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Computation of Supersonic Space Enclrcling Flow of Blunt-Nosed Body
Zhu Youlan, Wang Ruquan, Zhong Xichang

Computer Technology Research Institute
The Chinese Academy of Seciences

I, Introduction

Sinee the 1950's, “or numerical solution of the problems of supersonic
inviscid erXiPCIi?ESw of blunt-nosed body, a number of dif“erent methods
has been developed. Of them one caterorv is stationary method and *he
other is nonstationary method. In the caterory of stationary method, there
are method of finite difference, method of inte~ral relation and method of
lines, Applied to smooth bodies, all these methods can have satisfactory
results. Only because the nonstationary method must take steady process for
time, it has to consume a rreat deal of machine time., As for the method of
finite difference, in order to have very precise result, it needs quite a
number of net points and large machine storage capacity, and it uses more
computing time, Compared with these conditions, the method of lines has
more points of excellence. For instance, its computine method is simple,the
storage capacity it needs is small and, using onlv a few ravs, it can bring
about satisfactorv result, This article is 1intended to report our work of
using the method of lines to compute supersonic encircling flow of blunt-

nosed body.

We use the method of lines to make broad computation of supersonic
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encircling flow of blunt-nosed body. The objects we computed include

ellipsoid of various axial ratio and disk-analogie bodies. The range of
incoming flow M number is 1.5 to infinity, Under the condition of axial

symmetry, besides the frozen gas of vy = 1.4, we have also computed balanced
and unbalanced air,

In addition, we ,too, use the method of lines to compute the flow in

supersonic zone and the pointed conical encircling flow with attack angile.

To the results of computation, we make multi-way check, and all show
that the results of computation by using method of lines are considerably

satisfactory,

2. Tha Way of Relaying Questions
2.1 Fundamental Equation
To consider the inviscid and non-heat conducting air flow., The equation
of aerodynamics in spherical coordinate system (r, 6, ¢) is:

v
1[0 (purtain) + -2 (ovrsin6) + 2= Cownd} = 0
r’dne{ar Cour’sin8) 06 ov by
du _d+wt 10
das 4 P Or ,
4 !_"_..g.ﬂ—ﬂ_gwl.g.}_.a.&-o 4 R ¢2)
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dp _ ade g
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Here PR + Ay + wma—i-. “y v, w are component when
speed is alon~.r, 0, ¢ direction, p is pressure, p is density and ¢ is
speed. In the equation, all quanity are dimensionless quantity and their
dimension factor are respcetively

P~powVi, P0~pu, v, ~Va, r~R,

Here o indicates the quanity of incoming flow and R, is the curvature

radius at the top of the subject.

For the convenience of computing, we introduce the following

transformation of coordinate,

r— G(6, tp) 6=0
F(8, ¢) — G(6, @)’ ’

= =9

Here , = G(9, ¢) &.r = F(8, ¢) are equations respectively of the object
surface and shock wave, Obviously, in (£, 6, ®) coordinate system, the shock
wave is in the plane of £=1 and the surface of the object is in the plane

°f§-0. Let

6= —(Go+§6p), B=———(G,+£E,), e=F ~GC
: sin 8

e to 8 _108 o _a0o,
or € ]

so equation (2.1) can be rewritten into
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Or written into solved form _ of Qz ... Bw

g’ os
8p _ lFia = p(rF, + aF, + BF)] + Fua
‘ 0§ @ -t
s 13 3l a a¢
Ou 1 [ r 9p]
s m L lF, -1
oF al ' p ot | L (23)
o¢ a p 0%
Ow _ 1 [F. 3 _6_&]
9 a P oF J
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F, e[u 26 + uw + nn@(@ + vcos ~anb 0p
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2.2 Boundary Condition
(1) Condition of shock wave On the
| ¢ | 44
h —t e
shock wave, the shock wave relation equation +3 _ Aot =30 ‘
must be satisfied. A e
b= U — 1 - & IV-.
( ,,)" (2.4)
Vo= ra— (l - %’)n,V-.
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Here the quantity indicated by an infinity mark is wave-front quantity and

