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1.      INTRODUCTION 

Electronic circuit simulation has traditionally 
been done by batch or semi-interactive batch me- 
thods using large host computers. It has been only 
within the last two or three years that serious con- 
sideration has been given to the possibility of doing 
circuit analysis with small computer systems such 
as desktop calculators and minicomputers. Pro- 
grams such as BIAS-D [1],* MINI-MSINC [2], and 
BIASL.25 [3] have been written expressly for these 
small computing systems. Although these analysis 
programs do not have the analytical capabilities or 
speed of simulator programs such as SLIC [4], 
ASTAP [5], or SPICE [6,7] used on large computer 
systems, they do represent a potentially valuable 
design aid for the simulation of small circuits (30 to 
50 nodes) [8]. 

The primary intent of this report is to show the 
practicality of using small computer systems for 
interactive circuit simulation and to determine the 
trade-offs which are necessary to achieve a general- 
purpose (ac, dc, and transient) electronic circuit 
simulator within the limitations of these small com- 
puter systems. 

This report shows that interactive circuit simu- 
lation is possible on minicomputer systems. On a 
dedicated small computer system, the major cost of 
interactive circuit simulation is the engineer's or 
designer's time. In contrast, in a large computer 
system at least an equal cost is contributed by 
computer costs. The "interactive" simulation is 
emphasized here (as opposed to batch simulation) 
since this is the most effective way of completing a 
computer-aided engineering design cycle. Compar- 
isons of the interactive versus batch simulation 
procedures are included in section 4, where the 
simulator architecture and the simulator speed are 
compared. 

One might think that a reasonable initial ap- 
proach to developing a circuit simulator for these 
small computer systems would be to convert a 
program   such   as   SPICE   into   a   minicomputer- 

* Numbers in brackets refer to the Literature Cited. 

compatible language. There are, however, many 
barriers which make this approach both difficult 
and uneconomical [9]. Differences in the architec- 
tures of large computers such as the IBM's and 
CDC's and those of minicomputers such as the 
HP's, PDP's, and PRIME'S, as well as computational 
speed differences, are the primary contributors to 
these programming difficulties. Section 3 includes a 
brief description of computer architecture as rela- 
ted to circuit simulation. 

Most of the work described has evolved in 
three phases. The initial work, described in section 
2, concentrated on a desktop-calculator simulator, 
BIAS-D [1], using a first-generation BASIC language 
desktop calculator, the HP9830A. The 16-kbyte 
available memory posed a severe limitation (15 
nodes, 150 elements) on the size of the circuit 
which could be simulated. Although these efforts 
were successful in showing that circuit simulation 
on programmable calculators is possible, they also 
determined that the speed and memory limitations 
of these early calculators are too restrictive for a 
successful interactive simulator. 

The second phase, described elsewhere [10], 
involved converting BIAS-D from BASIC into a 
minicomputer-compatible FORTRAN IV. Early re- 
sults on a PRIME 400 minicomputer attained a 
surprising 600:1 speed improvement over the 
HP9830A calculator. Significantly more memory 
was also available, permitting analysis of 30- to 50- 
node circuits at reasonable speed. This FORTRAN 
version was used to compare central processor unit 
(CPU) speeds of several minicomputer systems: the 
HP2100, the PDP 11/45, and the PRIME 400, as 
well as the IBM 370/168 [10]. This version of BIAS- 
D was essentially a conversion of the original BASIC 
version. No attempt was made to incorporate 
speed- or memory-saving techniques such as sparse 
matrix storage and decomposition. 

The third and final phase, described in sec- 
tions 4 and 5, brought together, in BIAS-D, the 
more significant speed- and memory-saving tech- 
niques used in the large computer system circuit- 
simulator programs: node ordering, sparse matrix 
decomposition, sparse matrix storage, and linked- 



list element storage. Detailed comparisons of speed 
and memory requirements are made for each of 
these techniques (sect. 4.2 and 4.3). The interactive 
capabilities of BIAS-D have been enhanced, and 
small-signal frequency response has been added; 
this was previously unavailable in a general- 
purpose minicomputer simulator. Algorithms used 
in BIAS-3 [11 ], SLIC [4], SINC [12], and SPICE [6], 
both published and unpublished, were examined 
during these efforts. 

Section 5 introduces a method for computing 
ac frequency response which requires no complex 
arithmetic and very little additional memory. This 
method uses an extension of the standard transient 
analysis procedures used in time-domain simula- 
tions. Both this new method and the traditional 
method are implemented in BIAS-D for comparison 
purposes. Comparisons are made of analytical 
speed, memory requirements, and accuracy be- 
tween this new method and the traditional 
complex-matrix method. 

The appendices inc'ude user's manuals and 
source listings for both the BASIC version of BIAS-D 
for an HP9830A (HP9845) desktop calculator and 
the FORTRAN version of BIAS-D. The FORTRAN 
version includes ac analysis and will run on almost 
any computer system with few if any modifications. 
Also included are the four benchmark test circuits 
which were used in many of the timed experiments. 
A description of the linked-list structure used in 
BIAS-D to store circuit elements is given, as well as 
a description of the function of each subroutine in 
the FORTRAN version of BIAS-D. 

CIRCUIT SIMULATION ON PROGRAMMA- 
BLE CALCULATORS 

Even though the programmable desktop cal- 
culator does not have the speed or memory capa- 
bilities of minicomputers or large computer sys- 
tems, it is still a convenient, low-cost tool for circuit 
simulation. 

2.1 Circuit Simulation—General 

Probably the first general-purpose circuit sim- 
ulator for programmable calculators was BIAS-D 
[1 ]. BIAS-D, written in BASIC for an HP9830A with 
a 16-kbyte memory, can compute the dc operating 
points, small-signal ac gain and input impedance, 
and transient response of a circuit of up to 15 nodes 
containing resistors, capacitors, current sources, 
voltage sources, and npn or pnp bipolar transistors 
(15 each). For transistor circuits, BIAS-D converges 
to a solution by linearizing the built-in Ebers-Moll 
transistor model in much the same manner as that 
done in the larger circuit-simulator programs such 
as BIAS-3 [11] and SPICE [6]. 

Subsequently, BIASL.25 [3] was developed for 
an HP9825 calculator with 32 kbytes of memory. 
BIASL.25 was developed primarily for simulating 
metal-oxide-semiconductor (MOS) circuits and 
consequently has an advanced built-in MOS 
model. Diodes, resistors, capacitors (both linear 
and nonlinear), voltage sources, and current 
sources are also available. The maximum circuit 
configuration of BIASL.25 is not fixed, because 
dynamic element allocation is used. A typical cir- 
cuit would have 19 equations, 14 MOS devices, 5 
diodes, 12 capacitors, 5 resistors, and 10 indepen- 
dent sources. The key to BIASL.25's capabilities is a 
very fast magnetic-tape cassette on the HP9825 
which permits extensive program overlays. This 
cassette allows a much larger program within the 
limited 32-kbyte real memory. The increased speed 
of the HP9825 also makes real-time interaction in 
BIASL.25 more practical than in BIAS-D on the 
HP9830A. Another feature of these calculators 
which made both BIAS-D and BIASL.25 practical 
was the use of built-in read-only memories 
(ROM's), especially the matrix inversion ROM. The 
added speed and memory saving of these ROM's 
makes their use in calculators attractive for circuit 
simulation. However, incorporation of the features 
of these ROM's into the circuit-simulator programs 
can greatly alter the architecture of the program. 
The use of techniques such as LU decomposition 
based on matrix sparsity or sparse storage is no 
longer practical. Some of the alternative techniques 
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which can be used are presented in section 2.2. The 

analytical procedures used in the BASIC version of 

BIAS-D are included here since this was the basis of 

the ensuing FORTRAN version. 

2.2    Circuit Simulation Using BIAS-D 

(BASIC Version) 

Any circuit-simulation program can be di- 

vided into three major segments; an input proc- 
essor, for interpreting the input circuit topology and 

error checking; a circuit processor, for reconfigur- 

ing the circuit for optimum performance in the 

simulator; and the analysis portion, which solves 

the circuit equations for each type of analysis. 

BIAS-D is written in BASIC for an HP9830A 

desktop calculator with a 16-kbyte memory, an 80- 

column printer, a matrix-operations ROM, and a 

string-variable ROM. However, any calculator sys- 

tem which contains the BASIC interpretive lan- 

guage could be used. In fact, BIAS-D was run on a 
Tektronix 4051 calculator* and an HP9845 with 

only minor program changes. 

2.2.7 Input Processing 

The input language of BIAS-D has been struc- 

tured to be easy to use and as interactive as possi- 

ble, and yet use a minimum amount of memory. 

Whenever possible, the input format has been 

modeled after that of SPICE [6]. The circuit data are 

entered into BIAS-D in a semifree format—semifree 

in that the data must begin in the first column, and a 

single space must be used as a delimiter between all 

data fields. Since memory is at a premium, the data 

images are not stored and, therefore, must be 

processed as they are entered. This processing must 

be kept to a minimum to prevent an excessive wait 

time between data entries. An input flow diagram of 

this processing is shown in figure 1. As can be seen 

from this figure, the data path through this routine is 

determined by the information in one of the first 

three columns of each data entry. If a permitted 

character other than a dot (.) appears in the first 

column, then the ensuing data are those of a circuit 
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Figure   1.   Flow   diagram   of   input   processing  for 

BIAS-D. 

element (resistor, capacitor, independent voltage or 

current source, or model), an END statement, or a 

comment statement. If the first column contains a 

dot and the second column is a permitted charac- 

ter, then the entry is a control statement (Alter, 

Insert, Temperature, Transient, Gain, or Output). A 

number from 1 to 8 is assigned to a flag variable, F, 

depending on which control statement was en- 

tered. This flag is used later in the program to 

determine which analysis is required. Further data 

are requested by the program, if necessary, as the 

analysis proceeds. At the end of each analysis, 

control is returned to the user for further com- 

mands. A sample of this input format is shown in 

figure 2 (p 12). 

2.2.2 Circuit Setup 

After the circuit data have been entered and 

the circuit topology reprinted in an ordered format, 

BIAS-D then restructures the circuit into a form 

suitable for analysis. 
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* PREAMPLIFIER FEST CIRCUIT 
Rl 6 1 12880 
R2 7 3 7588 
R3 4 8 688 
R4 7 6 9888 
R5 8 8 5888 
01 3 1 2 M2 
62   3 2 4 (12 
83 6 5 4 ri2 
04 6 6 5 112 
05 7 3 8 (12 
V+ 7 8 6.1 
VS 9 8 1.8 Ml 
RS 9 1 1E8 
Nl PUL 1 3 1 36 1 1 1 
112 MPH 188 1 5E -15 
END 

RESI! TORS: 
NAME NODES VALUE 
Rl 6 1 12008 
R2 7 5 7588 
R3 4 e 688 
R4 7 6 9880 
R5 S a 5888 
RS 9 i 188880888 

V01.THGE SOURCES 
MHME +HniiES- VALUE  MODEL 
V+ 7    0 6, M 8 
VS 9    0 1 M 1 

TRHH: IST0R3: 
NflHE C    B E MODEL 
Ql 3    1 2 11 2 
Q2 3    2 1 M 2 
Q3 6    5 4 M 2 
Q4 6    6 5 M 2 
OS 7    3 8 M 2 

NOBELSi 
NAME TVPE 
111 PUL    1. 300 3.808   1.888E+88 3.888E+81 
112 NPH  108. 380 1.000  S.888E-15 1.888E+12 

1.000E+06  1.000E+00 
0.000E+00   0.000E+00 

»»**END OF INPUT DflTft**** 

ITERATIONS: 10 

T= 27  DEC C 

NODE VOLTAGES: 
V 1 
V 2 

1.H277 
1.2942 

V  3 2.5572 
V  4 8.6414 
V  5 1.2945 
V  6 1.8283 
V  7 6.1888 
V  8 1.9897 
V  9 1.0888 
TRANSISTOR OPERATING POINIs: 
NAME    IB IC VBE VBC BETA GM RPI 
01   4.594E-0S 4.594E-06 8.533 -8 729 100.00 1.777E-04 5 627E+85 
02  4.640E-86 4.648E-04 8.653 -1 263 100.80 1.795E-02 5 571E+83 
03  4.699E-0b 4.699E-84 8.653 -8 534 108.88 1.818E-02 5 seiE+es 
04  4.652E-e8 4.652E-06 0.534 0 000 188.08 1.888E-04 5 556E+85 
05  3.782E-06 3.782E-e4 8.647 -3 543 180.80 1.463E-02 6 83SE+83 

.GAIN 
INPUT NODE 

OUTPUT NODE 

GflIN':V.'V)=-9. 733791 498 
INPUT IMPEDANCE" 76875.8305 

.ALTER 
RS 10 
END 

Figure 2. BIAS-D input data and results for preampli 
fier example circuit from an HP9830 calculator. 
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During the element data entries, a node set, 
N,, is generated which contains all unique node 
numbers in the particular circuit. Since the elements 
are entered at random, this node set is not ordered, 
but the length is known and equal to the number of 
circuit nodes, N (circuit ground, or node 0, is not 
included). An additional node set N2, also of length 
N, is generated, containing the sequence (1, 2, 3, 
. . . N). N, is then ordered into increasing numeri- 
cal order. N, and Nj will be used to control the 
node mapping between the original circuit and the 
newly processed circuit. 

The circuit shown in figure 3 will be used as an 
example to illustrate the further processing. At this 
point the node sets N, and N2 for the circuit in figure 

3 a are 

N,   =  [©2  3 5 6@] 

N2  =   [  1   2  3  4 5  6 ] 
(1) 

The circled nodes in set N, are the circuit voltage 
source nodes. The equivalent voltage source nodes 
in N2 are 1 and 6. The source nodes in N2 are then 
moved toward the end of N2 by being exchanged 
with nonsource nodes. N, and Nj are now 

N,   =   [  1   2  3  5  6  10 ] 

N2   =   [ 5  2  3  4  1   6 ] 

(2) 

Note that the equivalent voltage source nodes in N2 
are now 5 and 6. The circuit element nodes are next 
renumbered by converting the original node num- 
bers in N, to their equivalents in N2. The results of 
this conversion on the example circuit are shown in 

figure 3b. 

The circuit is now restructured by converting 
elements connected to voltage sources into their 
Norton equivalents. This is not normally done in the 
larger circuit codes but is necessary here to avoid 
manipulating the nodal admittance matrix after it is 
loaded. For resistors this is accomplished by 
grounding the node of each resistor connected to 
these sources and adding a Norton equivalent cur- 
rent source from ground to the other resistor node; 

©O + Vc 

vs T a^vc '   A. 
2C 

2CVS V + IBIJ 

fR2       >R1 

Figure 3.  Example circuit showing steps in setup 
procedure. 

current source nodes connected to voltage sources 
are grounded. A capacitor is represented as a con- 
ductance in parallel with a voltage-dependent cur- 
rent source, and capacitors connected to voltage 
sources are reconfigured by grounding the current 
source and treating the conductance as a resistor 
element. Transistors are not altered at this time. 
Using these conventions, the example circuit 
shown in figure 3b can be restructured into that of 
figure 3c. Three additional current sources are 
added, two for resistors R, and R3 and one for 
capacitor Ci. The values of these added current 
sources have been stored symbolically, in the form 
of either a node number or element value address 
location, since either the resistor, capacitor, or 
voltage source values may be altered in subsequent 
analyses. The circuit is now in its final restructured 
form (fig. 3c). The known nodes, those of the 
voltage sources, have been eliminated from the 
circuit. In the larger circuit-simulator codes, this 
elimination is done after the admittance matrix has 
been loaded, and it requires partitioning of the 
admittance matrix [6]. This is not possible in the 
available matrix-operations ROM. 

13 



2.2.3 A nalytical Procedures 

The primary analytical procedures involved in 
circuit simulation are the loading and solving of the 
matrix equation 

Y-V I (3) 

The equivalent linear or nonlinear element conduc- 
tances must be determined and loaded into the 
nodal admittance matrix, Y; the excitation currents 
must be determined and loaded into the current 
vector, I; and equation (3) must be solved for the 
node voltages, V. These voltages are then used to 
update Y and I; the procedure is repeated until the 
process has converged. This procedure requires the 
most analysis time and memory use in a circuit- 
simulation program. 

Models.—In order to load the nodal admittance 
matrix in equation (3), the proper model parameters 
must be determined. These parameters can be a 
function of time, temperature, or circuit node volt- 
ages. In BIAS-D there are five allowable models: 
two transient source models, a temperature model, 
and two bipolar transistor models (npn and pnp). 
For the transistor model, a Newton-Raphson itera- 
tive technique is used to determine the parameters. 
Each model contains six definable parameters plus 
one which indicates its type. The models are desig- 
nated by a three-character name as part of a model 
entry as follows: 

MX  YYY  F1   F2   F3   F4   F5   F6     , 

where M designates that this is a model with a name 
X and type YYY. Fl through F6 are the model 
parameters. More details on these parameters and 
the transient and temperature models are in the 
BIAS-D (BASIC) user's manual in appendix A. 

A modified Ebers-Moll [13] transistor model is 
used in BIAS-D. A circuit representation of this 
model (npn) is shown in figure 4a. The large-signal 
terminal currents are given by 

IE = -Isd   +  1/BF)[exp(VBE/VT) 
+   ls[exp(VBc/VT) -  1] 
+   lRs[exp(VBE/2VT) -  1] 

1| 
(4) 

lc  =   ls[exp(VBE/VT) -  1] 
+   Isd   +   1/BK)[exp(VBc/VT) 

IB   =   It 

where 

l( 

1]     ,(5) 

(6) 

Bp, BR = forward and reverse dc beta, respectively. 
Is = short circuit saturation current, 

IRS = recombination saturation current, and 
Vj = kT/qwith Boltzmann constant, k, 

temperature, T, and electronic charge, q. 

The last term in equation (4) accounts for the 
current dependence of beta at low currents. The 
lower collector knee current, lL/ at which BF is half 
of its maximum value (assuming high-level injection 
effects are negligible in this current range) is [14] 

I, BFASZ/IS (7) 

In order to include base-width modulation effects, 
the saturation current and beta's are multiplied by 
the term 

(1   +  VCB/VA V^ Vr (8) 

where VA is the early voltage [15]. During the 
analysis procedure, this large-signal model is linear- 
ized about the dc operating points determined from 
the last computed node voltages. This linearized 
equivalent model is shown in figure 4b. The trans- 
conductance, gmx, and input conductances, g„x, are 
obtained by evaluating the appropriate derivatives 
of equations (4) and (5) at the operating points. The 
nonlinear junction capacitances are not included in 
this model, but could be included as separate linear 
capacitors with a value determined by the junction 
voltages computed at the circuit operation points. 

Matrix setup and inversion.—In addition to the 
circuit restructuring, which eliminates the voltage 
source nodes as was described earlier, another 
method of saving computation time was found. In 
this method, the nodal admittance matrix is loaded 
as a definite admittance matrix rather than an indef- 
inite admittance matrix, which is normally loaded in 
a  non-sparse-solution  method.  The memory  re- 
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Figure 4. Ebers-Moll transistor model: (a) large-signal 
model and (b) linearized model. 

quirements for both methods were approximately 
the same since the additional coding required to 
implement the definite matrix offset the 2N mem- 
ory saving because of the elimination of a node. For 
the circuit shown in figure 5 the setup and inversion 
time for the determinate matrix form was about 25 
percent less than that for the indeterminate matrix. 

V+ 6.3   ® 

Figure 5. Nine-node integrated preamplifier example 
circuit. 

Convergence.—tor linear circuits, the circuit node 
voltages are obtained by a single matrix inversion; 
however, for nonlinear (transistor) circuits, BIAS-D 
iterates to a solution by updating the transistor 
model parameters after each iteration. It is therefore 
necessary to determine when the circuit has con- 
verged to a proper solution and terminate the itera- 
tion process. Ideally, each class of circuit should 

have its own convergence criterion;  practically, 
however, this is not possible. 

The criterion used in BIAS-D is similar to that 
used in BIAS-M [16]. The criterion uses the square 
of the node voltage changes from the previous 
iteration summed over all nodes, that is 

N 
(Vn - Vn_,)2 (9) 

where k is the present iteration count, N the total 
number of circuit nodes, Vn the present node 
voltage at node n and Vn , the past node voltage at 
node n. Since S is determined after each iteration, 
the values for S at the past two iterations, Sk., and 
Sk j, are also available. If, during any three 
consecutive iterations, the values of 

/WN   ,   and   ySk_2/N (10) 

are less than 10 pV, then convergence is assumed. 
If Sk has increased for three consecutive iterations 
and remains below 1 mV, the iteration process is 
also terminated with a possible error noted. Other 
more elegant techniques, such as those reported by 
Nagel [6] and Freret [9], are possible at the expense 
of additional speed and memory. 

Two other analytical procedures worthy of 
mention are those that determine small-signal ac 
gain and input resistance and transient analysis. 

Small-signal gain and input resistance.—The me- 
thod for computing small-signal voltage gain and 
input resistance used in large computer programs 
such as BIAS-3 and SPICE requires several complex 
operations. A dc voltage source is required at the 
circuit input node. The value of the source must be 
the same as the circuit's dc quiescent operating 
point. In a batch-operated environment, this re- 
quires an additional computer run. The matrix 
equation—equation (3)—is solved for the node 
voltages with unity currents entered into the current 
vector at the input node locations. The resulting 
node voltages are then used to determine the volt- 
age gain and input resistance—see equations (11) to 

(13). 
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The method implemented in BIAS-D requires 
only a simple division and does not need an addi- 
tional computer run. No voltage sources are 
needed at the input nodes. This method takes 
advantage of the true matrix inverse available from 
the matrix-operations ROM. After the dc operating 
point solution for a given circuit has been deter- 
mined, the contents of the admittance matrix, Y 
(which has been inverted to obtain the node 
voltages), now contains the impedance matrix, Z. 
Since the admittance matrix was linearized about 
the dc operating points, the resulting impedance 
matrix is also linear. This matrix can be used to 
calculate the input resistance and gain of the circuit. 

The transimpedance between an input port 
(node j to datum node) and an output port (node k 
to datum node) is 

Zki  =  Vt/lj , 
In    = 0    , 
n   = 1,2,   . 
n  ^ j     , 

(11) 

N  , 

where Ij is an excitation current. The input imped- 
ance at node j is similarly 

Zjj   =  Vj/lj , 
In   = 0    , 
n   = 1,2, 
n  ^ j     . 

(12) 

N 

The transfer voltage ratio (open circuit transfer 
voltage gain) between any two circuit nodes j and k 
is found by dividing equation (11) by equation (12) 
as 

Vk/V,   =  Z^/Zii (13) 

Both Zkj and Z,, are available from the dc operating 
point calculations. In fact, the inverted admittance 
matrix contains all circuit input resistances and 
voltage gains. These are easily obtained with an 
interactive program such as BIAS-D. 

Transient analysis.—In a transient analysis simula- 
tion, the node voltages must be determined as a 
function of time. A flow diagram of the transient 

analysis procedure used in BIAS-D is shown in 
figure 6. In BIAS-D (BASIC), the only time- 
dependent element is the capacitor. The voltage 
across a capacitor with time is given by 

1/C 
/ 

dt (14) 

In computer simulation the value of this integral 
must be approximated. BIAS-D uses the trapezoidal 
integration method [17]. With the trapezoidal me- 
thod a capacitor is represented as a conductance in 
parallel with a voltage-dependent current source 
[18]. The time dependence is introduced by loading 
this conductance and current into the admittance 
matrix and current vector, solving for the node 
voltages, and then using these voltages to update 
the equivalent circuit for each capacitor. The local 
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Figure 6. Transient analysis flow diagram for BIAS-D. 
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truncation error (LTE) associated with the trapezoi- 
dal approximation is proportional to the time-step 
squared [19]. Initially (at t = 0 + ) this error can be 
large, and depends on how the algorithm is started. 
In BIAS-D the dc solution is used for the tn_i 
solution, and a forced delay equal to the time-step 
is used for the tn solution. With this scheme the t 
used in the LTE calculations is effectively twice the 
time-step—thereby increasing the truncation errors 
involved. This procedure was necessary to con- 
serve memory. 

2.2.4 Results 

The amplifier shown in figure 5 [20] is repre- 
sentative of the size and type of circuit suitable for 
analysis in BIAS-D (BASIC). The input data and 
results for a dc analysis of this circuit are shown in 
figure 2. The source resistor Rs is initially large to 
determine the quiescent dc operating points, input 
impedance, and gain. It was subsequently altered to 
10 ohms in order to determine the dc voltage 
transfer curve shown in figure 7. This figure com- 
pares the results from BIAS-D, SPICE 1 (using an 
equivalent transistor model), and actual bench 
measurements. Results from SPICE agreed to four 
decimal places with BIAS-D. 

The transient response of this circuit was also 
computed. Capacitors of 1 and 10 pF were added 
across each transistor collector-base and base- 
emitter junction, respectively, to represent collec- 
tor junction and base storage capacitances. Results 
for a time-step of 50 ps compared closely with 
SPICE. The computation times on an HP9830A 
calculator for these analyses on this circuit were as 
follows: 

data input (operator dependent) 2.1 min 
circuit restructuring 10.5 s 
dc analysis (10 iterations) 2.9 min 
dc transfer curve (30 points) 43.2 min 
transient analysis (30 time points) 54.2 min 

An RCA 3040 integrated wideband amplifier was 
also analyzed. This represents the maximum circuit 
size for BIAS-D (15 nodes). Results for a dc analysis 
of this circuit compared to four significant figures 
with SPICE for ail nodes. The total analysis time. 

e.Oi- 

KEY: 

— MEASURED 
o   BIASD, SPICE 

1.2 1.6 2.0 2.4 

OUTPUT (Vdc) 

2.8 

Figure 7. Transfer curve, dc, for preamplifier example 
circuit, showing BIAS-D, SPICE, and measured 
results. 

excluding entering data, for a dc analysis was 25 
min (6 iterations). 

These results indicate that the simulation 
speeds of programmable desktop calculators (at 
least the HP9830A) are too slow for practical inter- 
active simulation, above the 4 to 5 circuit-node 
level. BIASL.25 on the HP9825 offers a significant 
speed improvement (approximately 10:1), but the 
use of HPL limits its use to the HP9825. Recently 
available BASIC language calculators such as the 
HP9845 or the Wang PCS-II have greater memory 
capabilities and are as fast or faster than the 
HP9825. These calculators permit practical interac- 
tive circuit simulation at the 10- to 20-node level. 

A source listing of BIAS-D (BASIC) is given in 
appendix A. 

3.      SMALL COMPUTER SYSTEMS FOR CIRCUIT 
SIMULATION 

Small computer systems can be divided into 
three distinct categories: the minicomputer, the 
programmable desktop calculator, and the micro- 
processor. All three systems are capable of circuit 
simulation. Only the minicomputer and the pro- 
grammable desktop calculator are included here. 
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Each of these systems has its own idiosyncrasies 
and application areas. There are several facets of 
small computer systems, and in fact all computer 
systems, which directly concern the development 
of circuit-simulator codes. These are (1) the com- 
puter language, (2) the computer data word format, 
and (3) the computer speed. Each of these facets is 
included in this chapter, in which eight computer 
systems are used for comparison; three of these are 
minicomputers (an HP2100, a PDP 11/45, and a 
PRIME 400), two are large computers (an IBM 
370/168 and a CDC 6400), and three are pro- 
grammable desktop calculators (an HP9830A, a 
Tektronix 4051, and a Wang 2200). 

3.1 Minicomputer System 

A minicomputer system, as originally con- 
ceived, was a small computer system both in size 
and cost. Minicomputers began to appear in the 
mid 1960's, primarily as controllers for low-cost 
original equipment manufacturers (OEM), and have 
gradually increased in size and speed. Currently, 
some minicomputers are competitive with the mid- 
range and even large mainframe computer systems 

[21]. 

Figure 8 shows the configuration of a mini- 
mum minicomputer system for hosting circuit- 
simulator programs. In this system, the program is 
entered into main memory through a punched tape 
or magnetic tape. The system console is used as a 
terminal to enter circuit data and print out the 
results. The addition of a disc would greatly en- 
hance the usefulness of this system. It would enable 

HOST COMPUTER 

MAG, OR 
PAPER 
TAPE 
READER 

11 SINGLE USER 
OPERATING SYSTEM 

21 32 KWORD 
RESIDENT MEMORY 

I 1 

(SYSTEM     A 
^    CONSOLE   J 

storage of alternative programs and circuit input cr 
output files, as well as allowing the program to be 
segmented through the use of overlays. The addi- 
tion of several other features to this minimum sys- 
tem would make it competitive or superior to the 
larger mainframe computer systems. Figure 9 
shows such a system. The magnetic-tape unit al- 
lows initial loading of programs, as well as long- 
term storage of circuit or program files. The system 
console, used only for monitoring system opera- 
tion, may not be required. The host computer 
contains a multi-user operating system which sup- 
ports several 300- to 9600-baud remote terminals. 
(A baud is the bit transmission rate; 300 baud is 
approximately 30 characters per second.) The ter- 
minals may be linked to the computer directly (RS- 
232) or through modems. These terminals may also 
request copies of numerical or graphical output 
locally or at the host computer printer/plotter. The 
host computer also contains virtual memory 
management. This enables execution of large dy- 
namically allocatable design-aid programs without 
the need for user segmentation. The system operat- 
ing speed is enhanced through the use of a small 
fast-cache memory which speeds up the computer 
throughput. The size of the required real memory 
depends on the number of users and their pro- 
grams' sizes. At least 64 kwords of memory is 
recommended in a multi-user system. 

1200 
TO 
9600 
BAUD 
LINES 

DISC 

HOST COMPUTER 
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Figure 8. Minimum minicomputer configuration for 
hosting circuit-simulator programs. 

/SYSTEM N 
VcONSOLEy1 

Figure 9. Recommended minicomputer system for 
hosting circuit-simulator programs. 

Minicomputer systems have distinct charac- 
teristics that make them different from large com- 
puter systems. Some of these characteristics are 
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1. smaller word size, 
2. slower CPU speeds, and 
3. use of an ASCII (American Standard 

Code for Information Interchange) 
character set in most cases. 

Further, minicomputers are economical to run with 
a single user; their initial cost is low (usually $10K to 
$500K), and they require no special power or air- 
conditioning systems. The only characteristics 
which directly affect the circuit simulator develop- 
ment are the first two. 

3.1.1 Computer Languages 

There are three basic requirements of a mini- 
computer language used in developing a circuit 
simulator: (1) the language should be transportable 
from one computer system to another with few, if 
any, software changes required between systems, 
(2) the language should have a relatively fast execu- 
tion speed, and (3) the language must be compact 
and efficient in order to conserve memory. Pro- 
gram transportability is a much greater problem on 
small computer systems than on the larger systems 
(such as the IBM's and CDC's). Small systems 
usually do not have a resident system programmer 
to modify software, nor is good software or system 
documentation always available. 

The execution speed of a program depends 
not only on the algorithms used in the program, but 
also on the execution speed of the language in 
which the program is written. The potential applica- 
tions of the program depend not only on the size of 
the program but also on how efficiently the com- 
piler or interpreter uses memory. 

Assembly language.—Assembly language programs 
can be 1 to 100 times faster than the same code 
written in FORTRAN and also use less memory than 
the FORTRAN equivalent, depending on the effi- 
ciency of the FORTRAN compiler and the skill of 
the programmer. Assembly language code is almost 
never transportable to different computer systems. 
For this reason, it should not be used as a general 
language for circuit-simulator development. In spe- 
cial applications, where a short but extremely fast 

code is desirable, such as I_U decomposition, it may 
be worthwhile to use assembly code written specifi- 
cally for a particular machine. 

BASIC.—Dartmouth BASIC is available on most 
minicomputer systems. BASIC on most systems is 
an interpretive language; each line of code is inter- 
preted and executed in the exact sequence that it 
was written. As a result of this line-by-line interpre- 
tation, BASIC is inherently a slow language. For 
example, on a PRIME 400 minicomputer, BASIC is 
approximately 14 times slower than FORTRAN IV. 
BASIC software or hardware decoders can be very 
compact (4 to 8 kwords of ROM or random-access 
memory—RAM) and, therefore, are well-suited for 
programmable desktop calculators. Desktop calcu- 
lator languages are described in more detail later. 

Two versions of BASIC are usually available 
on minicomputer systems: a popular single- 
precision version (with 32-bit words) and a double- 
precision version, DBASIC (with 64-bit words). Be- 
cause circuit simulators require double-precision 
word lengths for many calculations [9], the single- 
precision BASIC cannot be used. DBASIC makes 
very inefficient use of memory in storing single- 
precision and integer variables. BASIC (or DBASIC) 
makes no distinction between integer and real vari- 
ables. Thus, an integer in DBASIC requires four 
words of storage when only one word is needed. 

In circuit simulators, the use of "string vari- 
ables" (alphanumeric characters) is essential. Al- 
though string-variable features are becoming more 
widely available, string variables are not a standard 
subset of BASIC on all computer systems. The use 
of BASIC or DBASIC for circuit-simulation programs 
is not recommended except when, as with the 
desktop calculators, nothing else is available. 

FORTRAN /I/.—FORTRAN IV is probably the most 
widely used higher-level computer language. FOR- 
TRAN is a compiled language; thus, the speed and 
efficiency with which this code executes depends 
on the particular FORTRAN compiler used. Some 
of the smaller minicomputer systems have three- 
pass compilers, in which the first pass generates the 
assembly or objec.t code on a tape or disc, and the 
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next two passes are needed to convert the assembly 
code to machine code. As an example of the 
transportability of FORTRAN IV, a FORTRAN ver- 
sion of BIAS-D was run on three different minicom- 
puter systems and an IBM 370/168 with no 
changes in the FORTRAN source code [10]; the 
analytical results were the same on all systems. 

3.1.2 Computer Data Word Format 

Three types of data formats are usually avail- 
able in most minicomputer systems: alphanumeric, 
integer (fixed-point), and floating point. Each has its 
application. The configuration of each of these data 
formats determines the magnitude, range, and type 
of data which can be manipulated or stored in that 
computer system. To show how differences in 
these data formats can affect the magnitude and 
range of allowable numbers, the data formats of five 
computer systems previously mentioned are 
compared. 

Alphanumeric.—The ability to process alphanu- 
meric characters is extremely important in areas 
such as circuit simulator input-output languages. 
Alphanumeric characters are stored in a computer 
word in an ASCII, BCD (binary coded decimal), or 
EBCDIC (extended BCD interchange code) code. A 
cross reference between these codes is given in 
table 1. 

Most minicomputer systems use 7-bit ASCII to 
represent alphanumeric data. Eight bits are actually 
used for this code, with the eighth bit used as a 
parity bit. The parity bit is referred to as either 
"marked" (1) or "null" (0) parity (the marked parity 
notation is sometimes referred to as "8-bit ASCII"). 
This parity bit is important when programs or data 
are transferred between different computer sys- 
tems. For example, if the word "NO" were to be 
stored in a 16-bit word using 7-bit ASCII in marked 
parity it would be represented as a binary 

11001110 11001111 (or an octal 147317) , 

whereas if it were stored in null parity it would be a 
binary 

01001110 01001111 (or an octal 04711 7) . 

TABLE 1.    CHARACTER SYMBOL CROSS 
REFERENCE  BETWEEN ASCII,  BCD, AND 

EBCDIC CODES 

Symbol 
Format tdecimal) 

Symbol 
Format (decimal) 

ASCII BC ) EBCDIC ASCII BCD EBCDIC 

(space) 32 16 64 A 65 49 193 
| 33 (a; 90 B 66 50 194 
" 14 (a. 127 C 67 51 195 

# 35 12 123 D 68 52 196 

$ J6 43 91 E 69 53 197 

% 37 (a, 108 F 70 54 198 

& 38 (ai 80 C 71 55 199 

39 (a) 125 H 72 56 200 

( 40 28 77 1 73 57 201 

) 41 60 93 J 74 33 209 
• 42 44 92 K 75 34 210 

+ 43 48 78 L 76 35 211 

44 27 107 M 77 36 212 

- 45 32 17 N 78 37 213 

46 59 75 O 79 38 214 

/ 47 17 97 P 80 39 215 

0 48 10 240 Q 81 40 216 

1 49 01 241 R 82 41 217 

2 50 02 242 S 83 18 226 

3 51 03 243 T 84 19 227 

4 52 (14 244 U 85 20 228 

5 53 05 245 V 86 21 229 

6 54 06 246 w 87 22 230 

7 55 07 247 X 88 23 231 

8 56 08 248 Y 89 24 232 

9 57 

58 

59 

09 

00 

63 

249 

122 

94 

z 90 25 233 

< (>() 58 76 

= 61 11 126 

> 62 47 110 
? 63 (a) 111 

@ 64 (a) 124 

''Not permitted 

It is possible to convert from null parity to marked 
parity (or vice versa) by adding (or subtracting) an 
octal 100200 to each 16-bit alphanumeric word. 
This cannot be done in ANSII (American National 
Standard for Information Interchange) Standard 
FORTRAN but is easily done in assembly code. 

In the HP2100 [22], PDP 11 /45 [23], and the 
PRIME 400 [24] minicomputer systems, alphanu- 
meric characters are represented in ASCII format 
and stored in a 16-bit word as follows: 
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15 7   • 0 
[p][character  1][p][character 2] 

where p indicates the parity bits. Two characters 
can be stored in a single word. If a single character 
is to be stored, it is right justified for the PDP 11 /45 
and left justified for the others. The other character 
is filled with ASCII blanks (different from zeros). 

In the HP2100 and PDP 11 /45/ null parity is 
used, whereas, on the PRIME 400, marked parity is 
used. The CDC 6400 system [25] uses a 6-bit BCD 
code to represent alphanumeric characters. Ten 6- 
bit characters are packed into a single CDC 60-bit 
word as 

59 0 
[cl ][c21[c3][c4][c5][c6][c7][c8][c9][c10] 

If less than ten characters are to be represented, 
they are left justified and the remaining characters 
filled with BCD blanks. 

The IBM 370 system uses 8-bit EBCDIC to 
represent alphanumeric characters. EBCDIC is 
merely an extension of the 6-bit BCD code and 
permits 256 characters rather than the 56 allowed 
for BCD. On the IBM 370 system [26], four 8-bit 
EBCDIC characters are packed into a 32-bit word 
as follows: 

31 0 
[char 1 ][char 2][char 3][char 4]. 

Again, if less than four characters are to be repre- 
sented, they are left justified with the remaining 
characters filled with EBCDIC blanks. 

