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8 \INTRODUC TION

This work is aimed at the understanding, description, and

TUING, W T
- Cal s helel

e o e e

prediction of magnetohydrodynamic phenomena exhibited under conditions
of extremely high interaction and large magnetic Reynolds number, The
plasmas which consistute the fluid medium in such flows may exhibit
nonideal thermodyna.mic_and kinetic behavior, The theoretical work at
. ~STD_Research-under ONR. .support has two principal objectives: ¢ the
elucidation of basic phenomena in strong interaction high magnetic

e Asid
i B

Reynolds number flows independently of specific experiments or machines;
and {2) the perfection of predictive theories to accurately describe and

model specific experiments aimed at magnetohydrodynamic power

production,
E In what follows we present the general mathematical description
. of magnetogasdynamic flows in the high magnetic Reynolds number regime.

We present several illustrative calculations of quasi-one-dimensional
transient effects in strong interaction flows, Weu-zh?a—(?resveat two-
dimensional high Reynolds number electricity results, including the
realistic effects of nonuniform velocity and electrical conductivity
resulting from hypersonic boundary layers and from shock-induced

nonuniformities.
o
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2, ITHE MATHEMATICAL DESCRIPTION OF MAGNETOGASDYNAMIC

FLOWS

2,1 Fluid Conservation lLaws

We may describe the fluid in terms of its mass density, p,
We describe the electromagnetic

velocity ET., and internal energy €.
These

effects in terms of the electric field E and magnetic field B.
variables are considered to be general functions of space X and time t.

The conservation laws for mass, momentum, and energy are

82 +7 - (pT) = 0 (1)
%(pﬁ’nv-(pﬁ’ﬁ') =V.T +ITx8 (2)
2 [p(e + UZ/Z)J +v- [(e +U2/2) pﬁ.J =7 ('n’- ﬁ’) -V-g+T-F (3)

In the conservation laws, T is the total pressure tensor and

:f is the heat flux vector, This system of conservation laws is completed

in the limit of infinitely fast kinetics by the kinetic and caloric equations

of state

p = plp, €) (4)

€ =e(p,T) (5)

where p is the isotropic part of the stress tensor T and T is the
temperature. For a general fluid the state equations, Eqs. (4), (5) cannot be
explicitly given but are embedded in the general statistical mechanical
description of the equilibrium thermochemistry of the system.,




In the case of a perfect gas with particular gas constant R
and specific heat ratio y explicit formulae may be given:

o
et

1 N ' p=pRT (6)
| i

E ! .. -1

R € = (y=-1) 'RT (7)
il p <= ply-1)e (8)
E;

X ' 2.2 The Electromagnetic Contributions

The electrical equations (consisting of the Maxwell equations
and the generalized Ohm's law) govern the electric and magnetic fields

-E'I’,—B. and the conduction current density T. In the hydromagnetic limit
these are

fo:—%:B—. (9)

vxT3’=p0’3" | (10) !

v.B =0 (11)
T=¢(f+ ﬁ'xﬁ')+’fx (12)

where —J.K is the thermal diffusion flux vector,

J'K::a'K

and K is given by l1]
K= -[9“)VTe+e(Z)VTex§+e(3)(VTex§)x§

[p(a”Vpa‘Fﬂ‘(’z)Van B+ p(:)(vpax'ﬁ)x'B'] (13)




The 9(1),--- and pg) *++ are transport coefficients defined in
[1], Te is the electron temperature and the subscript o denotes a

plasma component,

The contributions to the momentum and energy of the system
by the electromagnetic field are contained within the Lorentz force,
T X B and the Lorentz power T - E. The Lorentz force may be

represented in terms of the Maxwell stress tensor I as

ITXB =V T

where the Maxwell stress tensor is defined as

-

T = ’u‘al CER B%/2 T) (15)

Correspondingly the Lorentz power may be represented in terms of the

Poynting flux 5 and the electromagnetic energy density e

de
—tn

The Poynting flux S is defined as

A=l —

Ts’:uo EXEBE

while the electromagnetic energy density is

_A=1 2
em = Mg B /2
Let us expand the Poynting flux in terms of J,B through the use of
the Ohm's law




— - — — -1~ — - ——— — — - —r —
5 =’§01<E ><B)= (’Joc) 7 xB -’ﬁoi <U XB)XB -ﬁoixxB

The term J X B is simply V - T . The term (ET. X E) X B is readily

shown to be
(UxB)xB =T - (BEB)-T(B-B)
which can be rearranged to

2

(T xB)xB =0T (BB - B%/2T)-T(B%/2)

The Poynting flux is therefore represented as

§=em6-G'F+nV'7-nTKX§ (19)
where n = (:L\O(T)-i is the magnetic diffusivity, We note th'at the Poynting
flux can be decomposed into four constituent parts: (a) a purely convected
flux of electromagnetic energy carried by the motion of the medium
’(emI_J.); (b) a power flow represented by work dqne per_uni? time by the
Maxwell stresses acting on the moving medium -U -T ; (c) a diffusive
flux of electromagnetic energy driven by gradients of the Maxwell stress
tensor &nV -?); and (d) a power flow represented by work done per unit
time by the thermal diffusion flux (-ndy X B).

