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Previous studies have shown that the Space Shuttle

Orbiter can achieve larger orbit inclination changes using

an aerodynamic turn than can be obtained using a rocket

motor burn. This analysis determines the angle of attack and

. " _

bank angle histories which maximize the change in inclin-
ation angle while satisfying final altitude and velocity ’
loss constraints. The angle of attack and bank angle are
modelled as polynomial functions of time with unknown

coefficients. The optimum values of the coefficients are
determined by a gradient optimization technique. Additionally, 1
the sensitivity of the change in inclination angle to changes ‘

in the orbit apogee altitude 1s examined. It is shown that

L

the Space Shuttle Orbiter can obtain higher inclination

e

s angle changes from orbits with higher apogee altitudes.

[
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USE OF AN AERODYNAMIC TURN TO
MAXIMIZE THE ORBIT INCLINATION

CHANGE FOR THE SPACE SHUTTLE CRBITER

I. Introduction

Background

When the Space Shuttle Orbiter becomes operational,
new spacecraft capabilitles will become available to space
mission planners. Not only is the orbiter reusable, but
for the first time mission planners will also have a
spacecraft with significant aercdynamic capabilities.
In certain regimes, the orbiter has a 1ift to drag ratio
near two. When operating in this regime, the shuttle has
the option of orienting the 1ift vector so that a change
in orbit inclination 1is now possible via an aerodynamic
turn rather than the conventional rocket motor burn method.
Wnat this offers the mission planner is a twofold capavility.
One, the orbiter can use the aercdynamic turn to increase
the number of maneuvers possible during the course of a
mission which would allow the servicing of more satellites.
Secondly, the shuttle may trade fuel for increased payload
at launch and stlll be able to accomplish a required
minimum number of orbital maneuvers using the aerodynamic
turn.

It 1is desirable to use the aerodynamic turn to achieve
an incliration change if the mansuver i1s more efficient
than the conventional rocket motor technique. The

aerodynamic turn 1s more efficient than the rocket burn




if one of the following two conditions are met: (1) either
the aerodynamic turn requires less velocity loss due to

air drag (Av) to achieve the same inclination change or

(2) more of an inclination change is available for the

same velocity loss when coﬁparing the aerodynamic turn

to the rocket burn.

If the aerodynamic turn is more efficient than the
rocket burn, the orbiter will have several new options.
First, the shuttle can use the aerodynamic turn to achieve
an inclination change and then use the rocket motor to
regain the velocity lost to aerodynamic drag. The end
result would be a larger orbit inclination change than would
be possible using only the rocket motor. Using this method, P
the =hnttle orbit would have the sameAshape, but a new
ineclination. Secondly, the shuttle could use both the
aerodynamic turn and the rocket motor to achieve a larger
inclination change than is possible by either method alone.
The resulting orbit would have not only a new inclination,

but a different shape. Obviously, many variations of these

two extremes are also available.

Previous research (Ref 5) shows that for perigee
altitudes of 85 km and lower, the aerodyﬁamic turn maneuver
does achieve the same inclination change for less Av
cost than the rocket motor burn. This earlier study on
3 the aerodynamic turn attempted to optimize the angle of

attack and bank angle control history which minimized

¢ the work done by air drag (av) while satisfying end conditions




that specified final altitude and orbit inclination change.
Because of this approach to the problem, the optimization
technique did not function properly and a non-optimum
approach to the efficiency of the aerocdynamic turn was
finally taken. The aerodynamic turn maneuver was found

to be more efficient than the rocket motor burn and the
maximum orbit inclination change obtained by the aerodynamic
turn using a constant angle of attack and bank angle
throughout the maneuver was .780. This earlier study
recommended that research be continued on the subject

with a restructured optimization problem and that the
aerodynamic turn maneuver be limited to 95 km and lower

perigee altitudes.

Problem Statement and Scope

This current investigation seeks, first, to find
another approach to the optimization problem so that the
difficulties encountered in the previous research (Ref 5:
49-50) are eliminated. If the problem can be successfully
restated so that optimization is possible, the maximum
orbit inclination change obtainable using the aerodynamic
turn maneuver is desired.

The aerodynamic turn optimization problem is therefore
restated as follows: Find the angle of attack and bank
angle histories which maximize inclination change while
satisfying end conditions that require returniag the
shuttle to a glven final altitude with a specified accept-

able velocity loss due to ailr drag.

