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0. Introduction

KIDDER (1976) studied the homogeneous (i.e., uniform)

isentropic compression of hollow shells imploded by the

conversion of absorbed laser energy into mechanical work.

(The characteristic feature of uniform motion is that the

radial velocity at a given instant of time is everywhere

proportional to the radial distance from the center of

symmetry.) Using this model he was able to estimate the

optical power required to achieve a given measure of inertial

confinement for a hollow laser-driven pellet. The calcul-

ations showed that using a large-aspect-ratio target (radius

much greater than thickness) reduced the power requirements

compared with those for a solid spherical target by as

much as a factor of five. The results were strongly

influenced by the possibility of disruption caused by

Rayleigh-Taylor instabilities, which imposed an upper limit

on the aspect ratios which could be employed.

The time-dependent basic state in the model, a type of

self-similar motion, is of considerable theoretical interest.

Although simple, it subsumes a number of the principal

physical features of the problem, and represents a nontrivial

solution of the (nonlinear) equations of motion. Such

solutions appear to have a range of applicability well

beyond what one might have expected, apparently because the

change of scales implicit in strong compression is large

enough so that the dependence on variables other than the

Note: Msnucript submitted October 17, 1979.
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similarity variable becomes weak. Similarity solutions

of -ais and other types have accordingly been found useful

in a wide range of studies of laser-driven target behavior

Lsee, e.g., ANISIMOV and INOGAMOV (1974)).

It is noteworthy that KIDDER (1976) found it possible

,'.o carry out in closed form the analysis of the linear

stability of incompressible irrotational perturbations about

the self-similar basic state. Thus he was able to determine

the evolution of the Rayleigh-Taylor instability exactly,

without recourse to numerical approximation, even though the

perturbed equations of motion contain coefficients which

depend on position and time, and the perturbations are there-

fore not the familiar exponential functions of time.

Somewhat later, the present authors independently dev-

eloped in a different application (BOOK and BERNSTEIN, 1978)

a technique for determining the evolution of all the modes

(including compressible and rotational ones). Now we wish

to apply this technique in order to generalize KIDDER'S

(1976) results in three respects: (i) arbitary choice of

y, the ratio of specific heats: (ii) nonuniform entropy;

and (iii) general perturbations.

As discussed below, we obtain the following principal

results: (i) The Rayleigh-Taylor modes become more unstable

as y decreases (this is true of all modes)l (ii) they are

unaffected by changes in the shell density profile,
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(iii) compressible modes, which are convective in nature,

are destabilized by the occurrence of regions of "super-

adiabaticity" Ed(pp-T)/dr > 0] , but grow less rapidly

than incompressible modes, particularly at tafinitely large

mode number, where the RayleighrTaylor growth rates diverge.

The paper is organized as follows: in §1, we' write down

and solve the equations describing the unperturbed motion.

In 12 we derive the equations describing linear perturbations

about the basic state. The time and space dependenceI
separate. The time-dependent part is solved analytically in

§3 for general values of the separation constant. In §4

A we solve the spatial part of the problem for incompressible

irrotational modes. In §5, utilizing a variational principle,

we solve the spatial equations for the case of compressible,

rotational modes. In §6 we illustrate the results so obtained

with a number of examples which admit of analytic solutions

of the spatial problem. (The variational principle of §5

is, however, well-suited for numerical determination of the

separation constant). We conclude in §7 with a discussion

of our results and some applications to targets having typical

parameters.

1. The model

We start with the equations of ideal hydrodynamics in

the form

+ v- Vp - 0, (l.la)

3



dP0 P -2d -r T (1.6)

Here a constant T with units of time results from separating

the spatial behavior (1.6) and the equation determining

f(t) :

f3y-2j T -2 (1.7)

The sign in (1.7) is chosen to yield negative acceleration

(implosion). As a consequence of this choice, P0 (r) incre-

ases monotonically outward. From (1.5) it follows that the

pressure applied to the outer boundary of the shell at

r M r0 +d must grow in time proportionally 
to f-3y. In

general a quadrature can be carried out on (1.7), yielding

2 2

for y-1, and

2 2 2
T - (f -1) (l.8b)

otherwise, where a - 3(y-1). For y - 5/3, (l.Sb) can be

solved to give

2 2.f(t) - (1-t /T2 . (1.9)

Por other values of y the solution is easily found numer-

ically. In all cases f(t) is approximately parabolic near

t - 0, and vanishes with infinite slope at some time t0 of

order .