that not indicated by an infinity mark is wave-back quantity, V. is the
speed
projection ofA agon;: the direction of wave normal line, h is han, (n,,n:, )

are direction cosin respectively along the shock wave normal line, namely

(2) Condition of the . object surface,’ On the surface of the

object, it must satisfr the condtion that the normal direction speed is zero,

namely

9=1uG ~ vGy — w Gvg-o 2.5)

sin

3., tumerical Solution
In order to make numerical solution, we introduce sorme rays to the
solution zone, For instance, at ¢ diredtion we introduce coordinate surface

of 0= @,=cong 2and at ®direction, we introduce coordinate surface of

@ = .p, = const , then we take the intersecting lines of these coordinate

surfaces as rays. For$s' we use the value of “low parametre on the ray as

nodal voint value to construct interpolating polynomial equation and then to
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determine the partial derivative of 9 & ? correspondinely. Let equation
(2.3) be formulated ua the ray, then we have a constant differential
equation group and the problem of mareinal value will correspondingly
become marginal-value problem of constant differential equation ~roup, For
this reason, we chanre marsinal-value problem into initial-value problem,
and work out solution throush iteration, nemely we first assume that the
form of shock wave has been known,and,then from shock wave condition (2.4),
we have the flow parametre of wave-back., Taking this as initial value of
integral constant differential equation 7roup, then we check whether the
flow parametre of the object surface can satisfy the condition of object
surface (2.5). If not, we adjust the shape of shock wave till the condition
of obiect surface is satisfied. The intersration of constent differential
equation can use general rethod, such as quartric-valence Runge-Kutta

method., In the followinr, we shall describe some specific . treatment.

3,1 Equation on Axis 6=10

Assuming that flow field is symmetrical with ¢ = 0, » plane and that
axis @ =0 is always in a symmetrical plane., From equation (2.2), it can be
seen that due to the fact that sing apvears in the denominator, the equation
at 6 =0 must be given a treatment. Let o*=v(E, 0, 0)s clearly o(E,0, @)=
o (E)cosp, w(Es 0, @)= — v*(E)iing, u(E, 0, @)= u(E, 0, 0), p(§, 0, @)=p(§, 0, 0),
o(E, 0, @)= p(£, 0,0), By applying Low-bi-ta (transliteration of Chinese
sound and it may be a Chinese transliteration of Robert) method to o/o which
appears in equation (2.2), we can have the equation on g =0 . In principle,

it will do by taking any equation from ¢ surface randomly. But because the




computing error of numerical value, of di“ferent ¢, there will be dif“erent
results.s In order to eliminate such incongruity, we make integration of
those equations of @ fromp = x te induce the necessary equation, For
instanec, we use <osp to multiply the third equation of equation (2.2),
and take off the fourth equation and - use sin¢ to multiply it, then we meke

integration, Due to

J-._!-.-

o5

R L Tt

1 (", .8 » 8
—;L(acoup-—a'gnq;?—a%JQ—?_s?

% S: (Fycos@ — Fusin 9)dg = — ZE{L[ (30 codp — %; squcoﬂ’)

o6
+ %-gg— cosqa] do + %uv‘} —.F,'

So we can have .
ﬂ. a” + a _L - F‘
Bt P OF

And analogously we" cen have
‘. —al. -+ — r _L -

oz P ¢
. 3 . aU ) s
+ = F}
o telat
o* (QE. — ‘,Q_p_) - F?
0§ o5 :
-
To write into solved form of g%, s 9615—’ we can have the necessary equation
>
8 _ ![FPa® = o(+F] + a*F})] + a*F})
i a"' " — %22
_a_.i 1 [F; _ _r_gz_] > (2.6)
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a’ =
- I' ucospdp

L3
a = gy ..‘,.a‘”.