The electric and magnetic fields and currents may be expressed

in terms of vecter potentials A and scalar potential ® as

B =V xA (20a)
E = -V - 9% (20b)
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2.3 Fluid-Electrical System

The mass, momentum, and energy equations for the general,

viscous, hydromagnetic system may now be expressed as

a —

2.9.% =0 21)

%{1-+v-‘f"=v-?‘ (22)
8. v.-F=v- (T -D-v- V- T) -V q+V-0gx B (23)

In the above ¥ = pU is the momentum density and I' is the total fluid

and electromagnetic momentum flux
T = pUU +pl -T (24)
The total energy density is

e = p(€ +U2/2) + e

m (25)

and 7 is the total enthalpy flux vector

;=[(8+P)?'F]'I_f (26)
The fluid stress tensor T has been decomposed into a pressure p and
viscous stress tensor + where

= - 4 'l

P=-73 Trace (7)) (27)
and

T = -pl + 7 (28)

We may define the electromagnetic pressure Py, 2S the mean

normal compressive Maxwell stress:




[ Sy

= - é— Trace (7T ) (29)

Pm

Expressed in terms of the magnetic field intensity E', the pressure is
_ 4 2/4 1 .
Pm = 3 (B/2%) (30)
or expressed in terms of the electromagnetic energy density e

1
Pm 3 °m (31)
The Maxwell stress tensor may be decomposed into a mag-
netic pressure p_. and a Maxwell stress deviator from isotropy 7, as
T = Te- Pyl (32)
Equation (32} may be thought of as the defining equation for the Maxwell
stress deviators F*. The mass, momentum, and energy equations may

now be rewritten in alternative form as

dp ey

at+v M =0 (33)
E. hag - -
%—t—+V-G=V-T*+V--r (34)

?-%+ V. H=V- (T T)+V- (T -V:q-V -V T)+T-0IgxB) (35)

In the above, G is the total momentum flux with only the magnetic pressure

included as the magnetic contribution
G =p0U0+(p+p )T (36)

while H is the total enthalpy flux consisting of both fluid and electro-

magnetic pressure and energy contributions,

H = [e t (p+ pm)] i (37)

7

o




In terms of the total energy density e, the momentum density

;{‘, and the electromagnetic energy density e’ the state equations (6) -
(8) become

o= (v-0)e - ey -u%/20] (38)
T = p/pR = %:E%)'[e e - Mz/zp] (39)

Let us now consider the transformation of the electrical
equations (9)-(12) into more useful forms. Combining Eqs. (9)-(12) we
obtain the governing equation for the magnetic induction B:

Q%-Vx(ffxﬁ’):-Vx(anﬁ')+VxR' (40)

We note that given the magnetic induction ﬁ’(;,t) governed by Eq. (40)
one immediately has specified the Maxwell stress tensor T and the

electromagnetic energy density em: Further, the current density T is
determined from B as

2.4 Viscous and Heat Conduction Effects

Let us now make some observations about the viscous stress
tensor Tt and the heat flux vector 7;. The Navier-Stokes moments of

the Boltzmann equation yield kinetic theory forms of these quantities:

TS Zg.t(VU)0 (41)
EL = -\VT (42)




‘ ! In the above, n and A are the coefficients of viscosity and thermal

b | conductivity and (VU) is the symmetrized, traceless velocity gradient

| ; tensor:

L - g J t 39y |
. ' U),.. == =) -5

| (Vg3 z( Yax,) "3 5%, 8

E :

We denote the stress tensor and heat flux vector with a subscript L to

- denote that these are laminar quantities. If, on the other hand, we
interpret the fluid variables p,ff.,.e,T," * as turbulent mean quantities,
| then T and 'q contain turbulent contributions due to the turbulent velocity

and enthalpy correlations., Hence, the complete stress and heat flux
fields for a turbulent hydromagnetic medium are

+}
|
|
H

-c.l’ <P€'h'> +-q.R+;L

where .I-J.',h' are the turbulently fluctuating velocity and enthalpy and ()
denotes an ensemble average. A detailed higher order closure theory for
the turbulent contributions (pﬁ.'ﬁ") , (pt_f'h'> is given by Demetriades,
Argyropoulos, and Lackner [2]. The radiative heat flux is ;R‘ Since

the optical depths in dense, explosion generated plasma are so smali,

the radiative heat flux is only important in layers near the plasma surface
of the order of the radiation free path.

2.5 Nondimensional Forms

Let us consider the nondimensionalization of the fluid equations

(33) - (35) and the electrical equation (4 ), For this purpose let us
specify characteristic values of the variables as po,Uo,eo,po,To,"' as
well as magnetic field BO We define a characteristic length L and
characteriatic time t, = L/U We indicate nondimensional variables i
with ().




|

The fluid and electrical conservation laws then become

2 ., 3.4 =0 (43)
~ at
3 ,g.F [z (VU)] (44)
at
~ —— —~ — G -1
%¢,v.% =R'1V~[2;U (VU)0]+[(y-1)M2RePR] V-(\VT) -
ot
-sR1G.qT-7) - 257. (n.I x3) (45)
ag -~ -:-. -:a.- _1 - -~ -~ :. -~ ~:.
—_:-VX(UXB)--Rm{VX(nVXB)-VX(nJK)} (46)
ot
g = 6 X K
E =-Va- 24

at

In the form in which the Maxwell stress tensor is decomposed the left hand

sides of the momentum and energy equations take the forms

—

-—8~M+V~.5-55-E*=——M—a~ +6'f
at ot
2 . G.H s@-(ﬁ-f*)=-a-e-+v~§
ot ot

The nondimensional variables are defined as

t = Ut/L V = LV
fr. = G/u,

p = /e

-j = 74./poU0

{0




S —— -

P

where

T =T/T, y

-~ = -~ -~ _1 2] ~Z -~
e p{e [Y(-Y—'Z M + U + S e
€ =e/lv-1V'RT]

