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1. INTRODUCTION

Electronic circuit simulation has traditionally
been done by batch or semi-interactive batch me-
thods using large host computers. It has been only
within the last two or three years that serious con-
sideration has been given to the possibility of doing
circuit analysis with small computer systems such
as desktop calculators and minicomputers. Pro-
grams such as BIAS-D [1],* MINI-MSINC [2], and
BIASL.25 [3] have been written expressly for these
small computing systems. Although these analysis
programs do not have the analytical capabilities or
speed of simulator programs such as SLIC [4],
ASTAP [5], or SPICE [6,7] used on large computer
systems, they do represent a potentially valuable
design aid for the simulation of small circuits (30 to
50 nodes) [8].

The primary intent of this report is to show the
practicality of using small computer systems for
interactive circuit simulation and to determine the
trade-offs which are necessary to achieve a general-
purpose (ac, dc, and transient) electronic circuit
simulator within the limitations of these small com-
puter systems.

This report shows that interactive circuit simu-
lation is possible on minicomputer systems. On a
dedicated small computer system, the major cost of
interactive circuit simulation is the engineer’s or
designer’s time. In contrast, in a large computer
system at least an equal cost is contributed by
computer costs. The “interactive’” simulation is
emphasized here (as opposed to batch simulation)
since this is the most effective way of completing a
computer-aided engineering design cycle. Compar-
isons of the interactive versus batch simulation
procedures are included in section 4, where the
simulator architecture and the simulator speed are
compared.

One might think that a reasonable initial ap-
proach to developing a circuit simulator for these
small computer systems would be to convert a
program such as SPICE into a minicomputer-

*Numbers in brackets refer to the Literature Cited.

compatible language. There are, however, many
barriers which make this approach both difficult
and uneconomical [9]. Differences in the architec-
tures of large computers such as the IBM’s and
CDC’s and those of minicomputers such as the
HP’s, PDP’s, and PRIME’s, as well as computational
speed differences, are the primary contributors to
these programming difficulties. Section 3 includes a
brief description of computer architecture as rela-
ted to circuit simulation.

Most of the work described has evolved in
three phases. The initial work, described in section
2, concentrated on a desktop-calculator simulator,
BIAS-D [1], using a first-generation BASIC language
desktop calculator, the HP9830A. The 16-kbyte
available memory posed a severe limitation (15
nodes, 150 elements) on the size of the circuit
which could be simulated. Although these efforts
were successful in showing that circuit simulation
on programmable calculators is possible, they also
determined that the speed and memory limitations
of these early calculators are too restrictive for a
successful interactive simulator.

The second phase, described elsewhere [10],
involved converting BIAS-D from BASIC into a
minicomputer-compatible FORTRAN V. Early re-
sults on a PRIME 400 minicomputer attained a
surprising 600:1 speed improvement over the
HP9830A calculator. Significantly more memory
was also available, permitting analysis of 30- to 50-
node circuits at reasonable speed. This FORTRAN
version was used to compare central processor unit
(CPU) speeds of several minicomputer systems: the
HP2100, the PDP 11/45, and the PRIME 400, as
well as the IBM 370/168 [10]. This version of BIAS-
D was essentially a conversion of the original BASIC
version. No attempt was made to incorporate
speed- or memory-saving techniques such as sparse
matrix storage and decomposition.

The third and final phase, described in sec-
tions 4 and 5, brought together, in BIAS-D, the
more significant speed- and memory-saving tech-
niques used in the large computer system circuit-
simulator programs: node ordering, sparse matrix
decomposition, sparse matrix storage, and linked-



list element storage. Detailed comparisons of speed
and memory requirements are made for each of
these techniques (sect. 4.2 and 4.3). The interactive
capabilities of BIAS-D have been enhanced, and
small-signal frequency response has been added;
this was previously unavailable in a general-
purpose minicomputer simulator. Algorithms used
in BIAS-3 [11], SLIC [4], SINC [12], and SPICE [6],
both published and unpublished, were examined
duringthese efforts.

Section 5 introduces a method for computing
ac frequency response which requires no complex
arithmetic and very little additional memory. This
method uses an extension of the standard transient
analysis procedures used in time-domain simula-
tions. Both this new method and the traditional
method are implemented in BIAS-D for comparison
purposes. Comparisons are made of analytical
speed, memory requirements, and accuracy be-
tween this new method and the traditional
complex-matrix method.

The appendices include user’s manuals and
source listings for both the BASIC version of BIAS-D
for an HP9830A (HP9845) desktop calculator and
the FORTRAN version of BIAS-D. The FORTRAN
version includes ac analysis and will run on almost
any computer system with few if any modifications.
Also included are the four benchmark test circuits
which were used in many of the timed experiments.
A description of the linked-list structure used in
BIAS-D to store circuit elements is given, as well as
a description of the function of each subroutine in
the FORTRAN version of BIAS-D.

2. CIRCUIT SIMULATION ON PROGRAMMA-
BLE CALCULATORS

Even though the programmable desktop cal-
culator does not have the speed or memory capa-
bilities of minicomputers or large computer sys-
tems, it is still a convenient, low-cost tool for circuit
simulation.
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2.1 Circuit Simulation—General

Probably the first general-purpose circuit sim-
ulator for programmable calculators was BIAS-D
[1]. BIAS-D, written in BASIC for an HP9830A with
a 16-kbyte memory, can compute the dc operating
points, small-signal ac gain and input impedance,
and transient response of a circuit of up to 15 nodes
containing resistors, capacitors, current sources,
voltage sources, and npn or pnp bipolar transistors
(15 each). For transistor circuits, BIAS-D converges
to a solution by linearizing the built-in Ebers-Moll
transistor model in much the same manner as that
done in the larger circuit-simulator programs such
as BIAS-3 [11] and SPICE [6].

Subsequently, BIASL.25 [3] was developed for
an HP9825 calculator with 32 kbytes of memory.
BIASL.25 was developed primarily for simulating
metal-oxide-semiconductor (MOS) circuits and
consequently has an advanced built-in MOS
model. Diodes, resistors, capacitors (both linear
and nonlinear), voltage sources, and current
sources are also available. The maximum circuit
configuration of BIASL.25 is not fixed, because
dynamic element allocation is used. A typical cir-
cuit would have 19 equations, 14 MQOS devices, 5
diodes, 12 capacitors, 5 resistors, and 10 indepen-
dent sources. The key to BIASL.25’s capabilities is a
very fast magnetic-tape cassette on the HP9825
which permits extensive program overlays. This
cassette allows a much larger program within the
limited 32-kbyte real memory. The increased speed
of the HP9825 also makes real-time interaction in
BIASL.25 more practical than in BIAS-D on the
HP9830A. Another feature of these calculators
which made both BIAS-D and BIASL.25 practical
was the use of built-in read-only memories
(ROM’s), especially the matrix inversion ROM. The
added speed and memory saving of these ROM’s
makes their use in calculators attractive for circuit
simulation. However, incorporation of the features
of these ROM’s into the circuit-simulator programs
can greatly alter the architecture of the program.
The use of techniques such as LU decomposition
based on matrix sparsity or sparse storage is no
longer practical. Some of the alternative techniques



which can be used are presented in section 2.2. The
analytical procedures used in the BASIC version of
BIAS-D are included here since this was the basis of
the ensuing FORTRAN version.

2.2 Circuit Simulation Using BIAS-D
(BASIC Version)

Any circuit-simulation program can be di-
vided into three major segments: an input proc-
essor, for interpreting the input circuit topology and
error checking; a circuit processor, for reconfigur-
ing the circuit for optimum performance in the
simulator; and the analysis portion, which solves
the circuit equations for each type of analysis.

BIAS-D is written in BASIC for an HP9830A
desktop calculator with a 16-kbyte memory, an 80-
column printer, a matrix-operations ROM, and a
string-variable ROM. However, any calculator sys-
tem which contains the BASIC interpretive lan-
guage could be used. In fact, BIAS-D was run on a
Tektronix 4051 calculator* and an HP9845 with
only minor program changes.

2.2.1 Input Processing

The input language of BIAS-D has been struc-
tured to be easy to use and as interactive as possi-
ble, and yet use a minimum amount of memory.
Whenever possible, the input format has been
modeled after that of SPICE [6]. The circuit data are
entered into BIAS-D in a semifree format—semifree
in that the data must begin in the first column, and a
single space must be used as a delimiter between all
data fields. Since memory is at a premium, the data
images are not stored and, therefore, must be
processed as they are entered. This processing must
be kept to a minimum to prevent an excessive wait
time between data entries. An input flow diagram of
this processing is shown in figure 1. As can be seen
from this figure, the data path through this routine is
determined by the information in one of the first
three columns of each data entry. If a permitted
character other than a dot (.) appears in the first
column, then the ensuing data are those of a circuit

*B. Ross, Tektronix, Inc., private communication.
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Figure 1. Flow diagram of input processing for
BIAS-D.

element (resistor, capacitor, independent voltage or
current source, or model), an END statement, or a
comment statement. If the first column contains a
dot and the second column is a permitted charac-
ter, then the entry is a control statement (Alter,
Insert, Temperature, Transient, Gain, or Output). A
number from 1 to 8 is assigned to a flag variable, F,
depending on which control statement was en-
tered. This flag is used later in the program to
determine which analysis is required. Further data
are requested by the program, if necessary, as the
analysis proceeds. At the end of each analysis,
control is returned to the user for further com-
mands. A sample of this input format is shown in
figure 2 (p 12).

2.2.2 Circuit Setup

After the circuit data have been entered and
the circuit topology reprinted in an ordered format,
BIAS-D then restructures the circuit into a form
suitable for analysis.
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During the element data entries, a node set,
N, is generated which contains all unique node
numbers in the particular circuit. Since the elements
are entered at random, this node set is not ordered,
but the length is known and equal to the number of
circuit nodes, N (circuit ground, or node 0, is not
included). An additional node set N, also of length
N, is generated, containing the sequence (1, 2, 3,
.. . N). N, is then ordered into increasing numeri-
cal order. N; and N; will be used to control the
node mapping between the original circuit and the
newly processed circuit.

The circuit shown in figure 3 will be used as an

example to illustrate the further processing. At this
point the node sets N, and N, for the circuit in figure

3aare
(123563101

[123456]

N,

(1)
N

The circled nodes in set N; are the circuit voltage
source nodes. The equivalent voltage source nodes
in N, are 1 and 6. The source nodes in N, are then
moved toward the end of N, by being exchanged
with nonsource nodes. Ny and N, are now
N, [1235610]

(2)
N, = [523416]
Note that the equivalent voltage source nodes in N;
are now 5 and 6. The circuit element nodes are next
renumbered by converting the original node num-
bers in N; to their equivalents in N,. The results of
this conversion on the example circuit are shown in
figure 3b.

The circuit is now restructured by converting
elements connected to voltage sources into their
Norton equivalents. This is not normally done in the
larger circuit codes but is necessary here to avoid
manipulating the nodal admittance matrix after it is
loaded. For resistors this is accomplished by
grounding the node of each resistor connected to
these sources and adding a Norton equivalent cur-
rent source from ground to the other resistor node;
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Figure 3. Example circuit showing steps in setup
procedure.

current source nodes connected to voltage sources
are grounded. A capacitor is represented as a con-
ductance in parallel with a voltage-dependent cur-
rent source, and capacitors connected to voltage
sources are reconfigured by grounding the current
source and treating the conductance as a resistor
element. Transistors are not altered at this time.
Using these conventions, the example circuit
shown in figure 3b can be restructured into that of
figure 3c. Three additional current sources are
added, two for resistors R; and R; and one for
capacitor C,. The values of these added current
sources have been stored symbolically, in the form
of either a node number or element value address
location, since either the resistor, capacitor, or
voltage source values may be altered in subsequent
analyses. The circuit is now in its final restructured
form (fig. 3c). The known nodes, those of the
voltage sources, have been eliminated from the
circuit. In the larger circuit-simulator codes, this
elimination is done after the admittance matrix has
been loaded, and it requires partitioning of the
admittance matrix [6]. This is not possible in the
available matrix-operations ROM.



2.2.3 Analytical Procedures

The primary analytical procedures involved in
circuit simulation are the loading and solving of the
matrix equation

YV =1 . (3)

The equivalent linear or nonlinear element conduc-
tances must be determined and loaded into the
nodal admittance matrix, Y; the excitation currents
must be determined and loaded into the current
vector, |I; and equation (3) must be solved for the
node voltages, V. These voltages are then used to
update Y and |; the procedure is repeated until the
process has converged. This procedure requires the
most analysis time and memory use in a circuit-
simulation program.

Models.—In order to load the nodal admittance
matrix in equation (3), the proper model parameters
must be determined. These parameters can be a
function of time, temperature, or circuit node volt-
ages. In BIAS-D there are five allowable models:
two transient source models, a temperature model,
and two bipolar transistor models (npn and pnp).
For the transistor model, a Newton-Raphson itera-
tive technique is used to determine the parameters.
Each model contains six definable parameters plus
one which indicates its type. The models are desig-
nated by a three-character name as part of a model
entry as follows:

MX YYY F1 F2 F3 F4 F5 F6

where M designates that this is a model with a name
X and type YYY. F1 through F6 are the model
parameters. More details on these parameters and
the transient and temperature models are in the
BIAS-D (BASIC) user’s manual in appendix A.

A modified Ebers-Moll [13] transistor model is
used in BIAS-D. A circuit representation of this
model (npn) is shown in figure 4a. The large-signal
terminal currents are given by

le = -Is(1 + 1/Ba{exp(Vee/ V1) — 1]
+ Is[exp(Vac/ V) - 1] (4)
“+ lgs[EXp(VBE/ZVT) -1 ] ’
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Islexp(Vee/ V1) = 1]
+ Is(T + T1/Bg)exp(Vpc/V7) ~ 1] ,(5)

=

lb = lg — Ic (6)
where

B¢, B¢ = forward and reverse dc beta, respectively,
Is = short circuit saturation current,
Irs = recombination saturation current, and
V1 = kT/q with Boltzmann constant, k,
temperature, T, and electronic charge, q.

The last term in equation (4) accounts for the
current dependence of beta at low currents. The
lower collector knee current, I, at which By is half
of its maximum value (assuming high-level injection
effects are negligible in this current range) is [14]

I = Bralrs2/ls . (7)

In order to include base-width modulation effects,
the saturation current and beta’s are multiplied by
the term

(T 4+ Ve/Va) Va > Ve (8)

where V, is the early voltage [15]. During the
analysis procedure, this large-signal model is linear-
ized about the dc operating points determined from
the last computed node voltages. This linearized
equivalent model is shown in figure 4b. The trans-
conductance, g, and input conductances, g.,, are
obtained by evaluating the appropriate derivatives
of equations (4) and (5) at the operating points. The
nonlinear junction capacitances are not included in
this model, but could be included as separate linear
capacitors with a value determined by the junction
voltages computed at the circuit operation points.

Matrix setup and inversion.—In addition to the
circuit restructuring, which eliminates the voltage
source nodes as was described earlier, another
method of saving computation time was found. In
this method, the nodal admittance matrix is loaded
as a definite admittance matrix rather than an indef-
inite admittance matrix, which is normally loaded in
a non-sparse-solution method. The memory re-
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Figure 4. Ebers-Moll transistor model: (a) large-signal
model and (b) linearized model.

quirements for both methods were approximately
the same since the additional coding required to
implement the definite matrix offset the 2N mem-
ory saving because of the elimination of a node. For
the circuit shown in figure 5 the setup and inversion
time for the determinate matrix form was about 25
percent less than that for the indeterminate matrix.
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Figure 5. Nine-node integrated preamplifier example
circuit.

Convergence.—For linear circuits, the circuit node
voltages are obtained by a single matrix inversion;
however, for nonlinear (transistor) circuits, BIAS-D
iterates to a solution by updating the transistor
model parameters after each iteration. Itis therefore
necessary to determine when the circuit has con-
verged to a proper solution and terminate the itera-
tion process. Ideally, each class of circuit should
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have its own convergence criterion; practically,
however, this is not possible.

The criterion used in BIAS-D is similar to that
used in BIAS-M [16]. The criterion uses the square
of the node voltage changes from the previous
iteration summed over all nodes, that s

N
Z (Vn - Vn—l)z ’ (9)

n=1

S =

where k is the present iteration count, N the total
number of circuit nodes, V, the present node
voltage at node n and V.. the past node voltage at
node n. Since S is determined after each iteration,
the values for S at the past two iterations, Si_1 and
Se., are also available. If, during any three
consecutive iterations, the values of

VSIN |, fSa/N and

are less than 10 1V, then convergence is assumed.
If S, has increased for three consecutive iterations
and remains below 1 mV, the iteration process is
also terminated with a possible error noted. Other
more elegant techniques, such as those reported by
Nagel [6] and Freret [9], are possible at the expense
of additional speed and memory.

Se2/N (10)

Two other analytical procedures worthy of
mention are those that determine small-signal ac
gain and input resistance and transient analysis.

Small-signal gain and input resistance.—The me-
thod for computing small-signal voltage gain and
input resistance used in large computer programs
such as BIAS-3 and SPICE requires several complex
operations. A dc voltage source is required at the
circuit input node. The value of the source must be
the same as the circuit’s dc quiescent operating
point. In a batch-operated environment, this re-
quires an additional computer run. The matrix
equation—equation (3)—is solved for the node
voltages with unity currents entered into the current
vector at the input node locations. The resulting
node voltages are then used to determine the volt-
age gain and input resistance—see equations (11) to
(13).



The method implemented in BIAS-D requires
only a simple division and does not need an addi-
tional computer run. No voltage sources are
needed at the input nodes. This method takes
advantage of the true matrix inverse available from
the matrix-operations ROM. After the dc operating
point solution for a given circuit has been deter-
mined, the contents of the admittance matrix, Y
(which has been inverted to obtain the node
voltages), now contains the impedance matrix, Z.
Since the admittance matrix was linearized about
the dc operating points, the resulting impedance
matrix is also linear. This matrix can be used to
calculate the input resistance and gain of the circuit.

The transimpedance between an input port
(node j to datum node) and an output port (node k
to datum node) is

2 = Wl (11)

I ,
2, ... N,

’

S 1S
I
N

o

where lj is an excitation current. The input imped-
ance at node j is similarly

Zjj = Vjllj , (12)
lh = 0 ,
n=1,2, ... N,
n o |

The transfer voltage ratio (open circuit transfer
voltage gain) between any two circuit nodes j and k
is found by dividing equation (11) by equation (12)
as

VWV = ZylZ; . (13)

Both Z,; and Z;; are available from the dc operating
point calculations. In fact, the inverted admittance
matrix contains all circuit input resistances and
voltage gains. These are easily obtained with an
interactive program such as BIAS-D.

Transient analysis.—In a transient analysis simula-
tion, the node voltages must be determined as a
function of time. A flow diagram of the transient
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analysis procedure used in BIAS-D is shown in
figure 6. In BIAS-D (BASIC), the only time-
dependent element is the capacitor. The voltage
across a capacitor with time is given by

v = 1/C[idt . (14)

In computer simulation the value of this integral
must be approximated. BIAS-D uses the trapezoidal
integration method [17]. With the trapezoidal me-
thod a capacitor is represented as a conductance in
parallel with a voltage-dependent current source
[18]. The time dependence is introduced by loading
this conductance and current into the admittance
matrix and current vector, solving for the node
voltages, and then using these voltages to update
the equivalent circuit for each capacitor. The local
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Figure 6. Transient analysis flow diagram for BIAS-D.
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truncation error (LTE) associated with the trapezoi-
dal approximation is proportional to the time-step
squared [19]. Initially (at t = 0+) this error can be
large, and depends on how the algorithm is started.
In BIAS-D the dc solution is used for the t,
solution, and a forced delay equal to the time-step
is used for the t, solution. With this scheme the t
used in the LTE calculations is effectively twice the
time-step—thereby increasing the truncation errors
involved. This procedure was necessary to con-
serve memory.

2.2.4 Results

The amplifier shown in figure 5 [20] is repre-
sentative of the size and type of circuit suitable for
analysis in BIAS-D (BASIC). The input data and
results for a dc analysis of this circuit are shown in
figure 2. The source resistor R is initially large to
determine the quiescent dc operating points, input
impedance, and gain. It was subsequently altered to
10 ohms in order to determine the dc voltage
transfer curve shown in figure 7. This figure com-
pares the results from BIAS-D, SPICE 1 (using an
equivalent transistor model), and actual bench
measurements. Results from SPICE agreed to four
decimal places with BIAS-D.

The transient response of this circuit was also
computed. Capacitors of 1 and 10 pF were added

across each transistor collector-base and base-

emitter junction, respectively, to represent collec-
tor junction and base storage capacitances. Results
for a time-step of 50 us compared closely with
SPICE. The computation times on an HP9830A
calculator for these analyses on this circuit were as
follows:

data input (operator dependent) 2.1 min
circuit restructuring 10.5 s

dc analysis (10 iterations) 2.9 min
dc transfer curve (30 points) 43.2 min
transient analysis (30 time points) 54.2 min

An RCA 3040 integrated wideband amplifier was
also analyzed. This represents the maximum circuit
size for BIAS-D (15 nodes). Results for a dc analysis
of this circuit compared to four significant figures
with SPICE for all nodes. The total analysis time,
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Figure 7. Transfer curve, dc, for preamplifier example
circuit, showing BIAS-D, SPICE, and measured
results.

excluding entering data, for a dc analysis was 25
min (6 iterations).

These results indicate that the simulation
speeds of programmable desktop calculators (at
least the HP9830A) are too slow for practical inter-
active simulation, above the 4 to 5 circuit-node
level. BIASL.25 on the HP9825 offers a significant
speed improvement (approximately 10:1), but the
use of HPL limits its use to the HP9825. Recently
available BASIC language calculators such as the
HP9845 or the Wang PCS-Il have greater memory
capabilities and are as fast or faster than the
HP9825. These calculators permit practical interac-
tive circuit simulation at the 10-to 20-node level.

A source listing of BIAS-D (BASIC) is given in
appendix A.

3. SMALL COMPUTER SYSTEMS FOR CIRCUIT
SIMULATION

Small computer systems can be divided into
three distinct categories: the minicomputer, the
programmable desktop calculator, and the micro-
processor. All three systems are capable of circuit
simulation. Only the minicomputer and the pro-
grammable desktop calculator are included here.



Each of these systems has its own idiosyncrasies
and application areas. There are several facets of
small computer systems, and in fact all computer
systems, which directly concern the development
of circuit-simulator codes. These are (1) the com-
puter language, (2) the computer data word format,
and (3) the computer speed. Each of these facets is
included in this chapter, in which eight computer
systems are used for comparison; three of these are
minicomputers (an HP2100, a PDP 11/45, and a
PRIME 400), two are large computers (an IBM
370/168 and a CDC 6400), and three are pro-
grammable desktop calculators (an HP9830A, a
Tektronix 4051, and a Wang 2200).

3.1 Minicomputer System

A minicomputer system, as originally con-
ceived, was a small computer system both in size
and cost. Minicomputers began to appear in the
mid 1960’s, primarily as controllers for low-cost
original equipment manufacturers (OEM), and have
gradually increased in size and speed. Currently,
some minicomputers are competitive with the mid-
range and even large mainframe computer systems

[21].

Figure 8 shows the configuration of a mini-
mum minicomputer system for hosting circuit-
simulator programs. In this system, the program is
entered into main memory through a punched tape
or magnetic tape. The system console is used as a
terminal to enter circuit data and print out the
results. The addition of a disc would greatly en-
hance the usefulness of this system. It would enable

HOST COMPUTER
WITH

MAG. OR I[- -=7
PAPER 1) SINGLE USER

TAPE OPERATING SYSTEM [~ — — 7 7 —} DISC |
REAOER 232 KWORO L__1

RESIDENT MEMORY

( SYSTEM )

CONSOLE
Figure 8. Minimum minicomputer configuration for
hosting circuit-simulator programs.
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storage of alternative programs and circuit input cr
output files, as well as allowing the program to be
segmented through the use of overlays. The addi-
tion of several other features to this minimum sys-
tem would make it competitive or superior to the
larger mainframe computer systems. Figure 9
shows such a system. The magnetic-tape unit al-
lows initial loading of programs, as well as long-
term storage of circuit or program files. The system
console, used only for monitoring system opera-
tion, may not be required. The host computer
contains a multi-user operating system which sup-
ports several 300- to 9600-baud remote terminals.
(A baud is the bit transmission rate; 300 baud is
approximately 30 characters per second.) The ter-
minals may be linked to the computer directly (RS-
232) or through modems. These terminals may also
request copies of numerical or graphical output
locally or at the host computer printer/plotter. The
host computer also contains virtual memory
management. This enables execution of large dy-
namically allocatable design-aid programs without
the need for user segmentation. The system operat-
ing speed is enhanced through the use of a small
fast-cache memory which speeds up the computer
throughput. The size of the required real memory
depends on the number of users and their pro-
grams’ sizes. At least 64 kwords of memory is
recommended in a multi-user system.

TERM  —7 A—— DIsC
HOST COMPUTER
WITH
1) MULTI-USER MAG.
TERM /=]  DPERATING SYSTEM TAPE
]%00 2) 64 KWORD (MINIMUM)
RESIDENT
S MEMDRY
BAUD | 3)1KWORD
LINES CACHE MEMORY
o | R

SYSTEM

CONSDLE
Figure 9. Recommended minicomputer system for
hosting circuit-simulator programs.

Minicomputer systems have distinct charac-
teristics that make them different from large com-
puter systems. Some of these characteristics are



1. smaller word size,

2. slower CPU speeds, and

3. use of an ASCIl (American Standard
Code for Information Interchange)
character set in most cases.

Further, minicomputers are economical to run with
a single user; their initial cost is low (usually $10K to
$500K), and they require no special power or air-
conditioning systems. The only characteristics
which directly affect the circuit simulator develop-
ment are the first two.

3.1.1 Computer Languages

There are three basic requirements of a mini-
computer language used in developing a circuit
simulator: (1) the language should be transportable
from one computer system to another with few, if
any, software changes required between systems,
(2) the language should have a relatively fast execu-
tion speed, and (3) the language must be compact
and efficient in order to conserve memory. Pro-
gram transportability is a much greater problem on
small computer systems than on the larger systems
(such as the IBM’s and CDC’s). Small systems
usually do not have a resident system programmer
to modify software, nor is good software or system
documentation always available.

The execution speed of a program depends
not only on the algorithms used in the program, but
also on the execution speed of the language in
which the program is written. The potential applica-
tions of the program depend not only on the size of
the program but also on how efficiently the com-
piler or interpreter uses memory.

Assembly language.—Assembly language programs
can be 1 to 100 times faster than the same code
written in FORTRAN and also use less memory than
the FORTRAN equivalent, depending on the effi-
ciency of the FORTRAN compiler and the skill of
the programmer. Assembly language code is almost
never transportable to different computer systems.
For this reason, it should not be used as a general
language for circuit-simulator development. In spe-
cial applications, where a short but extremely fast
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code is desirable, such as LU decomposition, it may
be worthwhile to use assembly code written specifi-
cally for a particular machine.

BASIC.—Dartmouth BASIC is available on most
minicomputer systems. BASIC on most systems is
an interpretive language: each line of code is inter-
preted and executed in the exact sequence that it
was written. As a result of this line-by-line interpre-
tation, BASIC is inherently a slow language. For
example, on a PRIME 400 minicomputer, BASIC is
approximately 14 times slower than FORTRAN IV,
BASIC software or hardware decoders can be very
compact (4 to 8 kwords of ROM or random-access
memory—RAM) and, therefore, are well-suited for
programmable desktop calculators. Desktop calcu-
lator languages are described in more detail later.

Two versions of BASIC are usually available
on minicomputer systems: a popular single-
precision version (with 32-bit words) and a double-
precision version, DBASIC (with 64-bit words). Be-
cause circuit simulators require double-precision
word lengths for many calculations [9], the single-
precision BASIC cannot be used. DBASIC makes
very inefficient use of memory in storing single-
precision and integer variables. BASIC (or DBASIC)
makes no distinction between integer and real vari-
ables. Thus, an integer in DBASIC requires four
words of storage when only one word is needed.

In circuit simulators, the use of ‘‘string vari-
ables” (alphanumeric characters) is essential. Al-
though string-variable features are becoming more
widely available, string variables are not a standard
subset of BASIC on all computer systems. The use
of BASIC or DBASIC for circuit-simulation programs
is not recommended except when, as with the
desktop calculators, nothing else is available.

FORTRAN 1V.—FORTRAN IV is probably the most
widely used higher-level computer language. FOR-
TRAN is a compiled language; thus, the speed and
efficiency with which this code executes depends
on the particular FORTRAN compiler used. Some
of the smaller minicomputer systems have three-
pass compilers, in which the first pass generates the
assembly or object code on a tape or disc, and the



next two passes are needed to convert the assembly
code to machine code. As an example of the
transportability of FORTRAN IV, a FORTRAN ver-
sion of BIAS-D was run on three different minicom-
puter systems and an IBM 370/168 with no
changes in the FORTRAN source code [10]; the
analytical results were the same on all systems.

3.1.2 Computer Data Word Format

Three types of data formats are usually avail-
able in most minicomputer systems: alphanumeric,
integer (fixed-point), and floating point. Each has its
application. The configuration of each of these data
formats determines the magnitude, range, and type
of data which can be manipulated or stored in that
computer system. To show how differences in
these data formats can affect the magnitude and
range of allowable numbers, the data formats of five
computer systems previously mentioned are
compared.

Alphanumeric.—The ability to process alphanu-
meric characters is extremely important in areas
such as circuit simulator input-output languages.
Alphanumeric characters are stored in a computer
word in an ASCIl, BCD (binary coded decimal), or
EBCDIC (extended BCD interchange code) code. A
cross reference between these codes is given in
table 1.

Most minicomputer systems use 7-bit ASCI| to
represent alphanumeric data. Eight bits are actually
used for this code, with the eighth bit used as a
parity bit. The parity bit is referred to as either
““marked’’ (1) or “null’”” (0) parity (the marked parity
notation is sometimes referred to as ‘‘8-bit ASCIl"’).
This parity bit is important when programs or data
are transferred between different computer sys-
tems. For example, if the word “NO’ were to be
stored in a 16-bit word using 7-bit ASCI! in marked
parity it would be represented as a binary

11001110 11001111 (or an octal 147317),

whereas if it were stored in null parity it would be a
binary

01001110 01001111 (or an octal 047117) .
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TABLE 1. CHARACTER SYMBOL CROSS
REFERENCE BETWEEN ASCIl, BCD, AND
EBCDIC CODES

Symbol Format tdecimal) Symbol Format (decimal)
Ascil [BcD [ EBCpIC Ascli | 8cD | EBCDIC

(space) 32 16 64| A 65 49 193
! 33 @ 90| B 66 50 194
v 34 @ 127 C 67 51 195
# 35 12 123 D 68 52 19
$ 36 3 91 E 69 53 197
% 37 = 108 F 70 54 198
& g @ 80| G 71 55 199
’ 39 @ 125 | H 72 56 200
{ 40 28 771 1 73 57 201
) 41 60 93| 74 33 209
g 42 44 92 | K 75 34 210
+ 43 48 78| L 76 35 211
, 44 27 107 | M 77 36 212
- 45 32 17| N 78 37 213
. 46 59 75| O 79 38 214
/ 47 17 97 | P 80 39 215
0 48 10 240 [ Q 81 40 216
1 49 01 241 | R 82 41 217
2 50 02 2421 S 83 18 226
3 51 03 243 | T 84 19 227
4 52 04 244 | U 85 20 228
5 53 05 245 | V 86 21 229
6 54 06 246 | W 87 22 230
7 55 07 247 | X 88 23 231
8 56 08 248 | Y 89 24 232
9 57 09 249 | Z 90 25 233
: 58 00 122
: 59 63 94
< 60 58 76
= 61 11 126
> 62 47 110
? 63 @ 111
@ 64 @ 124

INot permitted

It is possible to convert from null parity to marked
parity (or vice versa) by adding (or subtracting) an
octal 100200 to each 16-bit alphanumeric word.
This cannot be done in ANSII (American National
Standard for Information Interchange) Standard
FORTRAN but is easily done in assembly code.

In the HP2100 [22], PDP 11/45 [23], and the
PRIME 400 [24] minicomputer systems, alphanu-
meric characters are represented in ASCll format
and stored in a 16-bit word as follows:



15 7i I 0
[pllcharacter 1][p][character 2]

where p indicates the parity bits. Two characters
can be stored in a single word. If a single character
is to be stored, it is right justified for the PDP 11/45
and left justified for the others. The other character
is filled with ASCII blanks (different from zeros).

In the HP2100 and PDP 11/45, null parity is
used, whereas, on the PRIME 400, marked parity is
used. The CDC 6400 system [25] uses a 6-bit BCD
code to represent alphanumeric characters. Ten 6-
bit characters are packed into a single CDC 60-bit
word as

59 0]
[c1][c2][c3][c4][c5][cb][c7][c8][c9][c10]

If less than ten characters are to be represented,
they are left justified and the remaining characters
filled with BCD blanks.

The IBM 370 system uses 8-bit EBCDIC to
represent alphanumeric characters. EBCDIC is
merely an extension of the 6-bit BCD code and
permits 256 characters rather than the 56 allowed
for BCD. On the IBM 370 system [26], four 8-bit
EBCDIC characters are packed into a 32-bit word
as follows:

31 0
[char 1_][char 2][char 3][char 4] .

Again, if less than four characters are to be repre-
sented, they are left justified with the remaining
characters filled with EBCDIC blanks.

Integer number.—The integer is used to represent
numbers which do not require decimal fractions. In
most computer systems an integer is represented by
a single computer word. In the minicomputer sys-
tems under discussion, this is a 16-bit word, with
the highest-order bit being the sign bit as

15
[sl
This can be used to represent an integer number

from —2" (-32768 decimal) to 2" - 1 (32767
decimal) including zero. The IBM and CDC systems

o -
number ]

. have a similar representation with the IBM 370
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using a 32-bit word (sign plus 31 number bits) and
the CDC 6400 using a 60-bit word (sign plus 59
number bits). These larger word sizes allow a much
greater range of integer numbers. However, in
circuit simulation this additional range is almost
never required.

Floating-point numbers.—A floating-point number
is represented by a mantissa (fraction) and a charac-
teristic (exponent). The fraction determines the ac-
curacy of the floating-point number and the expo-
nent to some base determines the range. Both base
2 (binary) and 16 (hexadecimal) are used in mini-
computer systems. There are basically four types of
floating-point numbers: single precision (real and
complex) and double precision (real and complex).
Floating-point hardware is available as an option on
most minicomputer systems. This option always
includes the single-precision hardware, sometimes
the double-precision hardware, but never the com-
plex floating-point hardware.

Single-precision real floating-point number.—
Usually in minicomputer systems two words are
used to represent a single-precision floating-point
number. Table 2 shows the single-precision
floating-point number representation for the
HP2100, the PDP 11/45, the PRIME 400, the IBM
370/168, and the CDC 6400. Note that in each
case this representation is different. The resulting
precision and range in each case is given as shown
in table 3. Note that the PDP 11/45 system attains
seven digits of precision with the same number of
bits as the HP2100 and PRIME 400. This is done by
using ‘‘hidden-bit normalization” which assumes
that the normalized highest-order bit is always a 1
(unless the exponent is zero) and is, therefore,
unnecessary. This gives an effective precision of 24
bits in the fraction. The large range of the IBM
number is attained by using the hexadecimal num-
ber system rather than binary to represent the
exponent (16* = 107, whereas 2* = 10").

Single-precision complex floating-point number.—
Minicomputer systems which support single-
precision floating-point arithmetic usually support
single-precision complex floating-point arithmetic.