T =yl g%

3.2 Interpolating Multinomial Equation

Becmuse the flow field is assumed o be syrmetrical with @ =0, » plane,
it s only necessary to have solution be‘ween 0 S @ <=, Between 0—=, ve
introduce 4 + 1 planes. And at the sa~e time, we make n + 1 conieal surfaces,
6 =0, =const (6 =0),4=0,1, «cop, N Thev intersect with half plane @ = ¢,
and ¢=@;+x %o form (2n + 1) rars, ‘loticin~ that the flow parametre on
the flow syrmetry, ¢=~—¢, and the flow parametre on ¢=@,+=x are equal or
different by one symbol, for the fixel §» we can utilize the value of
n+lravson =@, & p=x— ¢, to construct 2nth order interpolating

multinonial equation af 6.

g= >, e (2.7)

i

o indicates flow parametre. For the purpose of savin- time in the process

o~

of computing, we do not first compute coefficient 4> but use the following

computing methods instead. Because interpolating funection and its derivate




can be expressed as a linear combination of fune‘ion values on interpolating
nodal point, and the linear combination coefficient is only related with
the position of interpolatins nodal point and the position of interpolating
point, so when the nodal point and interpolatin~ point are ~iven, these
coefficients can be determined, When the function of each point and the
deriva*e value are corputed, it will do to use these coef~icients =nd the
function value on nodal point to make point product, = Takine eouation
(2.7) as exarple. If nodal noint is 6.(m =0, 1, .-+, 2s), g4(6) at 0 of some
interpalating point will be computed. Because there is condition at nodal

point,

iﬂ,’eﬁngg- (m-ogls'.°92”)

gm = £(6a). or wriitten into matrix form:

Ma =g
Here
6, Oi-eee cesvens o
G RETPIPTI eresennne e
M i PN
1 G, soreeeseennnens 631
Qg 4]
a &
20 gll
Therefore we have
a=— Mg

Then we can rewrite the equation of 3(6),

g(8)=d* s

\0
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(6) = d* - (M™'g)
-(M—*d)* - g
- b‘ - g (2.8)

Here b e M-'*d, &d* = (1,60,°,6"). Evidentlv, vhen nodal point and
interpolatin~ point are giwen, M* and d can be determined =and then we can

have b, Sinmilarlv becruse,

2a

£6(6) = D a,i(g)™

i=0
- dl. ca
- (M.-ldl). '8

Here df = (0,1, 26, -+, 2r6"™), represents derivate of g, so ‘o compute

derivate can be of an analogous tredtment.

So far a8 ¢: is concerned, when g is fixed, we can utilize the value
at its intersectins line with k+ 1 planes to construct trigonometric
interpolating multinomial equation of ®, In computing, the method mentioned

above can also be used. For even function, we tzke,

[ 3
£= D sicodyp

Then .
go=(M*d)*-g
Now there is ’

1 1 soe 1

COsS@, COSQP, *°° COS P,

.
. eon
.

M® =

coste, costg,ses costp,
d? = (0, —sing@, :++, —ksin pcost~'p)
g - (fu By **°» lk)

10
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For lr,dq,, .l.j',co.w,, , similar exvression can also be written.It is
x Je x Jo

not necrssary to exarplify them here. For odd function, we take,

A=
£ Z a,cor'psin P
i=Q

Then
g = (M*'d)°g
Now
sin @, gin eerreresesisenaas sin @4y
M = sin @, COS @, : :
sin @,cost™p,  sin @,costp, oo sin @y costTip,

-

d! = (cosp, — sin’p + cos?p, -+, (k — 2)costpsin’p + cost~'p)

In addition to the methods mentioned above, we also use the following
methods to construct interpolating rultinomial equations. For even function

of ¢, we take

g(EY = D" > g, (E)0cosp

i=Q 1=0
For odd function, we teke .
w(f) = (Z > w.-,(§)8"cos’rr) sin @

i=01=0

In order to make the function and the derivate of 0 at 6 =0 in some sense
be sinsle value, some proper condition must be added to the multinomial

equation., MNow we try to describe such conditioms,

For instance, for shock wave form, ', = F(9, @), ¥e naturally require,
when @ e=0, it has no relationship with @, This means that we require when

%05 F,=0,6 And at the same time, in order to warrant that the normal

11
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line has definite direction and when & =0 , the normal line direction
spherical coordinate should have such a form: (s, bcosp, —bsin @) and in it
a and b are constants., This means to require Fy=0(j%1). So for F, the
multinomial equation should be:

F(0, @) = Fy + F Bcosp + 21 ,ﬁo F,0cos’p (2.9)
Ouviously, u,p, and p should also have the sane form as F. The above
conclusion and the form of v and w can be obtained as well in the followinr

wav, Let

iy j=0

.o . .
- g = go(§) + Z Z 2i) ()0 cos'p

n 2
v = v, (E)cosp + Z 2 vi, ()6 cos’p

i=) j=0

» L
w == sul)sing + (3 X wi()'eor'p)sin @

i=) j=0

w

Here g can be used to express p,p,u,F, and utilizes the property u(f, 0, ¢) =

Acos@, w(E, 0, @) = — Asin @, then there is vy = 0(j 2 1), w, = 0(j % 0), ve = — wea.

To combine the above equation with equation (2.2),we notice that,

5%— G(0, @) = Go(0, 0)cos @,

e | = —Gy(0, 0)sing
sin @ l6=0 g

(dere the object body is symmetrical with e =0, « surface), so when 6-—0,

we have
001& + '(s!’ooéﬁm ~— pwlGos + E(Fyy — 601;)]4ﬂl = lim F,
a8 ' aE (AL

n,éﬂ-"-l'- Lodpo lim F,
d§  pw df  0-0




(dod"’ — G + &(F,, ~ G,n)gz_)

dE P coSp = l;in' F, 1
(g 90 _ Go: + ¥(F,, — G
(.07: o w= Ge, u;\ in g = lim F,

P

,n(‘_&_ ‘;Q’_'.‘) = lim I,
as d§ 0-0
In it
do ™ ugply — "m[Goo + E(Fu - GOo)]
- 1= G(0,0) + &[Fy — G(o0, 0)]
[é]
G = — G(0,0
“= 55 600
Pw

To write the ri-ht end of the above equation into multinomial equation of

cos¢ (or,in addition, to multiply it by sin ?), and to use *he linear
independence of 1. cosg,-*,cos'®, we can reason out that g should have the

form of equation (2,9) and v and w should take,

"k
v = yycosp 4 v..,@ + v ftos’e + S_‘ Z v.,8'cos’p

t=2 p=u

u = — ypysin @ — v,fcos psinp + (Z 2 w,,B'cos’tp) sin @

1=2 j=0

At the same time, we have equation on @ = O:

do dpv,_’_ 700, ooé'—“Poo[Gao‘*‘f(Fu“Gn)]d—%J
d& 25 45

= — (Fop — G(0, 0))vapn + poulvi; + 20y + 2up))
»
d“@ + Tu8Po . (Fm -_— G(o,o))VOI(utl - ”Ol)

) d" P 4%
d” Gon+E(Fu"Cno)é_£g
dt Pw ds
= — (Fu — G(0, 0)) [Vt-;(”no + vy + up) + g'u
L0
o (%2 ~ A%8) = — (Fa = 600, 0)) ou (pu )

13
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3.3 Iteration Method

As what has been stated at the be~immin~ of this seection, we shall try
to solve the problem of marrinal value throuch iteration, In fact, it ean
be interpreted as 2 vroblem of solving a transcendental equation ~roup. That
is to select one ~roup of ¥; (to indicate the shock wave form on ith rav),

To mzke,

q,(Fu MY Fo)=0 (i“‘l,Z, """’)

Yere ¢, = 0 is the boundary condition (2,5). We use Yewton method, namely te

use alteration quantity &F, of Fj to satisfy the followino equation:

"-‘—alI-JF,--"‘ (i_l’..o’m)
%«: OF,; o
partial P
Usually there is no w2y to express derivate -5;1_,‘— by using analrtic equation,

so we use nunerical value method, namely

qu;zq,(’:u ‘% F:—n F|+AF1’, Ful’ ) Fm)—-sl(Fn MY ) Fm)
OF, AF;