~ _ 2/, 1 2/~

em © (B /Z!J'o)/(Bo/ZI-’-o)

E = E/U,B,

B = B/B,

A = E/(By/L)

& = Q/(UOBOL)

E _=yn=i

J - J/(P'O Bo/L)

I = Ix/l7gYeBg)

= ~T = -1 “ T
G = pUU+[(YM2) p+Spm I
T =pUU+(yYM") "pl -ST
=~ 2 N

Py, = P/ (Bo/2kg)

= -1 ~ 1=

H = [e+(yMz) p+Spm]U

= ' 2'1.., - poy
A El_(e+(yM)pI-ST]U
= 2

T = T /(By/21y)

N o= A/Ay w=wleg n = n/ng

AO = }\(Poo TO)' Mg = P-(popTo): L =ﬂ(P0,TO)-

The state equations (38), (30) in nondimensional form are

i
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viy-1)M2 [E - Se__ - 1712/;]

-y
1]
1]
i
© ol

i It can be seen that the general viscous hydromagnetic equations

contain six fundamental nondimensional parameters, These are

_ i | M Mach number Uo/(YPO/P0)1/2
' , y S Interaction parameter (Bg/zﬁo)/(poUg_)
R_ Magnetic Reynolds number (UOL/UO?
Do R, Viscous Reynolds number poUOL/p.o
| Po Yiscous Prandtl number (Cpp.o/)\o)

We note -that the Alfvén speed C, is defined as

1/2
Ca = (B%/%p)

and the Alfvén Mach number is M, = U/C,. Hence the interaction param-
eter S is also twice the reciprocal of the square of the Alfvén Mach number.

For flows in the absence of viscous and diffusion effects

[ R———

R m % R’e ~ o we obtain the inviscid hydromagnetic equations:

f Qﬁ+€';{=0 (47)
at
o, g.[&-57, =0 (48)
at

12
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9e - ~ =

-§+v-[};-u T*]=o (49)

at
“ i
8B . Fx@xB'=0 (50)
at

The jump equations across hydromagnetic shocks immediately follow

from Eqs. (47)-(50).
{ﬁ}:o (51)

{ é-si*}=o (52)
{ﬁ.-ﬁ-i*}=o (53)
{?{x(ﬁxﬁ)}=o (54)

where { } denotes the difference in the quantity across the shock surface

and n is the normal to the shock surface,

Since the electrical conductivity achievable in nonideal plasma
is large but finite, the magnetic Reynolds numbers are not infinite but

perhaps vary in the range 1 = R = 20,

In this range, the appropriate system is the inviscid, finite

conductivity hydromagnetic system:

2,:F.y=0 (55)
at
¥, G =0 (56)
ot

13




or in the alternative form, the momentum and energy equations are

M +G.G =8V-1, (56a)
ot
de = = ~ T T . LT
£ +V:H =8V (U -7)-SR_V-(nV.T) (56b)
at
2.6 Applied and Induced Fields

Let us separate the magnetic field B into an applied portion

3(0) sustained by currents external to the plasma and plasma induced

portion E(i) which results from currents flowing within the plasma:
B =50 +50 (57)

The induction equation, Eq. (58), then becomes

a5 -~ =T =W dfs ~= =B T
— - VX(U XB =-Rm YX{nVXB ) -Vx(nJK)}
ot
o~ = =(0)
-RmVX(n VXB )-B (58)
2(0) -~
where 3B is denoted B (0)

at
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3.0 QUASI-ONE-DIMENSIONAL TRANSIENT MAGNETOGASDYNAMICS
OF HYPERVELOCITY PULSED FLOWS

3.1 Plasma_ Flow Configuration

We now consider the behavior of shock generated magneto-
hydrodynamic interaction and low to high magnetic Reynolds numbers
according to a quasi-one-dimensional description, Such a flow consists
of a hot plasma "plasmoid" formed between a driven ionizing shock wave
and its following contact surface. The plasmoid is created by a sudden
release of energy in a driver section which is in contact with a test gas
in which the plasmoid propagates. Such a flow may be driven, for

example, by the use of focused chemical explosives. [’], [2]

The conducting plasmoid enters a region in which an externally
imposed magnetic field -B.O and electrodes coupled to an external circuit
exist (Fig. 3-1), The plasma conducts current to this external circuit and
is subject to Lorentz forces and Joule heating as it propagates through
the magnetic field, If the explosion drive is a chemical source, such a
plasmoid will be of the order of 5-20 cm in length in traversing a
magnetic field region of the order of 100 cm at velocities of the order of
4 ms-i.

10 The plasmoid may exist at pressures up to I k bar and

energies of 5 eV,

If Tg» po,Uo are the characteristic electrical conductivity, mass
density and velocity within the plasmoid, the flow may be specified by an

interaction number i and magnetic Reynolds number L. (in addition to the

gasdynamic Mach number).

A
T = Mo O'OUO

U m
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Fig.3-2.Space-time diagram of strong interaction hypervelocity
plasmoids, ™Plasmoid trajectory in the limit of vanishing interaction
is delimited by the shock front trajectory SS'S'' and contact surface
trajectory CC'C'"', Plasmoid shock front reflection S'C* and trans-
mission S'S'' are initiated at encounter with magnetic fleld, Contact
surface encounters reflected front at C' which generates fast reflected
shock II (C'C''""), slow reflected shock II (C'C''''), and convected wave

(CICII).
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For an interaction region of length L, the nondimensional numbers are

defined as

L L
1= [ idx R, =) r_dx (59)

0
When Rm >> 1, the appropriate measure of the interaction is the

parameter S' defined as
! 2 2
s'= (B5/8,)/ (oU%) (60)

where the spatial average () is over the electrically conducting portion of
the region L. For a uniform plasmoid of length a, these numbers become
rzcoag a/pgUy, R =oquoUqa, S=I/R_.