3
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Because the shuttle must obey the appropriate equations
of motion during the aerodynamic turn maneuver, the max-
imization of inclination change is an optimal control problem.
While there are several ways to solve an optimal control
problem, the one chosen here is the Second-Order Control
Parameter technique (Ref 7). In this method the orbiter
controls are represented suboptimally as polynomial
furctions of time. The coefficients of the polynomials
are chosen to optimize the performance index (maximum
inclination change) and satisfy the end conditions (final
altitude and velocity). Higher order control polynomials
are investigated to determine their effect on inclination
change and what order controls are necessary to accurately
approximate the optimal controls. Additionally, a sensit-
ivity analysis is conducted on various apogee altitudes
to determine thelr effect on inclination change.

The remainder of this paper is arranged in the following
manner: Chapter II discusses the orbiter equations of
motion and the model atmosphere used in this study.
Explanations of the methods used tc generate coefficients
of 1ift and drag are also given. Chapter III covers the
optimization routine used, why it was selected and how it
is implemented. Chapter IV reports on how the initial
values of control coefficients and end conditions used in

the optimization routine are selected. Chapter V lists

the results and conclusions generated by this study.

R ——
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II. System Dynamics and Model Atmosphere

Background
The Space Shuttle Orbiter is a dynamic system and

must, therefore, obey Newton's laws of motion. Specifically,
Newton's second law relates the aerodynamic and gravitational
forces acting on the orbiter to the orbiter acceleration,
fF=ma. This relationship can be expressed as a set of
differential equations which describe the motion of the
shuttle as it passes through the atmosphere. B< “ore these
equations of motion can be derived, a coordinate reference

frame must be specified.

Coordinate Reference Frame

For this study, two coordinate reference frames
> > >

are specified. The first, an X, Y, Z frame is earth centered,
-> -

non-rotating, and inertial (Fig 1). The X, Y axes are
->

in the earth equitorial plane and Z is chosen to complete

a right-hand coordinate frame.
-> > >

The second frame is the Vrel’ M, L which is fixed

at the center of mass of the orbiter (Fig 1). The
-+

Vrel axis points into the relative wind and the angle
g

between the Vrel axis and the shuttle's longitudinal axis
_)

1s the orbiter angle of attack a. The M axis establishes

-
a local horizontal for the shuttle and L is chosen to

complete the right-hand coordinate frame. The angle
->

between the shuttle 1ift vector and the L axis establishes

the angle of bank ¢.

4
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Figure 1, Earth-orbiter system coordinate
frames
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The Orbiter's aerodynamic forces are readily

expressed in
are

-

LIFT

->
DRAG
->
where |LIFT|
of the 1lift a

are unit vect

terms of the body fixed frame.

>

4'LIFT| (cos¢L - sineM)

N
| DRAG | Viel

>

These forces

and |DRAG| represent the scalar magnitude

nd drag vector, respectively.
-> -> ->

ors of the Vr M, L frame.

el?

-~

A M, and L

rel’

The position
> -> ->

and veloclty of the orbiter expressed in terms of X, Y, Z

frame unit ve
—> ~
r = XI
-) LN
v = XI

where X, Y, Z

The Vrel’

->

Vrel

¢t"+ =¥

ctors is

+ Y] + 7K

+ YT + ZK

s X, Y, and Z are the system state variables.

M, L vectors canbe expressed as

> > >
v + wxr
> >
\'" Xr.
rel

>

Mxvrel

where w = earth angular velocity. Substitution of the expressions

->

-> -

for r and v into these equations allows V

-> ->

M, and L to be

rel’
expressed 1n terms of the state variables and the inertial

frame unit vectors. This information allows the generation

of a transformation matrix T, which will convert forces !
expressed in terms of the body frame to forces expressed

in the inertial reference frame (Ref 5:16). :




Equations of Motion

In addition to 1ift and drag, there 1s also a gravity

force acting on the orbiter. The forces acting on the

shuttle expressed in the inertial frame are:
-> > £ > !

tF = GravityXYZ + LiftXYZ + DragXYZ

However, drag and 1lift forces are expressed in the body
frame and will have to be converted to the inertial frame
using the transformation matrix T. Therefore, the summaticn

of forces is rewritten as:

->
-> . >
IF = Gravityyy, * T(Ll?tv m) * T(Dragvr

)
rel ML

el
The aerodynamic forces listed above can be written

as three second-order differential equations (Ref 5:17).