By using this method, it needs m + 1 times of interration for each iteration,
so it consumes a -reat deal of machine time, For the purpose of saving time,
we can use the simplified Newton method, but hecause of the lack of accuracy
in msot of ,0%?7 , the speed of converrence, therefore,can possibly become
slow. In ordc;r to make gf;f- more accurate without increasins much of the
volume of computation, we ;u~gest a method as follows. Let Q indicate the
vector construgted from g4, ***»9= R is the vector constructed from ¥y,
ceey P Q'Ric?erivatiVe index of Q to R. If Q(Ry) = Q,, and at other m-point
of Ry, e.ss Bm, close to R, Q(R;) = Q3(i = 1, .v.y m) has been known, and

if R, - Ry(1 =1, 2, ..., m) is linear independent, then Q'oc can be decided

], -",




e g

s

approximately by R; and Q3. In fact, because

Qi=~ 0+ Q;(R- —R) (= 1,2, c++, m)
So there is .
(Ql_go»"'a Q-_Qo)*Q;(RI-Ru“'- R-"Ro) T
and then there is
Q;* (Qn - Qon MY Q- - Qa)(Rl - Rn"‘oku - Ro)-'
thus we can have an iteration formula

Ru\ - R-—(R.—-— Rn Y Rn-l - R-)(Q.—-— Q-s Y Qn—l_ Q-)—lé-
n=m4], - 211

Evidently, using the above equation to make iteration and be~in with Rj,
cees Bptp to solve O ¢y Qass needs m + 1 times of interration. But

thereafter, one iteration needs only one time of integration.

Now we trv to meke a simple estimation of the speed of conversence.
Obviously, when
Rusn=(R,— Rpy1s ***s Ry = Runi) = AF - E
equation (2.11) becomes = difference half MNewton formula, Here E is unit

matrix and AF is pure quanty. Because now there is,

6m+| =(0,— Omars ** > Om— Outr) ™= Q:-ﬂk'-ﬂ + o(AF?)

Then there is

07 = Ron0ats + o AF)GEY, = RoniOabs + o AF)

And thereupon we can have an estimation equation for difference half Newton
formula,

R* — Rpsy ™= R* — Ry + km-ﬂﬁ;'ugu-ﬂ
= R* — Rpu + Q::::Qm-n + (§M+I‘Q~;‘¢l - Ql;o‘l)gn-u
= o(|R* — Rpuill?) + o(AF|[Quull)

ten int
or written Into | pe _ R < AIR® = Rooill + BAF[Owall (n=1,2, -+

15




Here R* is true solution, | [l indicates mode, and A and B are suitable
constants, Similarly, for difference simplified Newton method, there 1s an

estimation equation, ﬁ .

iR® — RN < A4IR* — R} + BAF|Quyll + ClIRuy, = RueilillQumill
(n:s"’ +2, ...)

For the method su-rested by us there is an estimation equation,

IR® — R € AIR® — Rl + DIFill sup IRy = Roeie PO

Here A, B, C, and D are constants.

It ic easy to see that when AF & |R* — R_.,| are of same quantity
level or smaller, difference Newton method basically maintains the speed of
convergence of Newton method., But [|Ra. — R.-ll is generally incressed as n

is increased, so of sirmplified Yewton method the speed of convergence is

slow. Because 'Oatill sup H§Re-y = Recimill = 0(1),and sup lIReoy — Rl s
1€ic» I€icn

reduced as n is increased, so the method suggested bv us can possibly

: converce faster than simplified Newton method. This has been proved in

practical computation.

3.4 Selection of Initial Shock Wave and Interpolation of Object
Surface Quantity

When the methods memtiondd sbove ave used to make iteration, the success
in computine will depend on how well the selection of initial shock wnve is
made . For this reason, we use the ready results accordine to the way of

some parametre gradual transition, For instance, when we want to compute

16
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the flow result under certain attack angle B*, we select attack angle 1 as

parametre. After the result of %, has been obtained (“or example z, = 0°),
the result can be used as initial value to compute -% + &7, After we have

1ad the result of =n, + An , we use the results of g, 5, + Aq to obtain initial
value of no + 291 by way of linear interpolation, In the same fashion, till
we have the result of ¥, As for the initial shock wave form which is needed
in the berinnins of computing, it can be secured bv utilizing the result

available currently.