Integer number.—The integer is used to represent 
numbers which do not require decimal fractions. In 
most computer systems an integer is represented by 
a single computer word. In the minicomputer sys- 
tems under discussion, this is a 16-bit word, with 
the highest-order bit being the sign bit as 

15 
[s][ 

0 
number 

This can be used to represent an integer number 
from -2" (-32768 decimal) to 215 - 1 (32767 
decimal) including zero. The IBM and CDC systems 

have a similar representation with the IBM 370 
using a 32-bit word (sign plus 31 number bits) and 
the CDC 6400 using a 60-bit word (sign plus 59 
number bits). These larger word sizes allow a much 
greater range of integer numbers. However, in 
circuit simulation this additional range is almost 
never required. 

Floating-point numbers.—A floating-point number 
is represented by a mantissa (fraction) and a charac- 
teristic (exponent). The fraction determines the ac- 
curacy of the floating-point number and the expo- 
nent to some base determines the range. Both base 
2 (binary) and 16 (hexadecimal) are used in mini- 
computer systems. There are basically four types of 
floating-point numbers: single precision (real and 
complex) and double precision (real and complex). 
Floating-point hardware is available as an option on 
most minicomputer systems. This option always 
includes the single-precision hardware, sometimes 
the double-precision hardware, but never the com- 
plex floating-point hardware. 

Single-precision real floating-point number.— 
Usually in minicomputer systems two words are 
used to represent a single-precision floating-point 
number. Table 2 shows the single-precision 
floating-point number representation for the 
HP2100, the PDP 11 /45, the PRIME 400, the IBM 
370/168, and the CDC 6400. Note that in each 
case this representation is different. The resulting 
precision and range in each case is given as shown 
in table 3. Note that the PDP 11 /45 system attains 
seven digits of precision with the same number of 
bits as the HP2100 and PRIME 400. This is done by 
using "hidden-bit normalization" which assumes 
that the normalized highest-order bit is always a 1 
(unless the exponent is zero) and is, therefore, 
unnecessary. This gives an effective precision of 24 
bits in the fraction. The large range of the IBM 
number is attained by using the hexadecimal num- 
ber system rather than binary to represent the 
exponent (16M = 1078, whereas 264 = 10'8). 

Single-precision complex floating-point number.— 
Minicomputer systems which support single- 
precision floating-point arithmetic usually support 
single-precision complex floating-point arithmetic. 
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TABLE 2. COMPARISON OF SINGLE- 
PRECISION  DATA  FORMATS 

Type of system Format' 

HP2100                                 15 0 
word  1     [5][           fraction ] 

15                    7 0 
word 2     [    fraction     ][ exp    ][ s  ] 

PDP   11/45                          15                       6 0 
word  1     [s][    exp         ||    fraction    | 
word 2    [           fraction ] 

PRIME 400                         15 0 
word  1     [s][           fraction ] 

15                7 0 
word 2     [ fraction  |[         exp | 

IBM   370/168   0                            8 31 
[s][    exponent    ][         fraction ] 

CDC 6400         59                                     47 0 
[s][         exponent         |[         fraction ] 

■'s = sign 

TABLE 3.    PRECISION  AND  RANGE 
COMPARISONS:    SINGLE-PRECISION  NUMBERS 

Computer 
Precision 
(decimal 

digits) 

Range 
(decimal) 

HP2100 6 10" to  1037 

PDP   11/45 7 lO"3" to  1037 

PRIME 400 6 lO" to  1037 

IBM   370/168 6 lO"77 to  lO76 

CDC  6400 12 lO'307 to  lO306 

However, this complex arithmetic is usually done in 

software (even on the large computers). A complex 
floating-point word is represented by two single- 

precision floating-point numbers: the first number is 

the real part of the complex word, and the second is 

the imaginary part. Since the complex number is 

actually two real numbers, the magnitude and range 

is the same as for the single-precision real floating- 

point numbers. On 16-bit per word computers, four 

16-bit words are required for a complex number as 

follows; 

15 0 

word 1 

word 2 

word 3 

word  4 

real  part 

imaginary part 

On the 32- and 60-bit machines (IBM 370 and CDC 

6400), only two words are required, the first for the 

real part and the second for the imaginary part. 

Double-precision real floating-point number.—The 

configuration and execution speed of the double- 

precision numbers in minicomputer systems are 

very machine dependent. Double-precision hard- 
ware or firmware,* if available, is usually an option. 

If executed in software, double-precision arithmetic 

must be written in assembly or machine code and is 

therefore several times slower than its hardware 

counterpart. Table 4 gives the double-precision 

word configuration for the HP2100, the PDP 

11 /45, the PRIME 400, the IBM 370, and the CDC 

6400. The resulting precision and range for each of 

these systems are given in table 5. 

Table 5 shows that the precision and range of 

double-precision numbers can vary considerably 

between computer systems—more so than the 

single-precision numbers. 

It is the size of this double-precision word that 

limits the maximum circuit size. It has been shown 

that with a well-conditioned set of equations, 

round-off error can reduce the number of signifi- 

cant digits by a factor 

1 +2(logN), 

where N is the number of circuit nodes [6]. Three to 

six significant digits are required for circuit simula- 

tion. For all computers listed above, it should be 

possible to solve a 50-node equation, and on all but 

the HP2100, a 1000-node equation. Techniques 

* Firmware is used here to mean software which has been 
implemented in microcode or read-only memory. 
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TABLE 4.    COMPARISON  OF  DOUBLE- 
PRECISION  DATA FORMATS 

Type of system Format 

HP2100 15 
word 1 Ml fraction bits 
word 2 1 

15 

fraction bits 
7 

word 3 [ fraction  ][      exp 

POP   11/45 15 6 
word 1 |sl( exp    ][    fraction 
word 2 f fraction 

word 3 1 fraction 
word 4 1 fraction 

PRIME  400 15 
word 1 [sl[ fraction 
word 2 f fraction 

word 3 1 fraction 

word 4 1 exponent 

IBM  370/168 0 8 

1   0 

IN 

31 

CDC  6400 

word  1   ls][ exponent ][    fraction 
word  2   [ fraction 

59 47 
word  1   [s][ exponent ][      fraction 
word  2  [s][ exponent ][    fraction-" 

'LSB 

TABLE 5. 
COMPARISONS: 

PRECISION  AND  RANGE 
DOUBLE-PRECISION  NUMBERS 

Computer 

Precision 
(decimal 

digits) 

Range 
(decimal) 

for minimizing round-off error, such as pivoting 

[27] or those developed by Freret [9,28,29], can be 

used to increase this node capability. Since the 

interest here is at the 30- to 50-node level, the use 

of these techniques is not necessary. 

Double-precision complex floating-point num- 

ber.—Although most minicomputer systems offer 

double-precision floating-point arithmetic in hard- 

ware or firmware, double-precision complex arith- 
metic is not available. Double-precision complex 

arithmetic must be done as a software subroutine 

call. The primary disadvantage is the resulting 

speed of operations. Implementation of double- 

precision arithmetic on software is 10 to 100 times 

slower than implementation on hardware or firm- 

ware. Sometimes, it is possible to implement this 

arithmetic into a writable control store (WCS) or 

microcode (usually an option) which is essentially a 

programmable read-only memory (PROM). For ex- 

ample, to execute a single- or double-precision 

software complex divide represented as 

C   =   A/B   =   (AR   +   jAl)/(BR   +   jB,)   ,    (15) 

where R indicates the real part of the complex and I 

the imaginary part, the resulting real and imaginary 

parts of C must be computed separately as 

CR  =   (ARBR  +   AIBI)/(B^  +   B? 

C,   =   (ARBI - A|BR)/(B?  +   Bf) 

(16) 

(17) 

HP2100 10 io-37 to io3" 1. 

POP 11/45 17 io-37 to 10" 2. 

PRIME  400 13 io-'"5 to 10"" 3. 
IBM 370/168 14 IO"77 to 107' 

CDC 6400 27 IO"307 to io30' 

These operations require six double-precision mul- 

tiplies, two divides, two adds, one subtract, and one 

store. 

3.1.3 Computer Speed 

The speed of operation of a minicomputer 

system depends on several factors: 

the configuration of the system, 

the language used, 
the type of arithmetic executed and 
mode   of   implementation   (software, 

firmware, or hardware), 
type   of   memory   (core,   bipolar,   or 

MOS) and its access speed, and 

CPU clock speed. 5. 

All the above factors determine the execution time 

of a particular program. 
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The system configuration affects the overall 
speed of each job. If a single user is running on a 
multi-user system he is penalized in actual run time 
(not necessarily in CPU time) because of overhead. 
If several users are on a multi-user system and the 
computer becomes compute- or memory-bound, 
all users will be penalized in overall run time. The 
language used and how this language is managed in 
the particular computer system can greatly affect 
the run time. An interpretive language will always 
be relatively slow. The speed of a compiled lan- 
guage is determined in part by how efficiently the 
compiler-generated machine code executes; this 
efficiency depends in turn on the efficiency of the 
basic machine instruction set. The type of arithme- 
tic being executed also can affect the total run time. 
If the execution times on a PRIME 400 of an 
assembly ADD instruction are compared for an 
integer ADD, a single-precision floating-point ADD, 
and a double-precision floating-point ADD, they 
would be in the following ratios. 

Arithmetic Speed ratio      Implementation 

Integer 
Single-precision 

floating point 
Double-precision 
floating point 

hardware 
firmware 

firmware 

These ratios indicate that, on a PRIME 400, integer 
arithmetic should be used wherever possible. This 
is generally true for all computer systems. 

It is difficult to compare the overall speeds of 
different computer systems since, as was just men- 
tioned, there are many variables which affect this 
speed. To compare computer systems for use by 
circuit simulators, the best comparison is to run a 
circuit-simulator program. Such a speed compari- 
son of four computer systems (an HP2100, a PDP 
11 IAS, a PRIME 400, and an IBM 370/168) is given 
in section 4. This comparison is made using a 
FORTRAN version of B1AS-D which runs on all 
systems with no source code changes. 

3.1.4 Computer Memory Configuration 

Another basis for comparison of minicompu- 
ters is the configuration of the memory. All present- 

day computer systems use two types of memory 
storage: small, rapid-access, relatively expensive, 
resident-memory storage, and large, slow-access, 
disc- or tape-memory storage. The procedures for 
managing these two types of memory can greatly 
affect the operation of the computer system. 

There are two basic memory management 
schemes: real memory management and virtual 
memory management. Real memory management 
restricts the user to a segment of the total available 
memory (usually 32 kwords). Within this segment, 
the user can control his own memory management 
through the use of overlays to disc memory. Virtual 
memory management |30], in theory, allows the 
user the advantages of both types of memories. 
That is, it permits a large memory to be addressed at 
access times of the fast memory. In a virtual mem- 
ory, "pages" are moved in and out of resident 
memory as required. With this memory system, 
overlaying of program segments is not necessary. 
This results in a program which is easily transporta- 
ble to other virtual or large-memory computer sys- 
tems. In the computer systems compared previ- 
ously, only the PRIME 400 minicomputer and the 
IBM 370/168 have virtual memory management. 

3.2 Programmable Desktop Calculator 

Programmable desktop calculators began to 
appear in the mid-1960's, at about the same time as 
the minicomputers. The development of these cal- 
culators was relatively independent of the mini- 
computers. It has been only since the appearance 
of the "super" calculators such as the HP9830, 
Wang 2200, and Tektronix 4051 that the minicom- 
puters and calculators could speak a common lan- 
guage—BASIC. Although the computing power of 
desktop calculators approaches or exceeds that of 
small minicomputers, there are still definite differ- 
ences in these systems. Some of the distinguishing 
features of the desktop calculators are as follows. 

1. The keyboard is an integral part of the 
computer. 

2. The computer language is permanently 
stored in the machine either in hard- 
ware or firmware (ROM). 
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3. The programming language is an inter- 
pretive language (at present). 

4. The desktop calculator comes as a turn- 
key* system. 

Desktop calculators, unlike minicomputers, 
do not provide a wide choice in input language, 
data word size, or computational speed. 

3.2.1 Calculator Language 

In the presently available programmable cal- 
culators, the programming language is not an op- 
tion. It is permanently stored in the calculator. 
There are presently only two minicomputer-com- 
patible languages, BASIC and APL, available on 
these calculators. Other languages are hybrids be- 
tween BASIC and an assembly language. For exam- 
ple, HPL (Hewlett Packard Language) is used on the 
HP9825. All calculator languages are presently in- 
terpretive languages. This means that each line of 
the program is interpreted and executed line by line 
exactly as it was written. Calculator languages 
therefore are relatively slow when compared with 
compiled languages. 

The BASIC language implemented in the desk- 
top calculators is a superset of Dartmouth BASIC. 
Several features have been added which greatly 
enhance the usefulness of BASIC. String-variable 
operations (comparable to alphanumeric or Holler- 
ith characters in FORTRAN) are available either in 
factory-added hardware/firmware or as a user- 
added plug-in ROM. Other plug-in ROM's allow 
matrix inversion with a single line of code in a tenth 
the time required in software. Also available are 
other features, such as bit and byte manipulations, 
data packing and unpacking, or variable data word 
lengths. 

3.2.2 Calculator Data Word Format 

Two types of data word formats are generally 
available on the programmable calculators: string 
variable and numerical. 

The string-variable word is used to store or 
manipulate alphanumeric data. Seven-bit ASCII is 
used to represent these data, and a single character 
requires eight bits as in the minicomputers. The 
Wang 2200 system [31] permits storing or "pack- 
ing" of numerical data into string-variable arrays, 
which enables high-density data storage. 

The numerical data word is used to store 
integer and floating-point data. The data word does 
not differentiate between integer and floating-point 
numbers. Except for dimensioned variables in the 
HP9830, all numerical data require four 16-bit 
words for storage and arithmetic operations. This 
gives 13 to 14 decimal digits of precision and a 
range of 10-'" to 10" for the HP9830A [32] and the 
Wang 2200 and 10"306 to 10305 for the Tektronix 
4051 [33]. The HP9830A permits specifying full- 
precision, split-precision, and integer-precision 
words in dimensioned variables. These require 64, 
32, and 16 bits, respectively, for storage. The result- 
ing precision and range for each of these words is 
affected by the shorter word length. 

3.2.3 Calculator Speed 

The computational speed of the desktop cal- 
culator is not as dependent on the calculator config- 
uration as is that of the minicomputer. The calcula- 
tor systems are always single-user systems with 
hardwired or firmware interpretive programming 
languages. In some cases, the addition of special- 
function ROM's could significantly change the 
computational speed of a particular set of opera- 
tions, but in most cases the calculator speed is only 
a function of the clock cycle time. 

As a comparison of the relative speeds of 
these calculators, a simple loop containing a multi- 
ply and divide operation was executed 10,000 
times. The resulting normalized speeds were as 
follows. 

Calculator Normalized speed 

*A turn-key system is a system that is ready to use as soon 
as it is delivered and turned on. 

HP9830A 
Wang 2200 
Tektronix  4051 

1.0 
0.48 
0.45 
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As an indication of the speed of these calculators 
compared with a minicomputer system, the execu- 
tion speed of a FORTRAN version of BIAS-D run- 
ning on a PRIME 400 minicomputer is 500 to 600 
times faster than a similar BASIC version of BIAS-D 
running on an HP9830A desktop calculator. 

4.      CIRCUIT SIMULATION  ON 
MINICOMPUTERS 

Present-day minicomputer systems have or 
exceed the capabilities of the large computer sys- 
tems of five or ten years ago. Even so, certain 
limitations in both minicomputer hardware and 
software must be considered for present-day circuit- 
simulator development. Hardware aspects of the 
minicomputer circuit simulators were presented in 
section 3. This section is oriented toward the soft- 
ware aspects of circuit-simulator development. 

A large simulator program, such as SPICE, can 
be converted to run on a minicomputer system. 
Later in this chapter results are given from SPICE2, 
run on a PRIME 400 minicomputer.* The conver- 
sion of these programs from the larger computer 
systems to minicomputer systems is not always 
practical, however. Many of these small systems 
have limitations (such as 32-kword program bound- 
ary limits) that make this approach difficult and 
uneconomical. 

Another program in which this conversion 
was successfully done was Mini-MSINC [2]. Mini- 
MSINC, developed for an HP2100 minicomputer 
system with a DOS III operating system, was de- 
rived from TIME [34], SINC [12], and MSINC [35], 
all developed for large computer systems. To fit 
Mini-MSINC into the 32-kword memory of the 
HP2100, it was necessary to overlay memory 
through five overlay segments on disc and to exten- 
sively modify the common array allocation with 
linked lists [30]. Mini-MSINC is probably the most 
widely used minicomputer circuit-simulator pro- 
gram at this time. It can do a dc or transient analysis 
of MOS circuits containing over 100 nodes and 100 
active devices. Although Mini-MSINC has been 
restricted to. the analysis of MOS circuits,  it is 

presently being updated to analyze bipolar transis- 
tors and to perform ac and statistical analysis.* 

Simulation speed is an important consider- 
ation in choosing the type of simulation program to 
be used (batch mode or interactive mode). In order 
to make this choice, it is necessary to determine the 
computational speeds of different minicomputer 
systems using a circuit-simulator program. This can 
best be done with a circuit-simulator program that 
is compatible with all systems being evaluated. 
Comparisons of both the speed and memory re- 
quirements of several computer systems using 
BIAS-D are given in section 4.4. 

The architecture of the circuit-simulator pro- 
gram is influenced by three basic areas of software 
development. These are 

1. simulator operation, 
2. simulator speed, and 
3. simulator memory requirements. 

Interaction between each of these areas represents 
trade-offs which can affect one or both of the other 
areas. For example, a software routine that could 
greatly increase the simulation speed may also 
require significantly more memory. In the large 
computer systems these trade-off problems are less 
significant than in minicomputers. The large com- 
puter systems usually sacrifice readily available 
memory for speed. On many of the larger systems 
there is no penalty for using this additional memory. 
On the minicomputer systems, additional memory 
is not always available and is at a premium. Trade- 
offs must be made which hold program memory 
requirements within a given bound at the expense 
of either the simulator operation or simulator speed. 

4.1 Simulator Program Operation 

There are basically two types of circuit- 
simulator operation: batch and interactive. Both are 
software oriented. 

In the batch mode, the program or data are 
entered into the computer through a "hopper" 
which is linked directly to the computer. Results are 

"M.     Payne,     PRIME     Computer     Corp.,     private 
communication. 

*R.       W.      Dutton,      Stanford     University,      private 
communication. 
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returned on a high-speed line printer. No inter- 
action with the program is possible in the batch 
mode. 

Variations of the batch mode include the re- 
mote batch and interactive batch modes. The re- 
mote batch mode is similar to the batch mode, 
except that the hopper and printer are remote, 
linked by high-speed communication lines or mo- 
dems (4,800 to 120,000 baud). In the interactive 
batch mode, an indirect interaction with the pro- 
gram is possible through the use of disc files and an 
editor. Here, a low-cost terminal is tied to the host 
computer, usually through standard telephone lines 
and a low-speed modem (110 to 1200 baud). 
Figure 10 shows the input processing portion of a 
circuit simulator using the interactive batch mode. 
Here a previously generated circuit data file is 
entered into the program. The data are processed 
and checked for errors. Data errors terminate the 
job. If the circuit is error free, the circuit is set up 
and analyzed, and the resulting output is stored for 
future printing or plotting. If a circuit change is 
required or a new circuit file is to be generated, an 
editor must be used, as shown in figure 10. Once 
the circuit file has been updated or generated, it is 
stored in memory (disc) and the circuit simulation 
restarted. 

Circuit simulation using the interactive batch 
mode of simulation, although superior to batch, is 
still awkward. This is especially true for small mini- 
computer systems which have crude editors. 
SPICE1 and SPICE2, as they were originally written, 
were intended for use as batch mode simulators. 
Some modified versions of these programs, such as 
ISPICE [36], are interactive batch oriented. 

The interactive mode simulator is significantly 
different from the batch mode circuit simulator, 
which has little or no interaction. The interactive 
simulator allows direct interaction with the pro- 
gram. An input flow diagram of an interactive 
simulator input processor is shown in figure 11. 
Here the data are entered, processed, and checked 
for errors one line at a time. Syntax errors are 
immediately flagged, allowing the data to be reen- 
tered. When the data entry is complete, the circuit 

(b) 

3 

(      PUniHMIT       J 

Figure 10. Flow diagram for interactive batch simula- 
tion: (a) input processor and (b) typical editor. 

is set up and analyzed by the computer. An inter- 
rupt flag, set by a predetermined keyboard entry, 
can stop the analysis at any time and return to the 
input portion of the program. Outputs are either 
printed or graphically displayed on the terminal as 
they are computed. At the end of an analysis, the 
program may be terminated or returned to the input 
processor. To better illustrate the flexibility of the 
interactive simulator, the command instruction set 
from BIAS-D is given in table 6, along with a brief 
description of each command. 

These commands can be used at the end of 
any analysis and allow freedom in the simulation 
procedure. This enables the type of analysis or 
circuit modification to be determined pending the 
outcome of the previous analysis. 

Although an interactive circuit simulator is 
desirable, it is not always practical. If a computer 
system is so slow that the engineer or designer must 
wait several minutes or hours for the simulation 
results, and then respond to these results, an inter- 
active simulation should not be used. In this case a 
batch simulator is best. The computational speed 
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DATA OR 
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PROCESSOR 

NO 

CIRCUIT SETUP 
(IF REQUIRED) 

ANALYSIS 
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MESSAGE 

YES 

3 

PRINT 

PLOT 

Figure 11. Flow diagram for an interactive circuit- 
simulator input processor. 

breakpoint between the interactive simulator and 

batch simulators is discussed in section 4.4. 

TABLE 6.    COMMAND  INSTRUCTION SET 
FROM  BIAS-D 

Command Description 

.AC Initiates ac analysis 

.ALTER       Permits altering or sweeping 
element values 

.END Terminates present circuit analysis and 
initializes memory for new circuit 

.INSERT      Permits  insertion of any circuit element 
or elements (including models) 

.LOAD       Permits loading of circuit data from a 
disc file 

.PRINT       Prints present circuit topology 

.SAVE Saves present circuit on disc file 

.TEMP        Permits analysis of circuit at 
temperatures other than  27 C 

.TRAM        Initiates transient response analysis 

ing simulation speed are discussed here. The solu- 

tion of the matrix equation YV = I for the circuit 

node voltages represents a significant portion of the 

memory and speed required for a simulation. Zero 

checking, node reordering, and sparse decomposi- 

tion are three techniques which can be used to 

speed up this solution. BIAS-D was used to evaluate 

the effect of these techniques and others to be 

described subsequently. 

An initial test version of BIAS-D did not use 

any speed- or memory-improvement techniques. 

The matrix equation was solved with a standard 

double-precision LU decomposition with forward 

and backward substitution [6]. This will be referred 

to as the standard version of BIAS-D. 

4.2 Speed-Dependent Simulator Software 

The relative speed of a circuit simulation pro- 

gram is very dependent on the algorithms used. 

Some of the more significant techniques for improv- 

4.2.1 Test Circuits and Procedures 

Four test circuits were used to compare the 

analytical speeds of BIAS-D modifications de- 

scribed in this section. These test circuits were all 
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modifications of the same test circuit used in sec- 
tion 3 to test the BASIC version of BIAS-D. Dia- 
grams of these circuits and input listings are given in 
appendix B (fig. B-l through B-4). The initial circuit 
(CKT10) is a 9-node, 5-transistor integrated pream- 
plifier circuit. Capacitors were added across the 
collector-base and base-emitter junctions of each 
transistor to represent the transistor junction capac- 
itances. CKT10 does not include any bulk resistors, 
but the other three circuits were obtained from 
CKT10 by successively adding resistors to the base 
(CKT11), collector {CKT12), and emitter (CKT13) of 
each transistor in this circuit. The element count, 
number of nodes, and sparsity of each of these 
circuits is given in table 7. 

TABLE  7.     COMPARISON  OF TEST CIRCUITS 

time/iteration   =     B   X   10 m   X   Nodes 
(18) 

These circuits were used in all subsequent 
speed comparison tests. The computational speed 
tests were conducted with 101 timepoints of a 
transient simulation run on a PRIME 400 minicom- 
puter with a PRIMOS IV (revision 13) operating 
system. The input signal for all tests was a single 
unity amplitude voltage pulse at node 9 of the test 
circuits. A plot of both the input pulse and output 
waveform for CKT13 is given in figure 12. A single 
test run determined the CPU time per iteration for 
each of the four test circuits by dividing the total 
CPU time by the number of iterations. The final 
analysis times for each run were determined by 
averaging these CPU times for three runs. The final 
data plots were obtained by fitting these results to a 
least square fit. A semilog fit of the nodes and log 
time per iteration produced results with the best fit 
(largest correlation coefficient). The equation for 
this fit is of the form 

where 10B is the y-axis intercept and m is the slope. 
The objective of the following tests is to minimize 
both this intercept and slope. The standard version 
of BIAS-D was successively modified to include the 
six speed and memory enhancements described 
subsequently (BIAS-T1 to BIAS-T6). 

NODE 6 

Circuit 
Nodes 

Elemen count Percent 
sparsity 

< 

Name R C V Q O > 

CKT10 9 5 10 2 5 55 

CKTIl 14 10 11 2 5 70 

CKT12 19 15 1 1 2 5 74 

CKT13 24 20 11 2 5 79 
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5.00 

4.00 
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1.00 
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Figure 12. Input pulse and pulse response for CKT13 
using BIAS-D. 

4.2.2 Zero Checking 

The first modification to BIAS-D (BIAS-T1) 
involved a simple modification in the matrix inver- 
sion process. This modification simply checked the 
value of an admittance matrix location for zero 
before an operation was performed. An operation is 
defined as a multiplication and a subtraction (as 
xy - z) in the decomposition process. Both x and y 
can be checked for zero; if a zero is found, either 
that operation or an entire row (or column) of 
operations may be omitted. This procedure was 
used in early versions of BIAS-3 [11] and SLIC [4]. 
Since, in circuit simulation, the admittance matrix is 
always sparse (i.e., more than 50 percent of the 
entries are zeros), significant time could be saved at 
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the expense of checking each entry for a zero value. 
On the PRIME 400 minicomputer there is approxi- 
mately a 15:1 CPU time saving between computing 
a single zero check and a single operation (in 
double-precision arithmetic). The order in which 
the circuit nodes are numbered can also determine 
whether a single operation or an entire row of 
operations is skipped. A Markowitz reordering [37] 
scheme can be used to determine a near optimum 
circuit node ordering. Figure 13 compares the CPU 
time per iteration versus circuit nodes for the stan- 
dard test program with no modifications, and BIAS- 
T1 with the zero checking modifications. Several 
results are given here: those from (1) the standard 
version of BIAS-D, (2) BIAS-T1 with zero checking 
with random circuit-node numbering, and (3) BIAS- 
T1 with the near optimum node ordering as deter- 
mined from a Markowitz reordering scheme. The 
Markowitz scheme was not actually implemented 
in the test program at this time, but was used only to 
determine the new node orders. The circuit nodes 

z 
O 

a o 

0.01 
20 

CIRCUIT NODES 

were renumbered according to this order before 
being entered as input data. All results were ob- 
tained from a 101-point transient analysis of the 
circuits as described in section 4.2.1. 

The results in figure 13 indicate that zero 
checking is always faster than the standard method 
for any arbitrary node order. It also indicates that 
there can be a noticeable difference in analytical 
speeds owing to the manner in which circuit nodes 
are numbered, unless a node reordering scheme is 
used. 

4.2.3 Node Reordering 

If the Markowitz reordering algorithm is im- 
plemented in the simulator program as part of the 
setup procedure, then (as indicated in the previous 
section) the analysis speeds will no longer be de- 
pendent on the operator-assigned node ordering. 
Markowitz reordering is used in BIAS-N, which is a 
later version of BIAS-3 [11] and SPICE2 [6]. Figure 
14 shows a comparison of the speeds of the test 
circuits with the Markowitz reordering scheme ac- 
tually implemented in BIAS-D (BIAS-T2) and also 
the best and worst cases from the test program with 
only zero checking implemented (fig. 13). It should 

ZERO CHECK 
WITH SAME NODE 
ORDER AS REORDERING 

Figure 13. Speed versus circuit nodes for BIAS-D 
(PRIME 400) using zero test compared with standard 
version using test circuits. 

20 

CIRCUIT NODES 

Figure 14. Speed versus circuit nodes for BIAS-D 
(PRIME 400) using node reordering. 
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be noted that the node reordering scheme imple- 
mented here does not always generate an optimal 
node order. This can be seen in figure 14 for the 19- 
node speed data (CKT12). The "optimal" node 
order generated for this circuit is actually worse 
than the original node order (discussed again in 
sect. 4.2.4). Figure 14 indicates that there is only a 
minimal, if any, speed penalty in the analysis time 
for using the reordering scheme; however, addi- 
tional software and memory are required to imple- 
ment this reordering scheme. The cost of this addi- 
tional overhead is given in section 4.3. 

4.2.4 Sparse Matrix Decomposition 

If the matrix LU decomposition process is set 
up such that "pointers" indicate the matrix location 
of the next nonzero value for each operation, the 
time required for a zero check can be eliminated. 
This pointer system would also permit storage of 
only these nonzero terms. In order to set up this 
pointer structure it is necessary to perform a "mock 
decomposition" of the admittance matrix. This 
mock decomposition again requires additional soft- 
ware and memory. BIAS-D was modified (BIAS-T3) 
to include this sparse decomposition. This decom- 
position process includes a Markowitz reordering 
algorithm similar to that used in BIAS-T2. However, 
the reordering scheme incorporated in the mock 
decomposition results in a more efficient reordering 
than in BIAS-T2 because the matrix "fill-ins" are 
counted during the mock decomposition process. 
These fill-ins were not determined in BIAS-T2 since 
the mock decomposition was not required in that 
matrix reduction. Sparse matrix storage was not 
implemented in BIAS-T3. Figure 15 shows a com- 
parison of the analytical speed on a PRIME 400 of 
the sparse decomposition version of BIAS-D with 
that of the several previous versions. As can be seen 
in this figure, the sparse decomposition process 
represents a significant increase in speed. Some of 
this speed increase can be attributed to the more 
efficient reordering just mentioned. 

4.2.5 Processed Element Storage A nay 

Another apparent speed-up procedure, cur- 
rently used in several circuit-simulator programs 
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Figure 15. Speed versus circuit nodes for BIAS-D 
(PRIME 400) using sparse decomposition compared 
with node reordering. 

[2,4,6,12], is the storage of a processed-element 
array. This array contains the present conductance 
values to be added to the admittance matrix. The 
equations used to compute this array value are 
different for each element and are given for linear 
resistors, capacitors, and inductors as 

Resistors (1/R)Tc (19) 

Capacitors (2C/A)Tc (20) 

Inductors (A/2L)Tc (21) 

where R is the resistance value, C the capacitance 
value, L the inductance value, A the present time- 
step, and Tc the temperature multiplication factor 
(Tc = 1 at 27 C). For resistors, this array need only 
be computed once for each analysis. This is also 
true for capacitors and inductors unless a "time- 
step control" [6] is used in the transient analysis 
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procedure. In this case A may vary with time, 
requiring updating of the processed array during a 
transient analysis. 

8IAS-T3 was modified to include this double- 
precision processed-element array (BIAS-T4). Equa- 
tions (19) through (21) were used to load this array 
once for each transient simulation (BIAS-T4 does 
not use time-step control). Figure 16 shows the 
results from BIAS-T4 for transient simulations of the 
standard test circuits using the PRIME 400 mini- 
computer. Also plotted in figure 16 for comparison 
are the results without this array. Surprisingly, for 
CKT13 there is less than a 0.5-s speed improvement 
in the 101-point transient analysis because of this 
array. After a second look, however, we can see 
that this small improvement is all that should be 
expected. The approximate PRIME 400 assembly 
language instruction speeds are 26 ys for a double- 
precision multiply, 33 ps for a divide, and 2.5 us for 
a store. Test circuit CKT13 contains 10 capacitors 
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Figure 16. Speed versus circuit nodes for BIAS-D 
(PRIME 400) with additional processed-element stor- 
age array. 

and 20 resistors. Using equations (19) and (20) this 
represents a time saving of 1.2 ms for resistors and 
1.0 ms for capacitors at each timepoint in the 
analysis. For the 101 -point analysis this represents a 
total of 0.22 s, which is the approximate difference 
shown in the figure. If the analysis is done at a 
temperature other than 27 C, the time savings due 
to this array are increased. This is because the 
calculation of To in equations (19) to (21), involves 
evaluation of a second-order polynomial. This same 
test using BIAS-T3 and BIAS-T4 was run again at 
50 C. These results are also shown in figure 16. 
Even at 50 C, this does not represent any significant 
speed savings. 

If sparse matrix storage is used, then it is also 
desirable to store not only the processed-element 
array, but also the address location in the admit- 
tance matrix where this array is to be added. 
Depending on the implementation of the sparse 
array storage, resistors, capacitors, and inductors 
could require from 2 to 4 address locations for each 
element [2,6,38]. If transistors are included, they 
could require from 6 to 18 locations. Because of the 
poor improvement in speed using the processed- 
element array, it was not expected that any signifi- 
cant improvement could be achieved by storing the 
address locations in Y for this array. The processed- 
element array was therefore not implemented. 

4.2.6    Summary of Speed-Improvement 
Techniques 

Each of the above techniques (zero check, 
reordering, sparse decomposition, and processed- 
element array) reduces analytical times but requires 
additional overhead. The circuit setup time was 
not included in the previous analysis times, mainly 
because this was only done once for each circuit. 
Memory requirements due to the added software 
and the pointer storage arrays are overheads which 
must also be considered. Table 8 summarizes the 
speed-improvement techniques for each modifica- 
tion of BIAS-D. Table 9 shows the results of these 
improvements. Included here are the additional 
lines of FORTRAN code required, the increase in 
compiled program memory requirements, the in- 
crease in memory due to added storage arrays, the 
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net additional memory used or saved (negative 
memory indicates a savings), and the relative speed 
improvement of each modification at the 24-node 
level. Note that the total memory requirement for 
BIAS-D is approximately 25k decimal words (in- 
cluding system routines, FORTRAN library, and 
graphics). Table 9 shows that the addition of any of 
these speed-improvement techniques, except the 

TABLE 8. SPEED- AND  MEMORY-IMPROVEMENT 
ALGORITHMS USED  IN  COMPARISONS 

Includes 
Algorithm algorithm Description of algorithm 

Standard — LU decomposition (no 
enhancements) 

T1 Standard Zero checking 
T2 T1 Reordering of circuit 

nodes 
T3 T2 Sparse decomposition 

of Y  matrix 

T4 T3 Storage of processed- 
element array 

T5 T3 Sparse matrix storage 

T6 T5 Linked-list element 
storage 

processed-element array (BIAS-T4), does not re- 
quire a significant amount of memory relative to the 
speed improvement gained. 

4.3    Memory-Dependent Simulator 
Software 

As was mentioned earlier in this section, many 
memory-speed trade-offs can be made in designing 
a circuit simulator. The previous section described 
some speed-dependent aspects of this software. 
This section covers some memory-dependent as- 
pects of this software. 

Two of the largest dimensioned arrays used in 
circuit simulators are required for the storage of the 
circuit element data and the admittance matrix 
entries. 

4.3.1 Element Data Storage 

The storage of element data in a circuit simula- 
tor involves the storage of (1) the element type, 
(2) its name, value, and circuit node connections, 
and possibly (3) model information. If a table format 

TABLE 9.     SUMMARY  OF SPEED- AND  MEMORY- 
IMPROVEMENT TECHNIQUES  IMPLEMENTED  IN   BIAS-D 

Relative to standard method at 24 circuit nodes (CKT13) 

Additional Increase Increase Net Relative Relative 

FORTRAN in in memory increase increase 

Method code compiled COMMON increase in in setup 

(lines) code 
(words) 

arrays 
(words) 

(words) speed time 

Standard 0' 0 0 Qb 1,0 r 
T1 10 80 0 80 2.5 1 

T2 60 360 0 360 2.8 3 

T3 100 580 150 730 5.4 4 

T4 110 520 650 1170 5.3 4 

T5 170 640 -920 -270 5.9 5 

T6 240 880 -2240 -1360 5.7 5 

■'Standard version of BIAS-D has 1540 linesof FORTRAN, excludingCOMMON declarations and Comment statements. 
b Standard version of BIAS-D requires 24,900 decimal words of memory (nonoverlaid) in PRIME 400 minicomputer system; 
this includes both the FORTRAN and Graphics libraries. 
'For CKT13; setup time is done only once for each circuit; this is a relatively insignificant portion of total analysis time (0.02 s 
for standard version of BIAS-D). 
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is used for this data storage, the maximum circuit 
size must be predetermined before the program is 
compiled. This method has one significant advan- 
tage; the program is relatively easy to debug or 
modify. The primary disadvantage of this technique 
is that the type of circuits analyzed in a general- 
purpose simulator can vary greatly. Whereas a 
discrete circuit would have many resistors, capaci- 
tors, and possibly inductors, with few transistors, an 
integrated circuit would have many transistors and 
capacitors (transistor junction capacitors) with few 
resistors and no inductors. Thus, in order to handle 
all circuits, the table storage arrays must be over- 
dimensioned—wasting memory for the particular 
circuit at hand. An alternative approach is to use a 
linked list to store these arrays [6]. Here an entry in 
each element list points to the next element of that 
type; the following entries contain the element 
name, value, etc. This procedure generates a com- 
pact single-dimension array in which each particu- 
lar element type may be linked throughout the list. 
An additional element type can easily be added to 
this list with no additional required memory (for list 
storage), whereas in the table method considerable 
array space could be required. A more detailed 
description of how this linked-list array structure is 
implemented in BIAS-D is given in appendix C. 

Both types of these element storage tech- 
niques were implemented in BIAS-D. Figure 17 
illustrates the memory arrays required to store test 
circuit CKT13 for both techniques. Figure 1 7a illus- 
trates the required arrays for the table method, 
giving both the required size for CKT13 and the 
maximum dimensioned array size. Figure 17b 
shows the required array size for CKT13 using the 
linked-list method. As can be seen in this figure, the 
table method wastes memory. If a memory com- 
parison for BIAS-D were based on this circuit 
(CKT13) and both methods were dimensioned (in 
BIAS-D) such that the minimum dimensions for 
each method were used, the memory required for 
the table method would be 1420 words and the 
memory required for the linked-list method would 
be 472 words. This is 2/3 less memory. 

