMENT TYPE
229 ON I GOTO 240,350,560,670,790,850,1880,130,1290
230 REM ...RESISTORS
240 IF F-2 THEN 300
250 R1=T=R1+1
260 R*[Rl]=fl»C2; 1]
270 GOSUB 2580
280 R<R1)»ABS<C<3))
290 GOTO 130
300 H*=R$
310 GOSUB 3030
320 R<T>«S
330 GOTO 130
340 REM ... VOLTAGE SOURCES
350 IF F=2 THEN 510
360 Vl=T = ,v,l + l
370 V*CVl]=fl$C2; 1]
380 GOSUB 2580
390 IF C<1><>0 THEN 440

57

APPENDIX A

406 K<V1II>«C<2)
410 L<VI,I>«0
420 EO/l, 1>=-C<:3)
430 GOTO 490
448 IF C<2>«0 THEN 480

PRINT "SOURCE UNGROUNDED: RE-
71=71-1

450
466 V1=V1
470 GOTO 130
480
490
5

550
568
570

E<V1,2)»C<4)
00 GOTO 130

510 H* = V$
520 GOSUB 3030
530 E<:T,I>=S
540 GOTO 130

REM ...CURRENT SOURCES
IF F=2 THEN 630

3fW I1=T=I1+1
580 I*[Il]=fl*[2; 1]
590 GOSUB 2530
600 I<II,1)«C<3)
610 I<I1>2>=C<4>
620 GOTO 130
630 H$=I*
640 GOSUB 3030
650 I(Ttl>=Sl
660 GOTO 130
670 REM ...CflPflCITORS
680 IF F=2 THEN 740
690 C1=T=C1+1
700 c*cci3»fi*c2;n
710 GOSUB 2580
720 Q(T,l>«flBS<C<3)>
730 GOTO 130
740 H$=C*
750 GOSUB 3030
760 GKT, 1 >=S
770 GOTO 130
780 REM ...TRANSISTORS
790 IF F=2 THEN 190
800 Q1=T=Q1+1
810 Q*CQ13"fl*C2;n
820 GOSUB 2580
830 T<ei,l)=C<4)
840 GOTO 130
850 REM ...MODELS
860 IF F=2 THEN 1250
870 M1=T=M1+1
880 M*[T]=fl*C2;1]
890 GOSUB 2588
900 FOR M=6 TO 9

58

APPENDIX A

910 IF fi$[4;1]=D*CM;1] THEN 950
920 NEXT M
930 M1=M1-1
940 GOTO 190
950 FOR K=2 TO 7
960 P<T,K)«C<K-1)
970 NEXT K
980 ON M-5 GOTO 1080,990,1020,1040
990 IF fl*[5;l]="U" THEN 1060
1000 P<T, 1 ;i=-i
1010 GOTO 1130
1020 P<T,i)«l
1030 GOTO 1130
1040 K=2
1050 GOTO 1100
1060 K=3
1070 GOTO 1100
1080 K=4
1090 T3=M1
1100 M2-M2+1
1110 P<T(1>«K
1120 GOTO 1210
1130 IF C(1><>0 THEN 1150
1140 P«;T,2> = 100
1150 IF C<2><>0 THEN 1170
1160 PCT,3)=1
1170 IF C<3><>a THEN 1190
1180 P<:T,4> = 1E-15
1190 IF C(4><>0 THEN 1210
1200 P<T,5)»IE12
1210 S"VflL<M*CT;1]>+10
1220 M<S,3)»T
1230 IF 1=7 THEN 1880
1246 GOTO 130
1250 H*=M*
1260 GOSUB 3030
1270 GOTO 890
1280 REM ... CIRCUIT UPDATES
1290 IF F=l THEN 190
1300 FOR J=l TO 7
1310 IF Fl*[2; 1]=D*[J; 1] THEN 1340
1320 NEXT J
1330 GOTO 190
1340 F=J+1
1350 REDIM C(30>
1360 ON J GOTO 1380,1400,120,1510,1310,1410,1990
1370 REM . . .FILTER
1380 GOTO 130
1390 REM ...INSERT
1400 GOTO 130
1410 IF fl|:[3:l] = "R" THEN 1650

59

APPENDIX A

1428 REM ...TEMPERHTURE
1430 IF T3=0 THEN 190
1440 PRINT "Tt:DEG C)" ;
1450 INPUT Tl
1460 PRINT Tl
1470 Tl=Tl+273
1480 T2=T1-300
1490 GOTO 130
1500 REM ...GAIN
1510 PRINT "INPUT";
1520 GOSUE 1540
1530 GOTO 1590
1540 PRINT " NODE";
1550 INPUT K
1560 PRINT K
1570 GOSUE 2970
1580 RETURN
1590 M=J
1600 PRINT "OUTPUT";
1610 GOSUE 1540
1620 PRINT " Gfl IN < V - V > ="; Y < J, M) ■-- Y < M, M)
1630 PR I NT "INPUT IMPEDENCE=";Y(M,M)
1640 GOTO 130
1650 REM ...TRANSIENT
1660 F=8
1670 IF M4=0 THEN 1810
1680 PRINT "TIMESTEP=";"FINAL TIME"";
1690 INPUT D\fDS
1700 PRINT Dl;D9
1710 PRINT "TIME";
1720 FOR 1=1 TO M4
1730 L«M<I+9,4>
1731 K»«"V"8eVflL»<LJ
1740 PRINT USING 1770;X*
1750 NEXT I
1760 PRINT USING 1770
1770 IMAGE #,9X,4A,riDD
1775 PRINT
1730 T0=0
1790 GOTO 1950
1800 REM .-.OUTPUT PRINT
1810 DISP "OUTPUT NODE";
1820 INPUT K
1830 PRINT "V";K
1840 M4=M4+1
1850 M<M4+9,4>«K
I860 IF F=8 THEN 1660
1870 GOTO 130
1880 IF Q1=0 THEN 1950
1890 IF Ml-M2>0 THEN 1950
1900 M1=T=M1+1

60

APPENDIX A

1916 M*<M1>="0"
1920 MAT C=ZER
1939 M-8
1940 GOTO 950
1950 D=1E40
I960 N1=N-V1
1970 ON F GOTO 1980,4710,4160,130,7010,136,4710,4180
1980 REM ...PRINT INPUT DfiTfl
1990 IF R1=0 THEN 2210
2000 PRINT
2010 PRINT "RESISTORS:"
2020 PRINT "NAME NODES VALUE"
2030 FOR 1=1 TO Rl
2040 PR I NT "R";R* CI;1];TAB C 6);K(1, 1>,L CI,1>;R < I >
2050 NEXT I
2060 IF C1=0 THEN 2120
2070 PRINT "CAPACITORS:"
2086 PRINT "NAME NODES VALUE"
2090 FOR 1=1 TO Cl
2100 PR I NT "C";C*[I;1];TAE(6);K U,4);L <1,4);Q CI,1>
2110 NEXT I
2120 IF V1=0 THEN 2190
2130 PRINT
2140 PRINT "VOLTAGE SOURCES:"
2150 PRINT "NAME +NODES- VALUE MODEL"
2160 FOR 1=1 TO VI
2170 PRINT "V";V$[I; 1];TAE(:6>;K(I,2>;L<I,2>;E(I, i::.; "M";E<I,2>
2180 NEXT I
2190 IF 11=0 THEN 2260
2200 PRINT
2210 PRINT "CURRENT SOURCES:"
2220 PRINT "NAME +NODES- VALUE MODEL"
2230 FOR 1=1 TO II
2246 PRINT "I"; I$[I; 1]; TAE<:6>; K< 1, 3>; LU , 3); KI, 1>;"M"; 1(1,2)
2250 NEXT I
2260 IF Q1=0 THEN 2340
2270 PRINT
2280 PRINT "TRANSISTORS:"
2290 PRINT "NAME C E E MODEL"
2300 FOR 1=1 TO Ql
2310 PRINT HQM;Q»ti;ii;TfiB(7);Kal5>;L<i,5);Ma.5):MM":T<iln
2320 NEXT I
2330 PRINT
2340 IF M1=0 THEN 2520
2350 PRINT "MODELS: "
2360 PRINT "NAME TYPE"
2370 FOR 1=1 TO Ml
2380 J = AES<P< I, n>
2390 ON J GOTO 2400,2440,2460,2480
2400 A*="NPN"
2410 IF P<I,1>»1 THEN 2490

61

APPENDIX A

2420 fl$="PNP"
2430 GOTO 2490
2446 fl*="SIN"
2450 GOTO 2490
2460 fl*="PUI_"
2470 GOTO 2490
2480 fl*="TEM"
2490 PRINT US IHG 2500; Mf CI; 1], fl«, P U , 2 >, P U , 3 > , P < 1, 4 >, P U , 5 >, P (1, 6 >, P < I J

7 ■'
2500 I MflGE " M" , Ifl, 4X , 3fl, 2 C M5D . 3D > , M12D. 3D , M12D. 3Ii, M12D. 3D, M12D. 30
2510 NEXT I
2520 PRINT
2530 PRINT "NODES:";N
2540 PRINT
2550 PRINT "****END OF INPUT DflTfl****"
2560 PRINT
2565 DEEP
2570 GOTO 3100
2580 REM ...SUB TO READ INPUT DflTfl
2590 J=8
2600 S=0
2610 IF I>5 THEN 2640
2620 S=POSCfl*,"H")
2630 J=4
2640 K=0
2650 MAT C=ZER
2660 K=K+1
2670 L = POS'::fl*C.J], " ">
2680 IF <J<S) OR <S«0) THEN 2710
2690 J=S+1
2700 GOTO 2750
2710 IF L=0 THEN 2750
2720 C <. K > =VflL C fl* C J, J + L- 1] >
2730 J=J+L
2740 GOTO 2660
2750 CCK^VflLCflfCJ])
2760 IF 1=6 THEN 2950
2770 8-2
2780 IF I OS THEN 2800
2790 S=3
2800 FOR L=l TO S
2810 IF C'::L>=0 THEN 2880
2820 REM ...DET. UNIQUE NODE NUMBERS
2830 FOR M=l TO N
2840 IF C<L>«N<M,2) THEN 2880
2850 NEXT M
2860 N=N+1
2870 M<N,2>»C<L)
2830 NEXT L
2890 K(T,I)»C<1>
2900 LCT, n«C<2)
2910 IF I<>5 THEN 2930

62

APPENDIX A

2920 MCT,I>=C(3>
2930 IF F<>3 THEN 2950
2946 GOSUB 3590
2950 RETURN
2960 REM ...SUB TO DET. ELEMENT NODE
2970 FOR .J=l TO N
2980 IF H<J,2>«K THEN 3000
2990 NEXT J
3000 .J = H(J, 1)
3010 RETURN
3020 REM ...SUE TO FIND FILTER ELEMENT
3030 T«P0S<H*lfl*C2j1])
3040 IF TO0 THEN 3070
3050 DISP "ELEMENT NOT FOUND;RE-";
3060 GOTO 130
3070 IF 1=6 THEN 3090
3030 S»VflL<fi$C4]>
3090 RETURN
3100 REM ...PROCESS CIRCUIT DfiTfl
3110 FOR 1=1 TO N
3120 NCI,1>=I
3130 NEXT I
3140 REM ...REORDER NODE VECTOR
3150 FOR 1=1 TO N
3160 FOR J=I+1 TO H
3170 IF H(I,2><N<J,2) THEN 3210
3180 T = NC.J,2)
3190 N<J,2>»N<I,2)
3200 N<I,2)«T
3210 NEXT J
3220 NEXT I
3230 REM ...MOVE SOURCE NODES TO END OF NODE VECTOR
3240 L=V1
3250 1=2
3260 GOSUB 3550
3270 M=N
3280 FOR 1=1 TO VI
3290 K = KU,2>
3300 IF K>N1 THEN 3400
3310 FOR L=l TO VI
3320 IF L=I THEN 3360
3330 IF M<>K(L,2) THEN 3360
3340 M=M-1
3350 GOTO 3310
3360 NEXT L
3370 N<M, n=K
3380 NCK, n=M
3390 KU,2>=M
3400 NEXT I
3410 REN ...RE-ORDER ELEMENT NODES
3420 L=R1

63

APPENDIX A

3430 1=1
3449 G08UE 3559
3450 L=I1
3460 1=3
3470 GOSUE 3550
3480 L=C1
3490 1=4
3500 GOSUE 3550
3510 L=Q1
3520 1=5
3530 GOSUE 3550
3540 GOTO 3740
3550 FOR T=l TO L
3568 GOSUE 35,?0
3570 NEXT T
3580 RETURN
3590 K = K<T, I)
3600 IF K=0 THEH 3630
3610 GOSUE 2970
3620 K<T,I)=J
3630 t< = Lc;T, I)
3640 IF K=0 THEN 3670
3650 GOSUE 2970
3660 L<T, r.)=J
3670 IF I<>5 THEN 3720
3680 K = M<T, I>
3690 IF K=0 THEN 3720
3700 GOSUE 2970
3710 CUT, I)=J

373^ RIJI
UR
^ REDUCE VOLTAGE SOURCES TO CURRENT EQUIVALENT FOR R AND C

3740 FOR 1=1 TO VI
3750 J=K(I,2>
3760 REM ...RES.
3770 S=l
3780 S1=R1
3790 GOSUE 3900
3800 REM ...CURRENT SOURCE
3810 S=3
3820 S11=I1
3830 GOSUE 3900
3840 REM . .CAP.
3850 S=4
3860 S1=C1
3870 GOSUE 3900
3880 NEXT I
3890 GOTO 4110
3900 FOR M=l TO SI
3910 K=K<M,S)

3920 L«L<M,S>
3930 IF JOK THEN 3990

64

APPENDIX A

3940 IF S=4 THEN 3970
3950 K<M,S>=0
3960 IF S=3 THEN 409Q
3970 T=L
3980 GOTO 4040
3990 IF JOL THEN 4090
4000 IF S=4 THEN 4030
4010 L(M,S)=0
4020 IF S=3 THEN 4090
4030 T=K
4040 12=12+1
4050 M(I2,4>=S
4060 M(I253>=T
4070 M<I2,2)=I
4080 M<12, 1)=r'1
4090 NEXT M
4100 RETURN
4110 Tl=300
4120 REM ..BEGIN RNfiLYSlS
4125 BEEP
4130 MAT V=ZER<N>
4140 MAT U=ZER<N>
4150 MAT G = ZER<:Gll + l,4)
4160 IF F<>8 THEN 4710
4170 REM ...UPDATE TRANS. SOURCES
4180 IF T0OD1 THEN 4210
4190 D=D1
4200 GOTO 4710
4210 FOR 1=1 TO VI
4220 K = E<:i,2>
4230 IF K=0 THEN 4260
4240 GOSUE 4340
4250 EM, 1>=V
4260 NEXT I
4270 FOR 1=1 TO II
4280 K«ia,2>
4290 IF K=0 THEN 4320
4300 GOSUB 4340
4310 iali>=v
4320 NEXT I
4330 GOTO 4710
4340 T = r'UK+10,3>
4350 J=P<;T, 1)-1
4360 ON J GOTO 4370,4450
4370 REM ...SINE
4380 V=P<T,2)
4390 IF PCT,5><>0 THEN 4410
4400 P(:T,5>=D1
4410 IF T0<P<T,5) THEN 4430
4420 V»V+PCT,3)*SIN<2*PI*P<T,4)*<:T0-P<T,5>>+P<T,6>/'57.296:
4430 RETURN

65

APPENDIX A

4446 REM ...PULSE
4450 Z = P<:T,4>
4460 IF T0>Z THEN 4490
4470 V=P(T,2)
44S0 RETURN
4450 Z=Z+PCT,5>
4500 IF T0>=Z THEN 4539
451 0 V = P (T , 3) - C P C T , 3 > -P < T ? 2 > > .■• P CT, 5)» < Z-T0 >
4520 RETURN
4530 Z«Z+P<T,6>
4540 IF T0>Z THEN 4570
4550 V=P<T,3>
4560 RETURN
4570 Z=Z+P(T,7)
45S0 IF T0>=Z THEN 4610
4590 V«iP (T, 2>+ (P<T, 3>-?(T, 2> >.-PC T, 7 > * (Z-T0 >
4600 RETURN
4610 V=PCT,2>
4620 RETURN
4630 REM ...SUE TO LET. DELTA V
4640 V=0
4650 IF L=0 THEN 4670
4660 V=V<L)
4670 IF K=0 THEN 4690
4630 V=V-V<K>
4690 RETURN
4700 REM ...UPDHTE CflPFICITOR CURRENTS
4710 IF T3=0 THEN 4730
4720 T4»l+P<T3,4)*T2+P<T3,5>*T2A2
4730 FOR 1=1 TO Cl
4740 IF CF«8) AND (T0>0> THEN 4770
4750 GK: i, 2:J=Q(: i, 3>=0
4760 GOTO 4830
4770 K=K<I,4>
4780 L«L<I,4)
4790 GOSUE 4630
4800 T = GKI, n*T4.'D*V
4810 QU,2>=-Q'::i , 3)-T
4820 Q<I,3>»T+Q<I,2)
4830 NEXT I
4840 REM ...HDD SUPPLIES TO V MATRIX
4850 FOR 1=1 TO VI
4860 J»K<I,2>
4870 V<J>«£<!, 1,)
4880 NEXT I
4890 T9=0
4900 MAT Y«2ER<N1,N1)
4910 MAT C = ZER(:N1)
4920 REM ...ADD RESISTORS
4930 IF T3=0 THEN 4950
4940 T4=1+P(:T3, 2>*T2 + Pi;:T3, 3>*T2^2

66

APPENDIX A

4950 FOR 1=1 TO Rl
4966 K»K<I,1>
4970 L=L<I,I)
4980 R=1/R<I>/T4
4990 GOSUE 5020
5000 NEXT I
5010 GOTO 5100
5020 IF K=0 THEN 5070
5030 Y<K>K>«Y<K,K)+R
5040 IF L=0 THEN 5090
5050 Y<K,L>=Y<K,L)-R
5060 Y<L,K)"Y<L,K)-R
5070 IF L=0 THEN 5090
5030 Y<L,L>"Y<L,L)+R
5090 RETURN
5100 REM ...ADD CURRENT SOURCES
5110 FOR 1=1 TO 11
5120 K»K<I,3)
5130 L»L<I,3)
5140 c=ia, n
5150 GOSUB 5130
5160 NEXT I
5170 GOTO 5230
5130 IF K=0 THEN 5206
5190 C<K>«C<K>+C
5200 IF L=0 THEN 5220
5210 C<.L>=C(.L)-C
5220 RETURN
5230 REM ...ADD CflPflCITORS
5240 IF T3=0 THEN 5260
5250 T4=l+P(:T3,4)*T2 + P<T3,5>*T2-2
5260 FOR 1=1 TO Cl
5270 K=Ka,4>
5230 L=L(I,4)
5290 IF K<=N1 THEN 5310
5300 K = 0
5310 IF L<=N1 THEN 5330
5320 L = 0
5330 R = GKI, 1>*T4/D
5340 GOSUE 5020
5350 C«Q<I,2)
5360 GOSUE 5180
5370 NEXT I
5380 REM ...HDD GENERHTED CURRENT
5390 FOR 1=1 TO 12
5400 j=Ma, i)
5410 K=M<I,2>
5420 L»M<I,3)
5430 IF M(I,4)«4 THEN 5460
5440 C«:L>=C<L)+E<;K, I>/R<J)
5450 GOTO 5470

SOURCES

67

APPENDIX A

5469 C (L)»C < L ')+£(. K , 1 >*Q < J , 1) • D
5479 NEXT I
5488 REM ...ADD TRANSISTORS
5490 IF 01=0 THEN 6456
5500 V6=8.6164E-5*T1
5510 C0= (T1 '-300)■••■■3*E>;P <-13920*(1 ■■■■T1 -1 .■••300))
5520 IF T3=0 THEN 5540
5530 T4=1+T2*PCT3,6)+T2--2*P<:T3, 7)
5540 FOR 1=1 TO Ql
5550 T=T(I,I)
5560 T=M(T+10,3>
5570 T7 = P(:T, n
55S0 REM ... INITIALIZE PflEfiMETERS FOR FIRST ITERATION
5590 IF T9O0 THEN 5640
5600 S1=S2=0
5610 IF FO0 THEN 5640
5620 GCI,1)=.5
5630 G(I,2)=0
5640 K=M<I,5>
5650 L = LU,5>
5660 GOSUB 4630
5670 V4=V*T7
5680 M=K
5690 K»K<1,5)
5700 GOSUB 4630
5710 V3=V*T7
5720 Z=l
5730 IF V3>0 THEN 5750
5740 Z = Z-V3*T7.-P(;T, 5)
5750 B«P<T,2)«T4*2
5760 C2"C0*P<T, 4)*<l+l-'P(T, 2> >/U +1 .■■■B>
5770 V«V4
5780 J=l
5790 GOSUB 5810
5800 GOTO 5960
5810 IF V<»G<I,J) THEN 5880
5820 C3=0
5830 IF C(I,J><0 THEN 5350
5840 C3«C2«<EXP<G<1,J>^V6>-1)
5850 C6 = C3-G(I , .J + 2>*G< I , J)
5860 RB(G<I, J+2)*V+C6)''C2+l
5870 V=V6*L0G<fl>
5880 C3=-C2
5890 IF V<-2 THEN 5910
5900 C3 = C2*EXP <; V ■•■V6 > +C3
5910 C3»<C3+C2)/V6
5920 C6=T7*CC3-G3*V>
5930 G<I,J+2>«G3
5940 G(I,.J>=V
5950 RETURN
5960 C4=C3