From equation (2,3), it can be understood that on the object surface
a =0, so interration cannot reach the object surface. In order to have
the quantity of object surface, we use extrapolation method. Vhen
integration reaches a c¢ertein §°*(for example §*=01), then we use

the & values of a few neighbouring points to extrapolate the
object surface quantity for example using the values of
£ =0.3,0.2,0.1 makes a quadratic interpolation., Here we would like
to make a random suggestion that if the other computing form,
such as implicit form integration, extrapolation can be
completely avoided. For a situation of axial symmetry, we
designed another form to compute, and the result proves that
it is a success. Here we have no plan to give its details,

4. Computation Results
We have made broad computaiion on blunt-nosed body, axial symmetry and
three-dimension space encirline flows by using the methods mentloned above.
The object forms we computed include ellipsoid of various axial ratio and

objects analogous to disk (object expressed by equation z* + (s + )™t =1,
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n>2). The ranve of incomine flow M is 1,5 < M. < o, For the situation
of axial symmetry, besides the frozen ~as of y = 1,4, we compute the
balanced air as well as the unbalanced, The method we used is borrowed
from article 12 in the bibliography apvpended to this article., The patterns
of unbalanced air are ~resented in another article of ours, The precision
of our computation results have been checked by several dif“erent wavs. One
of *he checks is made in computing as it is in process., TFor instance, we
use di‘ferent number of ravs and different integral step len~th to check
the relations which should be satisfied by flow field, such as maintaining

constancy., Another way is to compare

Mea=}.5

with otrer results accuired from Maw2

experiments and other methods,such oot
Ma=3 -

as interral relation method, All the
checks we made ind‘cate that the

precision of our computation results 10
is satisfactory. In the followin~, we

shall present a part of our computation

results.
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Flgure 1 illustrates the forms
Pirure 1 Forms of shock wave

of shock wave and sonic line of and sonic line of frozen mas
encirlins flow

frozen ~as spherical flow under

different M. number. From the Firure, it can be understood that the forms

of sonic line are of two different tvpes. When M >3, the limit characteri-

stic line is the second family characteristic line that ean reach sonic




point of the object surface. But when M~<3, the limit characteristic line
is composed of the first family characteristic line (whiah camas from
object surface) in contact with sonic line and the second family character-

istic line ( which comes from shock wave).

A I Y | Mo=20
02 0.4 06 08 [

Figure 2 Distribution of pressure
alone object surface

Figure 2 shows the distribution

of object surface pressure of frozen Ficure 3  Shock wave position
and sonic line form

gas spherical flow, (Mo =3)

Figure 3 illustrates M. = 3, y = 1.4, the shock wave form and sonic

line position of different objects. For very blunt body, if n »2C, shock
wave position will basically maintain unchanged. After the contraction of
the curvature radius of object surface adjacent to sonic point, for solid
M. number, besianing with a certain curvature, there will be torsional

point on the sonic line.

Figure 4 shows shock wave posi*ion and sonic line form of balanced air
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spherical flow. The conditions of incoming flow are Ma = 4, p. = 0.87 X 10°
dyme/cm?, P =095 X 10" g /cm & Ma =20, o =0.122 X 10* dyne/cm?,

Pe=0.192 x 10~ g/cm3, From the Fimure, it can be seen that ionization

Mot Me=lg, Mes
M =20
—_ balanced
~—-=~ frozen
41 [ 1
12 10 08 12 1.0 0.3
Frure 4 Torm of shock wave Figure 5 Form of shock wave
and sonic line of and sonic line of
balanced air svherieal unbalanced air
flow spherical flow
& . frozen
-.— bRlarced
016} ===~ unbalanced
014} N
oa2f \\\
ook \‘\p..=0.94x10’,dyne/_ am?
0.08 L . \f.=o.12xw-sg/m3 5
L N pe=0.122x10¢Gyne/cm
0.(5' [ \.__/._-—-— —
. . . p.=9.192x10-!-g./m3

4 10 20 30 Mo

Figure 6 The detatchment distance of stationary point shock wave
following M- to charge

makes the situation of shock wave position and sonic line with frozen gas of

y = 1.4

change remarkably. Shock wave moves much closer to the object




surface.

