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Preface

This thesis applies the trigonometric approach to

finite difference calculus in order to calculate column

buckling loads. The loads are found using a virtual work

energy approach. It is hoped that my results will encour-

age the further expansion of the trigonometric method to

different structural geometries as an alternative to finite

elements.

I wish to thank Dr. Anthony Palazotto for allowing me

to pursue this line of research and for his guidance. In a

year when he had several thesis students, he always had time

to help me. His ability to provide information was amazing.

I also thank Captain Steven Hannah. my predecessor in

this field, who provided guidance through his own thesis.

John L. Insprucker III

*
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/Abstract
V
A trigonometric approach to finite difference calculus

was applied to solve for beam buckling loads using a virtual

work method. The trigonometric equation, a truncated Fourier

series, permitted varying the buckling load by adjusting a

wavelength parameter. Values for the buckling load of a

variety of beams - uniform, homogeneous, variable and dis-

continuous inertias, composite - were found under a wide range

of boundary conditions.- Choosing the optimal wavelength pro-

duced the result from literature. An optimization scheme was

used which determines the critical load by locating the inter-

section of two buckling load curves. The method is accurate

as long as points of interest - maximum inertia, discontinuit-

ies - are modeled by the nodal arrangement. The trigonometric

approach provided improved accuracy over the conventional

approach for a wide range of wavelengths. For an infinite

value of the wavelength, the trigonometric approach converges

to the conventional one. A variable mesh designed to concen-

trate nodes about points of interest was found to be relative-

ly ineffective when compared to a uniform mesh. Composite

materials were modeled using an equivalent flexural rigidity.

xi



COLUMN BUCKLING OF ISOTROPIC

AND COMPOSITE BEAMS USING A

TRUNCATED FOURIER SERIES

I. Introduction

Background

In the past, structural problems were solved using simpli-

fying assumptions and rule of thumb. This still holds true

today to a great extent. But today's problems are demanding

more than the "linearized solution" often seen in problem anal-

ysis. Today's structures are becoming more complex, more dar-

ing, more costly than ever before. From new architecturally

advanced domed stadiums to large space structures, these designs

push our knowledge and its use to the limit. With this advance

has come the need for more effective tools to provide the neces-

sary accuracy required by these designs. And this need is being

met through the use of modern computers and associated software.

This software takes form as programs - STAGS, SAP, NASTRAN -

available to an engineer for structural analysis and design.

With these new tools, solutions to the problems of the real,

"non-linear" world can be more accurately approached. The

only limit is the precision of the engineer's model and the

numerical technique he applies. Because of the increasing

accuracy available, the engineer can concentrate on attaining

the most accuracy for the least time and cost- symbolized by

~1



choosing the best technique as judged in these terms.

Finite difference calculus is the technique applied in

this thesis. It models the beams analyzed within by dividing

them up into a finite number of degrees of freedom (nodes)

(5-8). A trigonometric finite difference is used as opposed

to a conventional finite difference. The conventional finite

difference approximates a function's derivatives by combina-

tions of a Taylor series expansion (8-10). This technique is

good when the function in question is polynomial in nature.

The functions in this thesis are directly dependent upon the

beam's buckling shape, which is sinusoidal. To model the

necessary lerivatives, a technique developed by Stein and

Housner (1,2) and expanded upon by Hannah (3,4) is incorpor-

ated. A truncated Fourier series is used to develop trigono-

metric finite difference expressions for the needed derivatives.

By using a Fourier, rather than a Taylor series, a closer ap-

proximation of the derivatives of the sinusoidal shape results.

In his thesis, Hannah showed the improved accuracy of this

trigonometric approach over the conventional method.

Beam buckling, also known as Euler column buckling, is

an important problem in structural design. Beam buckling is

referred to as column buckling because the load configuration

on a beam that causes axial buckling is most often seen when

the beam is used as a column, as in a landing gear strut.

The prediction of the critical, or buckling, load on the col-

umn is of primary concern in the beam design. For example,

4 possible solar power satellites, as described by Nansen (11),

2



would be constructed of composite struts. With a known load-

ing, the problem in strut design becomes one of finding the

optimum dimensions to prevent column buckling while conserving

mass and space. The minimum force which can cause buckling

is the critical buckling load. Below this load, a perfect

beam will remain flat in equilibrium. At the critical load,

the beam will deflect suddenly to a position of higher equilib-

rium. This defines the buckling load as that load which causes

the beam to deflect from its lowest equilibrium position (12-13).

While there are higher critical loads, they are not of interest

in this thesis.

In Hannah's work, the uniform beam was observed under a

variety of boundary conditions to validate the use of trigono-

metric finite difference expressions. However, most beams are

not so simple. Struts for use in the solar satellite can be

both composite and tapered - not constant in either material

properties or inertia. The non-uniform beam is of great in-

terest. While some solutions have been published, these tend

to be expressed as bounds on the exact buckling load found by

a numerical method or by approximations to the governing dif-

ferential equations (14-18). The ability to achieve an accu-

rate solution may be possible with the trigonometric technique.

In fact, the exact solution may be attainable. The solution

is only as exact as the model of beam buckling makes it.

There are many effects which are not included in the

beam buckling equations. The trigonometric technique can pro-

vide the solutions for beams with variable cross-section,

L3



material properties, node arrangements and combinations of

various boundary conditions.

Purpose

The purpose of this thesis is to use the trigonometric

finite difference approach to calculate the critical axial

load in a beam under a wide variety of conditions. These con-

ditions include continuous and discontinuous changes in inertia,

isotropic and composite materials, uniform and variable nodal

arrangements and multiple boundary combinations. Solutions

are obtained using the virtual work equation and are a function

of a variable wavelength parameter in the truncated Fourier

series. Success in applying this technique depends upon accu-

racy of the generated solution and the time it takes.

General Approach

In his thesis, Hannah showed the superiority of the virtual

work equation (3,19-21) versus the equilibrium approach in gen-

erating the correct answer to the buckling load problem. Like-

wise, the advantage of the truncated Fourier series over the

Taylor series in developing the finite difference derivatives

for a simple beam was demonstrated. Therefore, I started my

analysis of more complex beams using the virtual work equation

and the truncated Fourier series.

The first and second derivatives of the beam's deflection

at an arbitrary point are developed from the Fourier series.

To integrate the virtual work equation, the beam's domain is

divided into a series of nodes, each a constant distance apart.

4



The trapezoidal rule is made use of in integrating the virtual

twork equation over the length of the beam. The solution de-

pends upon the location of the nodes and the derivatives pre-

viously developed. The end result is an eigenvalue equation,

with the lowest eigenvalue related to the critical buckling

load. By separating virtual and actual displacements at each

node, the eigenvalue equation is transformed into an eigen-

value related to the buckling load.

Imbedded within the algebraic equations which form the

eigenvalue matrix are the effects of variable inertia and ma-

terial properties. Also, combinations of four end restraints

are used in reducing the equations to their final matrix form.

Restraints considered are pinned, clamped, guided and free.

A similar procedure is carried out to examine the effect

of a mesh with non-constant intervals between node points.

This variable mesh requires the development of finite differ-

ence derivatives which have dissimilar mesh spacings on either

side of the reference point. The procedure for developing

the matrix equation is similar to that used in the uniform

mesh solution except these new derivatives are inserted at

nodes where the mesh interval changes.

Results pertaining to the eigenvalue for a simple uniform

beam were obtained by Hannah using a method similar to this

one. The solutions for his simple beam are widely available

in literature (18,19,22-23). A broader range of beams can be

analyzed by applying this thesis. When possible, a comparison

with known solutions is made (8,14-18,24).
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II. Theory

Assumptions

The virtual work equation for beam buckling (19-21) was

derived with the following assumptions:

1. Sections of the beam normal to the longitudinal

axis that are planar before buckling remain plane

during buckling.

2. The length of the beam is much greater compared to

the width or the height.

3. Displacements are small along the beam.

4. The beam is flat before buckling.

5. The beam is composed of a homogeneous, isotropic

material.

A. For composite beams, interlaminar effects are

ignored and the flexural rigidity is averaged

through the cross-section.

6. The inertia used at a discontinuity is a weighted

average of inertias around the step which preserves

continuity and equilibrium.

7. Axial loading is along the neutral axis with the

neutral axes of beam segments being co-linear.

8. Only bending strain energy is considered.

The accuracy of the buckling load solution is only as

good as these assumptions allow.

t 6



Virtual Work Equation

The principle of virtual work is used to provide the basic

equation of this thesis. Its ultimate solution is the critical

buckling load P cr* The principle of virtual work states that

for the variation of potential energy to be zero (an equilibrium

state), the variation in external work done by the forces acting

on the beam through a small displacement must be equal and oppo-

site to the variation of internal work done by internal forces

(8). Mathematically, virtual work states that

6W = -6W. (2-1)
e 1

where 6W and 6W. are the virtual external and internal work
e 1

due to small displacements. The internal work can be related

to a beam's strain energy by

6W. = -6U (2-2)

The virtual work equation can now be stated in terms of

the external virtual work done by the load P and the internal

strain energy. For a one dimensional axially loaded beam, the

virtual work equation is

L L
d2w d 26w dw d6w

EI dx = P dx (2-3)
dx dx dx dx

0 0

The derivation of the virtual work equation is shown in

Appendix A

Figure 1 shows the coordinate system and axial loading

of the beam. The beam's lateral deflection is W, measured

from the neutral axis (generally the midplane for a symmetric

beam). E is the modulus of elasticity, and I is the beam's

inertia.
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W

P -L

Fig 1. Typical Beam Under Axial Load

Boundary Conditions

Four boundary conditions are considered for beams in this

thesis: pinned, clamped, guided, free. These are the most

commonly seen conditions and they can be applied in any possi-

ble combination. For the virtual work approach incorporated

in this thesis, the boundary conditions used are

1. Pinned W(A) = 0 6W(A) = 0
W"(A) = 0 6W"(A) = 0

2. Clamped W(A) = 0 6W(A) = 0

W'(A) = 0 6W'(A) = 0 (2-4)

3. Guided W'(A) = 0 6W'(A) = 0

4. Free W"(A) = 0 SW"(A) = 0

where A is either the boundary x = 0 or x = L.

While pinned and clamped boundaries supply two conditions

for W(A) or its derivatives, guided and free do not. A third

order boundary condition on shear is available, but because it

is a third order differential it is not possible for use in this

work. Instead, an additional degree of freedom exists whenever

a guided or free boundary is encountered in order to satisfy the

equilibrium characteristics at the boundary. This replaces the

shear condition.

8
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III. Numerical Technique

Finite Difference Calculus

The evaluation of the buckling load of a beam can be a

difficult task, especially when the variation of moment of

inertia or stiffness does not follow a simple law. For these

reasons, approximate methods of computation have been devised

which provide bounds on the buckling load (6,14-18). Since

1910, a finite difference procedure for determining the char-

acteristic values of differential equations has been widely

investigated. This procedure presents a wide range of appli-

cations as well as simplicity. With finite differences, the

solution to beam buckling can be carried out easily, requiring

only the needed computing power.

Conventional Approach

Although a truncated Fourier series will be used to de-

rive trigonometric finite difference derivatives, a study of

the conventional finite difference derivatives is useful.

The conventional approach highlights many important ideas and

also adds insight in applying the trigonometric approach.

The concept of finite differences is similar for both

the conventional and trigonometric approaches. A function

under investigation, the beam deflection W in this thesis,

is modeled as a collection of node points. These nodes can

be considered as superimposed upon the beam. Figure 2

9



represents W(x) divided into a finite difference mesh.

IfI

I

i-2 i-1 i i+1 i+2

Fig 2. Deflection Shape Versus Nodal Arrangement

The nodes are numbered, with the deflection Wi corre-

sponding to node i as indicated. The mesh spacing h is the

distance between nodes and is shown as a constant. Node

points, marked by the X's in Fig 2, are positions at which

the deflection is defined.

The conventional derivatives, those derived using a con-

ventional finite difference approach, are found as combinations

of a Taylor series. The value of the displacement function at

location X + h can be described by the Taylor series

1 1W(X + h) - W(X) + hW'(X) + th 2 W(X) + Zh'W'(X)
2

+ ljeivi(X) + ... (3-1)
24

10



This can be written as
1 s. 1 iv

Wl = W + hW! + jh2W + W hW i  + (3-2)+1 1 1 2"'"1 2 1 ** 32

where i corresponds to the position of node i and +1 is a

distance h from i. Likewise, -1 is a node a distance -h from

i. This notation provides
1

I-W(X - h) =W =W. - hW! + -h'w"

+ 2ih Wi + ... (3-3)

By subtracting Eq (3-2) from Eq (3-3) and rearranging terms,

an expression for the first derivative is obtained.
WI--(Wi l h2

W = i1 l W ) -! W" + (3-4)i 2h W~i-1) 6 Wi"1

Typically all but the first term is ignored, with the second

term (h2/6)WI a measure of the error by truncating. Adding

Eq (3-2) to Eq (3-3) provides the second derivative at node i

in terms of the adjacent node points.