68

APPENDIX A

5976 C5-C6
5980 G1=G3
5990 E1=SQR(P<T,6>»C2)-P(T,2)
6000 C7=-B1
6010 IF V<-2 THEN 6039
6020 C7 = Bl*EXF,(V/V6/2)+C7
6030 Z=(C7 + El>-/V6.'-2
6040 C8 = T7*c:C7-Z*V.;'
6050 G2=G1/B+Z+C2
6060 B1=P';T,3)*T4
6070 C2 = C0*P < T,4 > * U + 1/P(T,3 >)/U + 1/Bl>
6030 V=V3
6090 J=2
6100 GOSUE 5810
6110 G4 = G3.''E1+C2
6120 IF F<>5 THEN 6180
6 1 30 C2 = T7* (C4.■•■•E + C3.- E 1+C7 >
6140 C4 = T7* ■; C4- < 1 + 1 -• E 1 > *C3 >
6156 PR I NT US ING 6160; Q* [I; 11, C2, C4, T7*V4, T7*V3, C4.-C2, G1, 1 sQ2
6160 IMRGE #,"Q",1fl,2X,MB.DDDE,1X,MB.DDBE,2<3X,M2B.BBIO ,MDDD.BB,1X,MB.BBE,1X,MB ,

BBE
6170 GOTO 6430
6180 REM ...GNB. CONDUCTANCES FINE V.B.C.B. CONNECTED TO SUPPLY
6190 IF KON1 THEN 6210
6195 C6=C6-G3*V(K)
6200 K=0
6210 IF LON1 THEN 6230
6215 C5 = C5 + G1*V(:L>
6216 C6=C6+G3*V<L)
6220 L=0
6230 IF M<=N1 THEN 6250
6235 C5"C5-Gl*V<li)
6240 M=0
6250 IF K=0 THEN 6340
6260 C < K > =C (K > + a + 1 '-El) *C6-C5
6270 V(K,K)=Y<K,K> +G3 + G4
6280 IF L=0 THEN 6310
6290 Y C K,L > =Y CK,L>+G1-G3-G4
6300 Y(LfK)»Y<L,K>-G4
6310 IF M=0 THEN 6400
6320 Y<K,M>=Y<K,M>-G1
6330 V<M,K)«¥(M,K>-G3
6340 IF N=0 THEN 6490
6350 C<M)=C<M ::' + (: 1 +l-'B) *C5-C6 + C8
6360 Y(t1,M>=Y<M,M>+Gl+G2
6370 IF L=0 THEN 6430
6380 Y<M,L)-Y<M,L>-Gl-G2+G3
6390 ¥<L,M>»Y<L,M>-G2
6400 IF L=0 THEN 6430
6410 CCL>=C(L::'-C5/B-C6/B1-C8
6420 Y<L,L>=Y(;L,L>+G2 + G4

69

APPENDIX A

6436 NEXT I
6448 IF F=5 THEN 130
6450 REDIM V<H1)
6460 MAT V=INVCY>
6470 MAT V=Y*C
6480 REDIM V<N>
6490 IF Q1=0 THEN 6700
6500 T9=T9+1
6510 REM ...CHECK FOR CONVERGENCE
6520 MAT LI = V-IJ
6530 S = 0
6540 FOR 1=1 TO Nl
6550 S=S+U<J>-2
6560 NEXT J
6570 IF F=8 THEN 6590
6580 PRINT S
6590 IF CS<N1A2*1E-10> FIND (SKNl -2*
6600 IF <S>S1> AND <S1>S2) AND '::T9>5
6610 S2 = S1
6620 S1=S
6630 GOTO 6680
6640 PRINT "MEAN ERROR < VOLTS) :"; SQR •;
6650 PRINT
6669 GOTO 6700
6670 REM ...STORE LAST NODE VOLTAGES
6680 MAT U=V
6690 GOTO 4900
6700 IF F<>8 THEN 6810
6710 PRINT USING 6711;T0
6711 IMAGE »,D.3DE
6720 FOR L=l TO M4
6730 K=M<L+9,4>
6740 GOSUB 2970
6750 PRINT USING 6760;V'.:.J)
6760 IMAGE #, M4D.5D
6770 NEXT L
6780 PRINT USING 6781;T9
6781 IMAGE #,3D
6782 PRINT
6783 IF T0>D9 THEN 130
6790 T0=T0+D1
6791 Y9=Y9+T9
6800 GOTO 4180
6810 IF Q1=0 THEN 6840
6820 PRINT "ITERATIONS:";T9
6830 PRINT
6840 T=Tl-273
6850 PRINT "T=,, ^j "DEG C "
6860 PRINT
6870 PRINT "NODE VOLTAGES:"
6880 FOR K=l TO N

lE-lO; AND ';T9>3> THEN 6700
> AND CSC.1> THEN 6640

70

APPENDIX A

6899 I=N<:K,I)

6960 J=N<K,2)
6910 PRINT USING 6920;J,Va)
6920 IMAGE " V",M3D,M13D.4D
6930 NEXT K
6940 F=5
6950 IF Q1O0 THEN 6970
6960 GOTO 130
6970 PRINT "TRfiNSISTOR OPERATING POINTS:"
6980 PRINT USING 6990 , _T „
6990 IMAGE "NAME" , 5X, " I E" , 9X, " IC" , 9X, " VEE " , 7X, " VBC" , 6X, "BETA" , 6X, "GM" , S.-., " RP I

7060 GOTO 5480
7010 STOP
7020 END

71

APPENDIX B. LISTINGS OF TEST CIRCUITS

Four test circuits were used to compare the
analytical speeds of BIAS-D modifications which
are described in section 4 of the main body of the
report. These test circuits are all modifications of
the same test circuit used in section 3 to evaluate
the BASIC version of BIAS-D. The basic circuit
(CKT10) is shown in figure B-1 (a). CKT10 is a nine-
node, five-transistor integrated preamplifier circuit.
Capacitors were added across the collector-base
and base-emitter junctions of each transistor to
represent the transistor junction capacitances. A
BIAS-D input listing is given in figure B-1 (b). CKT10
does not include any bulk resistor, but the other
three circuits were obtained from CKT10 by suc-
cessively adding resistors to the base (CKT11)
(fig. B-2), collector (CKT12) (fig. B-3), and emitter
(CKT13) (fig. B-4) of each transistor in this circuit.

t TEST CIRCUIT CKTIO <9 NODES)
Ittt INTEGRATED PREAMPLIFIER tttt
t RESISTORS
Rl 6 1 12<
R2 7 3 7.5K
R3 4 e 680
R4 7 6 9<
R5 8 0 5K

Figure B-1. Standard test circuit CKT10 (9 nodes):
(a) diagram and (b) BIAS-D input listing.

t TRANSISTORS
oi 3 i 2 na
02 3 2 4 HS
03 e s 4 ns
04 G 6 5 HS
Q5 7 3 8 na
t U0LTAGE SOURCES
US 9 0. 1 Ml
UB 7 0 6.1
t CAPACITORS
CS 9 1 1U
CB1 1 2 2P
CB2 2 4 SP
CB3 5 4 2P
CBS 3 8 2P
CC1 3 1 2P
CC2 3 2 2P
CC3 6 5 2P
CCS 7 3 2P
» MODELS
Ml PUL 8 -1 .5U .5U 5U ,5U
M2 NPN 100 1 5E- •15
END
t FOR BENCHMARK TIMES USE»
t .TR
« TR 0 10U .1U
t U8 PRT

Figure B-1(b) (cont'd).
BIAS-D input listing.

Standard test circuit CKT10,

Figure B-2. Standard test circuit CKT11 (14 nodes):
(a) diagram.

73

APPENDIX B

(b)

t TEST CIRCUIT CKTll (14 NODES)
tttt INTEGRATED PREAMPLIFIER tttt
t RESISTORS
Rl 6 1 12<
R2 7 3 7.5K
R3 4 0 680
R4 7 6 9K
R5 8 0 5K
t TRANSISTORS
01 3 11 £ ns
02 3 21 4 n2
03 6 51 4 R2
04 S 61 5 ns
05 7 31 8 n2
* UOLTAGE SOURCES
us 9 0 i ni
UB 7 0 6.1
»BASE RESISTORS

11 100
21 100
51 100
61 100

RBI
RB2
RB3
RB4
RB5

1
2
5
6
3 31 100

t CAPACITORS
CS 9 1 1U
CE1 11 2 2P
CC1 11 3 2P
CE2 21 3 2P
CC2 21 4 2P
CE3 51 6 2P
CC3 51 4 2P
CE4 61 5 2P
CC4 61 6 2P
CE5 31 7 2P
CCS 31 8 2P
« nODELS
11 PUL 0 -1 .5U .5U 5U .5U
m NPN 180 1 5E-15
END
t FOR BENCHMARK TIMES USE:
X .TR
* TR C 10U .1U
» U8 PRT

Figure B-2. Standard test circuit CKT11 (14 nodes):
(b) BIAS-D input listing.

t TEST CIRCUIT CKT1S <19 NODES)
tttt INTEGRATED PREAMPLIFIER tttt
t RESISTORS
Rl 6 1 12000
R2 7 3 7500
R3 4 0 6S0
R4 7 6 9000
R5 S 0 SOOO
t TRANSISTORS
01 32 11 2 f12
02 34 21 4 n2
03 62 51 4 n2
04 64 61 5 n2
05 72 31 8 f12
t UOLTAGE SOURCES
UB 7 0 6.1
us 9 0 i m
CS 9 1 1U
tBASE RESISTORS
RBI
RB2
RB3
RB4
RB5

1
2
5
6
3

11 100
21 100
51 100
61 100
31 100

t COLLECTOR RESISTORS
RC1 3 32 100
RC2 3 34 100
RC3 6 62 100
RC4 6 64 100
RC5 7 72 100

Figure B-3. Standard test circuit CKT12 (19 nodes):
(a) diagram and (b) BIAS-D input listing.

74

APPENDIX B

«JUNCTION CAPACITANCES
CE1 11 5 SP
CCl 11 3 EP
CES SI 3 SP
CCS SI 4 SP
CE3 51 6 SP
«C3 Si 4 2P

CE4 Si 5 SP
CC4 61 6 2P
CE5 31 7 SP
CCS 31 8 SP
» nODELS
Ml PUL e -i .su .5U 5U .SU
ns SPN tee i 5E- •15
END
1 FOR BENCHPIARK TIMES USE:
S .TR
t TR e 10U .1U
i U8 PRT
Figure B-3(b) (cont'd). Standard test circuit CKT12,
BIAS-D input listing.

RC5

JRE5

(b)
t ' FEST CIRCUIT CKT13 (24 NODES)
tttt INTEGRATED PREAMPLIFIER tttt
t ?E?Ii JTORS
Rl £ 1 12000
92 7 3 7500
R3 4 0 bSO
R4 7 6 9000
R5 8 0 5000

t TRANSISTORS
01 3c 11 S3 MS
02 34 SI 43 MS
03 62 51 44 MS
04 64 61 53 MS
05 72 31 S3 MS
* UOLTAGE SOURCES
UB 7 0 S.l
US 9 0 1 Ml
CS 9 1 1U
*BASE.RESISTORS
RBI
RB2
RB3
RB4
RB5

11 100
SI 100
51
61
31

RC5
RC3
RC4
RC5

RE4 53 5
RE3 44 4
RES 43 4
RE1 23 2

Figure B-4. Standard test circuit CKT13 (24 nodes):
(a) diagram and (b) BIAS-D input listing.

100
100
100

* COLLECTOR RESISTORS
RC1 3 32 100

34 100
62 100
64 100
72 100

% EMITTER RESISTORS
RES 83 8 10

10
10
10
10

IJUNCTION CAPACITANCES
CE1 11 2 2P

2P
2P
2P
2P
SP
2P
2P
2P

CCS 31 8 2P
Ml PUL 0 -1 .5U .SU SU .SU
112 NPN 100 1 5E-15
END
« FOR BENCHMARK TIMES USE:
t .TR
« TR 0 10U .1U
t U8 -PRT

Figure B-4(b) (cont'd). Standard test circuit CKT13,
BIAS-D input listing.

CCl 11
CE2 21
CC2 21
CE3 51
CC3 51
CE4 61
CC4 61
CE5 31

3
3
4
6
4
5
6
7

75

APPENDIX C. BIAS-D LINKED-LIST STORAGE STRUCTURE

A linked-list storage structure is an efficient
method of element storage in a circuit simulator in
which a wide variety of circuits are to be analyzed.
The linked element storage array used in BIAS-D
(FORTRAN) resembles that used by Mini-MSINC*
Figure C-1 gives the BIAS-D configuration for each

element list.

Four different list structures are shown here.
Passive two-terminal elements (resistors, capaci-
tors, or inductors) use the same list structure. Ca-
pacitors and inductors require two additional
double-precision words for storage of temporary
variables. Transistors use a similar configuration but
reserve storage space for four single-precision tem-
porary variables. Models use a different configura-
tion. Here eight single-precision model parameters

NEXT LOCATION NEXT LOCATION

MODEL LOC.

ELEMT. LOC.

SUPPLY LOC,

+ NODE

ELEMT, TYPE

NEXT MODEL

MODEL LOC.

Idl

Figure C-1. Linked-list element storage array configu-
ration in BIAS-D: (a) R, L, C, V, I elements,
(b) transistors, (c) models, and (d) generated current
sources.

*T. K. Young and R. W. Dutton, Mini-MSINC—A Mini-
computer Simulator for MOS Circuit with Modular Built-
in Models, IEEE I. Solid-State Circuits, SC-11, No. 5, 730-
732, October 1976.

are stored with a pointer to a second list if neces-
sary. The last list in this figure is that for the gener-
ated current sources. These sources are added
during the setup procedure and are generated from
the elements connected to voltage sources. All
elements in this list point either to an element type
or element value. They are stored sequentially and,
therefore, do not need a pointer address. It is
imperative that the list length for each element be
divisible by two. This restriction enables simple
addressing of integer and single-precision variables.
This addressing is accomplished in BIAS-D as

follows.

integer location address = KLOC + LROS

single-precision location address = KLOC/2 + LPOS ,

where KLOC + 1 is the integer location of the first
variable in the particular element list, and Lpos is the
displacement (in words) within this list. KLOC is
determined either from the IFRST array which gives
the first location of each element type, or from the
first location in each element list, which gives the
address of the first location of the next element of
that type. An extension of the previous restriction
on the list configuration is that, within each element
list, each single-precision variable must be on two
word boundaries. This is for the same reason as
given earlier. If the length of any element list is to be
extended it can be easily done, in two-word incre-
ments, by changing the data statement in the MAIN
subroutine containing the LEN variable. This vari-
able defines the length in words of each element

list.

If the particular computer system uses a two-
or four-word double-precision data word format,
double-precision data can also be stored in this list
(not possible on the HP2100). In this case, each
double-precision variable must be on boundaries
equal to the data word length. The location of this
varaible is found using the following address (for
four-word double-precision data).

double-precision location address = KLOC/4 + LPOS

77

APPENDIX C

There are no "PUSH" or "POP" routines in added at the end of the original element list, at
BIAS-D for loading or unloading this element list. starting location MXLOC. The generated current
Once the list is formed it is not changed, except source pointers must then be regenerated and
when elements are inserted in the circuit. These are loaded at the new end of this list.

78

APPENDIX D, BIAS-D SUBROUTINE ORGANIZATION

The organization of the subroutines and func-
tions contained in BIAS-D are described in this
appendix. The BIAS-T9 version of BIAS-D is de-
scribed. This version contains sparse matrix inver-
sion and storage, linked-list element storage, and ac
analysis using the traditional complex arithmetic
method. A source listing of BIAS-T9 is given in
appendix E.

The description of the subroutines is divided
into four groups related by their function in BIAS-D.
These groups are input/output, setup, analysis, and
general functions. The relationships between these
groups are shown in figure D-1. This shows the
MAIN routine as controlling the entire
input/output, setup, and analysis procedures with
the general functions linked to all groups.

MAIN

I 1 '
I/O SETUP ANALYSIS

,

\ 1

j

SUPPORT
FUNG TION =

Figure D-1. Main subroutine groups in BIAS-D.

A more detailed flow diagram of the organiza-
tion of the input/output group is given in figure D-2.
A brief description of each of these routines is given
as follows.

MCHEK checks for undefined element mod-
els. It stores the starting location of defined models,
in the IELM array, with the appropriate element. MO
is the null model and is assigned to all elements with
no user-defined model.

POUT sets up print or plot output formats. For
print outputs, headings are printed for transient
analyses, swept alter analysis, and ac analyses. The
output device for printing is specified by the user.

MAIN

MCHEK POUT INPUT ALTER

RDFLD

GRAPH VAL

^
PRCKT

Figure D-2. Organization of input/output subrout-
ines in BIAS-D.

This device can be the user terminal (TTY), disc,
magnetic tape, or paper tape. For plot outputs, the
graph axes are scaled and labeled for the appropri-
ate analysis.

INPUT controls the initial reading of all ele-
ment data from either a user terminal (TTY) or disc
file. A limited amount of input processing is done in
this routine. Unique node numbers are determined,
and node numbers and element values are stored in
the IELM array.

RDFLD reads a single floating-point and/or
integer data field contained in the IAQ array. This
field can contain up to eight floating-point or integer
numbers separated by a comma or up to seven
blanks. A pointer, LL, determines the starting loca-
tion in the IAQ array of the decoding operation. A
second pointer, KK, determines which number field
within IAQ is being processed. The actual decoding
of these numbers is done in function VAL.

VAL(LL) does the actual decoding of each
number in the IAQ array. LL denotes the starting
location of the number within the IAQ array. Any
number may be preceded by as many as seven
blanks and may be in one of several forms. For

79

APPENDIX D

example, the number one thousand may be repre-
sented as 1000, 1000.0, IK, 1E3, 1E + 3, or 1 E 3,

ALTER is used to locate an element to be
altered or an input source for a transient or ac
analysis. It determines whether the element name
being interrogated has been previously defined; if
so, ALTER determines its beginning address in the
IELM array so determined.

PRCKT writes the present circuit configuration
in an ordered format to one of two output devices.
During the initial dc analysis it is written to the user
terminal. If called by the .SAVE command the same
output configuration is written to a disc file. Then,
this file can later be used as an input file. For this
reason it is necessary that the format of the PRCKT
output be readable by the INPUT routine.

Figure D-3 is an organizational diagram of the
setup group of routines. In this group, program
MAIN calls subroutine SETUP which in turn con-
trols the setup procedure. A brief description of
these routines follows.

SETUP

RENUM NORDR

NCONV

EOUIV

INDX

Figure D-3. Organization of setup subroutines in
BIAS-D.

SETUP controls the entire setup procedure. It
also renumbers the circuit nodes into a compact
node set, and reorders these nodes such that the
voltage source nodes are at the upper end of the
node vector Nl(i,2). NODE represents the total
circuit nodes whereas NNODE gives the number of
circuit nodes which are not connected to a voltage
source.

RENUM(M) controls renumbering of the ele-
ment node connections from the original node
order to a compact node order determined in
SETUP. The actual conversion is done in function
NCONV. RENUM is called during the initial setup
procedure and also if elements are to be inserted
into the circuit using a .INSERT command (see app
E).

NCONV(K,M,NI,NODE) returns a new node
number, given a node number K. This is done by
comparing input node K with the nodes in table
NI(.,1)or Nl(.,2) which are NODE nodes in length.
If M = 0, K is converted from the original node
number to a compact node number. If M = 1, K is
converted from the compact node number to the
original node number.

INDMT sets up an incidence matrix IY(i,j) for
each new circuit. This integer matrix is then used to
determine the optimum circuit node ordering.

NORDR determines the optimum node order
for each circuit, and sets up the sparse matrix
decomposition and storage pointers. The optimum
order is obtained using the number of off-diagonal
nonzero elements in the incidence matrix IY(i,j).
This new node order is stored in vector IORDR. The
row and column table locations of each nonzero
matrix term used during the decomposition process
is stored in arrays IUR and IUC. The location of
each matrix entry used during an operation is stored
in the IPOS array. The actual two-dimensional ad-
dress generated during the decomposition proce-
dure is converted into a linear address in function
INDX(NR,NC).

INDX{NR,NC) converts a two-dimensional
matrix address NR,NC into a location in the linear Y
array. This is done by comparing row location NR
and column location NC with the permitted table
locations determined by the IUR and ILC pointer
arrays.

EQUIV converts circuit voltage sources into
Norton equivalent current sources. The number of
these current sources generated depends on how
many elements (and what type) are connected to

80

APPENDIX D

the voltage sources. The element type (resistor,
capacitor, etc), the element location, the voltage
source location, and the node into which the equiv-
alent current source enters is stored in the IELM
array at the end of the element linked list. This
storage begins at location MXPOS.

A diagram of the organization of the analysis
group of BIAS-D subroutines is given in figure D-4.
Two main subroutine groups are controlled from
subroutine ANALY and subroutine ACSOL. A brief
description of those subroutines controlled from the
ANALY group is given as follows.

MAIN

ANAL

r
UPDAT GNCUR SOLVE

|ELOAD| |DECIVID

—>
BJT

JUNCT ADCUR

ADRES

Figure D-4. Organization of analysis subroutines in
BIAS-D.

ANALY controls the dc and transient analyses
in BIAS-D. The capacitor and inductor currents are
updated during a transient analysis, the current
vector and admittance matrix are zeroed after each
time-step, and convergence is determined for both
dc and transient analyses.

UPDAT changes time-dependent voltage or
current sources during a transient analysis. This new
source value is stored in the IELM array to be later
added to the voltage vector, V. The value of the
time-dependent source is determined from the
source model parameters also stored in the IELM
array. The location in this array is stored with the
particular source parameters and is determined
during setup in the MCHEK routine.