4.3.2 Sparse Matrix Storage 

The   pointer   structure   used   to   locate   the 
nonzero matrix elements in the admittance matrix 
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ALL 
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(a) (b) 
Figure 17. Comparison of element storage require- 
ments in BIAS-D for CKT13 (24 nodes) using (a) table 
method and (b) linked-list storage. 

can also be used to store only the nonzero ele- 
ments. This sparse array is then stored as a linear 
array rather than a matrix array. Additional array 
space plus an INDEX routine is required to encode 
the double-dimension address into a linear address. 
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This sparse storage technique was implemented in 
BIAS-D (BIAS-T5). Figure 18 graphically compares 
the two types of matrix storage techniques. Figure 
18a shows the memory arrays required using the 
traditional matrix storage approach used in BIAS-T1 
through BIAS-T4 and figure 18b shows that re- 
quired for the sparse storage approach (in B1AS-T5). 
The array sizes shown in this figure are for test 
circuit CKT13. Again, if in each case the arrays for 
storing the admittance matrix are of minimum di- 
mensions (in BIAS-D), the memory required for the 
matrix storage of CKT13 is 1936 words and for the 
sparse storage method (including pointer storage) is 
624 words. The sparse storage thus represents a 
reduction in memory requirements of about 66 
percent over the traditional storage (CKT13 is 79- 
percent sparse). 

Yl 
Y2 
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24x4 

24 x 24 x 4 
Y ARRAY 

(78% SPARSE) 
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TERMS 

30,30 

(a) 

NON- 
ZERO 
UPPER 

TRIANGLE 
TERMS 

320x4 

NOT 
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FOR 

:KT13 

400x4 

(b) 

Figure 18. Comparison of storage requirements for 
admittance matrix of CKT13 using (a) matrix storage 
and (b) sparse storage. 

4.3.3 Memory Overlay 

An additional technique for reducing the 
memory requirements of a program is to use mem- 
ory overlay [7,30]. Memory overlay requires the 
use of a disc to store the program segments that are 
not in use. A single-layer overlay structure for BIAS- 
D is shown in figure 19. Both common arrays and 
the main program are resident in main memory at 
all times. The other overlay segments, the setup 
overlay, the analysis overlay, and the ac overlay, 
are in main memory only during execution of that 
segment. For the example shown in figure 19, the 
nonoverlaid BIAS-D required 19,600 words of 
memory (without graphics routines). With the over- 
lay structure shown (fig. 19), the memory require- 
ments are reduced to 14,890 words—a reduction 
of 4,700 words. 

I 
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SETUP 
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(3230) 
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(1540) 

SYSTEM 
(5170) 
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cc 
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Figure 19.    Memory overlay example for BIAS-D. 

The primary disadvantage of using memory 
overlay is that the implementation of these overlays 
is not compatible between different computer sys- 
tems, if the memory overlay is not done properly, it 
can significantly reduce the simulator's execution 
speed. 
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4.3.4    Summary of Memory-Saving 
Techniques 

These memory techniques, although reducing 
overall memory requirements, require a certain 
overhead (both in memory and in analysis speed) to 
implement. Figure 20 shows a comparison of the 
analysis speeds for both the linked-list element 
storage (BIAS-T5) and the sparse storage of the 
admittance matrix in BIAS-D (BIAS-T6). Also shown 
in this figure is the speed of BIAS-T3 (sparse decom- 
position only). Interestingly, the speed improves 
because of both memory-saving techniques. The 
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Figure 20. Speed overhead of linked-list and sparse 
storage techniques. 

linked-list technique was expected to be slower 
because of the software overhead. Table 9 also 
gives a summary of the memory-saving techniques 
with the overhead due to the implementation of 
these above two techniques in BIAS-D. The table 
includes (1) savings in dimensioned arrays, (2) in- 
crease in memory due to overhead, dimensioned 

arrays, and software, and (3) speed overhead. As 
can be seen in table 9, both techniques are worthy 
of implementation into a circuit simulator because 
they save memory and increase speed. 

4.4    Comparison of Minicomputer 
Systems Using BIAS-D 

BIAS-D was again modified to enable compar- 
isons of the minicomputer systems described in 
section 3. The version used in these comparisons is 
BIAS-T9 and was obtained by successively modify- 
ing BIAS-T8 (see sect. 5) to run on a PDP 11 /45/ an 
HP2100 (HP21MX), and the IBM 370/168. BIAS- 
T8 runs on the PRIME 400 and incorporates all the 
speed- and memory-saving techniques included in 
the previous sections, as well as having ac analysis 
capability. In order to be able to run BIAS-T9 on all 
these computer systems without source code modi- 
fications, it was necessary to delete the graphics 
capability and other system-dependent routines. 
Table 10 lists the important details on each of the 
computer systems used in this comparison. These 
include the particular operating system in use, the 
type of memory and its speed, and the version of 
FORTRAN IV used. Table 11 gives a breakdown of 
the memory requirements for BIAS-T9 on each of 
the computer systems. The compiled program size, 
the size of the common array, and the size of the 
required system routines (which include the FOR- 
TRAN library) are given here. The comparatively 
large memory requirement of the IBM system is due 
partially to its use of 4-byte integer words (by 
default) rather than the 2-byte integer words used 
by the minicomputer systems. BIAS-D is not depen- 
dent on the size of the integer word, and either 2- or 
4-byte integers are permissible. The small size of the 
common array for the HP2100 is due to the 3-word 
double-precision data word size (see sect. 3). In 
each computer system, a system-dependent clock 
routine was added to obtain timing information. 
The FORTRAN IV source program was input into 
each computer system via a magnetic tape written 
in ASCII format (null parity) by the PRIME 400 
system. 

All benchmark execution-time data were ob- 
tained by using BIAS-T9 for the analysis of the 
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TABLE 10.    COMPUTER SYSTEM CONFIGURATION  FOR SPEED TESTS 

Computer 
system 

Operating 
system 

Double- 
precision 
hardware 

Cache/ 
speed 

Virtual 
memory 

Memory/ 
speed 

HP2100 RTE   II yes'1 no no Core/1   us 

HP21MX RTE  III yes no no Core/1   ys 

PDP   11/45 RSX   11D yes no no Core/1   ps 

PRIME  400 PRIMOS  IV yes 2l</80  ns yes MOS/400 ns 

IBM   370/168 MVS2/TSO yes 32k/80 ns yes MQS/320 ns 

'Without Fast-FORTRAN read-only memory. 

TABLE 11. COMPARISON OF MEMORY 
REQUIREMENTS FOR BIAS-T9 

TABLE 12.    COMPARISON  OF COMPUTER 
SPEEDS FOR CKT13 (BIAS-T9) 

Computer 
system 

Common 
array 

(bytes) 

Compiled 
program 
(bytes) 

Library 
and 

system 
(bytes) 

Total 
size 

(bytes) 

Computer 
system 

dc 
(s) 

Transient 
analysis 

Frequency 
response 

Time/iter 
(s) 

Speed 
ratio"1 

Time 
(s) 

Speed 
ratio'' 

HP2100 21.0/14 682/437 344 —         — 
HP2100 7,810 24,880 — 32,768"' 

HP21MX 16.4/14 98.2/437 49.6 —         — 
HP21MX 7,810 — — — 

PDP   11/45 

PDP   11/45 
(a)  FOR 

(a)  FOR 4.75/14 124/441 62.7 41.0       119 

9,190 32,600 6,160 47,960 (b) F4P 2.10/14 41.3/441 20.9 13.6      25.9 

(b)  F4P 9,190 — — 49,880 
PRIME 400 1.34/14 28.6/441 14.4 10.3      19.6 

PRIME  400 9,190 19,480 11,230 39,900 IBM  370/168 
(a) opt = 0 0.125/14 3.10/442 1.56 0.833     1.57 

IBM   370/168 (b) opt = 3 0.087/14 1.98/442 1.00 0.525     1.00 

(a)  opt = 0 10,750 44,920 32,430 88,100 

(b) opt = 3 10,750 33,850 32,450 77,050 SPICE  2C.2 
(IBM   370/168 

''Maximum a vailable memory; without ac analysis. 

standard test circuits—CKT10 through CKT13. Ta- 

ble 12 gives the execution time for a dc operating 

point, a 101-point transient analysis, and a 91-point 

ac analysis (traditional method) for CKT13 for each 

of the computer systems. The size of the available 

memory in the HP2100 system (with the RTE II 

operating system) and the HP21MX (with RTE III) 
did not permit ac analysis without overlay struc- 

tures. These routines were therefore deleted from 
the HP2100/HP21MX version of BIAS-T9. Also 

given in this table are the speed ratios of each 

system for the transient and ac analysis for CKT13. 

Speed comparisons should not be made using exe- 

cution times for the dc operating points, since for 

SPICE  2D.2 
(PRIME  400)     2.60/13     37.4/218     18.9       — 

■'Relative to IBM3/0/168 (opt=3). 

this analysis there is considerable output. In many 

cases, execution times are somewhat dependent on 

the terminal's communication rate, which in effect 

increases execution times. 

A comparison of the transient analysis execu- 

tion times for each of the test circuits CKT10 

through CKT13 is given in figure 21. This figure 

plots log of execution time per transient iteration 

versus log of the circuit nodes for each of the 
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computer systems under consideration. Also shown 
in this figure are the execution times from SPICE1J 
and SPICE2C.2 on an IBM 370/168 and SPICE2D.2 
on a PRIME 400, again using the same test circuits. 
Data from simulator program Mini-MSINC [2], us- 
ing the HP2100 minicomputer (with Fast FOR- 
TRAN) are also given, and shown as dashed lines in 
this figure. Although the Mini-MSINC data are from 
different and unrelated circuits (the MOS model in 
Mini-MSINC is considerably more complex than 
the BJT model in BIAS-D), they do indicate the 
minicomputer's speed. 

SPICE 2 (IBM 37011681 

,BM370nSL 

15 20 
CIRCUIT NODES 

Figure 21. Speed comparison results for different 
computer systems for transient analysis simulation 
using four standard test circuits. 

A comparison of the execution speeds of 
BIAS-D and SPICE2 on a PRIME 400 minicomputer 
(fig. 21, table 11) indicate that BIAS-D is 50 percent 
faster than SPICE2 on the PRIME 400. This speed 
difference is due to the large memory requirements 
of SPICE2. Whereas BIAS-D requires 40 kbytes of 
memory, SPICE2 requires 400 kbytes. This speed 
difference demonstrates the advantage gained by 
developing a circuit simulator specifically for 
minicomputers. 

Also given in figure 21 are the baud rates 
which could affect output times (wall-clock time 

but not necessarily CPU time). These points are 
shown on the vertical axis and were computed 
based on transmitting a 72-character line with 4.5 
iterations between printouts (this was the average 
iteration count for the transient analysis of the test 
circuits). If a 1200-baud terminal is used, the results 
from a transient analysis using BIAS-D on the IBM, 
PRIME 400, and PDP 11 /45 computers appear on 
the user's terminal at the same wall-clock speed. If a 
300-baud terminal is used, results from all comput- 
ers (with the proper hardware) in this comparison 
appear at the same rate. These baud-rate limiting 
points relate only to communication baud rates 
while BIAS-D is running, but could easily be extrap- 
olated to other simulator programs. The breakpoint 
in communication speed between using an interac- 
tive circuit simulator and a batch simulator is 1200 
baud. This choice is based on personal experience 
and on the experiences of several other users of 
interactive graphics. The 1200-baud rate is indica- 
ted in figure 21. These results indicate that all 
the minicomputer systems under consideration 
here are capable of interactive circuit simulation 
assuming the proper compilers and other hardware 
are used (see table 10). 

5.      SMALL-SIGNAL AC FREQUENCY RESPONSE 

The ability to compute small-signal frequency 
response of electronic circuits is important in the 
design and analysis of linear circuits. There are no 
general-purpose minicomputer circuit simulators 
with this capability. Two methods for computing 
small-signal frequency response have been imple- 
mehted in BIAS-D—the traditional method, which 
uses complex matrix operations, and a new method 
which uses standard transient analysis procedures. 

5.1 Traditional Method 

The small-signal ac frequency response of an 
electronic circuit is traditionally found by solving 
the complex matrix equation [6,39] 

YV (22) 

The complex admittance matrix, Y, is loaded with 
the real and imaginary equivalent conductances of 
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the circuit elements evaluated at the frequency of 
interest. For active devices, these conductances are 
determined at the circuit's dc operating points. A 
complex driving current, given either as the input 
source or as a Norton equivalent of the driving 
voltage, is loaded into the complex current vector, 
I. Equation (22) is then solved for the complex node 
voltages, V. This method is repeated for each fre- 
quency of interest. A flow diagram of the traditional 
ac analysis procedure is given in figure 22. 

If an equivalent ac model for each resistor, 
inductor, and capacitor for this technique were 
given, it would be a single complex-value resistor 
with impedances as shown. 

Resistor impedance  =   R, 
Capacitor impedance  =   1/jwC, 
Inductor impedance  =  -juL, 

(23) 

where w is the frequency in radians, C is capaci- 
tance, and L is inductance. 

The primary disadvantage of this technique is 
that it requires the use of double-precision complex 
arithmetic. Double-precision complex arithmetic is 
not available on minicomputer systems and there- 
fore must be added through software (see sect. 3). 

5.2   Linearized   Transient   Analysis   (LTA) 
Method 

5.2.1 Large-Signal Transient Response 

A new method for determining circuit fre- 

quency response without using complex arithmetic, 

introduced here, uses modified conventional tran- 

sient analysis techniques. In order to understand 

this method, the linearized transient analysis me- 

thod (40), it is important to understand the proce- 

dure used to compute large-signal transient re- 

sponse for both linear and nonlinear circuits. 

In a large-signal transient analysis simulation, 

linear capacitors and inductors are modeled by 

using a conductance in parallel with a voltage- 

dependent current source as shown in figure 23. 

The values associated with this model for inductors 

FREQ = FREQ+M 

(^START) 

SOLVE FOR dc 
OPERATING POINTS 

FREO = fi 

9 
DETERMINE REAL AND 
IMAGINARY EOUIVALENT 
ELEMENT CONDUCTANCES 
ATa;= 27i*FREa 

I 
LOAD COMPLEX y MATRIX 

i 
DETERMINE COMPLEX 
NORTON EQUIVALENT 
INPUT CURRENT 

I 
LOAD CURRENT INTO C 

I 
SOLVE FOR COMPLEX 
NODE VOLTAGES 

Figure 22. Flow diagram for traditional ac analysis 

procedure. 

and capacitors are similar; therefore, for simplicity, 
only capacitors are considered here. If the trapezoi- 
dal integration rule [17] is used to approximate the 
integral equation for the voltage across a capacitor. 

V. 
/' 

1/C  /  idt (At/2C)(il + i,: (24) 
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where A is the time-step, then the equivalent con- 
ductance in figure 23 is 

gc   =   2C/At (25) 

and the equivalent dependent current source for 
the capacitor model (also in fig. 23) is 

I,   +   (2C/At)Vl (26) 

where V, and I, are the values of capacitor voltage 
and current at time t. Currents I, and I,, are updated 
and stored at each time-point during a transient 
analysis. Also at each time-point, the equivalent 
capacitor conductance, g0 is loaded into the admit- 
tance matrix, Y, and the equivalent capacitor cur- 
rent, l0, is loaded into the current vector, I. Other 
circuit element conductances and currents are 
added into Y and I; and the matrix equation (eq (22) 
with Y, I, and V real) is solved for the circuit node 
voltages, V. Equation (22) is solved by using the 
same procedure as in a dc analysis—that is, LU 
decomposition, followed by forward and backward 
substitution [6]. 

Figure    23.    Equivalent    circuit    for    linear    time- 
dependent capacitors or inductors. 

If a transient analysis response for a circuit 
with a sinusoidal input is examined after several 
periods, the circuit transfer voltage gain and phase 
shift can be determined. To obtain the overall 
circuit frequency response, the magnitude gain and 

phase shift is determined at each frequency of 
interest. This transient method has several disad- 
vantages, however. (1) For nonlinear circuits it is 
difficult to choose the input amplitude so that there 
will be no distortion at the output. (2) The proce- 
dure is relatively slow since the admittance matrix 
must be loaded and the solution must be iterated to 
convergence for each time-point. (3) It is difficult to 
determine when the steady-state solution has been 
reached. For the case of a high-Q circuit, this 
solution can require many periods [12]. 

5.2.2 Transient Analysis of Linear Circuits 

Looking at the admittance matrix entries for a 
linear circuit during a transient analysis, one would 
notice that for a fixed time-step. At, all admittance 
matrix values are constant with time. This con- 
stancy means that Y has to be inverted only once 
for each change in At. During a transient analysis 
with a fixed time-step, Y is inverted only once for a 
complete transient simulation. The circuit response 
to any input as a function of time can thus be 
determined by updating the current vector I, and by 
doing a simple matrix multiplication (or forward 
and backward substitution, if LU decomposition is 
used) at each time-point. If the transient analysis 
input is sinusoidal then the output is of the form 

KA sin (uit  + $) (27) 

where K is the circuit gain at a frequency a)/2TT, A is 
the amplitude of the input sinusoid, and $ is the 
output phase shift relative to the input. The ampli- 
tude, A, of the input sine wave is not critical in this 
equation since the circuit is linear. An accurate 
method of obtaining the output magnitude and 
phase from this waveform is to use the Fourier 
approximation for discrete data points [27]. This is 
essentially a smoothing operation using many data 
points. Numerical errors that could occur with a 
single data point are minimized. 

Figure 24 is a flow diagram of the procedure to 
compute the frequency response of a linear circuit 
at several frequency points, using the transient 
method just described. Here, rather than the time- 
step being specified, it is computed from the fre- 
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quency and the number of computation points per 

sine wave period (NPTS). During a conventional 

transient analysis, the procedure at each frequency 
would include zeroing the capacitor and inductor 

currents (not shown in fig. 24). This is because each 

frequency point involves a different sine wave input 

and is therefore a new analysis. 

(START) 

SOLVE FOR dc 
OPERATING POINTS 

|   FREQ ^ 

£ 
OELTA ■ 

NPTS • FREO 
X 

LOAD EQUIVALENT 

ELEMENT CONDUCTANCES 

INT01Y] 

LU DECOMPOSITION 

0F1Y1 

t = ol 

ZERO CURRENT VECTOR 

X 
UPDATE CAPACITOR AND 

INDUCTOR CURRENTS 

LOAD EQUIVALENT 

CURRENTS INTO C 

SOLVE FOR NODE VOLTAGES 

BY FORWARD BACKWAHD 

SUBSTITUTION 

PERIOD 
NO 

COMPUTE MAGNITUDE 6 PHASE 

OF NODE VOLTAGES USING 

DISCRETE FOURIER TRANSFORM 

FREO = FRED+AF 

t = I + DELTA 

Figure 24. Flow diagram of linearized transient analy- 
sis (LTA) method for computing frequency response. 

All circuits have an initial transient response to 

any input or change in input. If there is not an input 

at t = 0- (dc conditions), then a sine wave applied 

at t = 0 + would cause a transient response due not 

only to the sine wave; but also to its application. 

The effects of this initial transient on the output 

response of the circuit must decay to zero before 

these results can be used for determining the fre- 

quency response. An advantage of using the Fourier 

approximation to compute the magnitude of this 

response is that any dc shift (zeroth harmonic) due 

to this transient is separated from the desired output 

(first harmonic). 

The simple bandpass filter circuit shown in 

figure 25 will be used to illustrate this initial transient 

response. The voltage transfer function of this cir- 

cuit is given as 

Vm„/Vin   =   As/(1   +   Bs   +   Cs2)     , 

where 

A = RiCi, 

B = R^, + R2C2 + R,C2,and 

(28) 

® 

1MF 

vs© 

Ikii 

IkO 

0.1 MF 

Figure 25. Bandpass filter example circuit. 

For Vin = sin (tot), the time domain transient re- 

sponse can be determined using the inverse Laplace 

transform as 

F(t)   =   Fl(co)exp(-at)   +   F2(u))exp(-bt) 

+   F,(LO)  sin  (cot - <t>) (29) 

where 

CO  =    2TTf, 

<() =  Arctan(b/oj) - Arctan(co/a)  +   TT/2. 
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a,   b  =   circuit time constants, 
F|(cd),   F^co),   F(w) are dependent on 
circuit element values and frequency. 

The first two terms in equation (28) represent the 
initial transient response of this circuit. In this case 
they are both exponential terms decaying in time 
and inversely proportional to frequency. 

5.3 Description of LTA Method 

If the transient response procedure shown in 
figure 24 is begun at frequency fi, then after several 
periods at this frequency, the circuit time- 
dependent currents (I,, in fig. 23) contain the correct 
steady-state values. These currents are crucial in 
obtaining the proper circuit magnitude and phase 
response. At the next frequency point, this proce- 
dure is repeated. If this next frequency point is 
chosen close to fi, then the values of the time- 
dependent currents will be approximately those at 
f i. If these currents are used as initial conditions for 
the next frequency point, the number of required 
periods at each frequency point can be reduced 
significantly. The use of these currents as initial 
conditions for the next frequency point is the key to 
the success of this procedure. Figure 26 shows the 
transient output response of the circuit in figure 25 
to three periods of a 10O-Hz sine input followed by 
three periods of a 110-Hz sine input. In figure 26a, 
the capacitor current is zeroed at the end of the 
100-Hz input. The 110-Hz sinusoid begins as If it 
were at time t = 0, causing a discontinuity at this 
point. Figure 26b used the final capacitor current at 
100 Hz as the initial current at 110 Hz. Note that 
although there is a slight discontinuity here, the 
transition between frequencies is relatively smooth. 

A second advantage of retaining the time- 
dependent currents at the end of each frequency 
point involves the decay of the initial transient 
response. Previously, zeroing the time-dependent 
currents at the end of each frequency point also 
zeroed time. Thus, the initial transient response 
began at t = 0+ at each new frequency point. By 
saving these currents at the end of each frequency, 
time is continued during the entire analysis (fig. 27). 
Figure 27 shows only the initial transient response 

(a)  1 

2 3 4 
TIME (S X ID2) 

(b)   1 

2 3 4 5 6 
TIME (S X lO"2) 

Figure 26. Sinusoidal response of example circuit to 
three periods of 100 Hz and three periods of 110 Hz: 
(a) capacitor currents initially zeroed at t = 0 and 110 
Hz; (b) capacitor currents zeroed at t = 0 only. 

of the results in figure 26. Figure 27a plots the initial 
transient response with the capacitor current (and 
time) zeroed at the end of the first three 100-Hz 
periods. Again note the sharp discontinuity at this 
point. This is caused by the new zero initial condi- 
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tions at 110 Hz. Figure 27b shows the same re- 
sponse without zeroing the capacitor currents at the 
end of the three periods. Here there are no discon- 
tinuities. The initial transient decay shown in figure 
27 was at a frequency of 100 Hz. If this initial 
transient is examined at a frequency of 10 Hz, a 
decade lower, the transient decay is much faster 
relative to a single 10-Hz period (see eq (29)). This 
is shown in figure 28. Both the total transient 
response and the initial transient response are plot- 
ted here, using equation (25) (at a frequency of 10 
Hz). At this lower frequency, the initial transient 
response decays about 20 times faster relative to a 
single sine wave period than at 100 Hz. Beginning 
at a relatively low frequency can insure decay of the 
initial transient response. That is, one should 
choose a starting frequency for the LTA method 
that is well below the frequency of interest. 

5.3.1 Frequency Response of Nonlinear 
Circuits 

The LTA method applied above for linear 
circuits can be used also with nonlinear circuits. 
Transistors or other active elements are treated in 
the same manner as resistors or capacitors; that is, 
the equivalent ac conductance and currents are 
added to the admittance matrix and current vector. 
For transistors, the linearized ac parameters either 
are already available from the dc operating point 
calculations or can be computed from the dc oper- 
ating points. Currents dependent on dc circuit con- 
ditions are not added to the current vector. Transis- 
tor junction and diffusion capacitor values are de- 
termined by the dc operating points and are treated 
as linear capacitors. As with linear circuits, these 
equivalent conductances are loaded into the admit- 
tance matrix once for each frequency point. 

5.3.2 Solution Convergence at Frequency 
Point 

In the LTA method, the sinusoidal input at 
each frequency point must be continued until the 
time-dependent currents reach their steady-state 
values at that frequency. The number of input 
periods required depends on the frequency incre- 
ment and the Q of the circuit. A rigorous conver- 

■*- t 

(b) 

Figure 27. Example circuit sine response for 100 and 
110 Hz showing only initial transient: (a) time zeroed 
att = 0 and 110 Hz; (b) time zeroed at t = Oonly. 

Figure 28. Sinusoidal response of example circuit at 
10 Hz showing total response and initial transient 
response. 
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gence criterion to determine when a steady state is 
reached would require all time-dependent currents 
in the circuit to be within a given tolerance for two 
or more consecutive periods. This criterion is analo- 
gous to the criterion used in the dc and transient 
analyses. The disadvantage here is that additional 
storage is required for the past time-dependent 
currents. Additional computational time also is re- 
quired to check these currents. A simple technique 
monitors the change in peak amplitude only at the 
output node. If the change in amplitude between 
two periods is less than a predetermined level (say, 
1 percent) for two or more consecutive periods, 
then convergence is assumed. This technique was 
implemented in BIAS-D and appears to be satisfac- 
tory for both high- and low-Q circuits. 

5.3.3    Accuracy of Linearized Transient 
Analysis Method 

The accuracy of the LTA method is deter- 
mined primarily by two factors: the number of 
analysis points per sine wave period, and the fre- 
quency increment between frequency points. 

The accuracy of the amplitude is determined 
primarily by the number of analysis points per 
period. If the trapezoidal integration rule is used to 
approximate time-dependent currents, 20 points 
per period are required to maintain less than a 1- 
percent numerical integration error in amplitude for 
low-Q circuits [12]. For high-Q circuits (Q > 10), 
the product of the Q and numerical integration 
error must be small. It can be shown that the 
required points per period, n, are proportional to 
thesquareroot of theQ [41] 

Kv/Q 

A conservative value for K is 8 [ 1 2 ] 

(30) 

The accuracy in computing the phase is deter- 
mined primarily by the frequency increment. If the 
circuit phase changes rapidly with frequency, then 
a small frequency increment must be used. The 
smaller the frequency increment, the smaller the 
phase change from the previous frequency point. 

Choosing a frequency point close to the previ- 
ous point is essential to the LTA method. If the 
frequency interval is chosen too large, more periods 
are required for the time-dependent currents to 
reach equilibrium. If the interval is too small, exces- 
sive points are computed. Both could greatly in- 
crease computation time. For circuits with a Q less 
than one, 10 frequency points per decade appear to 
be adequate. However, for high-Q circuits, 100 
points per decade may be necessary to achieve the 
desired accuracy. For high-Q circuits, a fixed fre- 
quency increment is not desirable, since more 
points per decade are desired only where the gain 
changes rapidly with frequency. In this situation a 
variable frequency-step is best. The frequency can 
be stepped by a procedure analogous to time-step 
control used in conventional transient analysis. That 
is, if more than K periods are required for conver- 
gence, then the frequency increment is reduced. If 
less than M periods are required, then the fre- 
quency increment is increased. As in transient anal- 
ysis, variables K and M are determined by 
experimentation. 

Experimental results using the LTA method 
have shown magnitude errors less than 5 percent 
(typically less than 1 percent) and phase errors less 
than 1 degree (typically 0.2 degrees). These errors 
were obtained from several low-Q circuits by using 
10 computation points per period and 20 frequency 
points per decade (see sect. 5.3.4 for examples 
showing these errors). 

5.3.4 Comparison with Traditional ac Method 

The LTA method was implemented in circuit- 
simulator program BIAS-D as BIAS-T7. A flow dia- 
gram of the LTA procedure is shown in figure 24. 
The number of points per period, the number of 
points per frequency decade, and the maximum 
number of periods were input variables. The con- 
vergence criterion required the amplitude differ- 
ence among three consecutive periods to be less 
than 1 percent. This criterion does not imply that 
the magnitude error will be less than 1 percent. 

Since dc and transient analysis capability were 
already implemented in BIAS-D, only one addi- 
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tional FORTRAN subroutine was required to imple- 
ment this method. No additional dimensioned ar- 
rays were required. 

The traditional method using complex matrix 
inversion also was implemented in BIAS-D (BIAS- 
T8). This method was used to compare speed of the 
memory and accuracy with those of the LTA me- 
thod. Seven additional subroutines were required to 
implement this traditional method. Most of these 
subroutines were identical to existing routines in 
BIAS-D but included complex arithmetic opera- 
tions. Since minicomputers do not support double- 
precision complex arithmetic, these operations 
were programmed into the software (see sect. 3). 
The storage of the complex matrix equation— 
equation (22)—required doubling the size of the 
original Y, V, and I arrays. These are double- 
precision arrays and require significant additional 
memory. 

With both the traditional and LTA methods 
implemented in BIAS-D it was possible to compare 
the accuracy of the LTA method with that of the 
traditional. The first comparison was made by using 
test circuit CKT10 (app C). Figure 29a plots the 
decibel gain of this circuit versus frequency for both 
the LTA method and the traditional method (the 
LTA method is plotted as solid lines). Figure 29b 
plots phase for both methods. Ten frequency points 
per decade were used in both cases. For the LTA 
method, 20 points per period were used. Excellent 
agreement in both gain and phase was obtained 
(less than 1-percent magnitude and 0.25-degree 
phase differences). A total of 336 periods was 
required for the 91 frequency points in the LTA 
method. This is an average of 3.7 periods per 
frequency point (3 periods is the minimum 
allowed). Further, 32 s of CPU time was required 
(on a PRIME 400 minicomputer) for the LTA me- 
thod, whereas 4.4 s were required for the tradi- 
tional method (a 7:1 speed ratio). 

The simple tuned circuit (with a Q of 25) [12] 
shown in figure 30 was used to compare results for 
high-Q circuits. The magnitude and phase of this 
circuit to a current input for both methods are given 
in figure 31  (the LTA method in solid lines). One 
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Figure 29. Frequency response of test circuit CKT10 
comparing both methods computed using 10 
points/decade and 20 points/period: (a) magnitude 
and (b) phase. 

hundred points per decade and 40 points per pe- 
riod (as required by eq (26)) were used in the 
analysis. Again excellent agreement was obtained. 
A total of 1492 periods was required in the LTA 
method for 100 frequency points (an average of 15 
periods per frequency point). The CPU time for the 
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LTA method was 88.9 s. The time for the standard 
method was 0.891 s (a 100:1 speed ratio). Figure 
32 shows magnitude and phase results from the 
same high-Q circuit with the frequency points per 
decade for both methods decreased to 20 and the 
points per period for the LTA method decreased to 
20. As expected, errors in both magnitude and 
phase have increased. The choppiness in this plot is 
due to the small number of frequency points plotted 
(20 points). These results required 476 periods for 
the 20 frequency points or an average of 21 periods 
per frequency point. This increase in periods was 
expected because of the larger frequency incre- 
ment. The CPU time for the LTA method was 
13.1 s, whereas the traditional method required 
0.194 s (a 68:1 speed ratio). 

Figure 30. High-Q example circuit. 

An analysis speed comparison of these two ac 
analysis techniques was made using BIAS-T7 and 
BIAS-T8. Test circuits CKT10 to CKT13 were used 
on the PRIME 400. These were the same circuits 
used in section 4. Figure 33 shows the results of 
these tests. Circuit nodes are plotted versus log- 
CPU time. Also shown in this figure is the CPU 
execution speed of these circuits using SPICE2 on 
the PRIME. As can be seen in this figure, the LTA 
method is significantly slower than the traditional 
method. The fact that SPICE2 runs more slowly 
than BIAS-T8 on the PRIME 400 is due to the large 
memory requirements for this system. Comparisons 
in section 4 (table 12) indicate that the ac analysis 
speed on BIAS-T8 (BIAS-T9) is approximately the 
same as SPICE2. 

A summary of the reauired memory for imple- 
menting both the traditional and LTA methods in 
BIAS-Disgivenintable13. 
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Figure 31. Frequency response of high-Q example 
circuit comparing both methods, using 100 
points/decade and 40 points/period: (a) magnitude 
and (b) phase. 

As can be determined from this table, at the 
30-node level, the LTA method does not represent 
a significant memory saving (18 percent). However, 
at the 100-node level the memory savings increase 
to 50 percent (13,000 words) and at the 1000-node 
level to 95 percent (250,000 words). 
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Although the LTA method is slower than the 
traditional method, the memory savings can be 
significant. The savings increase rapidly with in- 
creasing circuit size. Whereas the traditional me- 
thod requires additional memory to store the com- 
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Figure 32. Frequency response of high-Q example 
circuit comparing both methods, using 20 
points/decade and 20 points/period: (a) magnitude 
and (b) phase. 
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plex admittance matrix, the LTA method needs no 
additional memory for frequency response analysis 
at any circuit size. The speed of the LTA method 
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Figure 33. Comparison of frequency response speeds 
using traditional method and LTA method in BIAS-D 
and traditional method in SPICE 2D (all on PRIME 
400). 

TABLE  13.     SUMMARY  OF  MEMORY  NEEDS 
FOR TWO  METHODS 

Method 
FORTRAN 

(lines) 
Common 

(words) 

Compiled 
program 
(words) 

Total"' 
(words) 

Traditional 400 1840 2100 3940 

Linearized 
transient 140 0 950 950 

analysis 

'' rhe total program size for BIAS-D (30 nodes) without acis 
12,800 words. 
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could be increased by possibly 25 percent at the 
expense of using additional memory. However, the 
primary reason for the development of this method 
was to minimize memory requirements. 

Because of its slow speed, practical use of the 
LTA method for frequency response analysis is 
limited to the desktop calculators and small mini- 
computer systems where memory is limited and 
complex arithmetic is not easily attained. Other 
application areas should be investigated, such as 
determining the steady-state response of lightly 
damped circuits or large-signal harmonic distortion 
analysis. 

6.     CONCLUSIONS 

Developments in the sections 2 to 5 deter- 
mined that circuit simulation on small computer 
systems is both practical and desirable. Both inter- 
active and batch simulator architectures were de- 
scribed, with the interactive simulator being the 
most desirable. 

The second section concerned circuit simula- 
tion on programmable desktop calculators. BIAS-D 
has shown that interactive circuit simulation on 
desktop calculators is indeed possible; however, as 
in the case of the speed limitations of the HP9830A, 
it is not practical. BIASL.25 on the HP9825 offers a 
significant speed increase (approximately 10:1) but 
the use of HPL limits its use to the HP9825. Re- 
cently available second-generation "super calcula- 
tors" such as the HP9845 or the Wang PCS-II are as 
fast or faster than the HP9825 and use the BASIC 
language. These calculators should make interac- 
tive simulation at the 10- to 20- node level 
practical. 

The third section introduced facets of small 
computer systems useful in development of circuit- 
simulator programs—the computer language, data 
word format, computer and language speeds, and 
memory configuration. 

In order for a simulator to be easily transporta- 
ble between computer systems, FORTRAN IV 
should be used wherever possible. In the case of 

the desktop calculator, BASIC should be used, since 
FORTRAN is not yet available. The use of virtual 
memory in computer systems offers a significant 
advantage in increasing software transportability— 
especially for large programs. 

The data word format used in minicomputers 
for alphanumeric, integer, and single-precision vari- 
ables should present minimal problems when used 
in minicomputer simulators. Simulators which are 
to be transportable between several minicomputer 
systems should use word-oriented alphanumeric 
variables (i.e., one ASCII character per word) rather 
than byte-oriented variables. Double-precision data 
word formats varied considerably—from 10 digits 
for the HP2100 to 27 digits for the CDC 6600. The 
10-digit precision of the HP2100 double-precision 
arithmetic could present difficulties in some simula- 
tor algorithms. In this case the work of Freret 
[9,27,28] on word-length limitations should be 
considered. 

In section 4, on circuit simulation on minicom- 
puters, we determined that, for effective interactive 
simulation, a relatively fast minicomputer should be 
used. Slow computers result in excessive wait times 
for the interactive process; for such systems, batch 
simulators should be used. Experimental results 
from BIAS-D show that the techniques used in 
larger simulator programs, such as SPICE, can also 
be used efficiently in minicomputer simulators with 
no loss in accuracy. The following techniques can 
be used in minicomputer circuit simulators to mini- 
mize memory requirements and maximize speed: 

1. sparse matrix decomposition with node 
reordering, 

2. sparse matrix storage, and 
3. linked-list element storage. 

A surprising result was that the storage of element 
"templates" [2,6] or locations for adding element 
equivalent conductance values to the admittance 
matrix used considerable memory with little im- 
provement in speed (up to the 50-node circuit 
level). Speed comparisons of the HP2100, the PDP 
11/45, the PRIME 400, and the IBM 370/168 
computer systems indicate that with the proper 
software and hardware configurations, all are capa- 
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ble of effective interactive circuit simulation at the 
30-to50-nocle level. 

Section 5 introduced the linearized transient 
analysis method for computing small-signal fre- 
quency response, a technique using no complex 
arithmetic and significantly less memory than the 

conventional method. Because of its speed handi- 
cap, the practical use of the LTA method for small- 
signal frequency response is limited to smaller mini- 
computers and desktop calculators where memory 
is limited. Other application areas for this tech- 
nique, such as determining steady-state transient 
operating points, should be investigated further. 
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APPENDIX  A.     BIAS-D  USER'S  MANUAL 
(BASIC VERSION)  AND  LISTING 

A-1. INTRODUCTION 

BIAS-D is a computer-aided circuit-analysis 
program written in BASIC for desktop calculators 
and minicomputers with a minimum of 8 kwords of 
internal memory. It can perform dc and transient 
analysis of a 15-node circuit that contains up to 75 
elements—resistors, capacitors, voltage sources, 
current sources, and transistors (15 each). For tran- 
sistor circuits, BIAS-D converges to a solution by 
linearizing the built-in Ebers-Moll transistor model 
about an operating point in much the same manner 
as done in larger circuit-analysis programs such as 
BIAS-3,SLIC, and SPICE. 

Circuit data are typed into the keyboard in a 
semifree input format. Error messages are given for 
recoverable data errors enabling immediate correc- 
tions. Transistor parameters, temperature coeffi- 
cients, and transient sources are entered by specify- 
ing one or more of five available model types. 

BIAS-D executes in a semi-interactive mode in 
which elements or models are altered, temperature 
varied, and elements inserted between existing 
nonsource nodes. BIAS-D is structured so that the 
circuit size and element capacity can be easily 
modified in accordance with the available memory 
size. Execution time for a dc solution of a 10-node, 
5-transistor circuit is approximately three minutes 
on an HP9830A desktop calculator. 

A-2. INPUT DATA 

The input data are divided into two categories: 
circuit data and control statement data. The circuit 
element data (e.g., resistors, transistors, etc) are 
input by specifying the element symbol (R, Q, M, 
etc) followed by the required data for that element. 
The control statement data are characterized by a 
dot (.) followed by the desired operation (.TRAN, 
.ALTER, etc). Control statements do not affect the 
results of the analyses—they only enable the user to 
direct the analysis procedure. 

