EUROPEAN THEATER COMMAND, CONTROL, AND COMMUNICATIONS (ETC³) COMPUTER MODEL USER'S GUIDE

The BDM Corporation
7915 Jones Branch Drive
McLean, Virginia 22102

10 April 1979

Topical Report for Period 1 October 1977–10 April 1979

CONTRACT No. DNA 001-78-C-0077

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B363078464 099OAXCA11001 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B363078464 099QAXCA11001 H2590D.
PREFACE

The BDM Corporation developed the European Theater Communication, Command, and Control (ETC\(^3\)) model for the INCA Program under Contract DNA001-77-C-0060. The ETC\(^3\) model and associated data base may be used to study the vulnerability of communication systems to nuclear attack.

The intent of this user's guide prepared under Contract DNA001-78-00-77 is to acquaint the user of the ETC\(^3\) model with the input data preparation and the individual program execution procedures. The ETC\(^3\) programmer's guide which was published in November 1978 serves as a companion document that describes the model structure in sufficient detail to allow program maintenance and software modification.

Comments and suggestions concerning this report should be directed to:

The BDM Corporation
7915 Jones Branch Drive
McLean, Virginia 22102.

Attention: Dr. William E. Sweeney, Jr.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>4</td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.0 General 5
1.1 INCA and the ETC³ Model 5

II INPUT EDITOR

2.0 Introduction 10
2.1 IE Structure 10
2.2 Input Editor -- Phase B (IEB) 12
2.3 Input Editor -- Phase C (IEC) 122
2.4 Input Editor -- Phase P (IEP) 122

III DAMAGE PROGRAM

3.0 Introduction 126
3.1 Nuclear Weapon Effects 128

REFERENCES 141
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ETC3 model</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>IE structure</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Input data structure</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Input format example</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Representative communication system</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>IEB program control cards</td>
<td>121</td>
</tr>
<tr>
<td>2.6</td>
<td>IEC computer control cards</td>
<td>123</td>
</tr>
<tr>
<td>2.7</td>
<td>IEP program control cards</td>
<td>125</td>
</tr>
<tr>
<td>3.1</td>
<td>DAMAGE program basic processing structure</td>
<td>127</td>
</tr>
<tr>
<td>3.2</td>
<td>High altitude EMP geometry</td>
<td>132</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Input editor section maximums</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Input data sections</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Input data summary</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Data-name summary</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Input units</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Control section data-names</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>THREATCHAR section data-names</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>SITECHAR section data-names</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>COMSYSTEMCHAR section data-names</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>MESSAGECHAR section data-names</td>
<td>82</td>
</tr>
<tr>
<td>2.11</td>
<td>SITE section data-names</td>
<td>87</td>
</tr>
<tr>
<td>2.12</td>
<td>COMLINE section data-names</td>
<td>94</td>
</tr>
<tr>
<td>2.13</td>
<td>EVENT section data-names</td>
<td>102</td>
</tr>
<tr>
<td>2.14</td>
<td>THREATBM data-names</td>
<td>108</td>
</tr>
<tr>
<td>2.15</td>
<td>IEB input data-names</td>
<td>118</td>
</tr>
<tr>
<td>2.16</td>
<td>Associated data-names</td>
<td>119</td>
</tr>
<tr>
<td>3.1</td>
<td>Thermal energy equations</td>
<td>137</td>
</tr>
</tbody>
</table>
1.0 GENERAL

In September 1974, The Defense Nuclear Agency (DNA) initiated the Integrated Nuclear Communications Assessment (INCA) Program. In support of this program, The BDM Corporation (BDM) developed computer programs and a C^3 data base to support survivability/vulnerability assessments. Reference 1 provides a detailed description of the INCA Program issues and objectives and their impact on the European Theater.

The user's manual provides the technical information needed to use the BDM European Theater Command, Control, and Communications (ETC^3) model in the support of theater C^3 vulnerability assessments. Chapter II presents the INPUT EDITOR (IE) set of computer programs which support ETC^3 and their utilization in preparing a vulnerability assessment data base. Chapter III presents the DAMAGE program which performs the nuclear weapons effect computations. This program is employed to determine the survivability of the C^3 sites and systems.

The European Theater Command, Control and Communications (ETC^3) Model Programmer's Guide (Reference 2) serves as a companion document, and it provides additional details on the program structure. These two documents provide a basis from which the ETC^3 computer code (Reference 4) can be executed and maintained.

1.1 INCA AND THE ETC^3 MODEL

INCA Program was aimed at increasing our understanding of the impact of tactical nuclear weapons effects on theater C^3. The ETC^3 model formed the basic framework for the INCA assessment methodology as well as for the generation of a data base structure to support European C^3 vulnerability assessments.

BDM support to DNA for the INCA Program resulted in two products which can be used by the Department of Defense (DoD) and other Federal activities in conducting command, control, and communications nuclear
vulnerability assessments. The first item is a data base to support European Theater C³ vulnerability assessments. Data was evaluated and consolidated by BDM into a European Theater C³ data base which is a comprehensive source of information on European command and control networks and communications systems. The data can be used for reference purposes and as input for the ETC³ model.

The second product is a group of computer codes that form the ETC³ model which can be used in nuclear vulnerability assessments of C³ systems. Theater capabilities, especially in Europe, involve interrelated command and control networks supported by numerous communications systems. Some of these capabilities are described by the data in the ETC³ data base. Knowledge of the probable survivability of these networks and communication systems for a variety of tactical nuclear environments is essential to integrated C³ planning functions. However, the volume and complex interrelationships of the data used to assess nuclear vulnerability require automated rather than manual techniques to produce reasonable, acceptable assessments rapidly. The developed computer programs can aid in:

(1) preparing vulnerability assessment data bases,
(2) evaluating threat scenario effectiveness, and
(3) computing nuclear weapons effects and determining system survivability.

1.1.1 ETC³ Data Base

The ETC³ data base consists of data in the areas of:

(1) C² networks and communication systems,
(2) threat scenarios, and
(3) nuclear effects vulnerability data.

A sizable data base on NATO, European national, U.S./NATO maritime and civil communication systems which are used to support NATO C² has been generated. Portions of the C³ data exist in the automated form required by the BDM computer programs. As data is collected and verified, it must be transposed into automated form to facilitate its use. The reader is referred to reference 3 for a description of the current status of the communication systems data base.
Selected threat data also forms part of the ETC\(^3\) data base. This threat data identifies a set of NATO military installations which can be specified as targets in assessment scenarios for the purpose of assessing collateral damage to nearby C\(^3\) systems. Included in the threat data base are the characteristics of Soviet tactical nuclear weapons, delivery systems, and an accounting of number of weapons. Two scenarios, a naval scenario developed under DNA's Naval Tactical Vulnerabilities program, and the WINTEX-75 scenario are available for use.

Vulnerability data for the C\(^3\) systems and sites was gathered from prior analyses and may be used to specify first-order vulnerability thresholds. These first-order vulnerability thresholds can be easily modified as additional data becomes available. The values are used in the systems level assessments to assess the survivability of the C\(^3\) structure.

1.1.2 ETC\(^3\) Model

Nuclear damage effects to command, control, and communications systems are calculated by the ETC\(^3\) model. The model consists of the Phase B, C, and P INPUT EDITOR (IE) programs and a nuclear weapons effect computer program (DAMAGE). The model is used to compute radiation (thermal and ionizing) and blast damage effects to communication sites, systems, and transmission capabilities from nuclear detonations. The scenario of nuclear play is developed by the user. INPUT EDITOR Phase B and C, identified as IEB and IEC, respectively, are used to generate the ETC\(^3\) scenario or vulnerability assessment data base. Phase P of the INPUT EDITOR (IEP) is used to produce a listing of the data base in a number of formats which are suitable for analytical review. The DAMAGE program performs the damage assessment of the communications links and nodes for the indicated nuclear weapons effects. Although not part of the ETC\(^3\) model, an optional ATTACK ALLOCATOR (AA) program was devised to permit the user to readily vary weapon lay-downs.

The model structure, shown in Figure 1.1, requires minimal user intervention once a satisfactory ETC\(^3\) data base has been produced by the IEB and IEC programs. The data base represents the primary source of input
optional, not integral part of ETC³ model

Figure 1.1. ETC³ model.
data for the IEP, DAMAGE, and AA computer programs. The greatest effort required of the user is to produce the input to the IEB program and to evaluate the results from the IEC program for data consistency. The remaining programs use the IEB and IEC prepared data base as inputs for the specialized processing to produce communication system network connectivity results and nuclear damage effects. These specialized programs are applications programs which use the IE-produced data base.

Based on the preceding summary description, the major emphasis of this user's manual is on the preparation of the data base for the systems level vulnerability assessment and the description of the nuclear weapon effects which impact on the survivability of communication links, sites, and systems. More effort is required of the user in data preparation and coding than in any other process related to using the ETC3 model. Thus a significant portion of the manual is dedicated to describing the input form of the data rather than describing how the programs are executed.
CHAPTER II
INPUT EDITOR

2.0 INTRODUCTION

The INPUT EDITOR (IE) consists of three separately executable, but interfaced, computer programs designed and developed by BDM to reduce data related problems in large scale simulations. Data related problems fall into two general categories; faulty data and inadequate data base maintenance. Faulty data problems include improper data type, values exceeding program established limits, and failure to initialize or set to default values. Data base maintenance related problems include incomplete or partial updating of the data base, poor identification or documentation, and failure to identify data element dependencies. IE performs preliminary processing of input data to reduce the occurrence of such errors.

Phase B and Phase C of the IE programs are used to consolidate all required data into a single data base with each data element occurring in a single location. The unique occurrence of each data element simplifies data update and verification procedures and can contribute to simplified design of applications programs. Default values are assigned to data elements not assigned values by the user to reduce the burden of data preparation. The assignment of default values and the use of range checks on user supplied values minimizes the occurrence of unexpected values in processing and calculations. Additionally, comments and documentation notes may be embedded in the consolidated data base to provide data base documentation and identification.

2.1 IE Structure

IE consists of the Phase B, Phase C, and Phase P computer programs and are typically used in the structure as shown in Figure 2.1. IE data base generation occurs in two phases, the first of which may occur a number of times. The initial phase is for individual sections of input data, described in 2.2, to be prepared and processed independently for correct input data syntax and permissible values, and the assignment of
Figure 2.1. IE structure.
default values if needed, Phase B can be executed a number of times until all input data sections are correct. It produces a set of data information records (DIRs) for use by the Phase C or Phase P programs. Usage of Phase B of IE is documented in section 2.2.

Phase C of IE does the linking and cross checking necessary of data appearing in different data input sections to establish the necessary cross references. It also does the processing needed to generate overall counts and data records required to describe the ETC³ data base. Phase C accepts the DIRs from Phase B and produces from the DIRs the consolidated ETC³ data base needed by the DAMAGE and ATTACK ALLOCATOR programs. Usage of Phase C of IE is documented in Section 2.3.

Phase P of IE is used to produce organized and formatted listings of the data base contents from either Phase B or Phase C program results. It produces a listing which is helpful in referencing or verifying data base contents. It can be used after Phase B execution on the resulting DIRs, but is not usually used until Phase C of IE is executed. Usage of Phase P of IE is documented in Section 2.4.

2.2 INPUT EDITOR -- Phase B (IEB)

IEB is the first of the IE programs to be used in the ETC³ data base generation process. As previously stated, the ETC³ data base is created in two phases, the initial phase is one in which input data sections are independently processed and the final phase is one in which the processed sections of data are linked together and all needed supporting data is generated to form a consolidated data base. The consolidated data base may be used by the Phase P IE program to produce a formatted and readable listing of the data base contents, or the DAMAGE program may use the data base for scenario nuclear effects analyses.

The ETC³ model structure, shown in Figure 1.1, has one major interface between the user and the model. The interface is the preparation of the ETC³ input data for the IEB program. The use of the IEC, IEP, and DAMAGE programs is a mechanical procedure consisting of setting program execution control parameter specifications and the generation of suitable
operating system job control cards to execute a particular program. The use of these programs requires minimal effort from the user.

Input data preparation for the IEB program is done by sections. Each section is processed independently, but all required sections must be successfully processed by the IEB program prior to attempting IEC program execution. Table 2.1 contains information concerning the maximum number of sections that can be processed. Figure 2.2 shows the input file structure.

User knowledge of the syntax rules and the interdependencies of the data elements within an input data section and between data sections is necessary to the successful preparation of input data for the IEB program. A section is provided below on the syntax rules for input data specification and coding, and immediately following is a description of the input data sections. A description of intra-and intersectional relationships of the input data is included. User familiarity with the syntax rules and input data sections is needed for the effective use of the ETC3 model.

2.2.1 Syntax Rules

The syntax and formatting rules for the input data to the IEB program are designed to ease the task of creating input data for large data bases. The data base is maintained in card image form with data contained in card columns 1-72 inclusive. Data input is free field, there are no special or reserved columns for data. All input data elements are of the form:

```
data-name  value
```

where

```
data-name  is a name that identifies this data element, and
value       is the value for this data element.
```

The "data-name" identifies a data element and "value" represents the number, character string, or some other value to be assigned to the data element. The input data prepared by the user consists of specific values to be assigned the data-name. The input data can be assigned values in any of the first three categories listed below, and special characters and
Table 2.1. Input editor section maximums.

<table>
<thead>
<tr>
<th>SECTION NAME</th>
<th>MAXIMUM COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>1</td>
</tr>
<tr>
<td>THREATCHAR</td>
<td>15</td>
</tr>
<tr>
<td>SITECHAR</td>
<td>127</td>
</tr>
<tr>
<td>COMSYSTEMCHAR</td>
<td>31</td>
</tr>
<tr>
<td>MESSAGECHAR</td>
<td>63</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>127</td>
</tr>
<tr>
<td>SITE</td>
<td>1000</td>
</tr>
<tr>
<td>COMLINE</td>
<td>1000</td>
</tr>
<tr>
<td>COMNET</td>
<td>63</td>
</tr>
<tr>
<td>EVENT</td>
<td>255</td>
</tr>
<tr>
<td>THREATBM</td>
<td>4095</td>
</tr>
</tbody>
</table>
Figure 2.2. Input data structure.
comments may be included in the input data. Syntax rules exist under the
five categorical headings:

- Names
- Numbers
- Character strings
- Comments
- Special characters

2.2.1.1 Names. The names are grouped into the three categories: data-
names, specific-names and user-names. The syntax rules for the creation of
a name are applicable to all categories of names and these rules are as
follows:

- "Name" may contain 1-16 alphanumeric characters (A-Z, 0-9)
- First character must be a letter of the alphabet
 a. Data-names identify data elements. The user must use
 the data-names or their abbreviations, spelling the names exactly as indi-
cated in 2.2.2. Some examples of data-names are:
 FREQ
 IDTHREAT
 CEP
 b. Specific-names are names selected from a predefined
 list. The list contains a number of names which are suitable as input data
 values for a data-name. The section names are an example of specific-
names. Some specific-names are:
 ICBM
 CONTROL
 THREATCHAR
 c. User-names are created by the user. They are used to
 identify an entity in the data base. An entity is described by all input
data following the IDENT or ID data-name up to the next IDENT or DEFINE
data-name. IDENT and DEFINE are documented in more detail in 2.2.2.
The user may create any user-name except the word DEFINE. Some examples of user-names are:

F106
BOMBER16
RAMSTEIN
DCS105A

Some examples of invalid names and the cause of error are:

103X - initial character not alphabetic
F-35 - contains a dash (-)
AW A3 - contains a blank
Tauberrettersheim - too many characters

2.2.1.2 Numbers. A number is made up of a string of contiguous digits 0-9 having at most one decimal point. The user of the decimal point is optional for integers. Each number is set off from all other data by a pair of delimiters, one occurring before the number, the other occurring after the number. Blanks are delimiters. A plus (+) or a minus (-) may be placed immediately preceding a number to indicate its sign, however, the use of the plus (+) is optional. The last number in the set of following examples can be specified without the use of the decimal point.

110 - one number, one hundred ten
1 10 - two numbers, one and ten
11 0 - two numbers, eleven and zero
+3
-7.12
-.5
8.

For large or small numbers, an exponent form may be used. The digits are followed by the letter E, followed by the exponent value. Negative exponents must be preceded by a minus sign.

1.5E3 is 1500
1.3E+4 is 13000
6.7E-2 is 0.067
.5E-3 is 0.0005
2.6E is 2000000

The E format requires more processing time than the regular format, therefore, it should be used only for very large or very small numbers. The E and subsequent exponents forms a single number, therefore blanks are not allowed before or after the E or exponent. The exponent part may not contain a decimal point.

2.2.1.3 Character Strings. Character strings may contain any Binary-Coded-Decimal (BCD) character. The rules for character strings are:

- Precede and follow the desired characters by an apostrophe.
- Each string can consist of 0 to 255 characters.
- If an apostrophe is to be used inside the string, two apostrophes together are used. The extra apostrophe is removed by the Input Editor.
- Comments cannot be in a character string, because the comments are treated as part of the character string.
- The ending apostrophe must be followed by a blank or other delimiter. Examples are:

 'A-7'
 '12*1 34$78'
 'DON''T'

 In the last example, the program will use DON'T as the resultant string.

 To avoid problems with some communication lines when a remote terminal is used, the characters should be limited to valid printable characters. Two adjacent colons should not be used.

2.2.1.4 Comments. Comments may be inserted in the input wherever blanks appears. Thus, notes and documentation can be placed with the data and the program will print the comments. Each comment, no matter how long, is replaced by a single blank character. The text of a comment is never
passed to any other program. A comment may extend over several input card images. Comments follow these rules:

- Begin the comment with /* without blank between the / and *.
- End the comment with */ without a blank between the * and /.
- Any text with any number of BCD characters is allowed.
- A comment may be placed anywhere a blank may appear except in a character string or within another comment. In a character string, the /* and */ are not recognized as comments, but as part of the character string.

Some examples of comments are:

/* AREA #1 */
/* This is the Communication System for Division 3*/
/* THIS REPORT STUDIES ONLY THE ALPHA SCENARIO*/

2.2.1.5 Special Characters. Several special characters are used by the Input Editor. These characters and their usage are described below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Character</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>plus</td>
<td>Sign of numeric data</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>minus</td>
<td>Sign of numeric data</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>period</td>
<td>Decimal point in a number</td>
</tr>
<tr>
<td>4</td>
<td>/*</td>
<td></td>
<td>Begin a comment</td>
</tr>
<tr>
<td>5</td>
<td>*/</td>
<td></td>
<td>Terminate a comment</td>
</tr>
<tr>
<td>6</td>
<td>'</td>
<td>apostrophe</td>
<td>Character string delimiter</td>
</tr>
<tr>
<td>7</td>
<td>,</td>
<td>comma</td>
<td>Separate items in a list</td>
</tr>
<tr>
<td>8</td>
<td>()</td>
<td>parenthesis</td>
<td>Group items in a list</td>
</tr>
<tr>
<td>9</td>
<td>=</td>
<td>equal</td>
<td>Introduce a list of items</td>
</tr>
<tr>
<td>10</td>
<td>blank</td>
<td></td>
<td>Separator</td>
</tr>
</tbody>
</table>

The first six characters have already been described in the preceding paragraphs.
a. Blank

Blanks may be used freely throughout the Input Editor input. They may or may not surround the delimiters (comma, parentheses, plus and minus signs). In general, any number of blanks may appear wherever one blank is allowed. The blank is a delimiter. It is used to separate data-names from values. The blank may also be used to separate items in a list.

b. Equal

The equal symbol is required before the left parenthesis. An optional use of the equal symbol is between a data-name and the associated value. This particular form may be found in some older data. Because this use of the equal symbol will be illegal in a future version of the Input Editor, all new data being prepared should avoid the use of the equal except where required.

c. Parentheses

Parentheses are optional in most cases, but if parentheses are used to enclose a list, there must be an equal sign between the data-name and the left parenthesis. Blanks may appear before or after the equal sign. All input lists are of the form:

\[\text{data-name} = (\text{value}) \]

"Data-name" is a data-name as described in 2.2.1.1. "Value" can have several forms:

(1) **List of Numbers**

Numbers in a list may be separated by a comma, or one or more blanks. Some equivalent examples are:

\[\text{COMMIT} = (0.5,1.,6.7,8) \]

or

\[\text{COMMIT} .51.67.8 \]

or

\[\text{COMMIT} .51.,67.8 \]

(2) **List of Specific-Names**

A list of specific-names must be enclosed in parentheses, and there must be an equal sign between the data-name and the left
parenthesis, a comma or one or more blanks may separate specific-names in a list. Some equivalent examples are:

\[
\begin{align*}
\text{KEY} &= (\text{CELL TIME UNIT}) \\
\text{KEY} &= (\text{CELL, TIME, UNIT})
\end{align*}
\]

(3) List Containing A Data-Name And Its Value(s)

In this case, the list must be enclosed in parentheses and there must be an equal sign between the data-name and the left parenthesis. Blanks must appear between the value and the next data-name. Commas cannot be used in this particular type of list. A valid example is:

\[
\text{ALTHIGH} = (\text{FRONT .6 BEAM .6 STERN .2})
\]

2.2.1.6 Location. A frequent input is the specification of the location of a site. With the exception of the ballistic missile launch and burst locations, all locations follow the rules given below:

- The data-name is followed by an equal sign, followed by the location enclosed in parentheses.
- The UTM location follows the left parenthesis, and is composed of two letters (the 100KM square designator), followed by the Easting and Northing. The number of digits is always even and can be from 2 through 10 digits. Examples of valid UTM locations are:

 AA00
 NA4378
 PB1234512345

- The UTM location is always within the grid zone given in the section CONTROL.