ELOAD controls loading of equivalent real or
imaginary element conductance values into the
admittance matrix array, Y, and the equivalent

currents into the current vector, C. For resistors,
capacitors, and inductors, the actual loading of
these conductance and current values is done in the
ADRES and ADCUR routines for dc and transient
analysis and in ADCPR and ADCPC for ac analysis.
Bipolar transistors are loaded from the BJT

subroutine.

ADRES adds a double-precision conductance
value, DS, into the Y array at locations determined
by element node numbers KK and LL as follows.

Y(KK,KK) = Y(KK) = Y(KK) + DS
Y(LL,LL) = Y(LL) = Y(LL) + DS
Y(KK,LL) = Y(JJ) = Y(J)) - DS
Y(LL,KK) = Y(NN) = Y(NN) - DS

where J) and NN are translated storage location
values determined from function INDX(KK,LL).

ADCUR adds a double-precision current, DS,
into the current vector, C, at locations determined
from node values KK and LL as follows.

C(KK) = C(KK)-DS

C(LL) = C(LL) + DS

BJT determines the linearized Ebers-Moll
equivalent conductance and current source values
for bipolar transistors. The equivalent values for
each junction, the collector-base, and the base-
emitter are computed separately in subroutine
JUNCT. These values are then added to the Y and C

arrays.

JUNCT determines the Ebers-Moll junction
equivalent conductance and current source values
for a given junction voltage. Current or voltage
update* is used depending on whether the new
junction voltage is greater or less than the last
junction voltage, respectively. The last junction
voltage and transconductance for each transistor
junction is stored in the IELM array.

*R. Barham, E. Cheung, and E. Cohen, BIAS-M, An
Experimental Circuit Simulator for the IBM 1800, Inte-
grated Circuits Croup, University of California, Berkeley,
June 1973.

81

APPENDIX D

CNCUR determines the double-precision real
or imaginary dependent current source values to be
added into the current vector, C. These currents
depend on the value of the independent voltage
source value and the element values connected to
these sources. The locations of these sources and
elements are previously determined during setup by
the EQUIV subroutine and stored in the IELM array.

DECMP does an LU decomposition of the
sparse admittance matrix using the pointer structure
generated during setup in subroutine NORDR.

SOLVE solves for the circuit node voltages
using forward and backward substitution into the
LU matrix generated in DECMP. The resulting node
voltages are stored in double-precision vector V.

The second group of subroutines in the analy-
sis portion of BIAS-D is controlled from subroutine
ACSOL and is called during an ac analysis. Since
complex arithmetic cannot be used, the admittance
matrix is arranged so that all real entries are entered
into the Y array and the imaginary entries into the Yl
array. The same pointer structure that was gener-
ated in NORDR and used in the dc and transient
analysis is used to load both the Y and Yl arrays.
Resistors are added in the same manner as in
previous analyses, using the ADRES subroutine. The
imaginary conductance values of the capacitors
and inductors at frequency FREQ are loaded into Yl
using subroutine ADCPR. A brief description of
these routines follows.

ACSOL controls the small-signal ac frequency
response analysis in BIAS-D. The ac parameters are
initialized, the complex current vector and admit-
tance matrix are zeroed for each new frequency
point, and the next frequency point is determined.

B)TAC loads the ac bipolar transistor conduc-
tance values into the complex admittance matrix.
All small-signal ac transistor conductance values
are loaded into real array Y, since capacitors are not
included in the transistor model.

ADCPR loads an imaginary double-precision
conductance value, DS, into the imaginary part of
the admittance matrix. The locations are deter-
mined in the same manner as in ADRES.

ADCPC adds an imaginary current, DS, into
the Cl array at locations KK and LL in the same
manner as subroutine ADCUR.

DECAC does an LU decomposition of the
complex sparse admittance matrix using the same
pointer structure as used in DECMP and generated
during setup in the NORDR subroutine.

SOLAC solves for the complex circuit node
voltages using forward and backward substitution
of the complex admittance matrix generated in
DECAC. The resulting real node voltages are lo-
cated in the V array and the imaginary voltages in
the VI array.

82

APPENDIX E. BIAS-D USER'S MANUAL (FORTRAN VERSION) AND LISTING

E-1. INTRODUCTION

BIAS-D is a computer-aided circuit-analysis
program written in FORTRAN IV for minicomputers
with a minimum of 32 kwords of internal memory.
It can perform ac, dc, and transient analysis of a 30-
node circuit that contains up to 150 elements—
resistors, capacitors, inductors, voltage sources,
current sources, and transistors. For transistor cir-
cuits, BIAS-D converges to a solution by linearizing
the built-in Ebers-Moll transistor model about an
operating point in much the same manner as done
in larger circuit-analysis programs such as BIAS-3,
SLIC, and SPICE.

Circuit data are typed into the keyboard in a
semifree input format. Error messages are given for
recoverable data errors enabling immediate correc-
tions. Transistor parameters, temperature coeffi-
cients, and transient sources are entered by specify-
ing one or more of five available model types.

BIAS-D executes in a semi-interactive mode in
which elements or models are altered, temperature
varied, and elements inserted between existing
nonsource nodes. The program is structured so that
the circuit size and element capacity can be easily
modified in accordance with the available memory
size. Execution time for a dc solution of a 10-node,
5-transistor circuit is approximately 0.6 s on a
PRIME 400 minicomputer.

E-2. INPUT DATA

The input data are divided into two categories:
circuit data and control statement data. The circuit
element data (e.g., resistors, transistors, etc) are
input by specifying the element symbol (R, Q, M,
etc) followed by the required data for that element.
The control statement data are characterized by a
dot (.) followed by the desired operation (.TRAN,
.ALTER, etc). Control statements do not affect the
results of the analyses—they only enable the user to
direct the analysis procedure.

E-2.1 Circuit Data

Certain general instructions must be followed
to input circuit data.

a. Each circuit element must begin in col-
umn 1.

b. Spaces are used as delimiters between
data fields.

c. Scientific notation may be used (i.e.,
1000 = 1E3).

d. Decimal points are not required (i.e.,
2 = 2.0).

e. The ground node must be node 0
(zero).

f. Compact node numbering is not re-
quired (i.e., node numbers may be
skipped).

g. The maximum allowable node number
is 99.

h. Element values are to be in basic units
(i.e., ohms, farads, volts, amperes,
hertz, seconds).

i. Abbreviated notation may be used as
follows:

P = 10"" K = 103

N = 10"' ME = 106

U = 10^ G = ID'2

M = 10"3

(e.g., 10U = 1.0E-5)

E-2.1.1 Resistors, Capacitors, Inductors

General form:

RXX N1
CXX N1

N2 VALUE M#
N2 VALUE M#

where XX is any two-character name, N1 and N2
are the node numbers (order not important), and
VALUE is the resistor, capacitor, or inductor value
in ohms, farads, or henries. The letter M followed
by an integer from 1 to 9 denotes the model name
(see sect. E-2.1.4). VALUE cannot be zero.

83

APPENDIX E

E-2.1.2 Independent
Current

Sources— Voltage,

General form:

VXX N-
IXX N-

N~
N-

VALUE M#
VALUE M#

where XX is any two-character name, N+ and N-
are the positive and negative source nodes, respec-
tively, and VALUE is the source value in volts or
amperes. The letter M followed by an integer from
1 to 9 denotes the model name (see sect. E-2.1.4).
For voltage sources, either N-|- or N- must be
grounded (node 0). For example.

and
V+ 3 0 5 Ml

V+ 0 3 -5 Ml

are equivalent.

For current sources, current flows from the
positive node through the source to the negative
node. The letter M followed by the model name
may be omitted. However, a default number of
zero will be assigned.

E-2.1.3 Bipolar Transistors

General form:

QXX NC NB NE M#

where XX is any two-character name, and NC, NB,
and NE are the collector, base, and emitter node
numbers, respectively. The letter M followed by an
integer from 1 to 9 denotes the model name (see
sect. E-2.1.4). The letter M followed by the model
name may be omitted. However, a default number
of zero (0) is assigned.

E-2.1.4 Models

General form:

M# YYY F1 F2 F3 F4 F5 F6

where # is an integer from 1 to 5 corresponding to
the model number designated on the source or

element. YYY is a three-letter name designating one
of five available model types as follows.

npn transistor parameters
pnp transistor parameters
pulse source specifications
sinusoidal source specifications
external source model
element temperature coefficients

F1, F2, . . ., F6 are the data fields for specifying the
above model parameters. These fields are defined
below.

1. NPN—transistor parameters

1. NPN
2. PNP
3. PUL
4. SIN
5. EXT
6. TEM

ield Parameter Default
value

F1 Forward dc beta (BF) 100
F2 Reverse dc beta (BR) 1
F3 Saturation current (Is) 1E-15
F4 Early voltage (VA) 1E+12
F5 Recombination current

parameter (collector current
at which beta = BF/2) 0

F6 Not used —

2. PNP—transistor parameters (same as NPN)

3. PUL—pulse source specifications

ield Parameter Default
value

F1 Initial source value at t = 0 0
F2 Pulsed value 0
F3 Pulse delay time 1 slep

F4 Pulse rise time 0
F5 Pulse duration (width) 0
F6 Pulse fall time 0

4 SIN—sinusoidal source specification

ield Parameter Default
value

f I dc source value (offset) 0
\1 Source amplitude (0-P) 0
F3 Source frequency (Hz) 0
F4 Time delay Kiep

F5 Phase shift (deg) 0
F6 Not used —

84

APPENDIX E

The value of the sinusoidal source is deter-
mined by the equation

F(t) = F1 + F2-sin[2TTF3(t-F4) + F5] .

5. EXT—External source parameters are to be
defined by the user in a subroutine.

6. TEM—element temperature coefficients

ield Temperature Default
coefficient value

Fl Resistor (Id) 0
F2 Resistor (Tc2) 0
F3 Capacitor (To) 0
F4 Capacitor (Tc2) 0
F5 Transistor beta (Ta) 0
F6 Transistor beta (Ta) 0

The element value at temperature T is deter-
mined by the equation

E(T) = E(T„)[1 + (T-To)Ta + (T-T„)2Tc2],

where To = 300 K. Ta and Tc2 are the element's
first- and second-order temperature coefficients,
respectively. The dimensions of Tci and Ta are in
decimal percentages per degree Celsius (a decimal
percentage of 0.002 = 2000ppm/C).

E-2.1.5 Comment Statement

General form:

* any comment

A comment may be inserted at any line in the
input circuit by using an asterisk (*) in column 1
followed by any message up to 80 characters long.

E-2.1.6 END statement

END terminates the inputting of circuit data. If
a default transistor model is used, it may be neces-
sary to use END twice in succession.

E-2.2 Control Commands

indicated by "INPUT DATA" appearing on the
display. At this time it is possible to initiate a new
analysis. This is done by using one of the control
commands described in the following sections; all
control commands are prefixed by a dot (.).

E-2.2.1 .AC

The .AC command initiates the small-signal
frequency response. This analysis can be obtained
as follows.

.AC
"VINFSTRTFSTOPPTS/DEC TYPE"

(enter "V"—input node, starting fre-
quency, final frequency, frequency
points per decade, and type of output;
may also be current input—UN)

"VXX PRT/PLO XMIN XMAX VMIN VMAX"

(enter "V"—output node, PRT-
or PIT—plot)

-print.

For Print, no other parameters are necessary,
and both the magnitude gain (TYPE = 0) or decibel
gain (TYPE = 1) and phase of node XX are printed.
For Plot, X and Y scale parameters are necessary
(defaults are used if none are given). The plot type is
determined by the value of TYPE.

0—magnitude gain
TYPE = 1—decibel gain

2—phase

E-2.2.2.ALTER

The .ALTER command enables element val-
ues, models, and model parameters to be altered.
This is done as follows.

.ALTER
RXX VALUE
VXX VALUE

After completion of each type of analysis,
program control is returned to the operator. This is END

85

APPENDIX E

where XX is a valid element name (i.e., has been
previously defined) and VALUE is the new element
value. One or more element values may be altered
using a single .ALTER command. An END statement
terminates the alter operation. Models and model
parameters may be altered in the same manner as
the elements. Model types may be changed by
entering a different model designation (see sect. E-
2.1.4). For example, a pulse source PUL can be
changed to a sinusoidal source, SIN, etc. All model
parameters must be entered or they will be set to
their default values. Both models and elements can
be altered at the same time.

An additional .ALTER command permits
sweeping element values over a specified range of
values. This can be done as follows.

.ALTER
VXX El EF DEL

where El is the initial element value, EF the final
element value, and DEL the increment value (DEL
can be negative). This must be the last statement in
a .ALTER command. It is then necessary to define
an output node, a PRT/PLT specification, and so on
(see sect. E-2.2.1). At the end of this analysis the
altered value is returned to its original value.

E-2.2.3. END

The format for the elements and models is the
same as described at the beginning of section E-2.

E-2.2.5.LOAD

The .LOAD command permits loading a cir-
cuit directly from a disc file. This is done as follows.

.LOAD
"ENTER FILENAME"
(enter file name)

Several circuits may be merged or models
entered by successively using the .LOAD com-
mand. This command is terminated by an END
statement (either in a file or via keyboard). Note that
when several circuits are merged, unique node
numbering must be maintained.

E-2.2.6.PRINT

The element names and values can be dis-
played at any time by using the .PRINT command.
Note that the node numbers displayed are a correct
set of node numbers but are not necessarily the
original set of numbers. If the original set of node
numbers is necessary, the following sequence of
commands can be used.

The .END command permits entering a new
circuit without terminating the program. At this time
all previous circuit values, names, and nodes are
erased from memory.

E-2.2.4.INSERT

The .INSERT command permits elements,
models, or additional nodes to be inserted into an
existing circuit. Any element or model may be
inserted with this command. The .INSERT com-
mand is used as follows.

.INSERT
RXX N1 N2 VALUE
QXX NC NB NE M#
M# YYY F1 F2 F3 F4 F5 F6

END

.INSERT

.PRINT

E-2.2.7. SAVE

The .SAVE command is similar to the .LOAD
command except that the circuit is written to a disc
file. The contents of this file will be identical to that
printed by a .PRINT command.

E-2.2.8. TEMP

The analysis of the circuit at a temperature
other than 27 C is obtained as follows.

TEMP
"T(DEC O"
(enter temperature)

86

APPENDIX E

This procedure is repeated for each new tem-
perature. If a TEM model has not been defined,
"TEMP. MODEL NOT SPECIFIED" will be dis-
played. This model can be inserted with the .IN-
SERT command. Note that any subsequent analysis
will be performed at the last temperature specified.

E-2.2.9.TRAN

A transient analysis can be obtained using the
.TRAN command as follows.

.TRAN
"TR" TO TF TSTEP
(enter "TR" to Tstep)

where TO is the initial transient time, TF the final
transient time, and TSTEP the output time incre-
ment. In order for the transient analysis to be
meaningful, one or more source models (SIN, PUL,
EXT) must have been specified. Voltage or current
sources as well as models can be inserted once the
initial circuit has been entered (see sect. E-2.2.4).

Note: Any control command (except .LOAD
and .SAVE) will override a previously initiated con-
trol command. If a reply is expected, the command
should be entered twice; the first time will cause an
error message which can be ignored.

E-3. MISCELLANEOUS

Sometimes convergence to the desired accu-
racy is not attained. If this happens a "MEAN
ERROR" message will appear. These results may or
may not be correct. If, during a dc analysis, a more
accurate solution is desired, the following proce-
dure can be used.

.ALTER
END

This does not change the circuit but does allow at
least four more iterations to occur.

In the general version of 8IAS-D, several
system-dependent subroutines have been com-
mented out. These routines are OPNFL, CLSFL,
GRAPH, IPACK, and SECND. Although BIAS-D will
run without these routines, their implementation is
desirable. A summary of these subroutine functions
is as follows.

OPNFL
CLSFL Permits storage and retrieval of disc

files.

GRAPH Permits graphical output on any refresh
graphics or storage tube graphic
terminal.

IPACK Permits use of two-character element
names.

SECND Gives elapsed execution times.

E-4. BIAS-D SOURCE LISTING (FORTRAN)

A listing of the FORTRAN version of BIAS-D is
given here. This version of BIAS-D will run on a
PDP 11/45, an HP2100 (HP21 MX), a PRIME 400,
and an IBM 370/168 with few source code
changes. These changes are primarily concerned
with individual computer system features such as
timing, file management, etc.

87

APPENDIX E

C ** CBIASO ****««*«***** BIAS-D JMI**********************

C MIHICOMPUTER AIDED ELECTROHIC CIRCUIT ANALYSIS PHOGRAM
C BIAST10 (*TEST10) 18-11-77
C UPDATED 11-4-77, 10-3-78
C DYNAMIC ELEMENT ALLOCATION (LINKED-LIST)
C DOUBLE PRECISION LU DECOMPOSITION
C AC ANALYSIS- STAHDAHD METHOD USING COMPLEX MATRIX
C SPARSE MATRIX INVERSION
C ELEMENT MODELS
C SPARSE STORAGE OF Y MATRIX
C
C PROGRAM BIAS-D IS AVAILABLE AT NO CHARGE. THE VORD ORIENTED
C STRUCTURE OF BIAS-D PERMITS IT TO BE RUN ON ANY COMPUTER
C SYSTEM SUPPORTING ANSI I STANDARD FORTRAN IV WITH CAPABILITY OF
C REAL/INTEGER WORDS IZE RATIO OF TWO.
C INQUIRES SHOULD BE SENT TO THE AUTHOR:
C
C BRIAN L. BIEHL
C HARRY DIAMOND LABS
C 2B00 POWDER MILL RD.
C ADELPHI, MD. 20783
C (202) 394-3192
C
C ****«**«***»*****«*«**«*«»«*»*«*»**»****»***«*******»««*
c

INTEGER VI,Ol
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(60fl)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI<n,YI(1)
DIMENSION ILC(1),ILR(1),RELM(1)
DIMENSION IBO(12) , IMCM 6) , IDftCB) , IDATE(3) .LEN< 9)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T0.TEMP,DTEMP
COMMON TM(6) , AC 8) , CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, ICNIT
COMMON IPLT, 1PEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFOHM
COMMON MXLST,MXPOS,MXLOC,NDMAX, NODE.NKODE, IERR,M1.0C,KPOS,U'OS
COMMON IAa(80) ,NI(30,2) , IELN(9), IFRST(9), ILAST(9) , IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),HCON(30)
EQUIVALENCE (IUR(1) , ILC(1)) , (IUC(1) , ILR< 1)) ,

S < IELM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) , (C(30) ,CI(1) ,VI(1)), (YOOO) , YI(1))
EQUIVALENCE (IELN(6) ,V1) ,f IELH(7:' ,MI) ,(IELN(4) ,G1)
DATA IBQ/1HR, 1HC, 1HL, 1HQ, 1H1, 1HV. IBM, 1HE, 1H*, 1H. , 1H+, IH S
DATA IDQ'IHA,1HI,1HP,1HT,1HE,1HS.1HG,1HL/
DATA IMQ/1HN, 1HT, 1HS, 1HE, 1HP, IHU/-
DATA LEN/8,12,12,16,8,8,20,0,0/

C
C IFLG VALUES I EL VALUES
C 1- INITIAL DC ANALYSIS 6- SWEPT ALTER 1-RESISTOR 5-CURHEBT SOURCE
C 2- ALTER 7- SAVE CIRCUIT 2-CAPACITOR 6-VOLTAGE SOURCE
C 3- INSERT 8- SMALL SIGNAL GAIN 3-INDUCTOR 7-MDDEL
C 4- PRINT CIRCUIT 9- AC ANALYSIS 4-BJT
C 5- TRANSIENT ANALYSIS 10- TEMPERATURE ANALYSIS
C
100 CALL INITL

CALL CLOCK(ETIM, IDATE)
WRITE(1W,101) IDATE

101 FORMATCIX,10(IH*),21H BIAS-D <11-04-77) ,10(IH»),
8 6HDATE: ,A2,IH/,A2,2H/7,A1/20X,5(1H-),8H TEST10 ,S(lH-)//>

140 WRITE(IW, 141)
141 FORtLVTCllH INPUT DATA)

ITOTL=0
NUNIT=IR
CALL CLOCKCETIM, IDATE)
CALL SECND(TIMl)

150 READ(NUNIT, 131) IAQ
151 FORMATCaOAl)

LL=1
IF(IAQ< 1) .Eft. IBQ(12)) LL=2

DO 180 IEL=1,12
IF(IAQ(LL).EQ.IBftCIEL))GO TO 230

180 CONTINUE
200 WRITECIW,201)
201 F0RMAT(23H ILLEGAL CHARACTER: RE-)

GO TO 140
220 IFLG=4

GO TO 140
C DETERMINE ELEMENT TYPE

88

APPENDIX E

230

260

270
271

280

C ..
300

4S0

4G1

C ..
890

C .,
c . .
900

910

930
940

900

970
C ..

1000

c ...
1140

1240

IF(IEL.LT.B)GO TO 260
I=IEL-7
GO T0(1840,150.1290,150,150),I
IF(IFLG.EQ.2)G0 TO 1330
nT=LPOS+l
CALL INPUT
ILASTC lED^LPOS
IF(LPOS.LT.MXLST) GO TO 280
V-TUTEC lW,r>71)
FOimT(23H ELEKENT ABMY OVERFLOW)
GO TO 220
IF(IEL.E0.7) GO TO 890
LPOS=LFOS+LEK(IEL)

, REPROCESS UNG110UKDED OR NEGATIVE VOLTAGE SOURCES
IF(IEL.HE.6)G0 TO 130
IF(A(1) .RE.0.)CO TO 450
IELMC rrr+<>) = A(2)
IELM(ITT+7)=0
ITT- ITT/2
RELMC lTT+3)=-A(3)
GO TO 150
IF(A(2) .EQ.O.IGO TO 130
WRITE(IW,461)
FORMATC 23H SOURCE UNGROUNDED: RE-)
V1 = V1-1
GO TO 140