These equations can be further reduced to six first-order
equations which become the shuttle equations of motion.

'é These equations of motion are listed below.

Letting wy = X
w2 =Y
= 7
v3
wu = X
w5 = %
w6 = 27

! W1 =Wy
| W2 = WS
W3 = W6




-(GM/r3)X + ( LIFT /M)T, - ( DRAG /M)T,

W, =
y

W = ~(GH/73)Y + ( LIFT /M)T, - ( DRAG /M)T,

g = —(GM/r3)Z + ( LIFT /M)T, - ( DRAG /M)T,

where Ti i =1 to 6 is the appropriate element of the

transformation matrix (Ref 5:18).

Assumptions

The equations of motion listed above are based on the

following assumptions:

{1) The earth is spherical.
(2) The earth is inertial.
(3) The crbiter is a point mass. All forces act
through this point which is the center of gravity.
(4) No aerodynamic sideslip occurs in the atmosphere.
(5) Atmospheric winds rotate with the earth.
It is possible to assume the earth is spherical because the
aerodynamic turn is initiated from an equitorial orbit.
Final state inclination is still nearly equitorial and
the non-spherical effects of the earth are neglibible.
The earth is treated as inertial since the time spent
in the atmosphere during the aerodynamic turn is quite short
(approximately 10 min) and the non-inertial effects of

the earth would not be a factor in this length of time.

It 1s reasonable to expect that a cocrdinated turn will

be flown during the aerodynamic maneuver so that no moments




will be generated and the orbiter can be approximated

as a point source. Similarly, the maneuver will be flown
so that the relative velocity vector 1s nearly along the
longitudinal axls of the orbiter in order to keep the

heat generated by hypersonic speeds through the atmosphere
on the main heat-protective surfaces. Heat generated

on the side and top of the orbiter will be kept to a
minimum 1f sideslip is minimized. Finally, the upper
atmosphere winds are much too complex to model exactly

in a study of this size. However, to treat the winds at
altitude as inertial would be too much of a simplification.
Accordingly, the main effect of the winds on the shuttle
orbit are modelled by assuming the winds to rotate with

the earth (Ref 5:12-13).

Lift and Drag Computations

-> ->
The expressions used to generate Lift and Drag

have already been listed in terms of the reference frames.
Restated in terms of the state variables, the 1ift and

drag equations are

LIFT %p(X,Y,Z)CL(X,Y,Z,X,Y,Z)Viel(X,Y,Z,X,Y,Z)S

DRAG %p(X,Y,Z)CD(X,Y,Z,X,Y,Z)Viel(X,Y,Z,X,Y,Z)S

The reference surface area (S) of the orbiter is a known
constant value and the relative veloclty can readily be
obtained from integration of the equations of motion.

However, the values for the atmospheric density (p)




and the coefficients of 1lift and drag (CL and CD) will
have to be calculated. 1

The orbiter coefficients of 1ift and drag are listed

|
in Tables I - IV (Ref 6). These coefficients are a i
functions of angle of attack (alpha) and the viscous
parameter (VBAR). While angle of attack is directly 1

obtainable, because it will be shown to be a control

variable, the VBAR term 1is a function of the orbiter state. ;

' 1
VBAR = M_(C_/Re)”

; where M_ = freestream mach number ‘?
C.(T,M_ ) = proportionality factor for linear-viscosity

| temperature relationship

Re(p,Vrel,S,Kinetic Viscosity) = Freestream Reynolds

Number

From the equations listed for Lift, Drag, and VBAR it is
apparent that a means of determining the state of the !

atmosphere 1s needed.

Model Atmosphere

The model chosen to represent the atmosphere in this

study is the 1962 Standard Atmosphere (Ref 11). While

a more current version of this model does exist, the

1962 data is used because the Space Shuttle Orbiter Lift

and Drag coefficients are based on the 1962 model.




The simplifying assumption that geopotential altitude 1is
equal to geometric altitude 1s also used here and results
in a five to seven percent deviation from the 1962
Standard Atmosphere Model (Ref 5:10). This assumption
allows the variation of gravitational acceleration with
altitude to be neglected.

With this model, the density, temperature, molecular
weight, and viscosity of the atmosphere at any altitude
out to 700 km is directly available. These atmospheric

parameters are used in the computation of VBAR (Ref 5:22).