An altitude may follow UTM location. Geographic coordinates may also be used in the specification of a location. The latitude and longitude are given, respectively, in the form (dd mm ss, dd mm ss). The pairs of letters dd, mm, ss are used to designate degrees, minutes, and seconds, respectively. If the altitude is omitted, an altitude of zero meters above MSL is assumed by the program. A space separates the location and altitude value. An altitude descriptor may follow the altitude value. The descriptor is either "MSL" or "HAT". If neither is given, the MSL (mean sea level) is assumed.
Some examples of location inputs are:

LOC = (30 10 6, 5 10 15)

LOC = (27 30, 5.7,200) /*THE ALTITUDE IS ASSUMED MSL*/

LOC FM980 /*ERROR, NO PARENTHESES, ODD NUMBER OF DIGITS*/

2.2.2 IEB Input Preparation

Input data to IEB can consist of up to eleven data sections, these sections are listed in Table 2.2. The input data is ordered by the same section sequence as that shown in the table. However, sections may be omitted if they are not needed for the ETC^3 data base. The CONTROL section is the single input data section which is required. It identifies the particular execution of IEB.

All other input data sections provide input data values so that the ETC^3 data base can be generated. Each section is identified by a section heading which follows the data-name DEFINE. DEFINE is the single reserved word of IEB, it cannot be used in any way other than to identify the beginning of an input data section. It acts as a section delimiter. In all sections but the CONTROL section, the data-name IDENT or its abbreviation ID is used to identify data entities for the section. A data entity consists of the group of data-names and their user assigned or IEB assigned default value. The data-names which jointly identify a data entity are described in detail on a sectional basis.

In summary, input data to IEB consists of a subset of the sections identified in Table 2.2. Each section, except the CONTROL section, is made up of data entities as required are included in each section. Each entity is fully described by a combination of user supplied and default values for the group of data-names identifying the entity.

2.2.3 Input Data

The IE produced data base is usable by a number of applications programs which access subsets of the ETC^3 data base. The DAMAGE program is an example of an applications program. In order to be usable by various applications programs, the data base contains more data than is required by
Table 2.2. Input data sections.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>Identifies IEB execution, security classification, and UTM grid zone</td>
</tr>
<tr>
<td>THREATCHAR</td>
<td>Identifies a variety of threat characteristics</td>
</tr>
<tr>
<td>SITECHAR</td>
<td>Identifies a variety of site characteristics</td>
</tr>
<tr>
<td>COMSYSTEMCHAR</td>
<td>Identifies a variety of comsystem characteristics</td>
</tr>
<tr>
<td>MESSAGECHAR</td>
<td>Identifies a variety of message characteristics</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>Identifies procedures for the processing of messages</td>
</tr>
<tr>
<td>SITE</td>
<td>Identifies the sites by location, elevation, etc.</td>
</tr>
<tr>
<td>COMLINE</td>
<td>Identifies the lines connecting to comsystems or sites</td>
</tr>
<tr>
<td>COMNET</td>
<td>Identifies communication networks</td>
</tr>
<tr>
<td>EVENT</td>
<td>Identifies the events</td>
</tr>
<tr>
<td>THREATBM</td>
<td>Identifies ballistic missile threats</td>
</tr>
</tbody>
</table>
a single problem and thus results in complicating the tasks of input data collection and preparation. Consequently, input data preparation is partitioned into the input sections identified in Table 2.2.

The input data preparation process is made more precise and less subject to errors introduced by input data improperly specified by the performance of the following functions.

1. Checking the form (numeric, string, etc.)
2. Checking the limits input
3. Rounding to quantum data values
4. Converting to internal standard units
5. Checking spelling errors
6. Checking specific names against internal lists
7. Inserting default values in the DIRs
8. Inserting input values into the DIRs

In order to perform the above functions, the input data needs to be specified in a number of ways. Table 2.3 summarizes the input data as they would appear in a complete IEB input deck. The same information is presented in alphabetical order for easy access by data-name in Table 2.4. Data presentation is repetitious, but the different organizations will permit quick reference by the ETC3 model user. User review of the input data is essential to efficient utilization of the INPUT EDITOR programs. Each data-name defined and its usage is described in these two tables.

Three types of data are accepted by the IEB program and for each data-name the column titled DATA TYPE identifies the type of data. The specific- and user-names follow the syntax rules described in 2.2.1, and in the case of specific-names, the permitted values are listed in the PHYSICAL UNITS column of each table.

Default values are assigned by the IEB program when no user values are specified. In cases where the data type is a user-name, a value is required to be provided by the user. The entry USER INPUT will occur in the DEFAULT column. For numeric data type, the value appearing in this column will be assigned the data element. The default values assigned to
Table 2.3. Input data summary.

<table>
<thead>
<tr>
<th>INPUT SECTION</th>
<th>DATA NAME (ON)</th>
<th>TYPE</th>
<th>DEFAULT</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>QUANTUM</th>
<th>PHYSICAL UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>TITLE</td>
<td>CHAR. STRING</td>
<td>BLANK</td>
<td>0</td>
<td>80</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td></td>
<td>CLASS</td>
<td>CHAR. STRING</td>
<td>BLANK</td>
<td>0</td>
<td>28</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td></td>
<td>TERRAIN</td>
<td>SPECIFIC NAME</td>
<td>BLANK</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td>THREATCHAR</td>
<td>IDENT</td>
<td>USER-NAME</td>
<td>USER INPUT</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td></td>
<td>TYPE</td>
<td>SPECIFIC NAME</td>
<td>BM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BM, ICON, SLBM</td>
</tr>
<tr>
<td></td>
<td>YIELD</td>
<td>NUMERIC</td>
<td>1.0</td>
<td>0</td>
<td>26843.5455</td>
<td>.0001</td>
<td>KILOTON</td>
</tr>
<tr>
<td></td>
<td>CEP</td>
<td>NUMERIC</td>
<td>1.0</td>
<td>0</td>
<td>16383</td>
<td>1</td>
<td>METER</td>
</tr>
<tr>
<td></td>
<td>PROVEHICLE</td>
<td>PV</td>
<td>1.0</td>
<td>0</td>
<td>1</td>
<td>.01</td>
<td>UNITLESS</td>
</tr>
<tr>
<td>SITECHAR</td>
<td>IDENT</td>
<td>USER-NAME</td>
<td>USER INPUT</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td></td>
<td>TYPE</td>
<td>SPECIFIC NAME</td>
<td>CON</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>COM, RELAY, C2, C3, AIRBASE, TERM</td>
</tr>
<tr>
<td></td>
<td>OPKILL</td>
<td>TOP</td>
<td>OPK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS/IN²</td>
</tr>
<tr>
<td></td>
<td>DPKILL</td>
<td>DPK</td>
<td>DPK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS/IN²</td>
</tr>
<tr>
<td></td>
<td>THERMALKILL</td>
<td>THERMALKILL</td>
<td>THERMALKILL</td>
<td>255.0</td>
<td>254.0</td>
<td>1.0</td>
<td>CALORIES/CM²</td>
</tr>
<tr>
<td></td>
<td>GAMMAKILL</td>
<td>GAMMAKILL</td>
<td>GAMMAKILL</td>
<td>65535</td>
<td>65534.1</td>
<td>1.0</td>
<td>RADS</td>
</tr>
<tr>
<td></td>
<td>GAMMADOTKILL</td>
<td>GAMMADOTKILL</td>
<td>GAMMADOTKILL</td>
<td>0</td>
<td>10¹⁴</td>
<td>10⁶</td>
<td>RADS/SEC</td>
</tr>
<tr>
<td></td>
<td>NEUTRONKILL</td>
<td>NEUTRONKILL</td>
<td>NEUTRONKILL</td>
<td>0</td>
<td>1</td>
<td>14.35</td>
<td>NEUTONS/CM²</td>
</tr>
<tr>
<td></td>
<td>HARMAPKILL</td>
<td>HARMAPKILL</td>
<td>HARMAPKILL</td>
<td>102.3</td>
<td>102.2</td>
<td>0.1</td>
<td>KILOVOLTS/METER</td>
</tr>
<tr>
<td></td>
<td>LAEMPKILL</td>
<td>LAEMPKILL</td>
<td>LAEMPKILL</td>
<td>102.3</td>
<td>102.2</td>
<td>0.1</td>
<td>KILOVOLTS/METER</td>
</tr>
<tr>
<td></td>
<td>SRTKILL</td>
<td>SRTKILL</td>
<td>SRTKILL</td>
<td>10.23</td>
<td>10.22</td>
<td>10⁶</td>
<td>CAL/CM²</td>
</tr>
<tr>
<td></td>
<td>RADIATIONKILL</td>
<td>RADIATIONKILL</td>
<td>RADIATIONKILL</td>
<td>5110</td>
<td>5100</td>
<td>10.</td>
<td>REMS</td>
</tr>
<tr>
<td></td>
<td>OPIMPULSEKILL</td>
<td>OPIMPULSEKILL</td>
<td>OPIMPULSEKILL</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS-SECS/IN²</td>
</tr>
<tr>
<td></td>
<td>OPIMPULSNUMK</td>
<td>OPIMPULSNUMK</td>
<td>OPIMPULSNUMK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS-SECS/IN²</td>
</tr>
<tr>
<td></td>
<td>VULNUMERKILL</td>
<td>VULNUMERKILL</td>
<td>VULNUMERKILL</td>
<td>9990</td>
<td>9990</td>
<td>57.9</td>
<td>UNITLESS</td>
</tr>
<tr>
<td></td>
<td>PROBOMAGEYNK</td>
<td>PROBOMAGEYNK</td>
<td>PROBOMAGEYNK</td>
<td>.90</td>
<td>1.00</td>
<td>0.01</td>
<td>UNITLESS</td>
</tr>
<tr>
<td></td>
<td>IDMESSAGECHAR</td>
<td>IDMESSAGECHAR</td>
<td>IDMESSAGECHAR</td>
<td>.90</td>
<td>1.00</td>
<td>0.01</td>
<td>UNITLESS</td>
</tr>
<tr>
<td></td>
<td>TDPROCEDURE</td>
<td>TDPROCEDURE</td>
<td>TDPROCEDURE</td>
<td>MP9999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMSITCHAR</td>
<td>IDENT</td>
<td>USER-NAME</td>
<td>USER INPUT</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTER</td>
</tr>
<tr>
<td></td>
<td>TYPE</td>
<td>SPECIFIC NAME</td>
<td>CABLE</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CABLE, MICROWAVE, ELF, VLF, LF, HF, VHF, UNF, SAT²</td>
</tr>
<tr>
<td></td>
<td>OPKILL</td>
<td>TOP</td>
<td>OPK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS/IN²</td>
</tr>
<tr>
<td></td>
<td>DPKILL</td>
<td>DPK</td>
<td>DPK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS/IN²</td>
</tr>
<tr>
<td></td>
<td>THERMALKILL</td>
<td>THERMALKILL</td>
<td>THERMALKILL</td>
<td>255.0</td>
<td>254.0</td>
<td>1.0</td>
<td>CALORIES/CM²</td>
</tr>
<tr>
<td></td>
<td>GAMMAKILL</td>
<td>GAMMAKILL</td>
<td>GAMMAKILL</td>
<td>65535</td>
<td>65534.1</td>
<td>1.0</td>
<td>RADS</td>
</tr>
<tr>
<td></td>
<td>GAMMADOTKILL</td>
<td>GAMMADOTKILL</td>
<td>GAMMADOTKILL</td>
<td>0</td>
<td>10¹⁴</td>
<td>10⁶</td>
<td>RADS/SEC</td>
</tr>
<tr>
<td></td>
<td>NEUTRONKILL</td>
<td>NEUTRONKILL</td>
<td>NEUTRONKILL</td>
<td>0</td>
<td>1</td>
<td>14.35</td>
<td>NEUTONS/CM²</td>
</tr>
<tr>
<td></td>
<td>HARMAPKILL</td>
<td>HARMAPKILL</td>
<td>HARMAPKILL</td>
<td>102.3</td>
<td>102.2</td>
<td>0.1</td>
<td>KILOVOLTS/METER</td>
</tr>
<tr>
<td></td>
<td>LAEMPKILL</td>
<td>LAEMPKILL</td>
<td>LAEMPKILL</td>
<td>102.3</td>
<td>102.2</td>
<td>0.1</td>
<td>KILOVOLTS/METER</td>
</tr>
<tr>
<td></td>
<td>SRTKILL</td>
<td>SRTKILL</td>
<td>SRTKILL</td>
<td>10.23</td>
<td>10.22</td>
<td>10⁶</td>
<td>CAL/CM²</td>
</tr>
<tr>
<td></td>
<td>RADIATIONKILL</td>
<td>RADIATIONKILL</td>
<td>RADIATIONKILL</td>
<td>5110</td>
<td>5100</td>
<td>10.</td>
<td>REMS</td>
</tr>
<tr>
<td></td>
<td>OPIMPULSEKILL</td>
<td>OPIMPULSEKILL</td>
<td>OPIMPULSEKILL</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS-SECS/IN²</td>
</tr>
<tr>
<td></td>
<td>OPIMPULSNUMK</td>
<td>OPIMPULSNUMK</td>
<td>OPIMPULSNUMK</td>
<td>6553.5</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUNDS-SECS/IN²</td>
</tr>
<tr>
<td></td>
<td>VULNUMERKILL</td>
<td>VULNUMERKILL</td>
<td>VULNUMERKILL</td>
<td>9990</td>
<td>9990</td>
<td>57.9</td>
<td>UNITLESS</td>
</tr>
<tr>
<td></td>
<td>PROBOMAGEYNK</td>
<td>PROBOMAGEYNK</td>
<td>PROBOMAGEYNK</td>
<td>.90</td>
<td>1.00</td>
<td>0.01</td>
<td>UNITLESS</td>
</tr>
<tr>
<td></td>
<td>FREQUENCY</td>
<td>FREQUENCY</td>
<td>FREQUENCY</td>
<td>0</td>
<td>1677.215</td>
<td>0.001</td>
<td>MEGAHERTZ</td>
</tr>
<tr>
<td></td>
<td>CHARMARE</td>
<td>CHARMARE</td>
<td>CHARMARE</td>
<td>1677.7215</td>
<td>1677.7215</td>
<td>.0001</td>
<td>CHARACTERS/SEC</td>
</tr>
<tr>
<td>MEASURED</td>
<td>EQUIPMENT NAME</td>
<td>SPECIFIC-NAME</td>
<td>SPECIFIC-NAME</td>
<td>1677.7215</td>
<td>1677.7215</td>
<td>.0001</td>
<td>LINE, NODE 1, NODE 2</td>
</tr>
</tbody>
</table>

25
Table 2.1. Input data summary (continued).

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>USER</th>
<th>USER-NAME</th>
<th>N</th>
<th>SPECIFIC-NAME</th>
<th>BLANK</th>
<th>CHAR</th>
<th>USER-NAME</th>
<th>N</th>
<th>SPECIFIC-NAME</th>
<th>BLANK</th>
<th>CHAR</th>
<th>USER-NAME</th>
<th>N</th>
<th>SPECIFIC-NAME</th>
<th>BLANK</th>
<th>CHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>100</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

26
Table 2.4. Data-name summary

<table>
<thead>
<tr>
<th>DATA NAME (UN)</th>
<th>DN</th>
<th>INPUT SECTION</th>
<th>DATA TYPE</th>
<th>DEFAULT</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>QUANTUM</th>
<th>PHYSICAL UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTBURST</td>
<td>N2</td>
<td>THEATBM</td>
<td>NUMERIC</td>
<td>0</td>
<td>0</td>
<td>100000</td>
<td>1</td>
<td>METERS</td>
</tr>
<tr>
<td>ALTRANCH</td>
<td>H1</td>
<td>THEATBM</td>
<td>NUMERIC</td>
<td>0</td>
<td>0</td>
<td>32767</td>
<td>1</td>
<td>METERS</td>
</tr>
<tr>
<td>ANGELAUNCH</td>
<td>A1</td>
<td>THEATBM</td>
<td>NUMERIC</td>
<td>0</td>
<td>0</td>
<td>89.9</td>
<td>0.0057</td>
<td>UEGELS</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>CA</td>
<td>THPEATBM</td>
<td>NUMERIC</td>
<td>100</td>
<td>0</td>
<td>109</td>
<td>1</td>
<td>USER ASSIGNED</td>
</tr>
<tr>
<td>CEP</td>
<td>CM</td>
<td>MESSAGECHAR</td>
<td>NUMERIC</td>
<td>100</td>
<td>0</td>
<td>1677215</td>
<td>1</td>
<td>UNITLESS</td>
</tr>
<tr>
<td>CHARCTLR</td>
<td>CH</td>
<td>COMSTENCHAR</td>
<td>CHARACTER</td>
<td>BLANK</td>
<td>28</td>
<td>1</td>
<td>CHARACTERS</td>
<td></td>
</tr>
<tr>
<td>CHARMAIL</td>
<td>CR</td>
<td>COMSTENCHAR</td>
<td>CHARACTER</td>
<td>BLANK</td>
<td>28</td>
<td>1</td>
<td>CHARACTERS</td>
<td></td>
</tr>
<tr>
<td>COMLINE</td>
<td>COM</td>
<td>COMSTENCHAR</td>
<td>USER-NAME</td>
<td>USER INPUT</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTERS</td>
</tr>
<tr>
<td>COMMLIT</td>
<td>CM</td>
<td>COMSTENCHAR</td>
<td>USER-NAME</td>
<td>USER INPUT</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>CHARACTERS</td>
</tr>
<tr>
<td>DPIMPULSERKILL</td>
<td>DPX</td>
<td>SITECHAR</td>
<td>NUMERIC</td>
<td>6552.5</td>
<td>0.1</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUND/SEC/M²</td>
</tr>
<tr>
<td>DPKILL</td>
<td>DPX</td>
<td>SITECHAR</td>
<td>NUMERIC</td>
<td>6552.5</td>
<td>0.1</td>
<td>6553.4</td>
<td>0.1</td>
<td>POUND/SEC/M²</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>EQU</td>
<td>SPECIFIC NAME</td>
<td>NUMERIC</td>
<td>0</td>
<td>0</td>
<td>100000</td>
<td>1</td>
<td>METERS</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>FRE</td>
<td>COMSTENCHAR</td>
<td>SPECIFIC NAME</td>
<td>100000</td>
<td>1</td>
<td>100000</td>
<td>1</td>
<td>METERS</td>
</tr>
</tbody>
</table>
| GAMMADOTKILL | GMX | SITECHAR | NUMERIC | 6552.5 | 0.1 | 6553.4 | 0.1 | KILOVOLTS/MIK
| GAMMAKILL | GKM | SITECHAR | NUMERIC | 102.3 | 0.1 | 102.2 | 0.1 | KILOVOLTS/MIK
| HABKMILL | HME | SITECHAR | NUMERIC | 102.3 | 0.1 | 102.2 | 0.1 | KILOVOLTS/MIK
| LAMKILL | LEM | SITECHAR | NUMERIC | 102.3 | 0.1 | 102.2 | 0.1 | KILOVOLTS/MIK
| HEIGHTOFBURST | HOB | SITE | NUMERIC | -2 x 10⁴ | 0 | 1677215 | 1 | METERS |
| IDACLINE | IDL | EVNT | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDACSTENCHAR | IDS | COMSTENCHAR | USER-NAME | BLANKS | 0 | 16 | 1 | CHARACTERS |
| ICHAIN | ID | SITECHAR | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDLAVUNCH | IDLAVUNCH | THREATBM | USER-NAME | BLANKS | 0 | 16 | 1 | CHARACTERS |
| IDMMESSAGECHAR | IDMMESSAGECHAR | EVENT | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDPROCEDURE | IDPROCEDURE | SITECHAR | USER-NAME | MP9999 | 0 | 16 | 1 | CHARACTERS |
| IDSTICXX | IDSTICXX | EVENT | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDSTITECHAR | IDSTITECHAR | SITE | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDTARGET | IDTARGET | THREATBM | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDIOTHREATCHAR | IDIOTHREATCHAR | SITE | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDIONEAPPOK | IDIONEAPPOK | SITE | USER-NAME | USER INPUT | 0 | 16 | 1 | CHARACTERS |
| IDLAEMPILL | IDLAEMPILL | SITECHAR | NUMERIC | 102.3 | 0.1 | 102.2 | 1 | KILOVOLTS/METER |
| LATBURST | LATBURST | THREATBM | NUMERIC | 41.5 | 0.00057 | DEGREES |
| LATLAUNCH | LATLAUNCH | THREATBM | NUMERIC | 40.1 | 0.00057 | DEGREES |
| LEVEL | LEVEL | SITE | NUMERIC | 0 | 1 | 255 | 1 | UNITLESS |
| LOCATION | LOCATION | SITE | NUMERIC, CHAR | USER INPUT | 0 | 1 | 0 | DEGREES, UTM COORD., METERS, ST. |
| LONGBURST | LONGBURST | THREATBM | NUMERIC | 87.5 | -180. | 180. | 0.00157 | DEGREES |
| LONGLAUNCH | LONGLAUNCH | THREATBM | NUMERIC | -80. | -180. | 180. | 0.00057 | DEGREES |
| NEUTRONKILL | NEUTRONKILL | SITECHAR | NUMERIC | 0 | 1 | 1045 | - | NEUTRONS/CM² |
| NORMDPSMORATIO | NORMDPSMORATIO | COMPILE | NUMERIC | 20 | 0 | 31 | 1 | DECIBELS |
| NUMOBJECTS | NUMOBJECTS | THREATBM | NUMERIC | 1 | 0 | 7 | 1 | UNITLESS |
| OPKIPULSERKILL | OPKIPULSERKILL | SITECHAR | NUMERIC | 6553.5 | 0.1 | 6553.4 | 0.1 | POUNDS/IN² |
| OPKILL | OPKILL | SITECHAR | NUMERIC | 0.90 | 0.01 | 1.00 | 0.01 | UNITLESS |
| PROBDAMAGENEK | PROBDAMAGENEK | SITECHAR | NUMERIC | 1.00 | 0.0 | 1.0 | 0.0 | UNITLESS |
| PROBOPENIGN | PROBOPENIGN | COMPILE | NUMERIC | 1.0 | 0.0 | 1.0 | 0.0 | UNITLESS |
| PROBVEHICLE | PROBVEHICLE | THREATBM | NUMERIC | 5110 | 10. | 5100 | 10. | REMS |
| RADIATIONKILL | RADIATIONKILL | SITECHAR | NUMERIC | 255 | 1.0 | 254.0 | 1.0 | CALORIES/CM² |
| TERMINALCODE | TERMINALCODE | SITE | SPECIFIC-NAME | BLANK | 0 | 16 | 1 | A.D., E, R, B, C, T, I, M, V, P, L. |
| TERRAIN | TERRAIN | SITE | SPECIFIC-NAME | BLANK | 0 | 16 | 1 | A.D., E, R, B, C, T, I, M, V, P, L. |
| THERMALKILL | THERMALKILL | SITECHAR | NUMERIC | 255 | 1.0 | 254.0 | 1.0 | CALORIES/CM² |
| TIME | TIME | EVENT | NUMERIC | USER INPUT | 0 | *MAXTIME | *ONTIME | SECONDS |
| TIMEBURST | TIMEBURST | THREATBM | NUMERIC | USER INPUT | 0 | 80 | 1 | CHARACTERS |
| TIMELAUNCH | TIMELAUNCH | THREATBM | NUMERIC | STRING | BLANK | 0 | 16 | CHARACTERS |
| TITLE | TITLE | THREATBM | SPECIFIC-NAME | CMD | 0 | 16 | 1 | CHARACTERS |
| TYPE | TYPE | SITECHAR | NUMERIC | 1000 | 1 | 6553.5 | 0.1 | METERS |
| VELOCITY | VELOCITY | THREATBM | NUMERIC | 9BA0.990 | 1 X 0 | 57 X 9 | 1 | UNITLESS |
| VULNUMBERRKILL | VULNUMBERRKILL | SITECHAR | NUMERIC | 10.23 | 10⁻⁶ | 10.22 | 10⁻⁶ | CAL/CM² |
| XRAYKILL | XRAYKILL | SITECHAR | NUMERIC | 1.0 | 0. | 26843.5455 | 0.0001 | KILOTONS |
the nuclear effects data elements in the SITECHAR and COMSYSTEMCHAR sec-
tions render the sites or systems invulnerable to each effect. Although
default values are assigned by the IEB program, the usage of the data is
governed by the individual applications programs.