. PROCESS MODELS
ITT=L1'0S
MKUM=VAL(LL+1)
IELM(LP0S+3) =riNUM

. ENTRY POINT FOR ALTERD MODEL

. SKIP LEADING BLANKS
IF(1AQ(LL).NE.IBa(12))G0 TO 910
LL=LI + 1
IFCLL.GT.12) GO TO 200
00 TO 900
1 = LL
LL=LL+4
CALL RDFLD
IFOIM.LT.O) GO TO 940

. CHECK IF LEGAL MODEL TYPE
DO 930 M=l,3
IF(IAQ(I) .EO. ma(M))GO TO 960
CONTINUE
IF(IFLG.NE.2) M1 = M1-1
GO TO 200
MP0S=ITT.--2
DO 970 K=l,7
KK=MP0S+K+3
RELM(KK) = A(K)
CONTINUE

. DETERMINE MODEL TYPE
1=1+1
IF(M.LT.3)G0 TO 1000
M=6
IF(lAOC I) .EQ. IMa(6))M=3
IF(IAQ(I) .EQ. IMQ(1))M=-1
RELMC MP0S+3)=M
IF(M.EQ.-1)G0 TO 1140
IFCM.EO. 1) GO TO 1140
IF(M.EO.2)ITEMP=ITT/2
GO TO 1240

. BJT MODEL DEFAULT PARAMETERS
IF(A(1) .EO.O.) RELM(MFOS+4) = 10O.
IF(A(2).Ea.0.) RELM<IIPOS+5) = 1.0
IF(<U3) .EQ.O.) REl,n(MF3S+6) = 1.0E-15
IF(A(4).EO.O.) RELM(MFOS+7)=1.0E12
IF(IFLG.Ea.2) GO TO 150
LP0S=LP0S+LEN(7)
GO TO 150

C
C ****CmCUIT UPDATES****
1290 IF(IAQ(LL+1) .NE. IDQ(8)) GOTO 1300
C
C ***.LOAD

CALL OPNFL(ID ISC,IV,IR)
NUHIT=IDISC
GO TO 150

1300 IF(IFLG.Ett. DGO TO 200

89

APPENDIX E

C DETERMINE UPDATE TYPE
DO 1320 J=J,7
IF(IAQ(LL+1) .Eft. IDQ(J))GO TO 1340

1320 CONTINUE
GO TO 200

1340 IFLG=J+1
GO TO <1360,1400,1460,1410,100,1470,1300),J

C
C ***. AC
1360 IF(IAQ(LL+2).NE. IBQ(2))G0 TO 140

VRITEC IW, 1361)
1361 F0nMAT(24H VIN FSTRT FSTOP PTS/DEC)

READUR, 151) lAft
IEL=6
IF(IAQ(LL).EO.IBQ(5)) IEL=5
CALL ALTER
IF(lEHR.EQ.O) GO TO 220

C 1NPT CONTAINS STARTING LOCATION OF SOURCE VALOT IN IELK<)
INPT=ITT/2
DO 1370 M=l,4
TM(M)=A(M)

1370 CONTINUE
GO TO 1665

C
C ***.ALTER
1380 CALL ALTER

IF(IEIUl.Ea.0)GO TO 140
IF(IEL.EQ.7) CO TO 900
MPOS-ITT/2
TM(5) = RELM(MPCS+3)
RELM(MP0S+3)=A(1)
IF(lEL.Ea.4)G0 TO 200
IF(A(3) .Ea.0.)CO TO 150

C PROCESS S«EPTED ALTER
DO 1390 M=l,3
TM(If)=A(M)

1390 CONTINUE
TM(4)=HP0S
LTYPE=IEL
IFLG=6
GO TO 1665

C
C *«*.INSERT
1400 IFtJFLG.EQ. 1) GO TO 140

CALL RENUMC 1)
IELN(9)=0
GO TO 140

C
C ***.TEMPERATURE
1410 IF(IAQ(LL+2) .EO. IBQ(1))G0 TO 1620

IF(ITEMP.NE.0)GO TO 1440
VmiTE'. IW, 1421)

1421 F0RMAt(31H TEMP. MODEL NOT SPECIFIED**KE-)
GO TO 140

1440 VRITEC IW, 1441)
1441 FORMATC 9H TCDEC C))

READCIR,151) lAO
IFLG=10
TEIIP = VAL(l)+273.
DTEMP=TEMP-30e.O
GO TO 140

C
C *«*.PRINT CKT
1460 CALL PRCKT

GO TO 140
C
C ***. SAVE CKT ON DISC FILE
1470 CALL OPNFL(IDISC.IW,IR)

IU«IT=IDISC
CALL PRCKT
CALL CLSFL(IDISC)
IUNIT=IW
GO TO 220

C
C »**.GAIN
1500 GO TO 220
C NOT IMPLEMENTED IN THIS VERSION

90

APPENDIX E

C
C ***.TRAr!SlENT
1620 WRITEUW, 1631)
1631 F0niUT(20H "TR" T0 TSTOP TSTEP)

READ(IB, 151) IAQ
LL=4
CALL RDFLD
IF(lERR.EQ.-DGO TO 220
1F(A(3) .Ea.e.)A(3) = (A(2)-ACn)/50.
DELTA=A(3)
TMC2)=A(2)
T8=A(1)

1665 CALL POUT
JOUT= KCONVCIOUT,0,HI,NODE)
CO TO 4190

C
1840 IF(NUNIT.EO.IDISC) CALL CLSFLCIDISC)

ir(IFLG.Ea.2) GO TO 4190
1F(IFLG.GE.5) GO TO 4190
IF(IFLG.EQ.4) GO TO 5200
CALL MC1IEK
IF(IF,aR.EQ.0)GO TO 220

1910 NNODE=NODE-V1
IF(KKODE.LE.NDKAX)GO TO 1950
WRITECIW,1921)

1921 F0RMAT(20H NODE LIMIT EXCEEDED)
GO TO 220

0 CHECK FOR UHCOKKECTED NODES
1950 J=l

DO 2430 1=1,NODE
IF(NI(I,1).GT.0) GO TO 2480
WRITE(IUNIT,1961) NIC 1,2)

1961 F0RMAT(28H ONLY ONE CONNECTION AT NODE,12)
.1=0

2480 CONTINUE
IFCJ.EO.O) GO TO 220
CALL POUT
WRITECIUNIT,101) IDATE
CALL FRCKT
WRITECIW,2491) NODE

2491 FORt4TC7H NODES:,14)
WRITECIUNIT,2511)

2511 FORMAT!//■23H **** END OF INPUT DATA ***»//)
C

CALL SECNDCTIM2)
CALL SETUP
IFCIERR.Ea.-2) GO TO 270
TEMP=30O.
DO 4180 I=1,JIN0DE
V< I) = 0.D0
UC1)=O.D0

4180 CONTINUE
4190 DELT=1.0D12

CALL SECKDCT1M3)
IFCIFLG.NE.9) GO TO 4500
CALL ACSOL
GO TO 4600

4500 CALL ANALY
4600 CALL SECNDCTIM4)

CALL CL0CKCET1M2,IDATE)
IFCIPLT.Ea.0)GO TO 4700

C CALL EXITGR
C K=IWAITa(2)

IPLT=0
4700 TIM1 = TIM2-TIM1

TIM2=TIM3-TIH2
TIM3=TIII4-TIM3
ETIM=ETIM2-ETIM
IFCJFLG.Ett.1> WRITECIUNIT,4801)Tini,TIM2

4801 F0RKAT(//6X,18H READIH TIMECSEC):,F12.3/
8 -X,I7H SETUP TIMECSEC):,F12.3)
WRITECIUNIT,4901) TIM3,ETIM

4901 FORM.ATC 4X, 20H ANALYSIS TIMECSEC) : ,F12.3//'
8 25H TOTAL ELAPSED TIMECSEC)!,F12.3/)
IFC JFLG.NE. DWRITEC IUNIT,5001) ITOTL

5001 FORMATC18H TOTAL ITERATIONS",110)
TO=0.
JFLG=IFLC
IFCIUNIT.EO.IDISC) CALL CLSFLCIDISC)

91

APPENDIX E

IUHIT=IV
GO TO 220

5200 STOP
END
FUNCTION INDX(NR,NC)
INTEGER*2 IELM
DOUBLE PBECISION V(60),U(30),C(60),¥(600)
DOUBLE PBECISION DELTA,DELT,DS,VI(1),C1<1),yi<1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
DIMENSION lORDRC1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO.TEMP.DTEMP
COMMON TM(6) ,A(B) .CSAT.VT.VCT.TYFE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC. lUNIT
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMMON M>XST, MXPOS, MXLOC, NDMAX, NODE, BNODE, I ERR, MLOC. KPOS, LPOS
COMMON IAa(30) ,NI(30,2) , IELH(9) , IFRST(9) ,ILAST(9) , IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),NCON(30)
EOUIVALENCE (IURC1),ILCC1)),(IUC(1),ILR(1))(

a (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) ,V(1)),(C(30) ,CI(1) ,VI(1)),(Y(300) ,YI<U)
EaUIVALENCE(HI(1,1), lORDRC 1))

C
C DETERMINE LINEAR Y ADDRESS LOCATION FROM Y(I.J)
C Y(. , .) ADDRESS
C MODIFIED FROM SINC-S 6-6-77

IF(NR.EQ.NC) GO TO 190
IS=NCON(NR)
JS=NCON(NC)
IF(JS.GT.IS) GO TO 130

C LOVER TRIANGLE
N=ILC(JS)
NE=ILC(JS+1)

115 IF(R.GT.HE) GO TO 185
IFCNR.EO. ILRCN)) GO TO 125
N=N+1
GO TO 115

125 1NDX=N+N0DE
HN=N+ML0C
RETURN

C UPPER TRIANGLE
130 N=IUR(IS)

NE=IUR(IS+1)
135 IF(N.GT.NE) GO TO 135

IFCNC.EQ.IUC(N)) GO TO 145
N=N+1
GO TO 135

145 INDX=N+MLOC
NN=N+NODE

185 RETURN
C DIAGONAL LOCATION
190 INDX=NR

NN=NC
RETURN
END
SUBROUTINE INITL
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(€O0)
DOUBLE PRECISION DELTA,DELT,DS,Vl(1),CI(1),YI(1)
DIMENSION ILC(1) ,ILR(1) ,HELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T0,TEMP,DTEMP
COMMON TM(6),ACS),CSAT,VT,VCT,TYPE
COMMON IEL, JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, TDISC, IUHIT
COMMON IPLT, IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM
COMMON MXLST,MXPOS, MXLOC, NDMAX, NODE, HNODE, I ERR, MLOC, KPOS, LPOS
COMMON lACKSO) ,NI(30,2) , IELN(9) , irRST(9) , ILAST(9) , IELM(1000)
COMHON lUROO) , IUC(120) , IPOS(4O0) ,NCON(30)
EQUIVALENCE (IUR(1), ILCCD) ,< IUC(1) , ILR(D),

8 (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) , (C(30) , CI(1) , VI(1)) , (Y(300) , YK 1))

C
C INITIALIZE READ/WRITE UNITS

IV=1
IR=1
IDISC^5
IUN!T=I¥
LPOS=0
M}aST=10OC

92

APPENDIX E

KDMAX=30
C INITIALIZE ELEMENT COUNTERS

DO 110 KM,9
IELN(K)=e

11» CONTINUE
DO 140 K=I,MXLST
IELM(K)=e

140 CONTINUE
NODE=0
ITEMP=0
DTEMP=e.
ITER=0
lPLT=e
NI(l,2)=e
1FLG=1
JFLG=1
T0=0.
RETUHK
END
SiraROUTINE MCHEK

C CHECK FOR UNDEFINED MODELS AND STORE
C LOCATION OF MODEL WITH ELEMENT

1NTECER*2 IELM
DOUBLE PRECISION V(6E),€(30),C(60),Y(6««)
DOUBLE PRECISION DELTA,DELT,DS,VI(1) ,CI<1),YICI)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T0,TEMP,DTEMP
COMMON TM(6),A(8),CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL.MM,NN,IFL<;,JFLG, ITT, ITER. IW, IR, 1DISC, IHNIT
COMHON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT.JOXIT, INPT, IFORH
COMMON MXLST, MXPOS, MXL0C, NDMAX, NODE, NHODE, I ERR. MLOC, KPOS, LP0S
COMMON IAA(80),NI(30,2),IELN(9),IFRST(9),ILAST(9),IELMC1000)
COMMON IUR(30),IUC(120),IPOS(400),NCON(30)
EQUIVALENCE (IUR(1) , ILC(D) ,(IUC(1), ILR(L)) ,

8 (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) , (C(30) ,CI(1) , VI(1)) ,(YC30O),YI(I))
EQUIVALENCE (IELN(7),M1)

C
IERIl=l
DO 300 IEL=1,6
K1=IELN(IEL)
IF(K1.EQ.0) GO TO 300
KPOS=IFRST(IEL)
DO 200 J=1,K1
K=IELM(KP0S+3)
IF(M.EQ.O) GO TO 190
MP0S=IFRST(7)
DO 50 K=1,M1
N=IELM(MP0S+3)
IF(N.NE.M) GO TO 40
IELM(KP0S+4) =MP0S/2
GO TO 190

40 MP0S=IELM<MP0S+1)
50 CONTINUE
95 WRITEC I¥,91)M
91 F0RMAT(9H MODEL: M, 11, 12H NOT DEFINED)

IERR=0
190 KPOS=IELM(KPOS+I)
200 CONTINUE
300 CONTINUE

RETURN
END
SUBROUTINE INPUT

C CONTROLS READING OF INPUT DATA
INTEGER*2 IELM,LHALF
DOUBLE PRECISION V<60),U(30),C(60),YC60O)
DOUBLE PRECISION DELTA.DELT,DS,Vl(1),CI(1),YI<1)
DIMENSION ILC(1),ILR(1),RELM(1)
COMMON U, C, Y, DS, BELT, DELTA
COMMON TO,TEMP.DTEMP
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE
eOIClON IEL,JJ,KIC,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, 1R, IDISC, IUHIT
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM
COMirON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, I ERR, MLOC, KPOS, LPOS
COMMON IAQ(80),NI(30,2),IELN(9),IFRST(9),ILAST(9),IELM(1000)
COMMON IUR(30),lUCt120),IPOSC400),NC0N(30)
EQUIVALENCE (IUR(1),ILC(!)),(IUC(1),ILR(1)),

8 (IELM(1) , RELM(1)) , (L, LHALF)

93

APPENDIX E

EaUIVALERCE (CC 1) ,V(D) ,(C(3«) ,CI(1) ,VI(1)) . (y(300) .YU 1) >

2400

2500

C . ..

2600

2?0O

2800

2900

3000
3100

3200

3300

3350
3400

C ..

1000

1100
1200

K1=IELN(IEL)+1
IFdCl.GT. 1) GO TO 2400
IFRSTCIEL)=LPOS
GO TO 2500
KPOS= TLAST(I EL)
IELM(ICP0S-rl)=LP0S
L=IPACK(IAa,LL+l)
IELM(LP0S+2)=LHALF
IFdEL.Eft.T) GO TO 3400

. HEAD INPUT DATA
LL=LL+3
CALL RDFLD
IF(MM.GE.O) GO TO 2700
K1 = K1-1
GO TO 340©
IS=2
IF(IEL.HE.4) GO TO 2800
IS=3
DO 3100 L=l,IS
II = A(L)
IF(n.Ea.0)GO TO 3100

. DETERMIHE UKiaUE NODE NUMBERS
DO 2900 M=1,N0DE
IF< II.EQ.NI(M,2))G0 TO 3000
CONTINUE
N0DE=N0DE+1
Eri(K0DE,2)«II
GO TO 3100
HKM, 1) = 1
CONTINUE
IELn(LP0S+7)=A(1)
IELM(LP0S+8)=A(2)
1F(IEL.NE.4)C0 TO 3200
IELM(LP0S+3)=A(3)
GO TO 3350
IF(A(3).GT.0.)GO TO 3300
IF(IEL.LT.5)A(3)=-A(3)
MP0S=LP0S/2
RELM(MP0S+3)=A(3)
IELM(LP0S+3)=A(4)
IELN(IEL)=K1
RETURN
END
SUBROUTINE RDFLD

. READ DATA FIELD
INTEGER*2 IELM
DOUBLE PRECISION V(60) .W 30) ,C<60) , Yt6O0)
DOUBLE PRECISION DELTA,DELT, DS.VK 1> ,CI(1) ,YI(1>
DIMENSION ILC(1) , ILR(1) ,RELM(1)
COMMON U, C, Y, DS, DELT, DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL.MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDI8C, IUHIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INFT, IFORM
COMMON M>XST,MXPOS,MXLOC,HDMAX,NODE,NNODE, IERR, MLOC, KPOS.LPOS
COMMON IAQ(80),NI(30,2),IELH(9),IFRST(9),ILASTC9),IELM(1000)
COMMON IUR(30),IUC(120),IPOS(4O0)>NC0N<30)
EOUIVALENCE C IUR(1) , ILC(1)) , (IUC(1) , ILR< 1)) .

8 (IELM(1) ,RELM(D)
EOUI VALENCE (C(1) , V(l)) , (COO) ,CK 1) , VI(1)) ,(Y(30O),YI(1))

.. KK IS FIELD POINTER
LL IS COLUMN POINTER

DO 1000 KK=l,a
A(KK)=0.
CONTINUE
DO 1100 KK=1,8
A(KK)=VAL(LL)
IF(MM.LE.1)G0 TO 1200 '
LL=LL+1
CONTINUE
RETURN
END
SUBROUTINE PRCKT

. PRINT INPUT DATA
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),YC600)

94

APPENDIX E

DOUBLE PRECISIOH DELTA,DELT,DS,VI(1),CI<O,YI<1>
DIMENSION ILC(1),ILR(1),RELM(1)
DIMENSION ITYPEC14),NAME(10)
COMMON U.CY.DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL,,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON 1PLT, IPEN.LTYPE, ITEMP, ITOTL, TOUT, JOTJT, INPT, IFORM
COMKOH MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR, MLOC, KPOS,LPM
COMMON IAQ(80),NI(30,2)>IELN(9),IFRST(9),ILASTC9),IELM(1000)
COMMON IUR(30),IDC(120),IP0S(4«0),NCON(30)
EQUIVALENCE (IUR(1), ILC(D) , (IUC(1) , ILR(D) ,

6 (IELM(1) ,RELM(D)
EftUIVALENCE (C(1) , V(1)) , (C(30) , CI(1) , VI(1)) , (Y(300) , YI(1))
DATA ITYPE^H P,2HNP,0,0,2H N,2HPN,2H T,2HEM,2H S,2HIN,2H E,

1 2HXT,2H P,2HUL/
DATA NAME/1HR, 1HC, 1HL, 1HQ, 1HI, 1HV, 1HM, IH , 1H+, 1H-/

C
DO 300 1=1,7
K1=IELN(I)
IF(Kl.Ea.0)GO TO 300
KPOS=IFRST(I)
IPLUS=NAME(8)
MINUS=NAME(8)
GO TO (10,30,50,170,70,90,210),I

10 VfRITEC IUNIT,21)
21 F0RMAT(/1H , 1 lH*RESISTOnS:)

GO TO 120
30 VRITE(IUNIT,41)
41 F0RMAT(/1H , 12H*CAPACIT0RS:)

GO TO 120
50 WRITEC IUNIT,61)
61 F0RMAT(/1H , 11H»INDUCTORS:)

GO TO 120
70 WRITE(IURIT,81)
81 F0RMAT(/1H , 17H*CURRENT SOURCES;)

CO TO 110
90 VRITE(IUNIT, 101)
101 F0RHAT(/1H , 17H*VOLTAGE SOURCES:)
110 IPLUS=NAMEf9)

MINUS=NAME(10)
120 WRITE(IUNIT,131)IPLUS,MINUS
131 FORMAT(IH ,5H*KAME, IX, Al ,5HNODES, AI ,4X,5HVALUEr3X,3HM0DEL)

DO 150 J=1,K1
MPOS=KPOS/2
WRITE(IUNIT, 141)NAME(I) , IELM(KP0S+2) , IELK(KPOS+7) , IELM(KPOS+8) .