I= 1(W -W2W + W ) - hwiv + (3-5)
1 h2 i+l i i-l 121

Once again, the first term is the finite difference expression

with (h2/12)Wiv representing the relative error due to truncation.

Because the virtual work equation depends only on first and

second derivatives of the deflection W, no further derivatives

need to be found. However, an increase in accuracy is possible.

The two conventional equations were derived at a node in terms

of deflection values at adjacent nodes. However the reference

point i can be located between two adjacent nodes. This is

diagrammed in Figure 3 and is referred to as a half-station

approximation.

11
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cI it. x i x

i-3 i-1 i i+1 i+3

Fig 3. Beam Deflection Using a Half-Station Node Pattern

The development of half-station finite difference expres-

sions follows the same procedure as the full-station approxi-

mations by replacing ±h by ±h/2 and ±1 by ±1/2. The Taylor

series expressions become

W(X + h/2) =W+ =W i + + ~h2 WI + 1

1 4iv
+ -~K~JIw)i + ... (3-6)

h- 1 h 2. W - h

W(X- h/2) =W =W. --2 + -

+ wi + ... (3-7)

Subtracting Eq (3-6) from Eq (3-7) provides

W1 (Wi+h -Wi_h ) -- i+ ... (3-8)

12



-low

The error term is represented by (h2/24)W'. Comparing with

the error term from Eq (3-4), (h2/6)WT, shows that a first
I

derivative of W is better represented by a half-station approx-

imation. To produce an expression for W', the expansions of

W(X + 3/2h) and W(X - 3/2h) are needed. These prevent bringing

Wi into the solution. Wi is a reference point, not a node

as was defined

W i+ W + .I (3-9

W(i - = Wi h 2 2 - -2 i

+ 24 W + (3-10)

24 2 /W+

Adding Eq (3-9) to Eq (3-10) gives

W. + W 2W. + h 27iv + ... (3-11)
4 641

Adding Eq (3-6) and Eq (3-7) provides an expression for 2Wi.

Substituting into (3-11) gives

1 2h2  S~h2Wiv + .(-2

W" -2 (W 3 - W - Wi_1 + W. + .. (3-12)2h2 i+7 i- 24 i

Comparing the error term from this half-station derivation

(5h2/24 W.v) to the error term from the full-station derivation1

iv(h2/12 W ) indicated that the full-station expression for W"

(Eq (3-5)) is the more accurate.

The method of producing derivative expressions by half-

or full-station approximations can be extended to trigonometric

13



finite difference expressions where the comparison between

error terms is difficult.

Trigonometric Approach

The conventional approach provides good approximations,

provided the function being approximated is polynomial in nature.

However, beam buckling has a sinusoidal mode shape. By using a

Fourier series, rather than the conventional Taylor series, one

should obtain better approximations due to its trigonometric

terms. Stein and Housner (1,2) recommended just this approach.

The recommended Fourier series, a truncated one, was given by

W(X) = T + T sin' (xX t D + T cosw(X -X) (3-13)
1 2 3 X

where X is a variable wavelength parameter and X is the ref-

erence point, usually the node i. The wavelength parameter X

may take on any value from zero to infinity. Derivation of

the first and second derivatives follows closely from the con-

ventional approaches, with much the same terminology.

Using the results from the conventional approach, a half-

station approximation will be rised for the first derivative of

the deflection W. The derivative of Eq (3-13) with respect to

X is

7_ r (x-x,) it X- o
W'(X) = T 2[COS - Tsksin " (3-14)

Evaluating this at the reference point X = X gives0

W'(X0) = T (3-15)
0 2X

and

14



T = !W' (X) (3-16)
2 7 0

The second derivative of Eq(3-13) provides a similar expression

for T when evaluated at X = X
3 0

Finally, evaluating Eq (3-13) at X = X provides a meaning
0

for T

T = W(X) + W"(X) (3-18)1 0 (A) 0

The truncated Fourier series can now be expressed in terms of

sine, cosine and the function with its derivatives at a chosen

reference point.

W(X X ) +A (X-x 0
W(X) = W(X + -W' (X )sin.XA

0 0 X

With this expression, the necessary derivatives are obtained.

As previously stated, the first derivative of W will be evalu-

ated with a half-station approximation. Using the same nota-

tion as for the conventional approach (X = node i and ±h/2 =

-±1/2)±12W + h = W + -Xjsinwh/2

w(x0 +2) =i+1 =i 7t X -
+ ":x [i - h/2

! W cos---] (3-20)

W(X h = Wi1 = - 24Wsinnh/ 2

2

x 2 w ,
+ ( . [ 1 - c 0s7T (3-21)
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Subtracting Eq (3-21) from Eq (3-22) gives the expression

for W!1

W1~ 1 -WJ)(3-22)
Wi =2X - h (wi+l - Wi-1) €-2

,,~sinh 2W 2

2X . 2h

If h -sin, the finite difference expression looks very

similar to that derived by the conventional approach. This

is the equivalent mesh size, as opposed to the mesh size h

from the conventional approach.

The second derivative of the beam deflection W will be

a full-station approximation. Therefore, the function is

evaluated at X = X - h. It was shown earlier that the full-a

station approach has a smaller truncation error. Evaluating

W(X) at these points gives

W(X + h) W = W + -W!sinw-
o i+l i ir 1  X

(X-2 1~ cos2',h (3-23)

W(X - h) = W. W. - Wsinrh
0 1 - 1 'X

+ z)2 fl. os2Lrh (-24)

Adding Eq (3-23) to Eq (3-24) provides Wi.
11

W= (W - 2Wi + Wi 1 ) (3-25)1 2 ( ) 2 [1-cos 7r] (w i + l

By using the formula cos26 = cos 26 - sin 8 where 8 = ih/2X,

the quantity

2.)x[-co!-1 = (rh) 2 sin2 h  (3-26)

This revised expression is merely the equivalent mesh size

16



squared j2. The second derivative can be expressed in the

familar form 1

h = 2 (Wi+l - 2Wi + Wi-l) (3-27)

This equation is similar to the conventional solution with the

mesh size h replaced by the equivalent mesh size h. The sub-

script i is merely the reference point along the beam at which

the second derivative is required. For the second derivative,

the reference point is a node. As will be shown shortly, the

first derivative uses a reference point midway between two nodes.

Not only do the trigonometric finite differences greatly

resemble the conventional derivatives, they approach them as

X, the variable wavelength parameter, goes to infinity. Stein

and Housner included X as a parameter independent from the

process of solving for the buckling load. It can be chosen

as whatever the operator wishes. The parameter does have some

physical significance, as will be shown in Section IV. By

choosing different A's, multiple buckling loads result, creat-

ing hope that the "exact" solution may be attained and not

merely bounded. Choosing an optimal A will be given further

attention later. The bound established by the conventional

finite differences can easily be established. Using the fact

that sinO = e for small values of 0, then from

lim h lim 2Asin hX = o X - -00 7 n- (3-28)
one obtains

lim h lim 2X wh
= h (3-29)
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Therefore, for large X, the equivalent mesh h reduces to the

conventional mesh h. With this, the trigonometric approxi-

mations reduce to the conventional approximations and the low-

er bound produced by conventional finite differences is achieved.

By knowing the conventional solution, one may obtain a range of

X where the accuracy is better. Of added importance is the use

of conventional procedures to determine the trigonometric equa-

tions, i.e. use of half-station or full-station approximations.

Because the conventional error is known and the two methods be-

have the same in the limit, the same type of error can be ex-

pected in the trigonometric approach. This validates the usage

of half- and full-station approximations in the first and sec-

ond derivatives.

Application to the Virtual

Work Equation

The trigonometric finite difference derivatives just

developed will be applied to the virtual work equation derived

in Appendix A:

LI d2W d26W dx=PL -d6 x(-0

El- dX xP x dx (-0

where E is the Young's modulus, I is its inertia and P is the

axial load which will cause buckling. The equation is to be

solved for the buckling load P = P cr The virtual work equa-

tion cannot be integrated in closed form, so numerical inte-

gration is used. First, though, the beam is divided into a

nodal mesh, with the nodes numbered as shown in Figure 4.



The nodes are represented by X's along the beam axis.

e W

X ~ ~~~ -** .. X X

-1 0 1 2 N-i N N+1 N+2

II

Fig 4. Node Pattern for N Internal Nodes

The distance between nodes is the mesh size h which equals the

beam length divided by N + 1. N is the number of internal nodes.

Nodes 0 and N + 1 are at the beam boundaries. Nodes -1 and

N + 2 are fictitious external nodes which are required when

applying the second derivative at a boundary.

The numerical integration used on the virtual work equa-

tion is the trapezoid rule. For ease in presenting the solu-

tion, the following definitions are made

fi = EiIiW16WI (3-31)

9i= W'6W' (3-32)

where the subscript i is the same as used in developing the

trigonometric derivatives. The virtual work equation can be

thought of as:

L L
I fdx - P f gdx (3-33)
0 0

To integrate along the beam length L, assume the function f
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is represented by the curve in Figure 5.

f

N- IN N+1

Fig 5. Numerical Integration of fdX

Using Full-Station Approach

By using the trapezoidal rule on Figure 5, the integral of

fdX can be represented as a summation,over the beam's nodes:

N

2 o + fi+ ilfN+l)
i=1

Likewise, numerical integration can be applied to the integral

of gdx. This integration depends upon the values of g at

points half-way between the node points because g is a func-

tion of half-station approximations. Figure 6 demonstrates

this integration.
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I9

.. /,-./.Ax

1 N~1 N+1

Fig 6. Numerical Integration of gdx

Using Half-Station Approach

The integral can be represented by

* N
h E g.I

i-0

Replacing the virtual work integrals by these new expressions

gives the equation

/ NN

h( f + f. + I+. f Ph Z g1 +j 3.4

i-1 i=O

The mesh size h is factored out of both sides of Eq (3-34).

Using Eq (3-31) and Eq (3-32) and substituting the trigono-

metric derivatives, a definition for fk' gk is produced
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Ekl

f =-4- IW -2Wk +W )(6W 26W +6 )(3-35)
kk+l k k- k+l k Wk-i

11h (Wk+ - Wk-I) M 6Wk+I - 6Wk-I) (3-36)
k 2 k2 2 2 2

for k = 0 to N + 1. The expressions in Eq (3-34) may now be

defined in terms of the beam displacement W, stiffness E, and

inertia I at each node in the beam. The solution of this equa-

tion will be the critical buckling load.

The summations in Eq (3-34) can be expressed using Eq

(3-35) and Eq (3-36). By regrouping the coefficients of

specific virtual displacements 6W., the equation1

a (P,E,I,W , W ,W )6W + a (P,E,I,W ,W ,W ,W )6W +
-1-1 0 1 -1 0-1 0 1 2 0

+ a (P,E,IW N , W , W ,W )6W
N+1 N-1 N N+l' N+2 N+l

+aN+ 2 (P, WN WN+ 1 WN + 2 )
6WN+2 = 0 (3-37)

is produced. The ai are functions of the axial load P and the

actual displacements W in the neighborhood of node i. Also,

the ai are functions of E and I in the vicinity of i. Eq

(3-37) can be written in the form

N+2
Z ai6W i = 0 (3-38)

The trivial solution 6Wi = 0 is ignored. The internal virtual

displacements are arbitrary and are taken as non-zero. At the

beam ends, the virtual work idea makes actual and virtual dis-

placements compatible. For example, a beam pinned at the left

boundary has the real boundary conditions W(0) = 0 and
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W"(0) = 0. Because virtual boundary displacements must be

(. compatible, SW(0) = 0 and 6W"(0) = 0. Applying the finite

difference derivatives gives

6W = 0 (3-39)
0

6W = -SW (3-40)-!

By applying the boundary conditions, external virtual displace-

ments can be related to internal and boundary virtual displace-

ments. Virtual displacements at the boundary are zero if pin-

ned or clamped and undefined if free or guided. In this latter

case, the virtual boundary displacement 6W or 6WN+lI, depending

on which boundary, produces an additional unknown and an addi-

tional equation. Applying the boundary equations reduces Eq

(3-38) to an equation with N coefficients (N + 1 with a free or

guided boundary, N + 2 with both boundaries free or guided)

N

S, bi6Wi = 0 (3-41)

The bi are functions of W, P, E, I as were the ai in Eq (3-38).

However, the actual boundary conditions are applied to the

actual displacements in the a. in the same manner as the vir-

tual displacements. For a pinned left boundary, the conditions

are

W = 0 (3-42)0

W = -W (3-43)

Applying the boundary equations, the expressions a. are re-

duced to bi. Once again, a free or guided boundary displace-

ment is left as an unknown.

In Eq (3-41), all the virtual displacement may now be
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treated as arbitrary. Because of this, the coefficients bi

must be zero. This reduces the virtual work equation to a

set of N equations (N + q where q is the number of free/

guided boundaries) of the form

bi = 0 i = l,2,...,N (3-44)

The bi are functions of P, E, I and the actual node displace-

ments Wi along the beam. By factoring out the actual displace-

ments, Eq (3-44) can be represented in its matrix form.

W

W 
2

CI •. 0 (3-45)

WN-

W
NJ

The elements of C depend only upon E, I and P. Matrix C is

of size N x N and is populated along and near to the diagonal.