2.2.4 Input Data Sections - Detailed Descriptions

Each of the eleven input data sections is described in the fol-
lowing manner. A brief narrative on the purpose and general types of input
data which are in the data section is presented. The data-names or inputs
requiring special attention are indicated to the user. Examples of the
input data for the section follow the narrative in order to illustrate the
form of the input data. Following the sample input data is a table which
provides a summary description of the data elements in the input section. A
detailed narrative for each data element follows the table. The detailed
narrative is formatted to facilitate its use as a reference manual format,
and each heading is briefly described below to identify its function.

Figure 2.3 shows the format used in the input forms section of
this report. The numbers correspond to the items which follow:

Item 1 -- DATA-NAME -- the data-name for the data element. This
name is assigned by the ETC3 program designer and must be input exactly as
shown. The data-name always will follow the rules for names.

Item 2 -- Abbreviation -- any abbreviation(s) which may be used
in place of the data-name appear here. In Figure 2.3, two abbreviations
appear: PTR and P. Either abbreviation may be used in place of the data-
name (but never both). The data-name and abbreviation(s) are treated as
synonyms. The data-name is usually long and descriptive and is used when
narrative-like input is desired. The abbreviations are used to save writ-
ing and compress the input. Program INEDP always uses the data-name, as
does this documentation.

Item 3 -- DATA TYPE -- the data type gives the input mode which
is acceptable to the Input Editor for this data element. Usually, this
will be numeric if numbers are to be input; a character string or user name
if an identifier is to be input.
<table>
<thead>
<tr>
<th></th>
<th>DATA-NAME: PROBTRANSMITTER</th>
<th>2. ABBREVIATION: PTR P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>DATA TYPE: NUMERIC</td>
<td>4. APP PROGRAMS: ABC, XYZ</td>
</tr>
<tr>
<td>5.</td>
<td>UNITS: PROBABILITY</td>
<td>6. GROUP NAME: PROBABILITY (10)</td>
</tr>
<tr>
<td>7.</td>
<td>MINIMUM: 0</td>
<td>8. MAXIMUM: 1.0</td>
</tr>
<tr>
<td>9.</td>
<td>DEFAULT: 1.0</td>
<td>10. QUANTUM: 0.001</td>
</tr>
<tr>
<td>11.</td>
<td>DESCRIPTION: Probability that the radio transmitter is operating at the start of the game. If considered operating by a random number draw, the full power output is used. If considered not-operational, the power output is zero. Program XYZ will begin repairs at game time zero, Program ABC assumes the transmitter is down for the entire game.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>EXAMPLE: PROB .95</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.3. Input format example.
Item 4 -- APP. PROGRAMS -- the APP. PROGRAMS are the application programs which use this data element. If none of the application programs use a data element, then this data element may be omitted from the input. Because the Input Editor can process all possible inputs, the IE programs are never listed.

Item 5 -- UNITS -- the standard units for this input. Each numeric data element is assigned one of the unit categories given in Table 2.5, Input units. The column called "Name" is the name given and is repeated on the input form. The number column is used by the Input Editor program. The "Standard Units" column gives the input units expected. The example shows "Probability" entered in this field. Table 2.5 shows that this number is 10 and that the standard input is from 0.0 through 1.0. If this were, for example, radar cross section, the input value would be square meters.

A blank, or the word NONE, in this input form entry indicates that the input units are assumed to be always in the same, standard units. Examples of such inputs are: number of missile rounds, commit ratio, neutrons per square centimeter. These data elements are assigned group number zero.

The units for nonnumeric data are the number of characters in the name or character string.

Item 6 -- GROUP NAME -- the group name is taken from Table 2.5. The group number will usually follow in parentheses. The entry "Identifier" indicates that the value for this data element can be either a user name or a character string of 16 characters or less. A blank entry always indicates group number zero.

Item 7 -- MINIMUM -- this entry is the lower limits of input. For numeric data, this is the lowest algebraic value which the program will accept. This entry is always in standard units (see Table 2.5). The Input Editor checks the input against this limit. If the input value is below this value, an error message is issued and the lower limit value is used.
Table 2.5. Input units.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>NAME</th>
<th>STANDARD UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Area</td>
<td>meter2</td>
</tr>
<tr>
<td>3</td>
<td>Weight</td>
<td>kilograms</td>
</tr>
<tr>
<td>4</td>
<td>Fuel Rate</td>
<td>gallons/second</td>
</tr>
<tr>
<td>5</td>
<td>Angle</td>
<td>degrees</td>
</tr>
<tr>
<td>6</td>
<td>Angular Velocity</td>
<td>degrees/second</td>
</tr>
<tr>
<td>7</td>
<td>Angular Acceleration</td>
<td>degrees/second/second</td>
</tr>
<tr>
<td>8</td>
<td>Frequency</td>
<td>megahertz</td>
</tr>
<tr>
<td>9</td>
<td>Altitude (Above MSL or Local Terrain)</td>
<td>meters</td>
</tr>
<tr>
<td>10</td>
<td>Probability</td>
<td>0 to 1.00</td>
</tr>
<tr>
<td>11</td>
<td>Length</td>
<td>meters</td>
</tr>
<tr>
<td>12</td>
<td>Velocity</td>
<td>meters/second</td>
</tr>
<tr>
<td>13</td>
<td>Acceleration</td>
<td>meters/second/second</td>
</tr>
<tr>
<td>14</td>
<td>Temperature</td>
<td>degrees celsius</td>
</tr>
<tr>
<td>15</td>
<td>Pressure</td>
<td>pounds/inch2</td>
</tr>
<tr>
<td>16</td>
<td>Range</td>
<td>kilometers</td>
</tr>
<tr>
<td>17</td>
<td>Power</td>
<td>kilowatts</td>
</tr>
<tr>
<td>18</td>
<td>Time Delay</td>
<td>seconds</td>
</tr>
<tr>
<td>19</td>
<td>Volume</td>
<td>meter3</td>
</tr>
<tr>
<td>20</td>
<td>Radar Cross-Section</td>
<td>meter2</td>
</tr>
<tr>
<td>21</td>
<td>Ballistic Coefficient</td>
<td>pounds/feet2</td>
</tr>
<tr>
<td>22</td>
<td>Yield (For Warheads)</td>
<td>kilotons</td>
</tr>
<tr>
<td>23</td>
<td>Fuel Quantity</td>
<td>gallons</td>
</tr>
<tr>
<td>24</td>
<td>Azimuth</td>
<td>degrees</td>
</tr>
<tr>
<td>25</td>
<td>Power Density</td>
<td>watts/megahertz</td>
</tr>
<tr>
<td>26</td>
<td>Transmission Rate</td>
<td>characters/second</td>
</tr>
<tr>
<td>27</td>
<td>Reciprocal Time</td>
<td>seconds$^{-1}$</td>
</tr>
<tr>
<td>28</td>
<td>Game Time</td>
<td>seconds</td>
</tr>
</tbody>
</table>
instead of the input value. The error message is of the form:

```
ERROR  section-name  data-name  value-in  IS OUT OF LIMITS
limit  WILL BE USED INSTEAD  level
```

where:
- `section-name` is the section being processed
- `data-name` is the data-name being processed. This may be the data-name even if an abbreviation was entered instead.
- `value-in` is the value entered in standard units
- `limit` is the lower limit which will be used in the output
- `level` is the severity of the error; usually 50 is used.

Because of quantum rounding and, perhaps, conversion from one system of units to another, this error message may appear with "limit" and "value-in" having identical values. In this case, this is not really an error but a warning that rounding has occurred. The error message can be eliminated by reducing the input value slightly.

If the lower limit has the word "None" or is blank, the Input Editor does not check the user value.

Item 8 -- MAXIMUM -- This entry is the upper limit of input. The description given in Item 6 above applies, with appropriate substitution of "maximum" for "minimum". The error message is the same.

Item 9 -- DEFAULT -- the default value used if this data-name (or abbreviation) and value are not input. In the example, Input Editor assumes a value for PROBABILITY of 1.0 if this data-name is not input for an entity. The default values are chosen by the ETC³ program designer. The programmer's manual describes how to change the default value. The default value is chosen using the criteria:

"If this parameter was not considered by the model, what value would be assumed?"
In the example in Figure 2.3, if operability of a radio transmitter were not modeled, a reasonable assumption would be made that all radio transmitters are working and operational when the game begins. Thus, the default value of 1.0 is used.

Because the default value can be changed in the future, default values should not be relied upon for permanent, master databases. The default value is for a "don't care" case and should be used accordingly.

Item 10 -- QUANTUM -- the quantum is used to show how the value is rounded. Some application programs pack values in partial words. To prevent loss of accuracy in application programs, numeric values are rounded to the quantum given. If the quantum is 0.001, the transformation of various input values is:

- If input value is 0.0001, the value used is 0
- If input value is .0014, the value used is .001
- If input value is .0015, the value used is .001
- If input value is .0027, the value used is .003
- If input value is .0005, the value used is 0.

In the last case, usually truncation will occur because .0005 cannot be represented in a binary computer with a finite number of digits. The number .0005 is actually .0004999999---, where the number of 9's is finite. A blank or zero in the quantum field indicates that no rounding is performed. A single precision word will contain the numeric value unless otherwise stated.

The quantum for nonnumeric values is always one character if the units are user-name or character string. The limits concerning the maximum and minimum number of characters must be observed. A user name is always limited to 16 characters regardless of what is specified in the upper limit.

Item 11 -- DESCRIPTION -- a description of the input follows: This paragraph will explain how the data element is used by various programs and any special relationships between this input and other inputs.
Item 12 -- EXAMPLE -- An example usually follows. For complex inputs, several examples may be given.

2.2.4.1 **CONTROL Section.** The **CONTROL** section occurs first in the input data deck for the IEB program. It is required for the purpose of adequately identifying the ETC\(^3\) data base. The data base needs to be accurately labeled with respect to contents, security classification, and to insure proper geodetic to UTM coordinate conversions. The section is introduced by the data element:

```
DEFINE CONTROL
```

where **DEFINE** is a reserved data-name. **DEFINE** is used to mark the beginning of an input data section and **CONTROL** is a specific-name which is used to identify the first input data section. The specific-names of the input data sections have been listed in Table 2.2.

The data elements in the **CONTROL** section are identified in Table 2.6. The security classification (the data value for the **CLASS** data-name) is printed at the top and bottom margins of the output listings. The security classification, title, and the input value for the **TERRAIN** data-name are retained in the ETC\(^3\) data base for documentation purposes and for coordinate conversion calculations, respectively.

Input data for the **CONTROL** section resemble the following example. Explanations for the data-names and values are included as comments which are acceptable to the IE and applications programs for documentation purposes, but not for processing purposes.

```
DEFINE CONTROL /*SPECIFIC NAME*/
TITLE 'EUROPEAN THEATER C3' /*CHARACTER STRING*/
CLASS 'TOP SECRET'
TERRAIN '32U' /*CHARACTER STRING*/
```

The data values for **TITLE** and **CLASS** are in the form of character strings because of the embedded blanks, while the value for **TERRAIN** is treated as a character string because the first character is not a letter of the alphabet. The sequence of providing the three data elements **TITLE**, **CLASS**, and **TERRAIN** will not affect processing of the input data. However, the **DEFINE** data-name must appear first.
Table 2.6. Control section data-names.

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Data-Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td></td>
<td>Security classification of the input data</td>
</tr>
<tr>
<td>TERRAIN</td>
<td></td>
<td>UTM grid designation for terrain related data</td>
</tr>
<tr>
<td>TITLE</td>
<td></td>
<td>Identification of the IE produced data base</td>
</tr>
</tbody>
</table>
1. **DATA-NAME:** CLASS
 ABBREVIATION:

 DATA TYPE: Character string or APP. PROGRAMS: AA, DAMAGE

 UNITS:

 MINIMUM:

 DEFAULT: Blanks

 DESCRIPTION: A character string of up to 28 characters or a user-name is used to indicate the security classification of the input data. The security classification is printed at the top and bottom of the listing pages by IE and application programs.

 EXAMPLE: CLASS 'SECRET'
 CLASS 'TOP SECRET' /*A CHARACTER STRING MUST BE USED BECAUSE OF THE EMBEDDED BLANK*/

2. **DATA-NAME:** TERRAIN
 ABBREVIATION:

 DATA TYPE: Character string APP. PROGRAMS: AA, DAMAGE

 UNITS:

 MINIMUM:

 DEFAULT: Blanks

 DESCRIPTION: Input values may be one of the following grid zones; 32U, 00A, 51S, 52S, 19T, or 33U. The grid zone is needed for the UTM to geodetic coordinate conversion computations. Geodetic coordinates outside the UTM grid zone may result in conversion errors. If all coordinates are in latitude and longitude, this data element may be omitted.

 EXAMPLE: TERRAIN '32U'
3. **DATA-NAME:** TITLE
ABBREVIATION:

DATA TYPE: Character string or User-name

APP. PROGRAMS: AA, DAMAGE

UNITS:

GROUP NAME:

MINIMUM:

MAXIMUM:

DEFAULT: Blanks

QUANTUM:

DESCRIPTION: A character string of up to 80 characters or a user-name is used to identify the execution of the IE. It is printed by IE and application program listings for documentation purposes.

EXAMPLE:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>'ETC³ DATA BASE FOR GUNDNETZ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>END</td>
<td>GRUNDNETZ</td>
</tr>
</tbody>
</table>
2.2.4.2 THREATCHAR Section. The THREATCHAR section is used to define sets of threat characteristics to be included in the ETC3 data base. This section of data is optional and may be omitted if an attack scenario is not used. If used, the section is introduced by the following entry:

```
DEFINE THREATCHAR
```

where THREATCHAR is a specific-name used to designate this section of data. Sections appear in the input deck if required, otherwise, they should be omitted. THREATCHAR section occurs second in a complete input data deck.

The data elements, which are used to define a set of threat characteristics, are presented in Table 2.7. Each set of threat characteristics is introduced by the data-name, IDENT, and identified by a user-name or a character string. The IDENT entry is followed by a subset of the remaining data-names and their input values. These appear once per set of threat characteristics and may be in any sequence. This is possible because the data-name identifies the input data which follows. If any or all data-names are omitted from the input, default values, if they exist, are assigned to the omitted data elements.

<table>
<thead>
<tr>
<th>Data Name</th>
<th>Data-Name Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Name or character string identifying the threat</td>
</tr>
<tr>
<td>CEP</td>
<td>Circular error probable of the type of threat</td>
</tr>
<tr>
<td>PROBVEHICLE</td>
<td>Operational probability of the type of threat</td>
</tr>
<tr>
<td>TYPE</td>
<td>Missile type for the threat</td>
</tr>
<tr>
<td>YIELD</td>
<td>Nuclear yield of the threat</td>
</tr>
</tbody>
</table>

Each set of threat characteristics may be referenced by data in other input sections. This is done by referring to the name or character string assigned to the set of threat characteristics. This eliminates redundant entry of data because a number at threats may share the same characteristics. The threat characteristic sets in this section are referenced exactly in this manner by the data element IDTHREATCHAR in the
THREATBM data section. Such data associations are summarized in Tables 2.15 and 2.16 presented near the end of this chapter.

Input data for the THREATCHAR section can resemble the following example. Explanations for the data entry will be included in the same way as was included in the CONTROL section. This method of explanation will be used throughout to demonstrate the documentation power of using comments.

```
DEFINE THREATCHAR /* INTRODUCES THREATCHAR SECTION */
IDENT SLBM /* SLBM THREAT CHARACTERISTICS*/
CEP 200 PROBVEHICLE .9 TYPE SLBM YIELD 100
IDENT ICBM /* ICBM THREAT CHARACTERISTICS*/
CEP 100 TYPE ICBM YIELD 100
IDENT BM /* BM THREAT WITH DEFAULT VALUES*/
```

The above example of a THREATCHAR input section consists of three sets of threat characteristics identified as SLBM, ICBM, and BM. These are the user-names to be referenced if the associated characteristics are needed to describe a particular threat. SLBM, ICBM or BM may be used when the user wishes to assign a launch time to each delivery system. In this event the model will calculate an impact time based on range and a nominal ballistic flight trajectory. If the launch platform or delivery system is not ballistic (e.g., a cruise missile) then SLBM and ICBM should not be used. However, in this situation, the model will not compute impact time based on launch time, rather the impact time, if required, must be specified in the THREATBM section of the program (see 2.2.4.11). The last set of threat characteristics, identified as BM, is assigned all default values because all data elements are omitted (except IDENT).
1. DATA-NAME: IDENT
 ABBREVIATION: ID
 DATA TYPE: Character String or User-name
 APP. PROGRAMS: AA, DAMAGE
 UNITS: GROUP NAME: Identifier
 MINIMUM: MAXIMUM:
 DEFAULT: user assigned
 QUANTUM:
 DESCRIPTION: The character string or user-name identifies an entity in the THREATCHAR section. The identification enables data input in other sections to reference the specific set of threat characteristics represented by this name. The data-name IDENT must precede other data for this entity, and must be specified.
 EXAMPLE: IDENT 'SS-9'
 ID THREAT1

2. DATA-NAME: CEP
 ABBREVIATION:
 DATA TYPE: Numeric
 APP PROGRAMS: AA, DAMAGE
 UNITS: meters
 GROUP NAME: Length (11)
 MINIMUM: 0.0
 MAXIMUM: 16383.0
 DEFAULT: 0.0
 QUANTUM: 1.0
 DESCRIPTION: The input value specifies the accuracy of the threat in terms of the circular error probable (CEP). The CEP is specified in distance. The default value results in zero aim error, i.e., the designated burst point is the actual burst point.
 EXAMPLE: CEP 3000
3. **DATA-NAME:** PROBVEHICLE
 ABBREVIATION: PV
 DATA TYPE: Numeric
 APP. PROGRAMS: AA
 UNITS:
 GROUP NAME: Probability (10)
 MINIMUM: 0.00
 MAXIMUM: 1.00
 DEFAULT: 1.00
 QUANTUM: 0.01
 DESCRIPTION: The input value specifies the probability that a threat delivery vehicle type is operational at the start of a simulation game. The default value indicates the vehicle is operational.
 EXAMPLE: PV .90

4. **DATA-NAME:** TYPE
 ABBREVIATION:
 DATA TYPE: Specific-name
 APP PROGRAMS: AA, DAMAGE
 UNITS:
 GROUP NAME: Name
 MINIMUM:
 MAXIMUM:
 DEFAULT: BM
 QUANTUM:
 DESCRIPTION: The specific-name (BM, ICBM, SLBM) assigned identifies the type of threat vehicle. The ETC model recognizes, but is not restricted to, the three types of threat vehicles identified above.
 EXAMPLE: TYPE ICBM
5. DATA-NAME: YIELD

ABBREVIATION:

DATA TYPE: Numeric

APP. PROGRAMS: AA, DAMAGE

UNITS: Kilotons

GROUP NAME: Yield (24)

MINIMUM: 0

MAXIMUM: 26843.5455

DEFAULT:

QUANTUM: 0.0001

DESCRIPTION: The input value represents the nuclear yield of a warhead type. Conventional warhead yields must be converted to an equivalent nuclear yield by the user. A zero yield is treated as a decoy warhead and does not produce damage effects. The weapon yield is considered in the damage assessment for a burst. A default yield value of 1.0 kiloton is assigned if a value is not supplied.