TABLE 2. COMPARISON OF SINGLE-
PRECISION DATA FORMATS

Type of system Format’
HP2100 15 0
word 1 [s][ fraction ]
15 7 0
word 2 [ fraction [ exp ][ s |
PDP 11/45 15 6 0
word 1 [s][ exp I fraction |
word 2 | fraction ]
PRIME 400 15 0
word 1 [s][ fraction ]
15 7 0
word 2 [ fraction ][ exp ]
IBM 370/168 O 8 31
[s]l exponent [ fraction ]
CDC 6400 59 47 0
[sIl exponent I fraction |
95 = sign
TABLE 3. PRECISION AND RANGE
COMPARISONS: SINGLE-PRECISION NUMBERS
Precision R
Computer (decimal d ar.1gel)
digits) ecima
HP2100 6 10 to 107
PDP 11/45 7 10™ to 107
PRIME 400 6 10™ to 107
IBM 370/168 6 107 to 107
CDC 6400 12 107" to 10°*

However, this complex arithmetic is usually done in
software (even on the large computers). A complex
floating-point word is represented by two single-
precision floating-point numbers: the first number is
the real part of the complex word, and the second is
the imaginary part. Since the complex number is
actually two real numbers, the magnitude and range
is the same as for the single-precision real floating-
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point numbers. On 16-bit per word computers, four
16-bit words are required for a complex number as
follows:

15 0

[ word 1 | } :

[ word 2 ] real part

[ word 3 |

[ wOrd 4 ] } imaginary part

On the 32- and 60-bit machines (IBM 370 and CDC
6400), only two words are required, the first for the
real part and the second for the imaginary part.

Double-precision real floating-point number.—The
configuration and execution speed of the double-
precision numbers in minicomputer systems are
very machine dependent. Double-precision hard-
ware or firmware, * if available, is usually an option.
If executed in software, double-precision arithmetic
must be written in assembly or machine code and is
therefore several times slower than its hardware
counterpart. Table 4 gives the double-precision
word configuration for the HP2100, the PDP
11/45, the PRIME 400, the IBM 370, and the CDC
6400. The resulting precision and range for each of
these systems are given in table 5.

Table 5 shows that the precision and range of
double-precision numbers can vary considerably
between computer systems—more so than the
single-precision numbers.

it is the size of this double-precision word that
limits the maximum circuit size. It has been shown
that with a well-conditioned set of equations,
round-off error can reduce the number of signifi-
cant digits by a factor

1 + 2(log N),

where N is the number of circuit nodes [6]. Three to
six significant digits are required for circuit simula-
tion. For all computers listed above, it should be
possible to solve a 50-node equation, and on all but
the HP2100, a 1000-node equation. Techniques

*Firmware is used here to mean software which has been
implemented in microcode or read-only memory.



TABLE 4. COMPARISON OF DOUBLE-
PRECISION DATA FORMATS

Type of systeml Format
HP2100 15 0
word 1 [s]I fraction bits ]
word 2 [ fraction bits ]
15 7 10
word 3 [ fraction ][ exp 1[s]
PDP 11/45 15 6
word 1 [sIl exp ][ fraction |
word 2 [ fraction ]
word 3 [ fraction |
word 4 [ fraction |
PRIME 400 15 0
word 1 [s) fraction |
word 2 | fraction ]
word 3 [ fraction |
word 4 [ exponent |
IBM 370/168 0 8 31
word 1 [s][ exponent ][ fraction ]
word 2 [ fraction |
CDC 6400 59 47 0
word 1 [s][ exponent ][  fraction ]
word 2 [s][ exponent ][ fraction? ]
ILSB
TABLE 5. PRECISION AND RANGE
COMPARISONS: DOUBLE-PRECISION NUMBERS
Preci.sion Range
Computer (decimal ;
- {decimal)
digits)
HP2100 10 107 to 10*
PDP 11/45 17 107 to 10*
PRIME 400 13 107 to 107
IBM 370/168 14 107 to 107
CDC 6400 2 107 to 10™

for minimizing round-off error, such as pivoting
[27] or those developed by Freret [9,28,29], canbe
used to increase this node capability. Since the
interest here is at the 30- to 50-node level, the use
of these techniques is not necessary.

Double-precision complex floating-point num-
ber.—Although most minicomputer systems offer
double-precision floating-point arithmetic in hard-
ware or firmware, double-precision complex arith-
metic is not available. Double-precision complex
arithmetic must be done as a software subroutine
call. The primary disadvantage is the resulting
speed of operations. Implementation of double-
precision arithmetic on software is 10 to 100 times
slower than implementation on hardware or firm-
ware. Sometimes, it is possible to implement this
arithmetic into a writable control store (WCS) or
microcode (usually an option) which is essentially a
programmable read-only memory (PROM). For ex-
ample, to execute a single- or double-precision
software complex divide represented as

C = A/B = (Ax + jA)/(Bz + jB) , (15)

where R indicates the real part of the complex and |
the imaginary part, the resulting real and imaginary
parts of C must be computed separately as

Ce = (AeBx + AB)/(Bk + B) , (16)
C = (A:B, — ABR)/(Bk + BD . (17)

These operations require six double-precision mul-
tiplies, two divides, two adds, one subtract, and one
store.

3.1.3 Computer Speed

The speed of operation of a minicomputer
system depends on several factors:

1. the configuration of the system,

2. thelanguage used,

3. the type of arithmetic executed and
mode of implementation (software,
firmware, or hardware),

4. type of memory (core, bipolar, or
MOS) and its access speed, and

5. CPU clock speed.

All the above factors determine the execution time
of a particular program.



The system configuration affects the overall
speed of each job. If a single user is running on a
multi-user system he is penalized in actual run time
(not necessarily in CPU time) because of overhead.
If several users are on a multi-user system and the
computer becomes compute- or memory-bound,
all users will be penalized in overall run time. The
language used and how this language is managed in
the particular computer system can greatly affect
the run time. An interpretive language will always
be relatively slow. The speed of a compiled lan-
guage is determined in part by how efficiently the
compiler-generated machine code executes; this
efficiency depends in turn on the efficiency of the
basic machine instruction set. The type of arithme-
tic being executed also can affect the total run time.
If the execution times on a PRIME 400 of an
assembly ADD instruction are compared for an
integer ADD, a single-precision floating-point ADD,
and a double-precision floating-point ADD, they
would be in the following ratios.

Arithmetic Speed ratio  Implementation

integer 1 hardware

Single-precision 7 firmware
floating point

Double-precision 9 firmware

floating point

These ratios indicate that, on a PRIME 400, integer
arithmetic should be used wherever possible. This
is generally true for all computer systems.

it is difficult to compare the overall speeds of
different computer systems since, as was just men-
tioned, there are many variables which affect this
speed. To compare computer systems for use by
circuit simulators, the best comparison is to run a
circuit-simulator program. Such a speed compari-
son of four computer systems (an HP2100, a PDP
11/45, a PRIME 400, and an IBM 370/168) is given
in section 4. This comparison is made using a
FORTRAN version of BIAS-D which runs on all
systems with no source code changes.

3.1.4 Computer Memory Configuration

Another basis for comparison of minicompu-
ters is the configuration of the memory. All present-
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day computer systems use two types of memory
storage: small, rapid-access, relatively expensive,
resident-memory storage, and large, slow-access,
disc- or tape-memory storage. The procedures for
managing these two types of memory can greatly
affect the operation of the computer system.

There are two basic memory management
schemes: real memory management and virtual
memory management. Real memory management
restricts the user to a segment of the total available
memory (usually 32 kwords). Within this segment,
the user can control his own memory management
through the use of overlays to disc memory. Virtual
memory management [30], in theory, allows the
user the advantages of both types of memories.
That is, it permits a large memory to be addressed at
access times of the fast memory. In a virtual mem-
ory, “pages’’ are moved in and out of resident
memory as required. With this memory system,
overlaying of program segments is not necessary.
This results in a program which is easily transporta-
ble to other virtual or large-memory computer sys-
tems. In the computer systems compared previ-
ously, only the PRIME 400 minicomputer and the
IBM 370/168 have virtual memory management.

3.2 Programmable Desktop Calculator

Programmable desktop calculators began to
appear in the mid-1960’s, at about the same time as
the minicomputers. The development of these cal-
culators was relatively independent of the mini-
computers. It has been only since the appearance
of the “super” calculators such as the HP9830,
Wang 2200, and Tektronix 4051 that the minicom-
puters and calculators could speak a common lan-
guage—BASIC. Although the computing power of
desktop calculators approaches or exceeds that of
small minicomputers, there are still definite differ-
ences in these systems. Some of the distinguishing
features of the desktop calculators are as follows.

1. The keyboard is an integral part of the
computer.

2. The computer language is permanently
stored in the machine either in hard-
ware or firmware (ROM).
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3. The programming language is an inter-
pretive language (at present).

4. The desktop calculator comes as a turn-
key* system.

Desktop calculators, unlike minicomputers,
do not provide a wide choice in input language,
data word size, or computational speed.

3.2.1 Calculator Language

In the presently available programmable cal-
culators, the programming language is not an op-
tion. It is permanently stored in the calculator.
There are presently only two minicomputer-com-
patible languages, BASIC and APL, available on
these calculators. Other languages are hybrids be-
tween BASIC and an assembly language. For exam-
ple, HPL (Hewlett Packard Language) is used on the
HP9825. All calculator languages are presently in-
terpretive languages. This means that each line of
the program is interpreted and executed line by line
exactly as it was written. Calculator languages
therefore are relatively slow when compared with
compiled languages.

The BASIC language implemented in the desk-
top calculators is a superset of Dartmouth BASIC.
Several features have been added which greatly
enhance the usefulness of BASIC. String-variable
operations {comparable to alphanumeric or Holler-
ith characters in FORTRAN) are available either in
factory-added hardware/firmware or as a user-
added plug-in ROM. Other plug-in ROM’s allow
matrix inversion with a single line of code in a tenth
the time required in software. Also available are
other features, such as bit and byte manipulations,
data packing and unpacking, or variable data word
lengths.

3.2.2 Calculator Data Word Format
Two types of data word formats are generally

available on the programmable calculators: string
variable and numerical.

*A turn-key system is a system that is ready to use as soon
as it is delivered and turned on.

25

The string-variable word is used to store or
manipulate alphanumeric data. Seven-bit ASCII is
used to represent these data, and a single character
requires eight bits as in the minicomputers. The
Wang 2200 system [31] permits storing or “‘pack-
ing’’ of numerical data into string-variable arrays,
which enables high-density data storage.

The numerical data word is used to store
integer and floating-point data. The data word does
not differentiate between integer and floating-point
numbers. Except for dimensioned variables in the
HP9830, all numerical data require four 16-bit
words for storage and arithmetic operations. This
gives 13 to 14 decimal digits of precision and a
range of 107 to 10” for the HP9830A [32] and the
Wang 2200 and 107" to 10°® for the Tektronix
4051 [33]. The HP9830A permits specifying full-
precision, split-precision, and integer-precision
words in dimensioned variables. These require 64,
32, and 16 bits, respectively, for storage. The result-
ing precision and range for each of these words is
affected by the shorter word length.

3.2.3 Calculator Speed

The computational speed of the desktop cal-
culator is not as dependent on the calculator config-
uration as is that of the minicomputer. The calcula-
tor systems are always single-user systems with
hardwired or firmware interpretive programming
languages. In some cases, the addition of special-
function ROM'’s could significantly change the
computational speed of a particular set of opera-
tions, but in most cases the calculator speed is only
a function of the clock cycle time.

As a comparison of the relative speeds of
these calculators, a simple loop containing a multi-
ply and divide operation was executed 10,000
times. The resulting normalized speeds were as
follows.

Calculator Normalized speed
HP9830A 1.0
Wang 2200 0.48
Tektronix 4051 0.45




As an indication of the speed of these calculators
compared with a minicomputer system, the execu-
tion speed of a FORTRAN version of BIAS-D run-
ning on a PRIME 400 minicomputer is 500 to 600
times faster than a similar BASIC version of BIAS-D
running on an HP9830A desktop calculator.

4. CIRCUIT SIMULATION ON
MINICOMPUTERS

Present-day minicomputer systems have or
exceed the capabilities of the large computer sys-
tems of five or ten years ago. Even so, certain
limitations in both minicomputer hardware and
software must be considered for present-day circuit-
simulator development. Hardware aspects of the
minicomputer circuit simulators were presented in
section 3. This section is oriented toward the soft-
ware aspects of circuit-simulator development.

A large simulator program, such as SPICE, can
be converted to run on a minicomputer system.
Later in this chapter results are given from SPICE2,
run on a PRIME 400 minicomputer.* The conver-
sion of these programs from the larger computer
systems to minicomputer systems is not always
practical, however. Many of these small systems
have limitations (such as 32-kword program bound-
ary limits) that make this approach difficult and
uneconomical.

Another program in which this conversion
was successfully done was Mini-MSINC [2]. Mini-
MSINC, developed for an HP2100 minicomputer
system with a DOS IIl operating system, was de-
rived from TIME {34], SINC [12], and MSINC [35],
all developed for large computer systems. To fit
Mini-MSINC into the 32-kword memory of the
HP2100, it was necessary to overlay memory
through five overlay segments on disc and to exten-
sively modify the common array allocation with
linked lists [30]. Mini-MSINC is probably the most
widely used minicomputer circuit-simulator pro-
gram at this time. It can do a dc or transient analysis
of MOS circuits containing over 100 nodes and 100
active devices. Although Mini-MSINC has been
restricted to. the analysis of MOS circuits, it is

*M. Payne,
communication.

PRIME  Computer Corp., private
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presently being updated to analyze bipolar transis-
tors and to perform ac and statistical analysis.*

Simulation speed is an important consider-
ation in choosing the type of simulation program to
be used (batch mode or interactive mode). In order
to make this choice, it is necessary to determine the
computational speeds of different minicomputer
systems using a circuit-simulator program. This can
best be done with a circuit-simulator program that
is compatible with all systems being evaluated.
Comparisons of both the speed and memory re-
quirements of several computer systems using
BIAS-D are given in section 4.4.

The architecture of the circuit-simulator pro-
gram is influenced by three basic areas of software
development. These are

1. simulator operation,
2. simulator speed, and
3. simulator memory requirements.

Interaction between each of these areas represents
trade-offs which can affect one or both of the other
areas. For example, a software routine that could
greatly increase the simulation speed may also
require significantly more memory. In the large
computer systems these trade-off problems are less
significant than in minicomputers. The large com-
puter systems usually sacrifice readily available
memory for speed. On many of the larger systems
there is no penalty for using this additional memory.
On the minicomputer systems, additional memory
is not always available and is at a premium. Trade-
offs must be made which hold program memory
requirements within a given bound at the expense
of either the simulator operation or simulator speed.

4.1 Simulator Program Operation

There are basically two types of circuit-
simulator operation: batch and interactive. Both are
software oriented.

In the batch mode, the program or data are
entered into the computer through a ““hopper”
which is linked directly to the computer. Results are

*R.  W. Dutton,
communication.

Stanford ~ University,  private




returned on a high-speed line printer. No inter-
action with the program is possible in the batch
mode.

Variations of the batch mode include the re-
mote batch and interactive batch modes. The re-
mote batch mode is similar to the batch mode,
except that the hopper and printer are remote,
linked by high-speed communication lines or mo-
dems (4,800 to 120,000 baud). In the interactive
batch mode, an indirect interaction with the pro-
gram is possible through the use of disc files and an
editor. Here, a low-cost terminal is tied to the host
computer, usually through standard telephone lines
and a low-speed modem (110 to 1200 baud).
Figure 10 shows the input processing portion of a
circuit simulator using the interactive batch mode.
Here a previously generated circuit data file is
entered into the program. The data are processed
and checked for errors. Data errors terminate the
job. If the circuit is error free, the circuit is set up
and analyzed, and the resulting output is stored for
future printing or plotting. If a circuit change is
required or a new circuit file is to be generated, an
editor must be used, as shown in figure 10. Once
the circuit file has been updated or generated, it is
stored in memory (disc) and the circuit simulation
restarted.

Circuit simulation using the interactive batch
mode of simulation, although superior to batch, is
still awkward. This is especially true for small mini-
computer systems which have crude editors.
SPICE1 and SPICE2, as they were originally written,
were intended for use as batch mode simulators.
Some modified versions of these programs, such as
ISPICE [36), are interactive batch oriented.

The interactive mode simulator is significantly
different from the batch mode circuit simulator,
which has little or no interaction. The interactive
simulator allows direct interaction with the pro-
gram. An input flow diagram of an interactive
simulator input processor is shown in figure 11.
Here the data are entered, processed, and checked
for errors one line at a time. Syntax errors are
immediately flagged, allowing the data to be reen-
tered. When the data entry is complete, the circuit
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PLOTIPRINT

Figure 10. Flow diagram for interactive batch simula-
tion: (a) input processor and (b) typical editor.

is set up and analyzed by the computer. An inter-
rupt flag, set by a predetermined keyboard entry,
can stop the analysis at any time and return to the
input portion of the program. Outputs are either
printed or graphically displayed on the terminal as
they are computed. At the end of an analysis, the
program may be terminated or returned to the input
processor. To better illustrate the flexibility of the
interactive simulator, the command instruction set
from BIAS-D is given in table 6, along with a brief
description of each command.

These commands can be used at the end of
any analysis and allow freedom in the simulation
procedure. This enables the type of analysis or
circuit modification to be determined pending the
outcome of the previous analysis.

Although an interactive circuit simulator is
desirable, it is not always practical. If a computer
system is so slow that the engineer or designer must
wait several minutes or hours for the simulation
results, and then respond to these results, an inter-
active simulation should not be used. In this case a
batch simulator is best. The computational speed
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Figure 11. Flow diagram for an interactive circuit-
simulator input processor.

breakpoint between the interactive simulator and
batch simulators is discussed in section 4.4.

4.2 Speed-Dependent Simulator Software

The relative speed of a circuit simulation pro-
gram is very dependent on the algorithms used.
Some of the more significant techniques for improv-
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TABLE 6. COMMAND INSTRUCTION SET

FROM BIAS-D

Command Description

AC Initiates ac analysis

JALTER Permits altering or sweeping

element values

.END Terminates present circuit analysis and
initializes memory for new circuit

JUNSERT  Permits insertion of any circuit element
or elements (including models)

.LOAD Permits loading of circuit data from a
disc file

.PRINT Prints present circuit topology

.SAVE Saves present circuit on disc file

.TEMP Permits analysis of circuit at
temperatures other than 27 C

.TRAN Initiates transient response analysis

ing simulation speed are discussed here. The solu-
tion of the matrix equation YV = | for the circuit
node voltages represents a significant portion of the
memory and speed required for a simulation. Zero
checking, node reordering, and sparse decomposi-
tion are three techniques which can be used to
speed up this solution. BIAS-D was used to evaluate
the effect of these techniques and others to be
described subsequently.

An initial test version of BIAS-D did not use
any speed- or memory-improvement techniques.
The matrix equation was solved with a standard
double-precision LU decomposition with forward
and backward substitution [6]. This will be referred
to as the standard version of BIAS-D.

4.2.1 Test Circuits and Procedures
Four test circuits were used to compare the

analytical speeds of BIAS-D modifications de-
scribed in this section. These test circuits were all

.



modifications of the same test circuit used in sec-
tion 3 to test the BASIC version of BIAS-D. Dia-
grams of these circuits and input listings are given in
appendix B (fig. B-1 through B-4). The initial circuit
(CKT10) is a 9-node, 5-transistor integrated pream-
plifier circuit. Capacitors were added across the
collector-base and base-emitter junctions of each
transistor to represent the transistor junction capac-
itances. CKT10 does not include any bulk resistors,
but the other three circuits were obtained from
CKT10 by successively adding resistors to the base
(CKT11), collector (CKT12), and emitter (CKT13) of
each transistor in this circuit. The element count,
number of nodes, and sparsity of each of these
circuits is given in table 7.

TABLE 7. COMPARISON OF TEST CIRCUITS
Circuit Nodes Element count Percent
Name R |c [vI]Q |sparsity
CKT10 9 5 10 2 5 55
CKT11 14 10 N 2 5 70
CKT12 19 15 M 2 5 74
CKT13 24 20 1 2 5 79

These circuits were used in all subsequent
speed comparison tests. The computational speed
tests were conducted with 101 timepoints of a
transient simulation run on a PRIME 400 minicom-
puter with a PRIMOS IV (revision 13) operating
system. The input signal for all tests was a single
unity amplitude voltage pulse at node 9 of the test
circuits. A plot of both the input pulse and output
waveform for CKT13 is given in figure 12. A single
test run determined the CPU time per iteration for
each of the four test circuits by dividing the total
CPU time by the number of iterations. The final
analysis times for each run were determined by
averaging these CPU times for three runs. The final
data plots were obtained by fitting these results to a
least square fit. A semilog fit of the nodes and log
time per iteration produced results with the best fit
(largest correlation coefficient). The equation for
this fit is of the form
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time /iteration B x 10m XM (1g)
where 108 is the y-axis intercept and m is the slope.
The objective of the following tests is to minimize
both this intercept and slope. The standard version
of BIAS-D was successively modified to include the
six speed and memory enhancements described

subsequently (BIAS-T1 to BIAS-T6).

NODE 6
6.00 T

QUTPUT

4.00

3.00

2.00

VOLTAGE (V)

1.00 i

-1.00 ! |
0

0.33 0.50 0.67

TIME (s x 10°%)

0.88 1.00

Figure 12, Input pulse and pulse response for CKT13
using BI1AS-D.

4.2.2 Zero Checking

The first modification to BIAS-D (BIAS-T1)
involved a simple modification in the matrix inver-
sion process. This modification simply checked the
value of an admittance matrix location for zero
before an operation was performed. An operation is
defined as a multiplication and a subtraction (as
xy — z)in the decomposition process. Both x and y
can be checked for zero; if a zero is found, either
that operation or an entire row (or column) of
operations may be omitted. This procedure was
used in early versions of BIAS-3 [11] and SLIC [4].
Since, in circuit simulation, the admittance matrix is
always sparse (i.e., more than 50 percent of the
entries are zeros), significant time could be saved at



the expense of checking each entry for a zero value.
On the PRIME 400 minicomputer there is approxi-
mately a 15:1 CPU time saving between computing
a single zero check and a single operation (in
double-precision arithmetic). The order in which
the circuit nodes are numbered can also determine
whether a single operation or an entire row of
operations is skipped. A Markowitz reordering [37]
scheme can be used to determine a near optimum
circuit node ordering. Figure 13 compares the CPU
time per iteration versus circuit nodes for the stan-
dard test program with no modifications, and BIAS-
T1 with the zero checking modifications. Several
results are given here: those from (1) the standard
version of BIAS-D, (2) BIAS-T1 with zero checking
with random circuit-node numbering, and (3) BIAS-
T1 with the near optimum node ordering as deter-
mined from a Markowitz reordering scheme. The
Markowitz scheme was not actually implemented
in the test program at this time, but was used only to
determine the new node orders. The circuit nodes
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Figure 13. Speed versus circuit nodes for BIAS-D

(PRIME 400) using zero test compared with standard
version using test circuits.

30

were renumbered according to this order before
being entered as input data. All results were ob-
tained from a 101-point transient analysis of the
circuits as described in section 4.2.1.

The results in figure 13 indicate that zero
checking is always faster than the standard method
for any arbitrary node order. It also indicates that
there can be a noticeable difference in analytical
speeds owing to the manner in which circuit nodes
are numbered, unless a node reordering scheme is
used.

4.2.3 Node Reordering

If the Markowitz reordering algorithm is im-
plemented in the simulator program as part of the
setup procedure, then (as indicated in the previous
section) the analysis speeds will no longer be de-
pendent on the operator-assigned node ordering.
Markowitz reordering is used in BIAS-N, which is a
later version of BIAS-3 [11] and SPICE2 {6]. Figure
14 shows a comparison of the speeds of the test
circuits with the Markowitz reordering scheme ac-
tually implemented in BIAS-D (BIAS-T2) and also
the best and worst cases from the test program with
only zero checking implemented (fig. 13). It should
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Figure 14. Speed versus circuit nodes for BIAS-D
(PRIME 400) using node reordering.
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be noted that the node reordering scheme imple-
mented here does not always generate an optimal
node order. This can be seen in figure 14 for the 19-
node speed data (CKT12). The ““optimal”’ node
order generated for this circuit is actually worse
than the original node order (discussed again in
sect. 4.2.4). Figure 14 indicates that there is only a
minimal, if any, speed penalty in the analysis time
for using the reordering scheme; however, addi-
tional software and memory are required to imple-
ment this reordering scheme. The cost of this addi-
tional overhead is given in section 4.3.

4.2.4 Sparse Matrix Decomposition

If the matrix LU decomposition process is set
up such that “pointers’’ indicate the matrix location
of the next nonzero value for each operation, the
time required for a zero check can be eliminated.
This pointer system would also permit storage of
only these nonzero terms. In order to set up this
pointer structure it is necessary to perform a ‘‘mock
decomposition’”” of the admittance matrix. This
mock decomposition again requires additional soft-
ware and memory. BIAS-D was modified (BIAS-T3)
to include this sparse decomposition. This decom-
position process includes a Markowitz reordering
algorithm similar to that used in BIAS-T2. However,
the reordering scheme incorporated in the mock
decomposition results in a more efficient reordering
than in BIAS-T2 because the matrix ““fill-ins’’ are
counted during the mock decomposition process.
These fill-ins were not determined in BIAS-T2 since
the mock decomposition was not required in that
matrix reduction. Sparse matrix storage was not
implemented in BIAS-T3. Figure 15 shows a com-
parison of the analytical speed on a PRIME 400 of
the sparse decomposition version of BIAS-D with
that of the several previous versions. As can be seen
in this figure, the sparse decomposition process
represents a significant increase in speed. Some of
this speed increase can be attributed to the more
efficient reordering just mentioned.

4.2.5 Processed Element Storage Array

Another apparent speed-up procedure, cur-
rently used in several circuit-simulator programs
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Figure 15. Speed versus circuit nodes for BIAS-D

(PRIME 400) using sparse decomposition compared
with node reordering.

[2,4,6,12], is the storage of a processed-element
array. This array contains the present conductance
values to be added to the admittance matrix. The
equations used to compute this array value are
different for each element and are given for linear
resistors, capacitors, and inductors as

Resistors (1/R)Tc (19)
Capacitors (2C/ M)Tc (20)
Inductors (A/20)T¢ 21

where R is the resistance value, C the capacitance
value, L the inductance value, A the present time-
step, and T¢ the temperature multiplication factor
(Tc = 1 at 27 Q). For resistors, this array need only
be computed once for each analysis. This is also
true for capacitors and inductors unless a ’‘time-
step control”” [6] is used in the transient analysis



procedure. In this case A may vary with time,
requiring updating of the processed array during a
transient analysis.

BIAS-T3 was modified to include this double-
precision processed-element array (BIAS-T4). Equa-
tions (19) through (21) were used to load this array
once for each transient simulation (BIAS-T4 does
not use time-step control). Figure 16 shows the
results from BIAS-T4 for transient simulations of the
standard test circuits using the PRIME 400 mini-
computer. Also plotted in figure 16 for comparison
are the results without this array. Surprisingly, for
CKT13 there is less than a 0.5-s speed improvement
in the 101-point transient analysis because of this
array. After a second look, however, we can see
that this small improvement is all that should be
expected. The approximate PRIME 400 assembly
language instruction speeds are 26 ps for a double-
precision multiply, 33 ps for a divide, and 2.5 us for
a store. Test circuit CKT13 contains 10 capacitors
0.08 |
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Figure 16. Speed versus circuit nodes for BIAS-D
(PRIME 400) with additional processed-element stor-
age array.

and 20 resistors. Using equations (19) and (20) this
represents a time saving of 1.2 ms for resistors and
1.0 ms for capacitors at each timepoint in the
analysis. For the 101-point analysis this represents a
total of 0.22 s, which is the approximate difference
shown in the figyre. If the analysis is done at a
temperature other than 27 C, the time savings due
to this array are increased. This is because the
calculation of Tc, in equations (19) to (21), involves
evaluation of a second-order polynomial. This same
test using BIAS-T3 and BIAS-T4 was run again at
50 C. These results are also shown in figure 16.
Even at 50 C, this does not represent any significant
speed savings.

If sparse matrix storage is used, then it is also
desirable to store not only the processed-element
array, but also the address location in the admit-
tance matrix where this array is to be added.
Depending on the implementation of the sparse
array storage, resistors, capacitors, and inductors
could require from 2 to 4 address locations for each
element [2,6,38]. If transistors are included, they
could require from 6 to 18 locations. Because of the
poor improvement in speed using the processed-
element array, it was not expected that any signifi-
cant improvement could be achieved by storing the
address locations in Y for this array. The processed-
element array was therefore notimplemented.

4.2.6 Summary of Speed-Improvement
Techniques

Each of the above techniques (zero check,
reordering, sparse decomposition, and processed-
element array) reduces analytical times but requires
additional overhead. The circuit setup time was
not included in the previous analysis times, mainly
because this was only done once for each circuit.
Memory requirements due to the added software
and the pointer storage arrays are overheads which
must also be considered. Table 8 summarizes the
speed-improvement techniques for each modifica-
tion of BIAS-D. Table 9 shows the results of these
improvements. Included here are the additional
lines of FORTRAN code required, the increase in
compiled program memory requirements, the in-
crease in memory due to added storage arrays, the



net additional memory used or saved (negative
memory indicates a savings), and the relative speed
improvement of each modification at the 24-node
level. Note that the total memory requirement for
BIAS-D is approximately 25k decimal words (in-
cluding system routines, FORTRAN library, and
graphics). Table 9 shows that the addition of any of
these speed-improvement techniques, except the

TABLE 8. SPEED- AND MEMORY-IMPROVEMENT
ALGORITHMS USED IN COMPARISONS

Includes
Algorithm algorithm | Description of algorithm
Standard — LU decomposition (no
enhancements)
T1 Standard  Zero checking
T2 T1 Reordering of circuit
nodes
T3 T2 Sparse decomposition
of Y matrix
T4 T3 Storage of processed-
element array
T5 T3 Sparse matrix storage
T6 T5 Linked-list element
storage
TABLE 9.

processed-element array (BIAS-T4), does not re-
quire a significant amount of memory relative to the
speed improvement gained.

4.3 Memory-Dependent Simulator
Software

As was mentioned earlier in this section, many
memory-speed trade-offs can be made in designing
a circuit simulator. The previous section described
some speed-dependent aspects of this software.
This section covers some memory-dependent as-
pects of this software.

Two of the largest dimensioned arrays used in
circuit simulators are required for the storage of the
circuit element data and the admittance matrix
entries.

4.3.1 Element Data Storage

The storage of element data in a circuit simula-
tor involves the storage of (1) the element type,
(2) its name, value, and circuit node connections,
and possibly (3) model information. If a table format

SUMMARY OF SPEED- AND MEMORY-

IMPROVEMENT TECHNIQUES IMPLEMENTED IN BIAS-D

Relative to standard method at 24 circuit nodes (CKT13)

Additional Increase Increase Net Relative Relative
FORTRAN in in memory increase increase
Method code compiled COMMON increase in in setup
(lines) code arrays (words) speed time
(words) (words)
Standard 0 0 0 0° 1.0 1€
T1 10 80 0 80 2.5 1
T2 60 360 0 360 2.8 3
T3 100 580 150 730 5.4 4
T4 110 520 650 1170 5.3 4
T5 170 640 920 -270 5.9 5
T6 240 880 -2240 -1360 5.7 5

2Standard version of BIAS-D has 1540 lines of FORTRAN, excluding COMMON declarations and Comment statements.

bstandard version of BIAS-D requires 24,900 decimal words of memory (nonoverlaid) in PRIME 400 minicomputer system;,
this includes both the FORTRAN and Graphics libraries.

For CKT13; setup time is done only once for each circuit; this is a relatively insignificant portion of total analysis time (0.02 s
for standard version of BIAS-D).
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is used for this data storage, the maximum circuit
size must be predetermined before the program is
compiled. This method has one significant advan-
tage; the program is relatively easy to debug or
modify. The primary disadvantage of this technique
is that the type of circuits analyzed in a general-
purpose simulator can vary greatly. Whereas a
discrete circuit would have many resistors, capaci-
tors, and possibly inductors, with few transistors, an
integrated circuit would have many transistors and
capacitors (transistor junction capacitors) with few
resistors and no inductors. Thus, in order to handle
all circuits, the table storage arrays must be over-
dimensioned—wasting memory for the particular
circuit at hand. An alternative approach is to use a
linked list to store these arrays [6]. Here an entry in
each element list points to the next element of that
type; the following entries contain the element
name, value, etc. This procedure generates a com-
pact single-dimension array in which each particu-
lar element type may be linked throughout the list.
An additional element type can easily be added to
this list with no additional required memory (for list
storage), whereas in the table method considerable
array space could be required. A more detailed
description of how this linked-list array structure is
implemented in BIAS-D is given in appendix C.

Both types of these element storage tech-
niques were implemented in BIAS-D. Figure 17
illustrates the memory arrays required to store test
circuit CKT13 for both techniques. Figure 17a illus-
trates the required arrays for the table method,
giving both the required size for CKT13 and the
maximum dimensioned array size. Figure 17b
shows the required array size for CKT13 using the
linked-list method. As can be seen in this figure, the
table method wastes memory. If a memory com-
parison for BIAS-D were based on this circuit
(CKT13) and both methods were dimensioned (in
BIAS-D) such that the minimum dimensions for
each method were used, the memory required for
the table method would be 1420 words and the
memory required for the linked-list method would
be 472 words. This is 2/3 less memory.

4.3.2 Sparse Matrix Storage

The pointer structure used to locate the
nonzero matrix elements in the admittance matrix
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Figure 17. Comparison of element storage require-
ments in BIAS-D for CKT13 (24 nodes) using (a) table
method and (b) linked-list storage.

can also be used to store only the nonzero ele-
ments. This sparse array is then stored as a linear
array rather than a matrix array. Additional array
space plus an INDEX routine is required to encode
the double-dimension address into a linear address.



This sparse storage technique was implemented in
BIAS-D (BIAS-T5). Figure 18 graphically compares
the two types of matrix storage techniques. Figure
18a shows the memory arrays required using the
traditional matrix storage approach used in BIAS-T1
through BIAS-T4 and figure 18b shows that re-
quired for the sparse storage approach (in BIAS-T5).
The array sizes shown in this figure are for test
circuit CKT13. Again, if in each case the arrays for
storing the admittance matrix are of minimum di-
mensions (in BIAS-D), the memory required for the
matrix storage of CKT13 is 1936 words and for the
sparse storage method (including pointer storage) is
624 words. The sparse storage thus represents a
reduction in memory requirements of about 66
percent over the traditional storage (CKT13 is 79-
percent sparse).
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Figure 18. Comparison of storage requirements for
admittance matrix of CKT13 using (a) matrix storage
and (b) sparse storage.

4.3.3 Memory Overlay

An additional technique for reducing the
memory requirements of a program is to use mem-
ory overlay [7,30]. Memory overlay requires the
use of a disc to store the program segments that are
not in use. A single-layer overlay structure for BIAS-
D is shown in figure 19. Both common arrays and
the main program are resident in main memory at
all times. The other overlay segments, the setup
overlay, the analysis overlay, and the ac overlay,
are in main memory only during execution of that
segment. For the example shown in figure 19, the
nonoverlaid BIAS-D required 19,600 words of
memory (without graphics routines). With the over-
lay structure shown (fig. 19), the memory require-
ments are reduced to 14,890 words—a reduction
of 4,700 words.

qr
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MAIN (1900
) w | ]
= (1540) 3
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>
:I_
SYSTEM
(5170}
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Figure 19. Memory overiay example for BIAS-D.

The primary disadvantage of using memory
overlay is that the implementation of these overlays
is not compatible between different computer sys-
tems. If the memory overlay is not done properly, it
can significantly reduce the simulator’s execution
speed.