Once the values of E and I are known for each node in the beam,

the eigenvalues of the matrix C can be solved for. Because

Eq (3-45) is a set of homogeneous equations, setting the de-

terminant of C equal to zero will produce N eigenvalues. Al-

though the solution for buckling load yields an infinite number

of values, only N are obtained from the determinant. This is

due to the approximation of the beam continuum by N internal

node points. By ordering the eigenvalues, the critical buck-

ling load is found. It is P cr, the lowest non-zero eigenvalue.

A zero eigenvalue corresponds to rigid body motion, a non-

buckling phenomenon.
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Now that the C matrix is determined, it merely awaits

some type of reduction to yield the buckling load. One

simple technique involves checking the sign of the determinant

of C. A guess is made at the value of the axial load P. It

is inserted into the determinant and the sign of the determi-

nant of C is checked. A larger P is assumed and the process

is repeated. When the sign of the determinant of C changes,

two bounds, one high and one low, are established for P. This

process repeats until the determinant of C equals zero. The

value of P for this condition is an eigenvalue of Eq (3-45).

If it is the lowest eigenvalue, then P is the critical buck-

ling load P cr However, as Franklin (26) shows, there are

better ways to solve for the eigenvalues of the C matrix.

This simple algorithm, though, helps to illustrate how it

could be done. More sophisticated techniques for solving the

eigenvalue problem include the method of elimination by tri-

angularization, the method of Householder and Bauer, and the

LR and QR methods (25,26).

The method used in determining both the critical buckling

load (eigenvalue) and the corresponding mode shape (eigenvector)

is from a prepared routine available in the International

Mathematical and Statistical Libraries (IMSL). To use this

routine, Eq (3-41) must be rewritten. The C matrix in Eq

(3-41) contained E, I and the critical force P. This force P

was evident in the right hand side of the virtual work equation
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(3-30). Because it appears on only one side of the equality,

the P dependence can be factored out of the C matrix into the

form

[A J J P~ B 1 11(3-46)
L

The A matrix corresponds to f EI W" 6W"dx and is dependent
0

upon E,I. The B matrix corresponds -o the right side of the
L

virtual work equation P 6 W'6W'dx and depends only upon P
which is factored out of the equation. It is in the form of

Eq (3-46) that the prepared IMSL routine solves for the eigen-

value. IMSL does so by first reducing A to upper Hassenberg

form and B to an upper triangular form. A is then further

transformed to a quasi-upper triangular form which is an upper

Hassenberg form with no two consecutive subdiagonal elements

being zero (31). In this form, the eigenvalues are returned.

In addition to the eigenvalue Pcr' the corresponding

eigenvector W is returned from the IMSL routine. The eigen-

vector is found by using an extension of LR and QR triangular-

izations. The returned eigenvector describes the displacement

at each internal node of the beam as well as those at guided

or free boundaries. The displacements are normalized with the

maximum displacement defined as 1.0. The displacement curve

is available as a by-product of the eigenvalue analysis. By

using a prepared curve fitting program, the displacement

curve is drawn through the known node displacements. This
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provides a method for looking at the effect a change in the

beam has on its mode shape.

In the guided-free, guided-guided and free-free beams,

rigid body motion can show up in both eigenvalue and eigen-

vector analysis. In the eigenvalue problem, a critical buck-

ling load of zero is returned as a result of the right body

translation. The computer is merely programmed to avoid this

zero and return the next lowest eigenvalue. In eigenvector

plots, rigid body motion affects the displacement curve by

introducing a scaling factor. To avoid this in the guided-

free beam, all displacements are re-scaled by subtracting the

minimum nodal displacement (usually at the guided boundary)

from a nodal displacement value and dividing this difference

by (1 - Wmin ). This rescales the nodal displacements and

produces the expected curve. A similar technique is used for

the free-free and guided-guided beam. An additional change

is needed because the center of the beam, at x = L/2, does

not have zero transverse displacement. This arbitrary trans-

lation is removed from the nodal displacements, producing

the expected curve.

Summary

The eigenvalue matrix problem is now set up. It was de-

rived from the use of a truncated Fourier series, featuring

the variable wavelength parameter X, in developing finite

difference expressions. These expressions were applied to a

beam at several nodes, permitting the numerical integration

of the virtual work equation. The equations (3-41) and (3-42)
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are the end result of this integration. By solving for the

determinant of the C matrix in Eq (3-45), the eigenvalue Pcr

and eigenvector W are obtained.

The forth section of the thesis will apply this technique

to simple, uniform beams to verify the method before looking

at more difficult problems. Besides verifying the approach,

an attempt to determine a best wavelength parameter X will

begin.
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IV. Uniform Beam Results

The first beams that were examined were the simple, uni-

form beams. These are beams which have a constant stiffness

E and a constant moment of inertia I. Equation (3-46) was

programmed for a computer. It allows for N internal nodes

with constant or varying E and I. To test the program, it

was run for the uniform beam as described above. Because E

and I are constant, only the boundary conditions are different

from beam to beam. The 10 boundary conditions considered are:

1. Pinned-pinned
2. Pinned-clamped
3. Pinned-guided
4. Pinned-free
5. Clamped-clamped
6. Clamped-guided
7. Clamped-free
8. Guided-guided
9. Guided-free

10. Free-free

For these 10 cases, the exact critical buckling load and mode

shape are available through solving a governing differential

equation which was not applied in this thesis. These results

are well catalogued in literature (18-20,23,24).

Accuracy of the computer program has been checked by

comparing the calculated buckling load and mode shape with

the exact solutions. As discussed in Section III, the mode

shape is actually a curve fitted through the deflection at

each node of the beam. This mode shape is produced indepen-

dent of the wavelength parameter X. To show this, a discussion
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of the accuracy of the critical buckling load must first be

made.

Eq (3-46) consists of two matrices A and B. They were

formed by numerically integrating the virtual work equation.

Imbedded within both matrices is a dependence Upon W , W ,

... , W and the corresponding virtual displacements. These
N

were factored out, leaving Eq (3-46). The A matrix, consist-

ing of fk (Eq (3-35)) applications, now depends upon EkIk and

1/h . Likewise, the B matrix depends upon multiples of 1/h2 ,

obtained by applying Eq (3-36). The equivalent mesh size

-sinM. For the uniform beam, solutions are obtained
7r 2X

with a "uniform" mesh. By choosing the desired number of nodes

N within the beam, the beam is divided into a mesh with the

distance between each node equal to h, where h = (beam length)/

(N + 1). Therefore, for a uniform mesh, h is constant through-

out the beam. This was used earlier when h was divided out of

Eq (3-34). As will be shown in Section VI, this simplifica-

tion is not permitted when the mesh varies in size throughout

the beam. Using the fact that h is a constant, fixed in size

when N is chosen, h is dependent only upon the mesh size and

is constant for a fixed wavelength. The equivalent mesh is

only a function of h and X, which are determined by the opera-

tor. The wavelength parameter is independent of E, I.

With the simplification of the uniform mesh beam, 1/h '

and l/h2 will be factored out of the A and B matrices of Eq

(3-46). This produces two matrices A and B.
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A B- (4-1)

Multiplying both sides of Eq (4-1) by h',.(defining k = Ph
2)

results in an equation similar in form to Eq (3-46).

w w

k (4-2)

The eigenvalue of the problem is no longer Pcr' the axial

buckling load, but k. This equation is solved for the lowest

non-zero value of k, the critical axial buckling parameter.

From the definition of k and h, the buckling load Pcr can be

written in the form

kcrPcr c h\2 (4-3)

(-s in!)

This equation highlights one of the main advantages of Stein

and Housner's truncated Fourier series. The eigenvalue equa-

tion does not return a single critical buckling load for N

nodes as does the conventional finite difference equation.

Instead, the eigenvalue equation returns a value for k whichcr

permits P to become a function of X. By choosing a A, acr

critical load is returned. This is the basic advantage of the

Fourier series coupled with A. By choosing a good X it may be

possible to obtain a P better (more accurate) than the con-
cr

ventional finite difference method generates. And if X is just
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right, the "exact" solution may be obtained. The question of

what is a good wavelength parameter will be discussed further

in this Section.

In addition to determining the buckling load, it is some-

times desirable to determine the corresponding mode shape. By

using the IMSL routine described in Section III, the eigen-

vector can be determined for either Eq (3-46) or Eq (4-1).

For the uniform mesh beam, Eq (4-1) is used. The eigenvector

corresponding to each of the N eigenvalues is stored and is

available upon request. Because this thesis is mainly con-

cerned with eigenvalue determination, the methods of eigen-

vector determination will not be discussed. For my purpose,

if an eigenvector is needed, it will be that one returned by

the IMSL package. The eigenvector is of interest though,

because it is independent of the wavelength parameter. As

was just shown, the A and B matrices have no direct X depen-

dence. Instead, they depend on the buckling parameter kcr

which was a constant in the eigenvalue solution. Therefore,

the eigenvector delivered depends upon A, B and kcr. The

eigenvector is independent of X. In the computer program,

the buckling mode shape is determined before the operator

decides on what X or range thereof he is interested in. Be-

cause of this, even though a poor X may be chosen, resulting

in a poor Pcr' the mode shape is independent of the X.

Uniform Beam Solutions

As stated in the introduction to this section, 10 cases

of a uniform beam were studied to verify the designed computer
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program. These 10 cases differed only in the boundary condi-

tions, the wavelength parameter A was usually varied between

0.2 and 2.0. This produces a range of Pcr' according to Eq

(4-3). Also, the conventional finite difference solution was

calculated to provide a comparison with the trigonometric sol-

ution. The conventional solution can be found by letting X-*-,

or in the uniform beam case, replacing h by h. Because h was

factored from the matrix equation (4-1), this substitution is

easily accomplished.

Figures 9 through 12 at the end of this Section compare

the buckling load curve, produced by varying A, with the con-

ventional solution. Because the correct solution is known,

the percent error of the buckling load is plotted versus the

wavelength parameter. Because the conventional finite differ-

ence solution is independent of A, it is represented as a

dashed line of constant error. Also, a zero error line is

included which allows for ease in comparison and in determining

the best wavelength parameter. Although 10 cases were examined,

several combinations of boundary conditions produced the same

curve. As an example, pinned-pinned and free-free boundaries

produce the same buckling load curve. Therefore, only the

four independent curves are included. The boundary combina-

tions they represent are included in the figure title.

In addition to buckling load curves, the calculated

eigenvector is plotted for five boundary combinations. Once

again, one eigenvector can represent several different boundary

combinations. As a check on the accuracy of the eigenvecto:,
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the exact buckling shapes are plotted on the same figure. Re-

sults are shown in Figures 13 through 18.

For ease in calculation, several parameters were normal-

ized. For simplicity, E and I, variables within the A matrix,

were defined as 1.0. Because the beam is uniform, E and I do

not change. They are represented as the ratios of E/Emax and

I/Ima which accounts for the normalization.

The beam length L is also normalized as L/Lbeam = 1.0.

In Section V, discontinuities are introduced which make this

practice of normalization quite useful. Also, the user is not

forced to choose specific numerical values for E, I and L.

The critical buckling load is represented by Pcr = m EI/L 2

with the value of m returned by Eq (4-3). Once the solution

is in this form, the user can choose any values of E, I and L

desired, without having to solve Eq (4-2) for each specific

case.

Using these techniques, the 10 uniform cases were solved

for P and the buckling mode shape. A few of the results
cr

are discussed here.

Pinned-Pinned

The most common column buckling problem is the uniform

pinned-pinned column. This problem is usually the first buck-

ling problem a student sees. For analysis, two cases were run.

Nine internal node points were used in one case, Figure 9, and

19 in another. Choosing these numbers of internal nodes re-

sults in a mesh size of 0.1 and 0.05, for a beam of length

equal to one. It can be seen that 19 nodes provides a mesh
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twice as fine as for N = 9 nodes. The nine node beam is

( shown in Figure 7 with its buckled mode shape superimposed.

W Deflection shape

W(x/L)= sinlfx/L)

P cr mEI/L2

0123 4 5 6 7 8 9 10 NODES

Fig 7. Pinned-Pinned Beam with Nine Nodes

The critical buckling load is given in literature by the

formula

Pcr=(nw )2 n = 1,2,3,... (4-4)

The lowest Pcr is given for n = 1 which produces Pcr= r2 EI/L 2

- 9.8696044 EI/L 2. The nine node solution results in values of

Pcr more accurate than the conventional finite difference for

the range of .71 < X < -, approximately. Also, the exact buck-

ling load is calculated when X - 1.0. At this value of the

wavelength parameter, Eq (4-3) returns m = 9.8696044 which

matches the known solution for n = 1.

In addition to matching the buckling load, the eigenvector

that is produced exactly matches the known mode shape W(X/L)

- sin W(X/L). Actually, the nodal displacements lie on this

curve, with the computer producing a curve through them.

For 19 internal nodes the same results are obtained, but
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with greater accuracy. Once more, at X = 1.0 the exact solution

is returned. For the range .71 < X < -, Pcr is more accurate

than the conventional solution. For this same range, the 19

node buckling curve is more accurate than the nine node curve.