EXAMPLE: YIELD 20
2.2.4.3 SITECHAR Section. The SITECHAR section is used to define sets of characteristics which may be generally applicable to the description of particular sites. The data elements constituting a set of site characteristics provides considerable flexibility in specifying site features at the systems level. The use of this input data section is optional; but, when used, it is introduced by:

 DEFINE SITECHAR

where SITECHAR is the specific-name for this section. Data for this section, which begins with the DEFINE SITECHAR and includes all the data up to the next DEFINE data name, follows the THREATCHAR section data in a complete input data deck.

Data elements in this section are used to define two major categories of features for a site. The majority of the data elements are used to specify threshold values for damage to the site from nuclear effects. The remaining data elements are used to define communication related characteristics of the site. The data-names, which are used to define a set of characteristics, are identified in Table 2-8. As in other data sections, each set of characteristics is identified by the user-name or character string following the IDENT data-name. This identifier can be used by input data in other sections to reference a specific set of characteristics.

The IDMESSAGECHAR data-name may be used any number of times in defining a set of site characteristics, however, all other data-names should be used only once in a set of characteristics. The IDMESSAGECHAR input data is required to appear before the IDPROCEDURE data entry. The IDENT, IDMESSAGECHAR, and IDPROCEDURE are required to appear in this sequence in the input data. However, their appearance is not required to be consecutive.

Many of the data-names used to specify damage threshold levels can accept two numeric input values. The first value is the threshold level and the second value is a sigma specification for probability of damage from the nuclear effect for the threshold value. The probabilistic approach to nuclear effects damage assessment is not currently a part of the ETC3 model, however, the provision for incorporating probabilistic data in the data base exists in the IEB program.
Table 2.8. SITECHAR section data-names.

<table>
<thead>
<tr>
<th>DATA-NAME</th>
<th>DATA-NAME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Name or character string identifying a set of site characteristics</td>
</tr>
<tr>
<td>DPIMPULSEKILL</td>
<td>Threshold level for dynamic pressure impulse site destruction</td>
</tr>
<tr>
<td>DPKILL</td>
<td>Threshold level for dynamic pressure site destruction</td>
</tr>
<tr>
<td>GAMMADOTKILL</td>
<td>Threshold level for gamma radiation flux site destruction</td>
</tr>
<tr>
<td>GAMMAKILL</td>
<td>Threshold level for gamma radiation site destruction</td>
</tr>
<tr>
<td>HAEMPKILL</td>
<td>Threshold level for high altitude EMP (HAEMP) site destruction</td>
</tr>
<tr>
<td>IDMESSAGECHAR</td>
<td>Name of character string for referencing a set of message characteristics procedure</td>
</tr>
<tr>
<td>IDPROCEDURE</td>
<td>Name of character string for referencing a message processing procedure</td>
</tr>
<tr>
<td>LAEMPKILL</td>
<td>Threshold level for low altitude EMP (LAEMP) site destruction</td>
</tr>
<tr>
<td>NEUTRONKILL</td>
<td>Threshold level for neutron radiation site destruction</td>
</tr>
<tr>
<td>OPIMPULSEKILL</td>
<td>Threshold level for overpressure impulse site destruction</td>
</tr>
<tr>
<td>OPKILL</td>
<td>Threshold level for overpressure site destruction</td>
</tr>
<tr>
<td>PROBDAMAGEVNK</td>
<td>Probability of site damage for the given vulnerability number</td>
</tr>
<tr>
<td>RADIATIONKILL</td>
<td>Threshold level for radiation site destruction</td>
</tr>
<tr>
<td>THERMALKILL</td>
<td>Threshold level for thermal radiation site destruction</td>
</tr>
<tr>
<td>TYPE</td>
<td>Specific-name designating the type of site</td>
</tr>
<tr>
<td>VULNUMBERKILL</td>
<td>Threshold vulnerability number for site destruction</td>
</tr>
<tr>
<td>XRAYKILL</td>
<td>Threshold level for X-ray radiation site destruction</td>
</tr>
</tbody>
</table>
SITECHAR section input data will resemble the sample included below. In this sample input section, many of the data elements will be omitted and the abbreviated form of the data-names used. Omitted data elements are assigned in the default values described in the data-names and result in the same processing as the use of the full data-names. The data-names must appear exactly as in their full or abbreviated forms; otherwise they will not be recognized.

```
DEFINE SITECHAR
    IDENT  RELAY
    OPKILL  200
    DPKILL  50
    TYPE    RELAY
```
1. DATA-NAME: IDENT
 ABBREVIATION: ID
 DATA TYPE: Character string or user-name
 APP. PROGRAMS:
 UNITS:
 GROUP NAME: Identifier
 MINIMUM:
 MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The identifier is used as a label for a set of characteristics which describe a site. It is also referenced by input data in other sections to access site characteristics data. The identifier indicates the beginning of an entity and should precede all other data-names. This data element is required.
 EXAMPLE: IDENT HARDCOMCENTER
2. DATA-NAME: DPIMPULSEKILL
ABBREVIATION: DPIK
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Psi seconds
GROUP NAME:
MINIMUM: 0.1
MAXIMUM: 6553.4
DEFAULT: 6553.5
QUANTUM: 0.1
DESCRIPTION: The value represents the threshold level which must be equalled or exceeded in order to render a site ineffective from dynamic pressure impulse effects. The default value indicates the site in invulnerable to this nuclear effect.
EXAMPLE: DPIMPULSEKILL 25.0

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0
MAXIMUM: 10
DEFAULT: 0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the DPIMPULSEKILL level given above. If used, this numeric value directly follows the DPIMPULSEKILL hardness level.
EXAMPLE: DPIMPULSEKILL 25.0 7.5
3. DATA-NAME: DPKILL
 ABBREVIATION: DPK
 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE
 UNITS: Psi
 GROUP NAME:
 MINIMUM: 0.1
 MAXIMUM: 6553.4
 DEFAULT: 6553.5
 QUANTUM: 0.1
 DESCRIPTION: The value represents the threshold level which must be attained in order to render the site ineffective due to dynamic overpressure. The default value of 6553.5 is equivalent to making the site invulnerable to this effect.
 EXAMPLE: DPKILL .220

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric
APP PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the DPKILL level given above. If used, this numeric value directly follows the DPKILL hardness level.
EXAMPLE: DPKILL .220 4.3
4. DATA-NAME: GAMMADOTKILL
ABBREVIATION: GMDK

DATA TYPE: Numeric
APP. PROGRAMS: AA, DAMAGE

UNITS: Rads/second
GROUP NAME:

MINIMUM: 1×10^5
MAXIMUM: 1×10^{14}

DEFAULT: 0
QUANTUM:

DESCRIPTION: The value is the threshold level which must be equalled or exceeded in order to render the site inoperative from gamma ray flux effects. The default value of 0 is used to signify a site invulnerable to this nuclear effect.

EXAMPLE: GAMMADOTKILL 1E7

DATA-NAME:
ABBREVIATION:

DATA TYPE: Numeric
APP PROGRAMS:

UNITS:
GROUP NAME:

MINIMUM: 0
MAXIMUM: 10

DEFAULT: 0
QUANTUM:

DESCRIPTION: The sigma value corresponding to the GAMMADOTKILL level given above. If used, this numeric value directly follows the GAMMADOTKILL hardness level.

EXAMPLE: GAMMADOTKILL 2E7 5.3
5. DATA-NAME: GAMMAKILL
ABBREVIATION: GMK
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Rads
GROUP NAME:
MINIMUM: 1
MAXIMUM: 65534
DEFAULT: 65535
QUANTUM: 1
DESCRIPTION: The value indicates the threshold level which must be equalled or exceeded in order to render the site inoperable from gamma ray effects. The default value signifies a site invulnerable to gamma effects.
EXAMPLE: GAMMAKILL 9.75

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the GAMMAKILL level given above. If used, this numeric value directly follows the GAMMAKILL hardness level.
EXAMPLE: GAMMAKILL 9.75 4.2
6. DATA-NAME: HAEMPKILL ABBREVIATION: HEK
DATA TYPE: Numeric APP. PROGRAMS: DAMAGE
UNITS: Kilovolts/meter GROUP NAME:
MINIMUM: 0.1 MAXIMUM: 102.2
DEFAULT: 102.3 QUANTUM: 0.1
DESCRIPTION: The value represents the threshold value which must be equalled or exceeded in order to render a site inoperative from high altitude electromagnetic pulse effects. A default value of 102.3 is used to signify a site invulnerable to HAEMP effects.
EXAMPLE: HAEMPKILL 90.2

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric APP PROGRAMS:
UNITS: GROUP NAME:
MINIMUM: 0.0 MAXIMUM: 10.0
DEFAULT: 0.0 QUANTUM:
DESCRIPTION: The sigma value corresponding to the HAEMPKILL level given above. If used, this numeric value directly follows the HAEMPKILL hardness level.
EXAMPLE: HAEMPKILL 90.2 2.0
7. DATA-NAME: IDMESSAGECHAR ABBREVIATION: IDMC

DATA TYPE: Character string or user-name APP. PROGRAMS:

UNITS: GROUP NAME:
MINIMUM: MAXIMUM:
DEFAULT: QUANTUM:

DESCRIPTION: The character string or user-name identifies the message to be processed. The IDMESSAGECHAR data element must precede the IDPROCEDURE data element of this input section. More than one IDMESSAGECHAR entry may appear for each site entity.

EXAMPLE: IDMESSAGECHAR

8. DATA-NAME: IDPROCEDURE ABBREVIATION: IDP

DATA TYPE: Character string or user-name APP PROGRAMS:

UNITS: GROUP NAME:
MINIMUM: MAXIMUM:
DEFAULT: MP9999 QUANTUM:

DESCRIPTION: The character string or user-name assigned corresponds to a procedure specified in the PROCEDURE input data section. This referenced procedure performs the required processing on the messages identified with respect to the IDMESSAGECHAR data name.

EXAMPLE: IDPROCEDURE
9. DATA-NAME: LAEMPKILL
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Kilovolts/meter
GROUP NAME:
MINIMUM: 0.1
MAXIMUM: 102.2
DEFAULT: 102.3
QUANTUM: 0.1
DESCRIPTION: The value represents the threshold level for rendering a site ineffective due to low altitude EMP effects. The default value signifies a site which is invulnerable to low altitude EMP effects.
EXAMPLE: LAEMP 22.4

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the LAEMPKILL level given above. If used, this numeric value directly follows the LAEMPKILL hardness level.
EXAMPLE: LAEMP 22.4 1.5
10. DATA-NAME: NEUTRONKILL
 ABBREVIATION: NK

 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE

 UNITS: Neutrons/cm²
 GROUP NAME:

 MINIMUM: 1
 MAXIMUM: \(1 \times 10^{35}\)

 DEFAULT: 0
 QUANTUM:

 DESCRIPTION: The value is the threshold for damage to a site by neutron radiation. The input value must be equalled or exceeded in order to render the site inoperative. The default value of 0 signifies an invulnerable site to neutron radiation.

 EXAMPLE: NEUTRONKILL 1E10

 DATA-NAME:
 ABBREVIATION:

 DATA TYPE: Numeric
 APP PROGRAMS:

 UNITS:
 GROUP NAME:

 MINIMUM: 0.0
 MAXIMUM: 10.0

 DEFAULT: 0.0
 QUANTUM:

 DESCRIPTION: The sigma value corresponding to the NEUTRONKILL level given above. If used, this numeric value directly follows the NEUTRONKILL hardness level.

 EXAMPLE: NEUTRONKILL 2.5e9 2.7
11. DATA-NAME: OPIMPULSEKILL
 ABBREVIATION: OPIK
 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE
 UNITS: Psi seconds
 MINIMUM: 0.1
 MAXIMUM: 6553.4
 DEFAULT: 6553.5
 QUANTUM: 0.1
 DESCRIPTION: The value is the threshold level for overpressure impulse damage to a site. A result equal to or greater than the input value will result in an inoperative site. The default value represents a site invulnerable to this nuclear effect.
 EXAMPLE: OPIMPULSEKILL 8.7

DATA-NAME:
 ABBREVIATION:
 DATA TYPE: Numeric
 APP PROGRAMS:
 UNITS:
 MINIMUM: 0.0
 MAXIMUM: 10.0
 DEFAULT: 0.0
 QUANTUM:
 DESCRIPTION: The sigma value corresponding to the OPIMPULSEKILL level given above. If used, this numeric value directly follows the OPIMPULSEKILL hardness level.
 EXAMPLE: OPIMPULSEKILL 18.3 1.7
12. DATA-NAME: OPKILL ABBREVIATION: OPK
DATA TYPE: Numeric APP. PROGRAMS:
UNITS: Psi GROUP NAME:
MINIMUM: 0.1 MAXIMUM: 6553.4
DEFAULT: 6553.5 QUANTUM: 0.1
DESCRIPTION: The value represents the threshold overpressure level which must be equalled or exceeded in order to result in an inoperative site from overpressure blast effects. The default value of 6553.5 signifies a site which is invulnerable to overpressure damage effects.
EXAMPLE: OPKILL 157

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric APP PROGRAMS:
UNITS: GROUP NAME:
MINIMUM: 0 MAXIMUM: 10
DEFAULT: 0 QUANTUM:
DESCRIPTION: The sigma value corresponding to the OPKILL level given above, if used, this numeric value directly follows the OPKILL hardness level.
EXAMPLE: OPKILL 14 1.2
13. DATA-NAME: PROBDAMAGEVNK
ABBREVIATION: PDVNK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS:
GROUP NAME: Probability
MINIMUM: 0.01
MAXIMUM: 1.00
DEFAULT: 0.90
QUANTUM: 0.01
DESCRIPTION: The value represents the probability of damage to a site based on the site vulnerability number; see VULNUMBERKILL which follows.
EXAMPLE: PDVNK .80
14. **DATA-NAME:** RADIATIONKILL
ABBREVIATION: RDK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Rems
GROUP NAME:
MINIMUM: 10
MAXIMUM: 5100
DEFAULT: 5100
QUANTUM: 10
DESCRIPTION: The value represents the threshold value for damage to a site due to radiation effects. The assigned value must be equalled or exceeded in order to result in an inoperative site. The default value of 5110.0 signifies a site which is not vulnerable to radiation effects.
EXAMPLE: RADIATIONKILL 2500
RDK 2500

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the RADIATIONKILL level given above. If used, this numeric value directly follows the RADIATIONKILL Hardness level.
EXAMPLE: RADIATIONKILL 2500 1.5
RDK 2500 1.5
15. DATA-NAME: THERMALKILL
ABBREVIATION: THK
DATA TYPE: Numeric
APP PROGRAMS: DAMAGE
UNITS: Cal/cm^2
GROUP NAME:
MINIMUM: 1.0
MAXIMUM: 254.0
DEFAULT: 255.0
QUANTUM: 1.0
DESCRIPTION: The value indicates the threshold level which must be equalled or exceeded in order to render a site inoperative from thermal radiation effects. The default value signifies a site which is invulnerable to thermal radiation effects.
EXAMPLE: THERMALKILL 127
THK 127

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the THERMALKILL level is given above. If used, this numeric value directly follows the THERMALKILL hardness level.
EXAMPLE: THERMALKILL 127 2.0
THK 127 2.0
16. DATA-NAME: TYPE
 ABBREVIATION:
 DATA TYPE: Character String
 APP. PROGRAMS: AA
 UNITS:
 GROUP NAME:
 MINIMUM:
 MAXIMUM:
 DEFAULT: COM
 QUANTUM:
 DESCRIPTION: The specific-name indicates the type of site being described. One of the specific-names (COM, RELAY, C2, C3, AIRBASE, TERM) must be selected for the TYPE data-name value.
 EXAMPLE: TYPE RELAY
 TYPE C2

17. DATA-NAME: VULNUMBERKILL
 ABBREVIATION: VNK
 DATA TYPE: Vulnerability number
 APP PROGRAMS: DAMAGE
 UNITS:
 GROUP NAME:
 MINIMUM: 1P0 or 1Q0
 MAXIMUM: 57P9 or 57Q9
 DEFAULT: 99P0 or 99Q0
 QUANTUM:
 DESCRIPTION: The value represents the vulnerability number of the site. The value must be equalled or exceeded in order to render the system inoperative. Input values above the maximum are treated as 99P0; this value signifies an invulnerable site.
 EXAMPLE: VULNUMBERKILL 2P27
 VNK 3Q4
18. **DATA-NAME:** XRAYKILL
ABBREVIATION: XRK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Cal/cm²
GROUP NAME:
MINIMUM: 1×10^{-6}
MAXIMUM: 10.22
DEFAULT: 10.23
QUANTUM: 1×10^{-6}
DESCRIPTION: The value represents the threshold level which must be equalled or exceeded in order to render a site inoperative. A default value of 10.23 is used to signify a site which is invulnerable to x-ray radiation effects.
EXAMPLE: XRAYKILL 7.21
XRK 7.21

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the XRAYKILL level given above. If used, this numeric value directly follows the XRAYKILL hardness level.
EXAMPLE: XRAYKILL 7.21 1.2
XRK 7.21 1.2
2.2.4.4 **COMSYSTEMCHAR Section.** The COMSYSTEMCHAR section is used to define characteristics which are generally applicable to the description of particular communications systems. These characteristics can be referenced and used to expand the description of a site by providing additional data at the communications equipment level. The use of this input section is optional, but when it is used, it is introduced by:

```
DEFINE COMSYSTEMCHAR
```

where COMSYSTEMCHAR is the specific-name used to designate this section of the input data. In an input data deck which includes all sections, the COMSYSTEMCHAR section follows the SITECHAR section. When sections of data are omitted, the input data deck will not show any traces of the omitted section. This demonstrates the flexibility of the IE programs to process segments of the ETC data base independently.

The data elements belonging to this section are similar to those in the SITECHAR section. In many instances, the data elements share identical data-names, however, they represent the corresponding values for the site and the communication system equipment. The majority of the data elements are used to define the vulnerability characteristics of the communication equipment being described. The remaining data elements are used to define the operational characteristics of the system. The data-names of this section are described in Table 2.9.

Each COMSYSTEMCHAR entry describes a communication system as illustrated in Figure 2.4. The communication equipment at the four sites is independent from the associated sites, thus the values to be supplied should reflect the communication system equipment and not the sites (as discussed in the preceding input data section). The data-names are identical in many cases, but are applicable to different entities.

The data element order within this section is the following:

- **IDENT**
 - general communication system characteristics (CHARRATE, FREQUENCY, and/or TYPE)
- **EQUIPMENT NODE El**
<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DATA-NAME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Name or character string identifying a set of communication characteristics</td>
</tr>
<tr>
<td>CHARRATE</td>
<td>Communication character transmission rate</td>
</tr>
<tr>
<td>DPKILL</td>
<td>Threshold level for dynamic pressure destruction</td>
</tr>
<tr>
<td>CHARRATE</td>
<td>Communication character transmission rate</td>
</tr>
<tr>
<td>DPKILL</td>
<td>Threshold level for dynamic pressure destruction</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>Identifies whether the data is for a line or a node</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>Communication system transmission frequency</td>
</tr>
<tr>
<td>Gammadotkill</td>
<td>Threshold level for gamma radiation flux destruction</td>
</tr>
<tr>
<td>GAMMAKILL</td>
<td>Threshold level for gamma radiation destruction</td>
</tr>
<tr>
<td>HAEMPKILL</td>
<td>Threshold level for High Altitude EMP (HAEMP) destruction</td>
</tr>
<tr>
<td>LAEMPKILL</td>
<td>Threshold level for Low Altitude EMP (LAEMP) destruction</td>
</tr>
<tr>
<td>NEUTRONKILL</td>
<td>Threshold level for neutron radiation destruction</td>
</tr>
<tr>
<td>OPIMPULSEKILL</td>
<td>Threshold level for overpressure impulse destruction</td>
</tr>
<tr>
<td>OPKILL</td>
<td>Threshold level for overpressure destruction</td>
</tr>
<tr>
<td>PROBDAMAGEVNK</td>
<td>Probability of damage for a given vulnerability number</td>
</tr>
<tr>
<td>THERMALKILL</td>
<td>Threshold level for thermal radiation damage</td>
</tr>
<tr>
<td>TYPE</td>
<td>Identifies the type of circuit</td>
</tr>
<tr>
<td>VULNUMBERKILL</td>
<td>Threshold vulnerability number for the destruction</td>
</tr>
<tr>
<td>XRAYKILL</td>
<td>Threshold level for X-ray radiation destruction</td>
</tr>
</tbody>
</table>
The communication systems A, B, C, D, and E have separate characteristics from the sites α, β, γ, and δ.