Firure 5 shows shock wave position and sonic line form of umbalanced
air spherical flow., The conditions of incoming “low are pe = 0.947x 10°
dyne/cm’, pe~= 0.123X107° ~/em3, R = 5 cm, What is worth of attention is the

special forn of Mw =20 g~nic line at the place of shock wave,

Firure 6 shows the relationship between the detatchment distance of
stationary point and Me number, For frozen flow, vhen M>10, it remains
unchanged. For balanced air, following +the increase of Me, the chance

of detatchment distance apperas to be not unique,

Using 5 rays to compute encirling floy of axial symmetry,

Fimure 7 shows that of the ellipsoidal flow of 6= I.5 yhen M= =3 &4
shock wave and sonic line in symmetrical plane will follow the change of
attack anvle 5. PFigure 9 shows that the object surface pressure in symmetric
plane will follow the chan~e of attack angle. Also Fiure 7 shows position
of statlonary point and,in accuracy, stationary anrles of Mae =3 &M =4
are overlappin~, When attack angle is chanrin~, it moves a2lons object
surface by almost the same speed. Fisure 3 shows t'at shock wave and
sonic line in @ ==x/2 plane follow the chan~e of attack angle, In the Figure,
it can be seen that *"e chan~e of shock wave form is slow and the chance of

sonic line is faster.

Fipure 10 shows the encirline flow of disk-analogue object of
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-10.8

1
0.2 L4

FMrure 8 Shock wave form and
sonic line followinre
the chance of attack
angle

(Mo 4, 5= 1.5)

Mo =58,n=20 and shock wave form

M a=4q

T 1-1.0
Ma=3 R
5 0 XO25R and sonic line position on symmetric
1.2
3 plane under different attack an-le.
, Firure 7 Shock wave form and Figure 11 shows the distribution of
: sonic line in sym-
metrical plane object surface pressure in svmmetric
followin~ the change
of attack angle plane.
(5 =1.5)
(1. sonic line, 2. shock wave,
3, direction of incoming flow, When we compute space encirling
L. stationary point, 5.result
from article 12) flow, we take four @ surfaces and

from each ¢ surface we take 4 rays, Because the axis line is common, we
take 13 ravs altorether, The z axis of coordinate svstem is placed in the

syrmetrical plane of flow field, aad , for the convenience o” computing, we

R
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AL,

let it make an attack anvle with angle # = (05—0.6)m. 1 p 41 object

symetrical axis,

—_——Mu

el Y 0.2
J O xuana
' ‘ 1 ] Lt N 1

~1.p ~0.8 -0.6 -u.i ~0.2 ¢ 0.2 0.4 06 0.8 1.0

Ficure 9 Object surface pressure in symmetrical plane
followin~ the chan~e of attack anrle (5 1.5)
1) result from article 12

1=0" p=0

AAAAANANAA AR R R LR R R YRR 1Y

Figure 10 Shock wave form
and sonic line
position on sym-
metrical surface
(Mo =5.8, ne 20}
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/

0.6

ost

=15

1 1 ] -d 5. I U T e, 1

=10 —-08—-06~04-02 0 02 04 06 03 10~

Figure 11 The distribution of object

surface pressure in
symmetrical surface

(M.- 5.8, nem 20)

About the problem of whether the greatest entropy value on object




surface can be reached, from our experiemce of computine, we tuink that for

o certain object in a certain error ranve, the greatest entropy can be

reached,

In order to check our computation results, we use several different
kinds of wavs, For instance, for axial svmmetrical encirlin~ flow, we use
5 rays and 3 rayvs respectivelv to compute and the result shows that error is
no more than 1%, We also use different inte~ral step len~th, for example,
©or spherieal flow of M.=6, vy =14, fron shock wave to object surface we
intevrate 10-step, 20-step and S0-step. The relative error of 10-step and
20-step is no more than 0,35, and between the results of 20-step and 80-
step there are at least three same effective dirits, This means that we do

not have to worry about the increase of roundingoff error.