Finally, the eigenvoctor matches the known mode shape again.

In both cases, X = 1.0 resulted in the exact solution.

This value of X can be related to the known buckled shape. If

the beam problem were solved explicitly with L non-dimensional-

ized, the exact solution would occur at X = 1.OL. The fact that

A is a wavelength parameter gives a clue to its nature. If the

sine curve of the buckling mode shape were extended beyond X = L,

it would have a wavelength of 2L. Its half-buckled wavelength

would be L, which corresponds to the optimum value of A. The

idea of A corresponding to the half-buckled wavelength will

be checked further.

Guided-Guided

A second type of beam that was checked is one in which

both boundaries are guided, that is, the boundary is free to

translate vertically, but must retain zero slope (dw/dx) at

each end. Although the beam is not common, it does provide a

check on solutions produced for more exotic configurations.

The exact solution for the guided-guided beam is given

as w2 EI/L 2 for the lowest eigenvalue P cr. For nine internal

nodes, the value of A = 1.0 produced a solution accurate to

1 2 within 10 significant figures. For engineering purposes,

this is the exact solution. When compared with the convention-

al solution, the trigonometric finite differences were more
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accurate for the range .71 < A < . Figure 9 demonstrates

this behavior. The same result occurs for 19 internal nodes,

with an improved accuracy range of .71 < A < -. Once again,

the optimal value of X is 1.0. How well does this compare to

the mode shape?

The exact mode shape is W(X/L) = cosn(X/L). Once the

problem of rigid body translation was accounted for, the eigen-

vectors for the two mesh sizes matched the expected mode shape.

This is particularly encouraging because no nodal displacement

was known ahead of time. In pinned and clamped beams, the

displacement at the boundary is known (equal to zero). This

provides less unknowns for the program to handle. With guided

and free boundaries, the displacement is left as an unknown.

In all guided and free cases though, the computer returned the

correct displacement.

From the exact and generated mode shapes, a half-buckled

wavelength of L is evident. Therefore, choosing A equal to

half of the buckled wavelength produces an exact solution.

General Results

Ten combinations of boundary conditions were tested on the

simple uniform beam. In each case, the exact buckling load

could be found by krope' choice of the wavelength parameter

(the optimal A, Aopt). Also, the eigenvector exactly matched

the equivalent points on the known mode shape.

The number of nodes used to model the beam depends upon

the user and how much time and money are available. For this

thesis, time and money had no real effect on the number of
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nodes chosen because of the simplicity of the beam. Although

using more nodes takes longer, the increase is not noticeable.

The key features to remember in choosing N nodes are the in-

crease in accuracy and the increase in the size of the gener-

ated matrices. Also, it is convenient to have a node at the

point of maximum deflection. This produces a smoother eigen-

vector shape. Otherwise, the maximum deflection will not be

correctly displayed.

The computer handles Eq (4-2) which involves reducing

matrices of order N x N. Increasing the number of nodes will

increase the range of X for a good solution (compared to the

conventional solution), improve the buckled mode shape by re-

turning more nodal displacements, but will raise the number

of elements in the A and B matrices. For N = 9 nodes, in a

pinned-pinned beam there are 81 elements. With 19 nodes,

there are 381 elements. As I stated before, the change from

N = 9 to N = 19 has no significant change on the cost to the

user for these simple beams. But the point must be kept in

mind when working with more complicated beams and with complex

structural elements (plates, shells) to which this technique

can be applied.

Nine nodes were chosen to produce the results in Figures

9 through 18. Using nine nodes gave a convenient mesh size

(.1L) and produced fairly accurate buckling load plots and

eigenvectors. As Hannah demonstrated, even a lower number of

nodes, such as five, will produce an exact answer. However,

the choice of A must be good because the optimal range of X
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shrank by choosing fewer nodes. So although the exact answer

is available, the choice of X can greatly affect your error.

For the 10 beams analyzed, the range of X for which Pcr

was more accurate than the conventional solution was checked.

These results are listed in Table I under the heading X range.

In all cases, the choice of A which gave the exact buckling

load corresponded to half of the buckled wavelength. This is

the same feature as seen in literature under the effective

buckling length idea (18).

TABLE I

BOUNDARIES Xopt X range

Pinned-pinned 1.0 .71 < A <
Pinned-clamped .632 .45 < A <
Pinned-guided 2.0 1.42 < A <
Pinned-free 1.0 .71 < A < -
Clamped-clamped 0.5 .36 < X <
Clamped-guided 1.0 .71 < X <
Clamped-free 2.0 1.42 < A <
Guided-guided 1.0 .71 < A <
Guided-free 2.0 1.42 < A <
Free-free 1.0 .71 < A < -

If the buckling wavelength of the mode shape is not known,

a choice of A = 1.4 gives results better than the conventional

approach. This result is seen by comparing the ranges of A in

Table I. In addition, merely choosing a large A will result in

better accuracy. For a large X, the solution is most likely a

lower bound on P cr and therefore a conservative answer.

The general behavior of the Pcr vs A plots in Figures 9

to 12 explains the previous statement. It also explains why

an exact solution is always obtainable for the beam analyzed

within the bounds of the model used. Figure 8 typifies the

behavior of Pcr vs X for the uniform beams.
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Fig 8. Buckling Load Versus Wavelength Parameter

Each curve plotted showed a very large buckling load for

A = 0.1,0.2. This can be explained using Eq (4-3), rewritten

here for reference.

Pcr = kcr (4-3)
(r 2Xin 7r)2

The computer returns kcrI independent of A. Although the

buckling load curve is smooth in all the figures, there are

singularities for small A. These singularities occur when

-7srsi = 0 (4-5)

Solutions to Eq (4-5) occur for

A - 0 or -= nr n = 0,1,2,... (4-6)
2A

The first singularity, at X = 0 is generally not a problem.

Setting the wavelength equal to zero would be of no use. This

leaves the second part of Eq (4-6). The singularities generated

by it are
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A h (n = 1,2,... (4-7)
-~i

This forms a sequence of singularities from near zero out to

X = h/2. For A > h/2, no singularities exist. This value of

X(h/2) provides a good start for a Pcr vs A plot. Below X = h/2,

'0 singularities occur. At X = h/2, Pcr = a. For the uniform

beam plot, the'curves started at A = .2 because the nearest

singularity was at A = 0.05 (h = .1). This helped avoid the

extremely large values of the buckling load in this region.

On the other end of the curve is the conventional finite

difference solution. The conventional solution is always a

lower bound. Modeling the beam by nodes breaks the beam con-

tinuum into a finite number of degrees of freedom, making the

beam more flexible than the continuum. This increased flexi-

bility helps the beam to buckle at a lower value of Pcr than

the continuum beam would. Therefore, the conventional solu-

tion is always lower than the true solution.

Eq (4-6) at n = 0 implies A = is a singularity. How-

ever, Eq (3-29) showed that as A--, h h. Therefore, a very

large A reduces the trigonometric solution to the conventional

solution and not to a singularity.

The fact that the exact solution is attainable is easily

explained now. At A = h/2, the value of Pcr is positive in-

finite. As AX-, the critical load reduces to that determined

by the conventional solution, which is lower than Pcr exact.

Therefore, the buckling load curve starts higher than the

exact solution and ends up lower than the exact solution. By
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the mean value theorem, the curve must pass through the exact

solution for some X, h/2 < X .

Physically, increasing A results in a buckled mode shape

of longer wavelength. A smaller force is required to buckle

a beam with this longer wavelength. Therefore, the buckling

load decreases with increasing A.

Summary

By analyzing the simple uniform beam, several results

have been achieved.

1) The equation that generates the solution success-

fully predicted the buckling load and mode shape

for 10 known cases, for an optimal A.

2) The optimal A was half of the buckled wave shape.

If the shape is unknown, a A = 1.4 will give a

better solution than the conventional finite

difference.

3) The exact buckling load always lies somewhere on

Pcr vs A curve.

4) The exact solution was obtained at the same A for

N = 9 or 19. However, N = 19 provides a larger

range of good A and more points for the eigenvector

mode shape.
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V. Beams With Variable Inertia

Introduction

The previous section dealt with simple uniform beams.

They were used to verify the equation that governs eigenvalue

determination as well as the computer program used to solve

that equation. The uniform beams tested had a constant moment

of inertia. If the beam's inertia can be increased over its

middle, a higher load will be required to cause buckling.

The beam is now a more stable structure, compared to its

uniform cousin. In doing so, however, a beam with a variation

in its moment of inertia results. Often the cross-section

changes abruptly, resulting in a discontinuity of the inertia

(22). A discontinuity of this type occurs in steel structures,

where a beam is strengthened by riveting additional plates or

angles along portions of the beam.

One of the improvements modeled in the thesis is the

ability to handle changes in inertia. The moment of inertia

I(x) is regarded as a function of x, measured along the beam's

axis. The use of I in this manner includes it within the in-

tegration of the virtual work equation, Eq (3-30). Inertias

along the beam are now imbedded within the matrix equation,

Eq (3-45).

This section of the thesis makes use of these abilities

by examining continuous and discontinuous changes in inertia.
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In some cases the exact buckling load is known beforehand,

in others it is only bounded. In each case, the inertia at

some point along the beam is defined as unity and the remain-

ing inertias are expressed as the ratio with respect to that

datum. The solution that is generated is a function of the

chosen inertia. As was done last section, E and L are defined

as one for simplicity.

The buckling load Pcr versus buckling wavelength X is

plotted for several cases to check the trigonometric finite

difference accuracy, when possible. In addition, the search
for the A corresponding to the critical load will be discussed.

Optimization of X

For several of the cases to be examined, only a bound

on the solution is available in the literature. The wave-

length parameter corresponding to the buckling load bound

can be determined from the P vs X plot for the beam. Butcr

that Pcr is not the best solution. Eventually, the technique

of this thesis will be applied to buckling problems with no

known solution. What will be the buckling load then?

In the uniform beam analysis, a range of 1.4 to infinity

for the buckling wavelength gave fairly good results for all

boundary conditions. This technique of looking for a trend

can be extended by comparison with known solutions to variable

inertia beams. Eventually, a rule of thumb for X can be de-

veloped. The corresponding critical load may be fairly good.

A promising procedure for determining an optimal buckling
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wavelength is put forward by Stein and Housner in regards to

plate buckling (2). The technique is applicable to beam buck-

ling.

A trial solution is performed for a beam modeled by N

nodes, equally spaced throughout the beam. The value of the

critical buckling load is determined at several wavelengths,

establishing the familiar buckling load curve, P vs X.cr

The process is repeated with a different number of internal

nodes M. The buckling load curve is superimposed on the one

obtained for N nodes and is shown in Figure 18.

M>N

P4 N nodes

o0 M nodes
Cd noes

r i

bD

exact

X"opt
Wavelength parameter, A

Fig 18. Optimization Curves for Buckling Wavelength

In the previous section, the optimal wavelength corre-

sponded to half of the wavelength of buckled mode shape. For

a beam which is non-uniform in inertia, the wavelength ceases
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to have any physical significance. To find the optimal wave-

length, Figure 18 is made use of. The value of X at which

the two curves cross indicates that convergence of the buck-

ling load solution is relatively best at this value since for

this wavelength, increasing the number of nodes produces no

change in the buckling load. Increasing the number of nodes

will return an improved solution at every wavelength, unless

the wavelength corresponds to the exact buckling load. At

A in Figure 18, increasing the number of nodes had noopt

effect.

With this optimization method in mind, two sets of beams

with a uniform mesh, continuous and discontinuous inertia,

are examined.

Continuous Inertia

For a beam with continuously varying inertia, each node

along the beam requires a specific inertia. Two examples

are discussed in which the moment of inertia is defined by

a simple formula.

A. Sinusoidal Variation. Brogan and Almroth (18) give

a buckling solution for a pinned-pinned beam with a sinusoidal

variation in inertia. The beam illustrated in Figure 19,

has an inertia defined as

I(x) = I + sin-x) (5-1)0 (

A one term approximation to the solution yields P =

1.825n 2EI /L 2. This is higher than the solution for a pinned-
0

pinned beam with constant inertia I , which was found to be
0
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P = W
2EI /L 2 in the previous section, as is expected.

max

L x 1

Fig 19. Sinusoidal Variation in Inertia

To model the beam, nine internal nodes were used. The

x-coordinate of each node was calculated, allowing use of

the inertia formula to calculate 1(x). Using the approximate

solution as a guide, the range .75 < X < - provides answers

more accurate than the conventional finite difference solution.

Because the solution is not precisely known, the optimization

technique is tried. The first curve generated was for nine

nodes. The number nine was chosen because it places a node

at the position of maximum inertia, in much the same way as

a node at maximum deflection of the uniform beam was needed

to fully model the mode shape. With this concept as a guide

for choosing another set of nodes, the choice of N = 11 was

made. Any odd number of internal nodes will place a node at

the center. Although this requires a second solution to the

eigenvalue equation, the size of the matrix is not much larger

than for N = 9. Size depends, in general, upon N2 as was

56



shown earlier. The two matrix sizes combined are still small-

er than one corresponding to N = 19 and may produce a better

solution.