Figure 2.4. Representative communication system.
nuclear vulnerability of node E1
EQUIPMENT NODE E2
nuclear vulnerability of node E2
EQUIPMENT LINE
nuclear vulnerability of the communication line

The nuclear effect data-names may each be used a maximum of three times. Unused data should be omitted, i.e., the data element EQUIPMENT LINE and following data would be left out if this is a radio link. The EQUIPMENT groups may be in any order.

Sigma values may be specified for some of the data-names which are used to define various types of nuclear effects damage threshold levels. These sigma values are incorporated into the ETC3 data base. The current DAMAGE applications program does not perform a probabilistic assessment of the nuclear damage; however, some data is available for probabilistic damage assessment.
1. **DATA-NAME:** IDENT
 ABBREVIATION: ID
 DATA TYPE: Character string or user-name
 APP. PROGRAMS:
 UNITS:
 GROUP NAME: Identifier
 MINIMUM:
 MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The input is an identifier for a set of communications system characteristics. It signifies a data entity for this section and serves as a reference label for data in other input section.
 EXAMPLE: IDENT NICS

2. **DATA-NAME:** CHARRATE
 ABBREVIATION: CR
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: Characters/sec
 GROUP NAME: Transmission rate
 MINIMUM: 0
 MAXIMUM: 1677.7215
 DEFAULT: 1677.7215
 QUANTUM: 0.0001
 DESCRIPTION: The value is the rate at which messages are transmitted by the communication system being described. A default value equal to the maximum transmission rate is used if no user value is supplied.
 EXAMPLE: CHARRATE 100
 CR 100
3. DATA-NAME: DPIMPULSEKILL ABBREVIATION: DPIK
DATA TYPE: Numeric APP. PROGRAMS: DAMAGE
UNITS: Psi-seconds GROUP NAME:
MINIMUM: 0.1 MAXIMUM: 6553.4
DEFAULT: 6553.5 QUANTUM: 0.1

DESCRIPTION: The value represents the threshold level for damage to a communications system from dynamic pressure impulse effects. Must follow an EQUIPMENT data element. A default value indicates the equipment is invulnerable to dynamic pressure impulse.
EXAMPLE: DPIMPULSEKILL 4.2
 DPIK 4.2

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric APP. PROGRAMS:
UNITS: GROUP NAME:
MINIMUM: 0.0 MAXIMUM: 10.0
DEFAULT: 0.0 QUANTUM:

DESCRIPTION: The sigma value corresponding to the DPIMPULSEKILL level given above. If used, this numeric value directly follows the DPIMPULSEKILL hardness level.
EXAMPLE: DPIMPULSEKILL 4.2 2.5
 DPIK 4.2 2.5
4. **DATA-NAME:** DPKILL | **ABBREVIATION:** DPK
DATA TYPE: Numeric | **APP. PROGRAMS:** DAMAGE
UNITS: Psi | **GROUP NAME:**
MINIMUM: 0.1 | **MAXIMUM:** 6553.4
DEFAULT: 6553.5 | **QUANTUM:** 0.1
DESCRIPTION: The value represents the threshold level for dynamic pressure that will render a communication system inoperative. A default value of 6553.5 psi is used to signify a dynamic pressure invulnerable communication system. Must follow an EQUIPMENT data-name.
EXAMPLE: DPKILL .5
DPK .5

DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric | **APP. PROGRAMS:**
UNITS: | **GROUP NAME:**
MINIMUM: 0.0 | **MAXIMUM:** 10.0
DEFAULT: 0.0 | **QUANTUM:**
DESCRIPTION: The sigma value corresponding to the DPKILL level given above. If used, this numeric value directly follows the DPKILL hardness level.
EXAMPLE: DPKILL .5
DPK .5
1.5
5. DATA-NAME: EQUIPMENT
ABBREVIATION:
DATA TYPE: Specific-name
APP. PROGRAMS:
UNITS:
GROUP NAME: Specific-name
MINIMUM:
MAXIMUM:
DEFAULT: All equipment is invul-
QUANTUM:
nerable to nuclear
effects.
DESCRIPTION: The specific-name (LINE, NODE1, NODE2) selected by the user indicates the portion of the communication being described. NODE1 and NODE2 specific-names are related to the two identifiers for the CONNECT data-name in the COMLINE input data section. This data element may be repeated once with each specific-name.
EXAMPLE: EQUIPMENT NODE1
EQUIPMENT LINE

6. DATA-NAME: FREQUENCY
ABBREVIATION: FREQ
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Megahertz
GROUP NAME: Frequency
MINIMUM: 0
MAXIMUM: 16777.215
DEFAULT:
QUANTUM: .001
DESCRIPTION: The value represents the approximate transmitter frequency for the communications system.
EXAMPLE: FREQUENCY 102.3
FREQ 102.3
7. DATA-NAME: GAMMADOTKILL
ABBREVIATION: GMDK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Rads/Second
GROUP NAME:
MINIMUM: 1×10^5
MAXIMUM: 1×10^{14}
DEFAULT: 0
QUANTUM:
DESCRIPTION: The value represents the threshold level for sufficient gamma flux rated to render the communication system inoperative. The default value of 0 results in a communications system which is invulnerable to gamma radiation flux effects. Must follow an EQUIPMENT data-name.
EXAMPLE: GAMMADOTKILL 2E7
MDK 5.3E10
DATA-NAME: ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the GAMMADOTKILL level given above. If used, this numeric value directly follows the GAMMADOTKILL hardness level.
EXAMPLE: GAMMADOTKILL 1E6 1.9
GMDK 1.2E9 1.9
8. DATA-NAME: GAMMAKILL
 ABBREVIATION: GMK

 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE

 UNITS: Rads
 GROUP NAME:

 MINIMUM: 1
 MAXIMUM: 65534

 DEFAULT: 65535
 QUANTUM: 1

 DESCRIPTION: The value represents the threshold level of gamma radiation necessary to incapacitate a communication system. The default value of 65535 is used to render the communication system invulnerable to gamma radiation effects. Must follow an EQUIPMENT data-name.

 EXAMPLE: GAMMAKILL 750
 GMK 900

DATA-NAME:
 ABBREVIATION:

DATA TYPE: Numeric
 APP. PROGRAMS:

UNITS:
 GROUP NAME:

MINIMUM: 0.0
 MAXIMUM: 10.0

DEFAULT: 0.0
 QUANTUM:

DESCRIPTION: The sigma value corresponding to the GAMMAKILL level given above. If used, this numeric value directly follows the GAMMAKILL hardness level.

EXAMPLE: GAMMAKILL 750 1.2
 GMK 900 1.2

72
9. DATA-NAME: HAEMPKILL
 ABBREVIATION: HEK
 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE
 UNITS: Kilovolts/meter
 GROUP NAME:
 MINIMUM: 0.1
 MAXIMUM: 102.2
 DEFAULT: 102.3
 QUANTUM: 0.1
 DESCRIPTION: The value represents the threshold level for high altitude EMP effects to incapacitate a communication system. A default value of 102.3 is used to signify a site which is invulnerable to HAEMP effects. Must follow an EQUIPMENT data-name.

 EXAMPLE: HAEMPKILL 50.4
 HEK 50.4

 DATA-NAME: HAEMPKILL
 ABBREVIATION: HEK
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: Numeric
 GROUP NAME:
 MINIMUM: 0.0
 MAXIMUM: 10.0
 DEFAULT: 0.0
 QUANTUM: 0.1
 DESCRIPTION: The sigma value corresponding to the HAEMPKILL level given above. If used, this numeric value directly follows the HAEMPKILL hardness value.

 EXAMPLE: HAEMPKILL 50.4 2.5
 HEK 50.4 2.5
10. DATA-NAME: LAEMPKILL
 ABBREVIATION: LEK
 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE
 UNITS: Kilovolts/meter
 GROUP NAME:
 MINIMUM: 0.1
 MAXIMUM: 102.2
 DEFAULT: 102.3
 QUANTUM: 0.1

 DESCRIPTION: The value represents the threshold level for low altitude EMP to disrupt a communication system and render it inoperative. A default value of 102.3 signifies the systems is invulnerable to LAEMP effects. Must follow an EQUIPMENT data-name.

 EXAMPLE: LAEMPKILL 25.2
 LEK 25.2

 DATA-NAME: ABBREVIATION:
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS:
 GROUP NAME:
 MINIMUM: 0.0
 MAXIMUM: 10.0
 DEFAULT: 0.0
 QUANTUM:

 DESCRIPTION: The sigma value corresponding to the LAEMPKILL level given above. If used, this numeric value directly follows the LAEMPKILL hardness level.

 EXAMPLE: LAEMPKILL 25.2
 LEK 25.2
 3.0
11. DATA-NAME: NEUTRONKILL
 ABBREVIATION: NK
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: Neutrons/cm²
 GROUP NAME:
 MINIMUM: 1
 MAXIMUM: 1×10^{35}
 DEFAULT: 0
 QUANTUM:
 DESCRIPTION: The value is the threshold level for neutron radiation to disrupt and incapacitate a communication system. A default value of 0 signifies a communication system which is invulnerable to neutron radiation effects. Must follow an EQUIPMENT data-name.
 EXAMPLE: NEUTRONKILL 100000
 NK 1E6

 DATA-NAME:
 ABBREVIATION:
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS:
 GROUP NAME:
 MINIMUM: 0.0
 MAXIMUM: 10.0
 DEFAULT: 0.0
 QUANTUM:
 DESCRIPTION: The sigma value corresponding to the NEUTRONKILL Level given above. If used, this numeric value directly follows the NEUTRONKILL hardness level.
 EXAMPLE: NEUTRONKILL 100000 3.5
 NK 100000 3.5
12. **DATA-NAME:** OPIMPULSEKILL
ABBREVIATION: OPIK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Psi-seconds
GROUP NAME:
MINIMUM: 0.1
MAXIMUM: 6553.4
DEFAULT: 6553.5
QUANTUM: 0.1
DESCRIPTION: The value represents the threshold level of the overpressure impulse to disrupt and incapacitate a communication system. A default value indicates this equipment is invulnerable to overpressure impulse. Must follow an EQUIPMENT data-name.
EXAMPLE: OPIMPULSEKILL 11.2
OPIK 16.

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0
MAXIMUM: 10
DEFAULT: 0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the OPIMPULSEKILL level given above. If used, this numeric value directly follows the OPIMPULSEKILL hardness level.
EXAMPLE: OPIMPULSEKILL 16.2 1.9
OPIK 16.2 1.9
13. DATA-NAME: OPKILL
 ABBREVIATION: OPK
 DATA TYPE: Numeric
 APP. PROGRAMS: DAMAGE
 UNITS: Psi
 GROUP NAME:
 MINIMUM: 0.1
 MAXIMUM: 6553.4
 DEFAULT: 6553.5
 QUANTUM: 0.1

 DESCRIPTION: The value represents the threshold level of the over-pressured needed to render a communication system inoperative. A default value of 6553.5 signifies a system which is not vulnerable to this effect. Must follow an EQUIPMENT data-name.

 EXAMPLE: OPKILL 432.1
 OPK 432.1

 DATA-NAME: ABBREVIATION:
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS:
 GROUP NAME:
 MINIMUM: 0.0
 MAXIMUM: 10
 DEFAULT: 0.0
 QUANTUM:

 DESCRIPTION: The sigma value corresponding to the OPKILL level given above. If used, this numeric value directly follows the OPKILL hardness level.

 EXAMPLE: OPKILL 432.1 2.2
 OPK 432.1 2.2
14. DATA-NAME: PROBDAMAGEVNK
ABBREVIATION: PDVNK
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME: Probability
MINIMUM: 0.01
MAXIMUM: 1.00
DEFAULT: 0.90
QUANTUM: 0.01

DESCRIPTION: The value represents the probability of damage associated with the vulnerability number of the communication system being described. A default value of .9 is used when a value is not supplied. Must follow an EQUIPMENT data-name.

EXAMPLE: PROBDAMAGEVNK 0.5
15. DATA-NAME: THERMALKILL
ABBREVIATION: THK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Cal/cm2
GROUP NAME:
MINIMUM: 1
MAXIMUM: 254
DEFAULT: 255
QUANTUM: 1
DESCRIPTION: The value represents the threshold level of thermal radiation needed to render a communication system inoperative. A default value of 255 signifies that the communications system being described is not vulnerable to thermal radiation damage. Must follow an EQUIPMENT data-name.
EXAMPLE: THERMALKILL 75
THK 75

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the THERMALKILL level given above. If used, this numeric value directly follows the THERMALKILL Hardness level.
EXAMPLE: THERMALKILL 75 1.5
THK 75 1.5
16. DATA-NAME: TYPE
 ABBREVIATION:
 DATA TYPE: Specific-Name
 APP. PROGRAMS:
 UNITS: GROUP NAME: Specific-name
 MINIMUM: MAXIMUM:
 DEFAULT: CABLE
 QUANTUM:
 DESCRIPTION: The specific-name selected (CABLE, MICROWAVE, ELF, VLF, LF, HF, VHF, UHF and SHF) indicates the type of circuit being used for the communication system. CABLE is the default type of communications circuit.
 EXAMPLE: TYPE VLF
 TYPE MICROWAVE

17. DATA-NAME: VULNUMBERKILL
 ABBREVIATION: VNK
 DATA TYPE: Vulnerability number
 APP. PROGRAMS: DAMAGE
 UNITS:
 GROUP NAME:
 MINIMUM: 1P0 or 1Q0
 MAXIMUM: 57P9 or 57Q9
 DEFAULT: 99P0, 99Q0
 QUANTUM:
 DESCRIPTION: The value represents the vulnerability number of the communications system equipment. Input values 99P0 and 99Q0 are invulnerable. Must follow an EQUIPMENT data-name.
 EXAMPLE: VULNUMBERKILL 3P5
 VNK 2Q3
18. DATA-NAME: XRAYKILL
ABBREVIATION: XRK
DATA TYPE: Numeric
APP. PROGRAMS: DAMAGE
UNITS: Cal/cm\(^2\)
GROUP NAME:
MINIMUM: 0.01
MAXIMUM: 10.22
DEFAULT: 10.23
QUANTUM:
DESCRIPTION: The value represents the threshold strength of X-ray radiation needed to render a communication system inoperative. A default value of 10.23 signifies a communication system which is not vulnerable to X-ray radiation damage. Must follow an EQUIPMENT data-name.
EXAMPLE: XRAYKILL 4.52
XRK 4.52

DATA-NAME:
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM: 0.0
MAXIMUM: 10.0
DEFAULT: 0.0
QUANTUM:
DESCRIPTION: The sigma value corresponding to the level given above. If used, this numeric value directly follows the XRAYKILL hardness level.
EXAMPLE: XRAYKILL 4.52 2.5
XRK 4.52 2.5
2.2.4.5 MESSAGECHAR Section. The MESSAGECHAR section is used to define sets of message characteristics which describe a particular message. Two data elements currently make up a set of message characteristics. The use of the MESSAGECHAR input section is dependent on whether the SITECHAR and EVENT input sections are used. The MESSAGECHAR section may be omitted from the input data deck if the SITECHAR and EVENT sections are omitted. If either the SITECHAR or EVENT sections are included in the input deck, this section is needed. The MESSAGECHAR section is introduced by

```
DEFINE MESSAGECHAR
```

where MESSAGECHAR is the specific name designating this input data section. In a complete input deck, the MESSAGECHAR section follows the COMSYSTEMCHAR section.

The two data-names constituting the MESSAGECHAR section are described in Table 2.10.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Name or character string identifying a set of message characteristics</td>
</tr>
<tr>
<td>CHARACTER</td>
<td>Message length in the number of characters</td>
</tr>
</tbody>
</table>

A sample MESSAGECHAR input data section will resemble the example to be given. In preparing the input cards, it facilitates manual review of the input data when the cards are produced according to a format.

```
DEFINE MESSAGECHAR /*SECTION HEADING*/
ID EAMBA CHAR 200
ID SELREL CHAR 1200
```
1. **DATA-NAME:** IDENT
ABBREVIATION: ID
DATA TYPE: Character string, user-name
APP. PROGRAMS:
UNITS:
MINIMUM:
MAXIMUM:
DEFAULT: User assigned
QUANTUM:
DESCRIPTION: The identifier for this type of message. This identifier must be first, and is used by other sections to reference this type of message.
EXAMPLE: ID EAM3A

2. **DATA-NAME:** CHARACTER
ABBREVIATION: CHAR
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Count
GROUP NAME:
MINIMUM: 0
MAXIMUM: 16777215
DEFAULT: 100
QUANTUM: 1
DESCRIPTION: The value supplied indicates the number of characters appearing in the message.
EXAMPLE: CHAR 200
2.2.4.6 **PROCEDURE Section.** The **PROCEDURE** section is used to identify message processing procedures which are to be employed on particular messages. The need for this input section is dependent on data references made in the **SITECHAR** input section with the **IDPROC** data-name. This section is introduced by

```
DEFINE PROCEDURE
```

where **PROCEDURE** is the specific name designating this input data section. In a complete IEB input data deck, this section follows the **MESSAGECHAR** section of data.

The single data element in the **PROCEDURE** section is the data-name:

IDENT - Name or character string identifying a procedure.

Currently, there are no application programs requiring message processing procedures in the **ETC** set of computer programs.
1. DATA-NAME: IDENT
 ABBREVIATION: ID

 DATA TYPE: Character string or user-name
 APP. PROGRAMS:
 UNITS:
 GROUP NAME: Identifier
 MINIMUM:
 MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:

 DESCRIPTION: The identifier supplied identifies the procedure which is to be used in the processing of the message. The identifier allows data in other input sections to reference the associated message processing procedure.

 EXAMPLE: ID EAMFIRST
2.2.4.7 SITE Section. The SITE section is used to identify specific command, control and communications sites whose impairment in a nuclear environment would affect the C₃ network. Specific information concerning a particular site is provided to the IEB program through this input section. General site characteristics are used to augment site descriptions by referencing data in the SITECHAR input section. This input section is required if data in the EVENT or COMLINE sections reference sites which need to be identified and defined in this section. The section is introduced by

DEFINE SITE

where SITE is the specific-name designating this section of the input data deck. In a complete input data deck, the SITE section follows the PROCEDURE section.

The data elements, which are used to define a site, are identified and defined in Table 2.11. These data elements are used principally to identify specific communication aspects of the site, and characteristics of threats against the site. Each data-name is used no more than once in identifying a site. Data values for the LOCATION and TERMINALCODE data-names are supplied in a slightly different manner.

The use of the LOCATION data-name is fully described earlier in the manual, however, a brief summary is provided here. The location may be specified in either UTM or geodetic coordinate form. Geodetic coordinates may be expressed as decimal degrees or in degrees, minutes, and seconds form. The convention for assigning signs follow those for latitude and longitude. North latitude and east longitude are positive, while south latitude and west longitude are negative. In addition, the altitude of the location either above sea level or local terrain may be specified by the data value for the LOCATION data-name. The data-name is followed by an equal sign with the data values enclosed in parentheses. Each data value, which can be a UTM location designation, latitude, longitude, or altitude, is separated from its successor by a comma. The coordinate occurs before the altitude, with latitude before longitude. When the geodetic form is used, a space is used between the degrees, minutes, and seconds when such divisions are used to specify the latitude and longitude.
Table 2.11. SITE section data-names.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DATA-NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Identifier of this site</td>
<td></td>
</tr>
<tr>
<td>HEIGHTOFBURST</td>
<td>User specified height of burst for threats on the site</td>
<td></td>
</tr>
<tr>
<td>IDSITECHAR</td>
<td>Identifier of a set of site characteristics</td>
<td></td>
</tr>
<tr>
<td>IDWEAPON</td>
<td>Identifier of the type weapon to be used against the site</td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>Hierarchial level of site in the command and control system</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>Geographic location and altitude of the site</td>
<td></td>
</tr>
<tr>
<td>TERMINALCODE</td>
<td>Code identifying communication information at the site</td>
<td></td>
</tr>
</tbody>
</table>

/* SAMPLE INPUT FOR SITE SECTION */

IDENT BLUELEADER
LOC = (42 15, 2)
IDSITECHAR HARDCENTER
The data entry for the TERMINALCODE data-name is a character string which is character position dependent. Each position may be assigned one of several codes to indicate a type of terminal. This is needed because a site may be the terminal for several communication systems. This code is the same as that used by DCA in describing the DCS systems.
1. DATA-NAME: IDENT ABBREVIATION: ID
 DATA TYPE: Character string, user-name
 APP. PROGRAMS: AA, DAMAGE
 UNITS: GROUP NAME: Identifier
 MINIMUM: MAXIMUM: DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The character string or data-name identifies a particular communication command and control site. Each site is a data entity specified by the data elements of this section. The example below is a character string because it contains imbedded blanks.
 EXAMPLE: ID 'ADENALL GE DCS'

2. DATA-NAME: HEIGHTOFBURST ABBREVIATION: HOB
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: Meters GROUP NAME: Altitude (9)
 MINIMUM: 0 MAXIMUM: 16777215
 DEFAULT: \(-2 \times 10^7\) QUANTUM: 1
 DESCRIPTION: The value supplied for the height of burst indicates the altitude at which nuclear bursts would produce maximum damage effects to the communications site. The default value indicates the application program should calculate the optimum height of burst from the nuclear vulnerability data. This data is reserved for future scenario generation programs.
 EXAMPLE: HOB 1000
3. DATA-NAME: IDSITECHAR
ABBREVIATION: IDC
DATA TYPE: Character string, user-name
APP. PROGRAMS: AA, DAMAGE
UNITS:
GROUP NAME: Identifier
MINIMUM: MAXIMUM:
DEFAULT: User assigned
QUANTUM:
DESCRIPTION: The identifier is used as a reference into the data entities contained in the SITECHAR input data section. The SITECHAR data entities provide supplemental information such as nuclear vulnerability concerning a particular site as identified in this section.
EXAMPLE: IDC VREP

4. DATA-NAME: IDWEAPON
ABBREVIATION: IDN
DATA TYPE: Character string or User-name
APP. PROGRAMS:
UNITS:
GROUP NAME: User-name
MINIMUM: MAXIMUM:
DEFAULT: QUANTUM:
DESCRIPTION: The identifier specifies the only weapon to be used against the particular communication site identified by this IDENT.
EXAMPLE: IDN BMI
5. DATA-NAME: LEVEL
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS: AA
UNITS: Unitless
GROUP NAME: Relative number (0)
MINIMUM: 0
MAXIMUM: 255
DEFAULT: 1
QUANTUM: 1
DESCRIPTION: The value assigned indicates the level of the communications command and control site in the system hierarchial structure.
EXAMPLE: LEVEL 22

6. DATA-NAME: LOCATION
ABBREVIATION: LOC
DATA TYPE: Numeric
APP. PROGRAMS: AA, DAMAGE
UNITS:
GROUP NAME: Location
MINIMUM:
MAXIMUM:
DEFAULT: User assigned
QUANTUM:
DESCRIPTION: The LOCATION data-name is used to specify the geographic location of a site. The location at the beginning of the simulation is used for mobile sites. The method specifying location has been previously described under 2.2.1.6.
EXAMPLE: LOC = (29 26 40, -03 15 23)
7. DATA-NAME: TERMINALCODE ABBREVIATION: TMC
DATA TYPE: Character String APP. PROGRAMS:
UNITS: GROUP NAME:
MINIMUM: MAXIMUM:
DEFAULT: Blanks QUANTUM:

DESCRIPTION: The specific values are used to describe the site as a communication terminal. The site can have one of these terminal codes. This data is derived from DCS information.