Pulsed magnetohydrodynamic flows have been examined in the
case of low magnetic Reynolds number (R'rn << 1) and weak interaction
(Izl)[3],[4].Because of the low interaction, these studies revealed simple
current flow through the plasmoid‘ and weak magnetohydrodynamic

deceleration.

The transverse ionizing shock-wave which forms the front of
the plasmoid has been extensively studied in the limit of infinitely laypge
magnetic Reynolds number [5],[6]. In addition to the exposition of the
general Rankine-Hugoniot conditions for these shocks [5] it has also been
demonstrated that such shock waves can be reflected as well as transmitted
upon encounter with an externally imposed magnetic field. These studies
also showed that the electric field in front of the shock must be self-consistently 3
determined with the dynamical state behind the shock and the electrical I

boundary conditions imposed upon the gas [6].

17




In the present study, we examine the magnetohydrodynamics of
’ the whole plasmoid in its encounter with, and transit through an externally
b | . imposed magnetic field, We show that under conditions of strong inter-
\ ‘ action, hypervelocity plasmoids can possess a rich variety of magneto-
hydrodynamic phenomena including magnetically reflected shock waves,
embedded MHD discontinuities, and significant periods of transonic flow
within the plasmoid. In particular, we reveal the dynamics of reflected
= and transmitted waves through the plasmoid in both the low and high
magnetic Reynolds number regime, We reveal the behavior of electro-
thermally unstable plasmoids. We show that, in general, the plasmoid
is not dglimited by the region betweer the shock front and contact surface.
E Instead, the plasmoid develops its own internal, evolving structure

governed by the mutual interaction of self-heating and self-induced fields,

Shock-generated hypervelocity flows of this kind are subject to
a variety of nonideal phenomena. These include wall interaction effects
(viscous losses, gas leakage, and ohmic voltage drops in boundary layers),
thermal radiation losses, and kinetic/ionization relaxation effects behind shock
waves, Inthe present study we ignore these effects and examine those phenomena

which arise specifically from the magnetohydrodynamic interaction,

In Part 3.2 we present the quasi-one-dimensional version of

the system of equations discussed in Part 2, In Part 3.3 we examine

the dynamics of strong interaction plasmoids with an applied magnetic
field but at low magnetic Reynolds number. In Part 3.4 we similarly
consider strong interaction plasmoids but at large magnetic Reynolds

number., In Part 3,5 we illustrate the behavior of "transitional" plasmoids,
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These are flows in which the plasmoid enters the magnetic field at
relatively low values of interaction parameter and magnetic Reynolds
number. As a result of self Joule heating, however, the plasmoid con-
ductance is elevated as it progresses through the field carrying it into

the strong interaction, high magnetic Reynolds number regime,

3.2 The One-Dimensional Description

We consider a quasi-one-dimensional description of the gas
moving over the spatial coordinate x in time t. If the equations of
Section 2 are averaged over the cross section of the duct, we obtain

the quasi-one-dimensional forms

oW 3F. .
ETa (61)

where W(x,t) is the vector of mass, momentum, and total energy densities

p
W(x,t) = [ m } (62)

e
In the above, the following definitions apply
m = pU
e = p(E+ UZ/2

where all quantities are to be interpreted as averages over the duct
cross section, The magnetic field Ei is that induced by the plasma

currents where EO is the applied field:

B = 0+Bi
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The convected fluxes of mass, momentum, and energy are contained in the
vector F while = contains the Lorentz force and power associated with
the magnetic field and the Joule dissipation. These are expressed in

terms of current density T and magnetic field B:

m r 0 ?
F = m¥p+p+ B,f/zao E = (TxB,)_ (63)
m/p(e+p) J'Z/o' -T.(GxB)

In this illustration study we assume that the kinetic effects are confined
to the relaxation layer at the shock, and further, that the relaxation

layer is thin compared to the overall thickness of the plasmoid.

For the simple geometry (x,y,z) of Fig,3-1, the magnetic field
B is given by B (0,0, B), the electric field by E = E (0,E,0), and the
current by T = _J.('O,J,O). The description for the near fields J,Bi of the

plasmoid is then given by Ohm's law and the Maxwell equation in the

MHD approximation:

T = a(E-UBi-UB()) (64)
8B, .
3o = "n(E - UB, - UB) (65)

where n = (f:.\ocr)-1 is the magnetic diffusivity.

External interaction conditions with an external circuit including

inductive coupling with the applied magnetic field coil are required to

20




b complete the description of actual flow situations, Rather than include
such circuit detail in these illustrations we assume that the external

‘ circuit is configured so that an electric field E = E(0,E,0) is maintained

| . within the interelectrode region whose magnitude is uniform in space and

given by

E = k(UB)

where K is a "load" parameter (0 = kK = 1), For a passive external
= ' circuit, the value K = 0 corresponds to a shorted external circuit; for

kK =1 the external circuit is open circuited.