For N = 11, the range of wavelengths for which the trig-

onometric series is more accurate shrinks to .8 < X < =.

The shrinkage is expected. As N increases, the conventional

solution improves slightly faster than does the trigonometric

approach. However, to get the conventional solution very

close to the buckling load requires many nodes, whereas the

trigonometric solution requires only a good choice of wave-

length with fewer nodes.

The curves generated for N = 9 and 11 are shown in

Figure 23. They intersect at X = 1.018. The corresponding

buckling load is 1.82687r2EI /L2 , slightly higher than0

lower bound using Rayleigh - Ritz. For this non-uniform

pinned-pinned beam, the optimization technique worked well.

Two more solutions were obtained using 10 and 12 nodes.

These nodal arrangements do not model the maximum moment of

inertia. Directly comparing the buckling curves produced

for N = 10 and 12 provides a buckling solution of 1.8271r
2EI /L2

a

at X = 1.01. Comparing the curves for N = 9 and 10, which

have on- and off-center nodes, results in Pcr = 1.8267 7 2EI /L 2

cr 0

at X = 1.02. These results show that an accurate solution can

be found if both curves use the same nodal arrangement, i.e.

both curves have on-center or off-center nodes, in this example.

Comparing dissimilar nodal arrangements (N = 9, 10) resulted

in a fairly good solution also. This was not expected and will
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be checked with the next model.

An additional nodal arrangement, N = 5, was checked.

The range of improved accuracy over the conventional solution

increased to .73 < X < . Comparing the curve of Pcr vs X

with another on-center solution (N = 9) gives the same solu-

tion as with N = 9 and 11. Therefore, in some cases, fewer

nodes could be used to predict the critical load.

jOne final note on the sinusoidal pinned-pinned beam.

As discussed in the introduction to this section, a beam

built-up in the center would buckle at a higher load than

its uniform counterpart. This is seen for the sinusoidal

beam which buckles at about 1.827n 2EI /L 2 versus 1.0 2EI /L2
0 0

for its uniform inertia cousin. What is surprising though

is that the ranges for a good choice of X and the optimal

wavelength itself are close to the uniform pinned-pinned beam.

Perhaps a uniform beam can serve as a good guide in the choice

of A. This would be advantageous because results for all 10

combinations of boundary conditions are well known.

B. Exponential Variation. Sinha and Chou (17) present

several solution methods for the axial buckling load of a

pinned-pinned beam with an exponentially varying moment of

inertia. The beam, similar to that illustrated in Figure 19,

has an inertia defined as

I(x) = I e 2x / L  for 0 < L (5-2)
0 -2

The beam is symmetric about the mid-section.

The exact solution for the axial buckling load, using

the same assumptions embodied in this thesis, is given in
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terms of the Bessel functions.

J (n)Y (ne- h) - J (ne- )Y (n) = 0 (5-3)
0 1 1 0

where

n= P L2/EI (5-4)
cr 0

Solution of Eq (5-3) yields the beam buckling load as

1.9634W 2EI /L . This is a higher buckling load than was
0

found for the sinusoidal variance because the inertia is

larger in the beam center.

The beam is modeled with an odd number of nodes so that

the maximum inertia, at the beam's center, is included. The

first mesh tried was N = 9. The inertia at each node was

calculated using Eq (5-2). The wavelength range for which

the trigonometric solution is more accurate than the conven-

tional solution is 1.04 < X < -, with the calculated solution

at X = 1.475.

Although the exact solution is known and helped verify

the ability to generate an accurate critical load, it provides

an opportunity to try the two curve optimization again. A

second nodal arrangement, N = 11, is applied to the problem.

When superimposing the N = 9 and 11 curves in Figure 24, the

intersection occurs at A = 1.48 with a corresponding solution

of Pcr= 1.9628ff2EI /L2. This solution is within .031% of the
cr 0

calculated solution of Eq (5-3) and is most likely a combina-

tion of error in solving the eigenvalue problem and solving

for n in Eq (5-4). A change in n of -.014% would give the

solution returned by the intersection of the two curves. Be-

cause the tables used to solve Eq (5-3) were accurate for n
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only to one part in a thousand, the exact solution cannot be

calculated as closely as the intersection did. Therefore,

the two curve intersection gives what can be termed an exact

solution.

As was done for the sinusoidal beam, two solution curves

corresponding to N = 10, 12 (off-center nodes) were generated.

The intersection of these two curves produced Pcr= 1.963ff2EI /L 2

at X = .88, which is fairly close to the result from N = 9, 11

except the buckling wavelength is quite different. The major

difference from the sinusoidal beam is the lack of an inter-

section between the curves for N = 9, 10 and N = 9, 12. These

curves are shown in Figures 25 and 26. The sinusoidal beam

did return a solution for the buckling load when comparing

meshes with nodes on- and off-center. The exponential beam

does not produce this result. Normally, conventional solution

accuracy improves as more nodes are used because the beam con-

tinuum is modeled by more points. Therefore, increasing the

number of nodes will raise the conventional solution, which is

the asymptote of the buckling load curve. If the number of

nodes increases, and the conventional solution improves, the

two buckling curves will intersect. Failure to model the same

points of interest may result in a decrease in the conventional

solution for an increase in the number of nodes. The buckling

load curves will not intersect in this case. For nine nodes,

the trigonometric buckling load curve approached Pcr= 1.955W 2 ,

the conventional solution. For N = 10 and 12, the buckling loads

are 1.946v 2 and 1.951f 2 respectively. Comparing N = 9 and 10
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or N = 9, 12 shows the decrease in load for an increase in

nodes. Therefore, no intersection will result. There is an

increase in the conventional load from N = 10 to 12, account-

ing for the solution mentioned earlier for the two meshes.

An intersection with N = 9 may be possible for N = 14, if the

conventional solution is greater than for N = 9. Looking at

the increase from N = 10 to 12 indicates just such a possibil-

ity. However, the number of elements in the eigenvalue matrix

is increasing rapidly, bringing up the cost of a solution. It

would be better just to compare meshes which model the same

points of interest.

For the exponential beam, inertias ranged from I to0

2.721 , making it stiffer than its uniform cousin with inertia0

I . According, the exponential beam buckled at a higher load.0

The buckling wavelength could be greater or less than the

uniform beam solution (X = 1.0) depending upon the mesh used.

This points out the advantage of using the optimization tech-

nique for finding the buckling load. Whei a mesh was used

which modeled the maximum inertia, a buckling wavelength was

obtained which was higher than for the less stiff uniform

beam.

Discontinuous Inertia

A beam with increased inertia about its center provides

greater resistance to buckling. To investigate variations in

inertia, continuously changing beams were examined. But the

change in cross-section is usually abrupt, mostly due to
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welding or riveting material at strategic locations along the

column. The abrupt change leads to an investigation of dis-
continuous inertias.

ij Figure 20 illustrates one type of discontinuous beam.

2 -P cr_ mI2/L 2

Fig 20. Typical Discontinuous Beam

The beam is clamped at one end and is free at the other. It

is discontinuous in inertia at x = aL. The buckling load is

defined in terms of the modulus E, the total beam length

L, and the inertia I 2 For simplicity, I is defined as one.2 2

The inertia I will be expressed as the ratio of I /I with
1 1 2

I = 1.0. The non-dimensional coefficient m is well tabulated
2

in literature (7,8,22,24). Because this type of discontinuous

beam has known solutions widely available, it will be the

model for my discontinuous inertia.

As was done with the continuously varying beams, the

inertia must be calculated and provided for each node. This

is not too difficult, there being only two values, I and I ,1 2

in the example considered. Past experience has shown that
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significant positions along the beam should be modeled with

* - a node. These have included maximum inertia and maximum dis-

placement. With this in mind, a node will be positioned at

x = aL, the discontinuity of the beam. Positioning the node

at that point forces certain mesh sizes on the modeling. For

the beams of interest, a is a multiple of 0.1. Node numbers

of 9, 14, and 19 are useful in modeling'a discontinuity at

this position. The effect of a node not at the discontinuity

will also be examined.

If a node is located at a discontinuity, what value of

inertia will be assigned to it? Should the inertia to its

left (I L ) or to its right (IR ) be used? Possibly a simple

average or a weighted average should be used.

Girijavallabhan (14) suggests an effective inertia for

a discontinuity at node i

'eff = W1 Wi-l 1 i+l

TL2 Wi  I R 2+Wi

for the beam of Figure 20. This solution makes use of an

assumed mode shape which is not available in the approach of

this thesis. An adequate value for I could be found by assuming

that the displacements are the same as for the uniform beam.

This inertia could be used to calculate a better eigenvector

which in turn would generate a better effective inertia. The

cycle would continue until some type of convergence is obtained.

The final value for I would be used at the discontinuity.

A simpler solution is provided by O'Rourke (24). The
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effective moment of inertia at a step change is given by

2RIL  (5-6)Ieff -(i R + IL J56

O'Rourke states that this value of the inertia represents

a value between the inertia for a pinned-pinned beam using

Rayleigh's method with a step change and the inertia for a

clamped beam. The real value of Eq (5-6) was not apparent in

his paper. However, Ghali and Neville (7) derive this ex-

pression, which is repeated in Appendix C. In doing so, con-

tinuity in slope and moment is maintained, two very important

properties. This expression maintains the necessary proper-

ties which is why Eq (5-6) is used in this thesis.

Specific Examples

As a check on the ability to predict the correct eigen-
4,.

value (buckling load), many beams of the type shown in Figure

20 were tested." The parameter "a" was varied from 0.1 to 0.9

with a similar range in I /I . In all cases, using the inertia1 2

of Eq (5-6) at the discontinuity, the eigenvalue equation gen-

erated the known solution for a specific buckling wavelength.

As an example, the following values were chosen for the beam

shown in Figure 21:

a = .7L
I /1 = .3
1 2

The exact solution, as shown in Figure 21, is Pcr = 2.221016EI

/L . The inertia calculated to represent the discontinuity is

.4615 using Eq (5-6). For this clamped-free beam, a range of

.78 < A < - provides accuracy better than the conventional
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solution. The optimal wavelenqth is 1.10.

---- 4 .7L-II

X2=1.0 1=.3 P cr=2.22E I2/L2cr 2

L

Fig 21. Discontinuous Beam of the First Example

A second example looks more closely at the effect of the

number of nodes. Choosing the values of a = .4 and I /I = .41 2

gives an exact solution of M = 1.66931. A Pcr vs A curve for

N = 9 is generated with an accuracy range of .99 < X < - and

an optimal solution at X = 1.4. A second curve, using N = 19

is superimposed in Figure 27. The two curve intersection

occurs at A = 1.4 as expected.

Two more curves are generated, one for N = 8 and another

for N = 10. These nodal arrangements do not position a node

at the discontinuity. Therefore, a node sees only an inertia

of 1.0 or 0.4, depending upon its location. For the eight

internal node beam, A = .78 produces the known solution. For

10 nodes, though, the known solution is never reached. This

buckling load curve appears in Figure 28. The conventional

solution, which is the limit, is greater than the known solu-

tion. This could be due to the size of the inertia gradient
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across the discontinuity. Assuming a linear gradient across

the discontinuity results in effective inertias of .64 and

.76 for the 8 and 10 node meshes respectively. The effective

inertia from Eq (5-6) is approximately .57. While this is

the value which maintains continuity, there may be an upper

limit to the effective inertia below which the correct buck-

ling load is returned for some value of the wavelength. In

this case, the 10 node mesh models a beam that is too stiff.

As a check on where the upper limit on effective inertia

lies, several values for the inertia at the discontinuity

were substituted. The indicator that an effective inertia is

too high is a conventional finite difference solution that is

greater than the known solution. The beam is then too stiff.

An average of IL and IR , giving the effective inertia

as .7, was tested. For all values of the buckling wavelength

the known solution was not produced. Therefore, the 10 node

inertia of .76, being higher than .7, would be expected to

be ineffective.

A weighted average was also used to produce an effective

inertia. This procedure sums the inertia of each segment -

weighted by the percentage of the beam it represents - and

divides by the sum of the inertias. The resulting inertia of

.457 is below the value returned by Eq (5-6), .5714. The

weighted average produced a correct solution at A = .44.

While this method produced a larger range of wavelengths for

which the trigonometric solution was better than the conven-

tional solution than for the inertia of Eq (5-6), the real
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results were not as good. The conventional solution is worse

for a weighted inertia because continuity is not maintained.

So while you may have a larger range of wavelength at which

the solution is better than conventionally, the conventional

solution itself is not very good. A better test is how large

a bandwidth on X will give an accuracy within ±.l% of the

known buckling, load. For a weighted inertia, this bandwidth

extends from wavelengths equal to .43 to .48, a fairly small

bandwidth. The inertia obtained using continuity gives a

bandwidth from 1.26 to 1.61, five times larger. In fact, an

inertia from Eq (5-6) gave a larger range of bandwidth accu-

racy than for any other inertia. In addition, there is an

upper limit on the effective inertia above which the correct

solution is unobtainable. This point should be kept in mind

when modeling without a node at a discontinuity.