Although the form of the time-dependent function f(t)
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is determined by specifying y, there is complete freedom

in the choice of nonnegative p0(r) [or equivalently, p0 (r),

provided the latter satisfies po(r) > 0]. For example, if

2 2 ,PO(r) 0 (r /r (l.Oa)

where K is an arbitary constant, then

- 2 2 h+3.P (r) mp01r2/r0-1 +

0 0  0  (l.lOb)

. - 2 + 2
with 0 -P0 ro /2( +1)T. The case Kt 0 corresponds to a

shell of uniform density and quadratic pressure. When

K - 1 the entropy s(r) becomes constant. This is the

model studied by KIDDER (1976). A particularly simple

limiting form of (1.10), which will be employed in § 6, is

-2 2A
PO(r) p(r /r0  ) u (1.11a)

2 2KlP0 (r ) " j(r2/r02 I llb

Note that in systems described by this model, all

motion is inward - there is no ablation region or blowoff,

nor does heat conduction play a role. Hence application

of the model is restricted to the cold inner regions of a

shell or pellet.
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2. Linear perturbations

We follow BERNSTEIN and BOOK (1978) and BOOK (1978,

1979) in deriving linearized equations written in Lagrangian

variables for the development of a small perturbation about

the solutions of the basic equations. As a result of the

perturbation, an element of fluid whose unperturbed motion

was given byj (j,t) is located at.A(rt) +4(r,t). The

first-order displacement satisfies the linearized form

of (1.1b),

S - VRPl +VRI. VRP, (2.1)

where the subscript 1 denotes first-order quantities.

Substituting for p1 and p 1 from

Pl =  P( (2.2)

and

P 1 "'j Pl M -Y PR (2.3)

and using (1.3) to replace the gradient with respect to

by the gradient with respect toA according to V f V
R r

we find

r 2 f 3 - r V.. -C Y o 'V(pV. , + V.r. (2.4)

In (2.4) we have omitted the subscript j on V. For

convenience in what follows we will also omit the zero

subscript from p0 and p0 .

Like the unperturbed equation, (2.4) is separable.

Writing

7
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t)- () T(t), (2.5)

we have

-rY( + T 2  -1

y -P V(pV. )+(V4). - 0 (2.6)

and
2f3y- T . -T PT, (2.7)

respectively, for the spatial and temporal dependence of

the perturbations. Here the separation constant P is an

eigenvalue to be obtained through solution of (2.6), subject

to the requirement that (2.3) vanish at r - r0 and r = r0 +d.

Once V is known, the behavior of T(t) is completely

determined from (2.6). In the next section we show how to

solve this equation.
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3. Time dependence of the perturbations

At early times, when f(t) Pl, the solutions of (2.7)

are approximately given by exp[+ ill t/r)J. For 1<0, one

root is growing and one is damping, while for p>o, both

are oscillatory. Consequently we cap expect that in some

sense positive V will be associated with stable behavior and

negative P with instability.

It is convenient to make use of the concepts of

relative amplification and relative stability, introduced

by BERNSTEIN and BOOK (1978). Suppose that, as the

imploding pellet or shell contracts, the size of the

pertubations decreases also, but at a slower rate. That is,

f(t) and T(t) both approach zero, but the ratio T(t)/f(t)

grows, thus making the perturbations more desymmetrizing

or disruptive. When this happens, we say the mode is

relatively unstable. Its amplitude can eventually exceed

the thickness of the pellet (by which point the linear

approximation is no longer valid).

The idea of "relative stability" should be applied with

a degree of caution. If an imploding shell is 'perturbed

by shifting its position infinitesimally, say in the

direction of the z axis, the contraction takes place just

as before. A linear treatment, however, predicts that the

1 1, m = 0 mode is overstable (i.e., it grows in time

without oscillation), evidently a spurious conclusion. On

the other hand, a growing oscillatory mode poses a genuine i

9



threat to the integrity of the implosion, even if the

growth is only relative to the unperturbed dimensions.

When p - 1, T - f is a solution of (2.7). The other

solution is found by the method of variation of constants to

be fO -2g(t) = T- ffdt f. (3.1)

0
We will see shortly that p=l is the critical value for

determining marginal relative stability.