A-2.1 Circuit Data 

Certain general instructions must be followed 
to input circuit data. 

a. Each circuit element must begin in col- 
umn 1. 

b. Single spaces are used as delimiters 
between data fields (multiple spacing 
may result in errors). 

c. Abbreviated notation cannot be used 
(i.e., 2U#2E-6). 

d. Scientific notation may be used (i.e., 
1000 = 1E3). 

e. Decimal points are not required (i.e., 2 
= 2.0). 

f. The ground node must be node 0 
(zero). 

g. Compact node numbering is not re- 
quired (i.e., node numbers may be 
skipped). 

h.        The maximum allowable node number 
is 99. 

i. Element values are to be in basic units 
(i.e.,   ohms,   farads,   volts,   amperes, 
hertz, seconds). 

A-2.J.J Resistors, Capacitors 

General form: 

RX N1 N2 VALUE 
CX N1 N2 VALUE 

where X is any character, N1 and N2 are node 
numbers (order not important), and VALUE is the 
resistor or capacitor value in ohms or farads. Note: 
VALUE cannot be zero. 

A-2.J.2    Independent Sources: 
Voltage,   Current 

General form: 

VX N-|-   N- 
IX N+   N- 

VALUE  M# 
VALUE  M# 
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where X is any character, N+ and N- are the 
positive and negative source nodes, and VALUE is 
the source value in volts or amperes. The letter M 
followed by an integer from 1 to 5 denotes the 
model name (see sect. A-2.1.4). 

For voltage sources, either N + or N- must be 
grounded (node 0). For example. 

and 
V+   3  0 5  Ml 

V+   0  3 -5   Ml 

are equivalent. 

For current sources, current flows from the 
positive node through the source to the negative 
node. The letter M followed by the model name 
may be omitted. However, a default number of 
zero is assigned. 

A-2.1.3 Transistors 

General form: 

QX NC NB  NE  M# 

where X is any character, and NC, NB, and NE are 
the collector, base, and emitter node numbers, 
respectively. The letter M followed by an integer 
from 1 to 5 denotes the model name (see sect. A- 
2.1.4). The letter M followed by the model name 
may be omitted. However, a default number of 
zero is assigned. 

A-2.1.4 Model 

General form: 

M#  YYY F1   F2  F3  F4 F5  F6 

where # is an integer from 1 to 5 corresponding to 
the model number designated by the source or 
element. YYY is a three-letter name designating one 
of five available model types as follows: 

1. NPN        npn transistor parameters 
2. PNP pnp transistor parameters 

3. PUL      pulse source specifications 
4. SIN        sinusoidal  source specifications 
5. TEM      element temperature coefficients 

F1, F2, . . . , F6 are the data fields for 
specifying the above model parameters. These 
fields are defined below. 

1. NPN—transistor parameters 

ield Parameter Default 
value 

Fl Forward dc beta (BF) 100 
F2 Reverse dc beta (BR) 1 
F3 Saturation current (Is) 1E-15 
F4 Early voltage  (VA) 1E + 12 
F5 Recombination current 

parameter (collector current 
at which  beta   =   BF/2) 0 

F6 Not used   

2. PNP—transistor parameters (same as NPN) 

3. PUL—pulse source specifications 

ield Parameter Default 
value 

Fl Initial  source value 
at t  =   0 0 

F2 Pulsed value 0 
F3 Pulse delay time 0 
F4 Pulse rise time 0 
F5 Pulse duration  (width) 0 
F6 Pulse fall time 0 

4. SIN—sinusoidal source specification 

ield Parameter Default 
value 

Fl dc source value (offset) 0 
F2 Source amplitude (0-P) 0 
F3 Source frequency (Hz) 0 
F4 Time delay Tstep 

F5 Phase shift (deg) 0 
F6 Not used   

The value of the sinusoidal source is deter- 
mined by the equation 
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F(t) = F1 + F2 sin [27TF3(t- F4) + F5| 

5. TEM—element temperature coefficients 

Field                     Temperature Default 
coefficient value 

F1                  Resistor (To) 0 
F2                Resistor (Tea) 0 
F3                 Capacitor (To) 0 
E4                Capacitor (la) 0 
E5                Transistor beta (To) 0 
F6                Transistor beta (Tc2) 0 

commands described in the following sections; all 
control commands are prefixed by a dot(.). 

A-2.2.1 ALTER 

The .ALTER command enables element val- 
ues, models, and model parameters to be altered. 
This is done as follows. 

.ALTER 
RX  VALUE 
VX  VALUE 

The element value at temperature T is deter- 
mined by the equation 

E(T) = E(T„)[1 + (T-To)Tci + (T-T„)zTc2] 

where To = 300 K. Tci and Ta are the element's 
first- and second-order temperature coefficients, 
respectively. The dimensions of Tci and Ta are in 
decimal percentages per degree Celsius (a decimal 
percent of 0.002 = 2000ppm/C). 

A-2.1.5 Comment Statement 

General form: 

* any comment 

A comment may be inserted at any line in the 
input circuit by using an asterisk (*) in column 1 
followed by any message up to 80 characters long. 

A-2.1.6 END Statement 

END terminates the inputting of circuit data. If 
a default transistor model is used, it may be neces- 
sary to use END twice in succession. (Note: on the 
HP9830 this is not the same as the END key.) 

END 

where X is a valid element name (i.e., has been 
previously defined) and Value is the new element 
value. One or more element values may be altered 
using a single .ALTER command. An END statement 
terminates the alter operation. Models and model 
parameters can be altered in the same manner as 
the elements. Model types may be changed by 
entering a different three-letter designation (see 
sect. A-2.1.4). For example, a pulse source PULcan 
be changed to a sinusoidal source, SIN, etc. All 
model parameters must be entered or they are set 
to their default values. Both models and elements 
can be altered at the same time. 

A-2.2.2.INSERT 

The .INSERT command permits elements or 
models to be inserted into an existing circuit. The 
use of this command is limited to insertion of 
elements and current sources between existing 
nodes which are not connected to a voltage source 
(except node 0). Any type of model may be in- 
serted. The .INSERT command is used as follows. 

A-2.2 Control Commands 

After each type of analysis is completed, pro- 
gram control is returned to the operator. This is 
indicated by "INPUT CARD" appearing on the 
display. At this time it is possible to initiate a new 
analysis. This is done by using one of the control 

.INSERT 
RX  N1   N2  VALUE 
QX  NC  NB   NE   M# 
M#   YYY  F1   F2   F3   F4  F5   F6 

END 
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The format for the elements and models is the 
same as described at the beginning of section A-2. 

A-2.2.3.CAIN 

The small-signal ac gain and input impedance 
between any two nodes (and ground) can be deter- 
mined using the .GAIN command. This is done as 
follows. 

.GAIN 
"INPUT NODE" 
(enter input node) 
"OUTPUT  NODE" 
(enter output node) 

Gain and input impedance are printed out. This 
procedure is repeated for each new gain calcula- 
tion. (Note: gain cannot be computed at a source 
node.) 

A-2.2.4.TEMP 

added once the initial circuit has been entered; 
however, source models can be inserted or altered, 
except for MO (see also sect. 2.2.6). A dc transfer 
curve can be obtained using the .TRAN command. 
This is done using the PUL model with such param- 
eters that the pulse rise-time is long compared to 
the circuit time constants. 

A-2.2.6.OUTPUT 

The output voltages of up to five nodes may be 
simultaneously printed for each timepoint in a tran- 
sient analysis. This is done using the .OUTPUT 
command as follows: 

.OUTPUT 
"OUTPUT  NODE?" 
(type desired output node) 

This procedure is repeated for each output node (to 
a maximum of five outputs). 

The analysis of the circuit at a temperature 
other than 27 C is obtained as follows. 

.TEMP 
"TEMPERATURE(DEG  C)?" 
(enter temperature) 

This procedure is repeated for each new tem- 
perature. If a TEM model has not been defined, 
"ILLEGAL CHARACTER" will be displayed. This 
model can be inserted using the .INSERT com- 
mand. (Note: any subsequent analysis is performed 
at the last temperature specified.) 

A-2.2.5.TRAN 

A transient analysis can be obtained using the 
.TRAN command as follows: 

TRAN 
"TIMESTEP=?" 
(enter time-step) 

In order for the transient analysis to be mean- 
ingful, one or more source models (SIN, PUL) must 
have been specified. Voltage sources cannot be 

A-3. MISCELLANEOUS (HP9830A) 

A-3.1 Early Termination 

In some cases it may be necessary to termi- 
nate an analysis before completion. This can be 
accomplished using the END key if the program has 
stopped or the STOP key if the program is running. 
This terminates program control. Variable values 
can be examined at this time. Program control can 
be regained by one of the following sequences. 

1. CONTINUE EXECUTE: This continues the 
program at the point the END key was 
depressed. 

2. CONTINUE 140 EXECUTE: The old analysis is 
terminated (the circuit is still retained, how- 
ever) and the program waits for a new control 
command (i.e., .ALTER, .TRAN, etc). 

A-3.2 Mean Error Printout 

Sometimes convergence to the desired accu- 
racy is not attained. If this happens, a "MEAN 
ERROR:" printout will occur. These results may or 
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may not be correct. If, during a dc analysis, a more 
accurate solution is desired, the following proce- 
dure can be used. 

.ALTER 
END 

This does not change the circuit but allows at least 
four more iterations to occur. 

A-4. BIAS-D SOURCE LISTING (BASIC) 

A listing of the BASIC version of BIAS-D is 
given here. This listing is directly compatible with 
an HP9830A desktop -calculator with a string- 
variable ROM and a matrix operations ROM. Minor 
modifications are required for execution on a Wang 
2200 or a Tektronix 4051. 

10 REM   ***************** BIAS-D ***************** 
26 REM   CIRCUIT RNflLYSIS PROGRAM-VERSION 2 MOD S 11-14-74 
30 REM    B.EIEHL, HRRRY DIAMOND LABS WASHINGTON DC 
35 OPTION EASE 1 
40 DIM R<25> , (K25,3> , E<25, 2>, K25,2>, T<25, 1), PCS, 7) 
50 DIM N<32,2>,K<25,5),L<25,5>,M<25,S),G<25,4) 
60 DIM Y<30,30),V<31),U<31>,C<30) 
70 DIM fl$[65],E*[9],D* C 9]? Rt[25],C*[25],V*[25 ] , I *[25],Q* C 25],H*[5],H*[25] 
80 Rl^Cl=Vl = Il=Ql=Ml=M2=I2 = T9 = H = T0 = T2 = T3 = N'::i,2>=M4 = 0 
90 REDIM C<30> 
100 B*»"RVICQME*." 
110 D*="flIDG0TPHS" 
120 F=T4=1 
130 DISP "INPUT CARD"; 
135 EEEP 
140 INPUT fit 
150 PRINT fl* 
160 FOR 1=1 TO 9 
170 IF A*tl;l]=B*CI;1] THEN 220 
100 NEXT I 
190 DISP "ILLEGAL CHARACTER: RE-"; 
200 GOTO 130 
210 REM ...DETERMINE ELEMENT TYPE 
229 ON I GOTO 240,350,560,670,790,850,1880,130,1290 
230 REM ...RESISTORS 
240 IF F-2 THEN 300 
250 R1=T=R1+1 
260 R*[Rl]=fl»C2; 1] 
270 GOSUB 2580 
280 R<R1)»ABS<C<3)) 
290 GOTO 130 
300 H*=R$ 
310 GOSUB 3030 
320 R<T>«S 
330 GOTO 130 
340 REM ... VOLTAGE SOURCES 
350 IF F=2 THEN 510 
360 Vl=T = ,v,l + l 
370 V*CVl]=fl$C2; 1] 
380 GOSUB 2580 
390 IF C<1><>0 THEN 440 
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406 K<V1II>«C<2) 
410     L<VI,I>«0 
420     EO/l, 1>=-C<:3) 
430      GOTO   490 
448  IF C<2>«0 THEN 480 

PRINT "SOURCE UNGROUNDED: RE- 
71=71-1 

450 
466  V1=V1 
470  GOTO 130 
480 
490 
5 

550 
568 
570 

E<V1,2)»C<4) 
00 GOTO 130 

510 H* = V$ 
520 GOSUB 3030 
530 E<:T,I>=S 
540 GOTO 130 

REM ...CURRENT SOURCES 
IF F=2 THEN 630 

3fW I1=T=I1+1 
580 I*[Il]=fl*[2; 1] 
590 GOSUB 2530 
600 I<II,1)«C<3) 
610 I<I1>2>=C<4> 
620 GOTO 130 
630 H$=I* 
640 GOSUB 3030 
650 I(Ttl>=Sl 
660 GOTO 130 
670 REM ...CflPflCITORS 
680 IF F=2 THEN 740 
690 C1=T=C1+1 
700 c*cci3»fi*c2;n 
710 GOSUB 2580 
720 Q(T,l>«flBS<C<3)> 
730 GOTO 130 
740 H$=C* 
750 GOSUB 3030 
760 GKT, 1 >=S 
770 GOTO 130 
780 REM ...TRANSISTORS 
790 IF F=2 THEN 190 
800 Q1=T=Q1+1 
810 Q*CQ13"fl*C2;n 
820 GOSUB 2580 
830 T<ei,l)=C<4) 
840 GOTO 130 
850 REM ...MODELS 
860 IF F=2 THEN 1250 
870 M1=T=M1+1 
880 M*[T]=fl*C2;1] 
890 GOSUB 2588 
900 FOR M=6 TO 9 
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910 IF fi$[4;1]=D*CM;1] THEN 950 
920 NEXT M 
930 M1=M1-1 
940 GOTO 190 
950 FOR K=2 TO 7 
960 P<T,K)«C<K-1) 
970 NEXT K 
980 ON M-5 GOTO 1080,990,1020,1040 
990 IF fl*[5;l]="U" THEN 1060 
1000 P<T, 1 ;i=-i 
1010 GOTO 1130 
1020 P<T,i)«l 
1030 GOTO 1130 
1040 K=2 
1050 GOTO 1100 
1060 K=3 
1070 GOTO 1100 
1080 K=4 
1090 T3=M1 
1100 M2-M2+1 
1110 P<T(1>«K 
1120 GOTO 1210 
1130 IF C(1><>0 THEN 1150 
1140 P«;T,2> = 100 
1150 IF C<2><>0 THEN 1170 
1160 PCT,3)=1 
1170 IF C<3><>a THEN 1190 
1180 P<:T,4> = 1E-15 
1190 IF C(4><>0 THEN 1210 
1200 P<T,5)»IE12 
1210 S"VflL<M*CT;1]>+10 
1220 M<S,3)»T 
1230 IF 1=7 THEN 1880 
1246 GOTO 130 
1250 H*=M* 
1260 GOSUB 3030 
1270 GOTO 890 
1280 REM ... CIRCUIT UPDATES 
1290 IF F=l THEN 190 
1300 FOR J=l TO 7 
1310 IF Fl*[2; 1]=D*[ J; 1 ] THEN 1340 
1320 NEXT J 
1330 GOTO 190 
1340 F=J+1 
1350 REDIM C(30> 
1360 ON J GOTO 1380,1400,120,1510,1310,1410,1990 
1370 REM . . .FILTER 
1380 GOTO 130 
1390 REM ...INSERT 
1400 GOTO 130 
1410 IF fl|:[3:l] = "R" THEN 1650 
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1428 REM ...TEMPERHTURE 
1430 IF T3=0 THEN 190 
1440 PRINT "Tt:DEG C)" ; 
1450 INPUT Tl 
1460 PRINT Tl 
1470 Tl=Tl+273 
1480 T2=T1-300 
1490 GOTO 130 
1500 REM ...GAIN 
1510 PRINT "INPUT"; 
1520 GOSUE 1540 
1530 GOTO 1590 
1540 PRINT " NODE"; 
1550 INPUT K 
1560 PRINT K 
1570 GOSUE 2970 
1580 RETURN 
1590 M=J 
1600 PRINT "OUTPUT"; 
1610 GOSUE 1540 
1620 PRINT " Gfl IN < V - V > ="; Y < J, M) ■-- Y < M, M) 
1630 PR I NT "INPUT IMPEDENCE=";Y(M,M) 
1640 GOTO 130 
1650 REM ...TRANSIENT 
1660 F=8 
1670 IF M4=0 THEN 1810 
1680 PRINT "TIMESTEP=";"FINAL TIME""; 
1690 INPUT D\fDS 
1700 PRINT Dl;D9 
1710 PRINT "TIME"; 
1720 FOR 1=1 TO M4 
1730 L«M<I+9,4> 
1731 K»«"V"8eVflL»<LJ 
1740 PRINT USING 1770;X* 
1750 NEXT I 
1760 PRINT USING 1770 
1770 IMAGE   #,9X,4A,riDD 
1775 PRINT 
1730 T0=0 
1790 GOTO 1950 
1800 REM .-.OUTPUT PRINT 
1810 DISP "OUTPUT NODE"; 
1820 INPUT K 
1830 PRINT "V";K 
1840 M4=M4+1 
1850 M<M4+9,4>«K 
I860 IF F=8 THEN 1660 
1870 GOTO 130 
1880 IF Q1=0 THEN 1950 
1890 IF Ml-M2>0 THEN 1950 
1900 M1=T=M1+1 
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1916   M*<M1>="0" 
1920   MAT   C=ZER 
1939 M-8 
1940 GOTO 950 
1950 D=1E40 
I960 N1=N-V1 
1970 ON F GOTO 1980,4710,4160,130,7010,136,4710,4180 
1980 REM ...PRINT INPUT DfiTfl 
1990 IF R1=0 THEN 2210 
2000 PRINT 
2010 PRINT "RESISTORS:" 
2020 PRINT "NAME    NODES VALUE" 
2030 FOR 1=1 TO Rl 
2040 PR I NT "R";R* CI;1];TAB C 6);K(1, 1>,L CI,1>;R < I > 
2050 NEXT I 
2060 IF C1=0 THEN 2120 
2070 PRINT "CAPACITORS:" 
2086 PRINT "NAME    NODES VALUE" 
2090 FOR 1=1 TO Cl 
2100 PR I NT "C";C*[I;1];TAE(6);K U,4);L <1,4);Q CI,1> 
2110 NEXT I 
2120 IF V1=0 THEN 2190 
2130 PRINT 
2140 PRINT "VOLTAGE SOURCES:" 
2150 PRINT "NAME   +NODES-   VALUE  MODEL" 
2160 FOR 1=1 TO VI 
2170 PRINT "V";V$[I; 1];TAE(:6>;K(I,2>;L<I,2>;E(I, i::.; "M";E<I,2> 
2180 NEXT I 
2190 IF 11=0 THEN 2260 
2200 PRINT 
2210 PRINT "CURRENT SOURCES:" 
2220 PRINT "NAME   +NODES-   VALUE MODEL" 
2230 FOR 1=1 TO II 
2246 PRINT "I"; I$[I; 1 ]; TAE<:6>; K< 1, 3>; LU , 3); KI, 1>;"M"; 1(1,2) 
2250 NEXT I 
2260 IF Q1=0 THEN 2340 
2270 PRINT 
2280 PRINT "TRANSISTORS:" 
2290 PRINT "NAME    C     E     E   MODEL" 
2300 FOR 1=1 TO Ql 
2310 PRINT HQM;Q»ti;ii;TfiB(7);Kal5>;L<i,5);Ma.5):MM":T<iln 
2320 NEXT I 
2330 PRINT 
2340 IF M1=0 THEN 2520 
2350 PRINT "MODELS: " 
2360 PRINT "NAME  TYPE" 
2370 FOR 1=1 TO Ml 
2380   J = AES<P< I, n> 
2390   ON   J   GOTO   2400,2440,2460,2480 
2400   A*="NPN" 
2410   IF   P<I,1>»1   THEN   2490 
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2420 fl$="PNP" 
2430 GOTO 2490 
2446 fl*="SIN" 
2450 GOTO 2490 
2460 fl*="PUI_" 
2470 GOTO 2490 
2480 fl*="TEM" 
2490 PRINT US IHG 2500; Mf CI; 1 ], fl«, P U , 2 >, P U , 3 > , P < 1, 4 >, P U , 5 >, P (1, 6 >, P < I J 

7 ■' 
2500 I MflGE " M" , Ifl, 4X , 3fl, 2 C M5D . 3D > , M12D. 3D , M12D. 3Ii, M12D. 3D, M12D. 30 
2510 NEXT I 
2520 PRINT 
2530 PRINT "NODES:";N 
2540 PRINT 
2550 PRINT "****END OF INPUT DflTfl****" 
2560 PRINT 
2565 DEEP 
2570 GOTO 3100 
2580 REM ...SUB TO READ INPUT DflTfl 
2590 J=8 
2600 S=0 
2610 IF I>5 THEN 2640 
2620 S=POSCfl*,"H") 
2630 J=4 
2640 K=0 
2650 MAT C=ZER 
2660 K=K+1 
2670 L = POS'::fl*C.J], " "> 
2680 IF <J<S) OR <S«0) THEN 2710 
2690 J=S+1 
2700 GOTO 2750 
2710 IF L=0 THEN 2750 
2720 C <. K > =VflL C fl* C J, J + L- 1 ] > 
2730 J=J+L 
2740 GOTO 2660 
2750 CCK^VflLCflfCJ]) 
2760 IF 1=6 THEN 2950 
2770 8-2 
2780 IF I OS THEN 2800 
2790 S=3 
2800 FOR L=l TO S 
2810 IF C'::L>=0 THEN 2880 
2820 REM ...DET. UNIQUE NODE NUMBERS 
2830 FOR M=l TO N 
2840 IF C<L>«N<M,2) THEN 2880 
2850 NEXT M 
2860 N=N+1 
2870 M<N,2>»C<L) 
2830 NEXT L 
2890 K(T,I)»C<1> 
2900 LCT, n«C<2) 
2910 IF I<>5 THEN 2930 
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2920   MCT,I>=C(3> 
2930 IF F<>3 THEN 2950 
2946 GOSUB 3590 
2950 RETURN 
2960 REM ...SUB TO DET. ELEMENT NODE 
2970 FOR .J=l TO N 
2980 IF H<J,2>«K THEN 3000 
2990 NEXT J 
3000 .J = H( J, 1) 
3010 RETURN 
3020 REM ...SUE TO FIND FILTER ELEMENT 
3030 T«P0S<H*lfl*C2j1]) 
3040 IF TO0 THEN 3070 
3050 DISP "ELEMENT NOT FOUND;RE-"; 
3060 GOTO 130 
3070 IF 1=6 THEN 3090 
3030 S»VflL<fi$C4]> 
3090 RETURN 
3100 REM ...PROCESS CIRCUIT DfiTfl 
3110 FOR 1=1 TO N 
3120 NCI,1>=I 
3130 NEXT I 
3140 REM ...REORDER NODE VECTOR 
3150 FOR 1=1 TO N 
3160 FOR J=I+1 TO H 
3170 IF H(I,2><N<J,2) THEN 3210 
3180 T = NC.J,2) 
3190 N<J,2>»N<I,2) 
3200 N<I,2)«T 
3210 NEXT J 
3220 NEXT I 
3230 REM ...MOVE SOURCE NODES TO END OF NODE VECTOR 
3240 L=V1 
3250 1=2 
3260 GOSUB 3550 
3270   M=N 
3280   FOR   1=1    TO   VI 
3290   K = KU,2> 
3300 IF K>N1 THEN 3400 
3310 FOR L=l TO VI 
3320 IF L=I THEN 3360 
3330 IF M<>K(L,2) THEN 3360 
3340 M=M-1 
3350 GOTO 3310 
3360 NEXT L 
3370 N<M, n=K 
3380 NCK, n=M 
3390 KU,2>=M 
3400 NEXT I 
3410 REN ...RE-ORDER ELEMENT NODES 
3420 L=R1 
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3430   1=1 
3449 G08UE   3559 
3450 L=I1 
3460   1=3 
3470 GOSUE 3550 
3480 L=C1 
3490 1=4 
3500 GOSUE 3550 
3510 L=Q1 
3520 1=5 
3530 GOSUE 3550 
3540 GOTO 3740 
3550 FOR T=l TO L 
3568 GOSUE 35,?0 
3570 NEXT T 
3580 RETURN 
3590 K = K<T, I ) 
3600 IF K=0 THEH 3630 
3610 GOSUE 2970 
3620 K<T,I)=J 
3630 t< = Lc;T, I ) 
3640 IF K=0 THEN 3670 
3650 GOSUE 2970 
3660 L<T, r.)=J 
3670 IF I<>5 THEN 3720 
3680 K = M<T, I> 
3690 IF K=0 THEN 3720 
3700 GOSUE 2970 
3710 CUT, I)=J 

373^ RIJI
UR
^ REDUCE VOLTAGE SOURCES TO CURRENT EQUIVALENT FOR R AND C 

3740 FOR 1=1 TO VI 
3750 J=K(I,2> 
3760 REM ...RES. 
3770 S=l 
3780 S1=R1 
3790 GOSUE 3900 
3800 REM ...CURRENT SOURCE 
3810 S=3 
3820 S11=I1 
3830 GOSUE 3900 
3840 REM . .CAP. 
3850 S=4 
3860 S1=C1 
3870 GOSUE 3900 
3880 NEXT I 
3890 GOTO 4110 
3900 FOR M=l TO SI 
3910 K=K<M,S) 

3920 L«L<M,S> 
3930 IF JOK THEN 3990 
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3940   IF   S=4   THEN   3970 
3950   K<M,S>=0 
3960 IF S=3 THEN 409Q 
3970 T=L 
3980 GOTO 4040 
3990 IF JOL THEN 4090 
4000 IF S=4 THEN 4030 
4010 L(M,S)=0 
4020 IF S=3 THEN 4090 
4030 T=K 
4040 12=12+1 
4050 M(I2,4>=S 
4060 M(I253>=T 
4070 M<I2,2)=I 
4080 M<12, 1 )=r'1 
4090 NEXT M 
4100 RETURN 
4110 Tl=300 
4120 REM ..BEGIN RNfiLYSlS 
4125 BEEP 
4130 MAT V=ZER<N> 
4140 MAT U=ZER<N> 
4150   MAT   G = ZER<:Gll + l,4) 
4160 IF F<>8 THEN 4710 
4170 REM ...UPDATE TRANS. SOURCES 
4180 IF T0OD1 THEN 4210 
4190 D=D1 
4200 GOTO 4710 
4210 FOR 1=1 TO VI 
4220 K = E<:i,2> 
4230 IF K=0 THEN 4260 
4240 GOSUE 4340 
4250 EM, 1>=V 
4260 NEXT I 
4270 FOR 1=1 TO II 
4280 K«ia,2> 
4290 IF K=0 THEN 4320 
4300 GOSUB 4340 
4310 iali>=v 
4320   NEXT   I 
4330   GOTO   4710 
4340   T = r'UK+10,3> 
4350 J=P<;T, 1)-1 
4360 ON J GOTO 4370,4450 
4370 REM ...SINE 
4380 V=P<T,2) 
4390 IF PCT,5><>0 THEN 4410 
4400 P(:T,5>=D1 
4410 IF T0<P<T,5) THEN 4430 
4420 V»V+PCT,3)*SIN<2*PI*P<T,4)*<:T0-P<T,5>>+P<T,6>/'57.296: 
4430 RETURN 

65 



APPENDIX A 

4446   REM   ...PULSE 
4450   Z = P<:T,4> 
4460 IF T0>Z THEN 4490 
4470 V=P(T,2) 
44S0 RETURN 
4450 Z=Z+PCT,5> 
4500 IF T0>=Z THEN 4539 
451 0 V = P ( T , 3 ) - C P C T , 3 > -P < T ? 2 > > .■• P CT, 5)» < Z-T0 > 
4520 RETURN 
4530 Z«Z+P<T,6> 
4540 IF T0>Z THEN 4570 
4550 V=P<T,3> 
4560 RETURN 
4570 Z=Z+P(T,7) 
45S0 IF T0>=Z THEN 4610 
4590 V«iP (T, 2>+ (P<T, 3>-?( T, 2> >.-PC T, 7 > * (Z-T0 > 
4600 RETURN 
4610 V=PCT,2> 
4620 RETURN 
4630 REM ...SUE TO LET. DELTA V 
4640 V=0 
4650 IF L=0 THEN 4670 
4660 V=V<L) 
4670 IF K=0 THEN 4690 
4630 V=V-V<K> 
4690 RETURN 
4700   REM   ...UPDHTE   CflPFICITOR   CURRENTS 
4710 IF T3=0 THEN 4730 
4720 T4»l+P<T3,4)*T2+P<T3,5>*T2A2 
4730 FOR 1=1 TO Cl 
4740 IF CF«8) AND (T0>0> THEN 4770 
4750 GK: i, 2:J=Q(: i, 3>=0 
4760 GOTO 4830 
4770 K=K<I,4> 
4780 L«L<I,4) 
4790 GOSUE 4630 
4800 T = GKI, n*T4.'D*V 
4810 QU,2>=-Q'::i , 3)-T 
4820 Q<I,3>»T+Q<I,2) 
4830 NEXT I 
4840 REM ...HDD SUPPLIES TO V MATRIX 
4850 FOR 1=1 TO VI 
4860 J»K<I,2> 
4870 V<J>«£<!, 1,) 
4880 NEXT I 
4890 T9=0 
4900 MAT Y«2ER<N1,N1) 
4910 MAT C = ZER(:N1) 
4920 REM ...ADD RESISTORS 
4930 IF T3=0 THEN 4950 
4940 T4=1+P(:T3, 2>*T2 + Pi;:T3, 3>*T2^2 
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4950 FOR 1=1 TO Rl 
4966 K»K<I,1> 
4970 L=L<I,I) 
4980 R=1/R<I>/T4 
4990 GOSUE 5020 
5000 NEXT I 
5010 GOTO 5100 
5020 IF K=0 THEN 5070 
5030 Y<K>K>«Y<K,K)+R 
5040 IF L=0 THEN 5090 
5050 Y<K,L>=Y<K,L)-R 
5060 Y<L,K)"Y<L,K)-R 
5070 IF L=0 THEN 5090 
5030 Y<L,L>"Y<L,L)+R 
5090 RETURN 
5100 REM ...ADD CURRENT SOURCES 
5110 FOR 1=1 TO 11 
5120 K»K<I,3) 
5130 L»L<I,3) 
5140 c=ia, n 
5150 GOSUB 5130 
5160 NEXT I 
5170 GOTO 5230 
5130 IF K=0 THEN 5206 
5190 C<K>«C<K>+C 
5200 IF L=0 THEN 5220 
5210 C<.L>=C(.L)-C 
5220 RETURN 
5230 REM ...ADD CflPflCITORS 
5240 IF T3=0 THEN 5260 
5250 T4=l+P(:T3,4)*T2 + P<T3,5>*T2-2 
5260 FOR 1=1 TO Cl 
5270 K=Ka,4> 
5230 L=L(I,4) 
5290 IF K<=N1 THEN 5310 
5300 K = 0 
5310 IF L<=N1 THEN 5330 
5320 L = 0 
5330 R = GKI, 1>*T4/D 
5340 GOSUE 5020 
5350 C«Q<I,2) 
5360 GOSUE 5180 
5370 NEXT I 
5380 REM ...HDD GENERHTED CURRENT 
5390 FOR 1=1 TO 12 
5400 j=Ma, i) 
5410 K=M<I,2> 
5420 L»M<I,3) 
5430 IF M(I,4)«4 THEN 5460 
5440 C«:L>=C<L)+E<;K, I>/R<J) 
5450 GOTO 5470 

SOURCES 
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5469   C ( L )»C < L ')+£(. K , 1 >*Q < J , 1 ) • D 
5479   NEXT   I 
5488 REM ...ADD TRANSISTORS 
5490 IF 01=0 THEN 6456 
5500 V6=8.6164E-5*T1 
5510   C0= (T1 '-300)■••■■3*E>;P <-13920*( 1 ■■■■T1 -1 .■••300) ) 
5520 IF T3=0 THEN 5540 
5530 T4=1+T2*PCT3,6)+T2--2*P<:T3, 7) 
5540 FOR 1=1 TO Ql 
5550 T=T(I,I) 
5560 T=M(T+10,3> 
5570 T7 = P(:T, n 
55S0 REM ... INITIALIZE PflEfiMETERS FOR FIRST ITERATION 
5590 IF T9O0 THEN 5640 
5600 S1=S2=0 
5610   IF   FO0   THEN   5640 
5620   GCI,1)=.5 
5630   G(I,2)=0 
5640   K=M<I,5> 
5650   L = LU,5> 
5660 GOSUB 4630 
5670 V4=V*T7 
5680 M=K 
5690 K»K<1,5) 
5700 GOSUB 4630 
5710 V3=V*T7 
5720 Z=l 
5730 IF V3>0 THEN 5750 
5740 Z = Z-V3*T7.-P(;T, 5) 
5750 B«P<T,2)«T4*2 
5760 C2"C0*P<T, 4)*<l+l-'P(T, 2> >/U +1 .■■■B> 
5770 V«V4 
5780 J=l 
5790 GOSUB 5810 
5800 GOTO 5960 
5810 IF V<»G<I,J) THEN 5880 
5820 C3=0 
5830 IF C(I,J><0 THEN 5350 
5840 C3«C2«<EXP<G<1,J>^V6>-1) 
5850 C6 = C3-G( I , .J + 2>*G< I , J) 
5860 RB(G<I, J+2)*V+C6)''C2+l 
5870 V=V6*L0G<fl> 
5880 C3=-C2 
5890 IF V<-2 THEN 5910 
5900   C3 = C2*EXP <; V ■•■V6 > +C3 
5910 C3»<C3+C2)/V6 
5920 C6=T7*CC3-G3*V> 
5930 G<I,J+2>«G3 
5940 G(I,.J>=V 
5950 RETURN 
5960 C4=C3 
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5976 C5-C6 
5980 G1=G3 
5990 E1=SQR(P<T,6>»C2)-P(T,2) 
6000 C7=-B1 
6010 IF V<-2 THEN 6039 
6020 C7 = Bl*EXF,(V/V6/2)+C7 
6030 Z=(C7 + El>-/V6.'-2 
6040 C8 = T7*c:C7-Z*V.;' 
6050 G2=G1/B+Z+C2 
6060 B1=P';T,3)*T4 
6070 C2 = C0*P < T,4 > * U + 1/P(T,3 >)/U + 1/Bl> 
6030 V=V3 
6090 J=2 
6100 GOSUE 5810 
6110 G4 = G3.''E1+C2 
6120 IF F<>5 THEN 6180 
6 1 30   C2 = T7* ( C4.■•■•E + C3.- E 1+C7 > 
6140 C4 = T7* ■; C4- < 1 + 1 -• E 1 > *C3 > 
6156 PR I NT US ING 6160; Q* [ I; 11, C2, C4, T7*V4, T7*V3, C4.-C2, G1, 1 sQ2 
6160 IMRGE #,"Q",1fl,2X,MB.DDDE,1X,MB.DDBE,2<3X,M2B.BBIO ,MDDD.BB,1X,MB.BBE,1X,MB , 

BBE 
6170 GOTO 6430 
6180 REM ...GNB. CONDUCTANCES FINE V.B.C.B. CONNECTED TO SUPPLY 
6190 IF KON1 THEN 6210 
6195 C6=C6-G3*V(K) 
6200 K=0 
6210 IF LON1 THEN 6230 
6215 C5 = C5 + G1*V(:L> 
6216 C6=C6+G3*V<L) 
6220 L=0 
6230 IF M<=N1 THEN 6250 
6235 C5"C5-Gl*V<li) 
6240 M=0 
6250 IF K=0 THEN 6340 
6260 C < K > =C ( K > + a + 1 '-El ) *C6-C5 
6270 V(K,K)=Y<K,K> +G3 + G4 
6280 IF L=0 THEN 6310 
6290 Y C K,L > =Y CK,L>+G1-G3-G4 
6300 Y(LfK)»Y<L,K>-G4 
6310 IF M=0 THEN 6400 
6320 Y<K,M>=Y<K,M>-G1 
6330 V<M,K)«¥(M,K>-G3 
6340 IF N=0 THEN 6490 
6350 C<M)=C<M ::' + (: 1 +l-'B ) *C5-C6 + C8 
6360 Y(t1,M>=Y<M,M>+Gl+G2 
6370 IF L=0 THEN 6430 
6380 Y<M,L)-Y<M,L>-Gl-G2+G3 
6390 ¥<L,M>»Y<L,M>-G2 
6400 IF L=0 THEN 6430 
6410 CCL>=C(L::'-C5/B-C6/B1-C8 
6420 Y<L,L>=Y(;L,L>+G2 + G4 
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6436 NEXT I 
6448 IF F=5 THEN 130 
6450 REDIM V<H1) 
6460 MAT V=INVCY> 
6470 MAT V=Y*C 
6480 REDIM V<N> 
6490 IF Q1=0 THEN 6700 
6500 T9=T9+1 
6510 REM ...CHECK FOR CONVERGENCE 
6520 MAT LI = V-IJ 
6530 S = 0 
6540 FOR 1=1 TO Nl 
6550 S=S+U<J>-2 
6560 NEXT J 
6570 IF F=8 THEN 6590 
6580 PRINT S 
6590 IF CS<N1A2*1E-10> FIND (SKNl -2* 
6600 IF <S>S1> AND <S1>S2) AND '::T9>5 
6610 S2 = S1 
6620 S1=S 
6630 GOTO 6680 
6640 PRINT "MEAN ERROR < VOLTS) :"; SQR •; 
6650 PRINT 
6669 GOTO 6700 
6670 REM ...STORE LAST NODE VOLTAGES 
6680 MAT U=V 
6690 GOTO 4900 
6700 IF F<>8 THEN 6810 
6710 PRINT USING 6711;T0 
6711 IMAGE  »,D.3DE 
6720 FOR L=l TO M4 
6730 K=M<L+9,4> 
6740 GOSUB 2970 
6750 PRINT USING 6760;V'.:.J) 
6760 IMAGE #,  M4D.5D 
6770 NEXT L 
6780 PRINT USING 6781;T9 
6781 IMAGE #,3D 
6782 PRINT 
6783 IF T0>D9 THEN 130 
6790 T0=T0+D1 
6791 Y9=Y9+T9 
6800 GOTO 4180 
6810 IF Q1=0 THEN 6840 
6820 PRINT "ITERATIONS:";T9 
6830 PRINT 
6840 T=Tl-273 
6850 PRINT "T=,, ^j "DEG C " 
6860 PRINT 
6870 PRINT "NODE VOLTAGES:" 
6880 FOR K=l TO N 

lE-lO; AND ';T9>3> THEN 6700 
> AND CSC.1> THEN 6640 
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6899 I=N<:K,I) 

6960 J=N<K,2) 
6910 PRINT USING 6920;J,Va) 
6920 IMAGE " V",M3D,M13D.4D 
6930 NEXT K 
6940 F=5 
6950 IF Q1O0 THEN 6970 
6960 GOTO 130 
6970 PRINT "TRfiNSISTOR OPERATING POINTS:" 
6980 PRINT USING 6990 , _T „ 
6990 IMAGE "NAME" , 5X, " I E" , 9X, " IC" , 9X, " VEE " , 7X, " VBC" , 6X, "BETA" , 6X, "GM" , S.-., " RP I 

7060 GOTO 5480 
7010 STOP 
7020 END 
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Four test circuits were used to compare the 
analytical speeds of BIAS-D modifications which 
are described in section 4 of the main body of the 
report. These test circuits are all modifications of 
the same test circuit used in section 3 to evaluate 
the BASIC version of BIAS-D. The basic circuit 
(CKT10) is shown in figure B-1 (a). CKT10 is a nine- 
node, five-transistor integrated preamplifier circuit. 
Capacitors were added across the collector-base 
and base-emitter junctions of each transistor to 
represent the transistor junction capacitances. A 
BIAS-D input listing is given in figure B-1 (b). CKT10 
does not include any bulk resistor, but the other 
three circuits were obtained from CKT10 by suc- 
cessively adding resistors to the base (CKT11) 
(fig. B-2), collector (CKT12) (fig. B-3), and emitter 
(CKT13) (fig. B-4) of each transistor in this circuit. 

t  TEST CIRCUIT CKTIO <9 NODES) 
Ittt   INTEGRATED PREAMPLIFIER tttt 
t  RESISTORS 
Rl 6 1 12< 
R2 7 3 7.5K 
R3 4 e 680 
R4 7 6 9< 
R5 8 0 5K 

Figure B-1. Standard test circuit CKT10 (9 nodes): 
(a) diagram and (b) BIAS-D input listing. 

t TRANSISTORS 
oi 3 i 2 na 
02 3 2 4 HS 
03 e s 4 ns 
04 G 6 5 HS 
Q5 7 3 8 na 
t   U0LTAGE SOURCES 
US 9 0. 1 Ml 
UB 7 0 6.1 
t  CAPACITORS 
CS 9 1 1U 
CB1 1 2 2P 
CB2 2 4 SP 
CB3 5 4 2P 
CBS 3 8 2P 
CC1 3 1 2P 
CC2 3 2 2P 
CC3 6 5 2P 
CCS 7 3 2P 
» MODELS 
Ml PUL 8 -1 .5U .5U 5U ,5U 
M2 NPN 100 1 5E- •15 
END 
t  FOR BENCHMARK TIMES USE» 
t     .TR 
«     TR 0 10U .1U 
t             U8 PRT 

Figure B-1(b) (cont'd). 
BIAS-D input listing. 