With VBAR calculated and the angle of attack known,

orbiter 1ift and drag coefficient tables can

be entered and CL and Cy can be determined (Tables I - IV),.
A bivariate interpolation scheme is used to determine
the values for CL and CD when VBAR and angle of attack
are between the tabulated values listed in these tables.
For values of VBAR between .0l and .08 the C;, and
CD values in Tables I -~ IV were determined experimentally,
while for VBAR values between .08 and 5.2, CL and CD
values were determined analytically via the Lockheed
Bridging Formula (Appendix A). This formula bridges the
transition between free-molecular flow and continum flow

(Ref 5:23).

12
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Summary

The orbiter system dynamics are represented by differ-
entlal equations which form the equations of motion. Inte-
gration of the equations of motlon along the orbit allows
the determination of the shuttle state at each integration
time step. With the state of the shuttle known, the model
atmosphere is used to determine the atmospheric parameters
required for calculation of orbiter 1lift and drag. Lift
and drag values are then used in generating an updated
orbiter state.

The orbiter state is expressed in ferms of eight
variables; X, Y, Z, k, %, i, 4, a. Since the equations of
motion are six first-order differential equations and
there are eight unknowns, two of the unknown values
are controlled. For this study, angle of attack (a) and
angle of bank (¢) are the controlled values. The resulting
solutior of the system state is then checked and changes
are made to the controlled values which result in an improved
state. This process 1is repeated through an coptimization

routine which generates final values for the two variables

that result in the "best" system state.

17 i‘




ITI. Optimization Technique

Background
The purpose of this thesis is to find the angle of

attack and bank angle histories which obtain the maximum

orblt inclination change during an aerodynamic turn maneuver.

Since the initial state of the orbiter and functions of

the final staté are prescribed, and the orbiter is constrained
by the equations of motion, this problem can be treated

as a classical optimal control problem where the goal 1s to
minimize the performance index, I. A description of the
elements of the optimal control problem as it applies to the

aerodynamic turn maneuver follows.

Optimal Control

In the aerodynamic turn maneuver the performance index
to be minimized is negative inclination change (-41i).
Therefore, the problem is a maximization problem. To calculate
the inclination change, the angular momentum vector c¢f the

-

final state (Hf) is compared to the angular momentum vector
.

of the initial state (Hi). These vectors are chosen since
they involve the complete orbiter state and are normal to
the orbit plane (Fig 2). The inclination change is obtained

-> ->
by determining the change in direction between Hf and Hi'

|
y l
| 4




<|

Figure 2. Initial and Final Angular
Momentun Vectors

19




Since F=rzxv
where r = orbiter position vector
vV = orbiter veloclty vector

the inner product of ﬁf and ﬁi gives the expression for the
change in inclination:

-> > > >
AL = cos-l (I}‘ X Vf) (Pf X 'Vf)

|;f X $f| ]Ff X st
where IF X 3[ is the scalar magnitude of the vector cross
product.

The initial position and velocity of the orbiter is
specified in terms of the state variables. The shuttle
proceeds from these initial conditions to a specified set
of end conditions while maximizing the inclination change.
The time required to complete this maneuver, tf, is
unspecified. For this problem the specified end conditions,
M, are altitude and velocity at tf. The final altitude
is to equal the initilal altitude and final velocity 1is to
equal initial velocify minus an acceptable velocity loss
due to air drag (Av). Since the orbiter is a dynamic
system, it 1s subject to orbit constraints which are the
equations of motion listed in Chapter II. Also, the shuttle
is subject to the control constraints that limit angle of

attack (20%<a < 50°) and bank angle (0° <¢ < 180°).

Suboptimal Control

The optimal control problem as outlined above is

reduced to a suboptimal control problem by approximating

20
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the control variables by a functional form which involves

a number of unknown parameters (Ref 8). Suboptimal control
is chosen in preference to optimal control because the
algorithm to solve the optimal control problem requires
controls to be specified as a function of time. The time
span of the aercdynamic turn could, therefore, generatc

large control vectors. In acddition, the values to be guessed

] in the optimal control algorithm do not have a physical signif-

icance. In the suboptimal approach, there is not only a very

small number of control coefficients to be guessed, but they also

have a physical relevence which makes the initial guesses
much easier to generate. For this analysis, angle of attack

and bank angle are

where b, and c¢. are the unknown parameters and Ci is the

i i
functional form. Chebyshev polynomials are chosen as the

functional form because they are orthogonal. This prevents
the matrices used by the optimization scheme from becoming
singular due to possible linear dependence of the polynomials.
To simplify the problem, the Chebyshev polynomials should
be defirnied over a constant interval. Through the use of

i Long's transformation, the free final time problenm is

transformed into a fixed final time problem. Long's '