4.3.4  Summary of Memory-S5aving
Techniques

These memory techniques, although reducing
overall memory requirements, require a certain
overhead (both in memory and in analysis speed) to
implement. Figure 20 shows a comparison of the
analysis speeds for both the linked-list element
storage (BIAS-T5) and the sparse storage of the
admittance matrix in BIAS-D (BIAS-T6). Also shown
in this figure is the speed of BIAS-T3 (sparse decom-
position only). Interestingly, the speed improves
because of both memory-saving technigues. The
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Figure 20. Speed overhead of linked-list and sparse

storage techniques.

10

linked-list technique was expected to be slower
because of the software overhead. Table 9 also
gives a summary of the memory-saving techniques
with the overhead due to the implementation of
these above two techniques in BIAS-D. The table
includes (1) savings in dimensioned arrays, (2) in-
crease in memory due to overhead, dimensioned
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arrays, and software, and (3) speed overhead. As
can be seen in table 9, both techniques are worthy
of implementation into a circuit simulator because
they save memory and increase speed.

4.4 Comparison of Minicomputer
Systems Using BIAS-D

BIAS-D was again modified to enable compar-
isons of the minicomputer systems described in
section 3. The version used in these comparisons is
BIAS-T9 and was obtained by successively modify-
ing BIAS-T8 (see sect. 5) torunona PDP 11/45, an
HP2100 (HP21MX), and the IBM 370/168. BIAS-
T8 runs on the PRIME 400 and incorporates all the
speed- and memory-saving techniques included in
the previous sections, as well as having ac analysis
capability. In order to be able to run BIAS-T9 on all
these computer systems without source code modi-
fications, it was necessary to delete the graphics
capability and other system-dependent routines.
Table 10 lists the important details on each of the
computer systems used in this comparison. These
include the particular operating system in use, the
type of memory and its speed, and the version of
FORTRAN IV used. Table 11 gives a breakdown of
the memory requirements for BIAS-T9 on each of
the computer systems. The compiled program size,
the size of the common array, and the size of the
required system routines (which include the FOR-
TRAN library) are given here. The comparatively
large memory requirement of the IBM system is due
partially to its use of 4-byte integer words (by
default) rather than the 2-byte integer words used
by the minicomputer systems. BIAS-D is not depen-
dent on the size of the integer word, and either 2-or
4-byte integers are permissible. The small size of the
common array for the HP2100 is due to the 3-word
double-precision data word size (see sect. 3). In
each computer system, a system-dependent clock
routine was added to obtain timing information.
The FORTRAN IV source program was input into
each computer system via a magnetic tape written
in ASCII format (null parity) by the PRIME 400
system.

All benchmark execution-time data were ob-
tained by using BIAS-T9 for the analysis of the



TABLE 10. COMPUTER SYSTEM CONFIGURATION FOR SPEED TESTS

le-

Computer Operating pDr(e?sil;isn Cache/ Virtual Memory/
system system r———, speed memory speed
HP2100 RTE 1l yes’ no no Core/1 us
HP21MX RTE 1N yes no no Core/1 us
PDP 11/45 RSX 11D yes no no Core/1 us
PRIME 400 PRIMOS IV yes 2k/80 ns yes MQS/400 ns
IBM 370/168 MVS2/TSO yes 32k/80 ns yes MOS/320 ns
‘Without Fast-FORTRAN read-only memory.

TABLE 11. COMPARISON OF MEMORY TABLE 12. COMPARISON OF COMPUTER

REQUIREMENTS FOR BIAS-T9

. Library
y |pro

system system

(bytes) | (bytes) (bytes) (bytes)
HP2100 7,810 24,880 —  32,768°
HP21MX 7,810 — — —
PDP 11/45
@) FOR 9,190 32,600 6,160 47,960
(b) FaP 9,190 — = 49,880
PRIME 400 9,190 19,480 11,230 39,900
IBM 370/168
{a) opt=0 10,750 44,920 32,430 88,100

10,750 33,850 32,450 77,050

(b) opt=3

SPEEDS FOR CKT13 (BIAS-T9)

Maximum available memory; without ac analysis.

standard test circuits—CKT10 through CKT13. Ta-
ble 12 gives the execution time for a dc operating
point, a 101-point transient analysis, and a 91-point
ac analysis (traditional method) for CKT13 for each
of the computer systems. The size of the available
memory in the HP2100 system (with the RTE I
operating system) and the HP21MX (with RTE 1)
did not permit ac analysis without overlay struc-
tures. These routines were therefore deleted from
the HP2100/HP21MX version of BIAS-T9. Also
given in this table are the speed ratios of each
system for the transient and ac analysis for CKT13.
Speed comparisons should not be made using exe-
cution times for the dc operating points, since for

Transient Frequency
Computer dc analysis response
system (s) Time/iter [Speed |Time | Speed
(s) ratio” | (s) | ratio”
HP2100 21.0/14 ‘ 682/437 344 — —
HP21MX 16.4/14 98.2/437 496 — —
PDP 11/45
(a) FOR 4.75/14 124/441 627 410 119
(b} F4P 2.10/14 413/441 209 136 259
PRIME 400 1.34/14 28.6/441 144 103 196
18M 370/168
(@) opt=0 0.125/14 3.10/442 1.56 0.833 1.57
(b) opt=3 0.087/14 1.98/442 1.00 0525 1.00
SPICE 2C.2
(I8M 370/168
opt=3) 0.191/26 1.42/200 0.717 0.688 1.31
SPICE 2D.2
(PRIME 400) 2.60/13 37.4/218 18.9 — —

Relative to IBM 370/ 168 (opt=3).

this analysis there is considerable output. In many
cases, execution times are somewhat dependent on
the terminal’s communication rate, which in effect
increases execution times.

A comparison of the transient analysis execu-
tion times for each of the test circuits CKT10
through CKT13 is given in figure 21. This figure
plots log of execution time per transient iteration
versus log of the circuit nodes for each of the



computer systems under consideration. Also shown
in this figure are the execution times from SPICE1]
and SPICE2C.2 onan IBM 370/168 and SPICE2D.2
on a PRIME 400, again using the same test circuits.
Data from simulator program Mini-MSINC {2], us-
ing the HP2100 minicomputer (with Fast FOR-
TRAN) are also given, and shown as dashed lines in
this figure. Although the Mini-MSINC data are from
different and unrelated circuits (the MOS model in
Mini-MSINC is considerably more complex than
the BJT model in BIAS-D), they do indicate the
minicomputer’s speed.
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Figure 21. Speed comparison results for different
computer systems for transient analysis simulation
using four standard test circuits.

A comparison of the execution speeds of
BIAS-D and SPICE2 on a PRIME 400 minicomputer
{fig. 21, table 11) indicate that BIAS-D is 50 percent
faster than SPICE2 on the PRIME 400. This speed
difference is due to the large memory requirements
of SPICE2. Whereas BIAS-D requires 40 kbytes of
memory, SPICE2 requires 400 kbytes. This speed
difference demonstrates the advantage gained by
developing a circuit simulator specifically for
minicomputers.

Also given in figure 21 are the baud rates
which could affect output times (wall-clock time
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but not necessarily CPU time). These points are
shown on the vertical axis and were computed
based on transmitting a 72-character line with 4.5
iterations between printouts (this was the average
iteration count for the transient analysis of the test
circuits). If a 1200-baud terminal is used, the results
from a transient analysis using BIAS-D on the I1BM,
PRIME 400, and PDP 11/45 computers appear on
the user’s terminal at the same wall-clock speed. If a
300-baud terminal is used, results from all comput-
ers (with the proper hardware) in this comparison
appear at the same rate. These baud-rate limiting
points relate only to communication baud rates
while BIAS-D is running, but could easily be extrap-
olated to other simulator programs. The breakpoint
in communication speed between using an interac-
tive circuit simulator and a batch simulator is 1200
baud. This choice is based on personal experience
and on the experiences of several other users of
interactive graphics. The 1200-baud rate is indica-
ted in figure 21. These results indicate that all
the minicomputer systems under consideration
here are capable of interactive circuit simulation
assuming the proper compilers and other hardware
are used (see table 10).

5.  SMALL-SIGNAL AC FREQUENCY RESPONSE
The ability to compute small-signal frequency
response of electronic circuits is important in the
design and analysis of linear circuits. There are no
general-purpose minicomputer circuit simulators
with this capability. Two methods for computing
small-signal frequency response have been imple-
mehted in BIAS-D—the traditional method, which
uses complex matrix operations, and a new method
which uses standard transient analysis procedures.

5.1 Traditional Method

The small-signal ac frequency response of an
electronic circuit is traditionally found by solving
the complex matrix equation {6,39]

YV = | (22)
The complex admittance matrix, Y, is loaded with
the real and imaginary equivalent conductances of



the circuit elements evaluated at the frequency of
interest. For active devices, these conductances are
determined at the circuit’s dc operating points. A
complex driving current, given either as the input
source or as a Norton equivalent of the driving
voltage, is loaded into the complex current vector,
. Equation (22) is then solved for the complex node
voltages, V. This method is repeated for each fre-
quency of interest. A flow diagram of the traditional
ac analysis procedure is given in figure 22.

If an equivalent ac model for each resistor,
inductor, and capacitor for this technique were
given, it would be a single complex-value resistor
with impedances as shown.

Resistor impedance = R,
Capacitor impedance = 1/jwC, (23)
Inductor impedance = —jwl,

where w is the frequency in radians, C is capaci-
tance, and L is inductance.

The primary disadvantage of this technique is
that it requires the use of double-precision complex
arithmetic. Double-precision complex arithmetic is
not available on minicomputer systems and there-
fore must be added through software (see sect. 3).

5.2 Linearized Transient Analysis (LTA)
Method

5.2.1 Large-Signal Transient Response

A new method for determining circuit fre-
quency response without using complex arithmetic,
introduced here, uses modified conventional tran-
sient analysis techniques. In order to understand
this method, the linearized transient analysis me-
thod [40], it is important to understand the proce-
dure used to compute large-signal transient re-
sponse for both linear and nonlinear circuits.

In a large-signal transient analysis simulation,
linear capacitors and inductors are modeled by
using a conductance in parallel with a voltage-
dependent current source as shown in figure 23.
The values associated with this model for inductors
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Figure 22. Flow diagram for traditicnal ac analysis
procedure.

and capacitors are similar; therefore, for simplicity,
only capacitors are considered here. If the trapezoi-
dal integration rule [17] is used to approximate the
integral equation for the voltage across a capacitor,

V. = 1/Cfidt = (At/2C) iy e a0 + W, (24)



where A is the time-step, then the equivalent con-
ductance infigure 23 is

8c 2C/At (25)
and the equivalent dependent current source for
the capacitor model (also in fig. 23) is

L = L + QC/ADV, (26)
where V, and |, are the values of capacitor voltage
and current at time t. Currents |, and |, are updated
and stored at each time-point during a transient
analysis. Also at each time-point, the equivalent
capacitor conductance, g, is loaded into the admit-
tance matrix, Y, and the equivalent capacitor cur-
rent, l,, is loaded into the current vector, |. Other
circuit element conductances and currents are
added into Y and I; and the matrix equation (eq (22)
with Y, |, and V real) is solved for the circuit node
voltages, V. Equation (22) is solved by using the
same procedure as in a dc analysis—that is, LU
decomposition, followed by forward and backward
substitution [6].

gcg o ]

$

Figure 23. Equivalent circuit
dependent capacitors or inductors.

for linear time-

If a transient analysis response for a circuit
with a sinusoidal input is examined after several
periods, the circuit transfer voltage gain and phase
shift can be determined. To obtain the overall
circuit frequency response, the magnitude gain and
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phase shift is determined at each frequency of
interest. This transient method has several disad-
vantages, however. (1) For nonlinear circuits it is
difficult to choose the input amplitude so that there
will be no distortion at the output. (2) The proce-
dure is relatively slow since the admittance matrix
must be loaded and the solution must be iterated to
convergence for each time-point. (3) It is difficult to
determine when the steady-state solution has been
reached. For the case of a high-Q circuit, this
solution can require many periods [12].

5.2.2 Transient Analysis of Linear Circuits

Looking at the admittance matrix entries for a
linear circuit during a transient analysis, one would
notice that for a fixed time-step, At, all admittance
matrix values are constant with time. This con-
stancy means that Y has to be inverted only once
for each change in At. During a transient analysis
with a fixed time-step, Y is inverted only once for a
complete transient simulation. The circuit response
to any input as a function of time can thus be
determined by updating the current vector |, and by
doing a simple matrix multiplication (or forward
and backward substitution, if LU decomposition is
used) at each time-point. If the transient analysis
input is sinusoidal then the output is of the form

KA sin (wt + ¢ (27)
where K is the circuit gain at a frequency w/2w, Ais
the amplitude of the input sinusoid, and ¢ is the
output phase shift relative to the input. The ampli-
tude, A, of the input sine wave is not critical in this
equation since the circuit is linear. An accurate
method of obtaining the output magnitude and
phase from this waveform is to use the Fourier
approximation for discrete data points [27]. This is
essentially a smoothing operation using many data
points. Numerical errors that could occur with a
single data point are minimized.

Figure 24 is a flow diagram of the procedure to
compute the frequency response of a linear circuit
at several frequency points, using the transient
method just described. Here, rather than the time-
step being specified, it is computed from the fre-



quency and the number of computation points per
sine wave period (NPTS). During a conventional
transient analysis, the procedure at each frequency
would include zeroing the capacitor and inductor
currents (not shown in fig. 24). This is because each
frequency point involves a different sine wave input
and is therefore a new analysis.
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Figure 24. Flow diagram of linearized transient analy-
sis (LTA) method for computing frequency response.

All circuits have an initial transient response to
any input or change in input. If there is not an input
att = 0- (dc conditions), then a sine wave applied
att = 04 would cause a transient response due not
only to the sine wave; but also to its application.
The effects of this initial transient on the output
response of the circuit must decay to zero before
these results can be used for determining the fre-
quency response. An advantage of using the Fourier
approximation to compute the magnitude of this
response is that any dc shift (zeroth harmonic) due
to this transient is separated from the desired output
(first harmonic).

The simple bandpass filter circuit shown in
figure 25 will be used to illustrate this initial transient
response. The voltage transfer function of this cir-
Cuit is given as

Voul/vin = AS/“ + Bs + CSZ) ’ (28)

where
A =R,C,,

B =R,Ci + RC, + RC,, and

C= R|R2C1Cz 0

Figure 25. Bandpass filter example circuit.
For Vi, = sin (wt), the time domain transient re-
sponse can be determined using the inverse Laplace

transform as

F(h = Fi(wlexpl-at) + Fy(w)exp(=bt)

+ Fi(w) sin (wt — ¢) (29)
where
w = 2mnf,
¢ = Arctan(b/w) — Arctan(w/a) + 7n/2,



a, b = circuit time constants,
Filw), Fyw), Flw) are dependent on
circuit element values and frequency.

The first two terms in equation (28) represent the
initial transient response of this circuit. In this case
they are both exponential terms decaying in time
and inversely proportional to frequency.

5.3 Description of LTA Method

If the transient response procedure shown in
figure 24 is begun at frequency f;, then after several
periods at this frequency, the circuit time-
dependent currents (|, in fig. 23) contain the correct
steady-state values. These currents are crucial in
obtaining the proper circuit magnitude and phase
response. At the next frequency point, this proce-
dure is repeated. If this next frequency point is
chosen close to f;, then the values of the time-
dependent currents will be approximately those at
f,. If these currents are used as initial conditions for
the next frequency point, the number of required
periods at each frequency point can be reduced
significantly. The use of these currents as initial
conditions for the next frequency point is the key to
the success of this procedure. Figure 26 shows the
transient output response of the circuit in figure 25
to three periods of a 100-Hz sine input followed by
three periods of a 110-Hz sine input. In figure 26a,
the capacitor current is zeroed at the end of the
100-Hz input. The 110-Hz sinusoid begins as if it
were at time t = 0, causing a discontinuity at this
point. Figure 26b used the final capacitor current at
100 Hz as the initial current at 110 Hz. Note that
although there is a slight discontinuity here, the
transition between frequencies is relatively smooth.

A second advantage of retaining the time-
dependent currents at the end of each frequency
point involves the decay of the initial transient
response. Previously, zeroing the time-dependent
currents at the end of each frequency point also
zeroed time. Thus, the initial transient response
began at t = 0+ at each new frequency point. By
saving these currents at the end of each frequency,
time is continued during the entire analysis (fig. 27).
Figure 27 shows only the initial transient response
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Figure 26. Sinusoidal response of example circuit to
three periods of 100 Hz and three periods of 110 Hz:
(a) capacitor currents initially zeroed att = 0 and 110
Hz; (b) capacitor currents zeroed at t = 0 only.

of the results in figure 26. Figure 27a plots the initial
transient response with the capacitor current (and
time) zeroed at the end of the first three 100-Hz
periods. Again note the sharp discontinuity at this
point. This is caused by the new zero initial condi-



tions at 110 Hz. Figure 27b shows the same re-
sponse without zeroing the capacitor currents at the
end of the three periods. Here there are no discon-
tinuities. The initial transient decay shown in figure
27 was at a frequency of 100 Hz. If this initial
transient is examined at a frequency of 10 Hz, a
decade lower, the transient decay is much faster
relative to a single 10-Hz period (see eq (29)). This
is shown in figure 28. Both the total transient
response and the initial transient response are plot-
ted here, using equation (25) (at a frequency of 10
Hz). At this lower frequency, the initial transient
response decays about 20 times faster relative to a
single sine wave period than at 100 Hz. Beginning
at a relatively low frequency can insure decay of the
initial transient response. That is, one should
choose a starting frequency for the LTA method
that is well below the frequency of interest.

5.3.1 Frequency Response of Nonlinear
Circuits

The LTA method applied above for linear
circuits can be used also with nonlinear circuits.
Transistors or other active elements are treated in
the same manner as resistors or capacitors; that is,
the equivalent ac conductance and currents are
added to the admittance matrix and current vector.
For transistors, the linearized ac parameters either
are already available from the dc operating point
calculations or can be computed from the dc oper-
ating points. Currents dependent on dc circuit con-
ditions are not added to the current vector. Transis-
tor junction and diffusion capacitor values are de-
termined by the dc operating points and are treated
as linear capacitors. As with linear circuits, these
equivalent conductances are loaded into the admit-
tance matrix once for each frequency point.

5.3.2 Solution Convergence at Frequency
Point

In the LTA method, the sinusoidal input at
each frequency point must be continued until the
time-dependent currents reach their steady-state
values at that frequency. The number of input
periods required depends on the frequency incre-
ment and the Q of the circuit. A rigorous conver-

. (a)

\

| {b)

Figure 27. Example circuit sine response for 100 and
110 Hz showing only initial transient: (a) time zeroed
att = 0and 110 Hz; (b) time zeroed at t = 0 only.

TOTAL
RESPONSE

™

INITIAL TRANSIENT
RESPOMNSE

Figure 28. Sinusoidal response of example circuit at
10 Hz showing total response and initial transient
response.




gence criterion to determine when a steady state is
reached would require all time-dependent currents
in the circuit to be within a given tolerance for two
or more consecutive periods. This criterion is analo-
gous to the criterion used in the dc and transient
analyses. The disadvantage here is that additional
storage is required for the past time-dependent
currents. Additional computational time also is re-
quired to check these currents. A simple technique
monitors the change in peak amplitude only at the
output node. If the change in amplitude between
two periods is less than a predetermined level (say,
1 percent) for two or more consecutive periods,
then convergence is assumed. This technique was
implemented in BIAS-D and appears to be satisfac-
tory for both high- and low-Q circuits.

5.3.3 Accuracy of Linearized Transient
Analysis Method

The accuracy of the LTA method is deter-
mined primarily by two factors: the number of
analysis points per sine wave period, and the fre-
quency increment between frequency points.

The accuracy of the amplitude is determined
primarily by the number of analysis points per
period. If the trapezoidal integration rule is used to
approximate time-dependent currents, 20 points
per period are required to maintain less than a 1-
percent numerical integration error in amplitude for
low-Q circuits [12]. For high-Q circuits (Q > 10),
the product of the Q and numerical integration
error must be small. It can be shown that the
required points per period, n, are proportional to
the square root of the Q [41]

KVQ

A conservative value for Kis 8 [12].

(30)

The accuracy in computing the phase is deter-
mined primarily by the frequency increment. If the
circuit phase changes rapidly with frequency, then
a small frequency increment must be used. The
smaller the frequency increment, the smaller the
phase change from the previous frequency point.
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Choosing a frequency point close to the previ-
ous point is essential to the LTA method. If the
frequency interval is chosen too large, more periods
are required for the time-dependent currents to
reach equilibrium. If the interval is too small, exces-
sive points are computed. Both could greatly in-
crease computation time. For circuits with a Q less
than one, 10 frequency points per decade appear to
be adequate. However, for high-Q circuits, 100
points per decade may be necessary to achieve the
desired accuracy. For high-Q circuits, a fixed fre-
quency increment is not desirable, since more
points per decade are desired only where the gain
changes rapidly with frequency. In this situation a
variable frequency-step is best. The frequency can
be stepped by a procedure analogous to time-step
control used in conventional transient analysis. That
is, if more than K periods are required for conver-
gence, then the frequency increment is reduced. If
less than M periods are required, then the fre-
quency increment is increased. As in transient anal-
ysis, variables K and M are determined by
experimentation.

Experimertal results using the LTA method
have shown magnitude errors less than 5 percent
(typically less than 1 percent) and phase errors less
than 1 degree (typically 0.2 degrees). These errors
were obtained from several low-Q circuits by using
10 computation points per period and 20 frequency
points per decade (see sect. 5.3.4 for examples
showing these errors).

5.3.4 Comparison with Traditional ac Method

The LTA method was implemented in circuit-
simulator program BIAS-D as BIAS-T7. A flow dia-
gram of the LTA procedure is shown in figure 24.
The number of points per period, the number of
points per frequency decade, and the maximum
number of periods were input variables. The con-
vergence criterion required the amplitude differ-
ence among three consecutive periods to be less
than 1 percent. This criterion does not imply that
the magnitude error will be less than 1 percent.

Since dc and transient analysis capability were
already implemented in BIAS-D, only one addi-
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tional FORTRAN subroutine was required to imple-
ment this method. No additional dimensioned ar-
rays were required.

The traditional method using complex matrix
inversion also was implemented in BIAS-D (BIAS-
T8). This method was used to compare speed of the
memory and accuracy with those of the LTA me-
thod. Seven additional subroutines were required to
implement this traditional method. Most of these
subroutines were identical to existing routines in
BIAS-D but included complex arithmetic opera-
tions. Since minicomputers do not support double-
precision complex arithmetic, these operations
were programmed into the software (see sect. 3).
The storage of the complex matrix equation—
equation (22)—required doubling the size of the
original Y, V, and | arrays. These are double-
precision arrays and require significant additional
memory.

With both the traditional and LTA methods
implemented in BIAS-D it was possible to compare
the accuracy of the LTA method with that of the
traditional. The first comparison was made by using
test circuit CKT10 (app C). Figure 29a plots the
decibel gain of this circuit versus frequency for both
the LTA method and the traditional method (the
LTA method is plotted as solid lines). Figure 29b
plots phase for both methods. Ten frequency points
per decade were used in both cases. For the LTA
method, 20 points per period were used. Excellent
agreement in both gain and phase was obtained
(less than 1-percent magnitude and 0.25-degree
phase differences). A total of 336 periods was
required for the 91 frequency points in the LTA
method. This is an average of 3.7 periods per
frequency point (3 periods is the minimum
allowed). Further, 32 s of CPU time was required
(on a PRIME 400 minicomputer) for the LTA me-
thod, whereas 4.4 s were required for the tradi-
tional method (a 7:1 speed ratio).

The simple tuned circuit (with a Q of 25) [12]
shown in figure 30 was used to compare results for
high-Q circuits. The magnitude and phase of this
circuit to a current input for both methods are given
in figure 31 (the LTA method in solid lines). One
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Figure 29. Frequency response of test circuit CKT10
comparing both methods computed using 10
points/decade and 20 points/period: (a) magnitude
and (b) phase.

hundred points per decade and 40 points per pe-
riod (as required by eq (26)) were used in the
analysis. Again excellent agreement was obtained.
A total of 1492 periods was required in the LTA
method for 100 frequency points (an average of 15
periods per frequency point). The CPU time for the



LTA method was 88.9 s. The time for the standard
method was 0.891 s (a 100:1 speed ratio). Figure
32 shows magnitude and phase results from the
same high-Q circuit with the frequency points per
decade for both methods decreased to 20 and the
points per period for the LTA method decreased to
20. As expected, errors in both magnitude and
phase have increased. The choppiness in this plot is
due to the small number of frequency points plotted
(20 points). These results required 476 periods for
the 20 frequency points or an average of 21 periods
per frequency point. This increase in periods was
expected because of the larger frequency incre-
ment. The CPU time for the LTA method was
13.1 s, whereas the traditional method required
0.194 s (a 68:1 speed ratio).
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Figure 30. High-Q example circuit.

An analysis speed comparison of these two ac
analysis techniques was made using BIAS-T7 and
BIAS-T8. Test circuits CKT10 to CKT13 were used
on the PRIME 400. These were the same circuits
used in section 4. Figure 33 shows the results of
these tests. Circuit nodes are plotted versus log-
CPU time. Also shown in this figure is the CPU
execution speed of these circuits using SPICE2 on
the PRIME. As can be seen in this figure, the LTA
method is significantly slower than the traditional
method. The fact that SPICE2 runs more slowly
than BIAS-T8 on the PRIME 400 is due to the large
memory requirements for this system. Comparisons
in section 4 (table 12) indicate that the ac analysis
speed on BIAS-T8 (BIAS-T9) is approximately the
same as SPICE2.

A summary of the required memory for imple-
menting both the traditional and LTA methods in
BIAS-D is given in table 13.
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Figure 31. Frequency response of high-Q example
circuit comparing both methods, using 100
points/decade and 40 points/period: (a) magnitude
and (b) phase.

As can be determined from this table, at the
30-node level, the LTA method does not represent
a significant memory saving (18 percent). However,
at the 100-node level the memory savings increase
to 50 percent (13,000 words) and at the 1000-node
level to 95 percent (250,000 words).



Although the LTA method is slower than the
traditional method, the memory savings can be
significant. The savings increase rapidly with in-
creasing circuit size. Whereas the traditional me-
thod requires additional memory to store the com-
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Figure 32. Frequency response of high-Q example
circuit comparing both methods, using 20
points/decade and 20 points/period: (a) magnitude
and (b) phase.

plex admittance matrix, the LTA method needs no
additional memory for frequency response analysis
at any circuit size. The speed of the LTA method

0 | INEARIZED TRANSIENT
L ANALYSIS METHOD
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= »
o
2
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w
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0.01 | | { 1 j
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CIRCUIT NODES

Figure 33. Comparison of frequency response speeds
using traditional method and LTA method in BIAS-D
and traditional method in SPICE 2D (all on PRIME
400).

TABLE 13. SUMMARY OF MEMORY NEEDS
FOR TWO METHODS
FORTRAN | Common Compiled Total’
Method (lines) (words) | PrO8M | (words)
(words)
Traditional 400 1840 2100 3940
Linearized
transient 140 0 950 950
analysis

?The total program size for BIAS-D (30 nodes) without ac is
12,800 words.



could be increased by possibly 25 percent at the
expense of using additional memory. However, the
primary reason for the development of this method
was to minimize memory requirements.

Because of its slow speed, practical use of the
LTA method for frequency response analysis is
limited to the desktop calculators and small mini-
computer systems where memory is limited and
complex arithmetic is not easily attained. Other
application areas should be investigated, such as
determining the steady-state response of lightly
damped circuits or large-signal harmonic distortion
analysis.
6. CONCLUSIONS
Developments in the sections 2 to 5 deter-
mined that circuit simulation on small computer
systems is both practical and desirable. Both inter-
active and batch simulator architectures were de-
scribed, with the interactive simulator being the
most desirable.

The second section concerned circuit simula-
tion on programmable desktop calculators. BIAS-D
has shown that interactive circuit simulation on
desktop calculators is indeed possible; however, as
in the case of the speed limitations of the HP9830A,
it is not practical. BIASL.25 on the HP9825 offers a
significant speed increase (approximately 10:1) but
the use of HPL limits its use to the HP9825. Re-
cently available second-generation ‘‘super calcula-
tors’’ such as the HP9845 or the Wang PCS-I11 are as
fast or faster than the HP9825 and use the BASIC
language. These calculators should make interac-
tive simulation at the 10- to 20- node level
practical.

The third section introduced facets of small
computer systems useful in development of circuit-
simulator programs—the computer language, data
word format, computer and language speeds, and
memory configuration.

In order for a simulator to be easily transporta-
ble between computer systems, FORTRAN 1V
should be used wherever possible. In the case of
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the desktop calculator, BASIC should be used, since
FORTRAN is not yet available. The use of virtual
memory in computer systems offers a significant
advantage in increasing software transportability—
especially for large programs.

The data word format used in minicomputers
for alphanumeric, integer, and single-precision vari-
ables should present minimal problems when used
in minicomputer simulators. Simulators which are
to be transportable between several minicomputer
systems should use word-oriented alphanumeric
variables (i.e., one ASCIl character per word) rather
than byte-oriented variables. Double-precision data
word formats varied considerably—from 10 digits
for the HP2100 to 27 digits for the CDC 6600. The
10-digit precision of the HP2100 double-precision
arithmetic could present difficulties in some simula-
tor algorithms. In this case the work of Freret
[9,27,28] on word-length limitations should be
considered.

In section 4, on circuit stimulation on minicom-
puters, we determined that, for effective interactive
simulation, a relatively fast minicomputer should be
used. Slow computers result in excessive wait times
for the interactive process; for such systems, batch
simulators should be used. Experimental results
from BIAS-D show that the techniques used in
larger simulator programs, such as SPICE, can also
be used efficiently in minicomputer simulators with
no loss in accuracy. The following techniques can
be used in minicomputer circuit simulators to mini-
mize memory requirements and maximize speed:

1. sparse matrix decomposition with node
reordering,

sparse matrix storage, and

linked-list element storage.

2.
3.

A surprising result was that the storage of element
“templates’” [2,6] or locations for adding element
equivalent conductance values to the admittance
matrix used considerable memory with little im-
provement in speed (up to the 50-node circuit
level). Speed comparisons of the HP2100, the PDP
11/45, the PRIME 400, and the IBM 370/168
computer systems indicate that with the proper
software and hardware configurations, all are capa-
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ble of effective interactive circuit simulation at the
30- to 50-node level.

Section 5 introduced the linearized transient
analysis method for computing small-signal fre-
quency response, a technique using no complex
arithmetic and significantly less memory than the

conventional method. Because of its speed handi-
cap, the practical use of the LTA method for small-
signal frequency response is limited to smaller mini-
computers and desktop calculators where memory
is limited. Other application areas for this tech-
nique, such as determining steady-state transient
operating points, should be investigated further.

LITERATURE CITED

1. B. L. Biehl, BIAS-D: A Semi-Interactive Circuit
Analysis Program for Desktop Calculators and
Minicomputers, Eighth Annual Asilomar Con-
ference on Circuits, Systems and Computers,
December 1-3, 1974.

2. T.K.YoungandR. W, Dutton, Mini-MSINC—
A Minicomputer Simulator for MOS Circuits
with Modular Built-in Models, IEEE J. Solid-
State Circuits, SC-77, No. 5, 730-732, Octo-
ber 1976.

3. A. R.Newton and G. L. Taylor, BIASL.25, A
MOS Circuit Simulator, Tenth Annual Asilo-
mar Conference on Circuits, Systems and
Computers, November 22-24, 1976.

4. T.E.ldleman, F.S. Jenkins, W. J. McCalla, and
D. O. Pederson, SLIC—A Simulator for Linear
Integrated Circuits, IEEE J. Solid-State Circuits,
SC-6,188-204, August 1971.

5.  ASTAP General Information Manual (GH20-
1271-0), International Business Corp., Me-
chanicsburg, PA.

49

6. L. W. Nagel, SPICE 2: A Computer Program to
Simulate Semiconductor Circuits, Electronics
Research Laboratory, ERL-M520, University
of California, Berkeley, May 1975,

7. E. Cohen, Program Reference for SPICE 2,
Electronics Research Laboratory, ERL-M592,
University of California, Berkeley, June 1976.

8. A.R. Newton and D. O. Pederson, The State
of Integrated Circuit Simulators, Proc. Mid-
west Cir. Theory Symp., August 1977.

9. |.P. Freret, Jr., Overcoming Wordlength Limi-
tations in Minicomputer Aided Circuit Analy-
sis, Ph.D. Dissertation, Stanford University,
Stanford, California, May 1976.

10. B. L. Biehl, Circuit Simulation on Minicompu-
ters, Asilomar Conference Digest, November
1976.

11. W. ). McCalla and W. G. Howard, Jr., BIAS-
3—A Program for the Nonlinear dc Analysis



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LITERATURE CITED (Cont'd)

of Bipolar Transistor Circuits, IEEE ). Solid-
State Circuits, SC-6, 14-19, February 1971.

S. P. Fan, Sinc-S: A Computer Program for the
Steady-State Analysis of Transistor Oscillators,
Ph.D. Dissertation, University of California,
Berkeley, September, 1975.

J. ). Ebers and ). L. Moll, Large Signal Behavior
of Junction Transistors, Proc. IRE, 42, 1761-
1772, December 1954,

H. C. Lin, Integrated Electronics, San Fran-
cisco, CA, Holden-Day, 1967.

J. M. Early, Effects of Space-Charge Layer
Widening in Junction Transistors, Proc. IRE,
46,1141-1152, November 1952,

R. Barham, E. Cheung, and =. Cohen, BIAS-M,
An Experimental Circuit Simulator for the IBM
1800, Integrated Circuits Group, University of
California, Berkeley, June 1973.

H. W. Dommel, Digital Computer Solution of
Electromagnetic Transients in Single and Mul-
tiple Networks, IEEE Trans. Power Appar.
Syst., PAS-88, 378-385, August 1970.

L. O. Chua and P. M. Lin, Computer-Aided
Analysis of Electronic Circuits: Algorithms and
Computational Techniques, Englewood Cliffs,
New Jersey, Prentice-Hall, 1975.

T. K. Young and R. W. Dutton, Loca! Trunca-
tion Error Control for Circuit Simulators, Proc.
Midwest Cir. Theory Symp., August 1977,

M. J. Hellstrom et al, An Integrated Circuit
Preamplifier with Nonlinear Bootstrapped In-
put Impedance, Proc. Natl. Electronics Conf.,
23,321-324,1967.

G. J. Vosatka, The Minicomputer—Evolution
or Revolution, Minicomputer Trends and Ap-

50

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

plications 1973 Symposium Record, April 4,
1973.

Hewlett Packard FORTRAN
Manual, Hewlett Packard Corp.

IV Reference

PDP-11 FORTRAN Language Reference Man-
ual Dec-11-LFLRA-B-D, Digital Equipment
Corp., Maynard, MA, 1974.

PRIME FORTRAN IV Users Guide Revision D
MAN1674, PRIME Computer Corp., June
1976.

Control Data 6400/6500/6600 Computer
Systems FORTRAN Reference Manual, Con-
trol Data Corp., 1969.

IBM System/370 Principles of Operation GA
22-7000-5, International Business Machines
Corp., 1974,

A. Ralston, A First Course in Numerical Analy-
sis. New York, McGraw-Hill, 1965.

J. P. Freret, Minicomputer Calculation of the
Dc Operating Point of Bipolar Circuits, Tech-
nical Report No. 5015-1, Stanford University,
Stanford, CA, May 1976.

J. P. Freret and R. W. Dutton, Successful
Circuit Simulation using Minicomputers, 19th
Midwest Symposium for Circuits and Systems,
Milwaukee, WI, August 1976.

H. S. Stone, Introduction to Computer Archi-
tecture, Chicago, lllinois: Science Research
Associates, Inc., 1975.

Wang 2200A/B BASIC Programming Manual,
Wang Laboratories Inc., 1974.

Hewlett Packard 9830A Calculator Operating
and Programming Manual, Hewlett Packard
Calculator Products Division, 1973.