8 RELM(MPOS+3) , IELM(KPOS+3)
141 FORMATCIH ,Al,A2I2I4,G13.3,2X>1HM,11)

KPOS=IELM(KPOS+l)
150 CONTINUE

GO TO 300
170 WRITECIUNIT,181)
181 F0RMAT(/1H , 13H»TRANSIST0RS:/1H ,25H*KAMEC B E MODEL)

DO 200 J=1,K1
WRITECIUNIT,191)NAMECI),IELMCKPOS+2),IELMCKPOS+7).IELMC KPOS+B),

8 IELMC KPOS+5), IELMC KP0S+3>
KPOS= IELMC KPOS+1)

191 FORMATC IH , Al, A2,3I4, 4X, 1HM, 11)
200 CONTINUE

GO TO 300
210 WRITEC IUNIT, 2.21)
221 FORMATC/IH ,aH'«NODELS:/lH , 10H*NAME TYPE)

DO 300 J=1,K1
MP0S=KP0S/2
K=2*RELMCMP0S+3)+3
KK=MP0S+4
LL=KK+7
WRITEC IUNIT,291)NAMEC7) , IELMC KP0S+2) , ITYPEC K) , ITYPEC K+U ,

8 CRELMCJJ) ,JJ = KK,LL)
KPOS=IELMCKPOS+1)

291 FORMATC IH , Al, A2,2X,2A2,7G10.3)
300 CONTINUE

RETURN
END
SUBROUTINE ALTER

C FIND ALTER ELEMENT
IHTECER*2 IELM,KHALF
DOUBLE PRECISION VC 60) ,UC 30) ,CC 60) , YC600)
DOUBLE PRECISION DELTA,DELT,DS,VIC 1) ,CIC1),YIC1)

95

APPENDIX E

DIMENSION ILC(1),1LR(1),RELM(O
COMMON U, C, Y, DS, DELT, DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) ,A(B),CSAT,VT,VCT,TYPE ,„„,-
COMMON IEL,JJ.KK,LL,MM,NH,IFLG,JFLG,ITT,ITER,IW,IR,IDISC.ICFIT
COMTiON IPLT,IFEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT, IFORM
COMMON MXLST, MXPOS, MKLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON TAaCSO) ,NI(3e,2) , 1ELN(9) , 1FRST(9) , ILAST(9) , IELM(1000)
COMMON lUROO) , IUC(120) , IPOS(4O0) ,NCON(30)
EQUIVALENCE (IUR(1) , ILC(1)),(!UC(1) , ILR(D) ,

8 (IELM(1),RELM(1)),(K,KHALF) „,„„„, „,,,»,
EftUIVALEKGE (C(1) ,V(1)) , (C(30) , CU 1) .VU 1)) ,(Y(300) ,YI(1)>

C
C ... ITT CONTAINS FIRST LOCATION OF ALTERED ELEMENT IH IELM

IERR=1
K1=IELH(IEL)
ITT=IFRST(IEL)
K=IPACK(lAtt.LL+l)
DO 3020 1=1,Kl
IF(IELM(ITT+2).EQ.KHALF)GO TO 3050
ITT=IELM(ITT+1)

3020 CONTINUE
VRITE(IV,3031)

3031 F0RMAT<22H ELEMENT HOT FOUND RE-)
IERH=0
GO TO 3070

3050 LL=LL+3
IF(IEL.EQ.7) GO TO 3070
CALL HDFLD

3070 RETURN
END
FUNCTION VAL(LOCl)

C DETERMINE VALUE OF FIELD
INTEGEn*2 IELM
DOUBLE PRECISION V(60) ,U(30) ,C(60) , Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(O,YI(1)
DIMENSION ILC(1) , ILR< 1) ,RELM(1)
DIMENSION SUFIX(5),ICHAR(22)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T0, TEMP, DTEUP
COMMON TM(6),A(8),CSAT,VT,VCT,TYPE
COMMON IEL, JJ,KK,LL,MM.NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL, TOUT, JOUT,INPT, IFORM
COIEION MXLST,MXPOS, MXLOC, NDMAX, NOPE, NKODE, TERR, MLOC, KPOS,LPOS
COMMON IAQ(80) ,NI(30,2) , IELN(9) , IFRST(9) , ILAST(9) , IELM(1000)
COMMON IUR(30),IUC(120).IPOS< 400),NCON(30)
fcQUIVALFriCE (I(m(l),ILC(l)) ,(IUC(D.ILRd)),

S (IELM(1) ,RELM(D) „^„s „,,.%^
EQUIVALENCE (C(1) ,V(1)) , (C(36) , CI(1) ,VI(D) ,(Y<300) ,YI(1))
DATA ICHAR/1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,

1 IH ,IH.,1HE,IH-,1H+,IE,,IBM,1HP,1HN,1HU,IHK,1HCV
DATA SUFIX- l.E-12,l.E-9,l.E-6,l.E3,l.E9/

20

30

VALUE OF MM (RETURNED)
-1 ILLEGAL CHARACTER 1 MODEL
0 BLANK FIELD 2 VALID FIELD

SIGN=1.0
MP=1
IS=0
IC=0
IINT=0
IEXP=0
FRAC=0.
EMULT= 1.0
NBLNK=0
MM=0
J1 = 0
VAL=0.O
DO 140 LL=LOG 1,80
II=IAQ(LL)

. DETERMINE CHARACTER
DO 20 J=l,22
IF (II.EQ. ICHAR(J)) GO TO 30
CONTINUE
GO TO 130
N=l
J=J-1
IF(J.LE.9) GO TO 40
IFCJ.GT.16)G0 TO 136

96

APPENDIX E

H=J-8
40 GO TO (50,135,90,100,lie,146,156,125,130).H
50 Jl=l

IF(13)60,76,80
C EXPONENT PART
60 IEXP=IEXP*10+J

GO TO 140
C INTEGER PART
70 UNT=IINT*10+J

GO TO 140
C FRACTION PART
80 IC=IC+1

S=J
FRAC=FRAC+S.FW10(IC)
GO TO 140

C DECIMAL POINT
90 IS=1

GO TO 140
C E
100 lF(E!1ULT.Ea. 1.0)GO TO 103

EMtrLT= 1. 0E6
GO TO 140

105 IS=-1
GO TO 140

C MINUS
11© IF(J1.NE.0)GO TO 115

SICN=-1.0
GO TO 140

115 MP=-1
GO TO 140

C MODEL
125 IF(Jl.GT.e)GO TO 126

MM=1
GO TO 140

126 EMULT=l.E-3
GO TO 140

C ERROR
130 VRITE(IV, 131) II
131 F0RMVr(19H ILLEGAL CHARACTER-, A2)

MM=-I
GO TO 180

C ALLOW FORM IE XX (OR 1EXX OR 1E+XX)
133 IF(IS.LT.0.AKD. IEXP.EQ.0) GOTO 140

IF(Jl.GT.O) GO TO 150
C COUNT LEADING BLANKS

IF(NBLNK.GT.7) CO TO 138
HBLHK=NBLNK+1
GO TO 140

136 IF(J1.EQ.0)GO TO 130
NN=J-16
EMULT=SUFIX(HN)
GO TO 140

138 MM=0
CO TO 180

140 CONTINUE
WRITE(IV, 141)

141 FORM4T(30H MAXIMUM FIELD LENGTH EXCEEDED)
GO TO 180

150 J=MP*IEXP
VAL=I INT
VAL= SIGN*(VAL+FRAC)*PK10(J)*EMnLT
IF(MM.HE. 1)MM=2

180 RETURM
END
FUNCTION PVIO(K)

C GENERATE POVER OF TEN
PV1O=I.0
IFCK) 15,30,3

5 DO 10 1=1,K
10 PW1O=PW10*1O.O

RETURN
15 K=-K

DO 20 1=1,K
20 PV1O=PV10/1O.0
30 RETURN

END
FUNCTION nCONV(K,M,NI,NODE)

C DETERMINE ELEMENT NODE FROM TABLE
DIMENSION NI(30,2)

97

APPENDIX E

C M=0 COHVERT ORIG. NODE TO REHUHBERED RODE
C M= 1 CONVERT RENUMBERED. HODE TO ORIG. NODE

IF(M.Ea. 1) GO TO 300
DO 100 J=l.NODE
IFCK.Eft.HH J,2)) GO TO 200

100 CONTINUE
GO TO 400

200 NCONV=J
M TO 400

300 NC0NV=HI(K,2)
400 RETUHM

END
SUBROUTINE POUT

C SET UP PRINT OR PLOT OUTPBTS
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1).YI<1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
DIMENSION IBftC U)
COIITION U,C,Y,DS,DELT,DELTA
COMKON T0, TEMP, DTEMP
COMMON TM(6) , A(8) , CSAT, VT, VCT, TYPE
COMKON IEL,JJ,KK,LL,MM,NN,IFLG,JrLG, ITT, ITER, IW, IR, IDISC, IDWIT
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, lOUT.JOUT, INPT. IFORM
COMMON MXLST.MXPOS.MXLOCHDMAX.NODE.KNODE. lERR.MLOC, KPOS.LPOS
COMMON IAa(80),KI(30,2),IELN(9),IFRST(9),ILAST(9),1ELM(1000)
COMMON IUa(30),IUC(120),IPOS(400),RCON(30)
EQUIVALENCE (IUR(1) , ILC(D) ,(IUC(1) , ILR(D) ,

8 (IF,LM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) ,(C(30),CIC 1) ,VI(D) ,(¥(300) ,YI(1))
DATA IBQ/IHR, 1HC,IHL.IHQ,1HI,1HV,1HM,1HE,1HT,1HP,1H s
DATA IDB/2HDB/

C
IFORM=0
IF(IFLG.LT.5) CO TO 350
vmiTE(IUNIT, 141)

141 F0RMAT(9H 0UTPUT9:/32H VXX PRT/PLO XMIN XMAX VMIN VMAX)
READ(IR,151) lAQ

151 FORMAT(OOAl)
I0UT=VAL(2)
I = LL+1
LL=a
CALL RDFLD
IF(MM.Ea.-l) GO TO 400
IF(IFLG.EQ.2) IFLG=6
IF(IAQ(D.EQ. IBQ(ID) 1=1 + 1
IF(IAQ(I) .NE. IBQ(10)) GO TO 340
1=1+1
IF(IAQ(I) .HE. IBG(3)) GO TO 350

C PLOT DEFAULT: USE LAST PLOT SCALES IF PBT/FLO HOT SPECIFIED
C PLOT OUTPUT
200 KP0S=MXL0C/2

DO 290 1=1,6
K=KPOS+I
RELM(K)=A(1)

290 CONTINUE
C
C AC PLOTS

IF(IFLG.KE.9) GO TO 310
LTYPE=2
IF(A(U.EQ.O.) A(l)=TM(n
IF(A(2) .EQ.O.) A(2)=TM(2)
RELM(KPOS+1) = ALOG(A(1)) *0.434294
RELM(KPOS+2)=ALOG(A(2))*0.434294

C ITTM OUTPUT DB GAIN. ITT=2 , OUTPUT PHASE.
1TT=TM(4)
GO TO 340

C
C TRANSIENT PLOT DEFAULT
310 1F(IFLG.HE.5) GO TO 320

LTYPE=4
IF(A(2) .EQ.O.) HELM(KPOS+2) =TM(2)
IF(A(4) .EQ.O.) RELM(KPOS+4)=20.
GO TO 340

C
C SWEPT ELEHENT PLOT DEFAULT
320 1F(A(l) .EQ.O.) RELM(KP0S+1) = TM(1)

1F(A(2) .EQ.O.) RELM(KPOS+2) =TM(2)
IF(A(4) .EQ.O.) RELM(KPOS+4)=20.

98

APPENDIX E

c
340 1PLT=1

CALL GRAPH
GO TO 400

C PRINT OUTPUT
350 IPLT-0
C . . . DETERMINE OUTPUT PRINT DEVICE

TOITO IV,351)
351 F0RMAT(26H OUTPUT TO: TTYCO) DISC(1>)

READ(IR,353) IFORM
353 FORMAT(IIO)

IF(IFORM. EQ.O) GO TO 366
360 CALL OPNFLCIDISC.IV,IR)

IUNIT=IDISC
C AC PRINT
366 IF(IFLG.NE.9)G0 TO 370

lAOC l) = IBa(7)
•IF(ITT.EO. 1) IAa(l) = IDB
WRITECIUNIT,369)IAQ(1),IOUT,IOUT

369 F0RMAT(3X,9HFREaUENCY,5X, IHV.Al, I2,5X,2HVP, I2,5H(DEC)/4e(1H-) >
GO TO 400

C ALTER PRINT
370 IF(IFLG.NE.6) GO TO 375

IAa(1)=IBQ(IEL)
IAQ(2) = IELM(ITT+2)
GO TO 380

C TRANSIENT PRINT
373 IF(IFLG.NE.5) GO TO 400

iAa(i) = iBa(9)
iAa(2) = iBa(in

c
380 VRITE(IUNIT,391) IAQ(1) , IAQ(2) . IOUT
391 FORMAT(13X,2A1,15X, 1HV, I2^9X,3«C1H+))
400 RETURN

END
SUBROUTINE SETUP

C PROCESS CIRCUIT DATA
IHTEGER*2 IELM
INTEGER VI
DOUBLE PRECISION V(60).U(30),C(60),Y(600)
DOUBLE PRECISION DELTA.DELT.DS,Vl(1),CI<1),Yl(I)
DIMENSION 1LC(1), ILR(1). ,RELM(1)
DIMENSION WSORC(1),KCON(1)
COMMON U,C,Y,DS,BELT,DELTA
COMMON TO.TEMP.DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IEHR, MLOC, KPOS, LPOS
COMMON IAQ(80) ,NI(30,2) , IELN(9) , 1FRST(9) , ILAST(9) , IELM(1000)
COMMON IUR(30),IUC(120),IPOS(4O0),NCON(30)
EQUIVALENCE < IUR(1) , ILC(!)>,(IUC(1) , 1LR(D),

6 (IELM(1) ,RELM(D)
EQUIVALENCE (C(I) , V(1)) , (C(30) ,CI(1) , VI(O) ,(Y(30O),YI< !)>
EQUIVALENCE (IELN(6) ,V1) ,(IAQ(D.NSORCtD) ,(NI(1,2) , KCONC 1))

G
C INITIALIZE NODE VECTOR
C REORDER NODE VECTOR

N=N0DE-1
DO 3200 1=1,N
11=1+1
DO 3200 J=ri,NODE
IF(KCON(I) .LT.KC0H(J))GO TO 3200
M=KCOH(J)
KCON(J)=KCON(I)
KCON(I)=M

3200 CONTINUE
IFCVl.EQ.O) CO TO 3440

C RENUMBER VOLTAGE SOURCE NODES
KP0S=IFRST(6)
DO 3300 1=1,VI
K=IELM(KP0S+7)
NSORC(I)= NCONV(K,0,NI,NODE)
KP0S=IELM(KP0S+1)
CONTINUE 3300

C
C MOVE SOURCE NODES TO END OF NODE VECTOR

N=NODE
KF0S=IFRST(6)

99

APPENDIX E

DO 3440 1=1,VI
K=NSORC(1)
IFCK.EQ. N) GO TO 3430
IFUC.GT.NNODE) GO TO 3435
11=1 + 1

3350 DO 3400 L=II,V1
ITCNSORCCL) .NE.K) GO TO 3400
N=N-1
GO TO 3350

3400 CONTINUE
n=KC0N(K)
K0ON(K)=KCON(N)
KC0H(N)=M

3430 N=N-1
34'J5 KF0S=IELM<KP0S+1)
3440 CONTINUE
C RENUMBER ELEMENT NODES

CALL RENUM(O)
C
C GENERATE INCIDENCE MATRIX FOR NODE REORDERING

CALL INDHT
C DETERMIBE NEW NODE ORDER AND SET UP SPARSE POINTERS

CALL NORDR
C
C REDUCE VOLTAGE SOURCES TO CURRENT EQUIVALENTS

IF(Vl.EQ.O) GO TO 3920
CALL EQUIV
MXLOC=LP0S

3920 RETURN
END
SUBROUTINE INDMT

C ROUTINE TO LOAD INCIDENCE MATRIX FOR NODE REORDERING
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60). Y(600)
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI(1) . YI(1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
DIIIEflSION IY(3O,30)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) , A(8) , CSAT, VT, VCT, TYPE
COMIION IEL,.JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC.IUNIT
COMMON IPLT,IPEN,LTY?E,1TEMP,ITOTL,lOUT.JOUT,INPT,IFORM
COiniON MXLST,MXPOS,riXL0C,NDmX,N0DE,NN0DE, IERR, MLOC, KPOS, LPOS
COMMON lAQCOO),NI(30,2),IELH(9),IFRST(9),ILAST<9),IELM(1000)
COMMON IUR(30».IUC(120),IPOS(4O0),NC0N(30)
EQUIVALENCE (IUR(1) , ILC(1)),(IUC(I) . ILR(D),

8 (IELM(1) ,RELM(D)
EQUIV.iLENCE (C(1) , V(1)) , (C(30) , CI(1) , Vl(1)) ,(Y(300),YH D)
EQUIVALENCE(Y(1),IY(1,1))

C
C
C CLEAR IY MATRIX

DO 100 [■!,RHODE
DO 100 .;=1,HN0DE
IY(I,J) = 0

100 CONTINUE
C
C LOAD INCIDENCE MATRIX

DO 300 IEL=1,5
K1=IELN(I EL)
IFCKl.EQ.O) GO TO 300
KP0B=IFRST(IEL)
DO 200 J=1,K1
KK=IELM(KrOS+7)
LL=IELM(KP0S+8)
IF(KK.EQ.O) CO TO 110
IY(KX,KK)=1
IF(LL.EQ.0) GO TO 120
IY(KK,LL) = 1
IYCLL,KK) = 1

110 IY(LL,LL) = 1
120 IF(IEL.NE.4) GO TO 180
C ADD BJT'S

HH" !ELM(KP0S+5)
IF(MM.EQ.O) GO TO 180
IF(KK.EQ.O) GO TO 130
IY(KK,MM) = 1
IY(MM,KK) = 1

130 IF(LL.EQ.0) GO TO 140

100

APPENDIX E

IY(MM,LL) = 1
iy(LL,MM) = l

140 iy(MM,MM) = l
180 Kr0S=IELM(KF0S+l)
200 CONTINUE
300 CONTINUE

RETURN
END
SUBROUTINE NORDR __ TO,,„

C ROUTINE TO OPTIMALLY ORDER NODES USING
C NON-ZERO OFF-DIAGONAL TERMS CREF. BIAS-H)
C 5-18-77

INTEGER*2 I ELM ,_„
DOUBLE PRECISION V(60) ,U(30) ,0(60) .YieOO)
DOUBLE PRECISION DELTA, DELT.DS.VK 1) ,CU 1) ,YI(O
DIMENSION ILC(1),ILR(1),RELM(1)
DIMENSION IORDR(1) , IROW(1) , IY(30,30)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO.TEMP.DTEMP

TOMKON PLT IFEN LTYPE ITEMP, ITOTL, IOUT, JOUT, IHPT, IFOBM

COMMON IAG(80) ,NI(30,2) , IELN(9) , IFK3T(9) . ILAST(9) . IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),nC0H(30)
EttUIVALENCE (IUR(1) , ILC(1)) , (IUC(1) , ILR(1)) ,

8 (IELM(1) ,RELM(D) _,,., „,,,M ivaaat Vtt 1)1
EGUIVALENCE (C(1) ,V(D) ,(C(30) ,01(1) ."<»>'I ^f^*' lyd j))
EQUIVALENCE(NIC 1, 1) , IORDR(D) , (V(1) , IROV(1)) , (Yd) , IY(1.1))

C
NM1=NH0DE-1
NPS^O
NCT=0
IFCNHODE-Eft.1) GO TO 30
DO 10 1=1,NODE
IORDIU I) = I

10 CONTINUE

C^OUNT NUMBER OF OFF-DIAGONAL NOH-ZERO ELEMENTS IN HOVS
DO 20 I=1,NH0DE
NCON(I)=I
IROWCI)=0
DO 15 J=1,NN0DE
IF(I.EO.J) GO TO 15
m IY(I,J) .EQ.O) GO TO 15
IROW(I) = IRD¥(I) + l

15 CONTINUE
20 CONTINUE

C COLUMN AND ROW RENUMBERING AND INDICATOR SETUP
30 IU=1
C IL=1

IFILL=0
IF(KNODE.LE.1) GOTO 195
DO 190 1=1, NM1
IUR(1) = IU

C ILC(I) = IL
L=IORDR(I)

C
C SEACH FOR MIN IROW

NMIH=500
DO 120 J=I,NNODE
im=IOHDR(J)
IF(IROW(NR) .GE.NMIN) GO TO 120
NMIN=IR0V(KR)
IORDR(J) = L
NC0N(L)=J
IORPR(I)=NR
NCOHC NR) = I
L=KR

120 CONTINUE
Q
C ESTABLISH NON-ZERO TERMS IK ROV

JS=I+1
DO 140 K=JS,NNODE
IC=IORDR(K)
IF(IY(L, IC) .EQ.0)GO TO 140
IUC(IU) = IC
IU=IU+1

101

c

APPENDIX E

149 CONTIHUE
C
C MOVE DOVW COLUMN AND CHECK FILL-INS

DO 185 J=JS.MNODE
NR=IORDR(J)
IRT=IY(HR,L)
IFdRT.EO.O) GO TO 185

C ILR(IL) = NR
IROV(NR) = IROV(NR)-l

C IL=IL+1
NCT=IUR(I)

145 IF(NCT.GE.IU) GO TO 185
C MOVE INDEX ,IC. ACROSS ROW L
158 IC=IUC(HCT)

IFtNR.Ett.IC) GO TO 180
IF(IY(NR, lO.NE.O) GOTO 180

C OFF-DIAGONAL FILL-IN
IROW(riR) = IROW(NR) + l
IFILL=IFILL+1
IV(HR, IC) = 1

180 NCT=NCT+I
NPS=NPS+1
GO TO 145

185 CONTINUE
190 CONTINUE
C ILC(NNODE)=IL
195 ITm(NNODE) = IU

MLOC=NODE+IU
MXPOS=LPOS

C
C PRINT MATRIX STATISTICS

IUT=IU-1
NOPS=NPS+NNODE+3* Hn-
^NNODEs^NNODE
J=N0DE+2*IU
NCT= 10O.*FLOAT(I-2*IUT)/-FL0AT(I)
^ITE<IUT1IT'2ei) ""ODE.IUT.KOPS.IFILL.NCT MXPOS J

201 F0HMAT(4X,7HNN0DE =.\4.7X,4mv ^ "j^'^1 •nxTOS-'
S 5X,6HN0PS =,I4,2X,9HFILL-INS= '
SjiN0DE;2*^PARSITY =,I4,2H ''•3X-*HMXP0S=.I4.3X.7HMXYP0S=.I4>

IF(J.GT.3O0) ¥RITE(IW,211)
211 F0RMAT(23H ** MATRIX TOO DENSE **)

C ASSIGN OPERATION NUMBERS
IFCNNODE.Ett.1) GO TO 230
NPS=0
DO 225 1=1,NMI
1US=!UR(I)
IUE=IUR(I+n
IL=IUS
ILE=IUE

205 IF(IL.GE.ILE) GO TO 225
NR=ILR(ID
IL=IL+1
IU=IUS

215 IF(IU.GE.IUE) GO TO 205
NC=IUC(IU)
KPS=HPS+1
IPOS(NFS) = INDX(NR, HO
IU=IU+1
CO TO 215

225 COHTIirDE
IF(NPS.GT.400) WHTE(IV,211>

230 RETUBH
END
SUBROUTINE REBUM(M)

C RENUMBER ELEMENT NODES
INTEGERS I ELM
DOUBLE PRECISION V(60) .UOO) .C(60) , Y(6O0)
DOUBLE PRECISION DELTA. DELT.DS. VI(1) .CH 1) YI(1)
DIMENSION ILCO) . ILR(1) ,RELM(1)
COMMON U,C,Y.DS,DELT,DELTA
COMMON TO.TEMP.DTEMP
catasm TTK 6), A(8),CSAT, VT, VCT. TYPE
COfWON IEL,JJ,ICK:,LL,rffl,NN,IFLG,JFLG,ITT ITER IW TR IDTor tnwTT
«™ IPLT. IPEN.LTYPE, ITEMP. ITOTLT OUT J^' BPT iiS^*
COffllON MXLST.Mr.TOS.ffia.OC.NDHAX.NODE HNODE IEARILW ^s LPos
COMMON IAa(80) ,NI(30,2) . IELN(9) , IF^T(9) S ^Sue^

102

APPENDIX E

COMMON IUR(30),IUC(120),IPOS<400).KCOK(39)
EftUIVALENCE (IUR(1) , ILC(1)) , (IUC(t) , ILRd)),

8 (IELM(1) ,RELM(1)>
EOUIVALENCE (C(1) , V(1)) , (COO) ,CI(1) , VH 1)) ,(Y(3e0) ,YI(1))

C
DO 4000 IEL=1,6
K1=IELN(IEL)
IF(Kl.Ea.0)GO TO 4000
KP0S= IFRSTC IEL)
DO 4000 J=1,K1
KK=7
1F(IEL.EQ.4) KK=5
DO 3000 I=KK,8
IFCI.Ett.e) GO TO 3000
II = KP0S+I
K=IELM(II)
IFCK.Ett.O) GO TO 3000
IELM< II)=HCONV(K,M,NI,NODE>

3000 CONTINUE
3600 KFOS=IELM(KPOS+1)
4000 CONTINUE

RETURN
END
SUBROUTINE EttUIV

C STORE LOCATION OF EQUIVALENT SOURCES
INTEGER*2 IELM
INTEGER VI
DOUBLE PRECISION V(60),UC30).C(60),Y(€0O)
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI(1) ,YI(1)
DIMENSION ILCO), ILR(1) ,RELM(I)
COMMON U,C,Y,DS, DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYFE
COMMON IEL,JJ,KK,LL,MM,KN, IFLG, JFLG, ITT. ITER, IV, IR, IDISC, lUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IEHR,MLOC, KPOS,U>0S
COMMON IAQ(80),NIC 30,2),IELN(9),IFRSTC9),ILAST(9),IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),NC0N(30)
EaUlVALEHCE (IUR(1) , ILC(D) ,(IUC(1) , ILR< 1)) .