The fluid variables p,p,T,o,U are nondimensionalized by the
values pO’pO'TO’GO’UO characterizing the interior of the initial plasmoid
before encounter with the magnetic field, Nondimensional Spac‘e and time
x,t are defined in terms of x, nondimensionalized by the plasmoid length
a, and t by a/Uo. The nondimensional parameters governing the inter-
action are the Mach number M, the gas heat ratio y, either of the inter- 1

t
action parameters I or S, and the magnetic Reynolds number Rm.

Boundary and Initial Conditions

In the limit of Rm—' w, the system consisting of Eqs.59, and
62)is fully hyperbolic. For finite R’m' the system is mixed hyperbolic/
parabolic with embedded regions where resistive effects occur. The
boundary and initial conditions which specify the interaction problem for
an explosion generated plasmoid encounter with a magnetic field are as

follows. As an initial condition we take an idealized explosion driven
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flow in which the plasmoid of given breadth a occupies the hot zone
between contact surface and shock front [ 9 ] (Fig.3-3), At time t =0
the shock front is located at the edge of the magnetic field, Over the

time scale for the dynamics of interest the shock front of the plasmoid

will run continuously into the quiescent driver gas while the backward
running rarefaction continuously runs into the explosive source. Hence
the boundary conditions for the fluid equations are those of specified

explosion and quiescent states at the boundaries x = +L1, x = -L

2
respectively,

The boundary condition for the induced magnetic field Bi from
Eq. (61) is that of symmetry across the overall plasmoid so that at x=L1,

x=-L, which lie outside the region of any current flow

Bi.('LZ’t) = -Bi(Lit)
The applied magnetic field B, is uniform in both space and time.

Numerical Procedures

The solutions to the initial-value problems formulated above and

to be discussed in Section 3.3, 3.4, and 3.5 are computationally generated

with second order accurate explicit finite difference operators, The
hyperbolic system is treated with the MacCormack version of the Lax-
Wendroff-Richtmyer operator [10]. For the space-time grid utilized,
comparisons were made with the analytically available solutions for the zero
and infinite R'm’ zero interaction limits, At the extreme pressure ratios of
10° between driver and driven gas for these explosion generated plasmoids,

the maximum variations between the computationally generated and analytical
solutions within the plasmoid (expressed as a fraction of the analytical solution)

are 0,025 in velocity, 0,04 in pressure, and 0,08 in temperature,
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given breadth a located at magnetic field edge at time t = 0
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3.3 Interaction at Low Magnetic Reynolds Number

We now proceed to the first of several illustrations of the fore-
going description. We consider first the strong interaction of a plasmoid
with the magnetic field but at low magnetic Reynolds number. In Fig, 3-2
the kinematics of this situation are shown. When the incident plasmoid
encounters the magnetic field, the leading shock front ma.y be both trans-
mitted and reflected., In the case of reflected fronts, the rear (contact
surface) of the plasmoid subsequently interacts with the reflected shock
front, This colliding disturbance then radiates a fast and slow reflected
shock (d-noted shock II) back through the plasmoid (wHich consists of
subsonic flow behind the reflected shock front) where it then collides with

the now strongly decelerated shock front,

For the illustrafion shown here, we select a plasmoid with Mach
number M =1,64, interaction parameters I1=20, S=200, and Reynolds'
number Rm= 0.1, just before encountering the magnetic field, The full
conditions for the flow are given in Table I. We impose the condition
that the electrical conductivity is spatially uniform within the high tempera-
ture plasmoid (we consider electrical conductivity functions which are con-
sistently coupled to the gas thermodynamic state in Part 3.4). This uniform
conductivity distribution is achieved in the computations with the model

conductivity function

0 'r/'r0 < 1/3

% T/'r0 = 1/3
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TABLE I

Conditions for Interaction at Low Magnetic Reynolds Number

T, = Quiescent driven gas temperature
Py = Quiescent driven gas pressure
M = 1,64 y = 1.5
= I= 20
Po/ Py = 232 R_ = 0.1
TO/Tco = 45 kK =0,5

STD 9-3050

TABLE II

Conditions for Interaction at High Magnetic Reynolds Number

M= 1,64 y =1.5

- I =20

po/p‘m = 232 Rm -5
'ro/'r:AQ = 45 K =0.,5

STD 9-3051

TABLE III

Conditions for Transitional Plasmoid

M = 1,64 Ty = 1080
po/pw = 232 n = 3,14
= 2 -

y=1,5 K =0.,5

STD 9-3052
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which effectively switches on a constant conductivity % within the plasmoid and

switches the conductivity off outside the zone in which the plasmoid exists., The
dynamics of the interaction are exhibited in Figs, 3-4 and 3-5, When the
plasmoid shock front encounters the magnetic field, it is both reflected and
transmitted, The reflected shock I collides with the contact surface and initiates
a fast reflected shock II and a slow reflected shock, The fast reflected shock II
reestablishes high velocity flow through the plasmoid and reencounters the
transmitted shock front which has been decelerated, During this period of
strong wave dynamics the current distribution within the plasmoid is strongly
affected (Fig, 3-5), The current is diminished to very small values during

the period of plasmoid deceleration behind the reflected shock I, and the
returns back to enhanced levels after passage of the fast reflected shock II,