R

33.

34.

35.

36.

37.

LITERATURE CITED (Cont'd)

Tektronix 4051 Graphic Systems Reference
Manual, Tektronix Inc., 1976.

F.S.)enkins and S. P. Fan, Time—A Nonlinear
DC and Time-Domain Circuit Simulation Pro-
gram, |EEE ). Solid-State Circuits, 5C-6, 182-
188, August 1971.

T. K. Young and R. W. Dutton, MSINC, Stan-
ford Electronics Laboratories, SU SEL-74-038,
TR 501U, July 1974,

ISPICE Reference Guide, form 968-2, Na-
tional CSS, Inc., Norwalk, CT, 1974.

H. M. Markowitz, The Elimination Form of the
Inverse and its Application to Linear Program-
ming, Management Sci., 3, 255-269, April
1957.

51

38.

39.

40.

41.

A. R. Newton and D. O. Pederson, Analysis
Time, Accuracy, and Memory Requirement
Tradeoffs in SPICE2, Eleventh Annual Asilo-
mar Conference on Circuits, Systems and
Computers, November 1977.

D. A. Calahan, Computer-Aided Network De-
sign, Revised Edition, New York, McGraw-
Hill, 1972.

B. L. Biehl, A Linearized Transient Analysis
Technique for Computing Frequency Re-
sponse in Circuit Simulators, Eleventh Annual
Asilomar Conference on Circuits, Systems and
Computers, November 1977.

T.). Aprille, Jr., and T. N. Trick, Steady-State
Analysis of Nonlinear Circuits with Periodic
Inputs, Proc. IEEE, 60, 108-114, January
1972.



APPENDIX A.

BIAS-D USER’'S MANUAL

(BASIC VERSION) AND LISTING

A-1. INTRODUCTION

BIAS-D is a computer-aided circuit-analysis
program written in BASIC for desktop calculators
and minicomputers with a minimum of 8 kwords of
internal memory. It can perform dc and transient
analysis of a 15-node circuit that contains up to 75
elements—resistors, capacitors, voltage sources,
current sources, and transistors (15 each). For tran-
sistor circuits, BIAS-D converges to a solution by
linearizing the built-in Ebers-Moll transistor model
about an operating point in much the same manner
as done in larger circuit-analysis programs such as
BIAS-3, SLIC, and SPICE.

Circuit data are typed into the keyboard in a
semifree input format. Error messages are given for
recoverable data errors enabling immediate correc-
tions. Transistor parameters, temperature coeffi-
cients, and transient sources are entered by specify-
ing one or more of five available model types.

BIAS-D executes in a semi-interactive mode in
which elements or models are altered, temperature
varied, and elements inserted between existing
nonsource nodes. BIAS-D is structured so that the
circuit size and element capacity can be easily
modified in accordance with the available memory
size. Execution time for a dc solution of a 10-node,
5-transistor circuit is approximately three minutes
on an HP9830A desktop calculator.

A-2.INPUT DATA

The input data are divided into two categories:
circuit data and control statement data. The circuit
element data (e.g., resistors, transistors, etc) are
input by specifying the element symbol (R, Q, M,
etc) followed by the required data for that element.
The control statement data are characterized by a
dot (.) followed by the desired operation (. TRAN,
ALTER, etc). Control statements do not affect the
results of the analyses—they only enable the user to
direct the analysis procedure.
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A-2.1 Circuit Data

Certain general instructions must be followed
to input circuit data.

Each circuit element must begin in col-
umn 1.

Single spaces are used as delimiters
between data fields (multiple spacing
may resultin errors).

Abbreviated notation cannot be used
(i.e., 2U # 2E-6).

Scientific notation may be used (.e.,
1000 = 1E3).

Decimal points are not required (i.e., 2
= 2.0).

f. The ground node must be node 0
(zero).

Compact node numbering is not re-
quired (i.e,, node numbers may be
skipped).

The maximum allowable node number
is99.

i Element values are to be in basic units
(i.e., ohms, farads, volts, amperes,
hertz, seconds).

A-2.1.1 Resistors, Capacitors
General form:

RX N1 N2 VALUE
CX N1 N2 VALUE

where X is any character, N1 and N2 are node
numbers (order not important), and VALUE is the
resistor or capacitor value in ohms or farads. Note:
VALUE cannot be zero.

A-2.1.2 Independent Sources:
Voltage, Current

General form:

VX N+ N- VALUE M#
IX N+ N- VALUE M#
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where X is any character, N4+ and N- are the
positive and negative source nodes, and VALUE is
the source value in volts or amperes. The letter M
followed by an integer from 1 to 5 denotes the
model name (see sect. A-2.1.4).

For voltage sources, either N+ or N— must be
grounded (node 0). For example,

V+ 3 05 Ml
and
V+ 0 3 -5 M1

are equivalent.

For current sources, current flows from the
positive node through the source to the negative
node. The letter M followed by the model name
may be omitted. However, a default number of
zero is assigned.

A-2.1.3 Transistors
General form:
QX NC NB NE M#

where X is any character, and NC, NB, and NE are
the collector, base, and emitter node numbers,
respectively. The letter M followad by an integer
from 1 to 5 denotes the model name (see sect. A-
2.1.4). The letter M followed by the model name
may be omitted. However, a default number of
zerois assigned.

A-2.1.4 Model
General form:
M# YYY F1 F2 F3 F4 F5 Fé6

where # is an integer from 1 to 5 corresponding to
the model number designated by the source or
element. YYY is a three-letter name designating one
of five available model types as follows:

1. NPN
2. PNP

npn transistor parameters
pnp transistor parameters

3. PUL  pulse source specifications

4. SIN sinusoidal source specifications
5. TEM element temperature coefficients
F1, F2, . . ., F6 are the data fields for

specifying the above model parameters. These
fields are defined below.

1. NPN—transistor parameters

Field Parameter Default
value

F1 Forward dc beta (Bf) 100
F2 Reverse dc beta (Br) 1
F3 Saturation current (Is) 1E-15
F4 Early voltage (Va) TE+12
F5 Recombination current

parameter (collector current

at which beta = B¢/2) 0

Fé Not used =
2. PNP—transistor parameters (same as NPN)

3. PUL—pulse source specifications

Field Parameter Default
value
F1 Initial source value
att =0 0
F2 Pulsed value 0
F3 Pulse delay time 0
F4 Pulse rise time 0
F5 Pulse duration (width) 0
F6 Pulse fall time 0

4. SIN—sinusoidal source specification

Field Parameter Default
value
F1 dc source value (offset) 0
F2 Source amplitude (0-P) 0
F3 Source frequency (Hz) 0
F4 Time delay Tslep
F5 Phase shift (deg) 0
F6 Not used —

The value of the sinusoidal source is deter-
mined by the equation



F(t) = F1 + F2sin[27F3(t-F4) 4 F5]

5. TEM—element temperature coefficients

Field Temperature Default
coefficient value
Fi Resistor (Tc) 0
F2 Resistor (Tc2) 0
F3 Capacitor (Tc1) 0
F4 Capacitor (Tc2) 0
F5 Transistor beta (Tci) 0
F6 Transistor beta (Tc2) 0

The element value at temperature T is deter-
mined by the equation

BT = ETJ[1 + (T-Ta)Tcr + (T-To)Tc2]

where To = 300 K. Tcr and Tc; are the element’s
first- and second-order temperature coefficients,
respectively. The dimensions of Tcy and Tc; are in
decimal percentages per degree Celsius (a decimal
percent of 0.002 = 2000 ppm/C).

A-2.1.5 Comment Statement
General form:
* any comment

A comment may be inserted at any line in the
input circuit by using an asterisk (*) in column 1
followed by any message up to 80 characters long.

A-2.1.6 END Statement

END terminates the inputting of circuit data. If
a default transistor model is used, it may be neces-
sary to use END twice in succession. (Note: on the
HP9830 this is not the same as the END key.)

A-2.2 Control Commands

After each type of analysis is completed, pro-
gram control is returned to the operator. This is
indicated by “INPUT CARD’ appearing on the
display. At this time it is possible to initiate a new
analysis. This is done by using one of the control
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commands described in the following sections; all
control commands are prefixed by a dot(.).

A-2.2.1 ALTER

The .ALTER command enables element val-
ues, models, and model parameters to be altered.
This is done as follows.

.ALTER
RX VALUE
VX VALUE

END

where X is a valid element name (i.e., has been
previously defined) and Value is the new element
value. One or more element values may be altered
using a single .ALTER command. An END statement
terminates the alter operation. Models and model
parameters can be altered in the same manner as
the elements. Model types may be changed by
entering a different three-letter designation (see
sect. A-2.1.4). For example, a pulse source PUL can
be changed to a sinusoidal source, SIN, etc. All
model parameters must be entered or they are set
to their default values. Both models and elements
can be altered at the same time.

A-2.2.2 INSERT

The .INSERT command permits elements or
models to be inserted into an existing circuit. The
use of this command is limited to insertion of
elements and current sources between existing
nodes which are not connected to a voltage source
{(except node 0). Any type of model may be in-
serted. The .INSERT command is used as follows.

INSERT

RX N1 N2 VALUE

QX NC NB NE M#

M# YYY F1 F2 F3 F4 F5 F6

END
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The format for the elements and models is the
same as described at the beginning of section A-2.

A-2.2.3 .GAIN

The small-signal ac gain and input impedance
between any two nodes (and ground) can be deter-
mined using the .GAIN command. This is done as
follows.

.GAIN

“INPUT NODE"”
(enter input node)
“OUTPUT NODE"”
(enter output node)

Gain and input impedance are printed out. This
procedure is repeated for each new gain calcula-
tion. (Note: gain cannot be computed at a source
node.)

A-2.2.4 . TEMP

The analysis of the circuit at a temperature
other than 27 C is obtained as follows.

.TEMP
“TEMPERATURE(DEG C)?”
(enter temperature]

This procedure is repeated for each new tem-
perature. If a TEM model has not been defined,
“|LLEGAL CHARACTER” will be displayed. This
model can be inserted using the .INSERT com-
mand. (Note: any subsequent analysis is performed
at the last temperature specified.)

A-2.2.5 . TRAN

A transient analysis can be obtained using the
.TRAN command as follows:

.TRAN
“TIMESTEP=2"
(enter time-step)

In order for the transient analysis to be mean-
ingful, one or more source models (SIN, PUL) must
have been specified. Voltage sources cannot be

added once the initial circuit has been entered;
however, source models can be inserted or altered,
except for MO (see also sect. 2.2.6). A dc transfer
curve can be obtained using the .TRAN command.
This is done using the PUL model with such param-
eters that the pulse rise-time is long compared to
the circuit time constants.

A-2.2.6 OUTPUT

The output voltages of up to five nodes may be
simultaneously printed for each timepoint in a tran-
sient analysis. This is done using the .OUTPUT
command as follows:

OuUTPUT
“OUTPUT NODE?”
(type desired output node)

This procedure is repeated for each output node (to
a maximum of five outputs).

A-3. MISCELLANEOUS (HP9830A)
A-3.1 Early Termination

In some cases it may be necessary to termi-
nate an analysis before completion. This can be
accomplished using the END key if the program has
stopped or the STOP key if the program is running.
This terminates program control. Variable values
can be examined at this time. Program control can
be regained by one of the following sequences.

1. CONTINUE EXECUTE: This continues the
program at the point the END key was
depressed.

2. CONTINUE 140 EXECUTE: The old analysis is
terminated (the circuit is still retained, how-
ever) and the program waits for a new control
command (i.e., .ALTER, .TRAN, etc).

A-3.2 Mean Error Printout
Sometimes convergence to the desired accu-

racy is not attained. If this happens, a “MEAN
ERROR:” printout will occur. These results may or



may not be correct. If, during a dc analysis, a more
accurate solution is desired, the following proce-
dure can be used.

ALTER
END

This does not change the circuit but allows at least
four more iterations to occur.

FEM

REM CIRCUIT AMALYSIS
FEM BE.EIEHL,

OFTIOW EASE 1

DIM ¥(38,38) ,V(31),UC315,C038)

SOOI W o Rl § I e OO o)

R I R TUU I AR A L
o
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A-4.BIAS-D SOURCE LISTING (BASIC)

A listing of the BASIC version of BIAS-D is
given here. This listing is directly compatible with
an HP9830A desktop «calculator with a string-
variable ROM and a matrix operations ROM. Minor
modifications are required for execution on a Wang
2200 or a Tektronix 4051.

REFEFFERFEER05%%F BIAS-D #FFEXXXXXFHXRFHEF
FROGRAM-VERSION 2 MOD &
HARRY DIAMOND LAEBS WASHIHMGTOW DC

11-14-74

DIM RC253,0¢25,39,E(25,27,1(25,27,T¢25,1),F(5,7)
DIM M(32,25,K(25,5),L(25,5),M(25,5),G(25,45

DIM A¥CES],EB$F091,D4091,R$0251,C#0(251,V$025, 140251, 0% L25],H$[5],H¥[=31]

GOTO 24@, 250,550,678, 799, 858, 1§50, 130, 1290

8 R1=C1=Y1=11=01=M1=M2=12=T9=H=TO=T2=T3=H{1,2)=M4=8
@  REDIM C(38)
B0  E$="RVICOME*,"
18 D$="AIDGDTPHE"
28 F=Td=1
38 DISP "INPUT CARD":
35 BEEF
148 INPUT A$
158 FPRINT R$
166 FOR I=1 TO 3
178 IF A$C1;11=E$[1;11 THEN 228
156 MEXT 1
198 DISF "ILLEGAL CHARACTER: RE-"}
288 GOTO 138
218 REM ...DETERMIME ELEMENT TYFE
228 OH I
3@ FEM ...RESISTORS

= I

IF F=2 THEN 386
R1=T=R1+1
RE[R11=A$[2;1]

GOSUR 2586
RCR1D=RESCCCZ0)

GOTO 136

H¥=F¢#

GOSUE 3831

R{T3»=&

GOTO 128

REM ...%"OLTAGE SOURCES
IF F=2 THEH S18
V1=T=¥1+1
VELVII=R$[2;1]

GOSUER 2528
IF Cd12<:0

=
(A

o S T S (S 00 (R

(PRSI PR P REPCRPC PO PR PON PR (R LI (RO OV I OO DR (VR
CVC e B e SO I OO R LR i IS 0 e T R A1 I -

Qo oa@

THEH 448
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KV, Ta=0e2)

LiYl, I1>=8
ECY1,1>=-CC(3)

GOTO 49@

IF C¢2>=8 THEH 488

FRINT "SOURCE UHMGROUWDED:

Vi=y1-1

GOTO 138
ECW1,1)=CC3)
ECY1,2)=CC4)
GUTO 130

H$=V$

GOSUE 3838
ECT,1=5

GOTO 13@

REM ...CURRENT SOURCES
IF F=2 THEN 538
I1=T=11+1
I$0111=A$02;11
SO0SUEB 2550
1¢I1,1)=C03)
1¢I1,2)=CC4)
GOTD 130

H$=1%

GOSUEB 2030
1(T,1>=51

50TO 136

REM ...CAPACITORS
IF F=2 THEM 748
C1=T=C1+1
C$IC11=A$L2;1]
GOSUR 2580
@¢T,1>=AES(CI3) D
GOTO 138

H$=C$

GOSUE 2830
@CT,13=5

GOTO 138

REM ...TRAMSISTORS
IF F=2 THEN 199
F1=T=01+1
O$CO1I=A$C2;1]
GOSUBR 2538
TCR1,1)>=CC4)
GOTO 138

REM ...MODELS

IF F=2 THEH 1250
M1=T=M1+1
M$LTI=A$[2;1]
GOSUE 2588

FOR M=& TO 9

RE-";
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IF A$C4;11=0%CM;1]1 THEHW 950

HEXT M
Mi=mM1-1

GOTO 198

FOR K=2 TO 7
FCT,K3=CCk-1)
HEXT K

O M-5 GOTO 1958,999, 1020, 1049

IF A$CS;11="U" THEH
PCT,10=-1

GOTO 1138

FiT,10=1

GOTO 1138

K=2

GOTO 11066

K=3

GOTO 1108

K=4

T3=M1

M2=MZ+1

P(T, 1)=K

GOTO 1219

IF CC13<38 THEM 1156
P(T,2)>=100

IF C¢23<>a THEM 1179
PCT,30=1

IF C¢32<>8 THEH 1198
P(T,4)=1E-15

IF C¢4><>@ THEH 1210
PCT,S)=1E12
S=YAL(M$LT;112+10
M(S,3)=T

IF 1=7 THEN 1886
GOTO 130

H$=M$

GOSUB 3820

GOTO 598

1858

REM ... CIRCUIT UFDATES

IF F=1 THEH 198
FOR J=1 TO 7

IF A$LZ2311=D$0J;11 THEH

NEXT J
GOTO 199
F=J+1

REDIM C(30)

OH T GOTO 1380,14088,120,15168, 1510, 1416, 1998

REM ...ALTER

GOTO 13@

REM ...INSERT

GOTO 129

IF A$0L3;1)="R" THEH

1658a
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1420
14209
1448
1458
14&08
1476
1428
1496
1598
1518
1524
15368
1540
1558
1568
1578
1588
1596
1608
1618
1626
1638
16409
16568
1660
1678
1628
1638
1788
1718
1729
1728
1731
1740
1758
1758
1770
177

1786
1798
19086
1218
12209
18328
1249
1550
1868
1870
1826
1290
1986

REM ...TEMFERATURE
IF T3=@ THEH 130
FRINT "T(DEG C)";
INPUT T

PRINT T1

T1=T1+273

T2=T1-2@68

GOTO 138

REM ...GAIHN

PRINT “INPUT";
GOSUB 1549

GOTD 1599

FRIMT " MODE":
INPUT K

PRINT K

GOSUE 2970

RETURHM

M=J

FRINT “OUTFUT";
GOSUE 1549

PRINT "GRIMCY YI="3% T, Mo v Cm
PRINT "INFUT IMPEDEMCE=";% (M,M?
GOTO 129

REM ...TRANSIENT
F=8

IF M4=8 THEN 1218
PRIHNT "TIMESTEP=";"FINAL TIME="}
INPUT D1,D9

PRINT D1;D9

FRINT "TIME";

FOR I=1 TO M4
L=MCI+9,4)

ME= NI RVALS (L
PRINT USING 177@;%$
MEXT I

PRINT USIHG 1778
IMAGE  #,9%,4A,0DD
PRINT

To=a

GOTO 1958

REM ...OUTFUT PRINT
DISP "OUTPUT HODE";
INPUT K

PRINT "W¥";K

Ma=Ma+1

MEM4+9, 42 =K

IF F=5 THEN 1668
GOTO 138

IF O1=0 THEN 1958
IF M1-M258 THEH 1956
M1=T=M1+1
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1918
15z0
19:a
1948
1956
1960
1978
1988
1998
20pa
2818
Z0z2a
20306
2e44a
2858
Zee8
2078
2A8e
290
21898
2118
2128
2139
2148
2156
21648
2178
21ea
2198
2280
2210
2220
2238

oY
Lol

W0 =4 TN
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LYCR v R I o (T 0 I TS S LN I ]

D000 LOO@DEC
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O %
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[ ]
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MEcr1or="a"

MAT C=ZER

M=8

GOTO 956

D=1E48

N1=N-¥1

OH F GOTO 19288,4710,4160,128,7010,130,4716,4130
FEM ...PRIMT INFUT DRTA

IF R1=8 THEHW 221@

FRINT
FRINT "RESISTORS:"
PRINT "HAME HODES YALUE"

FOR I=1 TO R1

PRIMT "R“;R$CI;1);TABCEI;K(I,10,L0l,1%3RCTD
NEXT I

IF C1=8 THEN 2128

PRINT "CAPACITORS: "

FRINT “MAME HODES YALUE"

FOR I=1 TO Ct

FRINT “C"3C$0I;133TABCEjKCT, 493L¢T, 42301, 17
NEXT I

IF ¥1=6 THEM 2198

PRINT
PRINT "YOLTAGE SO0URCES:*
FRINT "NAME +HODES- VALUE MODEL"

FOR I=1 TO V1

PRINT "M VELIF1);TABCE I KT, 203 LCT, 203ECT, 10y "N ;ECT, 2
NEXT I

IF I1=8 THEMW 22¢&n

FRINT
PRINT "CURRENT SOURCES:"
PRINT "HAME +HODES - YALUE MODEL"

FOR I=1 TO I1

FRINT "I";I$CI;133TABCE3KCT,303L¢T, 235 1¢I, 103 "M ";1¢I,2)
MEXT I

IF @1=0 THEM 2z4@
PRINT

PRINT "TRANSISTORS: "
PRINT "HAME C

FOR I=1 TO ot

PRINT "G ;0013105 TRECTY 3K AT, S03LCT,503MCT, 503 "M ";TCI, 15
NEXT I

FRINT

IF M1=0 THEH 2524

PRINT "HMODELS:"

FRINT "NAME TYFE"

FOR I=1 TO Mt

J=ABSCPCI, 1)

ON J COTO 2400,2448, 2458, 2486

A$="HPH"

IF P{I,17=1 THEM 249@

E E MODEL"
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2428
2428
2440
2458
2468
2470
2480
2498
2584
2518
2528
25za
2548
2558
23ea

aanon
o M
[U O U |

Xy

e PRy B I
Dou M

—A @ & 0

ry r P32

oo

G D0~ T N e 0 R s

[~ O B Ol Ol o R OB U Y I

[ OO N S OVIR (R I ORI AR G T LRI o0 N I GV (R (LN
000 0 00 00 ~d s
[ I S TR LN g

q]
[ i
T
@

.
o Q0
0 ~d
[

.

I

2898
2908
2316

A$="PNP"
50TO 2498
A$="SIN"
50TO 2499
R$="PUL"
GOTO 2490
R$="TEM"

FRINT USIHG Z2S5@B;M$LI;11,RA$,PC1,2),PC1,30,P(1,43,FPC1,50,FCI,62,P0L,70
IMAGE "M", 1A, 4%, 3A,2¢MSD.305,M120,3D,M120. 30,1120,

HEXT 1

PRINT

PRINT "HODES:";H

PRINT

FRINT "#%#%END OF INPUT DRATRAxxxx"
PRINT

BEEP

GOTO 2100

REM ...SUB TO RERD IHWPUT DATH

J=8

L]

1:5 THEN 264@
OSCAE, "M

I
K=K+1
L=POS<A$LII," ">

IF ¢J<S)» OR (S=6» THEM 271@
J=5+1

GOTOD 2758

IF L=8 THEH 2754
CCKI»=VALCASLT,J+L-112

J=J+L

GOTOD 2&e8

CCRI=VYALASLTIS

IF I=&6 THEH 2954

s=2

IF I<>S THEH 23500

$=3

FOR L=1 TO =

IF CiL»=0 THENW 2251

REM ...DET. UNHIQUE HQDE HUMBERS
FOR M=1 TO H

IF C¢Ly=N(M,22 THEH 2859

HE®T M

H=H+1

HiH, 22=CCLD

NEXT L

K(T,I13=Ci13

L{T,I=Cui20

IF I<>S THEN 2920

=
]
]
m
)
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2928
2938
2348
2358
2968
2976
2958
2390
3080
3018
3028
3830
3046
3656
3e6a
3870
3ecae
3890
3188
3114
3126
3130
3148
3158
3150
31748
2188
2190

3418
3428

M(T, I3=Ce3)
IF F<>3 THEN 295@

GOSUE 3530

RETURH

REM ...SUE TO DET. ELEMENT MODE
FOR J=1 TO H

IF HC¢J,2>=K THEN 2006

NEXT J

J=HCT, 1)

RETURN

REM ...SUE TO FIMD ALTER ELEMENT
T=FOSC(H$,A$L2;11)

IF T<>@ THEM 2676

DISF "ELEMENT NOT FOUND}RE-"3
GOTO 136

IF I=6 THEW 2099

S=VALCA$LS] )

RETURH

REM ...PROCESS CIRCUIT DATH
FOR I=1 TO N

HCI, 13=1

NEXT I

REM ...REORDER HODE YECTOR
FOR I=1 TO H

FOR J=I+1 TO H

IF N(I,23<HC(J,2> THEN 321@
T=H¢JT, 23

MCT, 23=HCT, 20

NCI,20=T

HERT J

MEXT 1

REM ...MOVE SOURCE MODES TO EHD OF HODE VECTOR
L=¥1

I=2

GUSUE 3550

M=H

FOR I=1 TO ¥1

K=K<I,2)

IF K>H1 THEH 3488

FOR L=1 TO V¥1

IF L=I THEH 3z6@

IF MSPKCL,2) THEN 3368

M=M-1

GOTO 3318

NEXT L

M¢M, 1=K

NCK, 13=H

K(I,2=M

NEXT 1

REM ...RE-ORDER ELEMENT NODES
L=R1
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3420 I=1
3440 GOSUR 35T54
2458 L=1I1
468 I=3
3470 GOSUR 35350
34506 L=C1
3420 I=4
3590 GOSUR 3558
351@ L=@1
3520 I=5

3530 GUSUE 3550

3549 GOTO 3748

355@ FOR T=1 TO L
3560 GOSUE 2599

3570 MERT T

3520 RETURH

3590 K=K(T,I»

2608 IF K=86 THEH 3&30
3610 GOSUE 2970

3628 K(T,1x=J

3630 K=L(T,I>

364@ IF K=@ THEH 3&78
3650 GOSUER 2970

3660 LC(T,1>=J

3676 IF I<>S THEH 372@
3680 K=M(T,I>

3690 IF K=0 THEM 3728
3788 GOSUE 2970

371@ MCT,1a=]

3720 RETURH

3738 REM ...REDUCE VOLTAGE SOURCES TO CURREHT EGUIYALEHT FOR E AHD C
3748 FOR I=1 TO Wi
3756 J=K(I,2)

2768 REM ...RES.

3778 S=1

3780 S1=R1

3798 GOSUE 39408

359 REM ...CURRENT SOURCE
3618 §=3

as2B S11=1I1

3830 GOSUE 3980

3548 REM ..CHP.

3850 =4

3860 S1=C1

3876 GUSUE 32980

3550 NEXT I

3899 GOTO 4110

3980 FOR M=1 TO S1
3910 K=K(H,S>

3920 L=L(M,S5>

z93@ IF J<¥K THEH 399@
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3948
39568
235668
3978
3388
2990
4989
4610
48206
4038
4648
4358
408608
4076
40509
4696
41a08
4118
4128
4125
4138
4149
4158
4168
4170
4158
4138
4208
4219
4226
4230
4248
42506
42509
4278
4238
4298
4360
4218
4328
4339
4340
4259
43E8
4378
4320
4394
4488
441@
4420
44328

IF S=4 THEH 3978
K<M,S5>=0

IF $=3 THEN 4898
T=L

GOTO 4040

IF J<>L THEHN 489@
IF S=4 THEH 40838
LM, S>=0

IF $=3 THEH 4858
T=K

Iz2=12%1

M¢I2,47=5

McI2,20=T

Mc1z2,2y=1

MCIZ,1)=H

HEXT M

RETURH

T1=300

FEM ..BEGIN AMALYSIS
REEF

MAT Y=ZER(H?

MAT UsZERCH)

MAT G=ZERC(Q1+1,4)
IF F{»8 THEN 4718
REM ...UPDATE TRAHS. SOURCES
IF T@<>Dt THEH 4218
D=D1

GOTO 4718

FOR I=1 TO V1
K=ECI, 20

IF K=08 THEN 4289
GOSUE 4340

E<I,1a=Y

HEXT I

FOR I=1 TO It
K=1¢I,2)

IF K=8 THEH 432©
GOSUB 4340

I¢I,1y=V

MEXT 1

GOTO 4718
T=M(K+10,3)
J=F¢T,10-1

ON J GOTO 4378,4450
REM ...SIHE
V=P(T,2)

IF FCT,55¢>® THEH 4418
F¢T,S>=D1

IF TO<{P¢T,5» THEN 4438

V=V+P(T,3)*SIH(2*PI*P(T,4)*(TB-P(T,5))+P(T,6)/S?.296)

RETURH
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3440
44507
44508
3470
4430
4439
4589
4516
4529
45320
4549
4356
4560
4578
4536
4539
46008
4618
4529
4520
4640
4650
466D
45708
4520
4690
47868
4718
4728
473206
4740
47506
4760
377R
47568
4730
4800
48106
432A
433B
4248
48548
43648
4878
48280
4890
4969
43198
4928
49309
4948

REM ...PULSE
Z=P(T,4)

IF TB>2 THEH 4498

W=P(T, 20

RETURH

Z=Z+P(T,S)

IF Te»=Z THEMW 4530

=P (T, 30-CPCT, 30=F(T,200/PiT,53%(Z-T@)
RETURH

Z=Z2+P(T,6)

IF T&>Z THEH 4578

Y=P{T,3)

RETURH

Z=Z4F(T, 7D

IF T@»=2 THEH 4&1@

WP (T, 204 (PCT, 230-P(T, 200 P(T,73%(2-T@>
RETURN

Y=P(T,2)

RETURN

REM ...SUE TO DET. DELTA ¥
V=5

IF L=0 THEH 4578

Y=yl

IF K=0 THEN 4598

VERTES)

RETURH

REM ...UFDATE CAPACITOR CURRENTS
IF T3=@ THEW 4738
T4=1+PCT3, 405 T2+P(T3,5)#T2~2
FOR I=1 TO C1

IF (F=5) AND (T@:3) THEHW 4770
BCI,23=001,3)=0

GOTO 4338

K=Kl,4)

L=L¢I,4)

GOSUE 4630

T=Q01, 10T Dey
BCI,2y=-0¢1,3)-T

@I, 30=T+R¢I, 2

NEXT 1

REM ...ADD SUFFLIEZ TO ¥ MATRIY
FOR I=1 TO Vi1

J=K<I,2)

MCTI=ECT, 1)

HEXT I

T9=@

MAT Y=ZERCH1,H1)

MAT C=ZERC(H1}

REM ...ADD RESISTORS

IF T3=0 THEM 4958

T4=1+P (TS, 22 #T24+F (T2, 305T2A2
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4356
45968
49706
4338
43998
Saeq
5810
5820
Sa36
5840
5850
Sec6
Sevoe
5630
S50
51084
5119

5128

S1309
5148

5158-

S51¢6
5176
S1s8
5198
Sz2oe
5218
5228
5236
5248
Sa258
S5zea
Seve
5288
S296@
=¥c]u]s]
531@
5320
5330
S348
53358
5360
53rve

S:te

53906
5480
S418@
5420
S438
5448
5450

APPENDIX A

FOR I=1 TO R1

(=K, 10

L=L<I, 1D

R=1/R¢I>/T4

GOSUER 58206

HEXT 1

GOTO 5166

IF K=8 THEH S5878

YK, KY=Y (K, K)+R

IF L=8 THEH 5898

YK, La=Y(K,L)-R

YL, Kd)=Y{L,KY-R

IF L=0 THEH 58938
Y(L,L»=v(L,L)+R

RETURN

REM ...ADD CURREMT SOURCES
FOR I=1 TO It

K=K, 3
L=L(I, 3
C=IC¢I, 1
GOSUE S180
HEXT 1
GOTO 5238
IF K=8 THEH
CCRY=CCEY+C
IF L=8 THENW 5228

C(LY=C¢L>-C

RETURH

REM ...ADD CAPACITORS

IF T3=6 THEH 5250
Td=1+FC(T3,4)%T2+P(T3,50%T2"2

FOR I=1 TO C1

K=K<I, 4

L=LCI,4>

IF KE<=H1 THEH 5318

K=

IF L<=H1 THEH 5330

L=&

R=QC¢I,1>%¥T4-D

GOSUE SBz28

C=@¢I, 2>

GOSUE 5188

HEXT 1

REM ...ADD GEHERATED CURREMT SOURCES
FOR I=1 TOQ 12

J=McI, 1)

K=McI, 22

L=M¢I, 3

IF McI,47=4 THEH S450
CCLY=CCLY+ECK, 12 R{J

GOTO S54v7@

(4]
ry
(o)
[\x]
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54¢8
5470
5438
S499
5506
5518
5528
3330
5540
5558
S5¢8
a5ve
o556
5550
SEB8
Se18
Se20
5630
S648
Se59
SEG6O
S6V0
S620
S&38
S7e0
Sv1e
S720
5720
S748
S75e
S57E0
X
Svea
5799
5286
58186
Soze
5830
5849
5858
58606
5876
EEe1 )
5319349
59086
91w
S9z6
5938
5944
S%5e
99609

CCLY=CCLI+ECK, 13%0¢T, 15D
MESXT 1

REM ...ADD TRAMSISTORS

IF Q1=8 THEN £45@
YE=8.6164E-52T1

CO=CT1/ 3003 ~3%EXF(-139205(1-T1-1,2667)
IF T3=0 THEN 5548
T4=1+T2%PCT3, E0+T2~ 24P (T3, 70
FOR I=1 TO @1

=T 1 1)

T=M(T+108, 3>

T7=F(T,1)

REM ...IMITIALIZE FARAMETERS FOR FIRST
IF T9<:@ THEM S648

51=52=8

IF F<»8 THEN S&48

G(I,13=.5

G(I,2)=0

K=M{I,5)

L=L¢I,5)

GUSUB 4530

Y4=VET7

M=K

K=KC¢I, 53

GOSUE 4639

Ya=VET?

z=1

IF Y378 THEH 5756
—Y3%T7-PCT,5)

(T,;2)%Td%2

CA*PCT, 43 %01 +1/PCT, 223, (1+1/E)

=
B <%

GOSUE 5315
GOTO 596&

IF ¥<=G¢I,J» THEHM 5238
£3=0

IF G(I,73{8 THEM 5250
C3=C2%CEXF(GCI, J)/VEI -1
CESCE-GCI,J+20%5G¢T, )
A=CGCT, J+2)$Y+CE) A02+1
Y=YExLOGCAD

C3=-C2

IF ¥<-2 THEM S%16
C3=CZ#EXP (Y VEI+03
53=(C3I+C2D VE
CE=TP#(C3-GRsY )
GCI,J+2)=G3

GCI, )=y

RETURH

C4=C3
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5970
5930
5990
L q1515)
016
£020
£030
6940
6058
606548
£87a
6B30
5936
€108
£118
£l1z2e
€138
6146
&158
&1£8
DLE
€178
6188
£1948
€195
6280
6214
£215
€216
220
6238
6235
5246
€250
62ED
6278
£228
6290
&390
6318
6328
6330
6348
6258
6268
&37@
6380
£398
408
418
6428

APPENDIX A

C5=CE

G1=G3
E1=SQR(F(T,E3%C2)/F(T,2)
£7=-B1

IF ¥<-2 THEM €36

C7=B1*EXF (Y VE 2D +0T

Z=(C7+B1)/VE-2

CE=TP*(C7-2#V)

G2=G1 - B+2+C2

B1=P(T,3)%T4

C2=Co*PcT,4)%(1+1/FCT, 320/ 01+1/E1)

y=y3

=2

GOSUE SE18

G4=G3-B1+C2

IF F¢»5 THEN £188

Co2=T7+(C4/EB+C2 E1+C7)

Ca=Tr#(C4-C1+1 E12%C3)

FRINT USING 6168;08$01511,02, 04, TrsYd, TP#Y3,04-02,G61,1/G2
IMAGE #,"Q", 1A, 2%,MD.DDDE, 1¥,MD. IDDE, 2¢3X,N2D. DD, MDDD. DD, 1%, MD. DDE, 11, MD.