Q (IELM(1) ,RELM(1)1
EQUIVALENCE (C(1) , V(1)) , (C(30) , CI(1) , VI(1)) , (Y(300) , YK 1>)
EQUIVALENCE(IELN(6),V1).(IELN(9),12)

KPOS= IFRSTC 6)
LPOS=MXPOS
DO 1500 N=1,V1
J=IELM(KP0S+7)

 CHECK IF ELEMENT CONNECTED TO VOLTAGE SOURCE
DO 1400 IEL=1,3
K1=IELN(IEL)
IF(Kl.EQ.O) GO TO 1300
KPOS=IFRST(IEL)
DO 1400 M=1,K1

l^IELM(MP0S+7)
L=IELM(MPOS+a)
IFCJ.NE.IOGO TO 1000
NT=L
GO TO 1100
IF(L.NE.J)GO TO 1300
NT=K
IF<KT.EQ.0)GO TO 1300
12=12+1
IF(l2.EQ. 1) IFRSTC 9) ^MXPOS
IF(LPOS.LE.MXLST) GO TO 1200
IERH=-2
STORE EQUIVAiEKT SOURCE FLAGS AND VALUES
LP0S+1= ELEMENT LOCATION IN IELNC.)
LP0S+2= VOLTAGE SOURCE LOCATION IN IELN(.>
LP0S+3= NODE AT VHICH EQUIVALENT CURRENT IS ADDED
LP0S+4= ELEMENT TYPE
IELM(LP0S+4)=IEL
IELM(LP0S+3)=NT
IELM(LPOS+2)=KP0S/2
IELMC LPOS+1) = MPOS/2
LP0S=LP0S+4
MP0S=IELM(MP0S+1)
CONTINUE
KP0S=IELM(KF0S+1)

1500 CONTINUE

1000

1100

C . .
c
c
c
c
1200

1300
1400

103

APPENDIX E

RETUIW
END
STI3R0UTIHE GRAPH

C INITIALIZE GRAPHICS
C DRAW AXIS ASD LABEL GRAPH

RETURN
END
FUNCTION IPACKCIAft.K)

C PACK 2A1 FORMAT INTO 11 VOHD
DIMENSION lAOC1)
II=IAQ(K)
JJ=!Aa(K+l)

C IPACK=OR(SHrT(11,8,-8) ,SHFT(JJ,8))
IPACK= 11
RETURN
END
SUBROUTINE OPNFLCLUN, IW, IR)
DIMENSION NAME! 3)

C ROUTINE TO OPEN DISCFILE
WRITEf IW, 101)

1»1 FORMATC1OH FILENAME:)
READ(IR,201)NAME

201 F0RMAT(3A2)
CALL SEARCH(LUN,NAME, 1)
RETURN
END
SUBROUTINE CLSFL(LUN)

C ROUTINE TO CLOSE DISCFILE
CALL SEARCH(4,0,1)
RETURN
END
SUBROUTINE SECNDCTl)

C ROUTINE TO RETURN ELAPSED TIME
DIMENSION ITAR(11)
CALL TIMDATC ITAR, 11)
Tl = rLOAT(ITAR(7)) +FLOAT(ITAR(8)) /FLOATt ITARC 11))
RETURN
END
SUBROUTINE CLOCK(ETIM, IDATE)

C RETURNS CLOCK TIME IN SECONDS, AND DATE < MM DD Y)
DIMENSION IDATE(S)
IDATECl)=e
IDATE(2)=e
IDATE(3)=e
ETm=».
RETURN
END
SUBROUTINE ANALY

C MAIN ANALYSIS ROUTINE
INTEGER*2 I ELM
INTEGER Rl,Cl,Vl.ai
DOUBLE PRECISION DELU
DOUBLE PRECISION V(6e),U(3e),C(6e),Y(609)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI<1).YI(1)
DIMENSION ILC(1) , ILR(1),HELM(13
COMMON U,C,Y,DS, DELT,DELTA
COMMON T0, TEMP. DTEMP
COMMON TM(6),A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL, JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER. IW, IR, IDISCITJHIT
COMTION IPLT, IPEN,LTYPE, ITEMP, ITOTL, ICUT, JOUT. INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, I ERR, MLOC, KPOS. LPOS
COMMON IAa(80) ,NI(30.2), IELN(9) , 1FRST(9) , ILASTC9) , IELM(1080)
COMMON IUR(30),IUC(120),IPOS(400),NC0N(30)
EftUIVALENCE (IUR(1), ILC(1)).(IUC(D.IUUD),

S (IELM(1) ,HELM(D)
EQUIVALENCE (C(1) , V(1)) , CC(30) ,CI(1) , VI(1)) , (Y(300) , YI(D)
EttUIVALENCEC IELN(1),R1) ,(IELN(2) ,C1),(IELN(3) ,L1),(IELN(4).ai>,

1 (IELN(5) ,!!),(IELN<6) ,V1) ,< IELN(7) ,MI) ,(IELR(9) , 12)
G

ERR= FLOAT(NNODE*NNODE)* 1.OE-10
2900 RMS 1 = 0.

RMS2=0.
IF(IFLC.NE.5)G0 TO 3200

3000 IF(T0.NE.DELTA)CO TO 3100
DELT=DELTA

C UPDATE TRANSIENT SOURCES
3100 CALL UPDAT
C UPDATE CAPACITOR CURRENTS
3200 IF(Cl.LE.O) GO TO 3800

104

APPENDIX E

3400

3500

3600
3700
C ...
3B00

3900

4000

4100
C ..
4200

KP0S=IFBSTC2)
TC=1.0
IF(ITEMP.Ea.0)GO TO 3300
TC= 1. 0+RELM(ITEMP+6) *DTEMP+HELM(ITEMP+7)*DTEMP*DTEMP

3300 DO 3700 1=1,Cl
MP0S=KP0S/2
DS=0.DO
IF(T0.LE.0.)GO TO 3400
DS=RELM(11P0S+3) *TC
KK=IELM(KP0S+7)
LL=IELM(KP0S+8)
DS=2.DO*DS*DELU(LL,KK)/DELT
IF(T0.GT.DELTA)GO TO 3500
RELM(MPOS+5)=0.DO
RELM(MP0S+6)=-DS
GO TO 3600
RELM(MPOS+5) -DS+RELM(MPOS+6)
RELM(MPOS+6) = -ffS-nELM(MPOS+5)
KPOS= IELM(KPOS+1)
CONTINUE

. UPDATE INDUCTOR CURRENTS
IF(Ll.Ea.0) GO TO 4200
TC=1.0
KP0S=IFRST(3)
DO 4100 1=1,LI
MP0S=KP0S/2
IF(T0.LE.O.)GO TO 3900
DS= RELMC MPOS+3) *TC
DS= DELT*DELU(LL, KK) /DS/2. DO
IF (TO.GT.DELTA) GO TO 4000
RELM(MPOS+5) =0. DO
RELMt MPOS+6) = DELU(LL, KK) * 100. DO
GO TO 4100
RELM(MPOS+5) =DS+RELM(MPOS+6)
RELM(MPOS+6) =RELM(MPOS+5) +DS
KP0S=IELM(KP0S+1)
CONTINUE

. ADD SUPPLIES TO VOLTAGE VECTOR
IFCVl.Eft.O) GO TO 4400
HP0S=IFRST(6)
DO 4300 1=1,VI
MP0S=KP0S/2
J=IELM(KP0S+7)
V(J) =RELM(MPOS+3)
U(J)=V(J)
KP0S=IELM(KP0S+1)

4300 CONTINUE
4400 ITER=0
C ZERO CURHENT MATRIX
4500 DO 4600 I=1,HN0DE

C(I) = 0.DO
4600 CONTINUE

1I=2*ML0C-N0DE
DO 4700 J= 1,11
Y(J)=O.DO

4700 CONTINUE
C LOAD ELEMENTS INTO Y S C ARRAYS
4800 CALL ELOAD

IF(I2.EO.0) GO TO 5520
C ADD GENERATED CURRENT SOURCES

CALL GHCUR
C SOLVE HODE EOUATIONS
5520 CALL DECMP

CALL SOLVE
IFCttl.EO.O) GO TO 6550
ITER= ITER+1
IF(ITER.LT. I00)GO TO 6500

C NO CONVERGENCE—PRINT LAST RODE VOLTAGES
VRITE(IUH1T,6501)

6501 F0RMAT(26H CIRCUIT DOES NOT CONVERGEV
GO TO 6780

C COMPUTE MEAN SQUARE ERROR OF NODE VOLTAGE CHANCES
6500 DS=O.DO

DO 6520 J=1,NH0DE
DS=DS+(V(J)-U(J))**2

6520 CONTINUE
S=DS
1F(IFLG.Eft.S.OR. IFLG.Ea.6)G0 TO 6550
VRITE(IUHIT,6541)S

105

APPENDIX E

6S41
C ...
6550

6560

C .. ,

65B0

C . .

6660

6601
6660

6670
6671
66B0

C
c ...
6700

FORMATC 1X,E18.4)
. STORE LAST NODE VOLTAGES
DO 6560 IM.RNODE
U(I)=V(1)
COHTIHUE
IFCai.Eft.0) GO TO 6660

. CHECK FOR COKVERGEHCE
IF(S.LT. ERR. AKD.RHS1.LT.ERR.AWD.RMS2.LT.ERR. AND. ITER.GT.2>

8 GO TO 6660
IF(ITER.LT.6) GO TO 6580
IF(S.GE.RMS1. AND.RPIS1.GE.RMS2. AND.S.LT.0.001) GO TO 6600
RriS2=RMSl
RMS)=S

. NO CONVERGENCE: RE-ITERATE
GO TO 4500
IF(!PLT.GT.0)GO TO 6660
S=S(iRT(S)
VRITECIUN1T,6601)S

FORIIAT(19H MEAN ERRORC VOLTS) : , F14.6)
IFCIFLG.NE.5.AND.1FLG.NE.6)G0 TO 6770
ITOTL=ITOTL+ITER
R=TO
S=V(JOUT)
IFC IFLG.Ea,6) R=TM(1)
IF(IPLT.Ea.0)GO TO 6670
CALL DRAW(R,S, IPEN.4)
IPEN=1
GO TO 6680
V/RITE(IUKIT,6671) R,S,ITER
FORMAT(1X,2G18.4,10X,118)
IFCIFLG.Ea.6)G0 TO 6700
TO=TO+DELTA
IFCT0.GT.TMC2)) GO TO 6965
GO TO 3000

. . INCREMENT SWEPT ALTER VALUE
TMC 1)=TMC 1)+TMC3)
MP0S=TnC4)
RELMCKP0S+3)=TMC 1)
IFCTMC 1) .LE.TMC2)) GO TO 2900
RELIIC riPOS+3) =TI1C 5)
GO TO 6965

C
C . . .
6770
6780
6781
6800

6811

6831

6881
6890

C
6965
6970

PRINT DC OPERATING POINTS
IFCai.Ea.0)GO TO 6800
WRITECIUNIT,6781)ITER
F0RmTC/V12H ITERATIONS: , 110)
TC=TEMP-273.
VRITECIUNIT,6B11)TC
F0RflATC3H T=,F8.1,6H DEG C//)
WRITECIUNIT,6831)
FORMATC 15H NODE VOLTAGES:)
DO 6890 1=1,NODE
J = NIC 1,2)
WRITE C1UNIT,6881)J,VCn
F0RMATC2H V,I2,F18.4)
CONTINUE
IFLC=4
IFCai.NE.0) CALL ELOAD

IFLG=4
RETURN
END
SUBROUTINE ELOAD

. ROUTINE TO LOAD ELEMENTS INTO Y 8 C ARRAYS
FOR AC OR DC ANALYSES

INTEGER*2 IELM
INTEGER Ql
DOUBLE PRECISION VC60),UC30),CC60),Y(600)
DOUBLE PRECISION DELTA.DELT,DS,VIC1),CIC1),YIC1>
DIMENSION ILCC1).ILR(1),RELMC 1)
COMMON U,C,Y.DS,DELT,DELTA
COMMON TO, TEMP, DTEMP
COMMON TMC6) , AC 8) ,CSAT, VT, VCT.TYPE
COMMON IEL, JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IVT, 1R, IDISC, lUHIT
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, lOUT.JOUT, INPT, IFORM
COMMON MXL.ST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR, MLOC, KPOS.LFOS
COMMON lAOCBO),NIC30,2),IELNC9),IFRSTC9),ILASTC9),IELMC1000)
COMMON IURC 30),IUCC120),IPOSC 400),NCONC 30)

106

APPENDIX E

EaUIVALEKCE (lOTK 1).ILCl1)),CIUCC1),1LR(1)),
8EQiiv^ENC™n),v(.,),(C(30),cni>,vi(i)).(y(3ee),Yi(i).
EaUIVALENCE (IELH(4),Q1),<IELN(5),11)

C
DO 800 IEL=1,3
K1=IELN(I EL)
IF(Kl.EQ.O) CO TO 600
KPOS=IFRSTCIEL)
TC=1.0
IFCITEMP.EQ.O) GO TO 100
HH=ITEMP+IEL*2+1 „™,w„ ^„
TC= 1.0+RELM(NN) *DTEHF+nELM(IW+1 > *DTEMF**2

100 DO BOO I=1,K1
IF(IELM(KP0S+4).RE.O) CALL ELMODCIEL)
MP0S=KP0S/2
KK=IELM(ia'0S+7)
LL=IELM(KF0S+B)
DS = RELM(MF0S+3) *TC

C ADD RESISTORS
IFCIEL.CT.1) GO TO 200
DS=1.D0/DS
CALL ADRE3
GO TO 700

C ADD CAPACITORS
200 IFCIEL.GT.2) GO TO 400

DS=DS/DELT
IF(IFLG.nE.9) GO TO 300
CALL ADCFR
GO TO 700

300 DS=2.D0*DS
GO TO 600

C ADD INDUCTORS
400 DS=DELT/DS

IFCIFLG.HE.9) GO TO 500
CALL ADCFR
GO TO 700

500 DS=DS*0.5D0
IFCDELT.GT.1.0D6) DS=1O0.DO

600 CALL ADRES
DS=RELM(MP0S+6)
CALL ADCUR

700 KP0S=IELMiKP0S+l)
BOO CONTINUE

IFCIl.EQ.O) GO TO 1000

C ADD CURRENT SOURCES FOR DC ANALYSIS
IFCIFLG.EQ.9) GOTO 1000
KF0S= IFRSTC 5)
DO 900 1=1,11
HP0ri = KP0S/2
KK= IELMCKrOS+7)
LL=IELMCKP0S+B)
DS=RELMCMP0S+3)
CALL ADCUR
KP0S=IELMCKF0S+1)

900 CONTINUE
C ADD TRANSISTORS
IOOO iFcai.Ea.o) GO TO 1200

IFC iri.G.EQ.9) GOTO 1100
CALL BJT
GO TO 1200

1100 CALL BJTAC
1200 RETURN

END

C . . ^SSm^L^KOBPOSITION BASED OH RECORDED SPARSITV
C MODIFIED FROM S1NC-S 5-18-77
C

T N TF* f T*" H SJ 2 T F"TJM

DOUBLE PRECISION VC60),UC30).C(60),Y(600)
DOUBLE PRECISION DELTA,DELT, DS, VIC 1),C1C 1) , YI< J>
DIMENSION ILCC D.ILRC 1) ,BELMC 1)
DIMENSION IORDRC 1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T0,TEMP,DTEMP
^STS^^i.L^HSIrLG^LG^Tr^TER.I^IR.mSC.IUNIT
cSS IPLT^PCTIL^: ™W,TTOTL, "lOUT.JOUT, INPT. IFORM

107

APPENDIX E

rnS "^fT.MXPOS.MXLOC.NDMAX.KODE.NNODE. IERR.HLOC, KPOS.LPOS
COMMON lACKSO) ,NI(30,2),IELH(9).IFnST(9) ILASTf «1 IPIMrToaa>
romv!r^3f' *IUC(12e) • iPos(4ee) Sge 'IELM(1006)

8
Ex^?L[n,i>-iLc(i,,'(iuca)-iLR(i)j-

c
C IUR UPPER TRIANGULAR ROV ELEMENT COUNTER
C nr Sn Z?1^0"1-^ ELEMENT COLTON INDICATOR
C ILC LOWER TRIANGULAR COLUMN ELEMENT COUNTER

ILR LOWER TRIANGULAR ELEMENT ROW INDICATOR

IFCNNODE.Eft.1) GO TO 40
NN=HN0DE-1
KHT=0
DO 30- 1=1,NN
L=IORDR(I)
IUS=IUR(I)+ML0C
IUE=IUR(I+1)+ML0C
IL=ILC(I)+KODE
ILE=ILC(I+D+KODE

C
C DOWN LOWER TRIANGLE COLUMNS
3 IF(IL.GE.ILE) GO TO 30

DS=Y(IL)/Y(L)
Y(IL> = DS
IL=IL+1
IU=IUS

C
C ACROSS UPPER TRIANGLE ROWS
20 IFdU.GE. IUE) GO TO 5

KNT= iCNT+ 1
K=IPOS(KNT)
Y<K) = Y(K)-Y(IU)«DS
IU=IU+I
GO TO 20

30 CONTINUE
40 RETURN

END
SUBROUTINE SOLVE

C

r Tro^S11"8 F0RVAnD AND BACKWARD SUBSTITUTIOIT
C USING SPARSE POINTERS
c FROM BIAS-N 5-19-77

INTECEH*2 IELM
DOUBLE PRECISION V(60) , U(30) , C(60) , Y(600)
DOUBLE PRECISION DELTA. DELT,DS, VI(1),CI< 1), YH 1)
DIMENSION ILC(1),ILR<1),RELM(1) " ^I (" • *!< »*
DIMENSION I0RDR(1)
COMHON U,C,Y,DS, DELT, DELTA
COMMON TO,TEMP,DTEMP
COMMON TMC6) ,A(8) ,CSAT,VT,VCT,TYPE
COfClON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG, ITT ITER TW TR IDKsr rrmiT
ComiON IPLT, IPZN,LTYPE, ITEMP, ITOTLT OUT J^r' INPT ITOM

COMMON IAQ(80),NI(30,2),IELN(9),IFRST(9),ILAST(9) IELM(1«no>
c™* IUR(30) , IUCC 120) , IP0S(400) , NCOm 30) '

8
Eu^^n)i)-,Lcu),-<iuc(i)-iLR(">'
^i^s^<

1
i:;r!;^r1r'ci(i)'v,(in'(Y(3^-yi(i"