<table>
<thead>
<tr>
<th>Character Pos</th>
<th>Entry</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>VON Switch</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>DIN Switch</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>SEVOCOM Switch</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>ETS Switch</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>Repeater Switch</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>International Border</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>Cable head</td>
</tr>
<tr>
<td>8</td>
<td>T8</td>
<td>Government set. ter.</td>
</tr>
<tr>
<td></td>
<td>L9</td>
<td>Commercial set. ter.</td>
</tr>
<tr>
<td></td>
<td>M10</td>
<td>Military set. ter.</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>Satellite</td>
</tr>
<tr>
<td>10</td>
<td>P</td>
<td>Local PBX present</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>Lease interface present</td>
</tr>
</tbody>
</table>

EXAMPLE: TMC 'T8' 'PL'
2.2.4.8 COMLINE Section. The COMLINE section is used to define communication lines by designating the end nodes of the line and by specifying characteristics of the communication line. Additional information on the communication aspects of the line can exist in the COMSYSTEMCHAR section; this information is referenced to complete the description of the communication line being defined. Communication lines defined in this section may be referenced by data in the COMNET section. The use of this section is optional, but is not independent of all remaining input data sections. When the section is used it is introduced by:

```
DEFINE COMLINE
```

where the DEFINE is an IE reserved data-name used to initiate a data section, and COMLINE is specific-name designating the specific input section. In a complete set of input sections, the COMLINE section follows the SITE section.

The data elements of this section, which are used to define a communication line, are listed and described in Table 2.12. Each data-name is used no more than once for each communication line described. The CONNECT data-name is the single data element which requires two data values, all others require one. The two data values supplied for the CONNECT data-name must correspond to sites identified in the SITE input section. They are placed after the data-name and blanks are used to separate the identifiers.

A sample COMLINE input data section is provided to illustrate the use of the data elements in defining a set of communication lines. The full and abbreviated forms of the data-names are used in the examples.

```
DEFINE COMLINE
IDENT LINE A3 CAPACITY 100 IDCSC SATELLITE SNR 12
CONNECT ALPHA BETA
POB .90 TYPE FULL
```
Table 2.12. COMLINE section data-names.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DATA-NAME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Character string or user name identifying the communication line</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>User specific capacity measure for the line</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Specifies the sites to be connected by the line</td>
</tr>
<tr>
<td>IDCOMSYSCHAR</td>
<td>Identifier used to reference data in COMSYSTEMCHAR section</td>
</tr>
<tr>
<td>NORMOPSNRATIO</td>
<td>Normal operating signal-to-noise ratio of the line</td>
</tr>
<tr>
<td>PROBOPBENIGN</td>
<td>Probability of communication line being operational in benign environment</td>
</tr>
<tr>
<td>TYPE</td>
<td>The operating mode of communication line connecting the nodes.</td>
</tr>
</tbody>
</table>
1. DATA-NAME: IDENT
 ABBREVIATION: ID
 DATA TYPE: Character string, or user-name
 APP. PROGRAMS:
 UNITS: GROUP NAME: Identifier
 MINIMUM:
 MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The user-name or character string identifies a communication line. The identifier enables data in other input sections to reference a specific communication line when necessary.
 EXAMPLE: IDENT LINEA3

2. DATA-NAME: CAPACITY
 ABBREVIATION: CAP
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: GROUP NAME:
 MINIMUM: 0
 MAXIMUM: \(10^9\)
 DEFAULT: 100
 QUANTUM: 1
 DESCRIPTION: The CAPACITY data-name is used by the analyst to represent some unique capacity measure.
 EXAMPLE: CAPACITY 1900
3. **DATA-NAME: CONNECT**
 - **ABBREVIATION:**
 - **DATA TYPE:** Character string
 - **or user-name**
 - **APP. PROGRAMS:**
 - **UNITS:**
 - **GROUP NAME:** Identifier
 - **MINIMUM:**
 - **MAXIMUM:**
 - **DEFAULT:** User assigned
 - **QUANTUM:**
 - **DESCRIPTION:** The CONNECT data-name requires the use of two identifiers. These two data entries correspond to "NODE1" and "NODE2" respectively of the communication line being described. See data-name EQUIPMENT in Section COMSYSTEMCHAR.
 - **EXAMPLE:** CONNECT ALPHA BETA

4. **DATA-NAME: IDCOMSYSCHAR**
 - **ABBREVIATION:** IDSC
 - **DATA TYPE:** Character string
 - **or user-name**
 - **APP. PROGRAMS:**
 - **UNITS:**
 - **GROUP NAME:** Identifier
 - **MINIMUM:**
 - **MAXIMUM:**
 - **DEFAULT:** Blanks
 - **QUANTUM:**
 - **DESCRIPTION:** The user-name or character string is used as a means of referencing additional data in the COMSYSTEMCHAR section of the input data deck. The reference data provides additional descriptive data about the operating characteristics of this communications line.
 - **EXAMPLE:** IDCOMSYSTEMCHAR SATELLITE
5. DATA-NAME: NORMOPSNRATIO ABBREVIATION: SNR
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Decibels
GROUP NAME:
MINIMUM: 0
MAXIMUM: 31
DEFAULT: 20
QUANTUM: 1
DESCRIPTION: The value represents the normal operating signal to noise ratio of the communication line described. The default value provides the communication line with a signal to noise ratio of 20 db.
EXAMPLE: NORMOPSNRATIO 12
SNR 12

6. DATA-NAME: PROBOPBENIGN ABBREVIATION: POB
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: GROUP NAME: Probability
MINIMUM: 0.000
MAXIMUM: 1.000
DEFAULT: 1.000
QUANTUM: 0.001
DESCRIPTION: The input value represents the operational probability of the communication line in a benign environment. The default value of 1.0 indicates certainty of communication line operation.
EXAMPLE: PROBOPBENIGN .90
POB .90
7. DATA-NAME: TYPE

DATA TYPE: Specific-name

UNITS: GROUP NAME: Specific-name

MINIMUM: MAXIMUM:

DEFAULT: FULL

DESCRIPTION: A specific-name (ONEWAY, HALF, FULL) is selected to define the transmission capability of the communication line being described.

1. ONEWAY - One way communication line (NODE1 to NODE2 of the CONNECT data name)
2. HALF - Two way communication line, half duplex.
3. FULL - Two way communication line, full duplex.

EXAMPLE: TYPE ONEWAY
 TYPE FULL
2.2.4.9 COMNET Section. The COMNET section is used to define communication networks by specifying the communication lines making up the network. The communication lines which make up each network need to be identified in the COMLINE section. In a complete input data deck, the COMNET section follows the COMLINE section. The use of this input section is optional, but the section is not independent of other input sections. The EVENT input section may reference communication networks specified in this section. The section is introduced by

```
DEFINE COMNET
```

where COMNET is the specific name designating this input data section.

Two data elements are used to specify a communication network and they are:

- **IDENT** Character string or user-name identifying a network.
- **COMLINE** Lines forming a communication network.

The COMLINE data-name will accept more than a single communication line identifier. If more than one identifier is used, the line identifiers are enclosed in parentheses and separated by commas. The communication line identifiers following the COMLINE data-name identify the lines making up the network.

A sample COMNET input data section is reproduced below to illustrate how the data section is used to define communication networks. In the example below:

```
DEFINE COMNET
IDENT 'CEMETERY NET'
COMLINE =(UKSO14, UKSO16, UKSO28, UKSO34)
```

there is one network identified as CEMETERY NET which is composed of the communication lines, UKSO14, UKSO16, UKSO28, and UKSO34.
1. DATA-NAME: IDENT
 ABBREVIATION: ID
 DATA TYPE: Character string, user-name
 APP. PROGRAMS:
 UNITS:
 GROUP NAME: Identifier
 MINIMUM: MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The user-name or character string is used to identify a communications network. The network consists of a set of the communication lines identified in the COMLINE input section.
 EXAMPLE: IDENT ACEHIGH

2. DATA-NAME: COMLINE
 ABBREVIATION: LINE
 DATA TYPE: Character string or user-name
 APP. PROGRAMS:
 UNITS:
 GROUP NAME:
 MINIMUM: MAXIMUM:
 DEFAULT: User assigned
 QUANTUM:
 DESCRIPTION: The communication line(s) constituting a network is identified by the COMLINE data-name. The names of the communications lines making up a network are enclosed in a set of parentheses. The communication line identifiers are separated by commas within the parentheses.
 EXAMPLE: COMLINE = (UKS014,UKS016,UKS034)
 COMLINE UKS028
2.2.4.10 **EVENT Section.** The EVENT section is used to define the occurrence of C\(^3\) events by combining input data from the MESSAGECHAR SITE, COMLINE, and COMNET sections together to set the background for the occurrence of an event. It also defines how the event is to be processed. The combination process is performed by referencing data in other sections through the data-names IDCOMLINE, IDOMNET, IDMESSAGECHAR, and IDSITExxxxx. The last data-name is completed by selecting one of four possible substitutable replacements for the x's. The omission of this data section does not impact on other input sections because references are not made to data contained in this input section. This section follows the COMNET section in a complete input data deck. When used, the section is introduced by:

```
DEFINE EVENT
```

The data elements of this section are listed and defined in Table 2.13. Each data element is used at most once to define an event, and a single data value is associated with each data-name. The four replacements for the x's are:

1. REC - Receiving site
2. SEND - Sending site
3. DEST - Destination site
4. SOURCE - Source site

A sample EVENT input data section is included to illustrate the use of the data-names in the definition of an ETC\(^3\) event.

```
DEFINE EVENT
IDENT ONE
  TYPE DEBUG TIME 10
IDENT TWO
  TYPE MESSAGE TIME 300
  IDSITEREC ALPHA
  IDSITESOURCE BETA
  IDMESSAGECHAR SELRELLEVEL3
  IDCOMNET HOTEL
```
Table 2.13. EVENT section data-names.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DATA-NAME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Character string of user-name identifying the event</td>
</tr>
<tr>
<td>IDCOMLINE</td>
<td>Communication line affected by the event</td>
</tr>
<tr>
<td>IDCOMNET</td>
<td>Communication network affected by the event</td>
</tr>
<tr>
<td>IDMESSAGECHAR</td>
<td>Characteristics of the message affected by the event</td>
</tr>
<tr>
<td>IDSITExxxxx</td>
<td>Site affected by the event</td>
</tr>
<tr>
<td>TIME</td>
<td>Game time the event is to occur</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type of event</td>
</tr>
</tbody>
</table>
1. **DATA-NAME:** IDENT
 ABBREVIATION: ID
 DATA TYPE: Character string
 APP. PROGRAMS: or user-name
 UNITS:
 GROUP NAME: Identifier
 MINIMUM:
 MAXIMUM:
 DEFAULT:
 QUANTUM:
 DESCRIPTION: The user-name or character string identifies an ETC event.
 EXAMPLE: IDENT STARTSELREL

2. **DATA-NAME:** IDCOMLINE
 ABBREVIATION: IDCL
 DATA TYPE: Character string
 APP. PROGRAMS: or user-name
 UNITS:
 GROUP NAME:
 MINIMUM:
 MAXIMUM:
 DEFAULT:
 QUANTUM:
 DESCRIPTION: The user-name or character string is used to reference a communications line description in the COMLINE input data section. The value corresponds to the user-name supplied for the IDENT in the COMLINE section.
 EXAMPLE: IDCOMLINE LINE3
3. DATA-NAME: IDCOMNET
ABBREVIATION: IDCN
DATA TYPE: Character string
or user-name
APP. PROGRAMS:
UNITS:
GROUP NAME: Identifier
MINIMUM:
MAXIMUM:
DEFAULT:
QUANTUM:
DESCRIPTION: The user-name or character string reference a communications network specified in the COMNET input section. The reference is accomplished by using the same user-name for the IDENT in the COMNET input section and the IDCOMNET in this section.
EXAMPLE: IDCOMNET CEMETERY

4. DATA-NAME: IDMESSAGECHAR
ABBREVIATION: IDMC
DATA TYPE: Character string
or user-Name
APP. PROGRAMS:
UNITS:
GROUP NAME: Identifier
MINIMUM:
MAXIMUM:
DEFAULT:
QUANTUM:
DESCRIPTION: The user-name or character string references a set of message characteristics defined in the MESSAGECHAR input section. The reference is done by using identical user-names for the IDENT data-name in the MESSAGECHAR section and the IDMESSAGECHAR data-name in this section.
EXAMPLE: IDMESSAGECHAR SELRELA17

104
5. **DATA-NAME:** IDSITExxxxx
ABBREVIATION: IDSxxxxx
DATA TYPE: Character string or user-name
APP. PROGRAMS:
UNITS:
GROUP NAME:
MINIMUM:
MAXIMUM:
DEFAULT: User assigned
QUANTUM:
DESCRIPTION: Four data-names are presented by the IDSITExxxx designation. A data name is formed by replacement of the xxxxx's with one of the following possibilities: 1. REC - receiving site; 2. SEND - sending site; 3. DEST - destination site; 4. SOURCE - source site. The user-name to be used with the selected data-name references an IDENT in the SITE section.
EXAMPLE: IDSITEREC ALPHA IDSSOURCE BETA

6. **DATA-NAME:** TIME
ABBREVIATION:
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS: Seconds
GROUP NAME: Game Time
MINIMUM: 0.0
MAXIMUM: MAXTIME
DEFAULT: User-assigned
QUANTUM: QNTTIME
DESCRIPTION: The value represents the time of an event; the time is given in game time seconds from the start of the simulation. Events should be time sequenced for easy reference. The maximum and quantum time values are specified via the SST preprocessor.
EXAMPLE: TIME 3600.75
<table>
<thead>
<tr>
<th>DATA-NAME: TYPE</th>
<th>ABBREVIATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA TYPE: Specific-name</td>
<td>APP. PROGRAMS:</td>
</tr>
<tr>
<td>UNITS:</td>
<td>GROUP NAME: Specific-name</td>
</tr>
<tr>
<td>MINIMUM:</td>
<td>MAXIMUM:</td>
</tr>
<tr>
<td>DEFAULT:</td>
<td>QUANTUM:</td>
</tr>
</tbody>
</table>

DESCRIPTION: The specific-name (DEBUG, NODEBUG, ENDGAME, ABORT, MESSAGE, and MSG) selected determine the EVENT type. The MESSAGE and MSG specific-names are considered identical by the program.

EXAMPLE:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>DEBUG</td>
</tr>
</tbody>
</table>
2.2.4.11 **THREATBM Section.** The **THREATBM** section is used to define ballistic missile threats which are to be included in the ETC^3 data base. The data are used to describe the launch and impact criteria for the missile threat. The description of the threats are supplemented by referencing the delivery vehicle characteristics provided in the **THREATCHAR** section. The **THREATBM** section is the last input section of the IEB data deck. If the section is used, it is introduced by:

```
DEFINE THREATBM
```

where **THREATBM** is the specific-name used to designate this input section.

The data elements for the **THREATBM** section are used principally to define the flight parameters of the missile threat. They are listed and defined in Table 2-14. All data elements in this section use the standard method of data entry. Each data-name is followed by a single data value. In specifying latitude and longitude values, north latitudes and east longitudes are positive, while south latitude and west longitudes are negative. The times for the launch and burst are related in that a time of launch will be computed when the time of burst is specified. In addition, the computed time of launch should be inspected to insure that launch time is within game time frame.

A sample **THREATBM** section is included below to illustrate how threat data is prepared for the IEB program.

```
DEFINE THREATBM
IDENT BM1 IDTHREATCHAR SS9
LATBURST 45 LONGBURST -30 ALTBURST 200
IDENT BM2 IDTHREATCHAR SS11A
LATBURST 46 LONGBURST -23 ALTBURST 103.5
IDTARGET 'DUMMY SITE'
TIMEBURST 4200
```
Table 2.14. THREATBM data-names.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>DATA-NAME DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENT</td>
<td>Character string or user-name identifying the threat cell</td>
</tr>
<tr>
<td>ALTBURST</td>
<td>Burst altitude for the missiles</td>
</tr>
<tr>
<td>ALT LAUNCH</td>
<td>Launch altitude for the missiles</td>
</tr>
<tr>
<td>ANGLE LAUNCH</td>
<td>Launch angle for the missiles</td>
</tr>
<tr>
<td>ID LAUNCH</td>
<td>Character string or user-name identifying the threat cell</td>
</tr>
<tr>
<td>ID TARGET</td>
<td>Character string or user-name identifying the target of the threat cell</td>
</tr>
<tr>
<td>ID THREATCHAR</td>
<td>Identifier used to reference a set of threat characteristics</td>
</tr>
<tr>
<td>LAT BURST</td>
<td>Burst latitude for the missiles</td>
</tr>
<tr>
<td>LAT LAUNCH</td>
<td>Launch latitude for the missiles</td>
</tr>
<tr>
<td>LONG BURST</td>
<td>Burst longitude for the missiles</td>
</tr>
<tr>
<td>LONG LAUNCH</td>
<td>Launch longitude for the missiles</td>
</tr>
<tr>
<td>NUM OBJECTS</td>
<td>Number of missiles</td>
</tr>
<tr>
<td>TIME BURST</td>
<td>Time of burst for the missiles</td>
</tr>
<tr>
<td>TIME LAUNCH</td>
<td>Time of launch for the missiles</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>Velocity of the missile</td>
</tr>
</tbody>
</table>
1. **DATA-NAME:** IDENT
ABBREVIATION: ID
DATA TYPE: Character string or user-name
APP. PROGRAMS:
UNITS:
GROUP NAME: Identifier
MINIMUM:
MAXIMUM:
DEFAULT: BMnnnn
QUANTUM:
DESCRIPTION: The data entry identifies the ballistic missile threat to be described. If not supplied by the user, default threat identifications are supplied by the IEB program by incrementing the nnnn portion of the identifier. This is the only identifier that is generated by IEB if one is not supplied by the user.
EXAMPLE: IDENT WAVE5BM36

2. **DATA-NAME:** ALTBURST
ABBREVIATION: H2
DATA TYPE: Numeric
APP. PROGRAMS: AA, DAMAGE
UNITS: Meters
GROUP NAME: Altitude
MINIMUM: 0
MAXIMUM: 100000
DEFAULT: 0
QUANTUM: 1
DESCRIPTION: The value represents the altitude of the burst above desired ground zero for the missile threat. This height of burst is currently being used in the ETC model. Default value results in ground level bursts.
EXAMPLE: ALBURST 1000
3. DATA-NAME: ALTLAUNCH
 ABBREVIATION: H1
 DATA TYPE: Numeric
 APP. PROGRAMS: AA
 UNITS: Meters
 GROUP NAME: Altitude
 MINIMUM: 0
 MAXIMUM: 32767
 DEFAULT: 0
 QUANTUM:
 DESCRIPTION: The value represents the altitude of the launch point above sea level. Default value for the launch altitude is sea level.
 EXAMPLE: ALTLAUNCH 0

4. DATA-NAME: ANGLELAUNCH
 ABBREVIATION: AL
 DATA TYPE: Numeric
 APP. PROGRAMS:
 UNITS: Degrees
 GROUP NAME: Angle
 MINIMUM: 0
 MAXIMUM: 89.9
 DEFAULT: 90
 QUANTUM: 0.0057
 DESCRIPTION: The value represents the launch angle of the missile threat. The angle is specified in degrees up to a maximum of 89.9°. The default value indicates a threat missile launch which uses a minimum energy trajectory.
 EXAMPLE: ANGLELAUNCH 23.7
5. **DATA-NAME:** IDLAUNCH
ABBREVIATION: IDLNCH
DATA TYPE: Character string or user-name
APP. PROGRAMS: AA
UNITS:
GROUP NAME: Identifier
MINIMUM:
MAXIMUM:
DEFAULT: Blanks
QUANTUM:
DESCRIPTION: The user-name or character string identifies the launch point for the missile threat being defined. It aids the user in recognizing threats, but is not used for data referencing.
EXAMPLE: IDLAUNCH BASEAX

6. **DATA-NAME:** IDTARGET
ABBREVIATION: IDTGT
DATA TYPE: Character string or user-name
APP. PROGRAMS:
UNITS:
GROUP NAME: Identifier
MINIMUM:
MAXIMUM:
DEFAULT:
QUANTUM:
DESCRIPTION: The user-name or character string identifies the target for the missile threat being defined. It aids the user in recognizing threats, but is not used for data referencing.
EXAMPLE: IDTARGET COLDBLOW
7. DATA-NAME: IDTHREATCHAR
ABBREVIATION: IDC

DATA TYPE: Character string or user-name
APP. PROGRAMS: AA, DAMAGE

UNITS: GROUP NAME: Identifier
MINIMUM: MAXIMUM:
DEFAULT: User assigned QUANTUM:

DESCRIPTION: The user-name or character string identifies a set of threat characteristics in the THREATCHAR input section which describes the threat vehicle characteristics. The user name for IDTHREATCHAR should match the user-name supplied for an IDENT data-name in the THREATCHAR section.