[

GOTO 6436

REM ...GND. CONDUCTAHCES AND ¥.D.C.D. COMHECTED TO SURFLY
IF K<=H1 THEN 5218
C6=C6-G3#V (KD

K=8

IF L<=H1 THEH 6238
C5=CS+G1%Y (L)
CE=CE+G3*Y (L)

L=6

IF M<=N1 THEM 6250
C5=C5-G1¥V(M)

M=8

IF K=6 THEN 6348
CCKI=C(KI+C1+1/B1I%CE-C5
YOK,KI=Y K, KI+G3+G4

IF L=0 THEH €318

YK, L)=Y(K,L)+G1-G3-G4
YL, K)=Y(L,K)-Gde

IF M=@ THEN 6408

YK, MIY=YEK, M -Gl

YCM KI=YEM, K)-G3

IF M=0 THEN €405
CCMI=CIMI+C1+1 /B #05-CE+08
VM, MI=YCM, M)+G1+G2

IF L=0 THEN €438
YCM,L)=Y (M, LI-G1-GZ2+G3
YCL,MI=Y(L,My-G2

IF L=8 THEN €438
CCLY=CC(L)-CS/B-CE-B1-C8
YeL,L)Y=Y{L,L)>+G2+G4
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6430
5440
6458
6460
6470
6420
€490
€530
€518
€520
€520
€548
65509
6560
E570
6580
€530
€600
6518
6628
£E630
€640
6650
€650
EETO
6680
€E98
&780
E7V10
E711
6720

v30
E740
E750
5760
€770
€780
E7&1
6re2
6783
67943
6791
68400
€106
5828
682309
6840
5858
c8&0
6E70
8o

NEXT I
IF F=5 THEH 13®

REDIM Y(H1>

MAT ¥=IHYCY)

MAT V=Y#C

REDIM V(N?

IF @1=0 THEH 6768

T9=T9+1

REM ...CHECK FOR COMNYERGEMCE
MAT U=y-1)

S=9

FOR J=1 TO N1

S=S+J (I ~2

HEXT J

IF F=5 THEH 6590

PRINT &

IF ¢(S<N1~2%1E-183 AHD (S1<H1~2%1E-18> AND ¢T9>33 THEM
IF <S>S13 AMD €S1352 AMD ¢T9:5> AMD ¢S<.1> THEH 6649
Sz=%51

51=5

GOTO 6650

FRINT "MERM ERRORCYOLTS):";SQR(S)
PRINT

GOTO &£700

REM ...STORE LAST NODE VOLTAGES
MAT U=V

GOTO 4900

IF F<:>8 THEM &819

FRINT USING €711;7@

IMAGE #,D.3DE

FOR L=1 TO M4

K=MCL+9, 40

GOSUB 2979

PRINT USING €769 ()

IMAGE #, M4D.SD

MEXT L

PRINT USIHG &781;79

IMAGE #, 3D

PRINT

IF To»D3 THEHW 138

T8=TO+D1

YS=Y9+T9

GOTO 4156

IF @1=8 THEN 6348

PRINT "ITERATIOHS:";T9

PRINT
T=T1-273

PRINT “T=";T,"DEG C"
PRINT

FRINT "NODE VOLTRGES:"
FOR K=1 TO H
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€899 I=HK, 1)

6988 J=N(K,2)

€918 PRINT USING €928;J,¥(ID

€920 IMAGE "V¥",M3D,M13D.4D

6938 NEXT K

6940 F=5

6956 IF @1<»8 THEN 6970

6958 GOTO 130

€370 FPRINT "TRANSISTOR OPERATING FOINTS:"
£986 PRINT USING €998

6993 IMAGE "MAME",S5X,"IB",9%,"IC",9X,"VEE",7X,"¥BC", 6K, "BETA",6X, "GM", 8K, "RFI"
7008 GOTO 5486

7818 STOP

78620 END
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APPENDIX B. LISTINGS OF TEST CIRCUITS

Four test circuits were used to compare the
analytical speeds of BIAS-D modifications which
are described in section 4 of the main body of the
report. These test circuits are all modifications of
the same test circuit used in section 3 to evaluate
the BASIC version of BIAS-D. The basic circuit
(CKT10) is shown in figure B-1(a). CKT10 is a nine-
node, five-transistor integrated preamplifier circuit.
Capacitors were added across the collector-base
and base-emitter junctions of each transistor to
represent the transistor junction capacitances. A
BIAS-D input listing is given in figure B-1(b). CKT10
does not include any bulk resistor, but the other
three circuits were obtained from CKT10 by suc-
cessively adding resistors to the base (CKT11)
(fig. B-2), collector (CKT12) (fig. B-3), and emitter
(CKT13) (fig. B-4) of each transistor in this circuit.

(a) S

<
-
Al
— A — B
[ I
.,I:I
m
vy | o __'

)
*
ik T
|
[E"

(b)

32 TEST CIRCUIT CKT10 (9 NODES)
223% INTEGRATED PREARMPLIFIER XX1X
¥ RESISTORS

R1 6 1 12K

R2 7 3 7.5K

R3 4 0 689

R4 7 6 SX

RS 8 0 SK

Figure B-1. Standard test circuit CKT10 (9 nodes):
(a) diagram and (b) BIAS-D input listing.

x TRANSISTORS

Q1 3 1 2 e

Q2 3 2 4 ne

Q3 6 S 4 Me

Q4 6 6 5 M2

Q5 7 3 8 Nne

* UOLTAGE SOURCES
us S 2.1 Mt

UB 7 9 6.1

X CAPACITORS

cs 911U

CB1 cP

CB2 2P

CB3 epP

CBS eP

CC1 cP

cce 2P

€C3 2P

CcCs 2P

X MODELS

M2 NPN 100 1 SE-15
END

X FOR BENCHMARK TIMES USE:
X +TR

b 4 TR © 10U .1U
U8 PRT

Figure B-1(b) (cont’d). Standard test circuit CKT10,
BIAS-D input listing.

B

LA

I“*{?tjh

-||—

NOWWWwONn -
WU~ 00 .5

E i
3

Figure B-2. Standard test circuit CKT11 (14 nodes):
(a) diagram.
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(b)

¥ TEST CIRCUIT CKT11 (14 NODES)
XXxxXx INTEGRATED PREAMPLIFIER XxxX
X RESISTORS

R1 6 1 12K

R2 7 3 7.5K

R3 4 ¢ 680

R4 7 6 9K

RS 8 9 SK

X TRANSISTORS

G 3w ileh 2 M2

G2 3 21 4 Me

G3 6 51 4 NMe

G4 6 61 5 M2

G5 7 31 8 Me

X UOLTAGE SOURCES

Us g 81 M

UB 7 9 6.1

XBASE RESISTORS

RB1 1 11 109

RBe 2 21 109

RB3 & 51 129

RB4 6 61 100

RBS 3 31 1e9

¥ CAPACITORS

€S 911U
CEr1 11 2
cC1
Cee
cce
CE3
CC3
CE4
CC4
CES
CCS 31
X MODELS

11 PUL @ -1 .SU .50 5U .5U
M2 NPN 100 { SE-tS

END

X FOR BE:CHNARK TIMES USE:!
X . TR

X TR @ 10U
X U8 PRT

O UNTACAWW

.1y

Figure B-2, Standard test circuit CKT11 (14 nodes):
(b) BIAS-D input listing.
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i.i} Ve

S | L uué,.
e, g AED B
AR ggd ™ ) $|::_'| “1}" f
. Hh " i HR 1.1?-1 LI Ry
— g T il [T R I A |
| 'N,r-vw-p.-l I m o i
A H . | 5 <] |_|
[ s p iy | | TR
g i 81
| [
. ? il

(b)

x TEST CIRCUIT CKTi2 (19 NODES)
xxXx INTEGRATED PREAMPLIFIER XXXxX
X RESISTORS

R1 6 1 12900

R2 7 3 7500

R3 4 @ 580

R4 7 6 9000

RS § @ 5000

X TRANSISTORS

@M de- it e e

@2 34 21 4 M2

@3 62 51 4 Me

G4 64 61 5 M2

@5 72 31 8 Me

X VUOLTAGE SOURCES
VB 7 ¢ 6.1

Us 9 9 1 N1

cs 911U

XBASE RESISTORS
RB1 11 100

RB2 21 100

RB3 51 100

RB4 61 100

REBS 31 100

¥ COLLECTOR RESISTORS
RCt1 3 32 100

RC2 3 34 1¢0

RC3 6 62 100

RC4 6 64 100

RCS 7 72 100

Figure B-3. Standard test circuit CKT12 (19 nodes):
(a) diagram and (b) BIAS-D input listing.

WO U



XJUNCTION CAPACITANCES

CEL 11 2 2P
CCi1 11 3 ¢gP
CEe 21 3 2P
€C2 21 4 2P
CE3 S1 6 2P
163 51 4 2P
CE4 61 & 2P
CC4 61 6 2P
CES 31 7 2P
cC5 31 8 2P
x MODELS

M2 NPN 100 1 5E-15

END

X FOR BENCHMARK TIMES USE:

4 .TR

X TR 9 16U .1U

X U8 PRT

Figure B-3(b) (cont’d). Standard test circuit CKT12,
BIAS-D input listing.

(a) ¥

(b)

x TEST .CIRCUIT CKT13 (24 NODES)
tx¥X INTEGRATED PREAMPLIFIER XxXxXxX
X RESISTORS

RL € 1 12000

R2 7 3 7590

R3 4 0 088

R4 7 6 9000

R5 8 © 5009

Figure B-4. Standard test circuit CKT13 (24 nodes):
(a) diagram and (b) BIAS-D input listing.
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X TRANSISTORS

@1 32 11 23 Me

g2 34 21 43 Me

Q3 62 51 44 M2

Q4 64 61 53 M2

Q5 72 31 83 Me

X UOLTAGE SOURCES
UB 7 @ €.1

Vs s ¢ 1 M1

CsS S 11U
XBASE.RESISTORS
RB1 1 11 1¢e9

RB2 2 21 1¢9¢

RB3 S 51 100

RB4 6 61 100

RBS 3 31 100

X COLLECTOR RESISTORS
RC1 3 32 1909

RC2 3 34 100

RC3 6 62 1@0

RC4 6 64 100

RCS 7 72 120

X EMITTER RESISTORS
RES 83 8 10

RE4 53 5 19

RE3 44 4 10

RE2 43 4 10

REL 23 2 1o

XJUNCTION CAPACITANCES

CEl 11 eP

¢C1 11 2P

Cee 21 cP

cCe 21 2P

CE3 51 eP

€C3 51 2P

CE4 61 2P

CC4 61 6 2P

CES 31 7 2P

CCS 31 2P

Mi PUL @ -1 .5U .5U S5U .SU
M2 NPN 100 1 5E-15

END

X FOR BENCHMARK TIMES USE:
x .TR

X TR @ 1oU .1U

X VU8 .PRT

DOV UVT2ON AWML

Figure B-4(b) (cont’d). Standard test circuit CKT13,
BIAS-D input listing.
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APPENDIX C.

A linked-list storage structure is an efficient
method of element storage in a circuit simulator in
which a wide variety of circuits are to be analyzed.
The linked element storage array used in BIAS-D
(FORTRAN) resembles that used by Mini-MSINC.*
Figure C-1 gives the BIAS-D configuration for each
element list.

Four different list structures are shown here.
Passive two-terminal elements (resistors, capaci-
tors, or inductors) use the same list structure. Ca-
pacitors and inductors require two additional
double-precision words for storage of temporary
variables. Transistors use a similar configuration but
reserve storage space for four single-precision tem-
porary variables. Models use a different configura-
tion. Here eight single-precision model parameters

NEXT LOCATION NEXT LOCATION NEXT MOOEL
NAME NAME NAME
. MODEL# MOOEL# MOOEL#
MOOEL LOC. MODEL LOC. MODEL LOC.
VALUE NOOE 3 MOOEL TYPE
" NODE 4 | 4
NOOE 1 NOOE 1 P2
NOOE 2 NOOE 2
T VBE 1 3
T2 VBE 2 P4
(@ GM1 P5
GM2 P&
ELEMT. LOC. (b} p7
SUPPLY LOC. I 7]
+ NODE L P8 |
ELEMT. TYPE
e tcl

Figure C-1. Linked-list element storage array configu-
ration in BIAS-D: (a R, L C, V, I elements,
(b) transistors, (c) models, and (d) generated current
sources.

*T. K. Young and R. W. Dutton, Mini-MSINC—A Mini-
computer Simulator for MOS Circuit with Modular Built-
in Models, IEEE J. Solid-State Circuits, SC-11, No. 5, 730-
732, October 1976.
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BIAS-D LINKED-LIST STORAGE STRUCTURE

are stored with a pointer to a second list if neces-
sary. The last list in this figure is that for the gener-
ated current sources. These sources are added
during the setup procedure and are generated from
the elements connected to voltage sources. All
elements in this list point either to an element type
or element value. They are stored sequentially and,
therefore, do not need a pointer address. It is
imperative that the list length for each element be
divisible by two. This restriction enables simple
addressing of integer and single-precision variables.
This addressing is accomplished in BIAS-D as
follows.

integer location address = Kioc + Leos
single-precision location address = Kioc/2 + Leos,

where Kioc + 1 is the integer location of the first
variable in the particular element list, and Leos is the
displacement (in words) within this list. Kioc is
determined either from the IFRST array which gives
the first location of each element type, or from the
first location in each element list, which gives the
address of the first location of the next element of
that type. An extension of the previous restriction
on the list configuration is that, within each element
list, each single-precision variable must be on two
word boundaries. This is for the same reason as
given earlier. if the length of any element list is to be
extended it can be easily done, in two-word incre-
ments, by changing the data statement in the MAIN
subroutine containing the LEN variable. This vari-
able defines the length in words of each element
list.

If the particular computer system uses a two-
or four-word double-precision data word format,
double-precision data can also be stored in this list
(not possible on the HP2100). In this case, each
double-precision variable must be on boundaries
equal to the data word length. The location of this
varaible is found using the following address (for
four-word double-precision data).

double-precision location address = Kioc/4 + Leos
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There are no ““PUSH"" or ““POP” routines in
BIAS-D for loading or unloading this element list.
Once the list is formed it is not changed, except
when elements are inserted in the circuit. These are

78

added at the end of the original element list, at
starting location MXLOC. The generated current
source pointers must then be regenerated and
loaded at the new end of this list.
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APPENDIX D.

The organization of the subroutines and func-
tions contzined in BIAS-D are described in this
appendix. The BIAS-T9 version of BIAS-D is de-
scribed. This version contains sparse matrix inver-
sion and storage, linked-list element storage, and ac
analysis using the traditional complex arithmetic
method. A source listing of BIAS-T9 is given in
appendix E.

The description of the subroutines is divided
into four groups related by their function in BIAS-D.
These groups are input/output, setup, analysis, and
general functions. The relationships between these
groups are shown in figure D-1. This shows the
MAIN routine as controlling the entire
input/output, setup, and analysis procedures with
the general functions linked to all groups.

MAIN

1 1 {

110 SETUP ANALYSIS

A A A

_| supporT
FUNCTIONS

Figure D-1. Main subroutine groups in BIAS-D.

A more detailed flow diagram of the organiza-
tion of the input/output group is given in figure D-2.
A brief description of each of these routines is given
as follows.

MCHEK checks for undefined element mod-
els. It stores the starting location of defined models,
in the IELM array, with the appropriate element. MO
is the null model and is assigned to all elements with
no user-defined model.

POUT sets up print or plot output formats. For
print outputs, headings are printed for transient
analyses, swept alter analysis, and ac analyses. The
output device for printing is specified by the user.
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BIAS-D SUBROUTINE ORGANIZATION

MAIN
' ! , ! !
MCHEK POUT INPUT ALTER PRCKT
.
» RDFLD
A y
GRAPH VAL

Figure D-2. Organization of input/output subrout-
ines in BIAS-D.

This device can be the user terminal (TTY), disc,
magnetic tape, or paper tape. For plot outputs, the
graph axes are scaled and labeled for the appropri-
ate analysis.

INPUT controls the initial reading of all ele-
ment data from either a user terminal (TTY) or disc
file. A limited amount of input processing is done in
this routine. Unique node numbers are determined,
and node numbers and element values are stored in
the IELM array.

RDFLD reads a single floating-point and/or
integer data field contained in the IAQ array. This
field can contain up to eight floating-point or integer
numbers separated by a comma or up to seven
blanks. A pointer, LL, determines the starting loca-
tion in the IAQ array of the decoding operation. A
second pointer, KK, determines which number field
within IAQ is being processed. The actual decoding
of these numbers is done in function VAL.

VAL(LL) does the actual decoding of each
number in the IAQ array. LL denotes the starting
location of the number within the IAQ array. Any
number may be preceded by as many as seven
blanks and may be in one of several forms. For
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example, the number one thousand may be repre-
sented as 1000, 1000.0, 1K, 1E3, 1E+3, or 1E 3.

ALTER is used to locate an element to be

altered or an input source for a transient or ac
analysis. It determines whether the element name
being interrogated has been previously defined; if
so, ALTER determines its beginning address in the
IELM array so determined.

PRCKT writes the present circuit configuration
in an ordered format to one of two output devices.
During the initial dc analysis it is written to the user
terminal. If called by the SAVE command the same
output configuration is written to a disc file. Then,
this file can later be used as an input file. For this
reason it is necessary that the format of the PRCKT
output be readable by the INPUT routine.

Figure D-3 is an organizational diagram of the
setup group of routines. In this group, program
MAIN calls subroutine SETUP which in turn con-
trols the setup procedure. A brief description of
these routines follows.

MAIN

SETUP

RENUM INDMT NORDR EQUIV

NCONV INDX

Figure D-3. Organization of setup subroutines in
BIAS-D.

SETUP controls the entire setup procedure. It
also renumbers the circuit nodes into a compact
node set, and reorders these nodes such that the
voltage source nodes are at the upper end of the
node vector NI(i,2). NODE represents the total
circuit nodes whereas NNODE gives the number of
circuit nodes which are not connected to a voltage
source.
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RENUM(M) controls renumbering of the ele-
ment node connections from the original node
order to a compact node order determined in
SETUP. The actual conversion is done in function
NCONV. RENUM is called during the initial setup
procedure and also if elements are to be inserted
into the circuit using a .INSERT command (see app
E).

NCONV(K,M,NI,NODE) returns a new node
number, given a node number K. This is done by
comparing input node K with the nodes in table
NI(.,1) or NI(.,2) which are NODE nodes in length.
If M = 0, K is converted from the original node
number to a compact node number. If M = 1, Kis
converted from the compact node number to the
original node number.

INDMT sets up an incidence matrix 1Y(i,j) for
each new circuit. This integer matrix is then used to
determine the optimum circuit node ordering.

NORDR determines the optimum node order
for each circuit, and sets up the sparse matrix
decomposition and storage pointers. The optimum
order is obtained using the number of off-diagonal
nonzero elements in the incidence matrix 1Y(i,j).
This new node order is stored in vector IORDR. The
row and column table locations of each nonzero
matrix term used during the decomposition process
is stored in arrays I[UR and IUC. The location of
each matrix entry used during an operation is stored
in the IPOS array. The actual two-dimensional ad-
dress generated during the decomposition proce-
dure is converted into a linear address in function
INDX(NR,NC).

INDX(NR,NC) converts a two-dimensional
matrix address NR,NC into a location in the linear Y
array. This is done by comparing row location NR
and column location NC with the permitted table
locations determined by the IUR and {LC pointer
arrays.

EQUIV converts circuit voltage sources into
Norton equivalent current sources. The number of
these current sources generated depends on how
many elements (and what type) are connected to



the voltage sources. The element type (resistor,
capacitor, etc), the element location, the voltage
source location, and the node into which the equiv-
alent current source enters is stored in the |ELM
array at the end of the element linked list. This
storage begins at location MXPOS.

A diagram of the organization of the analysis
group of BIAS-D subroutines is given in figure D-4.
Two main subroutine groups are controlled from
subroutine ANALY and subroutine ACSOL. A brief
description of those subroutines controlled from the
ANALY group is given as follows.

MAIN

| Ao
' 1 L 5
upoaT| |[GNcur] | [sowve]  [aciop] | [acoec]
I
. [ 1 .
ELOAD] [DECMD) [woce]| [sovac]
]
p—
[ [acGEN
BJT ADRES e —
e
[ancrg]

ADCURF

Figure D-4. Organization of analysis subroutines in
BIAS-D.

ANALY controls the dc and transient analyses
in BIAS-D. The capacitor and inductor currents are
updated during a transient analysis, the current
vector and admittance matrix are zeroed after each
time-step, and convergence is determined for both
dc and transient analyses.

UPDAT changes time-dependent voltage or
current sources during a transient analysis. This new
source value is stored in the IELM array to be later
added to the voltage vector, V. The value of the
time-dependent source is determined from the
source model parameters also stored in the IELM
array. The location in this array is stored with the
particular source parameters and is determined
during setup in the MCHEK routine.

ELOAD controls loading of equivalent real or
imaginary element conductance values into the
admittance matrix array, Y, and the equivalent
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currents into the current vector, C. For resistors,
capacitors, and inductors, the actual loading of
these conductance and current values is done in the
ADRES and ADCUR routines for dc and transient
analysis and in ADCPR and ADCPC for ac analysis.
Bipolar transistors are loaded from the BT
subroutine.

ADRES adds a double-precision conductance
value, DS, into the Y array at locations determined
by element node numbers KK and LL as follows.

Y(KK,KK) = Y(KK) = Y(KK) + DS
Y(LL,LL) = Y(L) = Y(L) + DS
Y(KK,LL) = Y(§) = Y() - DS
Y(LL,KK) = Y(NN) = Y(NN) - DS

where }J} and NN are translated storage location
values determined from function INDX(KK,LL).

ADCUR adds a double-precision current, DS,
into the current vector, C, at locations determined
from node values KK and LL as follows.

C(KK) = C(KK) - DS
C(LL) = C(LL) + DS

BJT determines the linearized Ebers-Moll
equivalent conductance and current source values
for bipolar transistors. The equivalent values for
each junction, the collector-base, and the base-
emitter are computed separately in subroutine
JUNCT. These values are then added to theY and C
arrays.

JUNCT determines the Ebers-Moll junction
equivalent conductance and current source values
for a given junction voltage. Current or voltage
update* is used depending on whether the new
junction voltage is greater or less than the last
junction voltage, respectively. The last junction
voltage and transconductance for each transistor
junction is stored in the [ELM array.

*R. Barham, E. Cheung, and E. Cohen, BIAS-M, An
Experimental Circuit Simulator for the 1BM 1 800, Inte-
grated Circuits Group, University of California, Berkeley,
June 1973.
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GNCUR determines the double-precision real
or imaginary dependent current source values to be
added into the current vector, C. These currents
depend on the value of the independent voltage
source value and the element values connected to
these sources. The locations of these sources and
elements are previously determined during setup by
the EQUIV subroutine and stored in the IELM array.

DECMP does an LU decomposition of the
sparse admittance matrix using the pointer structure
generated during setup in subroutine NORDR.

SOLVE solves for the circuit node voltages
using forward and backward substitution into the
LU matrix generated in DECMP. The resulting node
voltages are stored in double-precision vector V.

The second group of subroutines in the analy-
sis portion of BIAS-D is controlled from subroutine
ACSOL and is called during an ac analysis. Since
complex arithmetic cannot be used, the admittance
matrix is arranged so that all real entries are entered
into the Y array and the imaginary entries into the Y|
array. The same pointer structure that was gener-
ated in NORDR and used in the dc and transient
analysis is used to load both the Y and YI arrays.
Resistors are added in the same manner as in
previous analyses, using the ADRES subroutine. The
imaginary conductance values of the capacitors
and inductors at frequency FREQ are loaded into YI
using subroutine ADCPR. A brief description of
these routines follows.
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ACSOL controls the small-signal ac frequency
response analysis in BIAS-D. The ac parameters are
initialized, the complex current vector and admit-
tance matrix are zeroed for each new frequency
point, and the next frequency point is determined.

BJTAC loads the ac bipolar transistor conduc-
tance values into the complex admittance matrix.
All small-signal ac transistor conductance values
are loaded into real array Y, since capacitors are not
included in the transistor model.

ADCPR loads an imaginary double-precision
conductance value, DS, into the imaginary part of
the admittance matrix. The locations are deter-
mined in the same manner as in ADRES.

ADCPC adds an imaginary current, DS, into
the Cl array at locations KK and LL in the same
manner as subroutine ADCUR.

DECAC does an LU decomposition of the
complex sparse admittance matrix using the same
pointer structure as used in DECMP and generated
during setup in the NORDR subroutine.

SOLAC solves for the complex circuit node
voltages using forward and backward substitution
of the complex admittance matrix generated in
DECAC. The resulting real node voltages are lo-
cated in the V array and the imaginary voltages in
the Vl array.
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APPENDIX E.

E-1. INTRODUCTION

BIAS-D is a computer-aided circuit-analysis
program written in FORTRAN IV for minicomputers
with a minimum of 32 kwords of internal memory.
It can perform ac, dc, and transient analysis of a 30-
node circuit that contains up to 150 elements—
resistors, capacitors, inductors, voltage sources,
current sources, and transistors. For transistor cir-
cuits, BIAS-D converges to a solution by linearizing
the built-in Ebers-Moll transistor model about an
operating point in much the same manner as done
in larger circuit-analysis programs such as BIAS-3,
SLIC, and SPICE.

Circuit data are typed into the keyboard in a
semifree input format. Error messages are given for
recoverable data errors enabling immediate correc-
tions. Transistor parameters, temperature coeffi-
cients, and transient sources are entered by specify-
ing one or more of five available model types.

BIAS-D executes in a semi-interactive mode in
which elements or models are altered, temperature
varied, and elements inserted between existing
nonsource nodes. The program is structured so that
the circuit size and element capacity can be easily
modified in accordance with the available memory
size. Execution time for a dc solution of a 10-node,
5-transistor circuit is approximately 0.6 s on a
PRIME 400 minicomputer.

E-2. INPUT DATA

The input data are divided into two categories:
circuit data and control statement data. The circuit
element data (e.g., resistors, transistors, etc) are
input by specifying the element symbol (R, Q, M,
etc) followed by the required data for that element.
The control statement data are characterized by a
dot () followed by the desired operation (.TRAN,
.AALTER, etc). Control statements do not affect the
results of the analyses—they only enable the user to
direct the analysis procedure.
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BIAS-D USER’S MANUAL (FORTRAN VERSION) AND LISTING

E-2.1 Circuit Data

Certain general instructions must be followed
to input circuit data.

a. Each circuit element must begin in col-
umn 1.

b. Spaces are used as delimiters between
data fields.

C. Scientific notation may be used (i.e.,
1000 = 1E3).

d. Decimal points are not required (i.e.,
2 = 2.0).

e. The ground node must be node 0
(zero).

f. Compact node numbering is not re-
quired (i.e., node numbers may be
skipped).

g. The maximum allowable node number
is99.

h. Element values are to be in basic units

(i.e., ohms, farads, volts, amperes,
hertz, seconds).
i. Abbreviated notation may be used as

follows:
P = 10" K = 10°
N = 10" ME = 10°
U= 10°* G = 10"
M = 10"
(e.g., 10U = 1.0E-5)

E-2.1.1 Resistors, Capacitors, Inductors
General form:

RXX N1 N2 VALUE M#
CXX N1 N2 VALUE M#

where XX is any two-character name, N1 and N2
are the node numbers (order not important), and
VALUE is the resistor, capacitor, or inductor value
in ohms, farads, or henries. The letter M followed
by an integer from 1 to 9 denotes the model name
(see sect. E-2.1.4). VALUE cannot be zero.
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E-2.1.2  Independent  Sources—Voltage,

Current

General form:

VXX N+ N- VALUE M#
I XX N4+ N- VALUE M#

where XX is any two-character name, N+ and N-
are the positive and negative source nodes, respec-
tively, and VALUE is the source value in volts or
amperes. The letter M followed by an integer from
1 to 9 denotes the model name (see sect. E-2.1.4).
For voltage sources, either N+ or N- must be
grounded (node 0). For example,

V+ 3 05 M1
and
V+ 0 3 -5 M1

are equivalent.

For current sources, current flows from the
positive node through the source to the negative
node. The letter M followed by the model name
may be omitted. However, a default number of
zero will be assigned.

E-2.1.3 Bipolar Transistors

General form:
QXX NC NB NE M#

where XX is any two-character name, and NC, NB,
and NE are the collector, base, and emitter node
numbers, respectively. The letter M followed by an
integer from 1 to 9 denotes the model name (see
sect. E-2.1.4). The letter M followed by the model
name may be omitted. However, a default number
of zero (0) is assigned.

E-2.1.4 Models

General form:

M# YYY F1 F2 F3 F4 F5 F6

where # is an integer from 1 to 5 corresponding to
the model number designated on the source or
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element. YYY is a three-letter name designating one
of five available model types as follows.

NPN  npn transistor parameters

PNP  pnp transistor parameters

PUL  pulse source specifications

SIN sinusoidal source specifications
EXT  external source model

TEM  element temperature coefficients

F1, F2, ..., F6 are the data fields for specifying the
above model parameters. These fields are defined
below.

1. NPN—transistor parameters

Field Parameter Default
value

F1 Forward dc beta (Bf) 100
F2 Reverse dc beta (Br) 1
F3 Saturation current (Is) 1E-15
F4 Early voltage (Va) TE+12
F5 Recombination current

parameter (collector current

at which beta = B¢/2) 0]

Fé Not used —
2. PNP—transistor parameters (same as NPN)

3. PUL—pulse source specitications

Field Parameter Default
value
F1 Initial source value at t = 0 0
F2 Pulsed value 0]
F3 Pulse delay time Tstep
F4 Pulse rise time 0
F5 Pulse duration (width) 0
F6 Pulse fall time 0

4. SIN—sinusoidal source specification

Field Parameter Default
value
F1 dc source value (offset) 0]
F2 Source amplitude (0-P) 0
F3 Source frequency (Hz) 0
F4 Time delay Totep
F5 Phase shift (deg) 0
F6 Not used —

"



The value of the sinusoidal source is deter-
mined by the equation

F(t) = F1 + F2-sin[2mF3(t—F4) 4 F5].

5. EXT—External source parameters are to be
defined by the user in a subroutine.

6. TEM—element temperature coefficients

Field Temperature Default
coefficient value
F1 Resistor (Tci) 0
F2 Resistor (Tc2) 0
F3 Capacitor (Tc1) 0
F4 Capacitor (Tcz) 0
F5 Transistor beta (Tci) 0
F6 Transistor beta (Tc2) 0

The element value at temperature T is deter-
mined by the equation

BT = BT + (T=ToTar + (T-To)Tez],

where T, = 300 K. Tcy and Te; are the element’s
first- and second-order temperature coefficients,
respectively. The dimensions of Tci and Tc2 are in
decimal percentages per degree Celsius (a decimal
percentage of 0.002 = 2000 ppm/C).

E-2.1.5 Comment Statement

General form:

* any comment

A comment may be inserted at any line in the
input circuit by using an asterisk (*) in column 1
followed by any message up to 80 characters long.

E-2.1.6 END statement

END terminates the inputting of circuit data. If
a default transistor model is used, it may be neces-
sary to use END twice in succession.

E-2.2 Control Commands

After completion of each type of analysis,
program control is returned to the operator. This is
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indicated by “INPUT DATA’ appearing on the
display. At this time it is possible to initiate a new
analysis. This is done by using one of the control
commands described in the following sections; all
control commands are prefixed by a dot (.).

E-2.2.1.AC

The .AC command initiates the smail-signal
frequency response. This analysis can be obtained
as follows.

AC
“VIN FSTRT FSTOP PTS/DEC TYPE”

(enter “"V''—input node, starting fre-
quency, final frequency, frequency
points per decade, and type of output;
may also be current input—I{IN)

VXX PRT/PLO XMIN XMAX VMIN VMAX"’

(enter 'V''—output node, PRT—print,
or PLT—plot)

For Print, no other parameters are necessary,
and both the magnitude gain (TYPE = 0) or decibel
gain (TYPE = 1) and phase of node XX are printed.
For Plot, X and Y scale parameters are necessary
(defaults are used if none are given). The plot type is
determined by the value of TYPE.

0—magnitude gain

TYPE = 1—decibel gain
2—phase
E-2.2.2 ALTER

The .ALTER command enables element val-
ues, models, and model parameters to be altered.
This is done as follows.

.ALTER
RXX VALUE
VXX VALUE

END



APPENDIX E

where XX is a valid element name (i.e., has been
previously defined) and VALUE is the new element
value. One or more element values may be altered
using a single .ALTER command. An END statement
terminates the alter operation. Models and model
parameters may be altered in the same manner as
the elements. Model types may be changed by
entering a different model designation (see sect. E-
2.1.4). For example, a pulse source PUL can be
changed to a sinusoidal source, SIN, etc. All model
parameters must be entered or they will be set to
their default values. Both models and elements can
be altered at the same time.

An additional .ALTER command permits
sweeping element values over a specified range of
values. This can be done as follows.

.ALTER
VXX EI EF DEL

where El is the initial element value, EF the final
element value, and DEL the increment value (DEL
can be negative). This must be the last statement in
a .ALTER command. It is then necessary to define
an output node, a PRT/PLT specification, and so on
(see sect. E-2.2.1). At the end of this analysis the
altered value is returned to its original value.

£-2.2.3 . END

The .END command permits entering a new
circuit without terminating the program. At this time
all previous circuit values, names, and nodes are
erased from memory.

£-2.2.4 .INSERT

The .INSERT command permits elements,
models, or additional nodes to be inserted into an
existing circuit. Any element or model may be
inserted with this command. The .INSERT com-
mand is used as follows.

(INSERT

RXX N1 N2 VALUE

QXX NC NB NE M#

M# YYY F1 F2 F3 F4 F5 F6

END
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The format for the elements and models is the
same as described at the beginning of section E-2.

£-2.2.5 . LOAD

The .LOAD command permits loading a cir-
cuit directly from a disc file. This is done as follows.

.LOAD
“ENTER FILENAME"
(enter file name)

Several circuits may be merged or models
entered by successively using the .LOAD com-
mand. This command is terminated by an END
statement (either in a file or via keyboard). Note that
when several circuits are merged, unique node
numbering must be maintained.

£-2.2.6 .PRINT

The element names and values can be dis-
played at any time by using the .PRINT command.
Note that the node numbers displayed are a correct
set of node numbers but are not necessarily the
original set of numbers. If the original set of node
numbers is necessary, the following sequence of
commands can be used.

ANSERT
.PRINT

£-2.2.7 SAVE

The .SAVE command is similar to the .LOAD
command except that the circuit is written to a disc
file. The contents of this file will be identical to that
printed by a .PRINT command.

£-2.2.8 . TEMP

The analysis of the circuit at a temperature
other than 27 Cis obtained as follows.

.TEMP
“T(DEG C)”
(enter temperature)



This procedure is repeated for each new tem-
perature. If a TEM model has not been defined,
“TEMP. MODEL NOT SPECIFIED” will be dis-
played. This model can be inserted with the .IN-
SERT command. Note that any subsequent analysis
will be performed at the last temperature specified.

£-2.2.9. TRAN

A transient analysis can be obtained using the
.TRAN command as follows.

.TRAN
“TR"" TO TF TSTEP
(enter “Tr"" to Taep)

where TO is the initial transient time, TF the final
transient time, and TSTEP the output time incre-
ment. In order for the transient analysis to be
meaningful, one or more source models (SIN, PUL,
EXT) must have been specified. Voltage or current
sources as well as models can be inserted once the
initial circuit has been entered (see sect. E-2.2.4).

Note: Any control command (except .LOAD
and .SAVE) will override a previously initiated con-
trol command. If a reply is expected, the command
should be entered twice; the first time will cause an
error message which can be ignored.

E-3. MISCELLANEOUS

Sometimes convergence to the desired accu-
racy is not attained. If this happens a “MEAN
ERROR’ message will appear. These results may or
may not be correct. If,during a dc analysis, a more
accurate solution is desired, the following proce-
dure can be used.
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ALTER
END

This does not change the circuit but does allow at
least four more iterations to occur.

In the general version of BIAS-D, several
system-dependent subroutines have been com-
mented out. These routines are OPNFL, CLSFL,
GRAPH, IPACK, and SECND. Although BIAS-D will
run without these routines, their implementation is
desirable. A summary of these subroutine functions
is as follows.