The low magnetic Reynolds number of the plasmoid allows the current to

diffuse nearly uniformly throughout its breadth,

3.4 Interaction at High Magnetic Reynolds Number

We next consider the behavior of a uniform conductivity plasmoid
in the high magnetic Reynolds number regime, For this case the incident
plasmoid has an interaction parameter I = 20 as in the previous illustration
but a magnetic Reynolds number Rm = 5, Correspondingly, the interaction
number S' has the reduced value S' = 4, The full conditions for this flow
are given in Table II. The encounter of this plasmoid with the magnetic
field is similar to that of Part III, The features peculiar to the higher
Reynolds number are best perceived in the currant distribution of Fig, 3-7

which is more nonuniform compared to that of Fig, 3-8, When the

current levels rise behind the reflected shock II, they do so by directly

following the shock until it merges with the transmitted front, The current
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maximum then remains at the shock front of the plasmoid. As a result of
decelerating Lorentz forces concentrated immediately behind the shock
front‘, the shock front is slowed and the overall breadth of the plasmoid

is decreased as it progresses through the magnetic field, This is in

contrast to the plasmoid dynamics of Parts 3.3 and 3.5,

3.5 Transitional Plasmoids

We now turn to consideration of plasmoid behavior with a
coupled electrical conductivity model. In contrast to the previous
illustrations in which the conZuctivity ié spatially uniform within the high
temperat:re plasmoid and vanishes outside, we consider a conductivity
which is appropriately coupled to the thermodynamic state of the gas.

As a result, local regions within the plasmoid can be rendered more
conductive by the self Joule heating of the plasmoid. With the electrical
conductivity strongly coupled to the Joule dissipation, a plasmoid in the
low I, low Rrn range can evolve into the large I, large Rm range as it
progresses through the magnetic field and experiences further Joule

heating. We term such flows "transitional" plasmoids,

We consider a conductivity function of the form

-1 _ -1 -1
[+2 = O'en + O'ei

In the above o is an electrical conductivity of a neutral species back-
ground and o . is the Coulomb conductivity, We use as a summary H

representation of these two contributions the forms

n

en = %0 ()
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where Eeff is the average effective ionic charge and o’O,TO,InA, n>0 are

parameters for a given gas.

The conductivity function Egs, (63)-(64) is dominated by the
partially ionized conductivity Cen at low temperature and .gOes over to the
Coulomb (fully-ionized) conductivity at high temperature, This conductivity
function has the property 80c/3T = 0 over the entire range of temperature.
Since there are no thermal energy loss mechanisms (which would be
principally radiative) included in the model, the plasmoi- is unconditionally
electrothermally unstable [11],[12]. This convective instability is simply a
growth of temperature nonuniformities within the plasmoid due to intensifying

Joule heating resulting from growing electrical conductivity.

The interaction of a representative transitional plasmoid is shown in
Figs. 3-8 to 3-10. This plasmoid has interaction parameters I=1, S=1 and
magnetic Reynolds number Rm = 1 just before it enters the magnetic field.
The complete conditions .for this flow are given in Table IIl. It should be
noted that the interaction at entry into the magnetic field is considerably
smaller than the interaction described in Parts 3,3 and 3.4, The plasmoid
progresses into the field where it begins to self-heat and decelerate, The
modest interaction at plasmoid entry to the magnetic field does not create
distinct reflected waves, but 1;ather a strong ahd continuous deceleration,
Magnetic Reynolds number and interaction parameter grow significantly as

the plasma is heated. At time t = 2.6, the magnetic Reynolds number is

33




R AR R 8 o s Y o T el o g A LSl m e

*(F) 399Yys jud1and jo uoprod weasjsdn uy pray d13ouSew paorpax Ldieys o3 anp [ESIBAII JUIIIND AON

*(3) pajeaa(addesa pue 90eJyans }dejuod £q dn jdems usayj st 9s nd Juaxany °(d) 2Aem pajeiped YIIm SIPI[[02 (PAIDIAUOD
81 yoyym) osynd jJuszand BulAToAd A[qeISUN USYM SINIDO JUSIIND pue danjeradws) uy 9sya daeys °poera[ddap AjBuoiis
pue sel ayj Yyiim paIddAUOD 81 2uoz pIjeay syy] °prowserd ayj yo uorfea Juizonpuod Ajydyy 3sow 3Yj s2W0I3q AUOZ
pajeay A[[ewaayjoa3dayy °Jusxand jo a9y AjSuisesaduy sawodaq Ing *(q) peaye sojededoad juory yooyg *01-£° 314 Jo
p1°1} sanjexadwisy Ul pa3dayal) juswadueyud K31A130npuod pue Supedy Suipuodsasrod yiim (e) smoid pray oppulew 03
£13ud e Juoay HOOYS PUIYSq UOIIRIJUSIDUOD JUSIINY *g-¢ *J1.4 Jo prowseld jeuoljsuel] 10y uolInqiaIsip uaaan) 6-€ * 31y

—menm o1s 133HS INIUYND JO NOILYOd WYIWLSHN

Nl G314 31L3NTVW Q3I2n03¥
01 3NG WS¥IAIY INIWNND (J)
JAVA 1SVY3 Ad
dn 143MS SI 11 SV SISVIYINI
133HS IN3WYND 40 G334S ()

AY¥01I3IFVHL
3J3v4NNS 1IvVINOD (P)

34

£ e

— Sty
— ON.Q
Q.Q — mO.M—
— o4 {1
— Sl 1z
INOYS WIOHS .
GONIH38 SIHSINVA — 01°92
ATONISYIUING INTHYND (9) r
= IAVR LSV4 HLIM ALITIGYISNI 9% "0t
IHY3H10¥193713 40 ¥IINNOINI (2)
ALITIAVISNI TVWM3IHL0¥19313 031I3ANOD (©) — 18°4€
%1/
3

P O E————— .. .




o
> N
es -4 N
]
“s 2, N
i ~
g3 3 \\\\ =
- -~ w
-
)