Standard test circuit CKT10, 

Figure B-2. Standard test circuit CKT11 (14 nodes): 
(a) diagram. 
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(b) 

t  TEST CIRCUIT CKTll (14 NODES) 
tttt   INTEGRATED PREAMPLIFIER tttt 
t  RESISTORS 
Rl 6 1 12< 
R2 7 3 7.5K 
R3 4 0 680 
R4 7 6 9K 
R5 8 0 5K 
t   TRANSISTORS 
01 3 11 £ ns 
02 3 21 4 n2 
03 6 51 4 R2 
04 S 61 5 ns 
05 7 31 8 n2 
* UOLTAGE SOURCES 
us 9 0 i ni 
UB 7 0 6.1 
»BASE RESISTORS 

11 100 
21 100 
51 100 
61 100 

RBI 
RB2 
RB3 
RB4 
RB5 

1 
2 
5 
6 
3 31 100 

t CAPACITORS 
CS 9 1 1U 
CE1 11 2 2P 
CC1 11 3 2P 
CE2 21 3 2P 
CC2 21 4 2P 
CE3 51 6 2P 
CC3 51 4 2P 
CE4 61 5 2P 
CC4 61 6 2P 
CE5 31 7 2P 
CCS 31 8 2P 
« nODELS 
11 PUL 0 -1 .5U .5U 5U .5U 
m  NPN 180 1 5E-15 
END 
t  FOR BENCHMARK TIMES USE: 
X .TR 
* TR C 10U .1U 
» U8 PRT 

Figure B-2. Standard test circuit CKT11 (14 nodes): 
(b) BIAS-D input listing. 

t   TEST CIRCUIT CKT1S <19 NODES) 
tttt   INTEGRATED PREAMPLIFIER tttt 
t  RESISTORS 
Rl 6 1 12000 
R2 7 3 7500 
R3 4 0 6S0 
R4 7 6 9000 
R5 S 0 SOOO 
t   TRANSISTORS 
01 32   11   2  f12 
02 34  21   4  n2 
03 62  51   4  n2 
04 64   61   5   n2 
05 72   31   8   f12 
t   UOLTAGE SOURCES 
UB 7 0 6.1 
us 9 0 i m 
CS 9 1 1U 
tBASE RESISTORS 
RBI 
RB2 
RB3 
RB4 
RB5 

1 
2 
5 
6 
3 

11 100 
21 100 
51 100 
61 100 
31 100 

t COLLECTOR RESISTORS 
RC1 3 32 100 
RC2 3 34 100 
RC3 6 62 100 
RC4 6 64 100 
RC5 7 72 100 

Figure B-3. Standard test circuit CKT12 (19 nodes): 
(a) diagram and (b) BIAS-D input listing. 

74 



APPENDIX  B 

«JUNCTION   CAPACITANCES 
CE1 11 5  SP 
CCl 11 3  EP 
CES SI 3   SP 
CCS SI 4   SP 
CE3 51 6   SP 
«C3 Si 4  2P 

CE4 Si 5  SP 
CC4 61 6  2P 
CE5 31 7  SP 
CCS 31 8  SP 
»  nODELS 
Ml PUL e -i .su .5U 5U .SU 
ns SPN tee i 5E- •15 
END 
1  FOR BENCHPIARK TIMES USE: 
S .TR 
t TR e 10U .1U 
i U8  PRT 
Figure B-3(b) (cont'd). Standard test circuit CKT12, 
BIAS-D input listing. 

RC5 

JRE5 

(b) 
t ' FEST CIRCUIT CKT13 (24 NODES) 
tttt INTEGRATED PREAMPLIFIER tttt 
t ?E?Ii JTORS 
Rl £ 1 12000 
92 7 3 7500 
R3 4 0 bSO 
R4 7 6 9000 
R5 8 0 5000 

t   TRANSISTORS 
01 3c 11 S3 MS 
02 34 SI 43 MS 
03 62 51 44 MS 
04 64 61 53 MS 
05 72 31 S3 MS 
* UOLTAGE SOURCES 
UB 7 0 S.l 
US 9 0 1 Ml 
CS 9 1 1U 
*BASE.RESISTORS 
RBI 
RB2 
RB3 
RB4 
RB5 

11 100 
SI 100 
51 
61 
31 

RC5 
RC3 
RC4 
RC5 

RE4 53 5 
RE3 44 4 
RES 43 4 
RE1 23 2 

Figure B-4. Standard test circuit CKT13 (24 nodes): 
(a) diagram and (b) BIAS-D input listing. 

100 
100 
100 

* COLLECTOR RESISTORS 
RC1 3 32 100 

34 100 
62 100 
64 100 
72 100 

%  EMITTER RESISTORS 
RES 83 8 10 

10 
10 
10 
10 

IJUNCTION CAPACITANCES 
CE1 11 2 2P 

2P 
2P 
2P 
2P 
SP 
2P 
2P 
2P 

CCS 31 8 2P 
Ml PUL 0 -1 .5U .SU SU .SU 
112 NPN 100 1 5E-15 
END 
« FOR BENCHMARK TIMES USE: 
t     .TR 
«     TR 0 10U .1U 
t U8 -PRT 

Figure B-4(b) (cont'd). Standard test circuit CKT13, 
BIAS-D input listing. 

CCl 11 
CE2 21 
CC2 21 
CE3 51 
CC3 51 
CE4 61 
CC4 61 
CE5 31 

3 
3 
4 
6 
4 
5 
6 
7 
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A linked-list storage structure is an efficient 
method of element storage in a circuit simulator in 
which a wide variety of circuits are to be analyzed. 
The linked element storage array used in BIAS-D 
(FORTRAN) resembles that used by Mini-MSINC* 
Figure C-1 gives the BIAS-D configuration for each 

element list. 

Four different list structures are shown here. 
Passive two-terminal elements (resistors, capaci- 
tors, or inductors) use the same list structure. Ca- 
pacitors and inductors require two additional 
double-precision words for storage of temporary 
variables. Transistors use a similar configuration but 
reserve storage space for four single-precision tem- 
porary variables. Models use a different configura- 
tion. Here eight single-precision model parameters 

NEXT LOCATION NEXT LOCATION 

MODEL LOC. 

ELEMT. LOC. 

SUPPLY LOC, 

+ NODE 

ELEMT, TYPE 

NEXT MODEL 

MODEL LOC. 

Idl 

Figure C-1. Linked-list element storage array configu- 
ration in BIAS-D: (a) R, L, C, V, I elements, 
(b) transistors, (c) models, and (d) generated current 
sources. 

*T. K. Young and R. W. Dutton, Mini-MSINC—A Mini- 
computer Simulator for MOS Circuit with Modular Built- 
in Models, IEEE I. Solid-State Circuits, SC-11, No. 5, 730- 
732, October 1976. 

are stored with a pointer to a second list if neces- 
sary. The last list in this figure is that for the gener- 
ated current sources. These sources are added 
during the setup procedure and are generated from 
the elements connected to voltage sources. All 
elements in this list point either to an element type 
or element value. They are stored sequentially and, 
therefore, do not need a pointer address. It is 
imperative that the list length for each element be 
divisible by two. This restriction enables simple 
addressing of integer and single-precision variables. 
This addressing is accomplished in BIAS-D as 

follows. 

integer location address = KLOC + LROS 

single-precision location address = KLOC/2 + LPOS , 

where KLOC + 1 is the integer location of the first 
variable in the particular element list, and Lpos is the 
displacement (in words) within this list. KLOC is 
determined either from the IFRST array which gives 
the first location of each element type, or from the 
first location in each element list, which gives the 
address of the first location of the next element of 
that type. An extension of the previous restriction 
on the list configuration is that, within each element 
list, each single-precision variable must be on two 
word boundaries. This is for the same reason as 
given earlier. If the length of any element list is to be 
extended it can be easily done, in two-word incre- 
ments, by changing the data statement in the MAIN 
subroutine containing the LEN variable. This vari- 
able defines the length in words of each element 

list. 

If the particular computer system uses a two- 
or four-word double-precision data word format, 
double-precision data can also be stored in this list 
(not possible on the HP2100). In this case, each 
double-precision variable must be on boundaries 
equal to the data word length. The location of this 
varaible is found using the following address (for 
four-word double-precision data). 

double-precision location address = KLOC/4 + LPOS 
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There are no "PUSH" or "POP" routines in added at the end of the original element list, at 
BIAS-D for loading or unloading this element list. starting location MXLOC. The generated current 
Once the list is formed it is not changed, except source  pointers  must  then  be  regenerated  and 
when elements are inserted in the circuit. These are loaded at the new end of this list. 
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The organization of the subroutines and func- 
tions contained in BIAS-D are described in this 
appendix. The BIAS-T9 version of BIAS-D is de- 
scribed. This version contains sparse matrix inver- 
sion and storage, linked-list element storage, and ac 
analysis using the traditional complex arithmetic 
method. A source listing of BIAS-T9 is given in 
appendix E. 

The description of the subroutines is divided 
into four groups related by their function in BIAS-D. 
These groups are input/output, setup, analysis, and 
general functions. The relationships between these 
groups are shown in figure D-1. This shows the 
MAIN routine as controlling the entire 
input/output, setup, and analysis procedures with 
the general functions linked to all groups. 

MAIN 

I 1 ' 
I/O SETUP ANALYSIS 

, 

\ 1 

j 

SUPPORT 
FUNG TION = 

Figure D-1. Main subroutine groups in BIAS-D. 

A more detailed flow diagram of the organiza- 
tion of the input/output group is given in figure D-2. 
A brief description of each of these routines is given 
as follows. 

MCHEK checks for undefined element mod- 
els. It stores the starting location of defined models, 
in the IELM array, with the appropriate element. MO 
is the null model and is assigned to all elements with 
no user-defined model. 

POUT sets up print or plot output formats. For 
print outputs, headings are printed for transient 
analyses, swept alter analysis, and ac analyses. The 
output device for printing is specified by the user. 

MAIN 

MCHEK POUT INPUT ALTER 

RDFLD 

GRAPH VAL 

^ 
PRCKT 

Figure D-2. Organization of input/output subrout- 
ines in BIAS-D. 

This device can be the user terminal (TTY), disc, 
magnetic tape, or paper tape. For plot outputs, the 
graph axes are scaled and labeled for the appropri- 
ate analysis. 

INPUT controls the initial reading of all ele- 
ment data from either a user terminal (TTY) or disc 
file. A limited amount of input processing is done in 
this routine. Unique node numbers are determined, 
and node numbers and element values are stored in 
the IELM array. 

RDFLD reads a single floating-point and/or 
integer data field contained in the IAQ array. This 
field can contain up to eight floating-point or integer 
numbers separated by a comma or up to seven 
blanks. A pointer, LL, determines the starting loca- 
tion in the IAQ array of the decoding operation. A 
second pointer, KK, determines which number field 
within IAQ is being processed. The actual decoding 
of these numbers is done in function VAL. 

VAL(LL) does the actual decoding of each 
number in the IAQ array. LL denotes the starting 
location of the number within the IAQ array. Any 
number may be preceded by as many as seven 
blanks and may be in one of several forms. For 
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example, the number one thousand may be repre- 
sented as 1000, 1000.0, IK, 1E3, 1E + 3, or 1 E 3, 

ALTER is used to locate an element to be 
altered or an input source for a transient or ac 
analysis. It determines whether the element name 
being interrogated has been previously defined; if 
so, ALTER determines its beginning address in the 
IELM array so determined. 

PRCKT writes the present circuit configuration 
in an ordered format to one of two output devices. 
During the initial dc analysis it is written to the user 
terminal. If called by the .SAVE command the same 
output configuration is written to a disc file. Then, 
this file can later be used as an input file. For this 
reason it is necessary that the format of the PRCKT 
output be readable by the INPUT routine. 

Figure D-3 is an organizational diagram of the 
setup group of routines. In this group, program 
MAIN calls subroutine SETUP which in turn con- 
trols the setup procedure. A brief description of 
these routines follows. 

SETUP 

RENUM NORDR 

NCONV 

EOUIV 

INDX 

Figure D-3. Organization of setup subroutines in 
BIAS-D. 

SETUP controls the entire setup procedure. It 
also renumbers the circuit nodes into a compact 
node set, and reorders these nodes such that the 
voltage source nodes are at the upper end of the 
node vector Nl(i,2). NODE represents the total 
circuit nodes whereas NNODE gives the number of 
circuit nodes which are not connected to a voltage 
source. 

RENUM(M) controls renumbering of the ele- 
ment node connections from the original node 
order to a compact node order determined in 
SETUP. The actual conversion is done in function 
NCONV. RENUM is called during the initial setup 
procedure and also if elements are to be inserted 
into the circuit using a .INSERT command (see app 
E). 

NCONV(K,M,NI,NODE) returns a new node 
number, given a node number K. This is done by 
comparing input node K with the nodes in table 
NI(.,1)or Nl(.,2) which are NODE nodes in length. 
If M = 0, K is converted from the original node 
number to a compact node number. If M = 1, K is 
converted from the compact node number to the 
original node number. 

INDMT sets up an incidence matrix IY(i,j) for 
each new circuit. This integer matrix is then used to 
determine the optimum circuit node ordering. 

NORDR determines the optimum node order 
for each circuit, and sets up the sparse matrix 
decomposition and storage pointers. The optimum 
order is obtained using the number of off-diagonal 
nonzero elements in the incidence matrix IY(i,j). 
This new node order is stored in vector IORDR. The 
row and column table locations of each nonzero 
matrix term used during the decomposition process 
is stored in arrays IUR and IUC. The location of 
each matrix entry used during an operation is stored 
in the IPOS array. The actual two-dimensional ad- 
dress generated during the decomposition proce- 
dure is converted into a linear address in function 
INDX(NR,NC). 

INDX{NR,NC) converts a two-dimensional 
matrix address NR,NC into a location in the linear Y 
array. This is done by comparing row location NR 
and column location NC with the permitted table 
locations determined by the IUR and ILC pointer 
arrays. 

EQUIV converts circuit voltage sources into 
Norton equivalent current sources. The number of 
these current sources generated depends on how 
many elements (and what type) are connected to 
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the voltage sources. The element type (resistor, 
capacitor, etc), the element location, the voltage 
source location, and the node into which the equiv- 
alent current source enters is stored in the IELM 
array at the end of the element linked list. This 
storage begins at location MXPOS. 

A diagram of the organization of the analysis 
group of BIAS-D subroutines is given in figure D-4. 
Two main subroutine groups are controlled from 
subroutine ANALY and subroutine ACSOL. A brief 
description of those subroutines controlled from the 
ANALY group is given as follows. 

MAIN 

ANAL 

r 
UPDAT GNCUR SOLVE 

|ELOAD|   |DECIVID 

—> 
BJT 

JUNCT     ADCUR 

ADRES 

Figure D-4. Organization of analysis subroutines in 
BIAS-D. 

ANALY controls the dc and transient analyses 
in BIAS-D. The capacitor and inductor currents are 
updated during a transient analysis, the current 
vector and admittance matrix are zeroed after each 
time-step, and convergence is determined for both 
dc and transient analyses. 

UPDAT changes time-dependent voltage or 
current sources during a transient analysis. This new 
source value is stored in the IELM array to be later 
added to the voltage vector, V. The value of the 
time-dependent source is determined from the 
source model parameters also stored in the IELM 
array. The location in this array is stored with the 
particular source parameters and is determined 
during setup in the MCHEK routine. 

ELOAD controls loading of equivalent real or 
imaginary element conductance values into the 
admittance  matrix array,  Y,  and the equivalent 

currents into the current vector, C. For resistors, 
capacitors, and inductors, the actual loading of 
these conductance and current values is done in the 
ADRES and ADCUR routines for dc and transient 
analysis and in ADCPR and ADCPC for ac analysis. 
Bipolar transistors are loaded from the BJT 

subroutine. 

ADRES adds a double-precision conductance 
value, DS, into the Y array at locations determined 
by element node numbers KK and LL as follows. 

Y(KK,KK)   =   Y(KK)   =   Y(KK)   +   DS 
Y(LL,LL)   =   Y(LL)   =   Y(LL)   +   DS 
Y(KK,LL)   =  Y(JJ)  =  Y(J)) - DS 
Y(LL,KK)   =   Y(NN)   =   Y(NN) -  DS 

where J) and NN are translated storage location 
values determined from function INDX(KK,LL). 

ADCUR adds a double-precision current, DS, 
into the current vector, C, at locations determined 
from node values KK and LL as follows. 

C(KK) = C(KK)-DS 

C(LL) = C(LL) + DS 

BJT determines the linearized Ebers-Moll 
equivalent conductance and current source values 
for bipolar transistors. The equivalent values for 
each junction, the collector-base, and the base- 
emitter are computed separately in subroutine 
JUNCT. These values are then added to the Y and C 

arrays. 

JUNCT determines the Ebers-Moll junction 
equivalent conductance and current source values 
for a given junction voltage. Current or voltage 
update* is used depending on whether the new 
junction voltage is greater or less than the last 
junction voltage, respectively. The last junction 
voltage and transconductance for each transistor 
junction is stored in the IELM array. 

*R. Barham, E. Cheung, and E. Cohen, BIAS-M, An 
Experimental Circuit Simulator for the IBM 1800, Inte- 
grated Circuits Croup, University of California, Berkeley, 
June 1973. 
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CNCUR determines the double-precision real 
or imaginary dependent current source values to be 
added into the current vector, C. These currents 
depend on the value of the independent voltage 
source value and the element values connected to 
these sources. The locations of these sources and 
elements are previously determined during setup by 
the EQUIV subroutine and stored in the IELM array. 

DECMP does an LU decomposition of the 
sparse admittance matrix using the pointer structure 
generated during setup in subroutine NORDR. 

SOLVE solves for the circuit node voltages 
using forward and backward substitution into the 
LU matrix generated in DECMP. The resulting node 
voltages are stored in double-precision vector V. 

The second group of subroutines in the analy- 
sis portion of BIAS-D is controlled from subroutine 
ACSOL and is called during an ac analysis. Since 
complex arithmetic cannot be used, the admittance 
matrix is arranged so that all real entries are entered 
into the Y array and the imaginary entries into the Yl 
array. The same pointer structure that was gener- 
ated in NORDR and used in the dc and transient 
analysis is used to load both the Y and Yl arrays. 
Resistors are added in the same manner as in 
previous analyses, using the ADRES subroutine. The 
imaginary conductance values of the capacitors 
and inductors at frequency FREQ are loaded into Yl 
using subroutine ADCPR. A brief description of 
these routines follows. 

ACSOL controls the small-signal ac frequency 
response analysis in BIAS-D. The ac parameters are 
initialized, the complex current vector and admit- 
tance matrix are zeroed for each new frequency 
point, and the next frequency point is determined. 

B)TAC loads the ac bipolar transistor conduc- 
tance values into the complex admittance matrix. 
All small-signal ac transistor conductance values 
are loaded into real array Y, since capacitors are not 
included in the transistor model. 

ADCPR loads an imaginary double-precision 
conductance value, DS, into the imaginary part of 
the admittance matrix. The locations are deter- 
mined in the same manner as in ADRES. 

ADCPC adds an imaginary current, DS, into 
the Cl array at locations KK and LL in the same 
manner as subroutine ADCUR. 

DECAC does an LU decomposition of the 
complex sparse admittance matrix using the same 
pointer structure as used in DECMP and generated 
during setup in the NORDR subroutine. 

SOLAC solves for the complex circuit node 
voltages using forward and backward substitution 
of the complex admittance matrix generated in 
DECAC. The resulting real node voltages are lo- 
cated in the V array and the imaginary voltages in 
the VI array. 
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E-1. INTRODUCTION 

BIAS-D is a computer-aided circuit-analysis 
program written in FORTRAN IV for minicomputers 
with a minimum of 32 kwords of internal memory. 
It can perform ac, dc, and transient analysis of a 30- 
node circuit that contains up to 150 elements— 
resistors, capacitors, inductors, voltage sources, 
current sources, and transistors. For transistor cir- 
cuits, BIAS-D converges to a solution by linearizing 
the built-in Ebers-Moll transistor model about an 
operating point in much the same manner as done 
in larger circuit-analysis programs such as BIAS-3, 
SLIC, and SPICE. 

Circuit data are typed into the keyboard in a 
semifree input format. Error messages are given for 
recoverable data errors enabling immediate correc- 
tions. Transistor parameters, temperature coeffi- 
cients, and transient sources are entered by specify- 
ing one or more of five available model types. 

BIAS-D executes in a semi-interactive mode in 
which elements or models are altered, temperature 
varied, and elements inserted between existing 
nonsource nodes. The program is structured so that 
the circuit size and element capacity can be easily 
modified in accordance with the available memory 
size. Execution time for a dc solution of a 10-node, 
5-transistor circuit is approximately 0.6 s on a 
PRIME 400 minicomputer. 

E-2. INPUT DATA 

The input data are divided into two categories: 
circuit data and control statement data. The circuit 
element data (e.g., resistors, transistors, etc) are 
input by specifying the element symbol (R, Q, M, 
etc) followed by the required data for that element. 
The control statement data are characterized by a 
dot (.) followed by the desired operation (.TRAN, 
.ALTER, etc). Control statements do not affect the 
results of the analyses—they only enable the user to 
direct the analysis procedure. 

E-2.1 Circuit Data 

Certain general instructions must be followed 
to input circuit data. 

a. Each circuit element must begin in col- 
umn 1. 

b. Spaces are used as delimiters between 
data fields. 

c. Scientific notation may be used (i.e., 
1000 = 1E3). 

d. Decimal points are not required (i.e., 
2  =  2.0). 

e. The ground node must be node 0 
(zero). 

f. Compact node numbering is not re- 
quired (i.e., node numbers may be 
skipped). 

g. The maximum allowable node number 
is 99. 

h. Element values are to be in basic units 
(i.e., ohms, farads, volts, amperes, 
hertz, seconds). 

i. Abbreviated notation may be used as 
follows: 

P   =   10"" K   =   103 

N   =   10"' ME   =   106 

U   =   10^ G   =   ID'2 

M   =   10"3 

(e.g.,   10U   =   1.0E-5) 

E-2.1.1 Resistors, Capacitors, Inductors 

General form: 

RXX N1 
CXX N1 

N2 VALUE M# 
N2 VALUE M# 

where XX is any two-character name, N1 and N2 
are the node numbers (order not important), and 
VALUE is the resistor, capacitor, or inductor value 
in ohms, farads, or henries. The letter M followed 
by an integer from 1 to 9 denotes the model name 
(see sect. E-2.1.4). VALUE cannot be zero. 
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E-2.1.2      Independent 
Current 

Sources— Voltage, 

General form: 

VXX  N- 
IXX  N- 

N~ 
N- 

VALUE  M# 
VALUE M# 

where XX is any two-character name, N+ and N- 
are the positive and negative source nodes, respec- 
tively, and VALUE is the source value in volts or 
amperes. The letter M followed by an integer from 
1 to 9 denotes the model name (see sect. E-2.1.4). 
For voltage sources, either N-|- or N- must be 
grounded (node 0).   For example. 

and 
V+   3  0  5   Ml 

V+   0  3  -5   Ml 

are equivalent. 

For current sources, current flows from the 
positive node through the source to the negative 
node. The letter M followed by the model name 
may be omitted. However, a default number of 
zero will be assigned. 

E-2.1.3 Bipolar Transistors 

General form: 

QXX  NC  NB   NE  M# 

where XX is any two-character name, and NC, NB, 
and NE are the collector, base, and emitter node 
numbers, respectively. The letter M followed by an 
integer from 1 to 9 denotes the model name (see 
sect. E-2.1.4). The letter M followed by the model 
name may be omitted. However, a default number 
of zero (0) is assigned. 

E-2.1.4 Models 

General form: 

M#   YYY F1   F2 F3  F4 F5 F6 

where # is an integer from 1 to 5 corresponding to 
the model number designated on the source or 

element. YYY is a three-letter name designating one 
of five available model types as follows. 

npn transistor parameters 
pnp transistor parameters 
pulse source specifications 
sinusoidal source specifications 
external source model 
element temperature coefficients 

F1, F2, . . ., F6 are the data fields for specifying the 
above model parameters. These fields are defined 
below. 

1.  NPN—transistor parameters 

1. NPN 
2. PNP 
3. PUL 
4. SIN 
5. EXT 
6. TEM 

ield Parameter Default 
value 

F1 Forward dc beta (BF) 100 
F2 Reverse dc beta (BR) 1 
F3 Saturation  current  (Is) 1E-15 
F4 Early voltage (VA) 1E+12 
F5 Recombination current 

parameter (collector current 
at which  beta   =   BF/2) 0 

F6 Not used — 

2. PNP—transistor parameters (same as NPN) 

3. PUL—pulse source specifications 

ield Parameter Default 
value 

F1 Initial source value at t  =  0 0 
F2 Pulsed value 0 
F3 Pulse delay time 1 slep 

F4 Pulse rise time 0 
F5 Pulse duration  (width) 0 
F6 Pulse fall time 0 

4 SIN—sinusoidal source specification 

ield Parameter Default 
value 

f I dc source value (offset) 0 
\1 Source amplitude (0-P) 0 
F3 Source frequency (Hz) 0 
F4 Time delay Kiep 

F5 Phase shift (deg) 0 
F6 Not used — 
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The value of the sinusoidal source is deter- 
mined by the equation 

F(t) = F1 + F2-sin[2TTF3(t-F4) + F5] . 

5. EXT—External source parameters are to be 
defined by the user in a subroutine. 

6. TEM—element temperature coefficients 

ield Temperature Default 
coefficient value 

Fl Resistor (Id) 0 
F2 Resistor (Tc2) 0 
F3 Capacitor (To) 0 
F4 Capacitor (Tc2) 0 
F5 Transistor beta (Ta) 0 
F6 Transistor beta (Ta) 0 

The element value at temperature T is deter- 
mined by the equation 

E(T) = E(T„)[1 + (T-To)Ta + (T-T„)2Tc2], 

where To = 300 K. Ta and Tc2 are the element's 
first- and second-order temperature coefficients, 
respectively. The dimensions of Tci and Ta are in 
decimal percentages per degree Celsius (a decimal 
percentage of 0.002 = 2000ppm/C). 

E-2.1.5 Comment Statement 

General form: 

* any comment 

A comment may be inserted at any line in the 
input circuit by using an asterisk (*) in column 1 
followed by any message up to 80 characters long. 

E-2.1.6 END statement 

END terminates the inputting of circuit data. If 
a default transistor model is used, it may be neces- 
sary to use END twice in succession. 

E-2.2 Control Commands 

indicated by "INPUT DATA" appearing on the 
display. At this time it is possible to initiate a new 
analysis. This is done by using one of the control 
commands described in the following sections; all 
control commands are prefixed by a dot (.). 

E-2.2.1 .AC 

The .AC command initiates the small-signal 
frequency response. This analysis can be obtained 
as follows. 

.AC 
"VINFSTRTFSTOPPTS/DEC TYPE" 

(enter "V"—input node, starting fre- 
quency, final frequency, frequency 
points per decade, and type of output; 
may also be current input—UN) 

"VXX PRT/PLO XMIN XMAX VMIN VMAX" 

(enter "V"—output node, PRT- 
or PIT—plot) 

-print. 

For Print, no other parameters are necessary, 
and both the magnitude gain (TYPE = 0) or decibel 
gain (TYPE = 1) and phase of node XX are printed. 
For Plot, X and Y scale parameters are necessary 
(defaults are used if none are given). The plot type is 
determined by the value of TYPE. 

0—magnitude gain 
TYPE   =    1—decibel gain 

2—phase 

E-2.2.2.ALTER 

The .ALTER command enables element val- 
ues, models, and model parameters to be altered. 
This is done as follows. 

.ALTER 
RXX VALUE 
VXX  VALUE 

After completion of each type of analysis, 
program control is returned to the operator. This is END 
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where XX is a valid element name (i.e., has been 
previously defined) and VALUE is the new element 
value. One or more element values may be altered 
using a single .ALTER command. An END statement 
terminates the alter operation. Models and model 
parameters may be altered in the same manner as 
the elements. Model types may be changed by 
entering a different model designation (see sect. E- 
2.1.4). For example, a pulse source PUL can be 
changed to a sinusoidal source, SIN, etc. All model 
parameters must be entered or they will be set to 
their default values. Both models and elements can 
be altered at the same time. 

An additional .ALTER command permits 
sweeping element values over a specified range of 
values. This can be done as follows. 

.ALTER 
VXX   El   EF   DEL 

where El is the initial element value, EF the final 
element value, and DEL the increment value (DEL 
can be negative). This must be the last statement in 
a .ALTER command. It is then necessary to define 
an output node, a PRT/PLT specification, and so on 
(see sect. E-2.2.1). At the end of this analysis the 
altered value is returned to its original value. 

E-2.2.3. END 

The format for the elements and models is the 
same as described at the beginning of section E-2. 

E-2.2.5.LOAD 

The .LOAD command permits loading a cir- 
cuit directly from a disc file. This is done as follows. 

.LOAD 
"ENTER  FILENAME" 
(enter file name) 

Several circuits may be merged or models 
entered by successively using the .LOAD com- 
mand. This command is terminated by an END 
statement (either in a file or via keyboard). Note that 
when several circuits are merged, unique node 
numbering must be maintained. 

E-2.2.6.PRINT 

The element names and values can be dis- 
played at any time by using the .PRINT command. 
Note that the node numbers displayed are a correct 
set of node numbers but are not necessarily the 
original set of numbers. If the original set of node 
numbers is necessary, the following sequence of 
commands can be used. 

The .END command permits entering a new 
circuit without terminating the program. At this time 
all previous circuit values, names, and nodes are 
erased from memory. 

E-2.2.4.INSERT 

The .INSERT command permits elements, 
models, or additional nodes to be inserted into an 
existing circuit. Any element or model may be 
inserted with this command. The .INSERT com- 
mand is used as follows. 

.INSERT 
RXX   N1   N2   VALUE 
QXX   NC  NB   NE   M# 
M#   YYY  F1   F2   F3   F4   F5   F6 

END 

.INSERT 

.PRINT 

E-2.2.7. SAVE 

The .SAVE command is similar to the .LOAD 
command except that the circuit is written to a disc 
file. The contents of this file will be identical to that 
printed by a .PRINT command. 

E-2.2.8. TEMP 

The analysis of the circuit at a temperature 
other than 27 C is obtained as follows. 

TEMP 
"T(DEC O" 
(enter temperature) 
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This procedure is repeated for each new tem- 
perature. If a TEM model has not been defined, 
"TEMP. MODEL NOT SPECIFIED" will be dis- 
played. This model can be inserted with the .IN- 
SERT command. Note that any subsequent analysis 
will be performed at the last temperature specified. 

E-2.2.9.TRAN 

A transient analysis can be obtained using the 
.TRAN command as follows. 

.TRAN 
"TR"  TO TF  TSTEP 
(enter "TR" to Tstep) 

where TO is the initial transient time, TF the final 
transient time, and TSTEP the output time incre- 
ment. In order for the transient analysis to be 
meaningful, one or more source models (SIN, PUL, 
EXT) must have been specified. Voltage or current 
sources as well as models can be inserted once the 
initial circuit has been entered (see sect. E-2.2.4). 

Note: Any control command (except .LOAD 
and .SAVE) will override a previously initiated con- 
trol command. If a reply is expected, the command 
should be entered twice; the first time will cause an 
error message which can be ignored. 

E-3. MISCELLANEOUS 

Sometimes convergence to the desired accu- 
racy is not attained. If this happens a "MEAN 
ERROR" message will appear. These results may or 
may not be correct. If, during a dc analysis, a more 
accurate solution is desired, the following proce- 
dure can be used. 

.ALTER 
END 

This does not change the circuit but does allow at 
least four more iterations to occur. 

In the general version of 8IAS-D, several 
system-dependent subroutines have been com- 
mented out. These routines are OPNFL, CLSFL, 
GRAPH, IPACK, and SECND. Although BIAS-D will 
run without these routines, their implementation is 
desirable. A summary of these subroutine functions 
is as follows. 

OPNFL 
CLSFL Permits storage and retrieval of disc 

files. 

GRAPH Permits graphical output on any refresh 
graphics or storage tube graphic 
terminal. 

IPACK Permits use of two-character element 
names. 

SECND        Gives elapsed execution times. 