OPNFL

CLSFL Permits storage and retrieval of disc
files.

GRAPH Permits graphical output on any refresh
graphics or storage tube graphic
terminal.

IPACK Permits use of two-character element
names.

SECND Gives elapsed execution times.

E-4. BIAS-D SOURCE LISTING (FORTRAN)

A listing of the FORTRAN version of BIAS-D is
given here. This version of BIAS-D will run on a
PDP 11/45, an HP2100 (HP21MX), a PRIME 400,
and an IBM 370/168 with few source code
changes. These changes are primarily concerned
with individual computer system features such as
timing, file management, etc.
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¥% CBIASO ®RRRRRXKEXKXR BIAS-D  RRRREIK *
MINICOMPUTER AIDED ELECTRONRIC €IRCUIT ANALYSIS PROGRAM
BIAST10 (*TEST10) 10-11-77
UPDATED 11-4-7?7, 10-3-78
DYNAMIC ELEMENT ALLOCATIOR (LINKED-LIST)
DOUBLE PRECISION LU DECOMPOSITION
AC ANALYSIS- STANDARD METHOD USING COMPLEX MATRIX
SPARSE MATRIX INVERSIOR
ELEMENT MODELS
SPARSE STORAGE OF Y MATRIX

PROGRAM BIAS-D IS AVAILABLE AT NO CHARGE. THE WORD ORIENTED

STRUCTURE OF BIAS-D PERMITS IT TC BE RUN ON ANY COMPUTER

SYSTEM SUPPORTING ANSII STANDARD FORTRAN IV WITH CAPABILITY OF
REAL/INTEGER WORDSIZE RATIO OF TWO.

INQUIRES SHOULD BE SENT TO THE AUTHOR:

BRIAN L. BIEHL
HARRY DIAMOND LABS
2800 POWDER MILL RD.
ADELPHI, MD. 20783

(202) 394-3192

R AR KRR R RE R KRR RRK KR RE R KRR KRR REAR KRR IR NR R

AOOOOOOOOOO00000000000000

INTEGER VI, @1
INTEGER%*2 IELM
DOUBLE PRECISIOR V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(D,YI(1D)
DIMENSION ILC(1), ILRC1) ,RELM(1)
DIMENSION IBQ(12), IMQ(6), IDQ(B) , IDATE(3) ,LEN{9)
cormMoN u,C,Y,DS,DELT,DELTA
COMMON To, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KX,LL, MM, NN, IFLG,JFLG, ITT, ITER, IV, IR, IDISC, JTNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS , MXLOC, NDMAX, NODE, RNODE, IERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),NI(30,2), IELN(9), IFRST(9), ILAST(9) , IELM( 10600}
COMMOR IUR(30),IUC(120), IPOS(400) ,NCON(30)
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1)},
& (IELM(1) ,RELM( 1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),{Y(300),YI(1))
EQUIVALENCE ( IELK(6),V1),(IELN(?},M1), (IELN(4),QD)
DATA 1B@-1HR, 1HC, 1HL, 18@, 18I, 1HV, 1HM, 1HE, 18%, 1H, , 1H+, 1H ~
DATA ID@-1HA, 1HI, 1HP, 1HT, 1HE, 1HS, 1HG, 1HL”
DATA IMQ-/1HN, 1HT, 1HS, 1HE, 1HP, 1BU/
DATA LEN/8, 12,12,16,8,8,20,0,0/

IFLG VALUES IEL VALUES
1~ INITIAL DC ANALYSIS 6- SWEPT ALTER 1~-RESISTOR 3-CURRENT SOURCE
2~ ALTER 7- SAVE CIRCUIT 2-CAPACITOR 6-VOLTAGE SOURCE
INSERT 0- SMALL SIGNAL GAIN 3-INDUCTOR 7-MODEL
4~ PRINT CIRCUIT 9~ AC ANALYSIS 4~-BJT

5- TRANSIENT ANALYSIS 10~ TEMPERATURE ANALYSIS

—AOOOO000
s
1

00 CALL INITL
CALL CLOCK(ETIM, IDATE)
WRITE( IV, 101) IDATE
101 FORMAT( 1X, 10( 1H0*) ,21H BIAS-D (11-04-77) ,10(IH%),
8 6HDATE: ,A2,1H/,A2,2H/7,A1/20X,5(1H-),8H TEST10 ,5(I1H-)//)
140 WRITE( IV, 141)
141 FORMAT( 11H INPUT DATA)
ITOTL=0
NUNIT= IR
CALL CLOCK(ETIM, IDATE)
CALL SECND(TIMI)
130 READ(NUNIT, 151) IAQ
151 FORMAT(80A1)
LL=1
IF(1AQ( 1) .EQ.1B@(12)) LL=2
DO 180 I1EL=1,12
IF(IAQ(LL) .EQ. IBQ(IEL))GO TO 230
180 CONTINUE
200 WRITEC(IV,201)
201 FORMAT(23H ILLEGAL CHARACTER: RE-)
GO TO 140
220 IFLG=4
GO TO 149
C .... DETERMINE ELEMENT TYPE
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230  IFC(IEL.LT.8)GO TO 260
1= 1EL-7
GO TO(1849, 150, 1296, 150,150) , 1
260 IF(IFLG.EQ.2)G0 TO 1330
ITT=LPOS+1
CALL INPUT
1LAST(1EL) =LFOS
IF(LPOS.LT.IMLST) €O TO 280
270  VRITE(1W,271)
271  FORMAT(23H ELEMENT ARRAY OVERFLOW )
GO TO 220
280 IF(IEL.EQ.7) GO TO 899
LPOS=LPOS+LEN( 1EL)
C .... REPROCESS UNGROUNDED OR NEGATIVE VOLTAGE SOURCES
300 IFC(1EL.NE.6)GO TO 150
IF(AC1) .NE.0.)GO TO 450
IELMC ITT+6) = A( 2)
TIELMC ITT+7)=0
1TT= 1TT/2
RELM( ITT+8) =~A(3)
GO TO 150
450  1F(A(2).EQ.0.)GO TO 136
WRITEC IV, 461)
461  FORMAT( 23H SOURCE UNGROUKNDED: RE-)
V1=Vi-1
GO TO 140
C .... PROCESS FMODELS
890  ITT=LPOS
MNUM= VAL(LL+1)
1ELM( LPOS+3) = MNUM
C .... ENTRY POINT FOR ALTERD MODEL
C .... SKIP LEADING BLANKS
9006  IF(1AQ(LL).NE.IBQ(12))GO TO 910
LL=LL+1
IF(LL.GT. 12) GO TO 260
50 TO 960
916  1=LL
LL=LL+4
CALL RDFLD
IFCIDI.LT.®) GO TO 940
C .... CHECK IF LEGAL MODEL TYPE
DO 930 M=1,5
IFCIAQCD) ,EQ. IMQ(M))IGO TO 960
930  CONTINUE
940  IFC(IFLG.NE.2) M1=MI-1
GO TO 200
960  MPOS=iTT-2
DO 970 K=1,7
KK=MPOS+K+3
RELM(KK) = A¢K)
970  CONTINUE
C .... DETERMINE MODEL TYPE
1=1+1
1F(M.LT.3)G0 TO 1000
M=6
IF(1AQC 1) . EQ. IMQ(6)) M=5
IFC1AQCT) .EQ. IMQC 1)) M=-1
10086 RELM(MPOS+3)=M
1IF(M.EQ.-1)G0 TO 1149
IF(M.EQ.1) GO TO 1146
IF(M.EQ.2) ITEMP= ITT 2
€0 TO 1240
C .... BJT MODEL DEFAULT PARAMETERS
1146 IF(A(1) .EQ.0.) RELM(MPOS+4)=100.
IF(A(2).EQ.0.) RELM{MPOS+5)=1.0
IF(A(3) .FQ.0.) RELM(MP2S+6)=1.0E-15
IF(A(4) .EQ.0.) RELM(MPO5+7)=1.@QEI2
1240 IF(IFLG.EQ.2) GO TO 150
LPOS=LPOS+LEN(7)
GO TO 130
c
C  *xxCIRCUIT UPDATES*x%x
1290 1F(1AQ(LL+1).NE.IDQ(8)) GO TO 1300
c

[ *®xk, LOAD
CALL OPKRFL(IDISC, IV, IR)
HUNIT=1DISC
GO TO 150

1360 1F(1FLG.EQ.1)GO TO 2600
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¢ .... DETERMINE UPDATE TYPE
DO 1320 J=1,7
IF( 1AQ(LL+I) .EQ. IDQ(J))GO TO 1340
1320 CONTINUE
GO TO 200
1340 IFLG=J+1
GO TO (1360, 1400, 1460, 1410, 100, 1478, 1500) ,J

c
C ¥k, AC
1360 IF(IAQ(LL+2).KRE.IBQ(2))GO TO 140

IFLG=9
WRITECIV, I361)

1361 FORMAT(24H VIN FSTRT FSTOP PTS/DEC )
READCIR, ISI) IAQ
TIEL=6
IF(I1AQ(LL) .EQ. IBQ(5)) IEL=S
CALL ALTER
IF(IERR.EQ.0) GO TO 220

C .... INPT CONTAINS STARTING LOCATION OF SOURCE VALUE IN IELNC)
INPT=ITT/2
DO 1370 M=1,4
TM(M) =AM

1370 CONTINUE
GO TO 1665

C

C *%% ., ALTER

1380 CALL ALTER
IFCIERR.EQ.0)G0 TO 140
IFC(IEL.EQ.7) GO TO 900
MPOS=ITT/2
TM(5) =RELM(MPCS+3)
RELM(MPOS+3)=A(1)
IF(IEL.EQ.4)GO TO 200
IF(A(3) .EQ.0.)G0O TO 150

C .... PROCESS SWEPTED ALTER
DO 1390 M=1,3
TH(MD =A(M)

1390 CONTINUE

TM(4) =HPOS
LTYPE= IEL
IFLG=6

GO TO 1663

C

Cc *%%, INSERT

1400 IF(JFLG.EQ.1) GO TO 140
CALL RENUM( ID
IELN(9)=0
GO TO 140

Cc

C *xxx.TEMPERATURE

1410 IF(JAQ(LL+2) .EQ.IBQ(1))G0 TO 1620
IF( ITEMP.NE.®)GO TO 1440
WRITE( IV, 1421)

1421 FORMAT(31H TEMP. MODEL NOT SPLECIF IED*%RE-)
GO TO 140

1440 VWRITE(IV,1441)

1441 FORMAT( 9H T(DEG C))
READ( IR, 151) IAQ
IFLG=10
TEMP=VAL(I)+273.
DTEMP=TEMP-300.0
GO TO 140

c

C *x%%,PRINT CKT

1460 CALL PRCKT
GO TO 140

Cc

C %*%¥%, SAVE CKT ON DISC FILE

1470 CALL OPNFL( IDISC, IV, IR)
IUNIT=IDISC
CALL PRCKT
CALL CLSFL( IDISC)
IUNIT=IW
GO TO 220

c

C x¥x, GAIN

1500 GO TO 220

C .... NOT IMPLEMENTED IN THIS VERSION
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c
c %%, TRANSIENT
1620 WRITE(IW, 1631)
1631 FORNAT(20H "TR" TO TSTOP TSTEP)
READCIR, 151) 1AQ
LL=4
CALL RDFLD
IFCIERR.EQ.-1)GO TO 220
IFCA(3) .EQ.0.)A(3)=(A(2)-AC]))/50.
DELTA=A(3)
TH(2)=A(2)
TO=AC1)
1665 CALL POUT
JOUT=NCONV( 10UT,®,N],NODE)
GO TO 4190

184@ IF(NUNIT.EQ.IDISC) CALL CLSFL(IDISC)
IFC(IFLG.EQ.2) GO TO 4190
IFCIFLG.GE.3) GO TO 4190
IF(IFLG.EQ.4) GO TO 3200
CALL MCHEK
IFCIFRR.EQ.0)GO TO 220

1916 NNODE=NODE-VI
IFCNNODE. LE. NDMAX) GO TO 1930
WRITE(IV, 1921)

1921 FORMAT(20H NODE LIMIT EXCEEDED)

GO TO 220

C .... CHECK FOR URCONNECTED NODES

1950 J=1
DO 2430 1=1,NODE
IF(NICI,I).GT.0) GO TO 2480
WRITECIUNIT, 1961) NI(1,2)

1961 FORMAT(28H ONLY ONE CONNECTION AT FODE, 12)
J=0

2480 CONTINUE
IF(J.EQ.0) GO TO 220
CALL POUT
WRITE( IUNIT, 101) IDATE
CALL PRCKT
WRITE( IV, 2491) NODE

2491 FORMAT(7H NODES:, 14)

WRITECIUNIT, 2511)
2511 FORMAT(//23H *xxx END OF INPUT DATA %¥Xx//)
c

CALL SECND(TIM2)
CALL SETUP
IFCIERR.EQ.-2) CO TO 270
TEMP=300.
IO 4180 I=1,XNODE
v(I1)=0.D0
U(1)=9.D0

4180 CONTINUE

4190 DELT=1.0DI2
CALL SECNKD(TIM3)
IF(IFLG.NE.9) GO TO 4500
CALL ACSOL
GO TO 4600

4500 CALL ANALY

4600 CALL SECND(TIM4)
CALL CLOCK(ETIM2, IDATE)
IFCIPLT.EQ.0)GO TO 4700

Cc CALL EXITGR
c K=IVAITG(2)
IPLT=0

4700 TIM1=TIM2-TIM1
TIM2=TIN3-TINM2
TIM3=TIM4-TIM3
ETIM=ETIM2-ETIM
IF(JFLG.EQ. 1> WRITE( IUNIT,4801) TIMI1, TIM2
4801 FORMAT(//6X, IBH READIN TIME(SEC):,FI2.3/
8 TX,I7H SETUP TIME(SEC):,FI2.3)
WRITE( IUNIT,4901) TIM3,ETIM
4901 FORMAT(4X,20H ANALYSIS TIME(SEC):,F12.3//
8 25H TOTAL ELAPSED TIME(SEC):,F12.8/)
IF(JFLG.NE. I) WRITE( IUNIT, 5601) ITOTL
5001 FORMAT(18H TOTAL ITERATIONS=,110)
TO=0.
JFLG=IFLG
IFCIUNIT.EQ. IDISC) CALL CLSFL(IDISC)
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IURIT=1IW
GO TO 220
5200 STOP
END
FUKCTION INDX(RKR,NC)
INTEGER%2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA, DELT,DS,VI(1),CI(1),YI(1)
DIMENSION ILC(1), ILR(1),RELM(1)
DIMENSION IORDR( 1)
COMMON U,C,Y,DS,DELT, DELTA
COMMON T@, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT, TYFE
COMMON IEL,.JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON IMMLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON 1AQ(30) ,N1(30,2),IELN(9), IFRST(9), ILAST(9), IELM( 1600)
COMMON 1UR(30), 1UC(120), IP0S(400) , NCON(30)
EQUIVALENCE (IURC1),ILC(1)),(IUCC1), ILR(D)),
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y¥(300),YI(D))
EQUIVALENCE(NI(1,1), IORDR(1))

.... DETERMINE LINEAR Y ADDRESS LOCATION FROM Y(I,J)
Y(.,.) ADDRESS
MODIFIED FROM SINC-S8 6-6-77
IF(NR.EQ.NC) GO TO 190
IS=NCON(NR)
J8&=NCON(NC)
IF(JS.GT.IS) GO TO 130
C .... LOWER TRIANGLE
N=ILC(JS
NE=ILC(JS+1)
115 IF(N.GT.NE) GO TO 183
IF(NR.EQ. ILR(N)) GO TO 125
N=N+1
GO TO 115
125 INDX=N+NODE
NN=N+MLOC
RETURN
C .... UPPER TRIANGLE
130 N=IURCISY
NE=IUR(IS+1)
135 IF(N.GT.NE) GO TO 185
IF(NC.EQ. IUC(N)) GO TO 145
N=HN+1
GO TO 135
145 IND¥=N+MLOC
NN=K+NODE
185 RETURN
C .... DIAGONAL LOCATION
190 INDX=NR
NN=NC
RETURN
END
SUBROUTINE INITL
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
GOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YIC1)
DIMENSION ILG(1), ILR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T@, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL, M, NN, IFLG, JFLG, ITT, 1TER, IV, IR, IDISC, IUNIT
COMMON 1PLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT,JOUT, INPT, IFORM
COIMON MXLST, MXPOS, MXLOC, NDMAX, NODE, KNODE, 1ERR, MLOC, KPOS, LPOS
COMIMON 1AR(80),NI(30,2), IELN(9), IFRST(9), ILAST(9) , IELM( 1000)
COMMON IUR(30), IUC(120), IPOS(408) , NCON(30)
EQUIVALENCE (IUR(1), ILCC(1)),(IVCC(D),ILR(1)),
8 (IELM(1),RELM(1))
EQUIVALENCE (G(1),V(1)),(C(30),CI(1),VI(1)),(Y(300),YI{D))

anaon

C
C .... INITIALIZE READ/WRITE URITS

Iw=1

IR=1

IDISC:ES

IURIT=1IW

LPOS=0

MHLST= 1000
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KDMAX=30
C .... INITIALIZE ELEMENT COUNTERS
DO 110 K=1,9
IELN(K)=0
110 CONTINUE
DO 140 K=1,MXLST

IELM(K) =9
140 CONTINUE
NODE=90
ITEMP=0
DTEMP=0.
ITER=0
IPLT=0
NI(1,2)=0
IFLG=1
JFLG=1
TO=0.
RETURN
END
SUBROUTINE MCHEK
€ .... CHECK FOR UNDEFINED MODELS AND STORE
[ LOCATIOR OF MODEL WITH ELEMENT
INTEGERX2 1ELM
DOUBLE PRECISION V(60),U(36),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YIC1)
DIMENSION ILC(1),ILRC1),RELM( 1)
COMMON U,C,Y,DS,DELT, DELTA
COMMON Te, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL, MM, KN, IFLG, JFLG, ITT, 1TER, IV, IR, IDISC, IONIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOG, KPOS, LPOS
COMMON 1AQ(80),N1(30,2),1ELN(9), IFRST(9), ILAST(9) , IELM( 1000)
COMMON IUR(30),I1UC(120), IPOS{400) ,NCON(30)
EQUIVALENCE (IUR(1),ILCC(1)),(IUCC1), ILR(1}),
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y(300),YI(1))
EQUIVALENCE ( IELN(7),M1)
[

IERR= 1
DO 300 IEL=1,6
K1=IELN( IEL)
IF(K1.EQ.0) GO TO 300
KPOS= IFRST( 1EL)
DO 200 J=1,K1
I{= IELM( KPOS+3)
IF(M.EQ.0) GO TO 190
MPOS= IFRST(7)
DD 50 K=1,M1
N= IELM(MPOS+3)
IF(N.NE.M) GO TO 40
IELM(KPOS+4) =MP0S/2
GO TO 190
40 MPOS= IELM( MPOS+1)
50 CONTINUE
95 WRITE( IW,91)M
91 FORMAT(9H MODEL: M, I11,12H NOT DEFINED)
IERR=9
190 KPOS= IELM( KPOS+1)
200 CONTINUE
300 CONTINUE
RETURN
END
SUBROUTINE INPUT
C .... CONTROLS READING OF INPUT DATA
INTEGER*2 IELM, LHALF
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CIC1),YIC1)
DIMENSION ILC(1), ILR(1),RELM(1)
COoMMON U,C,Y,DS,DELT,DELTA
COMMON To,TEMP,DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
€0MroN 1EL, 3J, KX, LL, MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, 1IURIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, 1FORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(86),NI(30,2),1ELN(9), IFRST(9), ILAST(9), 1ELM( 1000)
COMMON IUR(30), ITC(120), IPOS(400) , NCON( 30)
EQUIVALENCE ( IUR(1),ILCC(1)),(1UCC1),ILR(1)),
8 (IELM(1),RELM(1)),(L,LHALF)
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EQUIVALENCE (C(1),V(1)),(C(38),CI(1),VI(1)),(Y(3e8),YI( 1))

K1=IELNC IEL)+1
IF(K1.GT.1) GO TO 2460
IFRST( IEL) =LPOS
GO TO 2500
2400 KPOS=ILAST(IEL)
1IELM{ KPOS+1) =LPOS
2500 L=IPACK(1AQ,LL+1)
IELM{ LPOS+2) =LHALF
IFCIEL.EQ.7) GO TO 3400
C .... READ INPUT DATA
LL=LL+3
2600 CALL RDFLD
IF(MM.GE.0) GO TO 27ee
K1=Ki1-1
GO TO 3400
2700 18=2
IFC(IEL.NE.4) GO TO 2800
18=3
2800 DO 3166 L=1,IS
11=ACL)
IF(I1.EQ.0)GO TO 3100
C .... DETERMINE UNIQUE NODE NUMBERS
DO 2960 M=1,NODE
1F(11.EQ.N1(M,2))G0O TO 3600
2966 CONTINUE
NODE=NODE+1
NI(KODE,2)=11
GO TO 3100
30600 NI(M,1)=1
3106 CONTINUE
TELM(LPOS+7)=A(1)
IELM( LPOS+8) = A(2)
IF( IEL.RE.4)GO TO 32ee
IELM(LPOS+3) =A(3)
GO TO 3350
3200 IF(A(3).CT.0.)GO TO 3300
IF(IEL.LT.5)A(3)=~A(3)
3300 MPOS=LPOS/2
RELM(MPOS+3) =A(3)
3350 IELM(LPOS+3)=A(4)
3400 IELN(IEL)=K1
RETURN
END
SUBROUTINE RDFLD
C .... READ DATA FIELD
INTEGER%2 IELM
DOUBLE PRECISION V(66),U(36),C(66),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1?»,CIC1),YIC1)
DIMENSION 1LC(1), ILR(1) ,RELM(1)
COMION U,C.Y,DS,DELT,DELTA
COMMON Te, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE

COMMON
COMMON
COMMON
COMMON
COMMON

1EL,JJ,KK,LL, MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, fUKIT
IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM

MYLST, MXPOS , MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
1AQ(86) ,N1(36,2),IELN(9), IFRST(9), ILAST(9) , IELM( 10006)
1UR(30), 1UC( 120) , IPOS(460) ,NCON(30)

EQUIVALENCE ( IUR(1),ILC€1)),(IUCC1), ILR(1)),
8 (IELM(1) ,RELM(1))
EQUIVALENCE (C(1),V(1)),(C(36),CI(1),VI(1)),(Y(306),YI(1))

Cc
C .... KK IS FIELD POINTER
Cc LL IS COLUMN POINTER

DO 1000 KK=1,8
A(KK)=0.

10006 CONTINUE
DO 1106 KK=1,8
ACKK) =VAL(LL)
IF(MM.LE.1)GO TO 1200 *®

LL=LL+1

1100 CONTINUE

1266 RETURN
END

SUBROUTINE PRCKT

C .... PRINT

INPUT DATA

INTEGER*2 1ELM
DOUBLE PRECISION V(66),U(30),C(69),Y(600)

94



10
21

30
41

50
61

k{}
81

90
101
110

120
131

141
150

170
181

191
200

210
221

291
300

DOUBLE PREC1SION DELTA,DELT,DS,VI(1),CI(1),YIC1)
DIMENSION ILC(1),1LR(1),RELM(1)
DIMENSION ITYPE(14),NAME(10)
comMoN U,C,Y,DS,DELT,DELTA
COMMON To, TEMP, DTEMP
COMMON TM(6) , A(8) ,CSAT, VT, VCT, TYPE
COMION IEL,JJ,KX,LL, MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, 1TOTL, 10UT, JOUT, INPT, IFORM
COMIMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),NI1(30,2),ELN(9), IFRST(9), ILAST(9), IELM( 1000}
COMMON IUR(36), IUC(120), IPOS(400) , NCON(30)
EQUIVALENCE (IUR(1),ILC(1)),(1UC(1),ILR(1)),
& (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y(300),YI(1))
DATA ITYPE/2H P,2HNP,0,0,2H N,2HPN,2H T,2HEM,2H S,2HIN,2H E,
1 2HXT,2H P,2HUL/
DATA NAME/1HR, 1HC, 1HL, 1HQ, 1HI, IHV, 1HM, IH , 1H+, IH-/

DO 300 I=1,7

K1=IELN(CI)

IF(K1.EQ.0)GO TO 300

KPOS=IFRST( I)

IPLUS=NAME(8)

MINUS=NAME(8)

GO TO (10,30,50,170,70,90,210),1

WRITE(IUNIT,21)

FORMAT(/1H , 11H*RES ISTORS:)

GO To 120

WRITE( IUNIT, 41>

FORMAT(/1H , 12H*CAPACITORS:)

GO TO 120

WRITE(IUNIT,61)

FORMAT(/1H , 11HX INDUCTORS:)

GO To 120

WRITE( IUNIT, 81)

FORMAT(/1H , 17H*CURRENT SOURCES:)

GO TO 110

WRITE(IUNIT, 101)

FORMAT(/1H , 17H¥VOLTAGE SOURCES:)

IPLUS=NAME(9)

MINUS=NAME( 10)

WRITE( IUNIT, 131) IPLUS, MINUS

FORMAT(1H ,5HxNAME, 1X,A1,5HNODES, A1,4X, 5HVALUE, 83X, 5HMODEL}

Do 150 J=1,K1

MPOS=KP0OS/2

WRITE( IUNIT, 141)NAME( 1), IELM(KPOS+2) , IELM(KPOS+7) , IELM( KPOS+8) ,
8 RELM(MPOS+3) , IELM(KPOS+3)

FORMAT(1H ,A1,A2,214,613.3,2X, 1HM,I1)

KPOS=1ELM(KPOS+1)

CONTINUE

GO TO 300

WRITE(IUNIT, 181)

FORMAT(/1H , 13H*TRANSISTORS:/1H ,25HxNAME C B E  MODEL)

DO 260 J=1,K1

WRITECIUNIT, 191)NAME( I) , IELM(KPOS+2) , IELM(KPOS+7) , IELM(KPOS+8) ,
8 IELM(KPOS+5), IELM(KP0OS+3)

KPOS= IELM(KPOS+1)

FORMAT(1H ,A1,A2,314,4X,1HM,11)

CONTINUE

GO TO 300

WRITE( IUNIT,221)

FORMAT(/1H ,BH¥*MODELS:/1H , 10HXNAME TYPE)

Do 300 J=1,K1

MPOS=KPOS/2

K= 2¥RELM( MPOS+3) +3

KK=MPOS+4

LL=KK+7

WRITE( IUNIT, 291) NAME(7) , IELM(KPOS+2) , ITYPE(K) , ITYPE(K+1),
& (RELM(JJ),JJ=KK,LL)

KP0OS= IELM(KPOS+1)

FORMAT(1H ,A1,A2,2X,2A2,7610.3)

CONTINUE

RETURN

END

SUBROUTINE ALTER

C .... FIND ALTER ELEMENT

INTEGER*2 IELM, KHALF
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YI(1)
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DIMENSION ILC(1),ILR(1),RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) , A(8),CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL,MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IORIT
COMMON IPLT, IPEN,LTYPE, ITEMP, 1TOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LFOS
COMMON 1AQ(80) ,NI(36,2),1ELN(9),1FRST(9), ILAST(9), 1ELM( 1000)
COMMON IUR(30), 1UC( 120) , IPOS(400) ,NCON(30)
EQUIVALENCE (1UR(1), ILC(1)),(IUC(1),ILR(1)),
8 (1ELM(1),RELM(1)), (K,KHALF)
EQUIVALENCE (C(1),V(1)),(€(80),CI(1),VI(1)),(Y(300) ,YICLY?
(o]
C .... ITT CONTAINS FIRST LOCATION OF ALTERED ELEMENT IN IELM
IFRR=1
K1=1ELN( IEL)
ITT= IFRST( IEL)
K= 1PACK( 1AQ, LL+1)
Do 36020 1=1,Kl1
IF( IELM( 1TT+2) .EQ. KHALF) GO TO 3030
ITT=1ELMC ITT+1)
3020 CONTINUE
WRITE(1W,3031)
3031 FORMAT(22H ELEMENT NOT FOUND RE-)
IERR=0
GO TO 3070
3050 LL=LL+3
IF(IEL.EQ.7> GO TO 3070

CALL RDFLD
3070 RETURN
END
FUNCT10N VAL(LOC1)
C .... DETERMINE VALUE OF FIELD

INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YIC1)
DIMENSION ILC(1),1LR(1),RELM(1)
DIMENSION SUF1X(5), ICHAR(22)
coMHoN U,C,Y,DS,DELT,DELTA
COMMON T@,TEMP,DTEMP
COMMON TM(6) . A(8) ,CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL,MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, ITRIT
COMMGN 1PLT, IPEN,LTYPE, 1TEXP, ITOTL, IOUT, JOUT, INPT, IFORM
COMION MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS,LPOS
COMMON 1AQ(80) ,NI(30,2), IELN(9), IFRST(9), ILAST(9), 1ELM( 1900)
COMMON IUR(30), IUC( 120) , IPOS{ 400) , NCON(30)
TQUIVALENCE (1URC1Y, ILCC1)), (IUGC 1), 1ILR(1)),
8 (1ELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(80),CI(1),VI(1)),(Y(300) Y YIC1))
DATA 1CHAR-1HO, 1H1, 1H2, 1H3, 1H4, 1H5, 1H6, 1H7, 1H8, 1HI,
1 18 .1H., 1HE, 1H-, 1H+, 1H, , 1HM, 1HP, 1HN, 1HU, 1HK, 1HG~
DATA SUF1X/1.E-12,1.E-9,1.E~6,1.E3,1.E9/

VALUE OF MM (RETURNED)
-1 ILLECAL CHARACTER 1 MODEL
@ BLANK FIELD 2 VALID FIELD

SIGN=1.0
MP=1
1S=0
1c=0
I1INT=0
IEXP=0
FRAC=0.
EMULT=1.0
NBLNK=0
MM=0
J1=0
VAL=0.0
DO 140 LL=LOC1,89
I1=TAQ(LL)
C .... DETERMINE CHARACTER

Do 20 J=1,22

IF (11.EQ.ICHAR(J)) GO TO 30
20 CONTINUE

GO TO 130
30 R=1
J=J-1
IF(J.LE.9) GO TO 49
1F(J.GT.16)G0 TO 136

nono
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N=)-8

40 GO TO (50,135,990,1600,110, 146,150, 125,130) ,N

50 Ji=1
1F(18)60,70,860

C .... EXPONENT PART

60 1EXP= 1EXP* 10+J

GO TO 140
C .... INTEGER PART
7o 11NT=11NTx10+J
GO TO 146

C .... FRACT10N PART
80 IC=1C+1

8=J
FRAC=FRAC+S/PW10(1C)
GO TO 140

C .... DECIMAL POINT

90 18=1
GO TO 140

C.... E

1006 IF(EMULT.EQ.1.0)G0 TO 105
EMULT=1.0E6
GO TO 140

1935 I1S=-1
GO TO 140

C .... MINUS
110 IF(J1.KE.0)GO TO 115

SIGN=-1.0
GO TO 146
115 =-1
GO TO 140
C .... MODEL
125 IF(J1.GT.0)GO TO 126
MM=1
GO TO 140
126 EMULT=1.E~3
GO TO 1490
C .... ERROR

130 WRITE( 1W, 131) 11
131 FORMAT(19H 1LLEGAL CHARACTER-, 42)
MM=-1
GO TO 180
C .... ALLOW FORM 1E XX (OR 1EXX OR 1E+X¥
135 1F(1S.LT.0.AND. IEXP.EQ.0) GO TO 140
IF(J1.CT.0) GO TO 150
C .... COUNT LEADING BLANKS
IF(NBLNK.GT.?) GO TO 138
NBLNK=NBLINK+ 1
GO TO 140
136 1F(J1.EQ.0)GO TO 130
NN=J-16
EMULT=SUF 1X(NN)
GO TO 140
138 IMM=0
GO TO 186
149 CONTINUE
WRITE( IW, 141)
141 FORMAT(36H MAXIMUM F1ELD LENCTH EXCEEDED)
GO TO 180
156 J=MP*x EXP
VAL=1INT
VAL= S1GN*( VAL+FRAC) *PW10(J) xEMULT
IF(MM.NE. 1) MM=2
186 RETURN
END
FUNCT10N PW16(K)
C .... GENERATE POWER OF TEN

PWie=1.0

1F(K) 15,30,5
4] DO 106 I=1,K
10 PWi0=PW10*10.0

RETURN
15 ==K

DO 20 1=1,K

20 PW10=PVW16-/10.0

36 RETURN
ERD
FUNCTION NCONV(K,M,NI,NODE)

C .... DETERMINE ELEMENT NODE FROM TABLE
DIMENS10N N1(30,2)

97

APPENDIX E



APPENDIX E

C M=0 CONVERT ORIG. NODE TO RENUMBERED NODE
Cc M=1 CONVERT RENUMBERED. NODE TO ORIG. NODE
IF(M.EQ.I) GO TO 300
DO 100 J=1,NODE
IF(K.EQ.NI(J,2)) GO TO 200
100 CONTINUE
GO TO 400
200 NCONV=J
w0 TO 400
300 NCONV=NI(K,2)
400 RETURN
END
SUBROUTINE POUT
C .... SET UP PRINT OR PLOT OUTPUTS
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VICI),CICI),YICI)
DIMENSIOR ILC(1), ILRCI) ,RELM(1)
DIMENSION IBQC(1D)
COItioN v,C,Y,DS,DELT,DELTA
COMNMON T@,TEMP,DTEMP
COMHMON TM(6),A(8),CSAT, VT, VCT, TYPE
CcoMMON IEL,JJ,KK,LL,MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT’
comMoN IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC , KPOS, LPOS
CONMON IAQ(80) ,N1(30,2), IELN(9), IFRST(9), ILAST(9), IELM( 1600)
COMMON 1UR(30), IUC(120), IPOS(400) ,NCON(30)
EQUIVALERCE (IURCI), ILCC(1)),(IUCC1),ILRCI)),
& (IELM(I) ,RELM(I))
LQUIVALENCE (C(I),V(1)),(C(30),CI(I),VIC(I)),(Y(300),YI(I)}
DATA 1BQ/1HR, 1HC, IHL, 1HQ, IHI, IHV, IENM, 1HE, IHT, 1HP, 1H ~
DATA I1DB/2HDB/

IFORM=0
IFCIFLG.LT.3) GO TO 330
WRITE( IUNIT, 141)
141 FORMAT(9H OUTPUTS: 32H VXX PRT/PLO XMIN XMAX VMIN VMAX)
READ(IR,151) IAQ .
151 FORMAT(80A1)
10UT=VAL(2)
I=LL+1
LL=8
CALL RDFLD
IF(IM.EQ.~-1) GO TO 400
IFCIFLG.EQ.2) IFLG=6
IF(IAQ(T) .EQ.IBQ(11)) I=1+1
IF(1AQC(1) .NE. IB@(10)) GO TO 340
I1=1+1
IF(TAQ(I).RE. IBQ(3)) GO TO 330
C .... PLOT DEFAULT: USE LAST PLOT SCALES IF PRT/PLO NOT SPECIFIED
C .... PLOT OUTPUT
200 KPOS=MXLOC~2
DO 290 1=1,6
K=KPOS+1
RELM(K) =A(I)
290 CONTINUE
c
C .... AC PLOTS
IFCIFLG.KE.9) GO TO 310
LTYPE=2
IFC(ACD) .EQ.0.) A(D=TM(D)
IF(A(2) .EQ.0.) A(2)=TM(2)
RELM(KPOS+1) =ALOG(A( 1)) %0, 434294
RELM(KPOS+2) =ALOG( A( 2)) %0, 434294
C .... ITT=1 OUTPUT DB GAIN. ITT=2 , OUTPUT PHASE.
ITT=TM(4)
GO TO 340
c
C .... TRARSIENT PLOT DEFAULT
31e IFCIFLG.RE.5) GO TO 320
LTYPE=4
IF(A(2) .EQ.0.) RELM(KPOS+2)=TM(2)
IF(A(4) .EQ.0.) RELM(KPOS+4)=20.
GO TO 340
c
C .... SWEPT ELEMENT PLOT DEFAULT
320 IFCAC1).EQ.0.) RELM(KPOS+I)=TM(1)
IF(A(2) .EQ.0.) RELM(KPOS+2)=TM(2)
IF(A(4) .EQ.0.) RELM(KPOS+4)=20,
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340 IPLT=1
CALL GRAPH
GO TO 460
C .... PRINT OUTPUT
350 IPLT=0
C ... DETERMIRE OUTPUT PRINT DEVICE