When y=l, we rewrite (2.6) in terms of the new

independent variable x = Caf.

d2T + 1 - xT T = 0 (3.2)
dx2  2 dx 2

a confluent hypergeometric equation. The solutions can

be expressed as a linear combination of

T = 1 (1 ; I f) (3.3a)

and

T = 2k f) D $1 + -ill; 2 f) (3.3b)
2 2 2 2

where *(a;b;x) is the Kummer function (see e.g., ABRAMOWITZ

and STEGUN, 1964). As functions of t, the solutions (3.3)

satisfy the initial condition

T 1 (0) - 1, TT 1 (0) = 0; (3.4a)

T 2(0) 0, T+ (0) = 1. (3.4b)

10



I
for large negative values of the argument i f both behave

as - -1,

If Y - 1, we write x - 1 - f where a - 3(y-1). Then

(2.6) becomes the hypergeometric equation

x(l-x) + - (a+b+l) !Lx - abT - 0. (3.5)dx 2  I ]

Here

a = (r±A)/4a, (3.6a,b)

2
where r a + 2 and A (r2 - 8aji) , and c = . The

solutions of (3.5) can be chosen as

T1 = F(a,b; 1-f -a (3.7a)

T 2 (f - a1 F(a+k,b+ - 1-f (,3.7b

where F(a,b;c;x) is Gauss' hypergeometric function. The

solutions (3.7) again satisfy (3.4). As f + 0, both approach

asymptotic forms (ABRAMOWITZ and STEGUN, 1964) containing

(r±A)/4.
terms proportional to f With the lower sign, this

expression diverges as f + 0 whenever A > r, i.e.,

< 0. Since the condition for A to be real is that U

be no greater than 6(a+2) 2/8a" whose minimum value

as a function of a is unity, we see that u < 1 is always

sufficient to make T/f diverge. If A is imaginary, T/f

still diverges when r < 4 (y < 5/3). BOOK (1978) has

presented a simple argument involving conservation of wave

action to explain this result in terms of the geometrical

properties of the implosion.

.11 ....
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4. Rayleigh-Taylor instability

We turn now to the problem of calculating p. We dot

(2.5) with I and use (1.6) to rewrite the coefficients

(except in the first term) in terms of p instead of p.

Introducing the notation a=V-9 and X=V X and using the

identities

Vp = V • (po) - pa 2 - PE va, (4.1)

F V(pa) V 2 (paj) - pa (4.2)

-pw (4.3)

where the transpose is defined in Cartesian coordinates by
t

(V;) = (V)ji, we find

-2 2 2 t 2
T P - p L(y - 1) a + V . V - w yV • (pa ). (4.4)

Integration over the volume occupied by the shell yields

T-2 2dVp = dVp [(Yl)2 + V, t -w2]

V V
+ S sp . , (4.5)

Sf
where in the last term, the unit vector n is so defined that

it points away from the shell on both inner and outer

surfaces. The left hand member and the first terms in the

volume integral on the right hand side of (4.5) are manifestly

nonnegative. From this we see that relative instability

(p < 1) can result in only two ways: if V X.j 0, or if

the integrated terms are nonvanishing. The latter in the

12



case whenever a perturbation exists at a point where the

density changes discontinuously. For the model we have

assumed in 5 2, one such point is always located at the

shell outer radius, r r0 +d.

The external pressure, which enters the model as a

boundary condition, produces an inward acceleration. There

is thus an effective gravity in the outward direction.

Hence we anticipate that a Rayleigh-Taylor instability

should occur, localized at the outer surface.

In slab geometry under uniform destabilizing

gravitational acceleration G, the Rayleigh-Taylor growth

time T for incompressible modes is given by
g

-2 P2-Pl
T -kG '(4.6)

g P2+P f

where k is the wavenumber and p2 and p are the densities

above and below the interface. In the present problem,

P1 - 0 and we can write k = 2w/A, where the wavelength satisfies

A = 2wr/l. A reasonable approximation to the effective
-2

gravity is G mrT . Substituting in (4.6), we thus estimate

that the growth time will be given by

T 2= 2 (4.7)
g

To study the analogous modes in our model of a

uniformly imploding shell, we begin by operating on (2.5)

with the divergence and with the curl. The results are

given by

13



PO + Y{T 21"p-1 V2 (P) + V(p -1 (p

-2a - 6 X K ) - 0 (4.8)

and

(P-i) w + r X Va + T 2yV(p- ) XV(pa) - 0. (4.9)

From (4.8) - (4.9) it follows that 4 vanishes if a does.