E-4. BIAS-D SOURCE LISTING (FORTRAN) 

A listing of the FORTRAN version of BIAS-D is 
given here. This version of BIAS-D will run on a 
PDP 11/45, an HP2100 (HP21 MX), a PRIME 400, 
and an IBM 370/168 with few source code 
changes. These changes are primarily concerned 
with individual computer system features such as 
timing, file management, etc. 
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C ** CBIASO ****««*«*****  BIAS-D JMI********************** 

C MIHICOMPUTER AIDED ELECTROHIC CIRCUIT ANALYSIS PHOGRAM 
C BIAST10 (*TEST10)    18-11-77 
C UPDATED 11-4-77,  10-3-78 
C DYNAMIC ELEMENT ALLOCATION  (LINKED-LIST) 
C DOUBLE PRECISION LU DECOMPOSITION 
C AC ANALYSIS- STAHDAHD METHOD USING COMPLEX MATRIX 
C SPARSE MATRIX INVERSION 
C ELEMENT MODELS 
C SPARSE STORAGE OF Y MATRIX 
C 
C PROGRAM BIAS-D IS AVAILABLE AT NO CHARGE.  THE VORD ORIENTED 
C STRUCTURE OF BIAS-D PERMITS IT TO BE RUN ON ANY COMPUTER 
C SYSTEM SUPPORTING ANSI I STANDARD FORTRAN IV WITH CAPABILITY OF 
C REAL/INTEGER WORDS IZE RATIO OF TWO. 
C INQUIRES SHOULD BE SENT TO THE AUTHOR: 
C 
C BRIAN L. BIEHL 
C HARRY DIAMOND LABS 
C 2B00 POWDER MILL RD. 
C ADELPHI, MD. 20783 
C (202) 394-3192 
C 
C ****«**«***»*****«*«**«*«»«*»*«*»**»****»***«*******»««* 
c 

INTEGER VI,Ol 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),Y(60fl) 
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI<n,YI(1) 
DIMENSION ILC(1),ILR(1),RELM(1) 
DIMENSION IBO( 12) , IMCM 6) , IDftCB) , IDATE(3) .LEN< 9) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON T0.TEMP,DTEMP 
COMMON TM( 6) , AC 8) , CSAT, VT, VCT, TYPE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, ICNIT 
COMMON IPLT, 1PEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFOHM 
COMMON MXLST,MXPOS,MXLOC,NDMAX, NODE.NKODE, IERR,M1.0C,KPOS,U'OS 
COMMON IAa(80) ,NI(30,2) , IELN(9), IFRST(9), ILAST(9) , IELM( 1000) 
COMMON IUR(30),IUC(120),IPOS(400),HCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( 1)) , ( IUC( 1) , ILR< 1) ) , 

S < IELM( 1) ,RELM( D) 
EQUIVALENCE ( C( 1) , V( 1)) , ( C(30) ,CI( 1) ,VI( 1)), (YOOO) , YI( 1)) 
EQUIVALENCE ( IELN(6) ,V1) ,f IELH(7:' ,MI) ,( IELN(4) ,G1) 
DATA IBQ/1HR, 1HC, 1HL, 1HQ, 1H1, 1HV. IBM, 1HE, 1H*, 1H. , 1H+, IH S 
DATA IDQ'IHA,1HI,1HP,1HT,1HE,1HS.1HG,1HL/ 
DATA IMQ/1HN, 1HT, 1HS, 1HE, 1HP, IHU/- 
DATA LEN/8,12,12,16,8,8,20,0,0/ 

C 
C        IFLG VALUES I EL VALUES 
C 1- INITIAL DC ANALYSIS 6- SWEPT ALTER       1-RESISTOR    5-CURHEBT SOURCE 
C 2- ALTER 7- SAVE CIRCUIT      2-CAPACITOR   6-VOLTAGE SOURCE 
C 3- INSERT 8- SMALL SIGNAL GAIN 3-INDUCTOR    7-MDDEL 
C 4- PRINT CIRCUIT      9- AC ANALYSIS       4-BJT 
C 5- TRANSIENT ANALYSIS 10- TEMPERATURE ANALYSIS 
C 
100 CALL INITL 

CALL CLOCK(ETIM, IDATE) 
WRITE(1W,101) IDATE 

101 FORMATCIX,10( IH*),21H BIAS-D <11-04-77)  ,10(IH»), 
8 6HDATE: ,A2,IH/,A2,2H/7,A1/20X,5(1H-),8H TEST10 ,S(lH-)//> 

140 WRITE( IW, 141) 
141 FORtLVTCllH   INPUT DATA) 

ITOTL=0 
NUNIT=IR 
CALL CLOCKCETIM, IDATE) 
CALL SECND(TIMl) 

150 READ(NUNIT, 131) IAQ 
151 FORMATCaOAl) 

LL=1 
IF( IAQ< 1) .Eft. IBQ( 12))   LL=2 

DO   180   IEL=1,12 
IF(IAQ(LL).EQ.IBftCIEL))GO TO 230 

180       CONTINUE 
200 WRITECIW,201) 
201 F0RMAT(23H ILLEGAL CHARACTER: RE-) 

GO TO 140 
220   IFLG=4 

GO TO 140 
C .... DETERMINE ELEMENT TYPE 
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230 

260 

270 
271 

280 

C   .. 
300 

4S0 

4G1 

C   .. 
890 

C   ., 
c   . . 
900 

910 

930 
940 

900 

970 
C   .. 

1000 

c ... 
1140 

1240 

IF(IEL.LT.B)GO  TO 260 
I=IEL-7 
GO T0(1840,150.1290,150,150),I 
IF(IFLG.EQ.2)G0 TO   1330 
nT=LPOS+l 
CALL   INPUT 
ILASTC lED^LPOS 
IF(LPOS.LT.MXLST)   GO TO 280 
V-TUTEC lW,r>71) 
FOimT(23H ELEKENT ABMY OVERFLOW ) 
GO  TO 220 
IF(IEL.E0.7)   GO TO 890 
LPOS=LFOS+LEK(IEL) 

,   REPROCESS  UNG110UKDED OR NEGATIVE VOLTAGE SOURCES 
IF(IEL.HE.6)G0 TO   130 
IF(A( 1) .RE.0.)CO TO 450 
IELMC rrr+<>) = A(2) 
IELM( ITT+7)=0 
ITT- ITT/2 
RELMC lTT+3)=-A(3) 
GO TO 150 
IF(A(2) .EQ.O.IGO TO 130 
WRITE( IW,461) 
FORMATC 23H SOURCE UNGROUNDED: RE-) 
V1 = V1-1 
GO TO 140 

. PROCESS MODELS 
ITT=L1'0S 
MKUM=VAL(LL+1) 
IELM( LP0S+3) =riNUM 

. ENTRY POINT FOR ALTERD MODEL 

. SKIP LEADING BLANKS 
IF(1AQ(LL).NE.IBa( 12))G0 TO 910 
LL=LI + 1 
IFCLL.GT.12) GO TO 200 
00 TO 900 
1 = LL 
LL=LL+4 
CALL RDFLD 
IFOIM.LT.O) GO TO 940 

. CHECK IF LEGAL MODEL TYPE 
DO 930 M=l,3 
IF(IAQ( I) .EO. ma(M))GO TO 960 
CONTINUE 
IF( IFLG.NE.2) M1 = M1-1 
GO TO 200 
MP0S=ITT.--2 
DO 970 K=l,7 
KK=MP0S+K+3 
RELM( KK) = A( K) 
CONTINUE 

. DETERMINE MODEL TYPE 
1=1+1 
IF(M.LT.3)G0 TO 1000 
M=6 
IF( lAOC I) .EQ. IMa(6))M=3 
IF( IAQ( I) .EQ. IMQ( 1))M=-1 
RELMC MP0S+3)=M 
IF(M.EQ.-1)G0 TO 1140 
IFCM.EO. 1) GO TO 1140 
IF( M.EO.2)ITEMP=ITT/2 
GO TO 1240 

.  BJT MODEL DEFAULT PARAMETERS 
IF(A( 1) .EO.O.) RELM(MFOS+4) = 10O. 
IF(A(2).Ea.0.) RELM<IIPOS+5) = 1.0 
IF(<U3) .EQ.O.) REl,n(MF3S+6) = 1.0E-15 
IF(A(4).EO.O.) RELM(MFOS+7)=1.0E12 
IF(IFLG.Ea.2) GO TO 150 
LP0S=LP0S+LEN(7) 
GO TO 150 

C 
C  ****CmCUIT UPDATES**** 
1290  IF( IAQ(LL+1) .NE. IDQ(8)) GOTO 1300 
C 
C   ***.LOAD 

CALL OPNFL( ID ISC,IV,IR) 
NUHIT=IDISC 
GO TO 150 

1300  IF( IFLG.Ett. DGO TO 200 
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C  DETERMINE UPDATE TYPE 
DO 1320 J=J,7 
IF( IAQ(LL+1) .Eft. IDQ(J))GO TO 1340 

1320  CONTINUE 
GO TO 200 

1340  IFLG=J+1 
GO TO <1360,1400,1460,1410,100,1470,1300),J 

C 
C ***. AC 
1360 IF( IAQ(LL+2).NE. IBQ(2))G0 TO 140 

VRITEC IW, 1361) 
1361 F0nMAT(24H VIN FSTRT FSTOP PTS/DEC ) 

READUR, 151) lAft 
IEL=6 
IF(IAQ(LL).EO.IBQ(5)) IEL=5 
CALL ALTER 
IF(lEHR.EQ.O) GO TO 220 

C  1NPT CONTAINS STARTING LOCATION OF SOURCE VALOT IN IELK<) 
INPT=ITT/2 
DO 1370 M=l,4 
TM(M)=A(M) 

1370  CONTINUE 
GO TO 1665 

C 
C   ***.ALTER 
1380   CALL ALTER 

IF( IEIUl.Ea.0)GO TO 140 
IF(IEL.EQ.7) CO TO 900 
MPOS-ITT/2 
TM( 5) = RELM( MPCS+3) 
RELM(MP0S+3)=A( 1) 
IF(lEL.Ea.4)G0 TO 200 
IF(A(3) .Ea.0.)CO TO 150 

C  PROCESS S«EPTED ALTER 
DO 1390 M=l,3 
TM(If)=A(M) 

1390  CONTINUE 
TM(4)=HP0S 
LTYPE=IEL 
IFLG=6 
GO TO 1665 

C 
C   *«*.INSERT 
1400  IFtJFLG.EQ. 1) GO TO 140 

CALL RENUMC 1) 
IELN(9)=0 
GO TO 140 

C 
C ***.TEMPERATURE 
1410  IF( IAQ(LL+2) .EO. IBQ( 1))G0 TO 1620 

IF(ITEMP.NE.0)GO TO 1440 
VmiTE'. IW, 1421) 

1421  F0RMAt(31H TEMP. MODEL NOT SPECIFIED**KE-) 
GO TO 140 

1440 VRITEC IW, 1441) 
1441 FORMATC   9H TCDEC C)) 

READCIR,151)    lAO 
IFLG=10 
TEIIP = VAL( l)+273. 
DTEMP=TEMP-30e.O 
GO TO 140 

C 
C *«*.PRINT CKT 
1460  CALL PRCKT 

GO TO 140 
C 
C ***. SAVE CKT ON DISC FILE 
1470  CALL OPNFL( IDISC.IW,IR) 

IU«IT=IDISC 
CALL PRCKT 
CALL CLSFL(IDISC) 
IUNIT=IW 
GO TO 220 

C 
C   »**.GAIN 
1500   GO TO 220 
C  NOT IMPLEMENTED IN THIS VERSION 
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C 
C       ***.TRAr!SlENT 
1620     WRITEUW, 1631) 
1631     F0niUT(20H   "TR"   T0  TSTOP  TSTEP) 

READ( IB, 151) IAQ 
LL=4 
CALL RDFLD 
IF( lERR.EQ.-DGO TO 220 
1F(A(3) .Ea.e.)A(3) = (A(2)-ACn)/50. 
DELTA=A(3) 
TMC2)=A(2) 
T8=A( 1) 

1665     CALL POUT 
JOUT= KCONVCIOUT,0,HI,NODE) 
CO TO 4190 

C 
1840     IF(NUNIT.EO.IDISC)   CALL CLSFLCIDISC) 

ir(IFLG.Ea.2)   GO TO 4190 
1F(IFLG.GE.5)   GO TO 4190 
IF( IFLG.EQ.4)   GO TO 5200 
CALL  MC1IEK 
IF( IF,aR.EQ.0)GO TO 220 

1910     NNODE=NODE-V1 
IF(KKODE.LE.NDKAX)GO TO   1950 
WRITECIW,1921) 

1921     F0RMAT(20H NODE LIMIT EXCEEDED) 
GO TO 220 

0   CHECK FOR UHCOKKECTED NODES 
1950  J=l 

DO 2430 1=1,NODE 
IF(NI(I,1).GT.0) GO TO 2480 
WRITE(IUNIT,1961) NIC 1,2) 

1961  F0RMAT(28H ONLY ONE CONNECTION AT NODE,12) 
.1=0 

2480  CONTINUE 
IFCJ.EO.O) GO TO 220 
CALL POUT 
WRITECIUNIT,101) IDATE 
CALL FRCKT 
WRITECIW,2491)   NODE 

2491     FORt4TC7H NODES:,14) 
WRITECIUNIT,2511) 

2511     FORMAT!//■23H ****  END OF   INPUT DATA ***»//) 
C 

CALL SECNDCTIM2) 
CALL SETUP 
IFCIERR.Ea.-2)   GO TO 270 
TEMP=30O. 
DO  4180   I=1,JIN0DE 
V< I) = 0.D0 
UC1)=O.D0 

4180  CONTINUE 
4190  DELT=1.0D12 

CALL SECKDCT1M3) 
IFCIFLG.NE.9) GO TO 4500 
CALL ACSOL 
GO TO 4600 

4500 CALL ANALY 
4600  CALL SECNDCTIM4) 

CALL CL0CKCET1M2,IDATE) 
IFCIPLT.Ea.0)GO TO 4700 

C     CALL EXITGR 
C     K=IWAITa(2) 

IPLT=0 
4700  TIM1 = TIM2-TIM1 

TIM2=TIM3-TIH2 
TIM3=TIII4-TIM3 
ETIM=ETIM2-ETIM 
IFCJFLG.Ett.1> WRITECIUNIT,4801)Tini,TIM2 

4801  F0RKAT(//6X,18H READIH TIMECSEC):,F12.3/ 
8 -X,I7H SETUP TIMECSEC):,F12.3) 
WRITECIUNIT,4901) TIM3,ETIM 

4901  FORM.ATC 4X, 20H ANALYSIS TIMECSEC) : ,F12.3//' 
8 25H TOTAL ELAPSED TIMECSEC)!,F12.3/) 
IFC JFLG.NE. DWRITEC IUNIT,5001) ITOTL 

5001  FORMATC18H TOTAL ITERATIONS",110) 
TO=0. 
JFLG=IFLC 
IFCIUNIT.EO.IDISC) CALL CLSFLCIDISC) 

91 



APPENDIX E 

IUHIT=IV 
GO TO 220 

5200  STOP 
END 
FUNCTION INDX(NR,NC) 
INTEGER*2 IELM 
DOUBLE PBECISION V(60),U(30),C(60),¥(600) 
DOUBLE PBECISION DELTA,DELT,DS,VI(1),C1<1),yi<1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
DIMENSION lORDRC1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO.TEMP.DTEMP 
COMMON TM(6) ,A(B) .CSAT.VT.VCT.TYFE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC. lUNIT 
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM 
COMMON M>XST, MXPOS, MXLOC, NDMAX, NODE, BNODE, I ERR, MLOC. KPOS, LPOS 
COMMON IAa(30) ,NI(30,2) , IELH(9) , IFRST(9) ,ILAST(9) , IELM( 1000) 
COMMON IUR(30),IUC(120),IPOS(400),NCON(30) 
EOUIVALENCE (IURC1),ILCC1)),(IUC(1),ILR(1))( 

a ( IELM( 1) ,RELM( D) 
EQUIVALENCE (C( 1) ,V( 1)),(C(30) ,CI( 1) ,VI( 1)),(Y(300) ,YI<U) 
EaUIVALENCE(HI( 1,1), lORDRC 1)) 

C 
C   DETERMINE LINEAR Y ADDRESS LOCATION FROM Y(I.J) 
C        Y( . , . ) ADDRESS 
C      MODIFIED FROM SINC-S 6-6-77 

IF(NR.EQ.NC) GO TO 190 
IS=NCON(NR) 
JS=NCON(NC) 
IF(JS.GT.IS) GO TO 130 

C LOVER TRIANGLE 
N=ILC(JS) 
NE=ILC(JS+1) 

115   IF(R.GT.HE) GO TO 185 
IFCNR.EO. ILRCN)) GO TO 125 
N=N+1 
GO TO 115 

125   1NDX=N+N0DE 
HN=N+ML0C 
RETURN 

C   UPPER TRIANGLE 
130   N=IUR(IS) 

NE=IUR( IS+1) 
135   IF(N.GT.NE) GO TO 135 

IFCNC.EQ.IUC(N)) GO TO 145 
N=N+1 
GO TO 135 

145   INDX=N+MLOC 
NN=N+NODE 

185   RETURN 
C   DIAGONAL LOCATION 
190   INDX=NR 

NN=NC 
RETURN 
END 
SUBROUTINE INITL 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),Y(€O0) 
DOUBLE PRECISION DELTA,DELT,DS,Vl( 1),CI( 1),YI( 1) 
DIMENSION ILC( 1) ,ILR( 1) ,HELM( 1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON T0,TEMP,DTEMP 
COMMON TM(6),ACS),CSAT,VT,VCT,TYPE 
COMMON IEL, JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, TDISC, IUHIT 
COMMON IPLT, IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM 
COMMON MXLST,MXPOS, MXLOC, NDMAX, NODE, HNODE, I ERR, MLOC, KPOS, LPOS 
COMMON lACKSO) ,NI(30,2) , IELN(9) , irRST(9) , ILAST(9) , IELM( 1000) 
COMHON lUROO) , IUC( 120) , IPOS(4O0) ,NCON(30) 
EQUIVALENCE ( IUR( 1), ILCCD) ,< IUC( 1) , ILR( D), 

8 ( IELM( 1) ,RELM( D) 
EQUIVALENCE (C( 1) , V( 1) ) , (C(30) , CI( 1) , VI( 1) ) , (Y(300) , YK 1) ) 

C 
C  INITIALIZE READ/WRITE UNITS 

IV=1 
IR=1 
IDISC^5 
IUN!T=I¥ 
LPOS=0 
M}aST=10OC 
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KDMAX=30 
C   INITIALIZE ELEMENT COUNTERS 

DO 110 KM,9 
IELN(K)=e 

11»  CONTINUE 
DO 140 K=I,MXLST 
IELM(K)=e 

140   CONTINUE 
NODE=0 
ITEMP=0 
DTEMP=e. 
ITER=0 
lPLT=e 
NI( l,2)=e 
1FLG=1 
JFLG=1 
T0=0. 
RETUHK 
END 
SiraROUTINE MCHEK 

C .... CHECK FOR UNDEFINED MODELS AND STORE 
C     LOCATION OF MODEL WITH ELEMENT 

1NTECER*2 IELM 
DOUBLE PRECISION V(6E),€(30),C( 60),Y(6««) 
DOUBLE PRECISION DELTA,DELT,DS,VI( 1) ,CI<1),YICI) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON T0,TEMP,DTEMP 
COMMON TM(6),A( 8),CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL.MM,NN,IFL<;,JFLG, ITT, ITER. IW, IR, 1DISC, IHNIT 
COMHON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT.JOXIT, INPT, IFORH 
COMMON MXLST, MXPOS, MXL0C, NDMAX, NODE, NHODE, I ERR. MLOC, KPOS, LP0S 
COMMON IAA(80),NI(30,2),IELN(9),IFRST(9),ILAST(9),IELMC1000) 
COMMON IUR(30),IUC(120),IPOS(400),NCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( D) ,( IUC( 1), ILR( L) ) , 

8 ( IELM( 1) ,RELM( D) 
EQUIVALENCE ( C( 1) , V( 1)) , (C( 30) ,CI( 1) , VI( 1) ) ,(YC30O),YI( I) ) 
EQUIVALENCE (IELN(7),M1) 

C 
IERIl=l 
DO 300   IEL=1,6 
K1=IELN( IEL) 
IF(K1.EQ.0)   GO TO 300 
KPOS=IFRST( IEL) 
DO 200  J=1,K1 
K=IELM(KP0S+3) 
IF(M.EQ.O)   GO TO   190 
MP0S=IFRST(7) 
DO 50  K=1,M1 
N=IELM(MP0S+3) 
IF(N.NE.M)   GO TO 40 
IELM(KP0S+4) =MP0S/2 
GO TO 190 

40    MP0S=IELM<MP0S+1) 
50    CONTINUE 
95    WRITEC I¥,91)M 
91    F0RMAT(9H MODEL: M, 11, 12H NOT DEFINED) 

IERR=0 
190   KPOS=IELM(KPOS+I) 
200   CONTINUE 
300   CONTINUE 

RETURN 
END 
SUBROUTINE INPUT 

C CONTROLS READING OF INPUT DATA 
INTEGER*2 IELM,LHALF 
DOUBLE PRECISION V<60),U(30),C(60),YC60O) 
DOUBLE PRECISION DELTA.DELT,DS,Vl(1),CI(1),YI<1) 
DIMENSION ILC(1),ILR(1),RELM( 1) 
COMMON U, C, Y, DS, BELT, DELTA 
COMMON TO,TEMP.DTEMP 
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE 
eOIClON IEL,JJ,KIC,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, 1R, IDISC, IUHIT 
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM 
COMirON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, I ERR, MLOC, KPOS, LPOS 
COMMON IAQ(80),NI(30,2),IELN(9),IFRST(9),ILAST(9),IELM(1000) 
COMMON IUR(30),lUCt120),IPOSC400),NC0N(30) 
EQUIVALENCE (IUR(1),ILC(!)),(IUC(1),ILR(1)), 

8 ( IELM( 1) , RELM( 1)) , (L, LHALF) 
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EaUIVALERCE (CC 1) ,V( D) ,(C(3«) ,CI( 1) ,VI( 1)) . (y( 300) .YU 1) > 

2400 

2500 

C . .. 

2600 

2?0O 

2800 

2900 

3000 
3100 

3200 

3300 

3350 
3400 

C .. 

1000 

1100 
1200 

K1=IELN(IEL)+1 
IFdCl.GT. 1) GO TO 2400 
IFRSTCIEL)=LPOS 
GO TO 2500 
KPOS= TLAST( I EL) 
IELM(ICP0S-rl)=LP0S 
L=IPACK( IAa,LL+l) 
IELM(LP0S+2)=LHALF 
IFdEL.Eft.T) GO TO 3400 

. HEAD INPUT DATA 
LL=LL+3 
CALL RDFLD 
IF(MM.GE.O) GO TO 2700 
K1 = K1-1 
GO TO 340© 
IS=2 
IF(IEL.HE.4) GO TO 2800 
IS=3 
DO 3100 L=l,IS 
II = A(L) 
IF(n.Ea.0)GO TO 3100 

. DETERMIHE UKiaUE NODE NUMBERS 
DO 2900 M=1,N0DE 
IF< II.EQ.NI(M,2) )G0 TO 3000 
CONTINUE 
N0DE=N0DE+1 
Eri(K0DE,2)«II 
GO TO 3100 
HKM, 1) = 1 
CONTINUE 
IELn(LP0S+7)=A( 1) 
IELM(LP0S+8)=A(2) 
1F(IEL.NE.4)C0 TO 3200 
IELM(LP0S+3)=A(3) 
GO TO 3350 
IF(A(3).GT.0.)GO TO 3300 
IF( IEL.LT.5)A(3)=-A(3) 
MP0S=LP0S/2 
RELM(MP0S+3)=A(3) 
IELM(LP0S+3)=A(4) 
IELN(IEL)=K1 
RETURN 
END 
SUBROUTINE RDFLD 

. READ DATA FIELD 
INTEGER*2 IELM 
DOUBLE PRECISION V(60) .W 30) ,C<60) , Yt6O0) 
DOUBLE PRECISION DELTA,DELT, DS.VK 1> ,CI( 1) ,YI( 1> 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
COMMON U, C, Y, DS, DELT, DELTA 
COMMON TO, TEMP, DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL.MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDI8C, IUHIT 
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INFT, IFORM 
COMMON M>XST,MXPOS,MXLOC,HDMAX,NODE,NNODE, IERR, MLOC, KPOS.LPOS 
COMMON IAQ(80),NI(30,2),IELH(9),IFRST(9),ILASTC9),IELM(1000) 
COMMON IUR(30),IUC(120),IPOS(4O0)>NC0N<30) 
EOUIVALENCE C IUR( 1) , ILC( 1)) , ( IUC( 1) , ILR< 1) ) . 

8 ( IELM( 1) ,RELM( D) 
EOUI VALENCE (C( 1) , V(l)) , (COO) ,CK 1) , VI( 1)) ,(Y(30O),YI( 1)) 

.. KK IS FIELD POINTER 
LL IS COLUMN POINTER 

DO 1000 KK=l,a 
A(KK)=0. 
CONTINUE 
DO 1100 KK=1,8 
A(KK)=VAL(LL) 
IF(MM.LE.1)G0 TO 1200 ' 
LL=LL+1 
CONTINUE 
RETURN 
END 
SUBROUTINE PRCKT 

. PRINT INPUT DATA 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),YC600) 
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DOUBLE PRECISIOH DELTA,DELT,DS,VI(1),CI<O,YI<1> 
DIMENSION ILC(1),ILR( 1),RELM( 1) 
DIMENSION ITYPEC14),NAME(10) 
COMMON U.CY.DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT 
COMMON 1PLT, IPEN.LTYPE, ITEMP, ITOTL, TOUT, JOTJT, INPT, IFORM 
COMKOH MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR, MLOC, KPOS,LPM 
COMMON IAQ(80),NI(30,2)>IELN(9),IFRST(9),ILASTC9),IELM( 1000) 
COMMON IUR(30),IDC(120),IP0S(4«0),NCON(30) 
EQUIVALENCE ( IUR( 1), ILC( D) , ( IUC( 1) , ILR( D) , 

6  (IELM( 1) ,RELM( D) 
EftUIVALENCE ( C( 1) , V( 1) ) , ( C( 30) , CI( 1) , VI( 1) ) , (Y(300) , YI( 1) ) 
DATA ITYPE^H P,2HNP,0,0,2H N,2HPN,2H T,2HEM,2H S,2HIN,2H E, 

1 2HXT,2H P,2HUL/ 
DATA NAME/1HR, 1HC, 1HL, 1HQ, 1HI, 1HV, 1HM, IH , 1H+, 1H-/ 

C 
DO 300 1=1,7 
K1=IELN( I) 
IF(Kl.Ea.0)GO TO 300 
KPOS=IFRST( I) 
IPLUS=NAME(8) 
MINUS=NAME(8) 
GO TO (10,30,50,170,70,90,210),I 

10   VfRITEC IUNIT,21) 
21    F0RMAT(/1H , 1 lH*RESISTOnS:) 

GO TO 120 
30    VRITE( IUNIT,41) 
41    F0RMAT(/1H , 12H*CAPACIT0RS:) 

GO TO 120 
50    WRITEC IUNIT,61) 
61    F0RMAT(/1H , 11H»INDUCTORS: ) 

GO TO 120 
70    WRITE(IURIT,81) 
81    F0RMAT(/1H , 17H*CURRENT SOURCES; ) 

CO TO 110 
90    VRITE( IUNIT, 101) 
101   F0RHAT(/1H , 17H*VOLTAGE SOURCES:) 
110   IPLUS=NAMEf9) 

MINUS=NAME(10) 
120   WRITE( IUNIT,131)IPLUS,MINUS 
131   FORMAT( IH ,5H*KAME, IX, Al ,5HNODES, AI ,4X,5HVALUEr3X,3HM0DEL) 

DO 150 J=1,K1 
MPOS=KPOS/2 
WRITE( IUNIT, 141)NAME( I) , IELM(KP0S+2) , IELK(KPOS+7) , IELM(KPOS+8) . 

8 RELM(MPOS+3) , IELM(KPOS+3) 
141   FORMATCIH ,Al,A2I2I4,G13.3,2X>1HM,11) 

KPOS=IELM(KPOS+l) 
150   CONTINUE 

GO TO 300 
170   WRITECIUNIT,181) 
181   F0RMAT(/1H , 13H»TRANSIST0RS:/1H ,25H*KAMEC   B   E  MODEL) 

DO 200 J=1,K1 
WRITECIUNIT,191)NAMECI),IELMCKPOS+2),IELMCKPOS+7).IELMC KPOS+B), 

8   IELMC KPOS+5), IELMC KP0S+3> 
KPOS= IELMC KPOS+1) 

191        FORMATC IH   , Al, A2,3I4, 4X, 1HM, 11) 
200       CONTINUE 

GO TO 300 
210       WRITEC IUNIT, 2.21) 
221        FORMATC/IH   ,aH'«NODELS:/lH   , 10H*NAME TYPE) 

DO 300  J=1,K1 
MP0S=KP0S/2 
K=2*RELMCMP0S+3)+3 
KK=MP0S+4 
LL=KK+7 
WRITEC IUNIT,291)NAMEC7) , IELMC KP0S+2) , ITYPEC K) , ITYPEC K+U , 

8   CRELMCJJ) ,JJ = KK,LL) 
KPOS=IELMCKPOS+1) 

291        FORMATC IH   , Al, A2,2X,2A2,7G10.3) 
300       CONTINUE 

RETURN 
END 
SUBROUTINE ALTER 

C   FIND ALTER ELEMENT 
IHTECER*2 IELM,KHALF 
DOUBLE PRECISION VC 60) ,UC 30) ,CC 60) , YC600) 
DOUBLE PRECISION DELTA,DELT,DS,VIC 1) ,CIC1),YIC1) 
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DIMENSION ILC(1),1LR(1),RELM( O 
COMMON U, C, Y, DS, DELT, DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) ,A(B),CSAT,VT,VCT,TYPE ,„„,- 
COMMON IEL,JJ.KK,LL,MM,NH,IFLG,JFLG,ITT,ITER,IW,IR,IDISC.ICFIT 
COMTiON IPLT,IFEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT, IFORM 
COMMON MXLST, MXPOS, MKLOC, NDMAX, NODE, NNODE, IERR, MLOC, KPOS, LPOS 
COMMON TAaCSO) ,NI(3e,2) , 1ELN(9) , 1FRST(9) , ILAST(9) , IELM( 1000) 
COMMON lUROO) , IUC( 120) , IPOS(4O0) ,NCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( 1)),( !UC( 1) , ILR( D) , 

8 (IELM( 1),RELM(1)),(K,KHALF) „,„„„, „,,,», 
EftUIVALEKGE (C( 1) ,V( 1) ) , (C( 30) , CU 1) .VU 1) ) ,(Y(300) ,YI( 1)> 

C 
C ... ITT CONTAINS FIRST LOCATION OF ALTERED ELEMENT IH IELM 

IERR=1 
K1=IELH(IEL) 
ITT=IFRST(IEL) 
K=IPACK( lAtt.LL+l) 
DO 3020 1=1,Kl 
IF( IELM( ITT+2).EQ.KHALF)GO TO 3050 
ITT=IELM( ITT+1) 

3020  CONTINUE 
VRITE(IV,3031) 

3031  F0RMAT<22H ELEMENT HOT FOUND RE-) 
IERH=0 
GO TO 3070 

3050  LL=LL+3 
IF(IEL.EQ.7) GO TO 3070 
CALL HDFLD 

3070  RETURN 
END 
FUNCTION VAL(LOCl) 

C .... DETERMINE VALUE OF FIELD 
INTEGEn*2 IELM 
DOUBLE PRECISION V(60) ,U(30) ,C( 60) , Y(600) 
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(O,YI(1) 
DIMENSION ILC( 1) , ILR< 1) ,RELM( 1) 
DIMENSION SUFIX(5),ICHAR(22) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON T0, TEMP, DTEUP 
COMMON TM(6),A(8),CSAT,VT,VCT,TYPE 
COMMON   IEL, JJ,KK,LL,MM.NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC, IUNIT 
COMMON   IPLT,IPEN,LTYPE,ITEMP,ITOTL, TOUT, JOUT,INPT, IFORM 
COIEION  MXLST,MXPOS, MXLOC, NDMAX, NOPE, NKODE, TERR, MLOC, KPOS,LPOS 
COMMON   IAQ(80) ,NI(30,2) , IELN(9) , IFRST(9) , ILAST(9) , IELM( 1000) 
COMMON   IUR( 30),IUC( 120).IPOS< 400),NCON(30) 
fcQUIVALFriCE   ( I(m(l),ILC(l)) ,(IUC( D.ILRd)), 

S   ( IELM( 1) ,RELM( D) „^„s   „,,.%^ 
EQUIVALENCE (C( 1) ,V( 1)) , (C( 36) , CI( 1) ,VI( D) ,(Y<300) ,YI( 1) ) 
DATA ICHAR/1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9, 

1 IH ,IH.,1HE,IH-,1H+,IE,,IBM,1HP,1HN,1HU,IHK,1HCV 
DATA SUFIX- l.E-12,l.E-9,l.E-6,l.E3,l.E9/ 

20 

30 

VALUE OF MM (RETURNED) 
-1  ILLEGAL CHARACTER   1  MODEL 
0  BLANK FIELD        2  VALID FIELD 

SIGN=1.0 
MP=1 
IS=0 
IC=0 
IINT=0 
IEXP=0 
FRAC=0. 
EMULT= 1.0 
NBLNK=0 
MM=0 
J1 = 0 
VAL=0.O 
DO 140 LL=LOG 1,80 
II=IAQ(LL) 

. DETERMINE CHARACTER 
DO 20 J=l,22 
IF (II.EQ. ICHAR(J)) GO TO 30 
CONTINUE 
GO TO 130 
N=l 
J=J-1 
IF(J.LE.9) GO TO 40 
IFCJ.GT.16)G0 TO 136 
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H=J-8 
40 GO  TO   (50,135,90,100,lie,146,156,125,130).H 
50 Jl=l 

IF(13)60,76,80 
C EXPONENT PART 
60 IEXP=IEXP*10+J 

GO TO   140 
C     INTEGER PART 
70 UNT=IINT*10+J 

GO  TO   140 
C    FRACTION   PART 
80 IC=IC+1 

S=J 
FRAC=FRAC+S.FW10( IC) 
GO TO 140 

C  DECIMAL POINT 
90    IS=1 

GO TO 140 
C   E 
100   lF(E!1ULT.Ea. 1.0)GO TO 103 

EMtrLT= 1. 0E6 
GO TO 140 

105   IS=-1 
GO TO 140 

C   MINUS 
11©   IF(J1.NE.0)GO TO 115 

SICN=-1.0 
GO TO 140 

115   MP=-1 
GO TO 140 

C  MODEL 
125 IF(Jl.GT.e)GO TO 126 

MM=1 
GO TO 140 

126 EMULT=l.E-3 
GO TO 140 

C  ERROR 
130 VRITE( IV, 131) II 
131 F0RMVr(19H ILLEGAL CHARACTER-, A2) 

MM=-I 
GO TO 180 

C  ALLOW FORM IE XX (OR 1EXX OR 1E+XX) 
133   IF( IS.LT.0.AKD. IEXP.EQ.0) GOTO 140 

IF(Jl.GT.O) GO TO 150 
C   COUNT LEADING BLANKS 

IF(NBLNK.GT.7) CO TO 138 
HBLHK=NBLNK+1 
GO TO 140 

136   IF(J1.EQ.0)GO TO 130 
NN=J-16 
EMULT=SUFIX(HN) 
GO TO 140 

138  MM=0 
CO TO 180 

140 CONTINUE 
WRITE( IV, 141) 

141 FORM4T(30H MAXIMUM FIELD LENGTH EXCEEDED) 
GO TO 180 

150   J=MP*IEXP 
VAL=I INT 
VAL= SIGN*(VAL+FRAC)*PK10(J)*EMnLT 
IF(MM.HE. 1)MM=2 

180   RETURM 
END 
FUNCTION PVIO(K) 

C  GENERATE POVER OF TEN 
PV1O=I.0 
IFCK) 15,30,3 

5    DO 10 1=1,K 
10    PW1O=PW10*1O.O 

RETURN 
15    K=-K 

DO 20 1=1,K 
20    PV1O=PV10/1O.0 
30    RETURN 

END 
FUNCTION nCONV(K,M,NI,NODE) 

C  DETERMINE ELEMENT NODE FROM TABLE 
DIMENSION NI(30,2) 
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C    M=0  COHVERT ORIG. NODE TO REHUHBERED RODE 
C    M= 1  CONVERT RENUMBERED. HODE TO ORIG. NODE 

IF(M.Ea. 1) GO TO 300 
DO 100 J=l.NODE 
IFCK.Eft.HH J,2))   GO TO 200 

100       CONTINUE 
GO TO 400 

200   NCONV=J 
M  TO 400 

300   NC0NV=HI(K,2) 
400   RETUHM 

END 
SUBROUTINE POUT 

C   SET UP PRINT OR PLOT OUTPBTS 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),Y(600) 
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI(1).YI<1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
DIMENSION IBftC U) 
COIITION U,C,Y,DS,DELT,DELTA 
COMKON T0, TEMP, DTEMP 
COMMON TM( 6) , A( 8) , CSAT, VT, VCT, TYPE 
COMKON IEL,JJ,KK,LL,MM,NN,IFLG,JrLG, ITT, ITER, IW, IR, IDISC, IDWIT 
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, lOUT.JOUT, INPT. IFORM 
COMMON MXLST.MXPOS.MXLOCHDMAX.NODE.KNODE. lERR.MLOC, KPOS.LPOS 
COMMON IAa(80),KI(30,2),IELN(9),IFRST(9),ILAST(9),1ELM( 1000) 
COMMON IUa(30),IUC(120),IPOS(400),RCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( D) ,( IUC( 1) , ILR( D) , 

8 ( IF,LM( 1) ,RELM( D) 
EQUIVALENCE (C( 1) , V( 1)) ,(C(30),CIC 1) ,VI( D) ,(¥(300) ,YI( 1)) 
DATA IBQ/IHR, 1HC,IHL.IHQ,1HI,1HV,1HM,1HE,1HT,1HP,1H s 
DATA IDB/2HDB/ 

C 
IFORM=0 
IF(IFLG.LT.5) CO TO 350 
vmiTE( IUNIT, 141) 

141   F0RMAT(9H 0UTPUT9:/32H VXX PRT/PLO XMIN XMAX VMIN VMAX) 
READ(IR,151) lAQ 

151   FORMAT(OOAl) 
I0UT=VAL(2) 
I = LL+1 
LL=a 
CALL RDFLD 
IF(MM.Ea.-l) GO TO 400 
IF( IFLG.EQ.2) IFLG=6 
IF( IAQ( D.EQ. IBQ( ID) 1=1 + 1 
IF( IAQ( I) .NE. IBQ( 10)) GO TO 340 
1=1+1 
IF( IAQ( I) .HE. IBG(3)) GO TO 350 

C PLOT DEFAULT: USE LAST PLOT SCALES IF PBT/FLO HOT SPECIFIED 
C   PLOT OUTPUT 
200   KP0S=MXL0C/2 

DO 290 1=1,6 
K=KPOS+I 
RELM(K)=A( 1) 

290  CONTINUE 
C 
C AC PLOTS 

IF(IFLG.KE.9) GO TO 310 
LTYPE=2 
IF(A( U.EQ.O.) A(l)=TM(n 
IF( A(2) .EQ.O.) A(2)=TM(2) 
RELM( KPOS+1) = ALOG( A( 1)) *0.434294 
RELM( KPOS+2)=ALOG(A(2))*0.434294 

C    ITTM OUTPUT DB GAIN.  ITT=2 , OUTPUT PHASE. 
1TT=TM(4) 
GO TO 340 

C 
C  TRANSIENT PLOT DEFAULT 
310   1F(IFLG.HE.5) GO TO 320 

LTYPE=4 
IF(A(2) .EQ.O.) HELM(KPOS+2) =TM(2) 
IF(A(4) .EQ.O.) RELM(KPOS+4)=20. 
GO TO 340 

C 
C SWEPT ELEHENT PLOT DEFAULT 
320 1F( A(l) .EQ.O.) RELM(KP0S+1) = TM( 1) 

1F( A(2) .EQ.O.) RELM( KPOS+2) =TM( 2) 
IF(A(4) .EQ.O.) RELM(KPOS+4)=20. 
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c 
340        1PLT=1 

CALL  GRAPH 
GO TO 400 

C   PRINT OUTPUT 
350 IPLT-0 
C . . .  DETERMINE OUTPUT PRINT DEVICE 

TOITO IV,351) 
351 F0RMAT(26H OUTPUT TO: TTYCO) DISC(1>) 

READ(IR,353) IFORM 
353   FORMAT(IIO) 

IF( IFORM. EQ.O) GO TO 366 
360   CALL OPNFLCIDISC.IV,IR) 

IUNIT=IDISC 
C   AC PRINT 
366   IF(IFLG.NE.9)G0 TO 370 

lAOC l) = IBa(7) 
•IF( ITT.EO. 1) IAa(l) = IDB 
WRITECIUNIT,369)IAQ(1),IOUT,IOUT 

369 F0RMAT(3X,9HFREaUENCY,5X, IHV.Al, I2,5X,2HVP, I2,5H(DEC)/4e( 1H-) > 
GO TO 400 

C   ALTER PRINT 
370 IF(IFLG.NE.6) GO TO 375 

IAa( 1)=IBQ( IEL) 
IAQ(2) = IELM( ITT+2) 
GO TO 380 

C   TRANSIENT PRINT 
373   IF(IFLG.NE.5) GO TO 400 

iAa( i) = iBa(9) 
iAa(2) = iBa( in 

c 
380   VRITE( IUNIT,391) IAQ( 1) , IAQ(2) . IOUT 
391   FORMAT( 13X,2A1,15X, 1HV, I2^9X,3«C1H+) ) 
400   RETURN 

END 
SUBROUTINE SETUP 

C   PROCESS CIRCUIT DATA 
IHTEGER*2 IELM 
INTEGER VI 
DOUBLE PRECISION V(60).U(30),C(60),Y(600) 
DOUBLE PRECISION DELTA.DELT.DS,Vl(1),CI<1),Yl( I) 
DIMENSION 1LC( 1), ILR( 1). ,RELM( 1) 
DIMENSION WSORC(1),KCON( 1) 
COMMON U,C,Y,DS,BELT,DELTA 
COMMON TO.TEMP.DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT 
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM 
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, IEHR, MLOC, KPOS, LPOS 
COMMON IAQ(80) ,NI(30,2) , IELN(9) , 1FRST(9) , ILAST(9) , IELM( 1000) 
COMMON IUR(30),IUC(120),IPOS(4O0),NCON(30) 
EQUIVALENCE < IUR( 1) , ILC( !)>,( IUC( 1) , 1LR( D), 