21 :




transformation defines a non-dimensional tlime

T = t/t

where the range of 1 is [O,l]. The Chebyshev polynomial
may then be defined over the interval BL]J. The final time (tf)
is now another unknown parameter of the problem. Thus, the

vector of unknown parameters, a, is

—t

Since the problem is now treated suboptimally, one
objective is to select the correct number of controls,
m and n, that accurately approximate the optimal controls.
If the order of the control polynomials 1is too small,
the results will not accurately represent the optimal
controls. On the other hand, if too high an order control
polynomial 1is selected, the small gain in the performance
index will not warrant the large lncrease in computer time
required to obtain the converged solution. The order of
the control polynomial representing the angle of attack
need not necessarily equal the order of the control poly-

nomial representing the bank angle.

Second~-Order Parameter Optimization

The optimal control problem may now be restated as
a parameter optimization problem, where the performance
index, the end condition constraints, the control variable
inequality constraints, and the differential constraints

all depend on only the unknown parameters. The solution
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to this problem may be found by forming the augmented
performance index, F,

F(a,v) = I(a) + v'M(a)
where v 1s the vector of constant Lagrange multipliers.

The conditions to be satisfied by an extremal point are

Fz(a,v) = 0 and M(a) = 0.
The values of the parameters and the Lagrange multipliers
are now guessed. Unless the guess is the extremal value, it

will be observed that
T
Fa # 0 and M # 0.

In order to drive Fg and M to zero, these gquantities are then

linearized about the guessed values cf a and v, so that

GFT = F da + MTav and §M = M_da
a aa a a

where
a is a p x 1 vector of parameters

t

Fa is a 1 x p vector of 1% partial derivitives

Faa is a p x p matrix of 2nd partial derivitives
Ma is a m x p matrix of lSt partial derivitives

§() is the variation of () such that 6()=()new—()old

Since we desire (Fz or M)rlew = 0, the following relations

are valid

§FL = —PFL  and &M = -QM
a a

where Q and P are welghting factors which control the end

condition satisfaction and optimization, respectively.
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The expressions for da and 8 v can now be generatzsd so that

-1 T T
Sa —Faa(PFa + Ma 5 V)

_ -1,T,~-1 -1.T
§vs= (MaFaaMa) (-PMaFaaFa + QM).

Rather than guessing an initial value for Vv, it can

be computed using the gradient technique with Fa set

a
|
equal to the identity matrix and 8a set equal to zero; ‘
then |
- T,-1 T

v (MM )T ((Q/P)M-M I ).
If it is desired to use a gradient technique to compute
the changes in a, those changes are given by

da = -P(Fz) 1

Any reasonable value for the control coefficients can be
guessed as long as the guess conforms to the control
constraints. However, in the next chapter an approach

to guessing accurate values for the coefficlents will be

explained.




IV. Optimization Starting Values

Previous research (Ref 5) indicated the atmospheric
turn maneuver 1is profitable only at perigee altitudes of
85 km and below. Table V 1lists the orbit inclination
changes which resulted from using a 60° angle cf bank at

various perigee altitudes.
Table V

Inclination Changes Obtained From Previous Research

*
85 km 80 km 75 km 70 km
.22° .43° .55° .78°

¥ The 70 km perigee orbit uses a bank angle of 50°.

The bank angle of 60° was chosen initially since it

results in the most inclination change without allowing the
maneuver to become a total reentry that will not leave the
atmosphere.

Only perigee altitudes of 80 km are considered in this
study. This choice is made since inclination changes
achieved in an orbit with a perigee higher than 80 km are
extremely small and the viscous parameter, VBAR, was often
less than 0.01 at perigee altitudes of 75 km and less.

The orbiter 1ift and drag coefficient data available is

limited to a VBAR greater than or equal to 0.01.
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Orbit Selection

Once a perigee altitude 1is established, the selection
of an apogee altitude will allow the determination of the
orbital elements. Since the orbit used in the previous
study is not specified, thfee different orbits are used
here. A low apogee of 300 km, a medium apogee of 500 km and
a high apogee of 650 km are used. The high apogee is !
selected to remain below the hazard posed to manned flights
by the Van Allen radiation fields. All orbits are considered
initially to be direct equitorial.