If that happens,

= V , (4.10)

where the potential * satisfies Laplace's equation,

V ,,2 0. (4.11)

The general solution of (4.11,) in spherical coordinates is

a sum of terms of the form

(r, Er + r )yLm(,_), (4.12)

where _ are constants. Now from (4.10) and (4.11), (2.6)

becomes

(u-I), +V( r. = V [(p-l) * + r • V.J 0. (4.13)

Hence either I= I+ 2 or u= - X+l, corresponding to the

two terms in (4.12). The latter mode, localized (not

surprisingly) at the outer surface of the shell, is

unstable. From (2.7) we see that the time scale for this

mode is

" 2 2/
T T /(t+l), (4.14)

g

14
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I
essentially the same as the estimate given in (4.7).

Note that this result, identical with that obtained

by KIDDER (1976) for the case of isentropic implosions

with y - 5/3,is completely independent of any details of

the density, pressure or entropy profile, the magnitude

of r0 or d, and the value of Y. The unstable mode is

purely incompressible, even though the unperturbed

fluid is experiencing compression under the influence of

the implosive force.

15
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5. Convective instability

We consider perturbations for which a does not

vanish. In that case we see from (4.9) that w is also

nonzero, unless a depends only on r or

2 -_
r + T ypV(p ) = 0, (5.1)

which is equivalent to

ds d -Y
dr = - (pp - ) = 0. (5.2)

The former possibility, which amounts to looking just at

1-0 modes, and the latter, which was discussed by BOOK

(1978) , are both included in the general treatment to be

presented here.

We begin by moting that w enters (4.8) only in the

form v r.VXfZ. An expression for this quantity can be found

by taking the curl of (4.9), then dotting with r. Eliminating

v in favor of a and writing 0(r) = 0(r) vm(O,y),we

obtain an ordinary differential equation

- (21 -2)o + yp -  PC) + 2r (p ) - (+l)r Pal

-+ ( -a) 1 - U1PLP, (5.3)

7(- 1  po) p-l (1 O

where the prime denotes differentiation with respect to r.

Equation (5.3) can be rewritten in the form

( r 1  4(')'++ (4+l) r 2 + P1 r w - 0 (5.4)
r

where w -p is the radial part of p, and

16
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Y, a .a 2 -Ltl](5.5)
After multiplying (5.5) by w and integrating with

* respect to r, we find

r +d r+

fdr r 2 P-lV2 dr r 2P -Lk4L+1)

1 ! 1 ) + 2 w 0 (5.6)
1a- rp r2 2rp

* Here the surface terms left after the integration by parts

vanish because the perturbed pressure must be zero at the

boundaries. This equation is self-adjoint and almost in

Sturn-Liouville form. Extremization subject to the

requirement that V~ be stationary recovers the differential

equation (5.4), so that (5.6) is the basis for a varia-

tional principle.

Defining

A- fdr r w p'/pol (5.7a)

2 2

2 2C 1(1+1~~) (A + y dr r w P 2) (5.7c)

where all integrals run from r0to r 0 +do we can express

(5.6) as

17



2A(i-l) + B(U-l) + C - 0. (5.8)

The eigenvalue P accordingly satisfies

:2
-B ± (B2-4AC) (5.9)

2A

From the definitions, B > 0 > A.Thus the lower root always

satisfies P > 1, ruling out all but the weak "geometric"

type of amplification (§3). We can make B arbitrarily

large without changing A or C significantly by superposing

a rapid infinitesimal "wiggle" on w. As B increases

without bound, the upper root approaches p- 1. Hence we

see that the extremal p corresponding to the exact

eigenfunction w is a minimum. It follows that there is an

unstable mode (P < 1) if any test function w can be found

for which (5.9) yields p < 1. The condition for this to

occur is C > 0. Since the latter can be written

C - 111+1l dr r w2 s'/sp, (5.10)

a necessary and sufficient condition that v < 1 is sl(r)> 0

somewhere.