EXAMPLE: IDTHREATCHAR SS11
IDC SS9

8. DATA-NAME: LATBURST
ABBREVIATION: F2

DATA TYPE: Numeric
APP. PROGRAMS: AA, DAMAGE

UNITS: Degrees GROUP NAME: Latitude
MINIMUM: -89 MAXIMUM: 89
DEFAULT: 415 QUANTUM: .00057

DESCRIPTION: The numeric value is the latitude of the desired ground zero of the missile threat being defined. South latitude designations are prefixed by a negative sign, while north latitude designations may or may not be prefixed by a positive sign.

EXAMPLE: LATBURST 45 15 7
9. DATA-NAME: LATLAUNCH
ABBREVIATION: Fl
DATA TYPE: Numeric
APP. PROGRAMS:
UNITs: Degrees
GROUP NAME: Latitude
MINIMUM: -89
MAXIMUM: 89
DEFAULT: 60
QUANTUM: .00057
DESCRIPTION: The numeric value is the launch latitude of the missile cell being described. A negative sign is used with south latitudes, while a positive sign may be used with north latitudes. The default value is 60° north latitude.
EXAMPLE: LATLAUNCH 30 30 10

10. DATA-NAME: LONGBURST
ABBREVIATION: G2
DATA TYPE: Numeric
APP. PROGRAMS: AA
UNITs: Degrees
GROUP NAME: Longitude
MINIMUM: -180
MAXIMUM: 180
DEFAULT: 87.5
QUANTUM: 0.00057
DESCRIPTION: The numeric value is the longitude of the desired ground zero for the missile cell being described. A negative sign is used with west longitude values, while an optional positive sign is used with east longitude. The default value is 87.5 degrees east longitude.
EXAMPLE: LONGBURST 87 30
11. **DATA-NAME:** LONGLAUNCH
ABBREVIATION: G1
DATA TYPE: Numeric
APP. PROGRAMS: AA, DAMAGE
UNITS: Degrees
GROUP NAME: Longitude
MINIMUM: -180
MAXIMUM: 180
DEFAULT: -80
QUANTUM: .00057
DESCRIPTION: The numeric value is the launch longitude of the missile being described. Use of a positive sign for east longitudes is optional, while use of negative sign for west longitudes is required.
EXAMPLE: LONGLAUNCH -80 25 10

12. **DATA-NAME:** NUMOBJECTS
ABBREVIATION: NOC
DATA TYPE: Numeric
APP. PROGRAMS:
UNITS:
GROUP NAME: Count
MINIMUM: 0
MAXIMUM: 7
DEFAULT: 1
QUANTUM: 1
DESCRIPTION: The numeric value is the number of missiles in the cell being defined. Each cell may consist of up to seven missiles, the default is one missile per cell.
EXAMPLE: NOC 3
13. DATA-NAME: TIMEBURST
ABBREVIATION: T2
DATA TYPE: Numeric
APP. PROGRAMS: AA
UNITS: Seconds
GROUP NAME: Game Time
MINIMUM: 0
MAXIMUM: 268435.46
DEFAULT:
QUANTUM: 0.01
DESCRIPTION: The numeric value is the time of burst for the missile threat being defined. It should not be specified when the launch time value is also specified for the same threat vehicle. When a time of burst is supplied, the launch time is computed.
EXAMPLE: TIMEBURST 7200

14. DATA-NAME: TIMELAUNCH
ABBREVIATION: T1
DATA TYPE: Numeric
APP. PROGRAMS: AA
UNITS: Seconds
GROUP NAME: Game Time
MINIMUM: 0
MAXIMUM: 268435.46
DEFAULT: 0
QUANTUM: 0.01
DESCRIPTION: The numeric value is the launch time for the missile threat being defined. It is the time from the start of the simulation. If the TIMEBURST data-name is used, the time of launch is computed and this entry should be omitted.
EXAMPLE: TIMELAUNCH 3600
15. DATA-NAME: VELOCITY ABBREVIATION: V
DATA TYPE: Numeric APP. PROGRAMS:
UNITS: Meters/second GROUP NAME: Velocity
MINIMUM: 0.1 MAXIMUM: 6553.5
DEFAULT: 1000 QUANTUM: 0.1
DESCRIPTION: The numeric value supplied by the user is replaced by calculated values. This input can be used by future scenario generated programs.
EXAMPLE: VELOCITY 1200
2.2.5 Associated Data Names.

Program IEB was developed to process the input data in sections; to provide the user flexibility in generating the data base. However, there are relationships between input data from different sections which need to be considered in the production of acceptable input data for the IEC program. Requirements of the IEC program and the design of the data transference between the IEB and IEC programs forces the user to consider these relationships in preparing the IEB input data. Failure to account for these data dependencies will result in repeated executions of the IEB program.

The preceding section, IEB Input Preparation Section 2.2.2, identified the data-names whose usage results in references to data in other sections. This section will identify and summarize the data cross references which can occur in the preparation of the IEB input data. Data element cross references are summarized in Table 2.15. Table 2.15 lists the data-names appearing in each input data section and identifies data-names which can result in cross references.

Data-name associations are summarized in Table 2-16. The data-name appears in the first column, the section in which the data-name belongs appears in the second column. The third column indicates the associated data-names and the fourth column identifies the input sections of the associated data-names.
Table 2.15. IEB input data-names.
Table 2.16. Associated data-names.

<table>
<thead>
<tr>
<th>DATA NAME</th>
<th>SECTION HEADING</th>
<th>ASSOCIATED DATA NAMES</th>
<th>SECTION HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERRAIN</td>
<td>CONTROL</td>
<td>LOCATION</td>
<td>SITE</td>
</tr>
<tr>
<td>IDENT</td>
<td>MESSAGECHAR</td>
<td>IDMESSAGECHAR</td>
<td>SITECHAR</td>
</tr>
<tr>
<td>IDENT</td>
<td>THREATCHAR</td>
<td>IDTHREATCHAR</td>
<td>EVENT</td>
</tr>
<tr>
<td>IDENT</td>
<td>SITECHAR</td>
<td>IDSITECHAR</td>
<td>THREATBM</td>
</tr>
<tr>
<td>IDENT</td>
<td>COMSYSTEMCHAR</td>
<td>IDCOMSYSCHAR</td>
<td>SITE</td>
</tr>
<tr>
<td>IDENT</td>
<td>PROCEDURE</td>
<td>IDPROCEDURE</td>
<td>COMLINE</td>
</tr>
<tr>
<td>IDENT</td>
<td>SITE</td>
<td>CONNECT</td>
<td>SITECHAR</td>
</tr>
<tr>
<td>IDENT</td>
<td>COMLINE</td>
<td>COMLINE</td>
<td>COMLINE</td>
</tr>
<tr>
<td>IDENT</td>
<td>COMNET</td>
<td>IDCOMLINE</td>
<td>EVENT</td>
</tr>
<tr>
<td>IDENT</td>
<td>COMNET</td>
<td>IDCOMNET</td>
<td>EVENT</td>
</tr>
</tbody>
</table>
2.2.6 IEB Program Execution

Phase B of the INPUT EDITOR is coded in the FORTRAN computer language as are the Phase C and Phase P portions of the INPUT EDITOR. The developed code is executable on equipment operating under the Control Data Corporation NOS/BE 1.2 Operating System. The equipment available to BDM to execute the IE set of programs consists of the 6600 and 7600 located at the Air Force Weapons Laboratory (AFWL). The user instructions are based on the local accounting procedures for outside user access, local modifications to the operating system, and the availability of each program in loadable and executable form.

The control cards which are needed to execute the IEB program are reproduced in Figure 2.5. The accounting information and the names of the permanent files may not correspond with those of the user, in which case, the user information will be substituted. In Figure 2.5, the IEB input data deck is first copied to the temporary disk file TAPE5. The structure of the input data deck is described in Figure 2.2. TAPE 11 contains the IE specifications. The format of this file is described in the ETC3 programmer's manual (Reference 2).
Data Deck

Figure 2.5. IEB program control cards.
The IEB program modules are loaded from the IEB and LIB permanent files for IEB execution. These files were created previously to support Phase B program execution. The results from program IEB is a disk file which can be catalogued. This output, identified as TAPE7, is used as the input data to the Phase C INPUT EDITOR program. Diagnostic output from IEB program execution is saved on TAPE2 and is printed after the IEB program results are printed.

The IEB program produces a listing of the input data deck in card image form. This printed list allows the user to examine his input data for simple errors such as misspellings and other types of mistakes.

2.3 INPUT EDITOR -- Phase C (IEC)

The IEC program is executed after the Phase B program is executed. It is needed to produce a data base which the application programs can use. The IEC program does the cross checking and tabulating functions which are required to be done on the input data sections in order to produce a coordinated and consolidated data base. Input data to the IEC program are the data information records produced by the IEB program. The characteristics of the IEC computer code are identical to those described in the preceding section.

The control cards which are needed to execute the IEC computer code are identified in Figure 2.6. Again, the specific permanent file names and the accounting information may differ from those of the user. However, the names used in the figure will permit the results from the IEB execution described earlier to be used as input. The IEC program requires an input and an output file which are identified as TAPE7 and TAPE9, respectively. The data base for the application programs is stored as a sequential permanent file. Errors arising in the execution of the IEC program are contained on TAPE2, which is copied to OUTPUT.

2.4 INPUT EDITOR -- Phase P (IEP)

Phase P of the INPUT EDITOR can be executed using the results from either the IEB or IEC program as the input data source. IEP is used to produce formatted listings of the data base contents for user review and reference. The program may be used at any time in the data base generation process. It does not alter the input data base in any manner.
Figure 2.6. IEC computer control cards.
The control cards which are needed to execute the IEP Program are shown in Figure 2.7. As in the case of the IEB and IEC programs, the control cards are specifically for the DCD 6600 and 7600 equipment located at AFWL. Phase P of the INPUT EDITOR is executed in nearly the same manner as the IEC program.
WBDMPDINKS,P60.
ACCOUNT----
ATTACH,TAPE9,INCAESEST1,ID=WDNAxxx,MR=1.
ATTACH,TAPE11,INCAIESPEC,ID=WDNAxxx,MR=1.
ATTACH,IEP,INEDP,IDX=WDNAxxx,MR=1.
IEP.
REWIND,TAPE2
COPY,TAPE2,OUTPUT.
(EOF)

Figure 2.7. IEP program control cards.
CHAPTER III
DAMAGE PROGRAM

3.0 INTRODUCTION

The effects of nuclear weapon detonations on communication processes, sites, and systems are calculated by the DAMAGE computer program and compared with vulnerability thresholds to determine their survivability. Its is an applications program which uses the IE structured data base as the primary input data source. The nuclear effects and measures of vulnerability which are computed by the program subroutines are:

1. dynamic pressure (DPKILL),
2. gamma flux (GAMMADOTKILL),
3. gamma (GAMMAKILL),
4. high altitude EMP (HAEMPKILL),
5. low altitude EMP (LAEMPKILL),
6. neutron (NEUTRONKILL),
7. overpressure (OPKILL),
8. thermal (THERMALKILL),
9. X-ray (XRAYKILL), and
10. vulnerability number (VULNUMBERKILL).

The acronyms in parentheses correspond to vulnerability thresholds specified as input to the IEB program. Each site, communication system, and line is evaluated with respect to these measures of vulnerability.

The program calculates the damage caused to a set of targets from a set of nuclear weapon bursts. Each target is assigned a vulnerability threshold for each effect which can result in damaging the target. For each nuclear detonation, the effect level at the target is calculated and compared with the target damage threshold. If the burst results in an effect level exceeding the threshold, the target is damaged and the details are printed. Nuclear effects calculation may be bypassed if the target is indicated to be hard to the particular effect; this is accomplished via input data to the IEB program. Figure 3.1 shows the basic structure of the
Figure 3.1. DAMAGE program basic processing structure.
DAMAGE program. Reference 4 provides a more detailed description of the DAME program than is presented in this chapter. A summary of the calculations performed for each nuclear effect is included here as a means of describing the effect and showing the method of solution. Following the description is a brief section on the actual use of the program to compute damage to targets.

3.1 Nuclear Weapon Effects

Ten measures of nuclear vulnerability can be calculated by the DAME program. These measures, all of which result from nuclear detonations, are identified by the IE data names used to input the vulnerability threshold data values. This is done because the data names are descriptive of the nuclear effect calculated and associate the IE input data with the physical effects described. Each nuclear effect and the calculated vulnerability measure is described by identifying the physical parameters, the equations used and their source, and the conditions under which the calculation of the nuclear effect is performed.

3.1.1 DPKILL

DPKILL is the data name used in the IE section of the ETC which is associated with dynamic pressure damage to C sites and communication systems. The calculated dynamic pressure, which is expressed in units of psi, is compared with the DPKILL data values for assessing the survivability of sites and systems from dynamic pressure effects of nuclear bursts.

The DAME program computes the dynamic pressure based on the peak overpressure at the point of interest. Dynamic pressure computations are not performed when the data values, which are specified in the COMSYSTEMCHAR and ISTECHAR sections of the IE input data through the DPKILL data name, use the default value. A DPKILL value in the range of 0.1 to 6534.4 psi will result in the DAME program computation of dynamic pressure.
The overpressure is determined from interpolation of data from Reference 5. The computation of the overpressure is described in Section 3.1.8. The dynamic pressure computation follows from the overpressure calculation using the Rankine-Hugoniot development in Chapter II, page 2-39 of Reference 5.

3.1.2 GAMMADOTKILL

GAMMADOTKILL is the data-name in the IE section of the ETC3 which is associated with gamma dose rate damage to C3 sites and communications systems. The DAMAGE program computed dose rate is compared to the damage threshold value to assess the survivability of the C3 sites and systems to gamma dose rate values.

The DAMAGE program computes and prints the gamma dose rate. The computations are not performed when the data values, which are in the COMSYSTEMCHAR and SITECHAR sections of the IE input deck, are assigned default values. The use of a default value indicates that the site or system is invulnerable to the particular nuclear weapons effect. Input values for the GAMMADOTKILL data-name in the range of 10^5 and 10^{14} rads/second will cause the DAMAGE program to compute the gamma dose rate.

The equation used is obtained from the HDL Environments Report (Reference 6) and is reliable for yields between .5 and 500 kilotons and for a total dose rate between 10^7 and 10^{10} rads/second. The equation may be used with yields up to 1 megaton. The computations are reliable for low altitude bursts of up to 6 kilofeet in altitude and is based on a relative air density of .9. The equation used is classified.

3.1.3 GAMMAKILL

GAMMAKILL is the data-name in the IE section of the ETC3 which is associated with gamma radiation damage to C3 sites and communications systems. The DAMAGE-computed gamma radiation level is compared to the threshold damage value to assess the survivability of the C3 sites and communication systems to gamma radiation.
The DAMAGE program computes and prints the gamma radiation level. The gamma radiation computations are not performed when the data values, which appear in the COMSYSTEMCHAR and SITECHAR sections of the IE input, are assigned default values. The use of a default value indicates complete invulnerability to the nuclear effect. Input values for GAMMAKILL in the range of 1 to 65534 will result in the computation of the gamma radiation level by the DAMAGE program.

The equation used to compute the gamma radiation, \(\gamma \), is:

\[
\gamma = (5.46 \times 10^3) \, W \left[\left(R^2 - 0.0036 \frac{W^2}{3} \right)^{1/2} \right]^{-2.89} e^{-3.19 \left(R^2 - 0.0036 \frac{W^2}{3} \right)^{1/2}}
\]

where the \(\gamma \) radiation is expressed in rads, and \(r \) is the slant range from the nuclear burst to the point of interest. The equation is obtained from the HDL Environments Report (Reference 6) and can be applied to nuclear weapons with yields ranging from .5 to 500 kilotons.

3.1.4 HAEMPKILL

HAEMPKILL is the data name in the IE section of the ETC\(^3\) which is associated with high altitude EMP damage to C\(^3\) sites and communication systems. The computed high altitude EMP LEVEL is compared with the damage threshold value entered into the IE data base to assess the survivability of the sites and systems to high altitude EMP effects.

The DAMAGE program computes the high altitude EMP levels from a nuclear burst for a point of interest. The EMP computations are not performed when the data values, which are defined in the COMSYSTEMCHAR and SITECHAR sections of the IEB input data deck through the HAEMPKILL data-name, are assigned the default value. The use of a default value indicates the C\(^3\) site or communication system to be invulnerable to high altitude EMP effects. A HAEMPKILL data value in range of 0.1 to 102.2 kilovolts/meter for either section will result in the computation of high altitude EMP levels for the sites or systems.
The magnetic field strength in magnetic north coordinates is computed by:

\[X = AX' \]

where \(X \) and \(X' \) are vectors in the magnetic and true north coordinate systems and \(A \) is a 3 x 3 rotation matrix.

The magnetic field magnitude and components are:

- \(B_{\text{MAX}} = \sqrt{1 + 3 \sin^2 \text{ (lat)}} \)
- \(B_1 = 3 \sin \text{ (lat)} \cos \text{ (lat)} \sin \text{ (long)} \)
- \(B_2 = 3 \sin \text{ (lat)} \cos \text{ (lat)} \cos \text{ (long)} \)
- \(B_3 = 3 \sin^2 \text{ (lat)} - 1 \)

The EMP level, \(E \), is computed by:

\[E = 50 \left(\frac{h_{\text{B}} - 25}{R_{\text{B}}} \right)^2 \frac{B_{\text{P}}}{B_{\text{B}}} \sin(\theta) \sec(\phi) \]

where \(R_s \) is the slant range in kilometers and \(B_P \) and \(B_B \) are the magnetic fields at the point of interest and the burst, respectively. The secant function is a weighting factor for increased Compton current at large slant ranges. \(\phi \) is the angle between the radius vector to the burst and the slant range vector and \(\theta \) is the angle between the slant range vector and the magnetic field. The geometric relationships are illustrated in Figure 3.2.

The equation is based on a \(1/r^2 \) attenuation with a maximum EMP level \(E \), of 50 kilovolts/meter. The equation is usable for heights of burst above 25 kilometers.

3.1.5 LAEMPKILL

LAEMPKILL is the data-name in the IE section of the ETC which is associated with low altitude EMP damage to \(C^3 \) sites and communication systems. The DAMAGE-computed low altitude EMP level is compared to the threshold damage value to assess the survivability of the \(C^3 \) sites and systems to low altitude EMP effects.

The DAMAGE program computes and prints the low altitude EMP level. The computations are not performed when the data values, which are
Figure 3.2. High altitude EMP geometry.
in the COMSYSTEMCHAR and SITECHAR sections of the IE input data, are
default values. The use of default values indicates invulnerability to
this nuclear effect. Input values for the LAEMPKILL data-name in the range
of 0.1 to 102.2 kV/m will result in the DAMAGE program computing of low
altitude EMP level.

The DAMAGE program computes the following components of low alti-
tude EMP effects:

(1) \(E_\theta \) -- for a surface burst over land,
(2) \(E_\theta \) -- for a surface burst over water,
(3) \(B_\theta \) -- for a surface burst over land, and
(4) \(E_r \) -- for a surface burst over land.

where \(E_\theta \), \(E_r \) are the peak components of the vertical and radial electric
fields and \(B_\theta \) is the peak azimuthal magnetic field. The electric field
intensities \(E \), are expressed in kV/m and the magnetic field component \(B \), in
gauss. The equations for computing these fields are determined by HDL from
data in the LEMP-1 library (Reference 7). The equations are found on page
65 of the HDL Environments Report (Reference 6). The equations are omitted
from this report for classification purposes (Reference 4).

3.1.6 NEUTRONKILL

NEUTRONKILL is the data-name used in the IE section of the ETC\(^3\)
which is associated with neutron flux damage to C\(^3\) sites and communication
systems. The calculated neutron flux strength is compared with the
NEUTRONKILL data values for assessing the survivability of C\(^3\) sites and
communication systems.