6 ( IELM( 1) ,RELM( D) 
EQUIVALENCE ( C( I) , V( 1)) , (C(30) ,CI( 1) , VI( O ) ,(Y(30O),YI< !)> 
EQUIVALENCE ( IELN(6) ,V1) ,( IAQ( D.NSORCtD) ,(NI( 1,2) , KCONC 1)) 

G 
C   INITIALIZE NODE VECTOR 
C   REORDER NODE VECTOR 

N=N0DE-1 
DO 3200 1=1,N 
11=1+1 
DO 3200 J=ri,NODE 
IF(KCON( I) .LT.KC0H(J))GO TO 3200 
M=KCOH( J) 
KCON(J)=KCON( I) 
KCON( I)=M 

3200  CONTINUE 
IFCVl.EQ.O) CO TO 3440 

C   RENUMBER VOLTAGE SOURCE NODES 
KP0S=IFRST(6) 
DO 3300 1=1,VI 
K=IELM(KP0S+7) 
NSORC(I)= NCONV(K,0,NI,NODE) 
KP0S=IELM(KP0S+1) 
CONTINUE 3300 

C 
C ... . MOVE SOURCE NODES TO END OF NODE VECTOR 

N=NODE 
KF0S=IFRST(6) 
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DO 3440   1=1,VI 
K=NSORC( 1) 
IFCK.EQ. N)   GO TO 3430 
IFUC.GT.NNODE)   GO TO 3435 
11=1 + 1 

3350     DO  3400  L=II,V1 
ITCNSORCCL) .NE.K)   GO TO 3400 
N=N-1 
GO TO 3350 

3400  CONTINUE 
n=KC0N(K) 
K0ON(K)=KCON(N) 
KC0H(N)=M 

3430  N=N-1 
34'J5  KF0S=IELM<KP0S+1) 
3440  CONTINUE 
C   RENUMBER ELEMENT NODES 

CALL RENUM(O) 
C 
C  GENERATE INCIDENCE MATRIX FOR NODE REORDERING 

CALL INDHT 
C   DETERMIBE NEW NODE ORDER AND SET UP SPARSE POINTERS 

CALL NORDR 
C 
C   REDUCE VOLTAGE SOURCES TO CURRENT EQUIVALENTS 

IF(Vl.EQ.O) GO TO 3920 
CALL EQUIV 
MXLOC=LP0S 

3920  RETURN 
END 
SUBROUTINE INDMT 

C   ROUTINE TO LOAD INCIDENCE MATRIX FOR NODE REORDERING 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60). Y( 600) 
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI( 1) . YI( 1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
DIIIEflSION   IY(3O,30) 
COMMON  U,C,Y,DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM( 6) , A( 8) , CSAT, VT, VCT, TYPE 
COMIION   IEL,.JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IV, IR, IDISC.IUNIT 
COMMON   IPLT,IPEN,LTY?E,1TEMP,ITOTL,lOUT.JOUT,INPT,IFORM 
COiniON  MXLST,MXPOS,riXL0C,NDmX,N0DE,NN0DE, IERR, MLOC, KPOS, LPOS 
COMMON   lAQCOO),NI(30,2),IELH(9),IFRST(9),ILAST<9),IELM(1000) 
COMMON   IUR(30».IUC(120),IPOS(4O0),NC0N(30) 
EQUIVALENCE ( IUR( 1) , ILC( 1)),( IUC( I) . ILR( D), 

8 ( IELM( 1) ,RELM( D) 
EQUIV.iLENCE ( C( 1) , V( 1)) , (C(30) , CI( 1) , Vl( 1) ) ,(Y(300),YH D) 
EQUIVALENCE(Y(1),IY( 1,1)) 

C 
C 
C   CLEAR IY MATRIX 

DO 100 [■!,RHODE 
DO 100 .;=1,HN0DE 
IY( I,J) = 0 

100   CONTINUE 
C 
C    LOAD INCIDENCE MATRIX 

DO 300 IEL=1,5 
K1=IELN( I EL) 
IFCKl.EQ.O) GO TO 300 
KP0B=IFRST( IEL) 
DO 200 J=1,K1 
KK=IELM(KrOS+7) 
LL=IELM(KP0S+8) 
IF(KK.EQ.O) CO TO 110 
IY(KX,KK)=1 
IF(LL.EQ.0) GO TO 120 
IY(KK,LL) = 1 
IYCLL,KK) = 1 

110        IY(LL,LL) = 1 
120        IF(IEL.NE.4)   GO  TO   180 
C       ADD BJT'S 

HH" !ELM(KP0S+5) 
IF(MM.EQ.O)   GO TO   180 
IF(KK.EQ.O)   GO  TO   130 
IY(KK,MM) = 1 
IY(MM,KK) = 1 

130        IF(LL.EQ.0)   GO  TO   140 

100 



APPENDIX E 

IY(MM,LL) = 1 
iy(LL,MM) = l 

140   iy(MM,MM) = l 
180   Kr0S=IELM(KF0S+l) 
200   CONTINUE 
300   CONTINUE 

RETURN 
END 
SUBROUTINE NORDR __ TO,,„ 

C     ROUTINE TO OPTIMALLY ORDER NODES USING 
C     NON-ZERO OFF-DIAGONAL TERMS CREF. BIAS-H) 
C     5-18-77 

INTEGER*2 I ELM ,_„ 
DOUBLE PRECISION V( 60) ,U(30) ,0(60) .YieOO) 
DOUBLE PRECISION DELTA, DELT.DS.VK 1) ,CU 1) ,YI( O 
DIMENSION ILC(1),ILR(1),RELM( 1) 
DIMENSION IORDR( 1) , IROW( 1) , IY(30,30) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO.TEMP.DTEMP 

TOMKON  PLT IFEN LTYPE ITEMP, ITOTL, IOUT, JOUT, IHPT, IFOBM 

COMMON IAG(80) ,NI(30,2) , IELN(9) , IFK3T(9) . ILAST(9) . IELM( 1000) 
COMMON IUR(30),IUC( 120),IPOS(400),nC0H(30) 
EttUIVALENCE ( IUR( 1) , ILC( 1) ) , ( IUC( 1) , ILR( 1)) , 

8 ( IELM( 1) ,RELM( D) _,,., „,,,M ivaaat   Vtt 1)1 
EGUIVALENCE (C( 1) ,V( D) ,(C(30) ,01(1) ."<»>'I ^f^*' lyd j)) 
EQUIVALENCE(NIC 1, 1) , IORDR( D) , ( V( 1) , IROV( 1) ) , (Yd) , IY( 1.1) ) 

C 
NM1=NH0DE-1 
NPS^O 
NCT=0 
IFCNHODE-Eft.1) GO TO 30 
DO 10 1=1,NODE 
IORDIU I) = I 

10    CONTINUE 

C . . . .^OUNT NUMBER OF OFF-DIAGONAL NOH-ZERO ELEMENTS IN HOVS 
DO 20 I=1,NH0DE 
NCON(I)=I 
IROWCI)=0 
DO 15 J=1,NN0DE 
IF(I.EO.J) GO TO 15 
m IY(I,J) .EQ.O) GO TO 15 
IROW( I) = IRD¥( I) + l 

15    CONTINUE 
20    CONTINUE 

C . . . . COLUMN AND ROW RENUMBERING AND INDICATOR SETUP 
30    IU=1 
C      IL=1 

IFILL=0 
IF(KNODE.LE.1) GOTO 195 
DO 190 1=1, NM1 
IUR( 1) = IU 

C      ILC(I) = IL 
L=IORDR( I) 

C 
C SEACH FOR MIN IROW 

NMIH=500 
DO 120 J=I,NNODE 
im=IOHDR(J) 
IF(IROW(NR) .GE.NMIN) GO TO 120 
NMIN=IR0V(KR) 
IORDR(J) = L 
NC0N(L)=J 
IORPR( I)=NR 
NCOHC NR) = I 
L=KR 

120   CONTINUE 
Q 
C   ESTABLISH NON-ZERO TERMS IK ROV 

JS=I+1 
DO   140  K=JS,NNODE 
IC=IORDR(K) 
IF( IY(L, IC) .EQ.0)GO TO   140 
IUC( IU) = IC 
IU=IU+1 
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149   CONTIHUE 
C 
C  MOVE DOVW COLUMN AND CHECK FILL-INS 

DO 185 J=JS.MNODE 
NR=IORDR(J) 
IRT=IY(HR,L) 
IFdRT.EO.O) GO TO 185 

C      ILR(IL) = NR 
IROV(NR) = IROV(NR)-l 

C      IL=IL+1 
NCT=IUR( I) 

145   IF(NCT.GE.IU) GO TO 185 
C .... MOVE INDEX ,IC. ACROSS ROW L 
158   IC=IUC(HCT) 

IFtNR.Ett.IC) GO TO   180 
IF( IY(NR, lO.NE.O) GOTO 180 

C   OFF-DIAGONAL FILL-IN 
IROW(riR) = IROW(NR) + l 
IFILL=IFILL+1 
IV(HR, IC) = 1 

180   NCT=NCT+I 
NPS=NPS+1 
GO TO 145 

185   CONTINUE 
190   CONTINUE 
C      ILC(NNODE)=IL 
195   ITm(NNODE) = IU 

MLOC=NODE+IU 
MXPOS=LPOS 

C 
C  PRINT MATRIX STATISTICS 

IUT=IU-1 
NOPS=NPS+NNODE+3* Hn- 
^NNODEs^NNODE 
J=N0DE+2*IU 
NCT= 10O.*FLOAT( I-2*IUT)/-FL0AT( I) 
^ITE<IUT1IT'2ei)   ""ODE.IUT.KOPS.IFILL.NCT MXPOS J 

201        F0HMAT(4X,7HNN0DE  =.\4.7X,4mv ^ "j^'^1 •nxTOS-' 
S 5X,6HN0PS   =,I4,2X,9HFILL-INS=      ' 
SjiN0DE;2*^PARSITY =,I4,2H ''•3X-*HMXP0S=.I4.3X.7HMXYP0S=.I4> 

IF(J.GT.3O0)   ¥RITE(IW,211) 
211        F0RMAT(23H **  MATRIX TOO DENSE **) 

C       ASSIGN OPERATION NUMBERS 
IFCNNODE.Ett.1)   GO TO 230 
NPS=0 
DO 225   1=1,NMI 
1US=!UR( I) 
IUE=IUR( I+n 
IL=IUS 
ILE=IUE 

205        IF(IL.GE.ILE)   GO TO 225 
NR=ILR( ID 
IL=IL+1 
IU=IUS 

215   IF(IU.GE.IUE) GO TO 205 
NC=IUC( IU) 
KPS=HPS+1 
IPOS( NFS) = INDX( NR, HO 
IU=IU+1 
CO TO 215 

225  COHTIirDE 
IF(NPS.GT.400) WHTE(IV,211> 

230   RETUBH 
END 
SUBROUTINE REBUM(M) 

C  RENUMBER ELEMENT NODES 
INTEGERS I ELM 
DOUBLE PRECISION V( 60) .UOO) .C(60) , Y(6O0) 
DOUBLE PRECISION DELTA. DELT.DS. VI( 1) .CH 1) YI( 1) 
DIMENSION ILCO) . ILR( 1) ,RELM( 1) 
COMMON U,C,Y.DS,DELT,DELTA 
COMMON TO.TEMP.DTEMP 
catasm TTK 6), A( 8),CSAT, VT, VCT. TYPE 
COfWON   IEL,JJ,ICK:,LL,rffl,NN,IFLG,JFLG,ITT  ITER   IW  TR  IDTor   tnwTT 
«™   IPLT. IPEN.LTYPE, ITEMP. ITOTLT OUT J^'   BPT iiS^* 
COffllON  MXLST.Mr.TOS.ffia.OC.NDHAX.NODE  HNODE   IEARILW   ^s  LPos 
COMMON   IAa(80) ,NI(30,2) . IELN(9) , IF^T(9)      S ^Sue^ 
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COMMON IUR(30),IUC(120),IPOS<400).KCOK(39) 
EftUIVALENCE ( IUR( 1) , ILC( 1) ) , ( IUC( t) , ILRd)), 

8 ( IELM( 1) ,RELM( 1)> 
EOUIVALENCE ( C( 1) , V( 1)) , (COO) ,CI( 1) , VH 1) ) ,(Y(3e0) ,YI( 1)) 

C 
DO 4000 IEL=1,6 
K1=IELN( IEL) 
IF(Kl.Ea.0)GO TO 4000 
KP0S= IFRSTC IEL) 
DO 4000 J=1,K1 
KK=7 
1F( IEL.EQ.4) KK=5 
DO 3000 I=KK,8 
IFCI.Ett.e) GO TO 3000 
II = KP0S+I 
K=IELM( II) 
IFCK.Ett.O) GO TO 3000 
IELM< II)=HCONV(K,M,NI,NODE> 

3000 CONTINUE 
3600  KFOS=IELM(KPOS+1) 
4000  CONTINUE 

RETURN 
END 
SUBROUTINE EttUIV 

C  STORE LOCATION OF EQUIVALENT SOURCES 
INTEGER*2 IELM 
INTEGER VI 
DOUBLE PRECISION V(60),UC30).C(60),Y(€0O) 
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI( 1) ,YI( 1) 
DIMENSION ILCO), ILR( 1) ,RELM(I) 
COMMON U,C,Y,DS, DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYFE 
COMMON IEL,JJ,KK,LL,MM,KN, IFLG, JFLG, ITT. ITER, IV, IR, IDISC, lUNIT 
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM 
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IEHR,MLOC, KPOS,U>0S 
COMMON IAQ(80),NIC 30,2),IELN(9),IFRSTC9),ILAST(9),IELM(1000) 
COMMON IUR(30),IUC(120),IPOS(400),NC0N(30) 
EaUlVALEHCE ( IUR( 1) , ILC( D) ,( IUC( 1) , ILR< 1) ) . 

Q  ( IELM( 1) ,RELM( 1)1 
EQUIVALENCE ( C( 1) , V( 1)) , (C( 30) , CI( 1) , VI( 1) ) , (Y(300) , YK 1>) 
EQUIVALENCE(IELN(6),V1).(IELN(9),12) 

KPOS= IFRSTC 6) 
LPOS=MXPOS 
DO   1500  N=1,V1 
J=IELM(KP0S+7) 

 CHECK   IF  ELEMENT CONNECTED TO VOLTAGE SOURCE 
DO   1400   IEL=1,3 
K1=IELN(IEL) 
IF(Kl.EQ.O)   GO TO   1300 
KPOS=IFRST(IEL) 
DO   1400  M=1,K1 

l^IELM(MP0S+7) 
L=IELM(MPOS+a) 
IFCJ.NE.IOGO TO   1000 
NT=L 
GO TO   1100 
IF(L.NE.J)GO TO   1300 
NT=K 
IF<KT.EQ.0)GO TO   1300 
12=12+1 
IF(l2.EQ. 1)    IFRSTC 9) ^MXPOS 
IF(LPOS.LE.MXLST)   GO TO   1200 
IERH=-2 
STORE EQUIVAiEKT SOURCE FLAGS AND VALUES 
LP0S+1= ELEMENT LOCATION IN IELNC.) 
LP0S+2= VOLTAGE SOURCE LOCATION IN IELN(.> 
LP0S+3= NODE AT VHICH EQUIVALENT CURRENT IS ADDED 
LP0S+4= ELEMENT TYPE 
IELM(LP0S+4)=IEL 
IELM(LP0S+3)=NT 
IELM(LPOS+2)=KP0S/2 
IELMC LPOS+1) = MPOS/2 
LP0S=LP0S+4 
MP0S=IELM(MP0S+1) 
CONTINUE 
KP0S=IELM(KF0S+1) 

1500     CONTINUE 

1000 

1100 

C   . . 
c 
c 
c 
c 
1200 

1300 
1400 
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RETUIW 
END 
STI3R0UTIHE GRAPH 

C        INITIALIZE GRAPHICS 
C    DRAW AXIS  ASD LABEL GRAPH 

RETURN 
END 
FUNCTION   IPACKCIAft.K) 

C PACK 2A1   FORMAT   INTO   11   VOHD 
DIMENSION lAOC1) 
II=IAQ(K) 
JJ=!Aa(K+l) 

C      IPACK=OR(SHrT( 11,8,-8) ,SHFT( JJ,8) ) 
IPACK= 11 
RETURN 
END 
SUBROUTINE OPNFLCLUN, IW, IR) 
DIMENSION NAME! 3) 

C  ROUTINE TO OPEN DISCFILE 
WRITEf IW, 101) 

1»1   FORMATC1OH FILENAME:) 
READ( IR,201)NAME 

201   F0RMAT(3A2) 
CALL SEARCH(LUN,NAME, 1) 
RETURN 
END 
SUBROUTINE CLSFL( LUN) 

C   ROUTINE TO CLOSE DISCFILE 
CALL SEARCH(4,0,1) 
RETURN 
END 
SUBROUTINE SECNDCTl) 

C ROUTINE TO RETURN ELAPSED TIME 
DIMENSION ITAR(11) 
CALL TIMDATC ITAR, 11) 
Tl = rLOAT( ITAR( 7)) +FLOAT( ITAR( 8) ) /FLOATt ITARC 11) ) 
RETURN 
END 
SUBROUTINE CLOCK( ETIM, IDATE) 

C   RETURNS CLOCK TIME IN SECONDS, AND DATE < MM DD Y) 
DIMENSION IDATE(S) 
IDATECl)=e 
IDATE(2)=e 
IDATE(3)=e 
ETm=». 
RETURN 
END 
SUBROUTINE ANALY 

C  MAIN ANALYSIS ROUTINE 
INTEGER*2 I ELM 
INTEGER Rl,Cl,Vl.ai 
DOUBLE PRECISION DELU 
DOUBLE PRECISION V(6e),U(3e),C(6e),Y(609) 
DOUBLE PRECISION DELTA,DELT,DS,VI(1),CI<1).YI(1) 
DIMENSION ILC( 1) , ILR( 1),HELM( 13 
COMMON U,C,Y,DS, DELT,DELTA 
COMMON T0, TEMP. DTEMP 
COMMON TM(6),A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL, JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER. IW, IR, IDISCITJHIT 
COMTION IPLT, IPEN,LTYPE, ITEMP, ITOTL, ICUT, JOUT. INPT, IFORM 
COMMON MXLST, MXPOS, MXLOC, NDMAX, NODE, NNODE, I ERR, MLOC, KPOS. LPOS 
COMMON IAa(80) ,NI(30.2), IELN(9) , 1FRST(9) , ILASTC9) , IELM( 1080) 
COMMON IUR(30),IUC(120),IPOS(400),NC0N(30) 
EftUIVALENCE ( IUR( 1), ILC( 1)).(IUC( D.IUUD), 

S ( IELM( 1) ,HELM( D) 
EQUIVALENCE (C( 1) , V( 1) ) , CC(30) ,CI( 1) , VI( 1)) , (Y(300) , YI( D) 
EttUIVALENCEC IELN(1),R1) ,(IELN(2) ,C1),( IELN(3) ,L1),( IELN(4).ai>, 

1   ( IELN(5) ,!!),( IELN<6) ,V1) ,< IELN(7) ,MI) ,( IELR(9) , 12) 
G 

ERR= FLOAT(NNODE*NNODE)* 1.OE-10 
2900     RMS 1 = 0. 

RMS2=0. 
IF(IFLC.NE.5)G0 TO 3200 

3000  IF(T0.NE.DELTA)CO TO 3100 
DELT=DELTA 

C UPDATE TRANSIENT SOURCES 
3100  CALL UPDAT 
C  UPDATE CAPACITOR CURRENTS 
3200  IF(Cl.LE.O) GO TO 3800 
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3400 

3500 

3600 
3700 
C ... 
3B00 

3900 

4000 

4100 
C .. 
4200 

KP0S=IFBSTC2) 
TC=1.0 
IF( ITEMP.Ea.0)GO TO 3300 
TC= 1. 0+RELM( ITEMP+6) *DTEMP+HELM( ITEMP+7)*DTEMP*DTEMP 

3300  DO 3700 1=1,Cl 
MP0S=KP0S/2 
DS=0.DO 
IF(T0.LE.0.)GO TO 3400 
DS=RELM( 11P0S+3) *TC 
KK=IELM(KP0S+7) 
LL=IELM(KP0S+8) 
DS=2.DO*DS*DELU(LL,KK)/DELT 
IF(T0.GT.DELTA)GO TO 3500 
RELM(MPOS+5)=0.DO 
RELM(MP0S+6)=-DS 
GO TO 3600 
RELM( MPOS+5) -DS+RELM( MPOS+6) 
RELM( MPOS+6) = -ffS-nELM( MPOS+5) 
KPOS= IELM( KPOS+1) 
CONTINUE 

. UPDATE INDUCTOR CURRENTS 
IF(Ll.Ea.0) GO TO 4200 
TC=1.0 
KP0S=IFRST(3) 
DO 4100 1=1,LI 
MP0S=KP0S/2 
IF(T0.LE.O.)GO TO 3900 
DS= RELMC MPOS+3) *TC 
DS= DELT*DELU( LL, KK) /DS/2. DO 
IF (TO.GT.DELTA) GO TO 4000 
RELM( MPOS+5) =0. DO 
RELMt MPOS+6) = DELU( LL, KK) * 100. DO 
GO TO 4100 
RELM( MPOS+5) =DS+RELM( MPOS+6) 
RELM( MPOS+6) =RELM( MPOS+5) +DS 
KP0S=IELM(KP0S+1) 
CONTINUE 

. ADD SUPPLIES TO VOLTAGE VECTOR 
IFCVl.Eft.O) GO TO 4400 
HP0S=IFRST(6) 
DO 4300 1=1,VI 
MP0S=KP0S/2 
J=IELM(KP0S+7) 
V( J) =RELM( MPOS+3) 
U(J)=V(J) 
KP0S=IELM(KP0S+1) 

4300  CONTINUE 
4400  ITER=0 
C   ZERO CURHENT MATRIX 
4500  DO 4600 I=1,HN0DE 

C( I) = 0.DO 
4600  CONTINUE 

1I=2*ML0C-N0DE 
DO 4700 J= 1,11 
Y(J)=O.DO 

4700  CONTINUE 
C LOAD ELEMENTS INTO Y S C ARRAYS 
4800  CALL ELOAD 

IF(I2.EO.0) GO TO 5520 
C  ADD GENERATED CURRENT SOURCES 

CALL GHCUR 
C  SOLVE HODE EOUATIONS 
5520  CALL DECMP 

CALL SOLVE 
IFCttl.EO.O) GO TO 6550 
ITER= ITER+1 
IF( ITER.LT. I00)GO TO 6500 

C  NO CONVERGENCE—PRINT LAST RODE VOLTAGES 
VRITE( IUH1T,6501) 

6501  F0RMAT(26H CIRCUIT DOES NOT CONVERGEV 
GO TO 6780 

C COMPUTE MEAN SQUARE ERROR OF NODE VOLTAGE CHANCES 
6500  DS=O.DO 

DO 6520 J=1,NH0DE 
DS=DS+(V(J)-U(J))**2 

6520  CONTINUE 
S=DS 
1F( IFLG.Eft.S.OR. IFLG.Ea.6)G0 TO 6550 
VRITE(IUHIT,6541)S 
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6S41 
C ... 
6550 

6560 

C .. , 

65B0 

C . . 

6660 

6601 
6660 

6670 
6671 
66B0 

C 
c ... 
6700 

FORMATC 1X,E18.4) 
. STORE LAST NODE VOLTAGES 
DO 6560 IM.RNODE 
U( I)=V( 1) 
COHTIHUE 
IFCai.Eft.0)   GO TO 6660 

.   CHECK FOR COKVERGEHCE 
IF(S.LT. ERR. AKD.RHS1.LT.ERR.AWD.RMS2.LT.ERR. AND. ITER.GT.2> 

8  GO TO 6660 
IF(ITER.LT.6)   GO TO 6580 
IF(S.GE.RMS1. AND.RPIS1.GE.RMS2. AND.S.LT.0.001)   GO TO 6600 
RriS2=RMSl 
RMS)=S 

.   NO CONVERGENCE:   RE-ITERATE 
GO TO 4500 
IF(!PLT.GT.0)GO  TO 6660 
S=S(iRT(S) 
VRITECIUN1T,6601)S 

FORIIAT( 19H MEAN ERRORC VOLTS) : , F14.6) 
IFCIFLG.NE.5.AND.1FLG.NE.6)G0  TO 6770 
ITOTL=ITOTL+ITER 
R=TO 
S=V(JOUT) 
IFC IFLG.Ea,6) R=TM(1) 
IF(IPLT.Ea.0)GO TO 6670 
CALL DRAW(R,S, IPEN.4) 
IPEN=1 
GO TO 6680 
V/RITE( IUKIT,6671) R,S,ITER 
FORMAT(1X,2G18.4,10X,118) 
IFCIFLG.Ea.6)G0 TO 6700 
TO=TO+DELTA 
IFCT0.GT.TMC2)) GO TO 6965 
GO TO 3000 

. .    INCREMENT SWEPT ALTER VALUE 
TMC 1)=TMC 1)+TMC3) 
MP0S=TnC4) 
RELMCKP0S+3)=TMC 1) 
IFCTMC 1) .LE.TMC2))   GO  TO  2900 
RELIIC riPOS+3) =TI1C 5) 
GO TO 6965 

C 
C   . . . 
6770 
6780 
6781 
6800 

6811 

6831 

6881 
6890 

C 
6965 
6970 

PRINT DC  OPERATING POINTS 
IFCai.Ea.0)GO TO 6800 
WRITECIUNIT,6781)ITER 
F0RmTC/V12H   ITERATIONS: , 110) 
TC=TEMP-273. 
VRITECIUNIT,6B11)TC 
F0RflATC3H T=,F8.1,6H DEG C//) 
WRITECIUNIT,6831) 
FORMATC    15H NODE  VOLTAGES:) 
DO 6890   1=1,NODE 
J = NIC 1,2) 
WRITE  C1UNIT,6881)J,VCn 
F0RMATC2H V,I2,F18.4) 
CONTINUE 
IFLC=4 
IFCai.NE.0)   CALL ELOAD 

IFLG=4 
RETURN 
END 
SUBROUTINE ELOAD 

.   ROUTINE TO LOAD  ELEMENTS   INTO Y 8 C  ARRAYS 
FOR AC  OR DC  ANALYSES 

INTEGER*2   IELM 
INTEGER Ql 
DOUBLE  PRECISION VC60),UC30),CC60),Y(600) 
DOUBLE  PRECISION  DELTA.DELT,DS,VIC1),CIC1),YIC1> 
DIMENSION   ILCC1).ILR(1),RELMC 1) 
COMMON  U,C,Y.DS,DELT,DELTA 
COMMON TO, TEMP, DTEMP 
COMMON  TMC6) , AC 8) ,CSAT, VT, VCT.TYPE 
COMMON   IEL, JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IVT, 1R, IDISC, lUHIT 
COMMON   IPLT, IPEN.LTYPE, ITEMP, ITOTL, lOUT.JOUT, INPT, IFORM 
COMMON  MXL.ST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR, MLOC, KPOS.LFOS 
COMMON   lAOCBO),NIC30,2),IELNC9),IFRSTC9),ILASTC9),IELMC1000) 
COMMON   IURC 30),IUCC120),IPOSC 400),NCONC 30) 
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EaUIVALEKCE   ( lOTK 1).ILCl1)),CIUCC1),1LR(1)), 
8EQiiv^ENC™n),v(.,),(C(30),cni>,vi(i)).(y(3ee),Yi(i). 
EaUIVALENCE (IELH(4),Q1),<IELN(5),11) 

C 
DO 800 IEL=1,3 
K1=IELN( I EL) 
IF(Kl.EQ.O) CO TO 600 
KPOS=IFRSTCIEL) 
TC=1.0 
IFCITEMP.EQ.O) GO TO 100 
HH=ITEMP+IEL*2+1 „™,w„ ^„ 
TC= 1.0+RELM( NN) *DTEHF+nELM( IW+1 > *DTEMF**2 

100   DO BOO I=1,K1 
IF(IELM(KP0S+4).RE.O) CALL ELMODCIEL) 
MP0S=KP0S/2 
KK=IELM(ia'0S+7) 
LL=IELM(KF0S+B) 
DS = RELM( MF0S+3) *TC 

C   ADD RESISTORS 
IFCIEL.CT.1) GO TO 200 
DS=1.D0/DS 
CALL ADRE3 
GO TO 700 

C   ADD CAPACITORS 
200   IFCIEL.GT.2) GO TO 400 

DS=DS/DELT 
IF(IFLG.nE.9) GO TO 300 
CALL ADCFR 
GO TO 700 

300   DS=2.D0*DS 
GO TO 600 

C  ADD INDUCTORS 
400   DS=DELT/DS 

IFCIFLG.HE.9) GO TO 500 
CALL ADCFR 
GO TO 700 

500   DS=DS*0.5D0 
IFCDELT.GT.1.0D6) DS=1O0.DO 

600   CALL ADRES 
DS=RELM(MP0S+6) 
CALL ADCUR 

700   KP0S=IELMiKP0S+l) 
BOO   CONTINUE 

IFCIl.EQ.O) GO TO 1000 

C    ADD CURRENT SOURCES FOR DC  ANALYSIS 
IFCIFLG.EQ.9)   GOTO   1000 
KF0S= IFRSTC 5) 
DO 900   1=1,11 
HP0ri = KP0S/2 
KK= IELMCKrOS+7) 
LL=IELMCKP0S+B) 
DS=RELMCMP0S+3) 
CALL  ADCUR 
KP0S=IELMCKF0S+1) 

900   CONTINUE 
C ADD TRANSISTORS 
IOOO iFcai.Ea.o) GO TO 1200 

IFC iri.G.EQ.9) GOTO 1100 
CALL BJT 
GO TO 1200 

1100 CALL BJTAC 
1200 RETURN 

END 

C     . . ^SSm^L^KOBPOSITION BASED OH RECORDED SPARSITV 
C MODIFIED  FROM S1NC-S  5-18-77 
C 

T N TF* f T*" H SJ 2    T F"TJM 

DOUBLE PRECISION  VC60),UC30).C(60),Y(600) 
DOUBLE PRECISION  DELTA,DELT, DS, VIC 1),C1C 1) , YI< J> 
DIMENSION   ILCC D.ILRC 1) ,BELMC 1) 
DIMENSION   IORDRC 1) 
COMMON  U,C,Y,DS,DELT,DELTA 
COMMON  T0,TEMP,DTEMP 
^STS^^i.L^HSIrLG^LG^Tr^TER.I^IR.mSC.IUNIT 
cSS IPLT^PCTIL^: ™W,TTOTL, "lOUT.JOUT, INPT. IFORM 
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rnS "^fT.MXPOS.MXLOC.NDMAX.KODE.NNODE. IERR.HLOC, KPOS.LPOS 
COMMON   lACKSO) ,NI(30,2),IELH(9).IFnST(9)    ILASTf «1    IPIMrToaa> 
romv!r^3f' *IUC( 12e) • iPos(4ee) Sge 'IELM( 1006) 

8
Ex^?L[n,i>-iLc(i,,'(iuca)-iLR(i)j- 

c 
C     IUR UPPER TRIANGULAR ROV ELEMENT COUNTER 
C     nr Sn Z?1^0"1-^ ELEMENT COLTON INDICATOR 
C     ILC LOWER TRIANGULAR COLUMN ELEMENT COUNTER 

ILR LOWER TRIANGULAR ELEMENT ROW INDICATOR 

IFCNNODE.Eft.1) GO TO 40 
NN=HN0DE-1 
KHT=0 
DO 30- 1=1,NN 
L=IORDR( I) 
IUS=IUR(I)+ML0C 
IUE=IUR( I+1)+ML0C 
IL=ILC(I)+KODE 
ILE=ILC( I+D+KODE 

C 
C   DOWN LOWER TRIANGLE COLUMNS 
3     IF(IL.GE.ILE) GO TO 30 

DS=Y( IL)/Y(L) 
Y( IL> = DS 
IL=IL+1 
IU=IUS 

C 
C   ACROSS UPPER TRIANGLE ROWS 
20    IFdU.GE. IUE) GO TO 5 

KNT= iCNT+ 1 
K=IPOS(KNT) 
Y<K) = Y(K)-Y( IU)«DS 
IU=IU+I 
GO TO 20 

30 CONTINUE 
40    RETURN 

END 
SUBROUTINE SOLVE 

C 

r Tro^S11"8 F0RVAnD AND BACKWARD SUBSTITUTIOIT 
C     USING SPARSE POINTERS 
c FROM BIAS-N 5-19-77 

INTECEH*2 IELM 
DOUBLE PRECISION V( 60) , U(30) , C( 60) , Y( 600) 
DOUBLE PRECISION DELTA. DELT,DS, VI( 1),CI< 1), YH 1) 
DIMENSION ILC(1),ILR<1),RELM(1)   " ^I ( " • *!< »* 
DIMENSION I0RDR( 1) 
COMHON U,C,Y,DS, DELT, DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TMC6) ,A(8) ,CSAT,VT,VCT,TYPE 
COfClON   IEL,JJ,KK,LL,MM,NN,IFLG,JFLG, ITT  ITER TW  TR  IDKsr   rrmiT 
ComiON   IPLT, IPZN,LTYPE, ITEMP, ITOTLT OUT J^r' INPT   ITOM 

COMMON   IAQ(80),NI(30,2),IELN(9),IFRST(9),ILAST(9)    IELM( 1«no> 
c™*   IUR( 30) , IUCC 120) , IP0S( 400) , NCOm 30) ' 

8
Eu^^n)i)-,Lcu),-<iuc(i)-iLR(">' 
^i^s^<

1
i:;r!;^r1r'ci(i)'v,(in'(Y(3^-yi(i" 

C FORWARD SUBSTITUTION 
NN=NN0DE-1 
IF(NN.GT.O)   GO TO   10 
V< I)=C( 1)/Y( I) 
GO TO 70 

10 DO 30   1=1,NH 
L=I0RDR(I) 
DS = C(L) 
IF(DS.EQ.O.D0)   GO TO 30 
IL=ILC(I) 
ILE=ILC(1+1) 

20 NL=IL+NODE 
IF(IL.GE.ILE)   GO TO 30 
NR= ILR( ID 
C(NR)=C(NR)-Y(NL)*DS 
IL=IL+1 
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GO TO 20 
30    CONTIHUE 
C 
C   BACK SUBSTUTION 

L'lORDIUNNOOE) 

DO 50 1=1, NH 
HUI=HHODE-I 
L=IORDR(HUI) 
IU=IUR(NUI) 
iuE=iun(HUi+i) 

35    HL= IU+MLOC 
IF(IU.GE.IUE) GO TO 45 

40    IC=IUC(IU) 
C( L) =C( L) -Y( HL) *CeiC) 
IU=1U+1 
CO TO 35 

45    C(L)=C(L)/Y(L) 
50    COHTtHUE 
C   TRANSFER INTO VOLTAGE VECTOR 
C     DO 60 1=1,KN0DE 
C     V(I)=C(I) 
C6»  CONTINUE 
70   RETURN 

END 
SUBROUTINE ELMODt IEL) 

C   ROUTINE TO DEFINE ELEMENT MODELS 
GO TO (200,400,600),IEL 

0   RESISTOR MODEL 
200   RETURN 
C   CAPACITOR MODEL 
400   RETURN 
C  INDUCTOR MODEL 
600   RETURN 

END 
SUBROUTINE BJT 

C COMPUTE BJT PARAMETERS 
INTEGER ftl 
INTEGER*2 IELM 
DOUBLE PRECISION DELU 
DOUBLE PRECISION V(60),U(30).C(60),YC6O0) 
DOUBLE PRECISION DELTA,DELT.OS.VI(1),CI(1),YT(1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6),ACS),CSAT.VT.VCT.TYPE 
COMMON IEL, JJ, KK. LL. MM, NN, IFLG, JFLG, ITT, ITER, J^"l ™»C' lVSir 

COMMON IPLT, IPEN.LTYFE, ITEMP,ITOTL,IOUT,JOUT, INPT, IFOHM 
COMMON MXLST,MXP0S,MXLOC,NDMAX,NODE,RHODE, IE"11-M^^.KPOS.LPOS 
COMMON IAtt(80) ,NI(30,2) ,IELN<9) , IFRST<9) , ILAST<9) . IELM( 1000) 
COMMON IUR(30),IUC(120),IPOS(40O),NCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( 1) ) . ( IUC( 1) , ILR< 1) ) , 

^OUW^ENC^CC l^.VC D) .(C(30).CI( 1) .VI( 1) ) , ( Y(300) . YU D) 
EOUIVALENCECIELN(4),Q1) 

C 
IF()FLG.NE.4) GO TO 5400 
VRITE('lUHIT,5201) 

5201  F0RMAT(29H TRANSISTOR OPERATING POINTS:) 
VRITE (IUNIT,5301) , „mm„ ^^ ^TTUITA -rv 5301  F0RMAT(5H NAME, 5X,2HIB, 9X>2HIC,7X,3HVBE,9X,3HVBC>6X,4HBETA,7X, 

1 2HGM, 9X, 3HRPI > 
5400 VT=a.6164E-05*TEMP 

VCT= VT*ALOG(VT/1.41459) 
C0=1.0 
TC= 1.0 
KP0S=IFRST(4) 
IF(ITEMP.EQ.O)GO TO 5500 
C0=(TEMP/300.)»*3*EXP(- 13920.0*( 1.0/TEMP-1,0/300.)) 
TC= 1.0+DTEMP*RELM( ITEMP+7)+DTEMP**2*RELM< ITEMP+8) 

5500  DO 7200 1=1,01 
KK=IELM(KP0S+7) 
LL=IELM(KPOS+0) 
MM=IELM(KP0S+5) 
MP0S = ICP0S/2 
ITT=IELM(ia,0S+4) 
TYPE=RELM(ITT+3) 
BF0=RELM( ITT+4) 
BR0=RELM(ITT+5) 

109 



APPENDIX. E 

c 
5600 

CSO=BELM( nT+6) 