C FORWARD SUBSTITUTION
NN=NN0DE-1
IF(NN.GT.O) GO TO 10
V< I)=C(1)/Y(I)
GO TO 70

10 DO 30 1=1,NH
L=I0RDR(I)
DS = C(L)
IF(DS.EQ.O.D0) GO TO 30
IL=ILC(I)
ILE=ILC(1+1)

20 NL=IL+NODE
IF(IL.GE.ILE) GO TO 30
NR= ILR(ID
C(NR)=C(NR)-Y(NL)*DS
IL=IL+1

108

GO TO 20
30 CONTIHUE
C
C BACK SUBSTUTION

L'lORDIUNNOOE)

DO 50 1=1, NH
HUI=HHODE-I
L=IORDR(HUI)
IU=IUR(NUI)
iuE=iun(HUi+i)

35 HL= IU+MLOC
IF(IU.GE.IUE) GO TO 45

40 IC=IUC(IU)
C(L) =C(L) -Y(HL) *CeiC)
IU=1U+1
CO TO 35

45 C(L)=C(L)/Y(L)
50 COHTtHUE
C TRANSFER INTO VOLTAGE VECTOR
C DO 60 1=1,KN0DE
C V(I)=C(I)
C6» CONTINUE
70 RETURN

END
SUBROUTINE ELMODt IEL)

C ROUTINE TO DEFINE ELEMENT MODELS
GO TO (200,400,600),IEL

0 RESISTOR MODEL
200 RETURN
C CAPACITOR MODEL
400 RETURN
C INDUCTOR MODEL
600 RETURN

END
SUBROUTINE BJT

C COMPUTE BJT PARAMETERS
INTEGER ftl
INTEGER*2 IELM
DOUBLE PRECISION DELU
DOUBLE PRECISION V(60),U(30).C(60),YC6O0)
DOUBLE PRECISION DELTA,DELT.OS.VI(1),CI(1),YT(1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6),ACS),CSAT.VT.VCT.TYPE
COMMON IEL, JJ, KK. LL. MM, NN, IFLG, JFLG, ITT, ITER, J^"l ™»C' lVSir

COMMON IPLT, IPEN.LTYFE, ITEMP,ITOTL,IOUT,JOUT, INPT, IFOHM
COMMON MXLST,MXP0S,MXLOC,NDMAX,NODE,RHODE, IE"11-M^^.KPOS.LPOS
COMMON IAtt(80) ,NI(30,2) ,IELN<9) , IFRST<9) , ILAST<9) . IELM(1000)
COMMON IUR(30),IUC(120),IPOS(40O),NCON(30)
EQUIVALENCE (IUR(1) , ILC(1)) . (IUC(1) , ILR< 1)) ,

^OUW^ENC^CC l^.VC D) .(C(30).CI(1) .VI(1)) , (Y(300) . YU D)
EOUIVALENCECIELN(4),Q1)

C
IF()FLG.NE.4) GO TO 5400
VRITE('lUHIT,5201)

5201 F0RMAT(29H TRANSISTOR OPERATING POINTS:)
VRITE (IUNIT,5301) , „mm„ ^^ ^TTUITA -rv 5301 F0RMAT(5H NAME, 5X,2HIB, 9X>2HIC,7X,3HVBE,9X,3HVBC>6X,4HBETA,7X,

1 2HGM, 9X, 3HRPI >
5400 VT=a.6164E-05*TEMP

VCT= VT*ALOG(VT/1.41459)
C0=1.0
TC= 1.0
KP0S=IFRST(4)
IF(ITEMP.EQ.O)GO TO 5500
C0=(TEMP/300.)»*3*EXP(- 13920.0*(1.0/TEMP-1,0/300.))
TC= 1.0+DTEMP*RELM(ITEMP+7)+DTEMP**2*RELM< ITEMP+8)

5500 DO 7200 1=1,01
KK=IELM(KP0S+7)
LL=IELM(KPOS+0)
MM=IELM(KP0S+5)
MP0S = ICP0S/2
ITT=IELM(ia,0S+4)
TYPE=RELM(ITT+3)
BF0=RELM(ITT+4)
BR0=RELM(ITT+5)

109

APPENDIX. E

c
5600

CSO=BELM(nT+6)

. INITIALIZE PARAMETERS FOR FIRST ITERATIOH
IF(ITER.nE.0) GO TO 5600
IF(IFLG.WE. DGO TO 5600
VBE=VGT-VT*ALOG(C0*CS0)
VBC=-1.0
nELM(MPOS+5)=0.5
RELM(nPOS+6)=0.0
RELIK «P0S+7) = 1. 0E-4
RELM(MP0S+8) = 1. 0E- 12
GO TO 5700

VDE=DELU(MM, LL) *TYPE
VT3C= DELU(KK, LL) *TYPE

5700 VA=RELM(ITT+7)
VAI=I.0
IF(VBC.GE.0.)CO TO .)710
IF(VBC.LT.-VA) GO TO 5710
VA1=I.0-VBC/VA

C PROCESS FORWARD TRANSISTOR
571« DF=BF0*TC*VA1

CO=C0*VA1
CSAT=CO*CSO*(1.0+l.0/BF0)/ri.O+l.O/BF)
CALL .IUKCT(M?OS+5, TOE, CCC, CCEtt, GMF)
IF(RELM(ITT+a) .KE.0.)GO TO 5800
GRPI=0.0
CREQ=0.0
CREC=0.0
GO TO 6000

. INCLUDE GENERATION RECOMBINATION CURRENT
CRSAT=SQRT(RELM(ITT+S) *CSAT)/BF0
CREC=-CRSAT
IF(VBE.LT.-1.2)GO TO 5990
CREC=CRSAT*EXP(VBE/VT/2.) +CREC
GRPI=(CREC+CflSAT)/VT/2.
CREQ=TYPE* (CREC-GRPI*VBE)
GPIF^GMF/BF-GRPI

. PROCESS RI'.VERSE TRANSISTOR
BR=BR0*TC*VA1
CSAT=C0*CS0*(1.0+1.0/BR0)/(l.O+l.0/BR)
CALL JUNCT(MP0S+6,VBC,CEC,CEEa,GMR)
GPIR=GMR/BR
GMR= GMR+(CCC-CEC)^VA
IF(IFLG.NE.4)G0 TO 6150

■ PRINT TRANSISTOR OPERATING POINTS
CB=TYPE*(CCC/BF+CEC/BR+CREC)
CC=TYPE*(CCC-CEC-CEC/BR)
VBE=TYPE*VBE
VBC=TYPE*VBC
BF=CC/CB
GPIFM.0/GPIF

rn^JoSHIT,6121) IELM(KP0S+2) .CB.CC.VBE.VBC.BF.GW.CPIF
F0RW.AT(2H Q, A2,2E12. 3,2F9. 3. F11.2, 2E12.3) .««".«■«
GO TO 7100

- GND. CONDUCTANCES AND V.D.C.S
IF(KK.LE.NNODE)GO TO 6160
CEEQ=CEEa-GMR*U(KK)
KK=0
IF(LL.LE.HNODE)GO TO 6170
CCEQ=CCEa+GMF«U(LL)
CEEa= CEEa+GMR*U(LL)
LL=0
IF(MM.LE.NN0DE)GO TO 61B0
CCEQ= CCEQ-GMF*U(MM)
MM=0

. LOAD ADMITTANCE MATRIX
IF(KK.Ea.0)GO TO 6300
Y< KK) = Y(KK) +GMR+GPIR
IF(LL.Ea.0)GO TO 6270
JJ= INDX(KK,LL)
Y< JJ) = Y(JJ)+GMF-GMR-CPIR
Y(NN)=Y(HN)-GPIR
IF(MN.Ea.0)GO TO 6360
JJ= INDX(KK,MM)
Y(JJ)=Y(JJ)-GMF

C ...
5800

5990

6000
C ...

6121

C
C . . .
6150

6160

6170

C
c ...
6180

6270

CONNECTED TO SUPPLIES

110

APPENDIX E

Y<NH)=Y(KN)-GMR
6300 IF(MM. Ea.0)GO TO 6360

Y(MH) = Y(MM)+GMF+GPIF
IF(LL.E«.0)GO TO 6390
JJ= INDXCMM.LL)
Y(JJ) = Y(JJ) -GTIF-GPIF+GMR
Y(NN)=Y(KN)-GPIF

6360 IF(LL.Eft.0)GO TO 6390
Y(LL) = Y(LL)+GPIF+GPIR

C LOAD CURREHT VECTOR
6390 IF(IFLG.EQ.9) GO TO 7100
C DONT ADD DC CURHERTS IF AC AHALYSIS

IF(KK.EQ.0)GO TO 7010
C(KK)= C(KK) + (1.0+1.0/BR)»CEEQ-CCEa

7010 IFCMM.EQ.0) GO TO 7020
C(MM) =C(MM) + (1.0+1. 0/BF) *CCEQ-CEEQ+CREa

7020 IFCLL.Ea.O) GO TO 7100
C(LL)=C(LL)-CCEO^BF-CEEO/BR-CREQ

7100 KPOS=IELM(KPOS+l)
7200 COKTIITOE

RETURM
END
SUBROUTINE JUNCT(J,VBB.CCC.CEO.GM)

C DETERMINE TRANSISTOR IC.GM.GPI
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y<600)
DOUBLE PRECISION DELTA,DELT.DS.VI(1),CI(1).YI<!>
DIMENSION ILC(1) , ILR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT.DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) , ACS) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG. JFLG, ITT, ITER, IV, 1R, IDISC, ITTNIT
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL,lOUT.JOUT,1NPT.IFORM
COMMON MXLST,MXPOS,riXLOC,NDMAX,NODE,NNODE, IERR,MLOC,KPOS,LPOS
COMMON IAa(00) ,NI(30.2) , IELN(9) , IFRST(9) , ILAST(9> , IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),HCON(30)
EQUIVALENCE (IUR(1) , ILC(1)) ,(IUC(1) , 1LR(U) ,

fl (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) , (C(30) , C!(1) , Vl(1)) , ty(300) . YH 1))

G
C COLN LIMITING ALGORITHM IMPLEMENTED a'16/76

VCRIT=VCT-VT*ALOG(CSAT)
IF(VBB.LE.VCRIT)GOTO 1100

C VB.LT.VCftlT— ITERATE ON VOLTAGE
CGC=CSAT*(EXP(RELMC J) /VT) -1. 0)
CEQ=CCC+RELM(J+2)*(VBB-RELM(J))
IFCCEQ.LT.O.)G0 TO 1000

C ITERATE ON CURRENT
VBB= VT*ALOC(CEQ/CSAT+1.0)
GO TO 1100

1000 VBB=VCRIT
1100 CCC=-CSAT

IF(VBB.LT.-1.2)GOTO 1200
CCC=CSAT*EXP(VBB/VT)+CCC

1200 GM=(CCC+CSAT)/\'T+1.0E-10
CEQ=TYPE*(CCC-GM*VBB)
RELM(J+2)=GM
HELM(J)=VBB
RETURN
END
SUBROUTINE UPDAT

C UPDATE TRANSIENT SOURCES
INTEGER*2 IELM
DOUBLE PRECISION V(60) ,U(30) ,C(60) , Y(600>
DOUBLE PRECISION DELTA,DELT,D9,VI(1>,CI(1),YI(1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,Nn,IFLG,JFLG, ITT, ITER, IW, IR, IDISC, lUHIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR,MLOC, KPOS.U'OS
COMMON IAa(80) ,NI(30,2) , IELN<9) , IFRST(9) , ILAST(9). IELM(1000)
COMMON IUR(30),IUC(120),IP0S(400),NCON(30)
EQUIVALENCE (IUR(1) , ILC(D) .(IUC(1), ILR(1)) ,

8 (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) , V(1)) , (G(30) ,CI(1) , VI(1)) t(Y(300),YI(1))

C
DO 4700 1EL=5,6

111

APPENDIX E

K1=IELN(IEL)
IF(K1.EQ.0)G0 TO 4700
KPOS=IFRST< IEL)
DO 4700 J=1,K1
MP0S=KP0S/2
ITr=IELM(KF0S+4)
IF(1TT.EQ.O)GO TO 4610
L=RELM(ITT+3)-2.0
IF(L.Ea.2) GO TO 4390
Bl = nELM(nT+4>
B2=RELM(ITT+5)
B3=RELM(ITT+6)
D4=n£LM(1TT+7)
IF(L.EQ.3) GO TO 4410

C
C ..
4370

SINE
V0=B1
IF(B4.HE.0.)G0 TO 4378
B4=DELTA

4378 ir(T0.LT.B4)GOTO 4390
V0=V0+B2*SINC 6.28319*B3*(T0-B4}

S +nELM(I,n+8)/57.296>
GO TO 4600 4390

C
C ..
4410
4420

PULSE
TI = T0
Z-B3
1F(TI.GT.Z)G0T0 4450
V0=B1
GO TO 4600

4450 Z=Z+B4
1F(TI.GE.Z)G0T0 4490
V0=B2-(RELM(ITT+5)-Bl)/B4*(Z-TI>
GO TO 4600

4490 Z=Z+RELM(ITT+8)
IF(TI.GT.Z)G0T0 4530
V0=D2
GO TO 46O0

4530 Z=Z+nELM(ITT+9)
IF(TI.GE.Z)GOT0 4570
V0=Bl + (B2-Bl)xnELM(ITT+9) *(Z-TI)
GO TO 4600

4570 S=RELM(ITT+IO)
IF(S.Ea.0.)GO TO 4580
Z=Z+S
TI = TI-S
GO TO 4420

4580 V0=B1
CO TO 4600

C
4590 CALL VEXT(TO,V0, ITT,HELM)
4600 RELH(MPOS+3)=V0
4610 KPOS=1ELM(KPOS+1)
4700 CONTIHUE

RETURN
END
SUBROUTIKE VEJCTC T0, V0,1, RELM)

C USER DEFINABLE SUBROUTINE FOR SOURCE MODEL
DIMENSION RELMC 1)

EXT'

C
C
c
c
c
c

*«*PARAMETERS***
TO—TIME(SEC) PASSED TO VEXT
V0—SOURCE VALUE AT TIME T0 , RETURNED FROM VEXT
RELM(*)— AVAILABLE PARAMETERS FROM 'EXT* MODEL FIELD
I _ MODEL NUMBER

RETUHM
END
FUNCTION DELU(K,L>

. DETERMINE U(L)-n(K)
INTEGER*2 IELM
DOUBLE PRECISION DELD
DOUBLE PRECISION V(60),U(30),C(60),Y(6«0)
DOUBLE PRECISION DELTA,DELT, DS, VI(1) .CI(1) . YI(1)
DIMENSION ILC(1),1LR(1),HELM(1)
COMMON U,C,Y,D3,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMKON TM(6) ,4(8) ,CSAT,VT,VCT,TYPE ._„-
COMMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG. ITT, ITER. IV.IR.IDISC.inRIT
COMMON IPLT, IFEN,LTYPE, ITEMP, ITOTL, lOUT.JODT, INPT, 1F0BM

112

APPENDIX E

c ..

sioe

5200

c . .

5480

5500

C . .

COPIMOK IAa(80) ,NI(30.2),IELrf(9),IFBST(9), ILAST(9> IELM(IflO«)
COMMON lUROO) , 1UC(120) , IPOSC 400) , NC0N(30) ' ^
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1)).

8 (IELM(1) ,HELM(U) , i" ,

EttUI VALENCE (C(1) ,V(1)) , < 0(30) ,CI(1) ,VI(1)) , (Y(30O> ,YH D)

DELU=0.DO
IF(L.GT.O) DELU=U(L)
IF(K. GT. 0) DELU^DELU-tK K)
RETURM
END
SUBROUTINE ADRES

.. ADD RESISTORS TO Y MATRIX
INTEGERS I ELM
DOUBLE PRECISION V(60),UC30),0(60),Y(600)
DOUBLE PRECISION DELTA.DELT.DS.VK 1) CKO Yl(1»
DIMENSION ILC(I),ILR(1),RELM(1) ".I""
COMMON U.C.Y.DS.DELT.DELTA
COMMON TO.TEMP.DTEMP
COKMON TM(6) , A(O) , CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG, ITT, ITER, IV IR, IDISC IITRIT
COfmON IPLT, !PEN,LTYPE. ITEMP, ITOTL, iourijOUT IN^T IFORM
COMMON MXLST,IIXP0S,MXLOC,NDMAX,N0DE,NNODE, lERR.MLOC KPOS LPOS
co^« IAQ(80) ,NI(30,2) , IELN(9) , IFRST(9) , ILAST 9) IELM(1000)
COMMON IUR(30),IUC(120),IPOS(400),NCON(30) '
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1))

S (IELM(l),nELM(l))

EQUIVALENCE < C(1) , V(1)) . (C(30) ,CI(1) , VI(1)) , (Y(300) , YI(1))

IF(KK. GT. BNODE) KK=0
IF(LL.GT.NNODE)LL=0
IF(KK.EQ.0)G0TO 5100
Y(KK) = Y(KK)+DS
1F(LL.EQ.O)GOTO 5200
JJ= INDX(KK,LL)
Y(JJ)=Y(JJ)-DS
Y(NN)=Y(NN)-DS
IF(LL.EQ.0)GOTO 5200
Y(LL)=Y(LL)+DS
RETURN
END
SUBROUTINE ADCUE

.. ADD CURRENTS TO CURRENT VECTOR
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30).C(60),Y(600)
DOUBLE PRECISION DELTA,DELT, DS, VI(1) ,CI(1) YH1)
DIMENSION ILC(1),1LR(1),RELM(1) >""".»""
COMTION U,C,Y,DS,DELT,DELTA
COMMON T0,TEMP,DTEMP
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE
COKMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG,ITT, ITER, IV IR IDISC IDNTT

r?Z™ ^fI:«XP0S-t«L0C.™MAX.HODE,NNODE, IERR,MLOC, KPOS. LPOS
^2S2 IAQ(80) ,NI(30,2) , IELN(9) . IFRST(9) , ILAST(9) , IELM(1O00)
COMMON IUR(30),IUCC120),IPOS(400),NCON(30)
EQUIVALENCE (IUR(1),ILCC1)),(IUC(1),ILR(1)>

6 (IELM(1),RELM(1))
EQUIVALENCE (C(1) ,V(1)) , (C(30) ,CI(1) ,VI(1) > .(Y(300) , YI(1) >

IF(KK. GT. NNODE) KK=0
IF(LL.GT.NNODE)LL=0
IF(KK.EQ.0)GOTO 5400
C(KK)=C(KK)-DS
IF(LL.EQ.0)GOTO 5500
C(LL)=C(LL)+DS
RETURN
END
SUBROUTINE GNCUR

. ROUTINE TO ADD GENERATED CURRENT SOURCES
INTEGER*2 I ELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA, DELT, DS, VI(1) ,CI(1) .YK 1)
DIMENSION ILC(1),ILR(1),RELM(1) "•l'il"'YI{"
COMMON U,C,Y,DS, DELT, DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) , A(8) , CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL,MM,HN,IFLG,JFLG, ITT, ITER. IV IR IBISC ITINIT
COMMON IPLT, IPEN,LTYPE, ITEMP. ITOTL, IOUT; JOOT: INPT JFOHH

113

APPENDIX E

COMMON MXLST,MXPOS,MXLOC,NDnAX,HODE,BHODK, IERR,MLOC,KPOS,LPOS
COMMON IAa(B0) ,N1(30,2) , IELN(9) , IFRST(9) , IiAST(9) , IELM(1000)
COMMON IUR(3e),IUC(120),IPOS(400),NCOH(30)
EauiVALENCE (IUR(1),ILCC1)).(IUC(1),ILRC 1)).