The three orbits used in this study are initially at
a zero degree inclination and have an 80 km perigee. The
mean earth radius used for computations is 6378.135 km. The
Earth gravitational parameter (u) used for this study is
3.986012 x 105 km3/sec2. The following two-body relation-
ships are used to calculate the necessary orbital elements

for each of the three reference orbits and assume no air

drag by the atmosphere:

p
e =1 - 2
p = a(l—e2
v = (/%(1+ecosv))cosy
134
2m a3/2
TP = Vi
E=-'L
2a

The results of these calculations are listed in Table VI.
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Table VI

Reference Orbit Elements

ORBIT 80/300 80/500 80/650

e .0167675242 .0314734553 .0422460329

p 6566.293 km 6661.395 km | 6730.966 km
v: 7.6608 km/sec| 7.4920 km/sec| 7.3703 km/sec
TP 88.29 min 90.31 min 91.84 min

€ -30.344 -29.889 -29.556

¥ Velocity listed is at apogee (v=l8OO)
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Initial Position and Velocity Selection

There is enough information available now to initialize
the optimization routine with the position and velocity of
the orbiter at apogee and integrate the entire orbit.
However, it is assumed that significant orbit plane change
will occur only 1n atmosphere of a certain density. Plane
change above this altitude will be neglible. From a study
of the 1962 Standard Atmospheric model (Ref 11), an altitude
of 100 km above the earth's surface and below is assumed as
the level of sufficient density for measurable plane change.
The orbiter 1s inside the atmosphere, as defined here, for
approximately 10 minutes per corbit. It is therefore
desirable to pick a starting position and velocity for
each reference orbit that is Jjust above the 100 km altitude.
This will reduce the amount of computer time needed
each iteration by neglecting that portion of the orbtit
in which no appreciable plane change occurs. To
determine this starting position and velocity, the inte-
gration routine is run from apogee with angle of bank and
angle of attack set to zero and the time parameter set to
the period of the orbit. Integration by this method
gives the position and velocity vector for each time step

and from this a height above the Earth is easily calculated.

Integration of the orbit in this manner results in a perigee
one to two kilometers lower than that calculated using the
two-body problem assuming no air drag. These results are

still valid, however, since integration using angles of
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attack and bank not equal to zero results in a shuttle
perigee between 79 and 82 kilometers, depending on the
orbit.

From these integrations of the orbit, initial position
and velocity vectors are chosen. These vectors are listed
in Table VII . The position and velocity vectors become
the two constraints for the optimization routine. The
program 1s designed to return the shuttle to the starting
height on the other side of perigee and to the scalar
value of the starting velocity minus a specified, accept-

able velocity loss due to air drag.

Control Coefficient Selection

It is now necessary to initialize the optimization
routine with values for the time, angle of attack, and
angle of bank control parameters. The optimization routine
is designed with weighting factors that determine the
priority the routine places on either achieving the end
constraints or optimizing the plane change. Initially,
emphasis is placed in meeting the end constraints until 1
they are very close to the specified values. At that time,
the optimization weighting function, which has been kept

small, is slowly increased. In order to minimize the computer

time necessary to meet the end conditions, the control
parameters which get the final states closest to the end

conditions are chosen to be the initial guess.
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Table VII

Initial Position and Velocity in Inertial Frame*e

INITIAL POSITION

80/300 ~3103.9951 I 5724.3016 J
ORBIT 80/500 ~3238.5651 I 5680.0535 J
80/650 ~4606.8106 I 4636.5561 J
INITIAL VELOCITY
80/300 -6.8503 I -3.8470 J
ORBIT 80/500 -6.7306 I -4.0819 J
80/650 -5.7871 I -5.4225 J

* All position and velocity vectors are initially
equitorial and have no Kk components.
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To find the best starting parameters, over 150 inte-

gration runs were made for a single orbit with wvaricus angles
of attack and bank angle values. This allows a determina®ion
of how well various combinations of the cont:ol parameters
meet the constraints. A listing of the pertirent results
from these runs fcr the 80/300, 80/500, 80/650 orbits
is listed in Tables VIII,IX, and X respective.y.