.    INITIALIZE PARAMETERS  FOR FIRST  ITERATIOH 
IF(ITER.nE.0)   GO TO 5600 
IF( IFLG.WE. DGO TO 5600 
VBE=VGT-VT*ALOG(C0*CS0) 
VBC=-1.0 
nELM(MPOS+5)=0.5 
RELM(nPOS+6)=0.0 
RELIK «P0S+7) = 1. 0E-4 
RELM( MP0S+8) = 1. 0E- 12 
GO TO 5700 

VDE=DELU( MM, LL) *TYPE 
VT3C= DELU( KK, LL) *TYPE 

5700  VA=RELM( ITT+7) 
VAI=I.0 
IF(VBC.GE.0.)CO TO .)710 
IF(VBC.LT.-VA) GO TO 5710 
VA1=I.0-VBC/VA 

C   PROCESS FORWARD TRANSISTOR 
571«  DF=BF0*TC*VA1 

CO=C0*VA1 
CSAT=CO*CSO*(1.0+l.0/BF0)/ri.O+l.O/BF) 
CALL .IUKCT( M?OS+5, TOE, CCC, CCEtt, GMF ) 
IF(RELM( ITT+a) .KE.0.)GO TO 5800 
GRPI=0.0 
CREQ=0.0 
CREC=0.0 
GO TO 6000 

. INCLUDE GENERATION RECOMBINATION CURRENT 
CRSAT=SQRT( RELM( ITT+S) *CSAT)/BF0 
CREC=-CRSAT 
IF(VBE.LT.-1.2)GO TO 5990 
CREC=CRSAT*EXP( VBE/VT/2.) +CREC 
GRPI=(CREC+CflSAT)/VT/2. 
CREQ=TYPE* ( CREC-GRPI*VBE) 
GPIF^GMF/BF-GRPI 

. PROCESS RI'.VERSE TRANSISTOR 
BR=BR0*TC*VA1 
CSAT=C0*CS0*( 1.0+1.0/BR0)/(l.O+l.0/BR) 
CALL JUNCT(MP0S+6,VBC,CEC,CEEa,GMR) 
GPIR=GMR/BR 
GMR= GMR+(CCC-CEC)^VA 
IF(IFLG.NE.4)G0 TO 6150 

■   PRINT TRANSISTOR OPERATING POINTS 
CB=TYPE*(CCC/BF+CEC/BR+CREC) 
CC=TYPE*( CCC-CEC-CEC/BR) 
VBE=TYPE*VBE 
VBC=TYPE*VBC 
BF=CC/CB 
GPIFM.0/GPIF 

rn^JoSHIT,6121) IELM(KP0S+2) .CB.CC.VBE.VBC.BF.GW.CPIF 
F0RW.AT(2H Q, A2,2E12. 3,2F9. 3. F11.2, 2E12.3) .««".«■« 
GO TO 7100 

- GND. CONDUCTANCES AND V.D.C.S 
IF(KK.LE.NNODE)GO TO 6160 
CEEQ=CEEa-GMR*U( KK) 
KK=0 
IF(LL.LE.HNODE)GO TO 6170 
CCEQ=CCEa+GMF«U( LL) 
CEEa= CEEa+GMR*U( LL) 
LL=0 
IF(MM.LE.NN0DE)GO TO 61B0 
CCEQ= CCEQ-GMF*U( MM) 
MM=0 

. LOAD ADMITTANCE MATRIX 
IF(KK.Ea.0)GO TO 6300 
Y< KK) = Y( KK) +GMR+GPIR 
IF(LL.Ea.0)GO TO 6270 
JJ= INDX(KK,LL) 
Y< JJ) = Y( JJ)+GMF-GMR-CPIR 
Y(NN)=Y(HN)-GPIR 
IF(MN.Ea.0)GO TO 6360 
JJ=   INDX(KK,MM) 
Y(JJ)=Y(JJ)-GMF 

C ... 
5800 

5990 

6000 
C ... 

6121 

C 
C . . . 
6150 

6160 

6170 

C 
c ... 
6180 

6270 

CONNECTED TO SUPPLIES 
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Y<NH)=Y(KN)-GMR 
6300  IF(MM. Ea.0)GO TO 6360 

Y( MH) = Y( MM)+GMF+GPIF 
IF(LL.E«.0)GO TO 6390 
JJ= INDXCMM.LL) 
Y( JJ) = Y( JJ) -GTIF-GPIF+GMR 
Y(NN)=Y(KN)-GPIF 

6360  IF(LL.Eft.0)GO TO 6390 
Y( LL) = Y( LL)+GPIF+GPIR 

C LOAD CURREHT VECTOR 
6390  IF( IFLG.EQ.9) GO TO 7100 
C   DONT ADD DC CURHERTS IF AC AHALYSIS 

IF(KK.EQ.0)GO TO 7010 
C( KK)= C(KK) + (1.0+1.0/BR)»CEEQ-CCEa 

7010      IFCMM.EQ.0)   GO TO 7020 
C( MM) =C( MM) + ( 1.0+1. 0/BF) *CCEQ-CEEQ+CREa 

7020      IFCLL.Ea.O)   GO TO 7100 
C( LL)=C( LL)-CCEO^BF-CEEO/BR-CREQ 

7100     KPOS=IELM(KPOS+l) 
7200     COKTIITOE 

RETURM 
END 
SUBROUTINE JUNCT(J,VBB.CCC.CEO.GM) 

C  DETERMINE TRANSISTOR IC.GM.GPI 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),Y<600) 
DOUBLE PRECISION DELTA,DELT.DS.VI( 1),CI( 1).YI<!> 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
COMMON U,C,Y,DS,DELT.DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) , ACS) ,CSAT,VT,VCT,TYPE 
COMMON   IEL,JJ,KK,LL,MM,NN, IFLG. JFLG, ITT, ITER, IV, 1R, IDISC, ITTNIT 
COMMON   IPLT,IPEN,LTYPE,ITEMP,ITOTL,lOUT.JOUT,1NPT.IFORM 
COMMON  MXLST,MXPOS,riXLOC,NDMAX,NODE,NNODE, IERR,MLOC,KPOS,LPOS 
COMMON   IAa(00) ,NI(30.2) , IELN(9) , IFRST(9) , ILAST(9> , IELM( 1000) 
COMMON   IUR( 30),IUC( 120),IPOS( 400),HCON( 30) 
EQUIVALENCE   ( IUR( 1) , ILC( 1)) ,( IUC( 1) , 1LR( U) , 

fl  ( IELM( 1) ,RELM( D) 
EQUIVALENCE   (C( 1) , V( 1) ) , ( C(30) , C!( 1) , Vl( 1) ) , ty(300) . YH 1)) 

G 
C    COLN  LIMITING ALGORITHM  IMPLEMENTED a'16/76 

VCRIT=VCT-VT*ALOG( CSAT) 
IF(VBB.LE.VCRIT)GOTO 1100 

C   VB.LT.VCftlT— ITERATE ON VOLTAGE 
CGC=CSAT*( EXP( RELMC J) /VT) -1. 0) 
CEQ=CCC+RELM(J+2)*(VBB-RELM(J)) 
IFCCEQ.LT.O.)G0 TO 1000 

C  ITERATE ON CURRENT 
VBB= VT*ALOC(CEQ/CSAT+1.0) 
GO TO 1100 

1000  VBB=VCRIT 
1100  CCC=-CSAT 

IF(VBB.LT.-1.2)GOTO 1200 
CCC=CSAT*EXP(VBB/VT)+CCC 

1200  GM=(CCC+CSAT)/\'T+1.0E-10 
CEQ=TYPE*( CCC-GM*VBB) 
RELM( J+2)=GM 
HELM(J)=VBB 
RETURN 
END 
SUBROUTINE UPDAT 

C  UPDATE TRANSIENT SOURCES 
INTEGER*2 IELM 
DOUBLE PRECISION V(60) ,U(30) ,C( 60) , Y(600> 
DOUBLE PRECISION DELTA,DELT,D9,VI( 1>,CI(1),YI( 1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL,MM,Nn,IFLG,JFLG, ITT, ITER, IW, IR, IDISC, lUHIT 
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM 
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR,MLOC, KPOS.U'OS 
COMMON IAa(80) ,NI(30,2) , IELN<9) , IFRST(9) , ILAST(9). IELM( 1000) 
COMMON IUR(30),IUC( 120),IP0S(400),NCON(30) 
EQUIVALENCE ( IUR( 1) , ILC( D) .( IUC( 1), ILR( 1) ) , 

8 ( IELM( 1) ,RELM( D) 
EQUIVALENCE (C( 1) , V( 1) ) , (G(30) ,CI( 1) , VI( 1)) t(Y(300),YI( 1)) 

C 
DO 4700 1EL=5,6 
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K1=IELN(IEL) 
IF(K1.EQ.0)G0 TO 4700 
KPOS=IFRST< IEL) 
DO 4700 J=1,K1 
MP0S=KP0S/2 
ITr=IELM(KF0S+4) 
IF( 1TT.EQ.O)GO TO 4610 
L=RELM(ITT+3)-2.0 
IF(L.Ea.2) GO TO 4390 
Bl = nELM( nT+4> 
B2=RELM( ITT+5) 
B3=RELM(ITT+6) 
D4=n£LM( 1TT+7) 
IF(L.EQ.3) GO TO 4410 

C 
C .. 
4370 

SINE 
V0=B1 
IF(B4.HE.0.)G0 TO 4378 
B4=DELTA 

4378  ir(T0.LT.B4)GOTO 4390 
V0=V0+B2*SINC 6.28319*B3*(T0-B4} 

S  +nELM( I,n+8)/57.296> 
GO TO 4600 4390 

C 
C .. 
4410 
4420 

PULSE 
TI = T0 
Z-B3 
1F(TI.GT.Z)G0T0 4450 
V0=B1 
GO TO 4600 

4450  Z=Z+B4 
1F(TI.GE.Z)G0T0 4490 
V0=B2-(RELM( ITT+5)-Bl)/B4*(Z-TI> 
GO TO 4600 

4490  Z=Z+RELM( ITT+8) 
IF(TI.GT.Z)G0T0 4530 
V0=D2 
GO TO 46O0 

4530  Z=Z+nELM( ITT+9) 
IF(TI.GE.Z)GOT0 4570 
V0=Bl + (B2-Bl)xnELM( ITT+9) *(Z-TI) 
GO TO 4600 

4570  S=RELM( ITT+IO) 
IF(S.Ea.0.)GO TO 4580 
Z=Z+S 
TI = TI-S 
GO TO 4420 

4580  V0=B1 
CO TO 4600 

C 
4590     CALL VEXT(TO,V0, ITT,HELM) 
4600     RELH(MPOS+3)=V0 
4610     KPOS=1ELM(KPOS+1) 
4700     CONTIHUE 

RETURN 
END 
SUBROUTIKE VEJCTC T0, V0,1, RELM) 

C USER DEFINABLE SUBROUTINE FOR SOURCE MODEL 
DIMENSION RELMC 1) 

EXT' 

C 
C 
c 
c 
c 
c 

*«*PARAMETERS*** 
TO—TIME(SEC) PASSED TO VEXT   
V0—SOURCE VALUE AT TIME T0 , RETURNED FROM VEXT 
RELM(*)— AVAILABLE PARAMETERS FROM 'EXT* MODEL FIELD 
I _ MODEL NUMBER 

RETUHM 
END 
FUNCTION DELU(K,L> 

. DETERMINE U(L)-n(K) 
INTEGER*2 IELM 
DOUBLE PRECISION DELD 
DOUBLE PRECISION V(60),U(30),C(60),Y(6«0) 
DOUBLE PRECISION DELTA,DELT, DS, VI( 1) .CI( 1) . YI( 1) 
DIMENSION ILC(1),1LR(1),HELM(1) 
COMMON U,C,Y,D3,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMKON TM(6) ,4(8) ,CSAT,VT,VCT,TYPE ._„- 
COMMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG. ITT, ITER. IV.IR.IDISC.inRIT 
COMMON IPLT, IFEN,LTYPE, ITEMP, ITOTL, lOUT.JODT, INPT, 1F0BM 
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c .. 

sioe 

5200 

c   . . 

5480 

5500 

C   . . 

COPIMOK   IAa(80) ,NI(30.2),IELrf(9),IFBST(9), ILAST(9>    IELM( IflO«) 
COMMON   lUROO) , 1UC( 120) , IPOSC 400) , NC0N(30) ' ^ 
EQUIVALENCE  (IUR(1),ILC(1)),(IUC(1),ILR(1)). 

8   ( IELM( 1) ,HELM( U) , i" , 

EttUI VALENCE   (C( 1) ,V( 1)) , < 0(30) ,CI( 1) ,VI( 1)) , ( Y(30O> ,YH D) 

DELU=0.DO 
IF(L.GT.O)   DELU=U(L) 
IF( K. GT. 0) DELU^DELU-tK K) 
RETURM 
END 
SUBROUTINE ADRES 

.. ADD RESISTORS TO Y MATRIX 
INTEGERS I ELM 
DOUBLE PRECISION V(60),UC30),0(60),Y(600) 
DOUBLE PRECISION DELTA.DELT.DS.VK 1) CKO Yl( 1» 
DIMENSION ILC(I),ILR(1),RELM(1) ".I"" 
COMMON U.C.Y.DS.DELT.DELTA 
COMMON TO.TEMP.DTEMP 
COKMON TM( 6) , A( O) , CSAT, VT, VCT, TYPE 
COMMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG, ITT, ITER, IV IR, IDISC IITRIT 
COfmON IPLT, !PEN,LTYPE. ITEMP, ITOTL, iourijOUT IN^T IFORM 
COMMON MXLST,IIXP0S,MXLOC,NDMAX,N0DE,NNODE, lERR.MLOC KPOS LPOS 
co^« IAQ(80) ,NI(30,2) , IELN(9) , IFRST(9) , ILAST 9) IELM( 1000) 
COMMON IUR(30),IUC( 120),IPOS(400),NCON(30)       ' 
EQUIVALENCE (IUR(1),ILC(1)),(IUC(1),ILR(1)) 

S ( IELM(l),nELM(l)) 

EQUIVALENCE < C( 1) , V( 1) ) . (C(30) ,CI( 1) , VI( 1) ) , ( Y(300) , YI( 1) ) 

IF( KK. GT. BNODE) KK=0 
IF( LL.GT.NNODE)LL=0 
IF(KK.EQ.0)G0TO 5100 
Y(KK) = Y(KK)+DS 
1F(LL.EQ.O)GOTO 5200 
JJ= INDX(KK,LL) 
Y(JJ)=Y(JJ)-DS 
Y(NN)=Y(NN)-DS 
IF(LL.EQ.0)GOTO 5200 
Y(LL)=Y(LL)+DS 
RETURN 
END 
SUBROUTINE ADCUE 

.. ADD CURRENTS TO CURRENT VECTOR 
INTEGER*2 IELM 
DOUBLE PRECISION V( 60),U( 30).C(60),Y(600) 
DOUBLE PRECISION DELTA,DELT, DS, VI( 1) ,CI( 1) YH1) 
DIMENSION ILC(1),1LR(1),RELM(1)     >""".»"" 
COMTION U,C,Y,DS,DELT,DELTA 
COMMON T0,TEMP,DTEMP 
COMMON TM(6) ,A(8) ,CSAT, VT,VCT,TYPE 
COKMON IEL,JJ,KK,LL,MM,NN,IFLG,JFLG,ITT, ITER, IV IR IDISC IDNTT 

r?Z™  ^fI:«XP0S-t«L0C.™MAX.HODE,NNODE, IERR,MLOC, KPOS. LPOS 
^2S2 IAQ(80) ,NI(30,2) , IELN(9) . IFRST(9) , ILAST(9) , IELM( 1O00) 
COMMON IUR(30),IUCC120),IPOS(400),NCON( 30) 
EQUIVALENCE (IUR(1),ILCC1)),(IUC(1),ILR( 1)> 

6 (IELM(1),RELM(1)) 
EQUIVALENCE (C( 1) ,V( 1) ) , (C(30) ,CI( 1) ,VI( 1) > .( Y(300) , YI( 1) > 

IF( KK. GT. NNODE) KK=0 
IF( LL.GT.NNODE)LL=0 
IF(KK.EQ.0)GOTO 5400 
C(KK)=C(KK)-DS 
IF(LL.EQ.0)GOTO 5500 
C(LL)=C(LL)+DS 
RETURN 
END 
SUBROUTINE GNCUR 

. ROUTINE TO ADD GENERATED CURRENT SOURCES 
INTEGER*2 I ELM 
DOUBLE PRECISION V(60),U(30),C(60),Y(600) 
DOUBLE PRECISION DELTA, DELT, DS, VI( 1) ,CI( 1) .YK 1) 
DIMENSION ILC(1),ILR(1),RELM(1)   "•l'il"'YI{" 
COMMON U,C,Y,DS, DELT, DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM( 6) , A( 8) , CSAT, VT, VCT, TYPE 
COMMON IEL,JJ,KK,LL,MM,HN,IFLG,JFLG, ITT, ITER. IV IR IBISC ITINIT 
COMMON IPLT, IPEN,LTYPE, ITEMP. ITOTL, IOUT; JOOT: INPT JFOHH 
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COMMON MXLST,MXPOS,MXLOC,NDnAX,HODE,BHODK, IERR,MLOC,KPOS,LPOS 
COMMON IAa(B0) ,N1(30,2) , IELN(9) , IFRST(9) , IiAST(9) , IELM( 1000) 
COMMON IUR(3e),IUC(120),IPOS(400),NCOH(30) 
EauiVALENCE ( IUR(1),ILCC1)).(IUC(1),ILRC 1)). 

8 ( IELM( 1) ,RELM( 1)) 
EGUIVALENCE ( C( 1) , V( 1) ) , (COO) .CK 1) , VI( I)) ,(Y(3«0) ,TI< D) 
EaUIVALENCEC1ELN(9),12) 

C 
C . .. 
1350 

C 
c . . . 
1360 
1365 

C 
C ... 
1370 

1375 

13B0 
1390 
1400 

LL=0 
KP0S=IFRST(9) 
DO 1400 1 = 1, 12 
JP0S=IELM(KP0S+1) 
NP0S=IELM(KP0S+2) 

. DURING AC ANALYSIS ONLY ADD AC SOURCE CURRENTS 
IF( INPT.NE.NPOS.AHD.irLG.Ea.9) GOTO 1390 
KK=lELM(KP0S+3) 
M=IELM(KF0S+4) 
TC=1.0 
IF( ITEMP.EQ.0) GOTO 1350 
NN=1TEMP+2*M+1 
TC= 1. 0+RELM( NK) «DTEMP+RELM( NK+1) *DTEMP*DTEMP 

. RESISTOR CONNECTED TO VOLTAGE SOURCE 
IF(M.GT. DGO TO 1360 
DS=-RELM( NPOS+3) /( RELIK JPOS+3) *TC) 
GO TO 1375 

. CAPACITOR CONNECTED TO VOLTAGE SOURCE 
IF(M.GT.2)G0 TO 1370 
DS=RELI« HPOS+3) *HELM( JPOS+3) *TC 
DS=-DS/DELT 
IF( IFLG.Ea.9) GO TO 1330 
DS=DS*2.0D0 
GO TO 1375 

. INDUCTOR CONNECTED TO VOLTAGE SOURCE 
IF(M.GT.3)G0 TO 1400 
DS=HELM( NP0S+3) /RELMC JPOS+3) 
DS=-DS*DELT 
1F(irLG.Ea.9) GO TO 1380 
DS=DS*0.5D0 
CALL ADCUR 
GO TO 1390 
CALL ADCPC 
ICP0S=KP0S+4 
CONTINUE 
RETURN 
END 
SUBROUTINE ACSOL 
MAIN AC ANALYSIS ROUTINE USED VITH BIASTB. 8^12-77 

. USING STANDARD AC ANALYSIS PROCEEDURE VITH AC BJT LOAD 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30).C(60), Y( 600) 
DOUBLE PRECISION DELTA,DELT, DS.VK 1) ,CI( 1) ,YI( 1) 
DIMENSION ILC(1),ILRC1),RELM(1) 
COItflON U,C,Y,DS,DELT,DELTA 
COMMON T0, TEMP, DTEMP 
COBKON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE ____ 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IDWIT 
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, 10UT, JOUT, INFT, IFORM 
COMMON MXLST,MXP0S,MXL0C,NDMAX,H0DE,NNODE, IERR, MLOC.KEOS.LPOS 
COMMON lAftCBO),NI(30,2),IELNC9),IFRST(9),TLAST(9),lELMC1000) 
COMKON IUR(30),IUC(120),IPOS(400).NC0H(30) 
EauiVALENCE (IURC1),ILC(1)),(IUC(1),ILR(1)), 
3 ( IELM( 1) ,RELM( 1)) 
EQUIVALSNCE (C(l),V(l)),(C(3O),Gl(l),Vr(l)),(Y(300),YI<l)) 
EftUIVALENCE (IELN(9),I2) 

900 

FST0P=TM(2) 
NDEC=TM(3) 
IPRT=TM(4) 
rKEa=TM( 1) 
FMULT=FREa 
IFREa=0 

.   ZERO DC SOURCES 
DO 900   I=NH0DE,N0DE 
V(I)=0.D0 
CONTINUE 
VIN=RELM(INPT+3) 

114 



APPENDIX E 

C DETERMINE INPUT NODE 
IH=IHPT*2 
IH=IELM(IN+7) 

C .... STORE UNITY VOLTAGE IN AC INPUT SOURCE 
RELMCIHPT+3)=1.0 
IF(IEL.EQ.6) V(IN) = l.De 

920   W=6.2B31*FREa 
DELT= 1.0/W 

C   ZERO COMPLEX CURRENT VECTOR 
DO 1050 1=1,NODE 
C(I)=0.DO 
CI(I)=O.D0 

1050  CONTINUE 
C ZERO COMPLEX ADMITTANCE MATRIX 

II=2*ML0C-N0DE 
DO 1100 1=1.11 
Y(I)=0.D0 
YI(1)=0.D0 

1100  CONTINUE 
C   LOAD AC MATRIX 

CALL ELOAD 
C .... IF CURRENT SOURCE INPUT 

IF(IEL.NE.5) GO TO 1200 
IJ=INPT*3+7 
KK=IELM( ID 
LL=IELM(II+l) 
DS=1.0D0 
CALL ADCUR 

C  ADD GENERATED CURRENT SOURCES 
1200  IF(I2.EO.0) GO TO 1250 

CALL GHCUR 
C  FORWARD AND BACK SUBSTITUTE TO GET NEV VOLTAGES 
1250 CALL DECAC 

CALL SOLAC 
C 

U1 = V(J0UT) 
U2=VI(J0UT) 
VMAG=U1*U1+U2«U2 

1500  AMAG=SaRT(VMAG) 
IF( IPLT.Eft.O) GO TO 1600 
IF(IPRT.HE.2) GO TO 1900 

1600  PHASE=ATAN(U2/U1)*57.2958 
IFCUl.GT.O.) GOTO 1900 
PHASE=PHASE+SIGN(180.,U2) 

C 
1900  IF( IPRT.Ett. 1).4MAG=8.68589*AL0G(AMAG) 

1F( IPLT.EQ.0)GO TO 2100 
EFREQ= ALOG( FREQ) *0.434294 

G 
IF(IPRT.CE.6) GO TO 2200 
IF(IPRT.NE.2) GO TO 2000 
AKAG= PHASE 

2000  CONTINUE 
C     CALL DRAWEFREO.AMAG, IPEN^) 

1PEN=1 
GO TO 2200 

2100 VRITE( IUNIT,2101) FREQ, AMAG, PHASE, Ul, U2 
2101 FORMAT(1X,G12.4,F12.5.F11.4,2G12.4) 
2200  IFREQ=IFREa+l 

IF( IFREQ.GT.NDEOGO TO 2300 
PVR=IFREft 
FTEM=10.0**(PVR/FLOATCNDEC>) 
FREa= FMULT*FTEM 
IF(FREQ.GT.FSTOP) GO TO 2400 
GO TO 920 

2300  FMULT= 10. *FMULT 
IFREa=0 
GO TO 2200 

2400  RELM( IHPT+3)=VI1I 
RETURN 
END 
SUBROUTINE BJTAC 

0 LOAD AC BJT MODEL INTO Y 8 C ARRAYS 
INTEGER ftl 
INTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30>,C(60), Y(6O01 
DOUBLE PRECISION DELTA, DELT, DS.VK 1) .CK 1) ,YH 1) 
DIMENSION ILC(1),ILR( 1),RELM(1) 
COMMON U,C.Y,DS.DELT.DELTA 
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COMMON  T9,TEMP,DTEMP 
COMMON  TM(6) , A( 8) , CSAT, VT, VCT, TiTE 
COMMON   IEL,.IJ,KK,LL,r!M,KN, IFLG, JFLG. ITT, ITER, IW, IR, IDISC, IOTIT 
COMKON   IFLT,IPEN.LTYPE,ITEMP,ITOTL,ICUT.JOUT,INPT,IFORM 
COTIHOn MXLST.MXPOS.MXLOCNDMAX.NODE.HNODE, IEnR,MLOC.KPOS,LPOS 
COMMON   IAa(80),NIC 30,2),IELNC9),IFRST(9).ILAST(9),IELM( 1000j 
COMMON   IUR(30),IUC(120),IPOS(4O0),HC0H(30) 
EQUIVALENCE  (IUR(1),ILCC1)),(IUC(I),ILR(l)), 

8   ( IELM( 1) ,RELM( D) 
EQUIV.ALENCE   ( C( 1) , V( 1)) , ( C( 30) , CI( 15 , VI( 1) ) , C YOOO) , YK 1) ) 
EQUIVALENCE  CIELN(4),Q1) 

C 
KP0S=IFHST{4) 
DO 2000   I=1,Q1 
MP0S=KP0S/2 
ITT=IELM(KP0S+4) 
KK=TELM(KP0S+7) 
LL=!ELM(KP0S+8) 
MM= IELM(KP0S+5) 
CEEQ=0.0 
CCEQ= 0.0 
BF=RELM< ITT+4) 
GMF = RELM(MP0S+7) 
GPIF=GMF/BF 
BR=RELM( ITT+S) 
CMri= RELMt MPOS+S) 
GP1R=CMIVBII 
IFCKK.LE.NNODE)   GO TO   1100 
CEEQ=CEEQ-GMll»V( KK) 
KK=0 

1100      IF(LL.LE.NNODE)   GO TO   1200 
CCEO=CCEQ+GMF«V( LL) 
CEEQ= CEEQ+CMR*V(LL) 
LL=0 

1200  IFCMM.LE.NHGDE) GO TO 1300 
CCEQ=CCEQ-GMF*VC MM) 
MM=0 

1300     IF(KK.EQ.0)CO TO   1500 
Y( KK) = Y( KiO +GMR+GPIR 
C( KK) =C( KK) + ( 1. 0+ 1. f)/BK> *CEEQ-CCEQ 
IF(LL.Ea.0)GO TO   1400 
JJ=   iriDX<KK,LL) 
Y(JJ» = Y(JJ)+GMF-GMR-GPIR 
Y(im)=Y(NN)-GPiR 

1400      IF(MM.EQ.0)G0 TO   1600 
JJ=   INDX(KK,MI1) 
Y(JJ)=Y(JJ)-GMF 
Y(NN) = Y(NN)-GMn 

1500      IF(J1M.EQ.0)GO TO   1600 
Y( KM) = Y( MM) +CMF+GP IF 
C< MM) =C( MM) + ( 1. 0+ 1. 0/BF) *CCEQ-CEEQ 
IF(LL.EQ.0)GO TO   1700 
JJ=   INDXCMM.LL) 
Y( JJ)=Y( JJ)-GMF-GPIF+GMR 
Y(NN)=Y(NN)-GPIF 

1600      IF(LL.EQ.0)GO TO   1700 
Y(LL) = Y(LL)+GP1F+GPIR 
C( LL)=C( LL)-CCEQ/BF-CEEQ/BR 

1700     KPOS= IELM(KP0S+1) 
2000     CONTINUE 

RETtrRM 
END 
SUBROUTINE DECAC 

C  PERFORMS LU DECOMPOSITION BASED ON RECORDED SP4HSITY 
C 

DOUBLE PRECISION DR,DI,UR,0I,AR 
IRTEGER*2 IELM 
DOUBLE PRECISION V(60),U(30),C(60),Y(600) 
DOUBLE PRECISION DELTA, DELT, DS, VI( 1) ,CI( 1) ,YH 1) 
DIMENSION ILC(1),ILR(1),RELM( 1) 
DIMENSION IORDR(1) 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM( 6),A(8),CSAT,VT,VCT,TYPE 
COMMON IEL, JJ.HCLL.MM.NN, IFLG, JFLG, ITT, ITER, IW, IR, IDISC, IUNIT 
COMMON IPLT, IPEN,LTYPE, ITEMP, ITOTL, IOUT, JOUT, INPT, IFORM 
COMMON MXLST, MXPOS, MXLOC, NDM,\X, NODE, NNODE, IERR, MLOC, KPOS, LPOS 
COMMON IAQ(80> ,NU30,2) , IELI»(9) , IFflSTC9) , IL-AST(9) , IELM( 1600) 
COMMON IUIl( 30) , IUC( 120) , IPOS( 400) , NC0N< 30) 
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E&UIVALEKCE ( IUR( 1) , ILC(D) ,( IUC( 1) , ILR( 1)), 
8 ( IELM( I) ,RELM( I)) 
EttUIVALENCE (C( 1) , V( 1)) , (COO) ,C1{ 1) , Vl( 1)) , ( Y( 380) , YI( 1)) 
EaUIVALENCECNK 1,1), JORDIU 1)) 

C 
C     lUR UPPER TRI ANGULAR ROW ELEMEMT COUHTER 
C     IUC  UPPER TRIANGULAR ELEMENT COLUMN INDICATOR 
C     ILC  LOVER TRIANGULAR COLUMN ELEMENT COUNTER 
C     1LR LOWER TRIANGULAR ELEMENT ROW INDICATOR 
C 

IFdJNODE.EO. 1) GO TO 40 
NN=NN0DE-1 
KHT=0 
DO 30 1=1,NN 
L=I0RDR( I) 
UR=Y(L) 
UI = YI(L) 
D3=UR*UR+UI*UI 
IUS=IUR( D+ML.OC 
IUE=IUR( I+1)+I1L0C 
IL=ILC( D+HODE 
ILE=ILC( I+1)+N0DE 

0 
C  DOW LOVER TRIANGLE COLUMNS 
5     IF(1L.GE.ILE) GO TO 30 

DR=(Y( IL)*UR+YI( IL)*UI)/DS 
DI = (YI( IL)*UR-Y( IL)*UI)/DS 
Y( IL)=DR 
YI(IL)=DI 
IL=IL+1 
IU=IUS 

C 
C    ACROSS UPPER TRIANGLE ROWS 
20    IFCIU.GE.IUE) GO TO 5 

KMT=KNT+1 
K=IPOS(KNT) 
AR=Y(K)-(Y( IU)*DR-YI( rU)*DI? 
YI(K)=YI(K)-(Y( IU)*DI+YI( IU) «DR> 
Y(K) = AR 
IU=IU+1 
GO TO 20 

30 CONTINUE 
40    RETURN 

END 
SUBROUTINE SOLAC 

C 
C PERFORMS FORWARD AND BACKWARD SUBSTITUTION 
C     USING SPARSE POINTERS 
C MODIFIED FROM BIAS-N S-19-77 

INTEGER*2 IELM 
DOUBLE PRECISION DR,DA,DB 
DOUBLE PRECISION V( 60) , U(30) ,C(60) , Y(60O) 
DOUBLE PRECISION DELTA, DELT, DS , VI ( 1) ,CI( 1) ,YU 1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( 1) 
DIMENSION lOKDR(l) 
COMMON U, C, Y, DS, DELT, DELTA 
COMMON T0,TEMP,DTEMP 
COMMON TM(6) ,AC8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG,JFLG, ITT, ITER, IW, IR, IDISC, IUHIT 
COMMON IPLT,IPEN.LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM 
COMMON MXLST,MXP0S,MXLOC,NDMAX,NODE,RNODE, IEnR,MLOC, KPOS, LPOS 
COMMON lAftCSO).NI(30,2).IELN(9).IFRST(9).1LAST(9).XELMC1000) 
COMMON IUR( 30),IUC(120),IPOS( 400),NCON( 30) 
EttUIVALENCE ( IUR( 1) , ILC( 1)) , ( IUC( 1) , ILR( 1) ) . 

8 ( IELM( 1) ,RELM( D) 
EQUIVALENCE (C( 1) ,V( D) ,(C(30) ,CI( 1) ,VI( 1)) , (y( 300) ,YI< ») 
EQUIVALENCEC NI(1,1),IORDR(1)) 

C 
C  FORWARD SUBSTITUTION 

NN=NN0DE-1 
1F(NN.GT.0) GO TO 10 
DA=Y( 1) 
DB=YI( 1) 
DS=DA*DA+DB*DB 
DR= ( C( 1) *DA+C 1(1) *DB) /DS 
VI( 1) = (CI( 1)«DA-CC 1)*DB)/DS 
V( 1)=DR 
GO TO 70 

10    DO 30 1=1,NN 
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L=IORDR( 1) 
IL=ILC( I) 
ILE=ILC( 1+1) 

20 NL=IL+N0DE 
IF( IL.GE.ILE)   GO TO  30 
nR=ILR( ID 
DR=C( KR) -( Y( NL) *C( L) -YIC NL) *C I( Ln 
CI ( NR) = CI ( NR) - ( Y( NL) *C I ( L) +YI ( HL) *C< L)) 
C(NR)=DR 
IL=IL+1 
GO TO 20 

30    CONTINUE 
C 
C  BACK SUBSTUTION 

L=IORDR(NNODE) 
DA=Y(L) 
DB=YI(L) 
I)S = DA*DA+DD*DB 
DR= < C(L)*DA+CI ( L)*DB)/DS 
CI ( L) = ( C K L)*DA-C(L)*DB)/DS 
C(L)=DR 
DO 50 I=1,KN 
NUI=NNODE-I 
L= lORDRCNUI) 
IU=IUR(NUI) 
IUE=IUR(NUI+1) 

33    NL=IU+MLOC 
IF(IU.GE.IUE) GO TO 45 

40    IC=IUC(IU) 
DR=C(L)-(Y(RL)*C( IC)-YI( NL)*CI( IC) ) 
CI(L)=CI(L)-(Y(NL)*GI( IC)+YI( NL) *C( IC) ) 
C(L)=DR 
IU=IIJ+1 
GO TO 35 

45.   DA=Y(L) 
DB=YI(L) 
DS=DA«DA+DB*DB 
DR= (C( L) *DA+C I ( L) *DB) /DS 
CI ( L) = (C1(L)*DA-C(L)*DB)/DS 
C<L) = DR 

50    CONTINUE 
C TRANSFER INTO COMPLEX VOLTAGE VECTOR 
C     DO 60 I=1,NN0DE 
C     V(I)=C(I) 
C     VI(I)=CI(I) 
C60    CONTINUE 
70    RETURN 

END 
SUBROUTINE ADCPR 

C ADD IMAGINARY CONDUCTANCE TO Y MATRIX 
INTEGER*2 IELM 
DOUBLE PRECISION V(60) , UOO) ,C(60) , Y(6«0) 
DOUBLE PRECISION DELTA,DELT,DS, VI( 1) ,CI( 1) ,YK 1) 
DIMENSION ILC( 1) , ILR( 1) ,RELM( U 
COMMON U,C,Y,DS,DELT,DELTA 
COMMON TO,TEMP,DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IW, IR, IDISC, IUWIT 
COMMON IPLT, IPEN.LTYPE, ITEMP, ITOTL, IOUT,JOUT, INPT. IFORM 
COMMON MXLST,MXPOS,MXLOC,NDMAX,NODE,NNODE, IERR,ML0C,KPOS,LPOS 
COMMON lAOCBO) ,NI(30,2) , IELN(9) , IFRST(9), ILAST{9) , IELM( 1000) 
COMMON IUR(30),IUC(120),IPOS(40O),NC0H(30) 
EQUIVALENCE ( IUR( 1) , ILC( 1)),(IUC( 1),ILR( D), 

S ( IELM( 1) ,RELM( 1)> 
EOUIVALENCE ( C( 1) , V( 1)) , (C( 30) , CI( 1) , VI( 1) ) , ( Y( 300) ,YI( D) 

C 
IF( KK. GT. KNODE) KK=0 
IF(LL.GT.NNODE)LL=0 
ir(KK.Ea.0)COTO 100 
YI(KK)=YI(KK)+DS 
IF(LL.Eft.0)GOTO 200 
JJ= INDX(KK,LL) 
YI( JJ)=YI( JJ)-DS 
YI(NN) = YI(NN)-DS 

100   IF(LL.Eft.0)GOTO 200 
YI<LL)=YI(LL)+DS 

200   l^ETUHN 
END 
SUBROUTINE ADCPC 
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C ADD IMAGINARY CUKRENTS TO CUHREHT VECTOR 
IKTEGER*2 IELM 
DOUBLE PRECISION V(60),D(3e),C( 60),Y( 600) 
DOUBLE PRECISION DELTA, DELT, DS.VK 1) ,CI( 1> , YI( 1) 
DIMENSION ILC(1),1LR(1),RELM( 1) 
COMMON 0,C,Y,DS,DELT,DELTA 
COMMON TO, TEMP, DTEMP 
COMMON TM(6) ,A(8) ,CSAT,VT,VCT,TYPE 
COMMON IEL,JJ,KK,LL,MM,NN, IFLG.JFLG, ITT, ITER, IV, IR, IDISC. lUHIT 
COMMON IPLT,IPEN,LTYPE,ITEMP,ITOTL,IOUT,JOUT,INPT,IFORM 
COMMON I1XLST,MXP0S,MXL0C,NDMAX,N0DE,NN0DE, IERR, MLOC,KPOS,LPOS 
COMMON IAQ(80),NI(30,2),IELN(9),irHST(9),ILAST(9),IELM(1000) 
COMMON 1UR( 30),IUC( 120),IPOS(400),NCON(30) 
EQUIVALENCE (IUR( 1),ILC(1)),(IUC(1),ILR(1)>, 

a ( IELM( 1) ,RELM( I)) 
EOUIVALENCE (C( 1) , V( 1)) , ( C( 30) , CI( 1) , VI( 1)) , ( Y( 300) , YI( »•) 

C 
IF( KK. GT. KKODE) KK=0 
IF( LL.GT.HNODE)LL=0 
lF(iCK.EQ.0)COT0 300 
CI(KJC)=CI(KK)-DS 

300   IF(LL.EQ.0)GOTO 400 
C1(LL)=CI<LL)+DS 

400   RETURN 
END 
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