The DAMAGE program prints the neutron flux at a point of interest
removed from the nuclear burst. Neutron flux computations are not per-
formed when the data values, which are specified in the COMSYSTEMCHAR and
SITECHAR sections of the IE input data through the NEUTRONKILL data name,
use the default values. A NEUTRONKILL value in the range of 1 to \(10^{35} \) will
result in the computation of neutron flux for communication systems and C\(^3\)
sites.
The neutron flux, F_n, is computed by:

$$F_n = \frac{(4.82 \times 10^2) W e^{-4.44(R_s^2 - .0036W^{2/3})}}{R_s^2 - .0036W^{2/3}}^{1/2}$$

where R_s is the slant range in kilometers and the neutron flux is expressed in units of neutrons/cm2. The above equation is from HDL based on a least squares fit to data generated by the ATR code (Reference 6). The calculated flux is reliable for standard fission yields of between .5 and 500 kilotons.

3.1.7 OPKILL

OPKILL is the data-name in the IE section of the ETC3 which is associated with overpressure damage to C3 sites and communication systems. The computed overpressure level is compared with the damage threshold value entered into the IE data base which is used to assess the survivability of sites and systems to overpressure from nuclear bursts.

The DAMAGE program computes and prints the overpressure value from a nuclear burst to a point of interest. The computed value is a function of range, yield, and height of burst and is expressed in units of psi. The overpressure computation is not performed when the data values, which appear in the COMSYSTEMCHAR and the SITECHAR sections of the input, are the default value. Data values in the range of 0.1 to 6553.4 psi will result in DAMAGE program computation of the overpressure level.

The overpressure value is computed by performing linear and logarithmic interpolation from tables of data. The data are taken from Figures 2-18, 2-19, and 2-20 of Reference 5. These are graphs of overpressure contours as a function of height of burst and ground range for a 1-kiloton nuclear burst. A cube root of the yield scaling is used for range and burst parameters.
3.1.8 THERMALKILL

THERMALKILL is the data-name in the IE section of the ETC3 which is associated with thermal radiation damage to C3 sites and communications systems. The computed thermal radiation level is compared to the threshold damage value entered into the IE data base to assess the survivability of the sites and communication systems to thermal radiation.

The DAMAGE program computes and prints the thermal energy from a nuclear blast at a point of interest. The energy is expressed in units of cal/cm2. The thermal energy computations are not performed when the data values, which appear in the COMSYSTEMCHAR and SITECHAR sections of the input, are the default value. Data values falling in the range between 1.0 and 255.0 cal/cm2 will result in the computation of the thermal energy level.

The thermal radiation computation is applicable to bursts below 10,000 feet in altitude from nuclear weapons with yields between 1 and 1000 kilotons. A visual range of 16 miles is used to indicate a clear day and sites are surface sites.

The maximum radius of the fireball, R_f, is computed by:

$$R_f = 0.18W^{0.4}.$$

The radius of the fireball R_f is expressed in kilo-feet, the yield W in kilotons; this equation is from Chapter 3 of Reference 5. The thermal characteristics of weapons with burst altitudes greater than the fireball radius are not affected by the surface.

Two equations are used to compute the thermal fraction of the weapons. The use of these equations is dependent upon the altitude of the burst of the weapon. The first equation is used for heights of burst between R_f and 29.5 kilo-feet, while the second is used for heights of burst up to R_f.

$$F = 0.38W^{0.03}e^{-0.007h_B},$$

$$F' = 0.21 + \frac{(F - 0.21)h_B}{R_f},$$
where \(h_B \) is the height of burst in kilofeet and \(R_f \) is the radius of the fireball. The thermal fraction equation for \(F \) is obtained from Reference 5 and the equation for \(F' \) is based upon information derived from Reference 5.

Two equations are used to compute the thermal transmittance of the atmosphere. The first equation is used for heights of burst between 1,320 and 10,000 feet, while the second is used with heights of burst less than or equal to 1320 feet.

\[
T = e^{-\left(\frac{0.1075 \log_{10}(1000h_B) - 0.305}{305h_B}\right) R_m}
\]

\[
T' = (1+0.001188R_m) e^{-\frac{0.001813R_m}{16}}
\]

where \(R_m \) is the slant range in meters. These two transmittance equations are obtained from Chapter 3 of Reference 5.

The two equations to compute the thermal fraction of a nuclear burst and the two equations to compute the atmospheric transmittance may be combined in four ways to compute the thermal radiation level \(Q \), based on height of burst considerations. The four equations and their conditions of applicability are summarized in Table 3.1.

3.1.9 VULNUMBERKILL

VULNUMBERKILL is the data name used in the IE section of the ETC which is associated with the use of vulnerability numbers to assess damage. The vulnerability number is converted to either dynamic pressure or overpressure values for comparison with the computed pressure to determine the survivability of a C site or communication system with the associated vulnerability number.

The DAMAGE program computes and prints either the dynamic pressure or overpressure, as previously described in this chapter, and compares with the pressure equivalent of the vulnerability number. The
<table>
<thead>
<tr>
<th>THERMAL ENERGY EQUATIONS</th>
<th>CONDITIONS OF APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q = \frac{7.96 \times 10^6 ; W \cdot W T}{R_m^2})</td>
<td>(Q < H_B < 0.18) W and (H_B > 1.32) kft</td>
</tr>
<tr>
<td>(Q = \frac{7.96 \times 10^6 ; W \cdot W T}{R_m^2})</td>
<td>(0.18 \leq H_B < 1) kft and (H_B > 1.32) kft</td>
</tr>
<tr>
<td>(Q = \frac{7.96 \times 10^6 ; W \cdot W T}{R_m^2})</td>
<td>(H_B < 0.18) W and (1.32 < H_B < 10) kft</td>
</tr>
<tr>
<td>(Q = \frac{7.96 \times 10^6 ; W \cdot W T}{R_m^2})</td>
<td>(0.18 \leq H_B < 1.32) kft</td>
</tr>
</tbody>
</table>

Note: \(H_B \) is height of burst in kilofoot
computations are not performed when the data values, which are defined in the COMSYSTEMCHAR and SITECHAR sections of the IEB input data deck, are assigned the default value. The use of the default value indicates that the site or system is invulnerable to dynamic pressure or overpressure. A VULNUMBerkill data value in the range of 1X0 to 57X9, where the X can be P or Q, will result in the computation of the site or system survivability according to the vulnerability damage threshold. The vulnerability number appears in the form

\[V_n = n_1Xn_2 \]

where \(n_1 \) indicates a potential 2-digit number, \(X \) is P or Q, and \(n_2 \) indicates a 1-digit number.

The value for the VULNUMberrill data-name is converted to an equivalent overpressure by the equations below if the letter P is used.

\[
R = \left(\frac{n_2}{20} \right) \left(\frac{20}{W} \right)^{1/3} + \left(\frac{n_2}{20} \right) \left(\frac{20}{W} \right)^{2/3} + 1 - \frac{n_2}{10} \right)^{1/2}
\]

\[
P_o = 10 \left(\frac{0.21584 + (n_1+10.968 \log_{10} R)}{12.628} \right)
\]

where \(P_o \) is the overpressure equivalent of the vulnerability number and \(R \) is a constant used to simplify the equation.

Conversion of the vulnerability number to dynamic pressure is dependent upon the nuclear weapon yield \(W \) and the constant, \(W' \), which is computed according to the following equation:

\[
W' = \frac{8n_2^3}{27(10-n_2)^2}
\]

Two additional constants are introduced to simplify the equation for vulnerability number conversion to dynamic pressure, and they are:

\[
A = -\left(\frac{n_2}{10.0} \right) \times \left(\frac{20.0}{W} \right)^{1/3}
\]

138
\[B = \frac{n_2}{10.0} - 1.0 \]

If the yield of the nuclear weapon is less than \(W' \), the constant \(R \) is computed according to the equation:

\[R = 2.0 \left(\frac{-A}{3.0} \right)^{1/2} \cos \theta \]

where the angle \(\theta \) is computed by the equation:

\[\theta = \frac{1}{3} \cos^{-1} \left(\frac{9B1(-A^{3/3})}{2A^3} \right) \]

If \(\theta \) is greater than \(\pi/3 \), \(\theta \) is reduced by \(2 \pi/3 \).

If the yield is greater than \(W' \), the constant \(R \) is computed according to the equation:

\[R = \left(\frac{-B}{2} + \left(\frac{B}{4} + \frac{A^3}{27} \right)^{1/2} \right)^{1/3} + \left(\frac{-B}{2} - \left(\frac{B}{4} + \frac{A^3}{27} \right)^{1/2} \right)^{1/3} \]

where \(A \) and \(B \) are computed as shown above.

The equivalent dynamic overpressure is given by

\[P_0 = 10 \left(\frac{n_1 + 8.226 \log_{10}(R)}{5.35511} \right) \]

where \(R \) is computed according to one of the expressions previously described.

3.1.10 XRAYKILL

XRAYKILL is the data-name in the IE section of the ETC which is associated with X-ray radiation damage to \(C^3 \) sites and systems from nuclear bursts. The computed radiation level is compared to the threshold damage value entered into the IE data base to assess the survivability of the \(C^3 \) systems to X-ray radiation.
The DAMAGE program computes and prints the X-ray radiation level. The X-ray computations are not performed when the data values, which appear in the COMSYSTEMCHAR and SITECHAR input sections through the XRAYKILL data-name, use the default value. Input values for the XRAYKILL data-name falling in the range 0.01 and 10.23 will result in the computation of the X-ray radiation levels.

The X-ray fluence computation is idealized by having 100 percent X-ray yield from a nuclear burst and atmospheric absorption is 100 percent. The atmosphere is idealized to extend to an altitude of 80 kilometers and any absorption below this altitude is total. Thus the X-ray fluence calculation is meaningful only if the burst and target are above 80 km. The X-ray fluence is computed by:

\[
X = \frac{7.96 \, W}{R_s^2}
\]

where \(R_s \) is the slant range in kilometers. The slant range is the line-of-site distance between burst and points of interest. For X-ray fluence to be computed, the line-of-sight between the burst and the point of interest must not be interrupted by the atmosphere.
REFERENCES

6. Harry Diamond Laboratories; "Nuclear Weapons Environments for Vulnerability Assessments to Support Tactical Nuclear Warfare Studies." UNPUBLISHED.

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DEPARTMENT OF DEFENSE</th>
<th>DEPARTMENT OF DEFENSE (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Documents Officer</td>
<td>Defense Intelligence Agency</td>
</tr>
<tr>
<td>AFSOUTH</td>
<td>ATTN: RDS-3A</td>
</tr>
<tr>
<td></td>
<td>ATTN: DT-48</td>
</tr>
<tr>
<td></td>
<td>6 cy ATTN: DT-18</td>
</tr>
<tr>
<td>Armed Forces Staff College</td>
<td>Defense Nuclear Agency</td>
</tr>
<tr>
<td>ATTN: Reference & Technical Services Branch</td>
<td>ATTN: DDST</td>
</tr>
<tr>
<td>ATTN: Dept. of Command Control & Communications</td>
<td>ATTN: STBA</td>
</tr>
<tr>
<td></td>
<td>ATTN: OASO</td>
</tr>
<tr>
<td></td>
<td>ATTN: STNA</td>
</tr>
<tr>
<td></td>
<td>ATTN: STSS</td>
</tr>
<tr>
<td></td>
<td>ATTN: STSP</td>
</tr>
<tr>
<td></td>
<td>ATTN: STL</td>
</tr>
<tr>
<td></td>
<td>ATTN: VLIS</td>
</tr>
<tr>
<td></td>
<td>4 cy ATTN: TITL</td>
</tr>
<tr>
<td>Assistant Secretary of Defense</td>
<td>Field Command</td>
</tr>
<tr>
<td>Comm., Cnd, Cont. & Intell.</td>
<td>Defense Nuclear Agency</td>
</tr>
<tr>
<td>ATTN: Strat. & Theater C&C System</td>
<td>ATTN: FCP-FCPKR</td>
</tr>
<tr>
<td>ATTN: Assistant for NATO C3</td>
<td>ATTN: FCPR</td>
</tr>
<tr>
<td>ATTN: Surveillance & Warning Systems</td>
<td>Field Command</td>
</tr>
<tr>
<td></td>
<td>Assistant to the Secretary of Defense</td>
</tr>
<tr>
<td></td>
<td>Atomic Energy</td>
</tr>
<tr>
<td></td>
<td>ATTN: B. Adams</td>
</tr>
<tr>
<td></td>
<td>ATTN: Executive Assistant</td>
</tr>
<tr>
<td>Command & Control Technical Center</td>
<td>Joint Chiefs of Staff</td>
</tr>
<tr>
<td>ATTN: C-300</td>
<td>ATTN: SAGA</td>
</tr>
<tr>
<td>ATTN: C-650</td>
<td>ATTN: J-3 Nuclear Contingency Branch</td>
</tr>
<tr>
<td>ATTN: C-610</td>
<td>ATTN: J-3 WNWCC Evaluation Office</td>
</tr>
<tr>
<td>ATTN: C-330</td>
<td>ATTN: J-5 Nuclear Division</td>
</tr>
<tr>
<td>U.S. European Command</td>
<td>ATTN: J-3 WNWCC Council Support Office</td>
</tr>
<tr>
<td>ATTN: J-LW</td>
<td>ATTN: J-3</td>
</tr>
<tr>
<td>ATTN: J-6</td>
<td>ATTN: J-3 HNWCC</td>
</tr>
<tr>
<td>ATTN: J-SNPG</td>
<td>ATTN: J-LW-2</td>
</tr>
<tr>
<td>ATTN: J-2</td>
<td>ATTN: JSAS</td>
</tr>
<tr>
<td>ATTN: J-3</td>
<td>2 cy ATTN: JL</td>
</tr>
<tr>
<td>ATTN: EC6-40</td>
<td>ATTN: TI-E-SS</td>
</tr>
<tr>
<td>ATTN: EC6-J-0J</td>
<td>Joint Tactical Communications Office</td>
</tr>
<tr>
<td>ATTN: J56-6-0J</td>
<td>ATTN: TIO</td>
</tr>
<tr>
<td>Commander-in-Chief, Pacific</td>
<td>National Communications System</td>
</tr>
<tr>
<td>ATTN: J-6</td>
<td>ATTN: NCS-TS</td>
</tr>
<tr>
<td>ATTN: J-3</td>
<td>National Security Agency</td>
</tr>
<tr>
<td>ATTN: J-2</td>
<td>ATTN: TOL</td>
</tr>
<tr>
<td>ATTN: J-54</td>
<td>ATTN: R-52, O. Van Gunten</td>
</tr>
<tr>
<td>Defense Advanced Rsch. Proj. Agency</td>
<td>Joint Assessment</td>
</tr>
<tr>
<td>ATTN: TIO</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>Defense Communications Agency</td>
<td>ATTN: Military Assistants</td>
</tr>
<tr>
<td>ATTN: Code 530</td>
<td>ATTN: U.S. Forces Korea</td>
</tr>
<tr>
<td>ATTN: Code 520</td>
<td>ATTN: DJ-AN-5M</td>
</tr>
<tr>
<td>ATTN: Code 205</td>
<td>ATTN: GJ-P-G</td>
</tr>
<tr>
<td>ATTN: Code 410</td>
<td>U.S. National Military Representative</td>
</tr>
<tr>
<td>ATTN: Code 1018</td>
<td>SHAPE ATTN: U.S. Documents Officer</td>
</tr>
<tr>
<td>ATTN: Code 510</td>
<td></td>
</tr>
<tr>
<td>Defense Communications Engineer Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code R400</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code R123</td>
<td></td>
</tr>
<tr>
<td>ATTN: R720</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td></td>
</tr>
<tr>
<td>12 cy ATTN: DD</td>
<td></td>
</tr>
<tr>
<td>Interservice Nuclear Weapons School</td>
<td></td>
</tr>
<tr>
<td>ATTN: TTV</td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF DEFENSE (Continued)
Undersecretary of Defense for Rsch. & Engrg.
ATTN: Tactical Warfare Programs
ATTN: Strategic & Space Systems (OS)
WWMCS System Engineering Org.
ATTN: WWMCS/SEE

DEPARTMENT OF THE ARMY
Asst. Chief of Staff for Intelligence
Department of the Army
ATTN: DAMI-FI

Atmospheric Sciences Laboratory
U.S. Army Electronics R&D Command
ATTN: DELAS-AS

Deputy Chief of Staff for Ops. & Plans
Department of the Army
ATTN: DAM0-ROC
ATTN: DAM0-SSP
ATTN: DAM0-ZD

Deputy Chief of Staff for Rsch., Dev., & Acq.
Department of the Army
ATTN: DAMA-CSS-N
ATTN: Advisor for RDA Analysis, M. Gale

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-N-RBA
ATTN: DELHD-N-ED
ATTN: DELHD-N-RBH
ATTN: DELHD-I-JL
ATTN: DELHD-N-EM

Multi Service Communications Systems
Department of the Army
ATTN: DRCM-SCS-APB, M. Francis

U.S. Army Ballistic Research Labs
ATTN: CAL
ATTN: TBL
ATTN: DRDAR-VL

ATTN: ATCA-CFT
ATTN: ATCA-C
ATTN: ATCA-CO

U.S. Army Comb. & General Staff College
ATTN: ATSW-TA-D

U.S. Army Communications Sys. Agency
ATTN: CCM-AD-LB

U.S. Army Concepts Analysis Agency
ATTN: Code 605/606

U.S. Army Electronics Rsch. & Dev. Command
ATTN: ORCPM-TO-SD
ATTN: ORCPM-ATC

U.S. Army Materiel Systems Analysis Activity
ATTN: DRXS-S
ATTN: DRXS-DS

DEPARTMENT OF THE ARMY (Continued)
Commander-in-Chief
U.S. Army Europe and Seventh Army
ATTN: ODCE-E AEAGE
ATTN: DCDOPS-AEAGE
ATTN: DCDOPS-AEAGD-MM
ATTN: DCDOPS-AEAGD-DSW
ATTN: DCDOPS-AEAGD-O

U.S. Army Missile R&D Command
ATTN: DRSMI-YDR

U.S. Army Nuclear & Chemical Agency
ATTN: Library for MONA-WED
ATTN: Library for MONA-SAL
ATTN: Library

U.S. Army Satellite Comm. Agency
ATTN: TACSAT Office
ATTN: DRCM-SC-11

U.S. Army TRADOC Systems Analysis Activity
ATTN: ATAA-TAC

U.S. Army Training and Doctrine Cond.
ATTN: Technical Library
ATTN: ATCRI-OP-SO

U.S. Army War College
ATTN: Library

V. Corps
Department of the Army
ATTN: AETVDB
ATTN: AETVCE
ATTN: AETVGC

VII Corps
Department of the Army
ATTN: AETSGB-0
ATTN: AETSCE
ATTN: AETSGC

DEPARTMENT OF THE NAVY
Command & Control Programs
Department of the Navy
ATTN: OP 941

Naval Ocean Systems Center
ATTN: Research Library

Naval Surface Weapons Center
ATTN: Code F31

Office of the Chief of Naval Operations
ATTN: OP 96
ATTN: OP 604 E/F
ATTN: OP 94

Commander-in-Chief
U.S. Atlantic Fleet
ATTN: Code J64
ATTN: Code J-611A

Commander-in-Chief
U.S. Naval Forces, Europe
ATTN: N3262 Nuclear Surety Officer
DEPARTMENT OF THE AIR FORCE

Air Force Geophysics Laboratory
ATTN: SULL

Air Force Weapons Laboratory
ATTN: SUL

Air Force Systems Command
ATTN: DYC

Assistant Chief of Staff, Intelligence
Department of the Air Force
ATTN: INAK

Assistant Chief of Staff, Studies & Analyses
Department of the Air Force
ATTN: AF/SASC

Deputy Chief of Staff
Operations Plans and Readiness
Department of the Air Force
ATTN: AFXCK

Deputy Chief of Staff
Research, Development, & Acq.
Department of the Air Force
ATTN: AFRODQM

Electronic Systems Division
Department of the Air Force
ATTN: XRC

Foreign Technology Division
Air Force Systems Command
ATTN: NIIS Library

Headquarters Space Division
Air Force Systems Command
ATTN: SKA

Headquarters Space Division
Air Force Systems Command
ATTN: YPC

Strategic Air Command
Department of the Air Force
ATTN: XFPS

ATTN: UCXT

ATTN: NRT

Tactical Air Command
ATTN: ODA

U.S. Air Forces in Europe
ATTN: XPXX

ATTN: DOC

OTHER GOVERNMENT AGENCY

Central Intelligence Agency
ATTN: OSI/LSO, R. Hart
ATTN: OSR/SEC

DEPARTMENT OF DEFENSE CONTRACTORS

BDM Corp.
ATTN: Corporate Library
ATTN: W. Sweeney
ATTN: P. Bogue
ATTN: J. Sanders

66th MI Group
ATTN: RDA

Computer Sciences Corp.
ATTN: H. Blank
ATTN: Library

ESL, Inc.
ATTN: Library
ATTN: J. Marshall

General Electric Company—TEMPO
ATTN: DASIAC

General Electric Company—TEMPO
ATTN: DASIAC

GTE Sylvania, Inc.
ATTN: M. Cross

Institute for Defense Analyses
ATTN: D. Signori
ATTN: Classified Library

Kaman Sciences Corp.
ATTN: W. Long

R&D Associates
ATTN: R. Schaefer
ATTN: R. Latter
ATTN: R. Poll
ATTN: Technical Information Center
ATTN: C. MacDonald

R&D Associates
ATTN: L. Delaney
ATTN: A. Cicolani

RCA Corp.
ATTN: E. Van Keuren

SRI International
ATTN: W. Jaye
ATTN: C. Shoens

TRW Defense & Space Systems Group
ATTN: R. Webb

TRW Defense & Space Systems Group
ATTN: J. Dyche

145