In addition, comparing curves for N = 8 and N = 9 yields

an intersection for a buckling load of 1.75EI /L 2, far above
2

the known solution of 1.669; in Figure 29. This demonstrates

the potentially poor results of trying to optimize the wave-

length with meshes which do not model the same points.

A study should be made of what is the best effective

inertia and compare it to that derived by Eq (5-6). For the

purposes of this thesis, Eq (5-6) has been shown effective

for all discontinuity combinations tested.

A final example of a more complex discontinuous beam is

shown in figure 22. A pinned-pinned beam with two discontin-

uities is examined. The effective inertias at x = .2L and
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x = .8L are determined by Eq (5-6). Using nine internal nodes,

kso chosen to place a node at each discontinuity, provides the

expected solution at X = .64. A second nodal arrangement,

N = 19, is used to intersect with the curve produced by N = 9.

L
rrc

P er Y1=4 I 2=1"0 I=.4 -- Pr

M 4L = .6L Do

Pcr: I EI 2 /L 2

Fig 22. Third Example of a Discontinuous Beam

The intersection occurs for X = .64, Pcr = 8.51, matching the

known solution. The results are shown in Figure 30.

Summary

A beam with a discontinuous or varying moment of inertia

can be analyzed using the approach of the thesis. In all such

beams, an attempt should be made to place a node at the maximum

moment of inertia and also at any discontinuities. For .a con-

tinuous variation in inertia, the uniform beam results can pro-

vide an idea of a good choice of X, generally larger than the

uniform solution. The discontinuous beams can also use this

principle.

4 An accurate method of determining the correct value forLaw-



the buckling load is to plot P vs X for two sets of nodes.cr

The intersection of these two curves is the desired solution.

The two sets of nodes, should be somewhat similar. Also, the

effective inertia at a discontinuity is evaluated using Eq

(5-6).

With these principles, the known solution was derived

for every example tested.
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Fig 23. Buckling load curves for a beam with sinusoidal
inertia. N - 9,11.
P cr 18.03 El a/L2, X = 1.018.
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Fig 27. Buckling load curves for a discontinuous
beam, 1,/12 = .4, a/L = .4. N =9,19

p 1.669 E12/'Lz, X - 1.4.
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Fig 28. Buckling load curve for a discontinuous beam,
11/12 = .4, a/L = .4. N = 8,9.
P = 1.669 E1 2/L

2, X = 1.4
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VI. Variable Mesh

Introduction

In the previous section, beams with various inertias

were examined. Often, the beam had a geometric discontinuity

in its inertia. This discontinuity was modeled with a node

at the location of the step change to produce the best results.

Increasing the number of nodes also improved the solution

accuracy, if the discontinuity is modeled. Previous examples

showed the increase in accuracy between nine and nineteen

nodes, both of which placed anode at a discontinuity. The

change to 19 nodes decreased the mesh size by a factor of two,

increasing the solution accuracy.

To obtain increased accuracy up until now, the number

of nodes had to be increased. Doing this increases the time

and cost to the user. An alternative approach to increasing

the number of nodes is to respace the available nodes. For

the discontinuous beams, a nine node solution may give better

accuracy if the available nodes are respaced. With several

nodes at and around the discontinuity, a better range of

critical buckling loads may be obtained than is possible with

a uniform mesh of the same number of nodes. Figure 31 shows

the difference in node spacing for a discontinuous beam with

nine nodes for uniform and variable meshes.
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I<

Variable Mesh

Fig 31. Comparison of Variable

Uniform and Variable Meshes

The variable mesh has taken the nine nodes with uniform

spacing and redistributed several of them about the discon-

tinuity. The remaining nodes are spaced according to the

sizes of the remaining beam sections. Placing more nodes

nearer the discontinuity than is available from a uniform

mesh hopefully gives the same effect as increasing the total

nodes used. For example, a nine node beam has an h = .1 mesh

size. If two nodes are moved closer to the discontinuity for
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a mesh spacing of h = .05 (Figure 31), the mesh size near the
2

change is the same as for N = 19. The question that must

be answered is how the remaining nodes can be distributed

for a more accurate solution to result. If this is possible,

better accuracy can be obtained by clustering more nodes about

discontinuities, points of maximum/minimum inertia, and other

significant locations. Section VI examines just this question.

Technique

Section III of this thesis showed the numerical integra-

tion technique used to solve the virtual work expression with

a uniform mesh. With a variable mesh, the numerical integra-

tion technique must be expanded to accomodate changes in mesh

size throughout the beam. Figure 32 shows this scheme for a

beam with three different mesh sizes. This figure is the

analog to Figure 5 which works for uniform mesh. Nodes i and

j correspond to the nodes at which mesh size changes. The

three mesh sizes are h , h , h . With the change in mesh1 2 3

size, Eq (3-33) must be reintegrated. Applying the trape-

zoidal rule, the equation

L L
f fdx = P f gdx (3-33)
0 0
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Fig 32. Numerical Integration of f dx for a Variable Mesh

becomes

i-2 i-2
hf + Elh f a.+kh f h~g

a=l 1,,ga_

+ hh 2f i- + bth 2fb + h fj+ 1  - + h 2 b+ (6-1)

+ jh fj+ + h 3 hf C 1h3 fN+1l h3E g

Eq (6-1) is the analog to Eq (3-34). If the mesh spacing

h.i (i = 1,2,3) is constant, Eq (6-1) reduces to Eq (3-34).

To numerically integrate each separate variable mesh problem

( could take a lot of work, except for a simplification evident
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in Eq (6-1). Each bracketed ({0) set of terms has the same

construction as the others, except for the different mesh

size and end points. It becomes fairly simple to program this

repetitious pattern. The end result is the construction of

the eigenvalue matrices for each segment of uniform mesh size.

These eigenvalue matrices correspond to the ones described by

equation (3-45). However, whereas the matrices generated by

Eq (3-46) were global - describing the entire beam, the matri-

ces built by a segment of constant mesh size h. are 'local'

- corresponding to only that segment. To produce the required

global matrix equation, the local matrices must be added for

each segment of constant mesh size. For the beam in Figure

32 , there are three segments of constant mesh size. There-

fore, three local eigenvalue matrices are produced correspond-

ing to the bracketed terms in Eq (6-1). These matrices are

added together, making sure the nodes overlap correctly, pro-

ducing a global matrix equation of the same form as Eq (3-46).

This process is similar to the construction of a global stiff-

ness matrix in finite elements, in which segments of a beam

add their local stiffness matrices together to form a global

matrix. The local matrices developed here depend upon stiff-

ness, inertia, and the displacements at each node, as well

as the mesh size.

Because various mesh sizes are used in the beam, diffi-

culties arise. Eq (6-1) demonstrates the need to define

fi-l' the combination of derivatives at a node where the mesh

changes.
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This expression used a full-station central difference which

was derived using a constant mesh size. But Figure 32 shows

that fi-1 has mesh sizes h and h on either side of node (i-1).1 2

The central difference expressions created for the second de-

rivative in Section III are of no use at a node separating

two different mesh sizes.

Using a technique similar to the one used in Section III,

a finite difference expression for the second derivative is

calculated in Appendix B. At a mesh discontinuity node, this

expression is used instead of the second derivative shown in

Eq (6-2). The first order derivatives do not have this problem

because their reference points are between two nodes, where

the mesh does not change size. With the appropriate nodal

expressions used, the eigenvalue matrix is calculated in the

same manner as in Eq (3-46).

The mesh discontinuities introduce one more unfavorable

aspect to the problem. Previously, in Eq (3-34), the mesh

size h was factored out of the eigenvalue equation because it

was constant and appeared on both sides of the equation. With

the variable mesh, the mesh size for each segment hi must be

retained in the problem. Of greater significance is the need

to multiply each term of the A matrix of Eq (3-46) by i/h

where hi is the equivalent mesh corresponding to each segment

of the beam. For a constant mesh size, the equivalent mesh h
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could be factored outside the A and B matrices in Eq (4-1)

and (4-2). Doing so permitted solving the eigenvalue matrix

for k, Eq (4-3), then varying A to obtain Pcr* Because h is

not constant throughout the beam, neither is h. The equivalent

mesh term is now brought within the matrices of Eq (3-46), and

with it goes the ability to vary A after the eigenvalue matrix

problem is solved. The equivalent mesh sizes cannot be ex-

pressed as ratios of one another, in an effort to retain the

variation in A external to the matrix solution, because the

ratios themselves depend upon X. The mesh sizes hi could be

scaled this way, but that is of no significant use.

The use of a variable mesh requires that the wavelength

parameter be specified before solving the eigenvalue equation.

The eigenvalue returned is the buckling load and not k in

Eq (4-3), which simplified solving problems with a uniform

mesh. Because of this, a Pcr vs X curve cannot be generated

with only one solution of the matrix equation. The variable

mesh approach requires constructing and solving the matrix

equation each time a point on the buckling load curve is de-

sired. Before, the buckling load curves in Sections IV and V

required one matrix solution. Now, twenty solutions may be

needed to produce the same curve. The increase in time. and

cost makes the variable mesh approach appear unusable right

away. Only for a better range of accuracy than is available

with an equal number of nodes in a uniform mesh can the tech-

nique hope to be effective.
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Test Results

To answer the question just posed, whether variable

meshes are more accurate than uniform meshes for an equal

number of nodes, beams from Section V were reanalyzed. These

beams have a varying moment of inertia, providing the best

test of preferentially grouped nodes.

The first beam tested appears in Figure 33.

/PI I2=1.. _ P

L

Fig 33. First Variable Mesh Example

2
The known exact solution is P cr= .366875 EI 2/L2 , occurring

at X = 1.61 for nine or 19 nodes uniformly spaced. The number

of nodes to be used for the variable mesh is nine. Nine nodes

provides a convenient mesh size (.lL) and places a node at the

discontinuity. Because the discontinuity at x/L = .2 is the

region of significance, more nodes will be grouped around it.

There will be two uses made with the variable mesh, one with

three nodes near the discontinuity and one with five nodes.

The neshes will be used to generate the buckling load curve

Pcr vs X (by multiple computer runs) which can be compared to
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the curve for nine nodes uniformly generated.

The first variable mesh tested, (mesh A), consists of

three nodes clustered more closely around the discontinuity

than is available with the uniform mesh. The nodal arrange-

ment is shown in Figure 34. The mesh size around the dis-

continuity, h , was chosen as one-half the uniform mesh size2

of .L. This corresponds to modeling the region near the dis-

continuity with a 19 node mesh, which would provide a mesh of

.05L.

h =.075L

h2=.05 L
0 ••h

3=. 125L

Segments

Fig 34. Discontinuous Beam With Variable Mesh A

The six remaining nodes (nine minus three) are distribut-

ed by the percentage of remaining beam. This results in mesh

sizes of h = .075L and h = .125L. With the first variableI 8

mesh in place, the buckling load was calculated for 20 values

of the wavelength parameter (.1 to 2.0)

A second mesh (B) was built using five nodes about the

discontinuity, also with mesh size h = .05L. The remaining2

four nodes are distributed to create mesh sizes h = .10 and
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h = .14, shown in Figure 35.3

h= .1OL

h2=05L

h3 = 1 4L

Segments

Fig 35. Discontinuous Beam With Variable Mesh B

A curve of buckling load vs X is generated by multiple solu-

tions of the eigenvalue equation.

The curves obtained for meshes A and B are displayed

with the nine node uniform mesh curve in Figure 37. At

A = 1.6, the uniform mesh provides a solution of Pcr =

.36688EI /L2 which is in error by only .0014% of the known

solution. The variable meshes A and B on the other hand have

solutions of .36720 and .36753, respectively. The errors for

the variable meshes are .089% and .179%, much larger than for

the uniform mesh solution. In fact, figure 37 shows that for

all X < 1.6, the uniform solution is more accurate than either

variable mesh solutions. Likewise, three nodes around the

discontinuity are better than five. For the range A > 1.6,

there are small intervals in which each variable mesh solution

is more accurate than the uniform solution. Not because of

the better quality of the mesh, but because they fail to match
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the uniform curve. Mesh A arrives at the exact solution at

L . = 1.73 and mesh B at X = 1.78. During the interval

1.7 < X < 1.9, the two meshes are more accurate. But this

accuracy quickly disappears and soon the uniform solution is

best again.

As the wavelength parameter grows very large, the uniform

solution approaches the conventional solution. Unfortunately,

the variable mesh solutions pass right through this uniform

mesh limit, possibly reaching a limit which is worse than that

attained with the conventional finite difference approach.

A final drawback is the failure of the variable mesh to

accurately predict the known buckling load. If two good uni-

form meshes are used, the intersection of the buckling curves

is the buckling load. This method was found highly useful in

the last section. The intersection of meshes A and B occurs

at X = 1.9 producing a solution of Pcr = .36656EI /L2 , lower
2

than the known solution.

For this beam, changing from a uniform to a variable

mesh produced results inadequate to justify using a variable

mesh.