(a) CONVECTED ELECTROTHERMAL
INSTABILITY

T4 4 "/ /) y
; by 1771117 d/
J 7/ 7, Jy P800 11/
il A A J A g I TN
14! Wz 4
) : 5 g2 2
! i f ) (172 S LA,
il i1k A o
} ‘ P T
! ;
; )/ i )
,
{ / .
/ i
11f
HANK ~ N
\ =~/ e DY
/ N N KS/2 Y
l/ f) N
Al
|
|

gani

ENCOUNTER WITH FAST WAVE S

TRAJECTORY

N (o) comTAcT surFact AN/
TRAJECTORY ° S
0! R

] (€) GLECTROTHERMAL INSTABILITY
Fig.3-10, Temperature field corresponding to Figs, 3-8, 3-9 showing developing electrothermal instability,

(d) sLow swock

.......
NNNNNNNN

35




1

3
*

e

i i LD 2ot S L 5 e iak 3 » . ” e w——— e e _,‘
- Piiietie: poliufoii:iath e —— L

in excess of 10 and the current has progressively become sheet-like. It
should be noted that the current maxima no longer follow immediately
behind the transmitted shock front. Rather, the current concentrates in
the electrothermally heated zone which is then convected at the local fluid
speed rather than radiated at the shock front speed., This decelerating
electrothermal instability is then swept up by collision with the waves
initiated by the arrival of the contact surface at the magnetic field inlet.
A feature of note is the development of reversed current flow in the up-
stream portion of the current sheet due to the sharply diminished magnetic

field behind the current sheet at large Rm.

3.6 Summary Remarks

In this study we have illustrated significant purely magnetogas-
dynamic phenomena which occur when a hypervelocity pulse of plasma
("plasmoid") encounters an applied magnetic field under strong interaction
conditions, With uniform electrical conductivity within the plasmoid (and
vanishing electrical conductivity cutside), reflection and transmission of
the plasmoid shock front are possible coupled with strongly nonuniform
current evolution in time., Such plasmoids with large magnetic Reynolds
numbers have current distributions (and decelerating Lorentz forces)
concentrated immediately behind the shock front. As a result of shock
front deceleration, these plasmoids diminish in breadth as they proceed
through the magnetic field, With electrical conductivity within the plasmoid
coupled to its thermodynamic state, the plasmoid is electrothermally un-
stable and creates its own, evolving region of enhanced electrical conductance

which carries most of the current and is convected at the fluid speed within
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the plasmoid. The shock front becomes increasingly free of current and

runs progressively farther ahead of the unstable current structure embedded

in the plasmoid interior.

Nonideal phenomena such as viscous wall layers, kinetic-
relaxation effects behind the shock front, and thermal radiation losses
can play important roles in these strong interaction flows. The basic
structure of the magnetohydrodynamic interaction itself, however, is a

prerequisite to the description and understanding of these additional

modifying effects,
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4. CURRENT AND MAGNETIC FIELDS IN TWO-DIMENSIONAL
HIGH MAGNETIC REYNOLDS NUMBER FLOWS WITH NONUNIFORM

VELOCITY AND ELECTRICAL CONDUCTIVITY

4.1 Channel and Applied Magnetic Field Configuration

We now consider some illustrative flows in which the fluid
distribution of velocity and electrical conductivity are specified as
functions of space and the induced magnetic fields and the plasma
currents are to be determined. Three general classes of flow will be

examined,
(a) Uniform velocity and conductivity distributions
(b) Nonuniform velocity and conductivity distributions resulting

from an hypothesized oblique shock system within the MHD
generator duct

(c) Nonuniform velocity and conductivity distributions resulting
from supersonic boundary layers on the walls of the MHD
generator duct.

All flows exist within the duct geometry and applied magnetic
field distribution shown in Figs. 4-! through 4-10 in which the generator
electrode length is equal to the duct height, The magnetic field is given
by

7
0 x| 2%
B0 =80 ¢
l+exp(-al)-~ex ~a(x+l./2) -expja(x-1./2 |x|< L
L [ t-exp(-aL/2)]2 2

where Big) is the maximum applied field, The values selected are
L = 4h and a = 2/h,
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Since these calculations decouple the electricity from the fluid
behavior (weak or vanishing interaction) only the magnetic Reynolds

number, Rm' is a relevant electrical parameter, All cases include con-

ditions for a magnetic Reynolds number Rrn > 1 which is the range of interest.

4.2 Two-Dimensional FElectrical Description

Let us now consider the forms of Eq. (58) appropriate to
conduction in the plane perpendicular to an applied magnetic field 3(0).
Let the z axis be aligned with the applied field B0 ang let x,y be the
coordinates defining the plane of conduction. The current vector then

becomes J = }(}x’jy)’ the magnetic vector becomes B = §(0,0,§), and
the velocity U = U (U, t}y,O), with Eq.(10) caking the form
~ (i) (1)
== g - -8 (66)
ox ¥ dy

The induction equation (58) is then

2

g (1) : : ~i . 23(1)
aBW 8 = =), 8 & 5) -1~ 228" 2%
— + LG 8 + L@ BY) - r !0 (R4 £B-) 4

~2

ot Ix oy Ox dy

35 50, .2 5 g0),_35
]- = (UBT) - 55 (U BT)) - By (67)

. 202B%Y a7 98 2
Ox 9y

ax 8x 9y oy

The boundary conditions appropriate to Eq. (67) are that on
insulating boundaries,

g(i) = constant (68)
while on conductors
a(i)
B . (69)
on

where ; is the normal coordinate to the conductor surface.
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At steady-state the electric field is derivable from a potential 3:

E = -Vd (70)

—r

Given the induced fields, B (), the potential distribution & (x) is

—

-~
- —— X —
-~

B(x) = (xy) + £ [-R‘Ht(ﬁx BM) + gx S]'ds (71)
x

-—
-~

-— — —
x e d
b

where ﬁ ds is the line integral along any contour from ;O to

x
4.3 Uniform Velocity and Electrical Conductivity
4.3.1 Load with Point Electrode

If the flow discussed in 4.3.1 is suggested with point electrodes
and a load current per unit depth I is passed through the circuit, the
field distribution shown in Fig. 4-! results, These results for B(i)/B!(g)
are for a current I = I/p51B$)= 0.25 and a Reynolds number RM = 10,
The convection of the magnetic field down stream by the fluid is con-
siderable and the eddy current cells at the magnetic field edge are as
significant as the generator current. The result of Gill [13] is con-

sistent with this computation,

4.3.2 Load with Finite Electrode

If the basic situation above is supplied with finite electrodes,
the upstream eddy current cells couple its current into the generator
circuit as shown in Fig, 4-2. If the generator current is increased to
I = 1, the result is shown in Fig. 4-3,
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k’ 1 4.4 Nonuniform Velocity and Conductivity Distributions Resulting

from a Shock System

'1 : We now consider nonuniformities in electrical conductivity and
i velocity resulting from an hypothesized oblique shock system. We
consider discontinuous distribution across the shock with ( )1 denoting
the upstream side of the shock and ( )2 denoting the downstream side.

The magnetic Reynolds number based upon upstream conditions is Ry = 10

?i for all cases, The current is I = 1 for all cases, 0
4.4.1 Shock in front of Electrodes

When the shock is in front of the electrodes, the induced field
= distribution, shown in Figs. 4-4 through 4-6 result. In Fig. 4-4 there
' is a conductivity group of 3 and no velocity jump. In Fig. 4-5 the

conductivity jump is 10 with no velocity jump. In Fig. 4-6, the con-
ductivity jump is 10 and there is a velocity jump of 1/2.

4.4.2 Shock in Channel Center

In Fig. 4-7, the conductivity jump of 10 is shown with the
shock system located in the channel center. With the shock further
downstream, the front eddy cell is less free to couple into the electrodes

and generator circuit,

] 4.4.3 Shock at Upstream Edge of Magnetic Field

a——

When the shock is moved upstream to the upstream edge of
the magnetic field, the electrodes strongly couple the upstream eddy cell.

. 4.5 Nonuniform Velocity and Conductivity Distributions Resulting
f from Supersonic Boundary layers on the Walls of the MHD Generator
; Duct
; 4.5.1 Flow Structure for Electrical Interaction

The flow field has been calculated as that resulting from a
reservoir which feeds the duct with Argon at an inlet velocity of 10 km/sec,
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an internal energy of 37 MJ/kg, a pressure of 10 k bar, and a nominal
; electrical conductivity of 25,000 mho/m at the duct inlet. The resulting

turbulent boundary layer interaction is considerable as the flow proceeds

down the duct,

The generator electrodes are located at 0,6 m downstream

from the duct entry from the driver. At the station 10 c¢cm upstream

from the generator inlet (x = 0,50 m) the conditions of the flow are

' ' Velocity at duct centerline 9612 m/sec
Temperature at duct centerline 36,800 K
Mach number 3.14
Boundary layer thickness 5.5 mm

At the center of the generator section, (x = 0,60 m) these values are

Velocity at duct centerline 9520 m/sec

e - VA N g i g,

Temperature at duct centerline 36,930 K
Mach number 3.11
Boundary layer thickness 6.5 mm

At the exit of the duct, (x =0.70 m) these values are

Velocity at duct centerline 9430 m/sec
Temperature at duct centerline 36,970 K
Mach number 3.07
Boundary layer thickness 7.5 mm

This distribution of nonuniform velocity and temperature in x and y (with

corresponding density and conductivity nonuniformity) resulting from the

boundary layers is used as the basis for the electrical calculations

utilizing Eq. (67). The nondimensionalized values are based upon the
velocity and conductivity at the duct inlet (x = 0). The Reynolds number
is based upon the channel height, h and has the value 7.1.




L P dedinh sl it sl i — PP . : P R

4.5.2 Electrical Conduction at Vanigshing Magnetic Reynolds Number

We first exhibit the nonuniform electrical conduction in the channel
;, : at low magnetic Reynolds number, R'M =0,01, The total generator

-~

current per unit depth, I, has the value 0,01.

The induced magnetic field, g(i) nondimensionalized on the

maximum value of the applied field is shown in Fig. 4-9 corresponding
to the current ~I It can be seen there is negligible convection of the

F current distribution; the current spreads out to fill the central portion
of the channel. The principal effects of the electrical nonuniformities
are the voltage drops through the cool boundary layers and the fringing

of the current at the electrode edges.

4,5.3 Electrical Conduction at High Magnetic Reynolds Number

When the magnetj.c Reynolds number is R.m = 7.13 the resulting
induced magnetic field, g(l). is shown in Fig, 4-10, For the case of
T=1 it can be seen that the generator current is driven downstream in
the usual fashion, the bulk of the power actually being produced some-
what downstream of the electrodes, Because of the cool, poorly con-

ducting boundary layers, the eddy-current cells at the magnet edges do

not couple into the generator circuit as they do in the cases of Figs. 4-3

through 4-8 which do not include boundary layer effects,
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