WRITE(IW,351)
351 FORMAT(26H OUTPUT TO: TTY(0) DISC(1))
READ(IR,353) IFORM
353 FORMAT(110)
IF(IFORM.EQ.0) GO TO 366
360 CALL OPRFL(IDISC, IV, IR)
IUNIT=1IDISC
C .... AC PRINT
366 IFCIFLG.NE.9)G0O TO 370
1AQ(1) =1BQ(7)
IFCITT.EQ.1) 1AQ(1)=1IDB
WRITE(IUNIT,369) 1AQ(1) , IOUT, 10UT
369 FORMAT( 3X, 9HFREQUERCY, 5X, 1HV, A1, 12, 5X, 2HVP, 12, 5H(DEG) 748 ( 1H-})
GO TO 400
C .... ALTER PRINT
370 IFCIFLG.NE.6) GO TO 373
T1AQ(1)=1BQ(IEL)
TAQ(2) =IELM( ITT+2)
GO TO 380
C .... TRANSIENT PRINT
3735 IFCIFLG.NE.5) GO TO 490
1AQ( 1) =1BQ(9)
I1AQ(2)=1BaQ(11)
c
380 WRITE(IUNIT,391) 1aAQ(1),I1AQ(2),10UT
39i FORMAT( 13X, 2A1, 15X, 1HV, 12/9X,30( 1H+))
400 RETURN ’
END
SUBROUTINE SETUP
C .... PROCESS CIRCUIT DATA
IRTEGER*2 IELM
INTEGER V1
DOUBLE PRECISION V(69),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI<(1),YI(D)
DIMENSION ILC(1),ILR(1),RELM(1)
DIMENSIOR NSORC(1) ,KCON(1)
COMMON U,C,Y,DS,DELT, DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT, TYPE
coMMoN 1IEL,JJ,KX,LL,MM, NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT,JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),NI(30,2), IELR(9), IFRST(9), ILAST(9), IELM( 1000)
COMMON IUR(30),1UC(120),IP0S(400),NCON(30)
EQUIVALERCE (IUR(1),ILCC(1)},(IUC(1),ILR(1)),
8 (IELM(1) ,RELM(1))
EQUIVALERCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y(300),YI(1))}
EQUIVALERCE (IELN(6),V1),(1AQ(1>,NSORC(1)),(NI(1,2),KCONC(1))

c
C .... INITIALIZE NODE VECTOR
C .... REORDER NODE VECTOR

R=NODE-1
DO 3266 I=1,KN
11=1+1
DO 3260 J=I1,NODE
IF(KCON(I).LT.KCON(J)) GO TO 3200
M=KCOR(J)
KCOR(J)=KCOR(I)
KCOR(I) =M

8260 CORTINUE
IF(V1.EQ.0) GO TO 3440

C .... RENUMBER VOLTAGE SOURCE NRODES
KPOS=IFRST(6)
DO 3300 I=1,V1
K= IELM(KPOS+7)
RSORC(I)=NCONV(K,0,NFI,NODE)
KPOS= IELM(KPOS+1)

3306 CONTINUE

Cc

C .... MOVE SOURCE NODES TO END OF KRODE VECTOR

N=NODE
KPOS=IFRST(6)
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DO 3440 I=1,VI
K=NSORC( I)
IF(K.EQ.N) GO TO 3430
IF(K.CT.NNODE) GO TO 3435
TI=1+1

3350 DO 3400 L=11,VI
IF(NSORC(L) .NE.N) GO TO 3400
N=N-1
€O TO 3350

3400 CONTINUE
M=KCON(K)
KCON(K) =KCON(N)
KCOR(N) =M

3430 N=N-1

3435 Kros=IELM(KPOS+1)

3440 CONTINUE

C .... RENUMBER ELEMERT NODES
CALL RENUM(0)

+++. GENERATE INCIDENCE MATRIX FOR NODE REORDERING
CALL INDMT
-+ DETERMINE REW NODE ORDER AND SET UP SPARSE POINTERS
CALL NORDR

a0 O a0

+++. REDUCE VOLTACE SOURCES TO CURRENT EQUIVALENTS
IF(V1.EQ.0) GO TO 3920
CALL EQUIV '
MXLOC=LPOS

3920 RETURN

END
SUBROUTINE INDMT
C .... ROUTINE TO LOAD INCIDENCE MATRIX FOR NODE REORDERING
INTEGER*2 IELM

DOUBLE PRECISION V(60),U(30),C(60),Y(600)

DOUBLE PRECISION DELTA,DELT,DS,VICI),CI(D),YIC1)

DIMENSION ILCC(1),ILR(I),RELM(I)

DINEASION 1Y(30,30)

COMMON U,C,Y,DS,DELT,DELTA

COMMON TO,TLCMP, DTEMP

COMMON TM(6) ,A(8),CSAT, VT, VCT, TYPE

COMIMON 1EL, JJ,KK,LL,MM, NN, iFLC, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT

COMMON IPLT, IPEN, LTYCE, ITEMP, ITOTL, 10UT, JOUT, INFT, IFORM

COMHMON MXLST, MXPOS, MXLOC, NDMAX, NOI'T, NNODE, IERR, MLOC, KPOS, LPOS

COMMON 1A2(30),NI(30,2),1ELN(9), IFRAST(9), ILAST(9) , IELM( 1009)

COMHON IUR(30) ., IUC(120), IPOS(400) ,NCON(30)

EQUIVALENCE (IUR(D),ILC(I)),(IUCC1),ILR(1)),

8 (IELM(1),RELM(1))

EQUIVALENRCE (C(I),V(I}),(C(30),CI(1),VI(I)),(Y(300),YI(1))

EQUIVALENCECY(1),IY(1,1))

Cc

Cc

C .... CLEAR IY MATRIX
DO 100 I=1,NNCDE
DO 160 J=1,KNODE
IY(1,J)=9

160 CONTINUE

Cc

C ..., LOAD INCIDERCE MATRIX
DO 300 IEL=1,5
KI=IELN(IEL)
IF(K1.EQ.0) GO TO 300
KPOS= IFRST( IEL)

DO 200 J=1,KI

KX= IELM(KP0S+7)

LL= TELM(KPOS+8)
IF(KK.EQ.0) GO TO 116
IT(KK,KK) =1
IF(LL.EQ.6) CO TO 120
IY(KK,LL)=1
IY(LL,KK)=1

110 IY(LL,LL) =1

120 IF(IEL,NE.4) CO TO 180

C .... ADD BJT'S
M= IELM(KPCGS+5)
IF(MHM.EQ.0) GO TO 180
IF(KK.EQ.0) GO TO 130
TY(KK, MM =1
IY(MM,KK) =1

130 IF(LL.EQ.0) CO TO 140
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IY(MM,LL)=1
IY(LL, MM =1
140 1Y(MM,MM)= 1
180 KPOS= IELM(KPOS+1}
200 CONTINUE
300 CONTINUE
RETURN
END
SUBROUTINE NORDR
C .... ROUTINE TO OPTIMALLY ORDER NODES USING
c NON~ZERO OFF-DIAGONAL TERMS (REF. BIAS-N)
c 5-18~77
INTEGER*2 IELM
DOUBLE PRECISION V(69) ,0(30),C(60);Y(600)
DOUBLE PRECISION DELTA.DELT,DS.VI(l).Cl(l).YI(l)
DIMENSION ILC(1),1LR(1),RELM(I)
DIMENSION I1ORDR(1), IROW(I),1Y(30,30)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO, TEMP , DTEMP
COMMON TM(6) , A(8) ,CSAT, VT, VCT, TYPE
CONMON lEL.JJ.KK.LL.HM.NN.lFLG,JFLG.ITT.ITER.IW.IR,IDISC,IUNIT
COMMON lPLT.IPEN.LTYPE.lTEMP,lTOTL.lOUT.JOUT.INPT,IFORH
COMMON HXLST.MXPOS,HXLOC.NDHAX.NODE.NNODE.IERR,MLOC,KPOS,LPOS
COITMON IAQ(BO).Nl(30.2).1ELN(9).IFRST(9).1LAST(9).IELH(1000)
COMMON IUR(30) , IUC( 120) , IPOS(400) , NCON(30)
EQUIVALENCE (IUVRCD), ILCC 1)), (TUCCD) , ILRC1)),
8 (IELM(1),RELM(I))
EQUIVALENCE (C(l).V(l)).(C(30).Cl(l).Vl(l)),(Y(SOO).Yl(l))
EQUIVALENCE(NI(I,l).IORDR(I)).(V(I).IBOW(I)).(Y(l),lY(l,l))

NMI=NNODE~1
nps=0
NCT=0
IF(NNODE.EQ. 1) GO TO 30
DO 10 I=1,NODE
IORDR(I)=1
10 CONTINUE
KnNT=0
C .... COUNT NUMBER OF OFF-DIAGONAL FON-ZERO ELEMENTS IN ROWS
DO 20 1=1,NNODE
NCON(I)=1
IROV(I)=0
DO 15 J=1,NRODE
IF(1.EQ.J) GO TO 15
IFCIY(1,J).EQ.0) GO TO IS
IROW( 1) = TROW( D) +1
15 CONTINUE
20 CONTINUE
c
C .... COLUMN AND ROW RENUMBERING AND INDICATOR SETUP
30 1U=1
c IL=1
IFILL=0
IF(NNODE.LE. 1) GO TO 195
DO 190 I=I1.NMl1
IURC1)=1U
ILCCIy=IL
L=IORDR(I)

©

[elv}

..+, SEACH FOR MIN IROW
NHMIN=500
DO 120 J=1,NNODE
NR= IORDR(J)
IF( IROW(NR) . CE.NMIN) GO TO 129
NMIN= JROW(KR)
IGRDR(J) =L
NCON(L)=J
10RDR( 1) =R
NCON({NR)=1
L=NR
120 CONTINUE
c
C .... ESTABLISH NOX-ZERO TERMS IN ROW
JS=1+1
DO 140 K=JS,NNODE
I1C= IORDR(K)
IFC(1Y(L, IC) .EQ.0)CO TO 140
1ucCIm=1IC
1U=1U+1
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140 CONTINUE
Cc

C .... MOVE DOWN COLUMN AND CHECK FILL-INS
DO 185 J=JS,NNODE
KR= I0RDR(J)
IRT=1Y(NR, L)
IF(IRT.EQ.9) GO TO 185

Cc ILRCIL)=NR
IROW(NR) = IROW(NR) ~ I
Cc IL=IL+1
NCT=IURC 1)

1435 IF(NCT.CE. 1U) CO TO 185
C .... MOVE INDEX ,IC, ACROSS ROW L
150 IC=1UC(NCT)
IF(NR.EQ.IC) GO TO 180
IFCIY(NR, IC) .KE.®) GO TO 180
C .... OFF-DIAGONAL FILL~IN
TROW(NR) = IROW(NR) + I
IFILL=IFILL+1
IY(NR, IC)=1
186 NCT=NCT+1
NPS=NPS+1
GO TO 145
185 CONTINUE
190 CONTINUE
Cc ILC(NNODE) = IL
195 IUR(NNODE) = 1U
MLOC=NODE+IU
MXPOS=LPOS
Cc
C .... PRINT MATRIX STATISTICS
1UT=1U~1
NOPS=NPS+NNODE+3% I UT
I=NNODE*NNODE
J=NODE+2x1U
NCT=100.*FLOAT( 1~2% IUT) ~FLOAT( 1)
WRITE( IUNIT,2061) NNODE, IUT,NOPS, IFILL, NCT, MXPOS,J
201 FORMAT(4X, 7HNNODE =, 14,7X,4HIU =, 14/
3 3X,6HNOPS =, 14,2X,9HF ILL~INS= '
8 14/1X, IOHSPARSITY =, 14,2H %,3X, 6MMXPOS=, 14,3X, 7YHMXYPOS=, 14}
J=NODE+2x1U
IF(J.GT.300) WRITE(IV,211D)
211 FORMAT(23H ** MATRIX TOO DENSE *%)
Cc

C .... ASSIGN OPERATION NUMBERS
IF(NNODE.EQ.1) GO TO 2390
NPS=@
DO 225 1=1,NM1
1US=IUR( )
IUE=IURC I+1)
IL=1US
ILE= IUE

203 IFCIL.GE. ILE) GO TO 225
KR=ILR( IL)
IL=IL+1
1U=1US

215 IFCIU.CE. IUE) CO TO 205
NC=1UCC I
NPS=NPS+1I
IPOS(NPS8) = INDX( NR, NC)
IU=1U+1 .
GO To 215

225 CONTINUE

IF(NPS.GT.400) WRITE(IW,2I1)

TURK

230 RE
END
SUBROUTINE RENUM(M)
C .... RENUMBER ELEMENT NODES

INTECER*2 IELM

DOUBLE PRECISION V(60),U(30) +C(60),Y(600)

DOUBLE PRECISION DELTA, DELT.DS.VI(1) .CI{1).YI( I}

DIMENSION ILCC1), ILRC1), RELMC 1)

CoMMON v, C, Y,DS,DELT, DELTA

COMMON TO, TEMP , DTEMP

COMMON TM(6) , A(8) , CSAT, VT, VCT, TYPE

COMMON IEL,JJ,KK,LL, MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, I0UT, JOUT, INPT, TFORM
COMMON MYLST, MPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON 1AQ(83) ,NI1(39,2) » IELN{®) , IFBRST(9) , ILAST(9) , IELM( 1000)
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COMMON IUR(30), I1UC(120), IPOS(400) , NCON(30)

EQUIVALENCE (IUR(1),ILCC(1)),(IUCC1),ILR(1)),

& (IELM(1),RELM(1))

EQUIVALENCE (C(1),V(1)),(C(806),CI(1),VI(1)),(Y(300),YI(1))

DO 4000 IEL=1,6
K1=IELNCIEL)
IF(K1.EQ.0)GO TO 4000
KPOS=IFRST( IEL)
DO 4000 J=1,KI1
KX=7
IF(IEL.EQ.4) KK=5
DO 3000 I=KK,8
IF(I.EQ.6) GO TO 3000
I1=KPOS+1
K=IELM(ID)
IF(K.EQ.0) GO TO 3000
IELM( I1)=NCONV(K,M,NI, NODE)
3000 CONTINUE
3600 KPO0S=IELM(KP0OS+1)
4000 CONTINUE
RETURN
END
SUBROUTINE EQUIV
C .... STORE LOCATION OF EQUIVALENRT SOURCES
INTEGER*2 IELM
INTEGER V1
DOUBLE PRECISION V(60),U(30),C(60),Y(608)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YI(1)
DIMENSION ILC(1), ILR(1),RELM(1)
coMMoN v,C,Y,DS,DELT, DELTA
COMMON Teo, TEMP, DTEMP
COMMON TM(6),A(8),CSAT,VT,VCT, TYFE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, I0UT, JOUT, INPT, IFORM
COMMON IMXLST, MXPOS, IMXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPDS
COMMON 1AQ(80),NI(30,2),IELN(9), IFRST(9), ILAST(9), IELM(1000)
COMMON IUR(30), 1UC(120), IPOS(400) ,NCON(30)
EQUIVALENCE ( IUR(1),ILC(1)),(IUC(1),ILRC1)),
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(360),CI(1),VI(1)),(Y(300),YI(1})
EQUIVALENCE( IELN(6) , V1) , CIELN(%), I2)

KPOS=IFRST(6)
LP¢S=MXPOS
Do 1500 N=1,V1
J= IELM(KPOS+7)
€ .... CHECK IF ELEMENT CONNECTED TO VOLTAGE SOURCE
Do 1460 IEL=1,3
K1=IELN( IEL)
IF(K1.EQ.0) GO TO 1300
MPOS=IFRST( IEL)
DO 1460 M=1,K1
K=TELM(MPOS+7)
L= IELM(MPOS+8)
IF(J.NE. KGO TO 1000
NT=L
GO TO 1100
1000 IF(L.NE.J)GO TO 1300
NT=K
1160 IF(NT.EQ.06)GO TO 1300
I2=12+1
IF(I2.EQ. 1) IFRST(9)=MXPOS
IF(LPOS.LE.MXLST) GO TO 1200
IER1=-2
+... STORE EQUIVALENT SOURCE FLAGS AND VALUES
LPOS+1= ELEMENT LOCATION IN IELNC.)
LPOS+2= VOLTAGE SOURCE LOCATION IN IELN(.)}
LPOS+3= NODE AT WHICH EQUIVALENT CURRENT 1S ADDED
LP0S+4= ELEMENT TYPE
200 IELM(LPOS+4)=IEL
IELM(LPOS+3)=NT
IELM(LPOS+2) =KP0S/2
IELM(LPOS+1)=MP0S/2
LPOS=LP0OS+4
1300 MPOS=IELM(MPOS+1)
1400 CONTINUE
KPO0S= IELM(KPOS+1)
1560 CORTINUE

aciciziziy]
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RETURN
END
SUBROUTINE GRAPH
++.. INITIALIZE GRAPHICS
-+... DAAW AXIS AND LABEL GRAPH
RETURN
END
FURCTION IPACK(IAQ,K>
C .... PACK 2A1 FORMAT INTO 11 WORD
DIMENSION IAQC1)
11=13Q(K)
JJ=T1AQ(K+1)
C IPACK=0R(SHFT(I11,8,-8) ,SHFT(JJ,8))
IPACK=11
RETURN
END
SUBROUTINE OPNFL(LUN, IV, IR)
DIMENSION NAME(3)
C .... ROUTINE TO OPEN DISCFILE
WRITECIVW, 101)
101 FORMAT(I19H FILENAME:)
READ( IR, 201) NAME
201 FORMAT(3A2)
CALL SEARCH(LUN,NAME, I)
RETURN
END
SUBROUTINE CLSFL(LUN)
C .... ROUTINE TO CLOSE DISCFILE
CALL SEARCH(4,0,1)
RETURN
END
SUBROUTINE SECKRD(TI)
C .... ROUTINE TO RETURR ELAPSED TIME
DIMENSION ITAR(11)
CALL TIMDATCITAR,11)
T1=FLOATC(ITAR(7)) +FLOAT( ITAR(8) ) /FLOAT( ITARC 11))
RETURN
END
SUBROUTINE CLOCK(ETIM, IDATE)
€ .... RETURNS CLOCK TIME IN SECONDS, ARD DATE (MM DD Y)
DIMENSION IDATE(3)
IDATE(1) =0
IDATE(2) =9
IDATE(3)=0
ETII=0.
RETURKN
END
SUBROUTINE ARALY
C .... MAIN ANALYSIS ROUTINE
INTEGER*2 IELM
INTEGER Ri,C1,VI,Ql
DOUBLE PRECISION DELU
DOUBLE PRECISION V(60),U(30),C(68),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(D) ,CI(1),YI(I)
DIMENSION ILCC1), ILRC1) ,RELMCI)
COMMON U,C.Y,DS,DELT,DELTA
COMMON T, TEMP,DTEMP |
COMMON TM(6),A(8) ,CSAT, VT, VCT, TYPE
ComoN 1EL,JJ,KX,LL, MM, NN, IFLG,JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON 1PLT, IPEN, LTYPE, 1TEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC,NDMAX, NODE, NNODE, 1 ERR, MLOC, KPOS,LPOS
COMMON 1AQ(80),N1(30,2),1ELN(9), IFRST(9}, ILAST(9) , IELM( 1009)
COMMON IUR(30), IUC(120) , IPOS(400) ,NCON(30)
EQUIVALENRCE ( IURCI),ILCC1)),(1BCCD),ILR(1)),
8 (IELM(1) ,RELM( 1))
EQUIVALENCE (C(1),V(1)),(C(30) ,CI(1Y,VI(1)),(Y(300) ,YI(1})}
EQUIVALENCE( IELN(1),R1), ( IELR(2) ,CI), (IELN(3) ,L1),( IELN(4),QI7,
1 (IELN¢(5),ID),CIELK(6),VD),¢ IELN(7) ,MI), ¢ IELR(9),12)

[v¥+]

ERR=FLOAT(NNODExNNODE) x1.0E-10

2990 RMS1=0.

RMS2=0,
IFC(IFLG.NE.5)GO TO 3200
3000 IF(TO.NE.DELTA)GO TO 3100
DELT=DELTA
C .... UPDATE TRARSIENT SOURCES
3100 CALL UPDAT
C .... UPDATE CAPACITOR CURRENTS
3200 IF(C1.LE.®) GO TC 3800
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KPOS= IFRST¢2)
TC=1.9
IFCITEMP.EQ.0)GO TO 33600
TC=1.90+RELM( ITEMP+6) *DTEMP+RELM( 1TEMP+7) *DTEMP*DTEMP
3360 DO 37606 I=1,C1
MPOS=KPOS~ 2
DS=0.D0
IF(TO.LE.9.)GO TO 3400
DS=RELM(MPOS+3) *TC
KK= IELM( KPOS+7)
LL= IELM(KPOS+8)
DS=2.D0*DS*DELU(LL, KK) /DELT
IF(TO.GT.DELTA)GO TO 3500
3406 RELM(MPOS+5)=0.D0
RELM( MPOS+6) =-DS
GO TO 3600
3300 RELM(MPOS+5)=DS+RELM(MPOS+6)
RELM(MPOS+6) =—DS-RELM( MPOS+5)
3600 KPOS=IELM(KPOS+1)
3700 CONTINUE
C .... UPDATE INDUCTOR CURRENTS
3800 IF(L1.EQ.®) GO TO 4200
TC=1.0
KPO0S=IFRST(3)
DO 4100 I=1,L1
MPOS=KPOS/2
IF(T6.LE.0.)GO TO 3908
DS=RELM(MPOS+3) *TC
DS=DELT*DELU(LL, KK) /DS~/2. D@
IF (Te.GT.DELTA) GO TO 40006
3900 RELM(MP0S+5)=0.D@
RELM(MPOS+6) =DELU(LL,KK)*100.D0
GO TO 4100
4000 RELM(MPOS+5)=DS+RELM(MPOS+6)
RELM(MPOS+6) = RELM(MPOS+5) +DS
KPO0S= IELM( KPOS+1)
4100 CONTINUE
C .... ADD SUPPLIES TO VOLTAGE VECTOR
4200 IF(V1.EQ.0) GO TO 4400
KPOS=IFRST(6)
DO 4300 1=1,V1
MPOS=KPOS~/2
J=IELM(KPOS+7)
V(J)=RELM( MPOS+3)
g =vey
KPOS=IELM(KPOS+1)
43060 CONTINUE
4400 ITER=9
C .... ZERO CURRENT MATRIX
4500 DO 4600 I=1,NNODE
C(1)=0.D0
46060 CONTINUE
11=2*%MLOC-KODE
DO 4700 J=1,I11
Y(J)=0.D0
4700 CONTINUE
C .... LOAD ELEMENTS INTO Y & € ARRAYS
4800 CALL ELOAD
IF(1I2.EQ.9) GO TO 53520
C .... ADD GENERATED CURRENT SOURCES
CALL GNCUR
C .... SOLVE NODE EQUATIONS
5520 CALL DECMP
CALL SOLVE
IF(Q1.EQ.9) GO TO 6550
ITER= ITER+1
IFCITER.LT. 160)GO TO 6500
C .... NO CONVERGENCE--PRINT LAST RODE VOLTAGES
WRITECIUNIT, 6501)
6501 FORMAT(26H CIRCUIT DOES NOT CONVERGE)
GO TO 6780
C .... COMPUTE MEAN SQUARE ERROR OFf NODE VOLTAGE CHARCES
6566 DS=0.Do
DO 6520 J=1,NNODE
DS=DS+(V(J)-U(J) ) *x2
6520 CONTINUE
S=DS
IFCIFLG.EQ.5.0R. IFLG.EQ.6)60 TO 6550
WRITEC(IUNIT,6541)S
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“6541 FORMAT(1X,E18.4)
C .... STORE LAST NODE VOLTAGES
6550 DO 6560 1=1,NNCDE
U=V
6560 CONTIRUE
IF(Q1.EQ.0) GO TO 6660
€ .... CHECK FOR CONVERGENCE
IF(S.LT.ERR. AND.RMS1.LT.ERR. AND. RMS2.LT.ERR, AND. ITER.GT. 2)
8 GO TO 6660
IFCITER.LT.6) GO TO 6586
IF(S.GE.RMS1.AND.RMS1.CGE.RMS2,AND.S.LT.0.601) GO TO 6600
6580 RMS2:=RMS1
RMS1=§
C .... NO CONVERGENCE: RE-ITERATE
GO TO 4500
6660 IF(IPLT.CT.0)CO TO 6660
8=8QRT(S)
WRITEC IUNIT, 66061)S
6601  FORMAT(19H MEAN ERROR(VOLTS):,F14.6)
6660 IF(IFLG.NE.5.AND.IFLG.RE.6)G0O TO 6770
1TOTL= ITOTL+ ITER
R=TO
S=V(JOUT)
IFCIFLG.EQ.6) R=TM(1)
IF¢ IPLT.EQ.0) GO TO 6670
c CALL DRAW(R,S, IPEN,4)
IPEN=1
GO TO 6686
6670 VRITE(IUNIT,6671) R,S,ITER
6671 FORMAT(1X,2C18.4,10X,118)
6680 IF(IFLG.EQ.6)CO TO 6700
TO=TO+DELTA
IF(TO.GT.TM(2)) GO TO 6965
CO TO 3000
c
C .... INCREMENT SWEPT ALTER VALUE
6700 THM( 1) =TM( 1) +TH(3)
MPOS=TH(4)
RELM( MPOS+8) =THMC 1)
IFCTM(1) .LE.TH(2)) GO TO 2960
RELM(MPOS+3) =TH(5)
GO TO 6963
c
C .... PRINT DC OPERATING POINTS
6770 1F(Q1.EQ.0)GO0 TO 6800
6786 VWRITE(¢ IUNIT, 6781) ITER
6781 FORMAT(//12H ITERATIONS:,110)
6800 TC=TEMP-273.
WRITE( IUNIT, 6811)TC
6811 FORMAT(SH T=,F8.1,6H DEG C//)
WRITECIUNIT, 6831)
6831 FORIMAT( 13H NODE VOLTAGES:)
DO 6890 I=1,NODE
J=NICI,2)
WRITE ¢ IUNIT,6881)J,Vc 1)
6881 FORMAT(2H V,12,F18.4)
6890 CONTINUE
IFLG=4
IF(Q1.NE.0) CALL ELOAD
c
6965 IFLG=4
6976 RETURN
END
SUBROUTINE ELOAD
C .... ROUTINE TO LOAD ELEMENTS IKTO Y & C ARRAYS
c FOR AC OR DC ANALYSES
INTEGER*2 IELM
INTEGER Q1
DOUBLE PRECISION V(60) ,U(30),C(69),Y(690)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI¢1),YIC(1)
DIMENSION ILCC(1),ILR(1),RELMC1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON To,TEMP, DTEMP
COMMON TM(6) , A(8) ,CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KX,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, TOUT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),NI1(30,2), IELN(9), IFRST(9), ILAST(9), IELM( 10990)
COMMON IUR(30),1UC(126), IPOS(400) , NCON(30)
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EQUIVALENCE CIVRC D), ILCC1)), CIUCCI) , ILRCT) ),

8 (IELMCI),RELM(1))

EQUIVALENCE (C(1),V(I)),(C(30),CI( D,VIC(D),(Y(300),YI{D))
EQUIVALENCE ( IELNK(4),@1),(IELN(5),1D)

DO 866 1EL=1,3
KI=I1ELN( IEL)
IF(K1.EQ.0) GO TO 80O
KPOS=IFRST( IEL)
TC=1.0
IF( ITEMP.EQ.0) GO TO 100
NN= ITEMP+ IEL*2+1
TC= 1. 0+RELM( NN) #*DTEMP+RELM( RN+ 1) *DTEMP*+2
100 Do 06 I1=1,K1
IF( IELM(KPOS+4) .RE.0) CALL ELMOD( IEL)
MPOS=KPOS/2
KK= IELM(KPOS+7)
LL= IELM(KPOS+8)
DS=RELM( MPOS+3) *TC
C .... ADD RESISTORS
IFC(IEL.GT.1) GO TO 200
DS=1.D0/DS
CALL ADRES
GO TO 700
C .... ADD CAPACITORS
200 IF(IEL.GT.2) GO TO 400
DS=DS/DELT
IF(IFLG.NE.9} GO TO 300

CALL ADCTR
GO TO 700
300 DS=2.D0*DS
GO TO 600
€ .... ADD INDUCTORS

400 DS=DELT/DS
IF( IFLG.NE.9) GO TO 500
CALL ADCPR
GO TO 700
500 DS=DS¥0.5D0
IF(DELT.CGT. 1.0D6) DS=100.D0
600 CALL ADRES
DS=RELM(MPOS+6)
CALL ADCUR
700  KPOS=IELM(KPOS+I)
800  CONTINUE
IF(11.EQ.@) GO TO 1600
c
C .... ADD CURRENT SOURCES FOR DC ANALYSIS
IFC(IFLG.EQ.9) GO TO 1000
KPOS= IFRST(5)
DO 900 I=1,11
MPOS=KPOS/2
KX= IELM(KI'0S+7)
LL= IELM(KPOS+8)
DS=RELM(MPOS+3)
CALL ADCUR
KPOS= IELM( KPOS+1)
900  CONTINUE
€ .... ADD TRARS1STORS
1000 IF(G1.EQ.0) GO TO 1200
IF( IFLG.EQ.9) GO TO 1100
CALL BJT
GO TO 1200
1100 CALL BJTAC
1200 RETURN
END )
SUBROUTINE DECMP
C .... PERFORMS LU DECOMPOSITION BASED OF RECORDED SPARSITY
c MODIFIED FROM SINC-S 5-18-77
c

INTEGER*2 IELM

DOUBLE PRECISION V(60),U(30),C(60) ,Y(600)

DOUDLE PRECISION DELTA,DELT,DS, VI( D,CIUD,YI()

DIMENSION ILC(1),ILR(1),RELM(1)

DIMENSION IORDR(1)

COMMON U,C,Y,DS,DELT,DELTA

COMMON To,TEMP, DTEMP .