The beam in Figure 33 was remodeled to see if shrinking

the mesh size around the discontinuity had any effect. The

first set of meshes used a mesh size in the segment enclosing

the discontinuity of h = .05L. A second set of meshes with2

h - .025L were constructed, with the same type of mesh struc-2

ture used as before, i.e. first three and then five nodes

around the discontinuity. The remaining nodes are then
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I! distributed according to the length of the remaining beam seg-

4 ments. The meshes are similar to the first set, but are more

tightly packed at the discontinuity and more loosely packed

away from the inertia step change. For three nodes around the

step, the mesh sizes are h =.0875L, h =.025L, and h = .12917L.1 2 3

This is the A mesh. The B mesh, with 5 nodes about the dis-

continuity, has mesh sizes h =.075L, h =.025L, and h =.1875L.1 2 3

Checking the buckling loads at A=1.6 (which is approximately the

optimal wavelength for the uniform case of nine nodes) produces:

Mesh A Pcr = .36712 Error = .067%

Mesh B Pcr= .36775 Error = .239%

The buckling load curves are plotted in Figure 38.

Comparing these results with the A and B meshes from set

one produces some interesting results. For three nodes about

the discontinuity, the denser mesh of the second set is closer

to the uniform solution for all X. However, five nodes about

the discontinuity favors the looser mesh of the first set.

Possibly there is a size for the mesh outside of the discontin-

uity above which the solution deteriorates. For the three node

sets, mesh set two had higher mesh size but better packing

around the discontinuity. Therefore it may not have crossed

the limit on mesh size away from the step change and would

then produce better results. On the other hand, with the five

node examples, mesh set two had better packing around the dis-

continuity but much poorer meshes in other parts of the beam

than did the first case.

( Using more and more of the available nodes to model the
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discontinuity leaves fewer nodes to model the remaining beam.

This is the reason for the poor performance of the variable

mesh. The uniform mesh does a better job of modeling the

outer beam segments while doing an adequate job of modeling

the discontinuity. A point to remember is that the disconti-

nuity needs a node at that position. Nodes on either side

may create too high an inertia gradient, thereby preventing

the buckling curve from passing through the critical buckling

load.

Further examples of the variable mesh were examined.

The beam in Figure 36 was examined using three and five nodes

around the discontinuity, meshes A and B respectively.

1/ 12 =1 .0 II=.5 P

L

Fig 36. Discontinuous Beam P cr= 2.067EI /L
2

Once more, the uniform nine node solution was superior

for all values of X except that small range where the variable

mesh curves pass through the known solution. The curves for

Figure 36 are shown in Figure 39. The mesh sizes used were

( h - .1125, h = .05, h = .1125 (Mesh A) and h = .133,
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h = .05, h .1333 (Mesh B).
2 3

Final checks were made using the beams with exponentially-

and sinusoidally-varying inertia from the previous section.

For each beam, three nodes were grouped about the center X =

.5L. It is at the center that the inertia is maximum. Errors

were checked for two values of A: A = 1.0 and 1.8. The re-

sults are in Table 6-I. These spot checks reveal the same

pattern as was previously shown. Namely, that a variable

mesh produces poorer results than a uniform mesh with the

same number of nodes. The buckling load curves for these two

beams are available in Figure 40 and Figure 41.

TABLE II

Nine Internal Nodes

Sinusoid Exponential

X = 1.0 A = 1.8 A= 1.0 A = 1.8
Uniform Mesh .017% -.551% .449% -.122%
Variable Mesh .257% -.663% .744% -.141%

Summary

For an equal number of nodes, a uniform mesh is generally

much more accurate than a variable mesh. The only place where

the variable mesh is more accurate is the small A range where

the buckling curve passes through the known solution.

The variable mesh requires the buckling wavelength

parameter to be input before a buckling load can be returned.

This is different from the uniform mesh which calculates a

buckling curve based on only one eigenvalue matrix solution.
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Therefore, plotting a variable mesh buckling curve requires

as many matrix solutions as points on the curve, an extremely

costly method. In addition, the intersection of two variable

mesh buckling curves does not yield the correct buckling load,

whereas two uniform mesh curves do. Since the aim is to find

the buckling load of a beam, it is best to plot two uniform

mesh curves and find their intersection. This costs as much

as finding two points on one variable mesh curve. If all

that is desired is a Pcr for a choice of A, the uniform mesh

will provide a much better solution in almost all cases. The

exception occurs if A is chosen near the optimal X for the

variable mesh. But the uniform mesh is very close to the

same solution, so no real improvement in accuracy occurs.

For any other A, a uniform mesh can provide a large accuracy

improvement. In fact, for very large X, the variable mesh

may be even poorer than a conventional finite difference

solution.
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Fig 37. Uniform. and variable mesh curves for a dis-

continuous beam, 11/12 = .1, a/L -. 2, N = 9.
Variable mesh 1 clusters 3 nodes around the
discontinuity, mesh 2 clusters 5. h2 =.05L
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Fig 38. Uniform and variable mesh curves for a dis-
continuous beam, 11/12 = .1, a/L = .2, N = 9.
Variable mesh 1 clusters 3 nodes around the
discontinuity, mesh 2 clusters 5. h2 = .025L

94



CD

Ia

C4 LEFT B30UHORRYs CLAMPEO
RIGHT BOUNDARY, FREE
VARIABLE MESH

C1 9 UNIFORM MESH SOLK

C VARIABLE M1ESH I

_ 0 VARIABLE MESH 2
- -EXACT SOLUTIOR

C)-

0

SI

1 I

0-

.A

CD_

C8;
0 ' '1 5 I I

0C)O0 2.20 2.40 2.50 3.80 2.00

LARMBOR

Fig 39. Uniform and variable mesh curves for a dis-
continuous beam, 11/12 = .5, a/L = .5, N = 9.
Variable mesh 1 clusters 3 nodes around the
discontinuity, mesh 2 clusters 5. h2 = .05L
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VII. Extension to Composite Materials

Introduction

Throughout the previous sections, attention was given to

varying the geometrical properties of the beam. No attention

was given to the material itself. Material properties were

assumed isotropic, with the result that the beam stiffness E

was constant. However, the material stiffness was included

as a possible function of distance along the beam. Stiffness,

in c .mbination with the inertia, form a product known as the

flexural rigidity EI. By keeping E within the integration of

the virtual work equation, Eq (3-30), the flexural rigidity

can be considered a function of X also. The importance of

this concept will be discussed shortly in conjuncticn with

composite materials.

Composite materials consist of two or more constituent

materials bonded together so that the gross material propert-

ies are superior to the constituents. Desirable properties

(high strength, high stiffness, low weight) are maintained

while undesirable properties are suppressed. By selecting

the proper materials and combining them in an efficient

geometrical arrangement, the desired gross properties can be

achieved (35).

Because composite materials represent a way for the

(engineer to design structural elements to certain specifications
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and still have control over other properties in the element,

a method of modeling the composite beam will be developed in

this section.

Theory

A composite beam is somewhat different from the isotropic

beams used in the previous sections. To begin with, a composite

beam can be formed by laying-up thin layers of material, one on

top of the other. A layer of the beam, called a lamina, gener-

ally has fibers embedded within a matrix. The fibers provide

most of the material strength, with the matrix serving to hold

the fibers in place. As a lamina is layed-up, the fibers may

or may not line up with the beam's principal axis. Figure 42

demonstrates fibers at an angle e to the beam's X-axis. The

combination of layers of material with different properties

and orientations from lamina to lamina requires a new model

of the beam.

To model a composite beam, two approaches are available:

1) Laminated beam approach

2) Laminated plate approach

Although the second method is not used in this analysis, it

is worth discussing briefly.

Laminated Plate Approach

Much work has been done in conjunction with buckling of

composite plates (28,33-36). To apply the method to a beam,

a plate can be made very long and narrow. Two opposite edges

of the plate are free while the other two are held in place.
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This approximates the boundary conditions on the beam. If

t4 the free edges are perpendicular to the y-axis, there will

be no moment M at these edges. Because the plate is narrow,y

My = 0 is assumed for the entire width. Also, the line load

along the plate's x-axis Nx is assumed constant.

The produce Nx • b, where b is the plate width, approx-

imates the axial load P upon a beam.

If only Mx and Nx are applied to this narrow plate, a

beam loaded axially is now approximated. Using the equations

relating moment, curvature, and in-plane loading available

in composite textbooks (30), an expression for the moment can

be derived

M 1 d2w B1
x D' Tx2  D1 x  (7-1)

The coefficients D' abd B' are the bending and coupling
11 11

stiffnesses for a composite laminate. If a beam of unit width

is assumed, Nx = P. For simplicity, the laminated beam is

assumed symmetric about the midsection. This simplification

results in the coupling stiffness B' being set equal to zero.

In addition, the bending stiffness reduces to D , which is
11

easily determined once the lay-up of the beam is defined. The

moment equation has been reduced to a result which is directly

substituted into the computer program for this thesis
d2w

M =D -d- (7-2)1 dx2

D can be considered as an equivalent flexural rigidity ET.11

A further derivation is available in Appendix D.
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*Results

Very few results for the buckling load of a composite

column are available in literature. Most work has been done

in the area of plate buckling.

Calcote (28) does provide a simple theoretical solution

for the buckling load of a pinned-pinned beam.

Ncr (D11  W- - (7-3)
11

The buckling stress Ncr is expressed as load/width. For a

beam of width 1.0, the total buckling load Pcr = Ncr"

Dietz derives a similar expression for the buckling load

of a uniform composite beam of width 1.0 (27). If a beam has

plies that are layed-up symmetrically about the mid-section,

it can be shown that Bi ? 0 in Eq (7-1). Dietz demonstrates

that for such a symmetrically laminated beam,

Pcr = 7 2 /L, 2  (7-4)

The (L')2 is the reduced length of the beam, the distance

between two consecutive inflection points of the deflected

mode shape. L' has the same meaning as X did for a simpleopt

uniform beam. The optimal wavelength for simple beams was

found to correspond to half the buckled mode's wavelength,

which corresponds to Dietz's L'. Therefore, since X is known

(Table II ) for simple cases, Eq (7-4) can be used. To ana-

lyze simple composite beams, the only change in solving the

eigenvalue problem is to replace EI by -Y or D, 1(if symmetric).

Therefore, the results of this section are mostly a check on

calculating material properties.
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As an example, a composite beam was made out of 20 plies

lip of Boron-epoxy all oriented at 00. Material properties were

obtained from Reference 37. Because the plies are symmetric,

the buckling load for a pinned-pinned beam (L' = 1) from Eq

(7-4) is

P = 7584.43/L 2  (ibs)cr

for a D. = 768.468 in-lbs. From a buckling curve, this load

is returned for a X = 1.0 (as expected for a pinned-pinned

beam).

If the plies are all oriented at 900 to the beam's x-

axis, weaker properties are presented towards the axial load.

One would expect a lower buckling load because a boron-epoxy

lamina is nine time less stiff at 900 than at 00. The fibers

V0 are not longitudinally aligned. At X = 1.0, a buckling load

of 1028.6/L 2 (lbs) is returned, matching the expected solution

from Eq (7-3) or Eq (7-4).

Intermixing 00 and 900 plies returns a buckling load be-

tween the two cases already looked at.

The buckling load, determined by knowing X or find-opt

ing the intersection of buckling load curves, is not the best

answer. Results in this section used a laminated beam approach

which assumed a = 0, good only for orientations near 00 and
y

900. Results for other orientations may not be as good.

Also, the effect of the shear modulus G has been ignored

throughout this thesis in order to simplify the problem.

Brunelle (36) shows that the buckling load for a pinned-pinned

uniform beam is
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Pc =E! 2  [ + (!1) 2 E](75

where h is the beam height. In this thesis E/G was assumed

zero, a reasonable assumption for isotropic material. For

E/G = 0, Eq (7-5) returns the solution discussed in Section

IV. A composite beam has a much higher E/G ratio than a

solid metal column. For the boron-epoxy beam with all layers

at 00, the ratio E/G is about 40. To accomodate the trans-

verse shearing modulus G, a correction factor is suggested.

(28,33) which yields the buckling load for a pinned-pinned

beam as

Pcr = I2 (l + l2r Er / (7-6)

A factor depending on the cross-section, n, is included as

well at the radius of gyration r. Therefore, the buckling

load returned by the methods of this thesis are going to be

higher than they actually are.

In addition to the problems just mentioned, there are

many others. The glue holding layers of the beam can fail

leading to gaps in the beam. Individual fibers within a

lamina can buckle on their own or even fail. The entire beam

may fail before buckling occurs. The solution method used

in this thesis does give a useful first try at the buckling

load of a composite column though.

Summary

An approach was examined with which a composite beam

4? can be modeled. The laminated beam model was chosen. This
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model has the advantage of direct substitution of EI for EI

of an isotropic beam. Therefore, isotropic beam results are

usable for composites. The solutions obtained matched the

predicted results, as expected, because no real changes are

made to the approach of Section III. Results will tend to

be off from the actual solutions because of the laminated

beam approach and the effect of the shear modulus G. How-

ever, the solutions achieved can be useful as a first approx-

imation with which optimum orientations and geometries can

be investigated.