We compare the results of Me=3,8=15, n= 15° with those of Telenin[l6]

they are completely identical as showed in Fisure 1, TFor ellipsoidal and

spherical frozrn flow of &= 1.5 | our computation results have three coineide
effective dirits with the results Belotserkovskiy obtained bv usine integral

relation method,

We also mede intesration check and examine the dcouracy of intecral

equations

[

[fuon- da+ [[ g, do= o0




(i=1,2,3)

H po pu + do =0

HYere x; indleates thiee axial unit vectors under rectancular coordinate,ui

is the projection of velocity vector u at three directions, ¢ is a cwrved

surface containing no shock wave., Under the condition of Me=4,8= 1.5,

and n=10°, 20°, the interration result can be found in Table 1. 3es‘des

i the total interration, Table 1 also B ows the inte-ration on shock wave,

Table 1 Intesration Check Me=4,8=1.5,3=10.67
3
Shock wave Object Conical

2 ] Equation surface surface surface Total
% Mass -0.64327 %2 0.00066 X2 0.64317x2 0.00256 x 2
s HEHR 0.04595% 2 ~0.00731x2 —0.03849%2 0.00015x2

10° Yy AR 0 0 v 0
¢ KRk 0.67039 %2 -0.32282%2 ~0.34862%2 —0.00105%2
Entropy ~0.05789%x2 0.00606 X2 0.05809%2 0.00026% 2
Mess ~0.63088%x2 0. 00084 %2 0.63298%2 0.00244 %1
¥ s HEEHR 0.09011 %2 ~0.01579%2 —0.07398%2 0.00v35%2

20° yhRD R 0 0 0 0
s e 0.65271x2 -0.30687 %2 ~0.34423%2 -0.00139%2
Entropy —0.056379x2 0.00008% 2 0.05663%2 0.00033%2

(* x,v,2z direction momentum)

object surface and conical surface. From Table 1, it can be seen that the
computation results are accurate, and there iserror only at the third digit
of the intetration on shock wave and conical surface. The object surface

condition is well satisfied and it is at 10'4 numerical level,

In addition, we also compute the total enerzy on all nodal points and
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and entropy of each nodal point on obiect surface., From Table 2, it can be

Table 2 Error of Total Enersy Table 3 Entropy Value of Nodal
The accuracy value of i w4, “+e' + o Point on Object Sur-
- ]

face (lnp—17lnp)

+T_2
v=1% is 0.65625 When Mo=m4, 6=1.5, fm

| 0.67, =0, the accuracy
Total enerry Relative val':;e? ig =2 31904 :
maxirmm error ~<
v deviation \a;\_ » nooe to® 2o°
0 0.0010 0.13% oo | o | -2.31903 | -2.31537 | ~2.30611
5¢ 0.0019 0.309 ,
10°* 0.0034 0.51¢% 0 -2.31346 ~2.30865
> . ~2.31474 | -2.30962
! 15 0.0051 0.78% e = —2.31853
20° 0.0087 1.339 ix -2.31833 -2,31361
» ~2.32091 | ~-2.31858
] 0 -2.3200 | ~2.32554
-2.31942 | -2.32117
seen that for - 4,56=15, wh 3] s | T3
Mo » 0 » vaen 2 ) g | T2V C2nese | -2.3789
3 - 2 7 -
7 < 15%the relative error of total " 2.32077 | C2an
] ) -2.31276 | -2.30283
energy is less than 1%, Trom Table 3, s | ¥* 231723 | 23134 | -2.3161
_ 1= : -2.31854 | -2.31903
it can be seen that for Ma=4,8=15, x =2.32045 | -2.32121

and #=<15°, the entropy of object
surface is different only by 1 at the third effective digit, and for n™ 20°,

there is only a difference by 3 at the third digit.

In summary, using method of lines to compute encirline flow of smooth

bodies can produce very satisfactory results,

Comrades Rul Wei-ming participated in part of this work, He Jiao-min
gave us significant help, and Feng Kang once enthusiasticallv led us to

work on this project. Here we thank them all.
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