The mechanism for this instability was described by

BOOK (1979). Because the unperturbed system is nonsteady

(f 0 0). individual elements of fluid are subject to an

effective gravitational acceleration G - -rf, so that

elements of differing density experience different buoyancy

forces. If the result of interchanging two differential

18



elements with different initial radii is to reduce the sum

of the kinetic, compressional, and effective gravitational

energies associated with these elements, the system is

unstable. It can easily be shown, by modifying slightly

the argument of BOOK (1979), that the condition for this to

occur is just that the profiles be "superadiabatic," i.e.,

that s'(r) > 0 somewhere in the shell. We thus anticipate

that the instability associated with this condition will be

characterized by overturning of profiles, such as is

typically seen in convective instabilities of static media

(LANDAU and LIFSHITZ, 1959). There also the condition for

instability is the occurrence of superadiabaticity.

Note that internal Rayleigh-Taylor modes, i.e, modes

associated with the occurrence of opposing pressure and

density gradients (plp' < 0) at some point r satisfying

r0 < r <r 0 +d, are described by this formalism, since now

both terms in

s/s - p'/p - yp'/p (5.11)

are positive.

19



6. Examples

The variational principle developed in the previous

section gives us an effective technique for approximately

evaluating U. As is usually the case,the eigenvalue

calculated using a first-order approximation to w is accurate

to second order.

For sufficiently simple basic state profiles, however,

analytic solutions are possible. Consider the system whose

initial density and pressure are given by (1.11). The

corresponding entropy function is

s(r) p (r2/r 2) + - Ky (6.1)p 0

Evidently s(r) is increasing if h < 1/(y-1) and decreasing

if K > 1/(y-1). Equation (5.4) becomes

w (' + [z(1+1) 1) + K(+l)Jw 0. (6.2)

r 2 P-1
r

Writing w rq, we find two solutions for q:

2q 2h- 1 ± {(2h-l) 2 - 4 [2(+1)(2..1 )

12-

+K(=+1) 2q+. (6.3)

We require w, expressed as a linear combination of the two

solutions,

w C rq+ + C rq_
+ r(6.4)

to vanish aT r - r0 and r = r 0+d. Therefore q+ must

satisfy

20
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q + q _ q _ q "+
r (r +d) = (r +d) (6.5)

0 o 0

Hence K

(2K-i2 - 4 1I)(_-11+K+I

22
S47r n

zn 2 (l+d/r 0 ) (6.6)

where n is an integer.

Equation (6.6) is equivalent to (5.6), so the solution

for v is again given by (5.9), where

A - - 2(K+1) ; (6.7a)

2(K+l) + y (2?-i, 2 + Z(1+l) + 2n (6.7b)
( n+d 01.'

C = 29(1+i) (+l)()*l-Y4). (6.7c)

The condition for instability, namely C > 0, reduces to

K < l/(y-1), (6.8)

as expected. The magnitude of V decreases with n, so

the most unstable mode is that with n = 1 (the boundary

conditions cannot be satisfied for n - 0). For I - 0,

- 1. As I * , v approaches the limiting value

1 + -Y--l ("+1)(y-l) (6.9)

-Y Y

A second example which can be treated analytically

results if we let r0 - 0, d 4 , and choose

p(r) - p(l+r 2/L ) - 2 , (6.10)

21



where p is constant and L is a characteristic scale size.

If p(O) - 0 it follows that

p(r) = pr 2 /(r 2+L ) (6.11)and

- - " 2 2 2 2 y-1 (6.12)
s(r) = p (r /L )(l+r /L

so that again s'(r) >0. The logarithmic derivatives of p

and p are

' -4/L 2
P = -4r/ 

(6.13)

l+r /L

and

2
p r(l+r2 /L2 (6.14)

If we let w(r) = r qy(r), where

q = -1 + ,(21+1) 2 (6.15) i

then y satisfies the hypergeometric equation (3.5) with

2aL q + + :(q +  1 +K + 4-(Z+l) 4q] (6.16)

c q + 3/2, and x - r 2/L . The condition that w(r) vanish

at infinity reduces to q - 2b < 0, or p > -3, independent of

Z. The discreet set of unstable modes has thus merged into

a continum, the result of moving the boundary to infinity.