The first value listed in Tables VIII, IX, and X.
is the difference between the starting and the final altitude
at the end of integration. A positive value means the
shuttle finished higher than the initial altitude. The
second value 1in the tables 1s the difference in initial
velocity loss for the maneuver. In this case, the allowable
velocity loss is 60 mps. Positive velocity values mean
the orbiter lost less than 60 mps during the orbit. A
negative value means the orbiter lost not only the 60 mps,
but alsc the additional listed velocity. The third value
in the tables is the inclination change that results from
those control parameters. With this data, the "best"
possible control parameters can be chosen that will
initially allow the cptimization routine tc not only come
closest to the desired end conditions, but also give the

largest possible inclination change.
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Table VIII

End Condition Miss Errors 80/300 Orbit

ANGLE CF ATTACK

20° 25° 30°
ALT MI30| =1.17 -7.13% -19.27
0° VEL FIL 113 .G04 607
A 3 0. G
ALT M3 -1.3% -7.53 -25.02
59 VEL 905 005 003
i 04 06 13
ANGLE ALT MIS3) -2.28 -8.47 -20.85
OF 10° VEL MIZS .008 .005 PRE
BANK I .10 .11 20
ALT MISSf{ -3.57 -10.21 -22.G1
15° VEL MISS .009 .005 003
Al .15 .17 .22
ALT M133) -5.656 -12.66 -26.04
20° VE L HMISS .010 .006 002
A .20 .24 28

Av = 60 mps
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Table IX

| End Condition Miss Errors 80/500 Orbit

ANGLE OF ATTACK

b SeniC ol S A et A
r>
r
o]
=
et

3
W
\J
-3
D
el
)
)
o
\®a]

20O 250 300
N -.011 -.016 -.018
S 0. 0 0.
ALT MISS 31.9 9.9 22.7
5% |veL MIss -.010 -.016 -.018
Al .03 .04 .04
ANGLE ALT MISS 31.4 29.1 21,9
OF 10°  [VEL miss -.019 -. 015 ~ 018
BANK Al .06 .07 .09
ALT MISS 31.0 27.1 19.5
' 15° JVEL MISS -.010 -.015 -.017
l Al .08 J11 .13
ALT MISS 30.2 26.6 18.0
20° | VEL MI3S -.009 —.014 ~.016
; Al 11 14 17

Av = 60 mps
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Table X

End Condition Miss Errors 8C/650 Crbit

ANGLE OF ATTACK

20 25° 30°
ALT MIsSs| 159.7 152.5 140.5
0° | VEL MISS -.1064 -.166 -.163
Al 0. 0. 0.
ALT MISS] 161.1 152.6 141.0
5° | VEL MIsS -. 164 ~.16€ ~.163
Al .03 .0 5
ANGLE ALT MISS| 161.1 153.2 135.5
OF 10° | VEL MISS -.164 -.105 ~.162
BANK Al 07 .09 190
ALT MISS| 157.8 149.7 136.3
15° | VEL MIsSS -.163 -.164 ~.161
AL 10 13 .15
ALT MISS| 15¢.6 147.6 134.3
20° | VEL MISS -.163 -.163 -.15¢
AL .14 17 20
Av 60 mps
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V. Results and Conclusions

Optimization Analysis

A second-order technique to generate updated control
coefficients 1s preferred to a gradient technique because
of faster convergence. In the suboptimal approach to the
aerodynamic turn maneuver that was outlined in Chapter III,
the second—ordér parameter method requires the computation
of the Faa matrix, a second derivative matrix, by numerical
means. The numerical approach to solving for Faa is chosen
over an analytical approach because it requires considerably
less computer time. However, numerical differentiation
does require perturbations in the guantities the derivative
i1s taken with respect to. For example, numerical computation
of Faa requires perturbation of the a's.

Early in the control parameter cptimization search,
problems were encountered with the second derivatives. The
values of the elements of the Faa matrix were found to
be changing erratically by a power of ten. Since the
size of the perturbations of the a's affect the behavior
of the Faa matrix, a parametric study using different size
perturbations was conducted to determine whether or not the

erratic behavior of the Faa matrix could be corrected.

After evaluating the effects of various size pertur-

bations on the Faa matrix, it was determined that continued
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efforts to optimize using the second-order parameter

method would fail to produce a sequence of control
histories which would ultimately converge. A switch

to the gradient technique was made at this time to
see 1if the optimization routine would move in a consistent
direction toward convergence.