1
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V

VIII. Conclusions

This thesis investigated the results of using a trigo-

nometric finite difference approach to solve the virtual work

equation for the critical buckling load. When possible, the

conventional finite difference solution was examined. Vari-

ous values of X were used in the trigonometric approach to

determine both the correct solution as well as the range over

which the trigonometric approach gave more accurate approxi-

mations than the conventional approach. A wide range of

boundary conditions was included in this investigation. In

addition, the effect of a variation in beam inertia and the

use of a variable mesh size were checked. Finally, the appli-

cation of the buckling load technique to a composite beam

was made.

Based upon a recommendation in Hannah's thesis, the

trigonometric approach was applied to the virtual work equa-

tion in order that the critical buckling load could be cal-

culated. By using the trigonometric finite differences, the

buckling load became a function of A and the mesh size, as

well as E, I, and L. Application to simple uniform beams

provided a test of the technique. It was found for a large

range of X that the trigonometric approach provided more

accuracy than with conventional finite differences. Increas-

ing the number of nodes also increased solution accuracy.
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The optimum wavelength was found to equal half the buckled

k. wavelength, thereby pinpointing the location of P cr If the

buckled shape was not known ahead of time, X = 1.4 provided

a fairly accurate solution for all 10 boundary conditions.

In addition, eigenvectors'produced by the numerical technique

were found to match exactly with known mode shapes, as long

as a node was positioned at the point of maximum displacement.

The effect of variations in inertia, both continuous and

discontinuous, were examined. Beams with a larger middle

cross section, as in the case of the exponential and sinusoi-

dal variations, buckle at higher loads than their uniform

cousins. The optimal wavelength does not correspond to any

physical phenomena, such as the half-buckled wavelength. If

the minimum inertia is normalized to 1.0, the optimal wave-

length is larger than for the uniform beam. Normalizing the

maximum inertia to 1.0 produces an optimal wavelength less

than the uniform case. The difference between the uniform

and variable inertia beam wavelengths is proportional to the

size of the inertia increase. For the sinusoidal beam, the

inertia did not change very rapidly. Therefore the optimal

wavelength is only slightly larger than for the uniform beam.

The exponential beam had larger and more rapid changes in

inertia. The choice of Xopt should be larger than the uni-

form solution of 1.0.

A discontinuous beam was modeled with maximum inertia

as 1.0 in the thesis. Therefore, the optimal wavelength

should be somewhat lower than the uniform solution, because
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i i "
the variable beam is less stiff. This guideline is verified

4, by the examples checked.

For beams with changes in inertia, the most effective

buckling load curves were generated when a node was located

at the position of maximum inertia or a discontinuity in in-

ertia. By finding the intersection of two buckling load

curves with similar nodal arrangements (i.e., same points of

interest modeled), the buckling load and Xopt were establish-

ed. Failure to use similar nodal arrangements could lead to

a poor solution and sometimes no solution at all. The inter-

section technique is better than guessing at a wavelength

based upon inertia distribution, if greater accuracy is re-

quired.

The inertia at a discontinuity was modelled by a combina-

tion of inertias to either side of the discontinuity. This

effective inertia maintained continuity in both slope and

moment. However, below a certain value of effective inertia,

the critical buckling load can be reached. The optimal wave-

length will not be predictable with any accuracy though.

A variable mesh was tested in an effort to better model

regions near a discontinuity or other points of interest.

While the buckling curve is similar in form to the uniform

mesh curve, it is less desirable to use. The intersection

of variable mesh curves with each other or with a uniform

mesh curve occurred at lower buckling loads than the actual

solution. In addition, a variable mesh provided a larger

error in approximating Pcr' compared to a uniform mesh with
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an equal number of nodes, for most wavelengths. Only in a

small wavelength range will a variable mesh be better. This

could be useful to apply, though, if a uniform mesh cannot

, model all points of interest. Finally, as more nodes are

packed near a discontinuity, the solution accuracy worsens.

In the last section of the thesis, a composite beam was

analyzed using the laminated narrow plate approach. The

Sapproach permits the direct substitution of an equivalent flex-
ural rigidity in place of the product EI. The thesis then

treats the composite as an isotropic beam with the ability to

change its flexural rigidity at each section. The effects of

creating a beam out of composites does not directly enter the

buckling load solution. Instead, the equivalent flexural

rigidity is determined by using the composite properties of

the beam. The direct substitution mentioned above permits

the composite beam to be handled as easily as an isotropic

beam. Also, the assumption of no shear effects by ignoring

the shear modulus G produces a critical buckling load higher

than in actuality. The composite beam approach does provide

a useful first analysis of buckling which can be extended to

discontinuous and other types of composite beams in the same

manner as for an isotropic beam.

The numerical technique applied in this thesis provided

accurate solutions for many types of problems. The main

point to be followed was to place nodes at positions of signi-

ficance along the beam. The intersection of two buckling

load curves following this procedure provided the buckling
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load and optimal wavelength for the truncated Fourier series.

For a wide range of wavelengths, the trigonometric solutions

are superior to those returned by conventional finite differ-

ences. If the intersection of buckling load curves is not

used to choose a wavelength, the 10 known uniform solutions

can act as guidelines in doing so. Increasing or decreasing

the wavelength from the uniform optimal case will provide a

fairly good answer. The amount of increase or decrease varies

with the changes in inertia throughout the beam. Variable

meshes are not of much use in determining the critical buck-

ling load, unless a uniform mesh cannot be chosen which

models all the points of interest. In this case a variable

mesh may be useful for some part of the wavelength range.

Finally, composites can be modeled by a simple change from

EI to the equivalent flexural rigidity, based upon the

composite properties.
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APPENDIX A

Derivation of the Virtual Work Equation

An arbitrary element of the beam acted upon by the

axial load P is shown in figure Al.

du= E dx

7( /
dy

dx _I

Fig Al. Beam Element Under Axial Loading

The stress produced on the element face is equal to

the load divided by the area, a = P/dzdy. The total strain

energy in the beam is approximated by

U = f a dx dy dz (A-1)
V

From simple beam theory, a = cE, providing the simplification

a2

U 1 dx dy dz (A-2)
V



j

Also from beam theory, the stress and moment are related by

a = My/I and the inertia I = f y2dy dz. Using these defini-
A

tions, the strain energy of the beam reduces to

U = dx (A-3)

The moment in the beam can be expressed in terms of the de-

flection as M = EIw". The strain energy reduces further to

the familiar form

u = (A-4)

The internal virtual work is the variation of strain energy,

expressed as

6U = fEI d 2w d2 w dx (A-5)

J dx2 dx2  d
In addition to the internal work, external work is produced

by the axial load as it moves through the displacement du.

The external work We is

dW = - P du (A-6)
e

The displacement du needs to be expressed in terms of the

vertical displacement w before the external work expression

is useful. Figure A2 illustrates a segment of the deflected

beam segment AB' compared with the undisplaced segment AB.

An expression for AB' is

ABI= dx) 2- ;-dx II(A-7)

This expression can be approximated, through the use of the

binomial expansion, as

AB' M dxE - ()w (A-8)
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dx

w + A-dxdx

I W
A B'

Fig A2. Deflected Beam Segment Shape

The displacement du equals the segment B'B, which in turn

equals /dw\2
AB - AB' =- K-)dx (A-9)

The total horizontal displacement of the beam is found by

integrating Equation 9 along the length of the beam

u= - dx A-10)

The total external work done by the axial load is found by

integrating Eq (A6) and substituting Eq (AlO)

f /dw 2
We = PJ )dx (A-II)

The virtual work of the external force is

rfdw d~w
6 = P d dx dx (A-12)

For equilibrium, the variation in total potential

energy w must be zero, where w = U - We. This gives the

virtual work equation

and 6U = 6We (A-13)

L -- L d6w
I E dw dw dx = P - dx (A-14)
0 dx2 dx 2  0dxdx
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APPENDIX B

Trigonometric Finite Difference Expression For the Second

Derivative of Deflection with Variable Mesh

When a uniform mesh was used, the expression for the

second derivative at node i was developed in Section III as

wi = i+l 2 W  + Wi- 1 ) (B-1)

This derivative applies only when the mesh size is constant

across the node. In Section VI, a variable mesh is used

where the second derivative is required at a discontinuity

in mesh size. A new expression is required for the second

derivative at the change in mesh size. Figure Bl shows the

mesh at the discontinuity, with mesh sizes h' and h".

h' he'

i-1 i i+1

Fig Bl. Variable Mesh Size Arrangement

The trigonometric expression used to generate finite

differences is
nIX-X r(-

W(X) W + +W! sin - + )W - cos. (B-2)
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A
Applying the above expression at X = X. + h" and X = X - h

11

yields the equations
W l h", 1W21 COh"X

i+= + sinhW i + 2 - cos- )W? (B-3)

X . nh' ,o i

W I = W -sin- Wi + ( cosh')Wt (B-4)

The needed expression for W" can be obtained with the follow-
1

ing procedure. Multiply Wi+ 1 by sin-- , multiply Wi_ 1 by

w'h'
sin- and add the two expressions. Using the expression

1- h 2 2'rh

1 - coS- 7= 2sin 2

reduces the second derivative to the desired result.
sin~h'W,, s (njh' h" hWW

LWi+j.-(s + sin-- )Wi + sin2h wi-

S27h2 s in--, sin + sin-- sin
7r IS 2A

Equation (B5)is the expression required for the second deriv-

ative at a node where the mesh changes. If h' = h" = h, Eq

(B5) reduces to Eq (BI) where

= 2X . _h

in T-sin-
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APPENDIX C

Effective Inertia at a Sudden Change in Cross-Section

For a beam with a discontinuity at node i, as shown

in Figure Cl,'what is the value of the inertia at that node?

,h

x x X x

i L  IR

Fig Cl. Step Change in Inertia

The inertia of the section left of the discontinuity is IL

and to the right, IR . iith these values and the deflection

curve in Figure C2, the effective inertia can be calculated.

The curves in Figure C2 are beam displacements from node

i - 1 to node i + 1. Curve ABC is the true deflection, with

displacements W 11, Wi, Wi+l, respectively. If curve A-B is

extended to point C', a fictitious displacement W f  is gen-

erated for node i + 1. Likewise, extending curve C-B to point

A' produces a fictitious displacement Wf at node i 1.( il
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w

C'

A' B -
i~jw

° i-I wi+ i

i-i i+1

Fig C2. Fictitious and Actual Node Displacements

For compatibility, the slope of the two curves at i

must be equal. Using a full-station central difference for

slope
1

W!- - w.i_) (C-i)

yields the continuity equation

W. Wf (C2+- 1 = Wi+l - Wi-(C-2)

Also, for equilibrium, the bending moments either side of

d2wnode i must be equal. The moment is described by M = EIjx-r-.

Using a full-station central difference to equate moments

produces
EIL

Mi  h2 if+-2Wi + Wi I )  (C-3)

EIR f
Mi  -h(Wi-2Wi + Wl C-4)

Expressing Wi-1 in terms of W! from Eq (C2) and inserting0i+l
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into Eq (C3) and Eq (C4) produces two equations for M. in
1

f
terms of Wf.~i Eliminating the fictitious displacement from

both equations produces
2EILIR

M i =h2(i L + IR [wi+ 1  2Wi + WiA (C-5)
h(L 'R'

The general form for the moment at node i is
Elef f1

M 2 [Wi+l - 2Wi + Wil] (C-6)

By comparing the two moment equations, the effective inertia

at a discontinuity is

2LIR C-7)
eff L + IR
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APPENDIX D

Flexural Rigidity of a Composite Beam

The laminated beam approach is used to model the flex-

ural rigidity ET of a composite beam.

From this approach

i i(D-1
z= = ayz = y= 0 (D-1)

and

ai (D-2)

The superscript i is the layer number for a ply in the com-

posite. The assumptions in Eq (Dl) yield the stress equation

(D2). Stress in each layer is modeled by Hookes' Law. The

strain c can be expressed in terms of distance from the mid-x

section and the curvature as Z(d2w/dx2 ). Substituting into

Eq (D2) gives
i _ i. d2w(D)

0 x =Q 1 Z Tx- T (D-3)

The moment in a simple isotropic beam is given by the formula

d2w
M =EI d- (D-4)

For a composite beam, the moment is found by integrat-

ing the stress and its moment arm throughout the thickness.

t/2 i
M = b a f xZ dz (D-5)

-t/2

The composite beam is of constant width b and thickness t.
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Substituting for from Eq (D3) produces
S(b t/2 i 2 \d2w

M = f Q Z2dz -- (D-6)

-t/2 '' dx

, Comparing Eq (D4) and Eq (D6) shows that the same moment-

curvature behavior results for a composite beam if an equi-

valent flexural rigidity

t/2.
EI = b f Q iZ2dz (D-7)

-t/2 11

is substituted into Eq (D6). The moment equation becomes

_ d 2WM = EI (D-8)

Because the eigenvalue equation of this thesis was derived

using Eq (D4), a simple substitution of E for EI permits

modeling of composite beams.

Using this equation, Dietz (28) reduces the equivalent

flexural rigidity to the form

11

The values of D , B , A are dependent upon the thickness,
11 11 11

location, orientation, and material properties of each layer.

The equations describing Ph f' , and are available in

composite textbooks (30).
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