Finally, letting r0 = 0 but keeping d finite, choose

= -2 2
p exp (r2/L2). (6.17)

T hen

P p exp (r2/L2  (6.18)

22



and

a £ 3~ .(6.19)

For th~is choice, s(r) is monotone decreasing:

r 22
s(r) N pY exp [(1-Y) r/LJ (6.20)

writing w(r) mmr z(r), we find that z satisfies the

confluent hypergeometric equation

xz" + (c-x) z' - az =0 ,(6.21)

where

a = K+ L P-
4 2 v-i (6.22)

2 2
c +/,adx=r/L .From the series expansion, it is

*clear that the Kummer function t(a;cjx) can vanish at x =d /L

onLy if a < 0. It follows that

V1> h {y1+l ±[YA+.) 2 -4L(L+l) (Y-1) 12 1 > 0, (6.23)

o that all modes are stable, 
as may be inferred from the

fact that 9'(r) <0.
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7. Discussion

We have seen that for a broad class of pressure and

density profiles it is possible to calculate the K

evolution of linear perturbations on a uniformly imploding

pellet or shell. The calculations presented above show

that the time development of the perturbations depends only

on the eigenvalue p and y, the ratio of specific heats. If

p > 1, the perturbation amplitude grows weakly relative to

the radius of the unperturbed pellet during implosion if and

only if y < 5/3. If p < 1, perturbation amplitudes are

nonoscillatory and are always relatively amplified, the

degree of amplification decreasing with y. When p < 0 the

mode amplitudes grow absolutely,not just relatively. They

grow rapidly if the eigenvalue V is large and negative. These

results are summarized in Table 1, which presents the result

of integrating (2.7) for various choices of y and p until

f = 0.1 (tenfold radial compression),and in Table 2, which

shows the corresponding results for f = 0.05 (twentyfold

compression).

Incompressible irrotational modes, which are

physically of Rayleigh-Taylor type, have V = 1 - k,

irrespective of the shape of density and pressure profiles.

For compressible (convective) modes, p < I or p < 0 can also

occur, but the limiting value as I is finite. These

modes are consequently less significant unless (i) the
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compressible disturbances are initiated with larger

amplitudes or (ii) some change in the physical situation

introduces a stabilizing influence at the outer boundary,

where the Rayleigh-Taylor modes are localized, but does not

affect the convectively unstable region where s'(r) > 0.

For real shells, which are affected by ablation,

ionization, thermal conduction and other processes absent

from our model, these results can only be applied in a

rough approximation. The model is most nearly valid in

the interior of the shell, far from the deposition zone.

In this region it should predict correctly the stability of

the target as implosion and compression take place.

A reasonable approximation is to take y = 4/3 and

inquire regarding the effect of a radial compression of

10 to 20, corresponding to a density increase of three

to four orders of magnitude. As V decreases, the

oscillation period and growth rate both increase. From

numerical integration of (2.6) for various choices of v

between -3 and 3 (Tables 1 and 2) it is clear that relative

amplification by a factor of 100 is quite possible. This

imposes a limitation on acceptable asymmetries or

irregularities,restricting them to relative magnitudes of

. order 1% or less. Even the convective modes, for which

-v is bounded above, can be amplified significantly relative

to the imploding shell raduis. Of course the Rayleigh-

7 Taylor modes at large values of t are amplified much more.
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Since only the simplest properties of the target

material were invoked in analyzing stability of the

implosion, the predicted behavior should be observed

universally. That is, it does not depend on details

of the deposition process or on subtle plasma mechanisms.

(Of course, if the target becomes ionized in the course of

implosion, the model must be altered to reflect the

ensuing complications.) Viewed in this light, the

present calculation provides a zeroth order prediction of

the destabilizing and desymmetrizing effects of implosion

of a compressible target.
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Table 1.

Relative amplification IT/fl at f =0.1

1 4/3 5/3 2

3 -3.60 -1.58 -.475 -.0385

2 -2.85 -1.76 -.988 -.537

1 .0 10 .010

0 10.0 10.0 10.0 10.0

-1 27.0 30.4 33.9 37.7

-2 56.1 70.4 87.4 107.7

-3 102.3 142.2 194.0 260.8
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Table 2.

Relative amplification T/f at f -0.05

1 4/3 5/3 2

3 -4.99 -.677 .473 .416

2 -5.23 -2.35 -.854 -.290

1 1.00 1.00 1.00 1.00

0 20.0 20.0 20.0 20.0

-1 61.5 75.4 92.1 108.5

-2 140.0 205.2 298.0 406.0

-3 275.8 473.7 799.0 1240
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