8 (IELM(1) ,RELM(1))
EGUIVALENCE (C(1) , V(1)) , (COO) .CK 1) , VI(I)) ,(Y(3«0) ,TI< D)
EaUIVALENCEC1ELN(9),12)

C
C . ..
1350

C
c . . .
1360
1365

C
C ...
1370

1375

13B0
1390
1400

LL=0
KP0S=IFRST(9)
DO 1400 1 = 1, 12
JP0S=IELM(KP0S+1)
NP0S=IELM(KP0S+2)

. DURING AC ANALYSIS ONLY ADD AC SOURCE CURRENTS
IF(INPT.NE.NPOS.AHD.irLG.Ea.9) GOTO 1390
KK=lELM(KP0S+3)
M=IELM(KF0S+4)
TC=1.0
IF(ITEMP.EQ.0) GOTO 1350
NN=1TEMP+2*M+1
TC= 1. 0+RELM(NK) «DTEMP+RELM(NK+1) *DTEMP*DTEMP

. RESISTOR CONNECTED TO VOLTAGE SOURCE
IF(M.GT. DGO TO 1360
DS=-RELM(NPOS+3) /(RELIK JPOS+3) *TC)
GO TO 1375

. CAPACITOR CONNECTED TO VOLTAGE SOURCE
IF(M.GT.2)G0 TO 1370
DS=RELI« HPOS+3) *HELM(JPOS+3) *TC
DS=-DS/DELT
IF(IFLG.Ea.9) GO TO 1330
DS=DS*2.0D0
GO TO 1375

. INDUCTOR CONNECTED TO VOLTAGE SOURCE
IF(M.GT.3)G0 TO 1400
DS=HELM(NP0S+3) /RELMC JPOS+3)
DS=-DS*DELT
1F(irLG.Ea.9) GO TO 1380
DS=DS*0.5D0
CALL ADCUR
GO TO 1390
CALL ADCPC
ICP0S=KP0S+4
CONTINUE
RETURN
END
SUBROUTINE ACSOL
MAIN AC ANALYSIS ROUTINE USED VITH BIASTB. 8^12-77

. USING STANDARD AC ANALYSIS PROCEEDURE VITH AC BJT LOAD
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30).C(60), Y(600)
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI(1) ,YI(1)
DIMENSION ILC(1),ILRC1),RELM(1)
COItflON U,C,Y,DS,DELT,DELTA
COMMON T0, TEMP, DTEMP
COBKON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE ____
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IDWIT
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, 10UT, JOUT, INFT, IFORM
COMMON MXLST,MXP0S,MXL0C,NDMAX,H0DE,NNODE, IERR, MLOC.KEOS.LPOS
COMMON lAftCBO),NI(30,2),IELNC9),IFRST(9),TLAST(9),lELMC1000)
COMKON IUR(30),IUC(120),IPOS(400).NC0H(30)
EauiVALENCE (IURC1),ILC(1)),(IUC(1),ILR(1)),
3 (IELM(1) ,RELM(1))
EQUIVALSNCE (C(l),V(l)),(C(3O),Gl(l),Vr(l)),(Y(300),YI<l))
EftUIVALENCE (IELN(9),I2)

900

FST0P=TM(2)
NDEC=TM(3)
IPRT=TM(4)
rKEa=TM(1)
FMULT=FREa
IFREa=0

. ZERO DC SOURCES
DO 900 I=NH0DE,N0DE
V(I)=0.D0
CONTINUE
VIN=RELM(INPT+3)

114

APPENDIX E

C DETERMINE INPUT NODE
IH=IHPT*2
IH=IELM(IN+7)

C STORE UNITY VOLTAGE IN AC INPUT SOURCE
RELMCIHPT+3)=1.0
IF(IEL.EQ.6) V(IN) = l.De

920 W=6.2B31*FREa
DELT= 1.0/W

C ZERO COMPLEX CURRENT VECTOR
DO 1050 1=1,NODE
C(I)=0.DO
CI(I)=O.D0

1050 CONTINUE
C ZERO COMPLEX ADMITTANCE MATRIX

II=2*ML0C-N0DE
DO 1100 1=1.11
Y(I)=0.D0
YI(1)=0.D0

1100 CONTINUE
C LOAD AC MATRIX

CALL ELOAD
C IF CURRENT SOURCE INPUT

IF(IEL.NE.5) GO TO 1200
IJ=INPT*3+7
KK=IELM(ID
LL=IELM(II+l)
DS=1.0D0
CALL ADCUR

C ADD GENERATED CURRENT SOURCES
1200 IF(I2.EO.0) GO TO 1250

CALL GHCUR
C FORWARD AND BACK SUBSTITUTE TO GET NEV VOLTAGES
1250 CALL DECAC

CALL SOLAC
C

U1 = V(J0UT)
U2=VI(J0UT)
VMAG=U1*U1+U2«U2

1500 AMAG=SaRT(VMAG)
IF(IPLT.Eft.O) GO TO 1600
IF(IPRT.HE.2) GO TO 1900

1600 PHASE=ATAN(U2/U1)*57.2958
IFCUl.GT.O.) GOTO 1900
PHASE=PHASE+SIGN(180.,U2)

C
1900 IF(IPRT.Ett. 1).4MAG=8.68589*AL0G(AMAG)

1F(IPLT.EQ.0)GO TO 2100
EFREQ= ALOG(FREQ) *0.434294

G
IF(IPRT.CE.6) GO TO 2200
IF(IPRT.NE.2) GO TO 2000
AKAG= PHASE

2000 CONTINUE
C CALL DRAWEFREO.AMAG, IPEN^)

1PEN=1
GO TO 2200

2100 VRITE(IUNIT,2101) FREQ, AMAG, PHASE, Ul, U2
2101 FORMAT(1X,G12.4,F12.5.F11.4,2G12.4)
2200 IFREQ=IFREa+l

IF(IFREQ.GT.NDEOGO TO 2300
PVR=IFREft
FTEM=10.0**(PVR/FLOATCNDEC>)
FREa= FMULT*FTEM
IF(FREQ.GT.FSTOP) GO TO 2400
GO TO 920

2300 FMULT= 10. *FMULT
IFREa=0
GO TO 2200

2400 RELM(IHPT+3)=VI1I
RETURN
END
SUBROUTINE BJTAC

0 LOAD AC BJT MODEL INTO Y 8 C ARRAYS
INTEGER ftl
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30>,C(60), Y(6O01
DOUBLE PRECISION DELTA, DELT, DS.VK 1) .CK 1) ,YH 1)
DIMENSION ILC(1),ILR(1),RELM(1)
COMMON U,C.Y,DS.DELT.DELTA

115

APPENDIX E

COMMON T9,TEMP,DTEMP
COMMON TM(6) , A(8) , CSAT, VT, VCT, TiTE
COMMON IEL,.IJ,KK,LL,r!M,KN, IFLG, JFLG. ITT, ITER, IW, IR, IDISC, IOTIT
COMKON IFLT,IPEN.LTYPE,ITEMP,ITOTL,ICUT.JOUT,INPT,IFORM
COTIHOn MXLST.MXPOS.MXLOCNDMAX.NODE.HNODE, IEnR,MLOC.KPOS,LPOS
COMMON IAa(80),NIC 30,2),IELNC9),IFRST(9).ILAST(9),IELM(1000j
COMMON IUR(30),IUC(120),IPOS(4O0),HC0H(30)
EQUIVALENCE (IUR(1),ILCC1)),(IUC(I),ILR(l)),

8 (IELM(1) ,RELM(D)
EQUIV.ALENCE (C(1) , V(1)) , (C(30) , CI(15 , VI(1)) , C YOOO) , YK 1))
EQUIVALENCE CIELN(4),Q1)

C
KP0S=IFHST{4)
DO 2000 I=1,Q1
MP0S=KP0S/2
ITT=IELM(KP0S+4)
KK=TELM(KP0S+7)
LL=!ELM(KP0S+8)
MM= IELM(KP0S+5)
CEEQ=0.0
CCEQ= 0.0
BF=RELM< ITT+4)
GMF = RELM(MP0S+7)
GPIF=GMF/BF
BR=RELM(ITT+S)
CMri= RELMt MPOS+S)
GP1R=CMIVBII
IFCKK.LE.NNODE) GO TO 1100
CEEQ=CEEQ-GMll»V(KK)
KK=0

1100 IF(LL.LE.NNODE) GO TO 1200
CCEO=CCEQ+GMF«V(LL)
CEEQ= CEEQ+CMR*V(LL)
LL=0

1200 IFCMM.LE.NHGDE) GO TO 1300
CCEQ=CCEQ-GMF*VC MM)
MM=0

1300 IF(KK.EQ.0)CO TO 1500
Y(KK) = Y(KiO +GMR+GPIR
C(KK) =C(KK) + (1. 0+ 1. f)/BK> *CEEQ-CCEQ
IF(LL.Ea.0)GO TO 1400
JJ= iriDX<KK,LL)
Y(JJ» = Y(JJ)+GMF-GMR-GPIR
Y(im)=Y(NN)-GPiR

1400 IF(MM.EQ.0)G0 TO 1600
JJ= INDX(KK,MI1)
Y(JJ)=Y(JJ)-GMF
Y(NN) = Y(NN)-GMn

1500 IF(J1M.EQ.0)GO TO 1600
Y(KM) = Y(MM) +CMF+GP IF
C< MM) =C(MM) + (1. 0+ 1. 0/BF) *CCEQ-CEEQ
IF(LL.EQ.0)GO TO 1700
JJ= INDXCMM.LL)
Y(JJ)=Y(JJ)-GMF-GPIF+GMR
Y(NN)=Y(NN)-GPIF

1600 IF(LL.EQ.0)GO TO 1700
Y(LL) = Y(LL)+GP1F+GPIR
C(LL)=C(LL)-CCEQ/BF-CEEQ/BR

1700 KPOS= IELM(KP0S+1)
2000 CONTINUE

RETtrRM
END
SUBROUTINE DECAC

C PERFORMS LU DECOMPOSITION BASED ON RECORDED SP4HSITY
C

DOUBLE PRECISION DR,DI,UR,0I,AR
IRTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA, DELT, DS, VI(1) ,CI(1) ,YH 1)
DIMENSION ILC(1),ILR(1),RELM(1)
DIMENSION IORDR(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6),A(8),CSAT,VT,VCT,TYPE
COMMON IEL, JJ.HCLL.MM.NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDM,\X, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON IAQ(80> ,NU30,2) , IELI»(9) , IFflSTC9) , IL-AST(9) , IELM(1600)
COMMON IUIl(30) , IUC(120) , IPOS(400) , NC0N< 30)

116

APPENDIX E

E&UIVALEKCE (IUR(1) , ILC(D) ,(IUC(1) , ILR(1)),
8 (IELM(I) ,RELM(I))
EttUIVALENCE (C(1) , V(1)) , (COO) ,C1{ 1) , Vl(1)) , (Y(380) , YI(1))
EaUIVALENCECNK 1,1), JORDIU 1))

C
C lUR UPPER TRI ANGULAR ROW ELEMEMT COUHTER
C IUC UPPER TRIANGULAR ELEMENT COLUMN INDICATOR
C ILC LOVER TRIANGULAR COLUMN ELEMENT COUNTER
C 1LR LOWER TRIANGULAR ELEMENT ROW INDICATOR
C

IFdJNODE.EO. 1) GO TO 40
NN=NN0DE-1
KHT=0
DO 30 1=1,NN
L=I0RDR(I)
UR=Y(L)
UI = YI(L)
D3=UR*UR+UI*UI
IUS=IUR(D+ML.OC
IUE=IUR(I+1)+I1L0C
IL=ILC(D+HODE
ILE=ILC(I+1)+N0DE

0
C DOW LOVER TRIANGLE COLUMNS
5 IF(1L.GE.ILE) GO TO 30

DR=(Y(IL)*UR+YI(IL)*UI)/DS
DI = (YI(IL)*UR-Y(IL)*UI)/DS
Y(IL)=DR
YI(IL)=DI
IL=IL+1
IU=IUS

C
C ACROSS UPPER TRIANGLE ROWS
20 IFCIU.GE.IUE) GO TO 5

KMT=KNT+1
K=IPOS(KNT)
AR=Y(K)-(Y(IU)*DR-YI(rU)*DI?
YI(K)=YI(K)-(Y(IU)*DI+YI(IU) «DR>
Y(K) = AR
IU=IU+1
GO TO 20

30 CONTINUE
40 RETURN

END
SUBROUTINE SOLAC

C
C PERFORMS FORWARD AND BACKWARD SUBSTITUTION
C USING SPARSE POINTERS
C MODIFIED FROM BIAS-N S-19-77

INTEGER*2 IELM
DOUBLE PRECISION DR,DA,DB
DOUBLE PRECISION V(60) , U(30) ,C(60) , Y(60O)
DOUBLE PRECISION DELTA, DELT, DS , VI (1) ,CI(1) ,YU 1)
DIMENSION ILC(1) , ILR(1) ,RELM(1)
DIMENSION lOKDR(l)
COMMON U, C, Y, DS, DELT, DELTA
COMMON T0,TEMP,DTEMP
COMMON TM(6) ,AC8) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG,JFLG, ITT, ITER, IW, IR, IDISC, IUHIT
COMMON IPLT,IPEN.LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM
COMMON MXLST,MXP0S,MXLOC,NDMAX,NODE,RNODE, IEnR,MLOC, KPOS, LPOS
COMMON lAftCSO).NI(30,2).IELN(9).IFRST(9).1LAST(9).XELMC1000)
COMMON IUR(30),IUC(120),IPOS(400),NCON(30)
EttUIVALENCE (IUR(1) , ILC(1)) , (IUC(1) , ILR(1)) .

8 (IELM(1) ,RELM(D)
EQUIVALENCE (C(1) ,V(D) ,(C(30) ,CI(1) ,VI(1)) , (y(300) ,YI< »)
EQUIVALENCEC NI(1,1),IORDR(1))

C
C FORWARD SUBSTITUTION

NN=NN0DE-1
1F(NN.GT.0) GO TO 10
DA=Y(1)
DB=YI(1)
DS=DA*DA+DB*DB
DR= (C(1) *DA+C 1(1) *DB) /DS
VI(1) = (CI(1)«DA-CC 1)*DB)/DS
V(1)=DR
GO TO 70

10 DO 30 1=1,NN

117

APPENDIX E

L=IORDR(1)
IL=ILC(I)
ILE=ILC(1+1)

20 NL=IL+N0DE
IF(IL.GE.ILE) GO TO 30
nR=ILR(ID
DR=C(KR) -(Y(NL) *C(L) -YIC NL) *C I(Ln
CI (NR) = CI (NR) - (Y(NL) *C I (L) +YI (HL) *C< L))
C(NR)=DR
IL=IL+1
GO TO 20

30 CONTINUE
C
C BACK SUBSTUTION

L=IORDR(NNODE)
DA=Y(L)
DB=YI(L)
I)S = DA*DA+DD*DB
DR= < C(L)*DA+CI (L)*DB)/DS
CI (L) = (C K L)*DA-C(L)*DB)/DS
C(L)=DR
DO 50 I=1,KN
NUI=NNODE-I
L= lORDRCNUI)
IU=IUR(NUI)
IUE=IUR(NUI+1)

33 NL=IU+MLOC
IF(IU.GE.IUE) GO TO 45

40 IC=IUC(IU)
DR=C(L)-(Y(RL)*C(IC)-YI(NL)*CI(IC))
CI(L)=CI(L)-(Y(NL)*GI(IC)+YI(NL) *C(IC))
C(L)=DR
IU=IIJ+1
GO TO 35

45. DA=Y(L)
DB=YI(L)
DS=DA«DA+DB*DB
DR= (C(L) *DA+C I (L) *DB) /DS
CI (L) = (C1(L)*DA-C(L)*DB)/DS
C<L) = DR

50 CONTINUE
C TRANSFER INTO COMPLEX VOLTAGE VECTOR
C DO 60 I=1,NN0DE
C V(I)=C(I)
C VI(I)=CI(I)
C60 CONTINUE
70 RETURN

END
SUBROUTINE ADCPR

C ADD IMAGINARY CONDUCTANCE TO Y MATRIX
INTEGER*2 IELM
DOUBLE PRECISION V(60) , UOO) ,C(60) , Y(6«0)
DOUBLE PRECISION DELTA,DELT,DS, VI(1) ,CI(1) ,YK 1)
DIMENSION ILC(1) , ILR(1) ,RELM(U
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO,TEMP,DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IW, IR, IDISC, IUWIT
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, IOUT,JOUT, INPT. IFORM
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR,ML0C,KPOS,LPOS
COMMON lAOCBO) ,NI(30,2) , IELN(9) , IFRST(9), ILAST{9) , IELM(1000)
COMMON IUR(30),IUC(120),IPOS(40O),NC0H(30)
EQUIVALENCE (IUR(1) , ILC(1)),(IUC(1),ILR(D),

S (IELM(1) ,RELM(1)>
EOUIVALENCE (C(1) , V(1)) , (C(30) , CI(1) , VI(1)) , (Y(300) ,YI(D)

C
IF(KK. GT. KNODE) KK=0
IF(LL.GT.NNODE)LL=0
ir(KK.Ea.0)COTO 100
YI(KK)=YI(KK)+DS
IF(LL.Eft.0)GOTO 200
JJ= INDX(KK,LL)
YI(JJ)=YI(JJ)-DS
YI(NN) = YI(NN)-DS

100 IF(LL.Eft.0)GOTO 200
YI<LL)=YI(LL)+DS

200 l^ETUHN
END
SUBROUTINE ADCPC

118

APPENDIX E

C ADD IMAGINARY CUKRENTS TO CUHREHT VECTOR
IKTEGER*2 IELM
DOUBLE PRECISION V(60),D(3e),C(60),Y(600)
DOUBLE PRECISION DELTA, DELT, DS.VK 1) ,CI(1> , YI(1)
DIMENSION ILC(1),1LR(1),RELM(1)
COMMON 0,C,Y,DS,DELT,DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IV, IR, IDISC. lUHIT
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM
COMMON I1XLST,MXP0S,MXL0C,NDMAX,N0DE,NN0DE, IERR, MLOC,KPOS,LPOS
COMMON IAQ(80),NI(30,2),IELN(9),irHST(9),ILAST(9),IELM(1000)
COMMON 1UR(30),IUC(120),IPOS(400),NCON(30)
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1)>,

a (IELM(1) ,RELM(I))
EOUIVALENCE (C(1) , V(1)) , (C(30) , CI(1) , VI(1)) , (Y(300) , YI(»•)

C
IF(KK. GT. KKODE) KK=0
IF(LL.GT.HNODE)LL=0
lF(iCK.EQ.0)COT0 300
CI(KJC)=CI(KK)-DS

300 IF(LL.EQ.0)GOTO 400
C1(LL)=CI<LL)+DS

400 RETURN
END

119

DISTRIBUTION

ADMINISTRATOR
DEFENSE DOCUMENTATION CENTER
ATTN DDC-TCA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY RSCH S STD GP (EUR)
ATTN LTC JAMES M. KENNEDY, JR.

CHIEF, PHYSICS S MATH BRANCH
FPO NEW YORK 09510

COMMANDER
US ARMY MATERIEL DEVELOPMENT S
READINESS COMMAND

ATTN DRXAM-TL, HQ TECH LIBRARY
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND

ATTN DRSAR-LEP-L, TECHNICAL LIBRARY
ROCK ISLAND, IL 61299

COMMANDER
US ARMY MISSILE & MUNITIONS
CENTER S SCHOOL

ATTN ATSK-CTD-F
REDSTONE ARSENAL, AL 35809

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ATTN DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

TELEDYNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
ATTN DR. MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

COMMANDING OFFICER
NAVAL TRAINING EQUIPMENT CENTER
ATTN TECHNICAL LIBRARY
ORLANDO, FL 32813

US ARMY ELECTRONICS TECHNOLOGY
S DEVICES LABORATORY

ATTN DELET-DD
FORT MONMOUTH, NJ 07703

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
COMMAND S CONTROL TECHNICAL CENTER
ATTN TECHNICAL DIRECTOR
WASHINGTON, DC 20301

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
ATTN TECH LIBRARY
WASHINGTON, DC 20305

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEERING CENTER
1860 WIEHLE AVE
ATTN RES & DEV
ATTN SYS CONT & GEN ENGR DIV
RESTON, VA 22090

DIRECTOR
NATIONAL SECURITY AGENCY
ATTN TECHNICAL LIBRARY
FORT GEORGE G. MEADE, MD 20755

OFFICE OF THE DEPUTY CHIEF OF STAFF
FOR RESEARCH, DEVELOPMENT & ACQ
DEPARTMENT OF THE ARMY
ATTN DAMA-ARZ-A, CHIEF SCIENTIST,

DA & DIRECTOR OF ARMY
RESEARCH, DR. M. E. LASSER

WASHINGTON, DC 20310

COMMANDER
ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
US ARMY COMPUTER SYS COMMAND
MELPAR BUILDING
ATTN TECH LIB
FORT BELVOIR, VA 22060

DIRECTOR
ELECTRONIC WARFARE LABORATORY
FORT MONMOUTH, NJ 07703

COMMANDER
US ARMY MISSILE RESEARCH
& DEVELOPMENT COMMAND

ATTN DRDMI-T, DIR TECHNOLOGY LAB
ATTN DRDMI-E, DIR, ENGINEERING LAB
REDSTONE ARSENAL, AL 35809

DIRECTOR
NIGHT VISION AND ELECTRO-OPTICS LABORATORY
ATTN TECHNICAL LIBRARY
FORT BELVOIR, VA 22060

121

DISTRIBUTION (Cont'd)

COMMANDER

US ARMY ELECTRONICS PROVING GROUND
ATTN STEEP-MT-A, METHOD S INSTR BR
FORT HUACHUCA, AZ 85613

PROFESSOR H. C. LIN (2 COPIES)
ELECTRICAL ENGINEERING DEPT
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20792

PROFESSOR D. 0. PEDERSON (2 COPIES)
EECS DEPT, CORY HALL
UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720

PROFESSOR R. W. DUTTON (2 COPIES)
INTEGRATED CIRCUITS LABORATORY
STANFORD UNIVERSITY
STANFORD, CA 94305

US ARMY ELECTRONICS RESEARCH
S DEVELOPMENT COMMAND
ATTN WISEMAN, ROBERT S., DR., DRDEL-CT

HARRY DIAMOND LABORATORIES
ATTN 00100, COMMANDER/TECH DIVTSO
ATTN CHIEF, DIV 10000
ATTN CHIEF, DIV 20000
ATTN CHIEF, DIV 30000
ATTN CHIEF, DIV 40000
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, (3 COPIES) 31100
ATTN HDL LIBRARY, (WOODBRIDGE> 81100
ATTN TECHNICAL REPORTS BRANCH. 81300
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 13000 (2 COPIES)
ATTN CHIEF, 13500
ATTN DOBRIANSKY, 13500
ATTN COOK, D. R., 11100
ATTN CAIRNS, C. W., 11100
ATTN ROSEN, R., 48100
ATTN CHOY, S., 48100
ATTN FURLANI, J., 48100
ATTN PEPERONE, S. J., 36000
ATTN DENT, J., 36100
ATTN MCNALLY, G. , 36200
ATTN GOODMAN, R., 34400
ATTN INGERSOLL, P, 34300
ATTN SCOTT, W. J., 21500
ATTN DANDO, J., 21400
ATTN WICKLUND, J., 22100
ATTN HALPIN, J., 22800 (5 COPIES)
ATTN HANSEN, R. , 15300
ATTN SHREVE, J., 15300
ATTN HITE, J., 15300
ATTN SANN, K., 11100 (2 COPIES)
ATTN GOTO, J., 13400
ATTN HOFF, R. S., 47000
ATTN COX, L. S., 00210
ATTN BIEHL, B. L., 15300 (20 COPIES)

122