COMMON TM(6) ,A(8) ,CSAT, VT, VCT, TYPE

COMMON IEL,JJ,KX,LL,MM,NN, IFLG, JFLG, ITT, ITER, I¥, IR, IDISC, TUNIT
coMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 1OUT, JOUT, INPT, IFORM
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COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1 ERR, MLOC , KPOS, 1LPOS
COMMON IAQ(BO).NI(30.2).IELN(Q).IFHST(Q),ILAST(9),IELH( 1909)
COMMON I1UR(30), 1UC(I20), IPOS(460) +NCON(30)

EQUIVALENCE CIURCI), ILC(1)), CIUCC I3, ILR( 1),

8 C(IELMC1),RELM(1))

LEQUIVALENCE (C(l).V(I)),(C(SO).CI(I).VI(I)),(Y(SOQ).YI(I))
EQUIVALERCE(NICI,1), I0RDRC 1))

IUR  UPPER TRIANGULAR ROW ELEMENT COUNTER

IUC UPPER TRIANGULAR ELEMENT COLUMN INDICATOR
ILC LOWER TRIANGULAR COLUMN ELEMENT COURTER
ILR LOWER TRIANGULAR ELEMENT ROW INDICATOR

o000

IF(NNODE.EQ. 1) GO TO 40
NN=NNODE-1

KNT=0

DO 3¢ 1=1,NN

L= IORDR( 1)

1US=1URC 1) +MLOC
TUE=IURC I+1) +MLOC
IL=ILC( I) +NODE

ILE= ILC( I+1)+NODE

++++. DOWN LOWER TRIANGLE COLUMNS
IFC(IL.GE.ILE) GO TO 30
DS=Y(IL)/¥(L)>
Y(ILY=DS
IL=1L+1
1U=1US

SO0

€ .... ACROSS UPPER TRIANGLE ROWS
20 IFC(IU.GE.IUE) €O TO 5
KRT=XNT+1
K= IPOS(KNT)
Y(K)=Y(K) ~-Y( 1U) *DS
1U= 1U+1
GO TO 20
30 CONTINUE
40 RETURN
END
SUBROUTINE SOLVE

+++. PERFORMS FORWARD AND BACKWARD SUBSTITUTION
USING SPARSE POINTERS
FROM BIAS-N §-19-77
INTEGER*2 1ELM
DOUBLE PRECISION V(60),U(30) ,C(60), Y(6909)
DOUYBLE PRECISION DELTA,DELT,DS,VI( 1) ,CI(1)>,YI(1}
DIMENSION ILC(I),ILRCI),RELM(I)
DIMENSION I10RDR( 1)
COMION U, C,Y,DS,DELT, DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) ,A(B) »CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL, MM, NN, IFLG, JFLG, ITT, I1TER, IV, IR, IDISC, TUNIT
COMMON IPLT, IPZN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, I FORM
COMMON MXLST, MXPOS, MXLOC » NDMAX, NODE, NNODE, IERR, MLOC, KPOS JLP0S
COMNMON 1AQ(86),NI(30,2), IELN(9) - IFRST(9), ILAST(9), IELM( 1900)
COMMON IUR(30), IUC( 120) , 1POS(400) , NCON(39)
EQUIVALENCE ( IUR(D), ILE(1)) »CIUCCD), ILR(1)),
8 C(IELMCI) ,RELM(I))
EQUIVALENCE (C(1),V(1)),(C(3@) »CICD ,VICD)),(Y(300),YI(1))
EQUIVALERCE(NICI, 1), IORDR( 1))

[+TolvNo]

C

€ .... FORWARD SUBSTITUTION
NN=NNODE-1
IF(NN.GT.0) €O TO 1o
VD =C( v
GO TO 7@

10 DO 306 I=1,NN
L= IORDR( I)
DS=C(L)
IF(DS.EQ.06.D8) GO TO 3¢
IL=ILCC(D)
TLE= ILC(I+1)

20 NL= IL+NODE
IFCIL.GE. ILE) €O TO 3
NR=ILRCIL)
C{NR)=C(NR)-Y(NL) *DS
IL=¥L+1
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GO TO 20
30 CONTINUE
Cc
C .... BACK SUBSTUTION
L= IORDR(NNODE)
C(L)=C(L) 7Y(L)
DO 50 I=I,NN
NUI=NNODE-1
L= IORDR(NUI)
1U= ICR(NUD)
I1UE= IUR(NUI+ D)
35 NL= IU+MLOC
IFCIU.GE. IUE) GO TO 45
40 1C=1UCCIU)
C(L)=C(L) -Y(NL) *C¢1C)
1U=10+1
CO TO 35
45 C(LY=C(L) 7Y(L)
50 CONTINUE
C .... TRANSFER INTO VOLTAGE VECTOR
[ DO 66 1=1,NNODE
Cc V(=G
c6o CONTINUE
70 RETURN

END
SUBROUTINE ELMOD( IEL)

C .... ROUTINE TO DEFINE ELEMENT MODELS
GO TO (200,400,600), IEL

C .... RESISTOR MODEL

200 RETURN
C .... CAPACITOR MODEL
400 RETURN
C .... INDUCTOR MODEL
600 RETURN
END
SUBROUTINE BJT
C .... COMPUTE BJT PARAMETERS
INTEGER Q1
INTECER*2 IELM
DOUBLE PRECISION DELU
DOUBLE PRECISION V(60),U(30),C(69),Y(600)
DOUBLE PRECISION DELTA,DELT,DS.VI(I),CI(D),YIL(D
DIMENSION ILC(I), ILR(1},RELM(I)
COMMON U,C,Y,DS,DELT,DELTA
COMMON To,TEMP,DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL.MM,NN, IFLG,JFLG, ITT, ITER, I¥, IR, IDISC, IURIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMIION MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS,LPOS
COMMON 1AQ(86),NI1(30,2),1ELN(9), IFRST(9), ILAST( 9), IELM( 1900}
COMMON IUR(30), 1UC(120) , IPOS(400) ,RCON(30)
EQUIVALENCE ( IDR(D),ILCC(D)),(IUC(1), ILR(D)),
8 (IELM(1),RELM( D))
EQUIVALENCE (C(1),V(I)),(C(30),CI(1),VI(1)) ,(Y(300),YI(D))
EQUIVALENCE( IELN(4) , Q1)

IF(IFLG.NE.4) GO TO 5400
WRITE( IUNIT,5201)
5201 FORMAT(29H TRANSISTOR OPERATING POINTS:)
WRITE (IUNIT,5301)
5301 FORMAT(5H NAME,5X,2HIB,9X,2HIC,7X,3HVBE,9X, 3HVBC, 6X, 4HBETA, 7X,
1 2HGM,9X,3HRPI)
5400 VT=8.6164E-05*TEMP
VCT=VT*ALOG( VT~ 1.41459)
Co=1.0
TC=1.0
KPOS=I1FRST(4)
IF( ITEMP.EQ.0)CO TO 5500
CO= ( TEMP/300 . ) **3*EXP(~13920.0%(1,0/TEMP-1, 0/300.1))
TC= 1. 0+DTEMP*RELM( ITEMP+7) +DTEMP** 2% RELM( ITEMP+8)
5500 DO 7200 1=1,Ql
KK= IELM(KPOS+7)
LL= IELM(KPOS+8)
M= IELM(KPOS+3)
MPOS=KPOS/2
ITT= IELM(KPOS+4)
TYPE=RELM( ITT+3)
BFO=RELM( ITT+4)
BRO=RELM( ITT+5)
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CS@=RELM( ITT+6)

(o]

C .... INITIALIZE PARAMETERS FOR FIRST ITERATION
IFCITER.NE.®) GO TO 5600
IFCIFLG.NE.1)C0 TO 5600
VBE=VCT-VT+ALOG( CO*CSQ)
VBC=-1.0
RELM(MPCS+5)=0.5
RELM(MPCS+6)=9.0
RELM(MPOS+7)=1.9E-4
RELM(MPOS+8)=1,0E~-12
GO TO 5700

C

5600 VDE=DELU(MM,LL) *TYPE
VBC=DELU(KK, LL) *TYPE

5700 VA=RELM( ITT+7)

VALI=1.0

IF(VBC.GE.6.)CO TO 3710
IF(VBC.LT.-VA) GO TO 5710
VAl=1.0-VBC/VA

C .... PROCESS FORWARD TRANSISTOR
5710 BF=BFO*TCxVAl
CO=CO*VAL

CSAT=£0xCS0%(1,0+1.0/BF0) /( 1.0+1 .0/BF)
CALL JUNCT(IMPOS+5, VBE, CCC, CCEQ, GMF)
IFCRELM(ITT+8) .NE.9.)GO TO 5800
GRP1=0.0
CREG=9.0
CREC=0.0
GO TO 6000
C .... IFCLUDE GENERATION RECOMBINATION CURRENT
5800 CRSAT=SORT(RELM( ITT+8)*CSAT) /BFo
CREC=~CRSAT
IF(VBE.LT.~1.2)G0 TO 5990
CREC=CRSAT*EXP( VBE/VT/2.) +CREC
599@ GRPI=(CREC+CRSAT) /VT/2.
CREQ=TYPE*( CREC-GRP I *VBE)
6000 GPIF=GMF/BF+GRPI
C .... PROCESS REVERSE TRANS ISTOR
BR=BROXTC#VAl
CSAT=CO%CSO*( 1.0+1.0/BRO) /(1,0+1. 0/BRY
CALL JUNCT(MPOS+6,VBC, CEC, CEEQ, GMR)
GPIR=GMR/BR
GMR=GMR+(CCC-CEC) VA
IFC(IFLG.NE.4)G0O TO 6150

C
C .... PRINT TRANSISTOR OPERATING POINTS
CB=TYPE%( CCC/BF+CEC/BR+CREC)
CC=TYPE*( CCC-CEC~-CEC/BR)
VBE=TYPE*VBE
VBC=TYPE%*VBC
BF=CC/CB
GPIF=1.0/GPIF
WRITE (IUNIT,6121) IELM(KPOS+2) »CB, CC, VBE, VBC, BF, GNP, GPIF
6121 TFORMAT(2H Q,A2,2E12.3,2F9.3,F11.2,2E12. 3)
GO TO 7100
C
C .... GND. CONDUCTARCES AKRD V.D.C.S. CONNECTED TO SUPPLIES
6150 IF(EK.LE.NNODE)GO TO 6160
CEEQ~ CEEQ-GMR*U( KK)
=0
6160 IF(LL.LE.NNODE)GO TO 6179
CCEQ=CCE@+GMF*U(LL)
CEEQ=CEEQ+GMR*U( LL)
LL=@
6170 IF(IMM.LE.NNODE)GO TO 61860
CCEQ=CCEQ-GMFxU( M)
=0
C
C .... LOAD ADMITTANCE MATRIX
6180 IF(KK.EQ.0)GO TO 6300
Y(KK) = Y(KK) +GMR+GPIR
IF(LL.EQ.0)GO TO 62790
JJ= INDX(KK,LL)
Y(JJ)=Y(JJ)+GMF-GMR-GP IR,
Y(NN) =Y(NN)-GPIR
6270 IF(MM.EQ.0)GO TO 6360
JJ= INDX(KK,MM)
Y(IN=Y(II) -CMF
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Y(NR)=Y(NN}~GMR
6300 IF(MM.EQ.0)CO TO 6360
Y(MM) = Y(MM) +CHMIF+CP IF
IF(LL.EQ.0)CO TO 6390
JJ= INDX(MM,LL)
Y(JJ)=Y(JJ)-CMF-CPIF+GMR
Y(NN)=Y(NN)-GPIF
6360 IF(LL.EQ.0)GO TO 6390
Y(LL)=Y(LL)+CPIF+CPIR
C .... LOAD CURRENT VECTOR
6390 IF(IFLC.EQ.9) GO TO 7100
C .... DONT ADD DC CURRENTS IF AC ANALYSIS
IF(KX.EQ.0)GO TO 7010
C(KK)=C(KK)+(1.0+1.0/BR)*CEEQ-CCEQ
7010 IF(MM.EQ.0) GO TO 7020
COMM) =C(MM)+(1.0+1.06/BF):*®*CCEQ-CEEQ+CREQ
7020 IF(LL.EQ.9) €0 TO 7100
C(LL)=C(LL)-CCEQ/BF-CEEQ/BR~CREQ
7100 KPOS=I1ELM(KPOS+1)
7200 CONTINUE
RETURN
END
SUBROUTINE JUNCT(J, VBB, CCC, CEQ, CM)
€ .... DETERMINE TRANSISTOR IC,GM,CPI
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE, PRECISION DELTA,DELT,D3,VI(1),CI(1),YIC1)
DIMENSION ILC(1), ILR(1),RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT,TYPE
COMMON IEL,JJ,KX,LL, MM, NN, IFLG. JFLG, ITT, ITER, IV, IR, IDISC, IUNI¥T
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT,JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS , LPOS
COMMON 1AQ(86),N1(30,2), IELN(9), IFRST(9),1LAST(9), IELM( 1800)
COMMON IUR(30), IUC(128), IPOS(400) , NCON( 30)
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1)),
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y(300) ,YI(I))

C .... COLN LIMITING ALGORITEM IMPLEMENTED 8/16.76
VCRIT= VCT-VT*ALOG( CSAT)
IF(VBB.LE. VCRIT)GOTO 1100
C .... VB.LT.VCRIT-~ ITERATE ON VOLTAGE
CCC=CSAT*(EXP(RELM(J) /VT) -1, 0)
CEQ=CCC+RELM( J+2) *( VBB~RELM( J))
IF(CEQ.LT.0.)G0 TO 1000
C .... ITERATE ON CURRENT
VBB= VT#ALOG(CEQ/CSAT+1.0)
GO TO 1100
1600 VBB=VCRIT
1100 CCC=-CSAT
IF(VBB.LT.-1.2)COTO 1200
€CC= CSATXEXP ( VBB/VT) +CCC
1260 GM=(CCC+CSAT) /VT+1.0E~ 10
CEQ=TYPE*( CCC-CM+VBB)
RELM( J+2) =GM
RELIM(J) = VBB
RETURN
END
SUBROUTINE UPDAT
C .... UPDATE TRANSIENT SOURCES
INTEGER®2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YI(1)
DIMENSION ILC(1), ILR(1),RELM( 1)
CoMMoN U,C,Y,DS,DELT,DELTA
COMMON Te,TEMP, DTEMP
COMMON TM(6) ,A(8) ,CSAT, VT, VCT, TYPE
COMMON IEL,JJ,EX,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, I TOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOSR, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS , LPOS
COMMON 1AQ(86),K1(30,2), IELN(9), IFRST(9) , ILAST(9) , TELM( 1900)
COMMON 1UR(3@), IUCC 120) , IPOS(406) , NCON(30)
EQUIVALENCE (IUR(C1),ILC(1)),(IUCC1>,ILR(1)},
8 (IELM(1) ,RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),{Y(300),YI(1))

DO 4760 1EL=5.6

11

APPENDIX E



APPENDIX E

K1= IELN( IEL)
IF(K1.EQ.0)G0 TO 4700
KPOS= IFRST( IEL)
DO 4700 J=1,K1
MPOS=KPOS/2
ITT= IELM(KPOS+4)
IFCITT.EQ.0)GO TO 4610
L=RELM( ITT+3)-2.0
IF(L.EQ.2) GO TO 4390
B1=RELM( ITT+4)
B2=RELM( ITT+5)
B3=RELM( ITT+6)
DB4=RELM( ITT+7)
IF(L.EQ.3) GO TO 4410
Cc
C .... SINE
4376 Ve=Bl1
IF(B4.NE.0.)GO TO 4378
B4=DELTA
4378 IF(TO.LT.B4)GOTO 4390
VO=VO+B2xkSIN(6.28319*B3%(TO-B4)
8 +RELM( ITT+8)/57.296)
4390 GO TO 4600

c

C .... PULSE

4410 TI=Te

44260 Z=B3
1F(TI.GT.Z) GOTO 44590
Vo=B1
GO TO 4600

4450 Z=Z+B4
IF(TI.GE.Z)GOTO 44990
VO=B2-(RELM( ITT+5)-B1) /B4%(Z-TI?
G0 TO 4600
4490 Z=Z+RELM(ITT+8)
IF(TIL.GT.Z)GOTO 4530
vo=B2
GO TO 4600
4530 Z=Z+RELM(ITT+9)
IF(TI.GE.Z)GOTO 4370
VO=B1+(B2-B1) /RELM( ITT+9) *(Z-TI}
GO TO 4600
4570 S=RELM(ITT+10)
IF(S.EQ.0.)G0 TO 4580
Z=Z+8
TI=TI-S
GO TO 4420
4580 Veo=B1
GO TO 4600

4590 CALL VEXT(TO,Ve, ITT,RELM
4600 RELM(MPOS+3)=V0
4610 KPOS=IELM(KPOS+1)
4700 CONTINUE
RETURN
LEND
SUBROUTINE VEXT(T®,V6,I,RELM)

C .... USER DEFINABLE SUBROUTINE FOR SOURCE MODEL 'EXT’
DIMENSION RELM(1)
)
C *%xPARAMETERS ¥ %%
C To--TIME(SEC) PASSED TO VEXT
Cc VO--SQURCE VALUE AT TIME To ,RETURNED FROM VEXT
C RELM( %) -— AVAILABLE PARAMETERS FROM 'EXT* MODEL F1ELD
Cc 1 -- MODEL NUMBER
RETURKN
END

FUNCTION DELU(K,L)
C .... DETERMIRE U(L)-U(K)
INTEGER*2 I1ELM
DOUBLE PRECISION DELU
DOUBLE PRECISION V(68),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YI(1)
DIMENSION ILC(1),1LR(1),RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON TO, TEMP, DTEMP
COMNON TM(6) , A(B) ,CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KX,LL,MM,RN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IURIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT,JOUT, INPT, IFORM
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COMMON MXLST, MXPOS, MXLOC » NDMAX, NODE, NNODE, 1ERR, MLGC, KPOS, LPOS
COMION 14Q(80),NI1(360,2), 1ELN(9), IFRST(9) » ILAST(93 , 1ELM( 1000)
COMMON 1UR(36), 1UC( 120) , 1POS(400) , NCON(30)
EQUIVALENCE (lU'R(l),lLC(l)),(lUC(l).ILB(l)).

8 (1ELM(1),RELM(1))
EQUIVALENCE (C(l),V(l)),(C(SO).CI(l),VI(l)),(Y(SOO).YI(l))

DELU=0. Do
IF(L.GT.®) DELU=U(L)
IF(X. GT.0)DELU= DELU-U(K}
RETURN
END
SUBROUTINE ADRES
C .... ADD RES1STORS TO Y MATRIX
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60) » Y(600)
DOULLE PRECISION DELTA,DELT, DS, V1(1),C1(1), YI(1)
DIMENSION 1LCC1), ILR(1) ,RELM(1)
COMMON U,c,Y,DS,DELT, DELTA
COMNON Te, TEMP, DTEMP
COMMON TM(6) ,A(8) ,CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL, MM, NN, 1FLG, JFLG, ITT, 1TER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),N1(30,2), 1ELN(9), 1FRST(9) » ILAST(9) , 1ELM( 1000)
COMMON IUR(30), IUG( 120) , 1POS(400) » NCON(30)
EQUIVALENCE (1UR(1), 1LC(1)) » (1UCCI1),1LR( 1)),
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(30) »CIC1),VI(1)),(Y(300),YI(1))

IF(KK.GT.NNODE) KK=0
1IF(LL.GT.NNODE)LL=9
IF(KK.EQ.0)GOTO 5100
Y(KK) = Y(KK) +DS
1IF(LL. EQ.8)GOTO 5200
JJ= 1INDX(KK,LL)
Y(JII) =Y(IJI)~DS
Y(NN) =Y(NN)-DS
5100 1F(LL.EQ.0)GOTO 5200
Y(LL)=Y(LL)+DS
5200 RETURN
END
SUBROUTINE ADCUR
C ..., ADD CURRENTS TO CURRENT VECTOR
INTEGER*2 IELM
DOUBLE PREC1ISION V(60),U(30),C(60) s Y(600)
DOUBLE PRECIS10N DELTA,DELT,DS,VI(1) »C1CD) , YIC1)
DIMERSION ILCC1),ILR(1),RELM(1)
ComMoN U,c,Y,DS,DELT, DELTA
COMMON Te, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
COMMON 1EL,JJ,KK,LL, MM, KN, IFLG, JFLG, ITT, ITER, IV, 1R, ID1SC, IUNIT
COMNON IPLT, 1PEN, LTYPE, 1TEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MYXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(86),N1(30,2),1ELN(9), IFRST(9) » 1ILAST(9) , 1ELM( 1890)
COMMON IUR(36) , IUC(120) , 1POS(400) » NCON(30)
EQU1VALENCE (1UR(1),1LC(1)), (1UCC1) s ILRC1) Y,
8 (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(1)),(C(80) »CIC1) , VIC1) ), (Y(300),YI(1))

IF(KK.GT.NNODE) KK=0
1F(LL.GT.NNODE)LL=9
1F(KK.EQ.0)GOTO 5400
C(KK) =C(KK)-DS
5480 1F(LL.EQ.0)GOTO 5500
C(LL)=C(LL)+DS
5500 RETURN
END
SUBROUTINE GNCUR
C .... ROUTINE TO ADD GENERATED CURRENT SOURCES
INTEGER*2 1ELM
DOUBLE PRECISION V(60),U(30),C(60) » Y(600)
DOUBLE PREC1S10N DELTA, DELT, DS, V1(1),C1(13,YI(1)
DIMENS10N ILC(1), ILR( 1) ,RELM( 1)
COMMON U,C,Y, DS, DELT, DELTA
COMMON To, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
COMMON 1EL, JJ,KK,LL, MM, RN, IFLG, JFLG, ITT, ITER, IV, IR, ID1SC, IUNIT
COMMON 1PLT, 1PEN, LTYPE, ITEMP, 1TOTL, 10UT, JOUT, 1NPT, 1FORM
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C .on.

1375

1380
1390
1400

c ...

C ...

900

NDIX E

COMMOX MXLST, MXPOS, MXLOC, NDMAX, NODE, KNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(8@),NI1(36,2), IELN(9),1FEST(9), ILAST(9) , IELM( 1000)
COMMON 1UR(3@) ,1UC( 120) , IPOS(400) ,NCON(3@)
EQUiVALENCE (IUR(1),ILCC1)),CIUC(1),ILR(1)).

8 (IELM(1) ,RELM(1))
EQUiVALENCE (C(1),V(1)),(C(30),CI(1),VI(1)),(Y(30®),Yi(1))
EQUIVALENCE( IELN(9), I2)

LL=0
KP0S=1FRST(9)

DO 1400 I=1,12
JPOS=1ELM(KPOS+1)
NPOS= IELM(KPOS+2)

DURING AC ANALYSIS ONLY ADD AC SOURCE CURRERTS
IF( iNPT.NE. NPOS. AND. 1FLG.EQ.9) GO TO 1390
KK=1ELM(KPOS+3)

M= 1ELM(KPOS+4)

TC=1.0

iF(iTEMP.EQ.0) GO TO 1350

AN= ITEMP+2%M+1

TC= 1.0+RELM( NN) *DTEMP+RELM( NN+ 1) *DTEMP*DTEMP

. RES1STOR CONKECTED TO VOLTAGE SOURCE
IF(M.GT.1)GO TO 1360
DS=-RELM( NPOS+8) 7/ (RELM( JPOS+3) *TC)
GO TO 1375

. CAPACITOR CONNECTED TO VOLTAGE SOURCE
IF(M.GT.2)GO TO t37e
D3=RELM(KP0OS+3) *RELM(JPOS+3) *TC
DS=-DS/DELT
iF(iFLG.EQ.9) GO TO 138
DS=DS*2.0Do
GO TO 1373

INDUCTOR, CONNECTED TO VOLTAGE SOURCE
iF(M.GT.3)GO TO 1400
DS=RELM( NPOS+3) /RELM( JPOS+3)
DS=~DS*DELT
IF(IFLG.EQ.9) GO TO 1380
DS=DS*x@.5D@
CALL ADCUR
GO TO 1390
CALL ADCPC
KP0S=KPO0S+4
CONTIRUE
RETURN
END
SUBROUTINE ACSOL
MAIN AC ANALYSIS ROUTI{NE USED WiTH BIASTB. 8-12-77
. USING STANDARD AC ANALYSIS PROCEEDURE WITH AC BJT LOAD
1 RTEGER+2 IELM
DOUBLE PRECiSION V(60),U(30),C(60),Y(600)
DOUBLE PRECIS1ON DELTA,DELT,DS,Vi(1),Ci(1),YI(D)
DiMENSION iLC(1),1LR(1) ,RELM(1)
COMMON U,C,Y,DS,DELT,DELTA
COMMON T@, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KX,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, 1DISC, IORIT
€OMMON 1PLT, 1PEN,LTYPE, ITEMP, ITOTL, I0UT, JOUT, NPT, 1FORM
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE , NFODE, IERR, MLOC,KPOS ,LPOS
COMMON 1AQ(80),KI1(30,2),1ELN(9), IFRST(9), ILAST(9) , IELM( 1069)
COMHMON IUR(30), IUC(120) , IPOS(460) ,NCON(30)
EQUIVALENCE (1UR(1),ILC(1)),(1UC(1),ILR(1)),
8 ¢(IFLM(1) ,RELM(1))
EQU1VALENCE (C(1),V(1)),(C(30),CIt1),VI(1)),(Y(300),YI(1))
EQUIVALENCE ( IELN(9),12)

FSTOP=TM(2)
NDEC=TM(3)
1PRT=THM(4)
FREQ@=THM( 1)
FMULT=FREQ
IFREQ=0

. ZERO DC SQURCES
DO 900 1=NNODE,NODE
v(DN=6.D9
CONTiNUE
ViN=RELM( i NPT+3)
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C .... DETERMINE INPUT NODE
IN= INPT*2
IN=IELM( IN+7)
€ .... STORE UNITY VOLTAGE IN AC INPUT SOURCE
RELM( INPT+3)=1.0
IF(IEL.EQ.6) V(IN)=1.DO
920 W=6.2831*FREQ
DELT=1.0/W
C .... ZERO COMPLEX CURRENT VECTOR
DO 1050 I1=1,NODE
C(I)=0.D0
CI(I)=6.D0
1050 CONTINUE
C .... ZERO COMPLEX ADMITTANCE MATRIX
11=2%MLOC-NODE
DO 1100 1=1,I1
Y(1)=0.D0
YI(p=0e.00
1160 CONTINUE
C .... LOAD AC MATRIX
CALL ELOAD
C .... IF CURRENT SOURCE INFUT
IF(IEL.NE.5) GO TO 1260
1]1= INPT*2+7
KK=IELM(ID)
LL=IELM(II+1)
DS=1.6D0
CALL ADCUR
C .... ADD GENERATED CURRENT SOURCES
1266 IF(I2.EQ.0) GO TO 1250
CALL GNKCUR
C .... FORWARD AND BACK SUBSTITUTE TO GET NEW VOLTAGES
1256 CALL DECAC
c CALL SOLAC

UI=v(Joum
U2:=VIi(JoU
VMAG=U1*xU1+U2xU2
15006 AMAG=SQRT(VMAG)
IF(IPLT.ER.0) GO TO 16900
IFCIPRT.RE.2) GO TO 19600
1600 PHASE=ATAN(U2-/UI)*57.2958
IF(UI.GT.®8.) GO TO 1900
PHASE=PHASE+SIGN( 180.,U2)

1960 IF( IPRT.EQ. 1) AMAG=8.68589%ALOG( AMAG)
IF(IPLT.EQ.0)G0O TO 2100
EFREQ=ALOG(FREQ) *0. 434294

IF( IPRT.GE.6) GO TO 2200
IFCIPRT.NE.2) GO TO 2000
AMAG=PHASE
2600 CONTINUE
Cc CALL DRAW(EFREQ, AMAG, IPEN,4)
IPEN=1
GO TO 2209
2100 WRITE(IUNIT,2101) FREQ, AMAG,PHASE,UI,U2
2101 FORMAT(I1X,GI2.4,F12.5,FI11.4,2G12.4)
2260 IFREQ=IFREQ+1
IFCIFREQ.GT.NDEC)GO TO 2360
PWR=IFREQ
FTEM=10.0%*(PWR/FLOAT(KDEC))
FREQ=FMULT*FTEM
IF(FREQ.GT.FSTOP) GO TO 2400
GO TO 926
2306 FMULT=10.*FMULT
IFREG=0
GO TO 2200
2400 RELM(INPT+3)=VIN
RETURN
END
SUBROUTINE BJTAC
C .... LOAD AC BJT MODEL INTO Y & C ARRAYS
INTEGER QI
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1),YI(1)
DIMENSION ILC(1), ILR(1),RELM(I)
COMMON U,C.Y.DS.DELT,.DELTA
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COMMOR TO,TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
CoMMON 1EL, JJ,KX,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IURIT
COMMON IPLT, IPEN, LTYPE, 1TEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMOR MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),N1(30,2),IELN(9), IFRST(9), ILAST(9) , IELM( 18003
COMMON TUR(3@), IUC(120), IPOS(468) ,NCON(30)
EQU1VALENCE (IURC1),ILC(I)),(IUCC1),ILR(D)Y,

& C(IELM(1),RELM(1))
EQUIVALENCE (C(1),V(I1)),(C(30),CI(1J,VI(1)),CY(300) ,YICI))
EQUIVALENCE ( IELK(4),@l)

KPOS=IFRST(4)
DO 2000 1=1,Q1
MPOS=KPOS/2
ITT= IELM(KPOS+4)
KX= IELM(KPOS+7)
LL= IELM(KPOS+8)
MM= IELM(KPOS+5)
CEEQ=0.0
CCEQ=90.0
BF=RELM( ITT+4)
GMF=RELM( MPOS+7)
GP IF=GMF/BF
BR=RELM( ITT+5)
GMR=RELM(MPOS+8)
GP IR=GIMRV/BR
IF(KK.LE.NNODE) GO TO 1100
CEEQ=CEEQ-GMR*V(KK)
KX=0
1106 IF(LL.LE.NNOTE) GO TO 1200
CCEQ=CCEQ+GMF:xV(LL)
CEEQ=CEEQ+GMR*V(LL)
LL=0
1200 1F(MM.LE.NNGDE) GO TO 1300
CCEQ=CCEQ~GHMF*V( MM)
MM=0
1300 1F(KK.EQ.0)CO TO 1300
Y(KK) = Y(KK) +GMR+CGP IR
C(KK)=C(KK)+(1.,0+1.0/BR) *CEEQ~CCEQ
IF(LL.EQ.0)GO TO 1400
JJ= INDX(KX,LL)
Y(JJ)=Y(JJ) +GMF-GMR-GPIR
Y(NN) =Y(NR)-GPiR
1400 IF(MM.EQ.0)GO TO 1600
JJ= INDX(KK, M)
Y(JJ)=Y(J) -GMF
Y(NN)=Y(NN)-GMR
1568 IF(NM.EQ.0)GO TO 1600
Y(MM) =Y(MM) +CMF+GP IF
C{IMD) =C(MM) +(1.0+1.06/BF):xCCEQ-CEEQ
IF(LL.EQ.0)GO TO 1700
JJ= INDX(IMM,LL)
Y(JJ)=Y(JJ)-GMF-GP IF+CMR
Y(RN)=Y(NN)-GPIF
1600 IF(LL.EQ.0)GO TO 1700
Y(LL)=Y(LL)+GP IF+GP IR
C(LL)=C(LL) -CCEQ/BF-CEEQ/BR
1760 KPOS=I1ELM(KPOS+1)
2000 CONTINUE
RETURN
END
SUBROUTINE DECAC
€ .... PERFORMS LU DECOMPOSITION BASED ON RECORDED SPARSITY
Cc

DOUBLE PRECISION DR,DI,UR,UI,AR

IRTEGER*2 IELM

DOUBLE PRECISION V(6®),U(36),C(60),Y(600)

DOUBLE PRECISION DELTA,DELT,DS,VI(I),CI(1),YI(1)

DIMENSION ILCC(1), ILR(1),RELM( 1)

DIMENSION IORDR(I)

CoIMfoN U, C,Y,DS,DELT, DELTA

COMMON Te, TEMP, DTEMP

COMMON TM(6),A(8),CSAT, VT, VCT, TYPE

COMMON IEL, JJ,KK,LL, MM, NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, I0UT, JOUT, INPT, IFORM
COMMON MXLST, MXPOS, MXLOG, NDMAX, NODE, RKODE, 1ERR, MLOC, KPOS,LPOS
COMMON T1AQ(80),KI1(30,2), IELF(9>, IFRST(9), ILAST(9), IELM( 1000)
COMMON IUR(30), 1UC(120), IPOS(460) ,KCON(30)
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EQUIVALENCE (IURCD),ILCCD)),(IUCCD),ILR(1)),

8 (IELM(1),RELM(I))

EQUIVALENCE (C(1),V(I)),(C(30),CIC(I),VI(I)),(Y(300),YI(1))
EQUIVALENCE(NIC1, I), IORDR( 1))

IUR UPPER TRIANGULAR ROW ELEMENT COUNTER

IUC UPPER TRIANGULAR ELEMENT COLUMN INDICATOR
ILC LOWER TRIANGULAR COLUMN ELEMENT COUNTER
ILR LOWER TRIANGULAR ELEMENT ROW INDICATOR

OOO0O0O0

IF(NNODE.EQ.1) GO TO 40
NN=NNODE-1

KNT=0

DO 306 I=I,NKN
L=TORDR(I)

UR=Y(L)

UI=YI(L)
D3=URxUR+UI%UI
I1US=TUR( ) +MLOC
TUE=TUR( I+1) +MLOC
IL=ILC(I)+KODE
ILE=ILC(I+1)+NODE

Cc
C .... DOWN LOVER TRIANGLE COLUMNS
5 IFC(iL.GE. ILE) GO TO 30
DR=(Y(IL) *UR+YI(IL)*UI) /DS
DI=(YIC(IL)*UR~-Y(IL)*UI) /DS
Y(IL)=DR
YICIL) =DI
IL=1L+1
IU=1US

Cc
C .... ACROSS UPPER TRIANGLE ROWS
20 IF(IU.GE.IUE) GO TO 5
KNT=KNT+1I
K= IPOS(KNT)
AR=Y(K)-(Y(IU) *DR-YICIU)*DI>
YI(K) =YI(K) -(Y(TU) *DI+YI( IU) *DR)
Y(K) =AR
1U=1U+1
GO TO 20
30 CONTINUE
40 RETURN
END
SUBROUTINE SOLAC

Cc
C .... PERFORMS FORWARD AND BACKWARD SUBSTITUTION
c USING SPARSE POINTERS
c MODIFIED FROM BIAS-N §5-19-77
INTEGER*2 IELM
DOUBLE PRECISION DR,DA,DB
DOUBLE PRECISION V(60),U(30),C(60),Y(600)
DOUBLE PRECISION DELTA,DELT,DS,VI(I),CICI),YICD)
DIMENSION ILC(1),ILRCI),RELM(1)
DIMENSION IORDR(1)
CoMMON U,C,Y,DS,DELT,DELTA
COIMMON To, TEMP, DTEMP
COMMON TM(6) ,A(8),CSAT, VT, VCT, TYPE
CoMMON IEL,JJ,KX,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM
COMINON IMXLST, MXPOS, MXLOC, NDMAX, NODE, KNODE, IERR, MLOC, KPOS, LPOS
COMIION 1AQ(860).NI(30,2).IELN(9),IFRST(9).ILAST(9) . IELM( 1000)
COMITON IUR(30), IUC(120) , IP0S(400),RCON(30)
EQUIVALENCE (IURCI),ILCC(1)),(IUCCI),ILR(D)),
& (IELM(1) ,RELM(I))
EQUIVALENCE (C(1),V(1)),(C(36),CIC(I),VI(1)),(Y(300),YI(]))
EQUIVALENCE(NIC(1, 1), IORDR(1))
Cc
C .... FORWARD SUBSTITUTION
NN=NNODE-I
IF(NN.GT.0) GO TO 10
DA=Y(T)
DB=YI(1)

DS=DA*DA+DB*DB
DR=(C( 1) *DA+CI(1) *DB) /DS
VI(1)=(CI(1)*DA-C(1)*DB) /DS
V(1)=DR
GO To 70

10 Do 30 I=1,NKN
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L=I0RDR( I}
IL=ILCC( D)
ILE= ILC( I+1)
20 NL=IL+NODE
IFCIL.GE.ILE) GO TO 30
NR= ILR( IL)
DR=C(NR) -(Y(NL) #C(L)-YI(NL)*CI(L))
CI(INR)=CI(NR)~( Y(NL) *CI(L)+YI(NL)*C(L))
C(NR)=DR
IL=1L+1
GO TO 20
30 CONTINUE
Cc
C .... BACK SUBSTUTION
L= IORDR(NNODE)
DA=Y(L)
DB=YI(L)
DS=DA*DA+DDB+DB
DR=(C(L) *DA+CI(L)%*DB) /DS
CI(L)=(CI(L)*DA-C(L)*DB) /DS
C(L)=DR
DO 50 I=1,NN
NUI=NNODE-1
L= IORDR(NUI)
1U= JUR(NUD)
IUE= IUR(NUI+ D)
35 NL=1U+MLOC
IF(1U.GE. IUE) GO TO 43
40 IC=1UCC I
DR=C(L)-(Y(NL) *C( IC) -YI(NL)*CI(CIC))
CI(L)=CI(L)=~(Y(NL)*CICIC)+YI(NL)*C(IC))
C(L)=DR
1U=1U+1
GO TO 35
45. DA=Y(L)
DB=YI(L)
DS=DA%DA+DB*DB
DR=(C(L) %*DA+CI(L)*DB) /DS
CI(L)=(CI(L)*DA-C(L)*DB)/DS
C(L)=DR
50 CORTINUE
C .... TRANSFER INTO COMPLEX VOLTAGE VECTOR

o] DO 60 I=1,NNODE
C V(I)=C(D
o] VICD=CI(D

C60 CONTINUE
70 RETURN
END
SUBROUTINE ADCPR
C .... ADD IMAGINARY CONDUCTANCE TO Y MATRIX
INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(660)
DOUBLE PRECISION DELTA,DELT,DS,VI(ID),CIC1),YIC1)
OIMENSION ILCCI), ILRC1),RELM(1)
COMMwoN v,c,Y,DS,DELT, DELTA
COMIION Te, TEMP, DTEMP
COMMON TM(6),A(8),CSAT, VT, VCT, TYPE
ComMioN 1EL,JJ,KK,LL, MM, NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON IMALST, MXPOS, MXLOC, NDMAX, NODE, NNODE, 1ERR, MLOC, KPOS, LPOS
COMMON 1AQ(80),N1(30,2),1ELN(9), IFRST(9), ILAST(9) , IELM( 1900)
COMMON IUR(30), IUC(120) , IPOS(400) , NCON(30)
EQUIVALENCE (IURC(1),ILC(1)),(IUCC1),ILR(D),
8 (IELM(1),RELM( D))
EQUIVALENCE (C(I),V(1)),(C(30),CI(1),VI(1)),(Y(300),YI(1))

IF(KK.GT.NNODE) KK=0
IF(LL.GT.NNODE) LL=0
IF(KK.EQ.0)GOTO 100
YICKK) =YI(KK)+DS
IF(LL.EQ.0) GOTO 200
JJ= INDX(KK,LL)
YI(JI)=YI(JJ)-DS
YI(NN)=YI(NN)-DS
100 IF(LL.EQ.0)GOTO 200
YI(LL)=YI(LL)+DS
200 RETURN
END
SUBROUTINE ADCPC
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C .... ADD IMAGINARY CURRENTS TO CURRENT VECTOR

300
400

INTEGER*2 IELM
DOUBLE PRECISION V(60),U(30),C(60),Y(600}
DOUBLE PRECISION DELTA,DELT,DS,.VI(1),CIC(D),YI(I)
DIMENSION ILCCI), ILRCI),RELM(I)
COMMON U, C,Y,DS,DELT, DELTA
COMMON T@, TEMP , DTEMP
COMMON TM(6) , A(8),CSAT, VT, VCT, TYPE
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, 1V, IR, IDISC, IUNIT
COMMON IPLT, IPEN, LTYPE, ITEMP, ITOTL, 10UT, JOUT, INPT, IFORM
COMMON IMXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IERR, MLOC , KPOS, LPOS
COMMON 1AQ(80),NI(30,2), 1ELN(9), IFRST(9), ILAST(9) , IELM( 1000)
COMMON (UR(30), IUC(I20) , IPOS(400) ,NCON(30)
EQUIVALENCE (IURC1),ILCC1)),(IUCC1),ILRC(1)}Y,
& (IELM(1),RELM(1))
EQUIVALENCE (C(1),V(I)),(C(30),CI(D,VI(D)),(Y(300),YI(1))

IF(KK.GT.NODE)KK=0
IF(LL.GT.NNODE)LL=0
IF(KK.EQ.90)COTO 300
CI(KK =CI(KK)-DS
IF(LL.EQ.9)GCOTO 400
CI(LL)=CI(LL)+DS
RETURN

END
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