While the gradient technique did continually move
toward an optimum control history and improve both the
end conditions and inclination change, it was very costly
in terms of computer time. The results listed in this
chapter required over 32000 CP seconds of computer time
to generate. In retrospect, it would have been faster in
both my time and computer time to use another second-order
method rather than continue with the gradient technique
for as long as was ultimately required for convergence.
Any additional research on the aerodynamic turn maneuver
should utilize a second-order method such as the Davidson-
Fletcher-Powell variable metric technique. If continued
use of a gradient method is desired, use of the Fletcher-
Reeves conjugate gradient technique would speed up convergence

time.

Apogee Analysis

Before deciding to concentrate this study on orbits
with an 80 km perigee a feasibility study of other orbits
was undertaken. The results of Harding's research 1indi-
cated orbits between 70 and 85 km perigees were profitable

for the aerodynamic turn maneuver. However, initial runs
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at 70 to 75 km perigee altitudes ran into difficulty
when the viscous parameter, VBAR, fell below the .01
value which was the limit of orbiter aerodynamic
coefficients of 1ift and drag. 1Inclination changes
at perigees of 85 km and above were insignificant since
atmospheric density at these altitudes is too low for
an effective aerodynamic maneuver. While it would be
possible to compute 1ift and drag coefficients for perigee
altitudes below 70 km, extended operations at these
low altitudes are unrealistic because of the heating
effects on the orbiter at hypersonic velocities. This
tends to indicate the aerodynamic turn maneuver, while
feasible, has a limited range of perigee altitudes that
produce significant orbit inclination changes.
Comparison of the aerodynamic turn maneuver to the
pure rocket burn is a purpose of this study. For a
circular orbit, the inclination change (A1) generated by

a rocket burn of a specific change in velocity (av) is:
arcsin %% = Av/2v

The value used for v is the scalar velocity at apogee.
Apogee 1s chosen since there the shuttle will have the
lowest velocity and the largest Ai will be obtained for
a specified veloclty change component perpendicular to
the plane of the orbit. Although the formula list above

is for a circular orbit, the resulting Al computed still
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provides a good comparison value since the shuttle orbit

is nearly circular.

The resulting A1 for a given Av using a rocket burn

is listed in Table XI

Table XI

Inclination Change

Using Rocket Motor

AV (mps) 40 50 60 80 100 300

AL (deg) .286 .358 .429 .572 .716 2.15

The maximum orbit plane change obtained by the optimized
controls in the aerodynamic turn maneuver for the three

reference orbits with a Av of 60 mps is listed in Table XII.
Table XII

Maximum Orbit Plane Change (Av=60 mps)

ORBIT
80/300 80/500 80/650
21 (deg) .0l LUl 71

It is apparent that the 80/300 orbit accomplishes almost

no inclination change. When compared to the rocket burn
results listed in Table XI , the 80/500 orbit is successful
in achieving more inclination change while the 80/650 orbit

petters the rocket burn by 65%. The implications here are
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that as the reference orbit gets more elliptical the
aerodynamic turn maneuver is more profitable. Why this
occurs can be explained by comparing the velocity histories
of the reference orbits inside the atmosphere. As the
orbit becomes more elliptiéal the velocity of the shuttle
increases in the portion of the orbit near perigee. The
velocity of the shuttle at perigee is listed in Table XIII

for the reference orbits.

Table XIII

Velocity of Orbiter at Perigee

ORBIT
80/300 80/500 80/650
PERIGEE
VELOCITY 7.88 7.97 8.00
(KPS)

While this has the effect of ralsing freestream Mach

number, it causes a reduction in the value computed for

the viscosity parameter (VBAR). Table XIV1ists the time
spent inside the atmosphere for each reference orbit. The
effect of the higher velocities in the more elliptical orbits
is quite apparent in the reduced time the more ellipitcal

orbit allows the shuttle to stay in the atmosphere.

Table XIV

Time Inside Atmosphere

80/300 80/500 80/650
TIME 931 621 600
39




To understand why the smaller VBAR values result in

larger inclination changes it is necessary to look at the

VBAR values calculated for the orbiter. Table XV lists

the VBAR history for each reference orbit for the portion

of the orbit between entry into the atmosphere and perigee.

The VBAR history is mirrored for the portion of the orbit

from perigee until it departs the atmosphere.

100

95
Altitude

(km) 90
85

80

By cal

Table XV

VBAR History in Atmosphere (4v=60 mps)

VBAR
.232 .098 .097
.095 .094 .093
.090 .086 .075
.062 .062 .059
.Ou7 .0b5 .038
80/300 80/500 80/650

culating the L/D ratios for the VBAR's listed

in Table XV , a comparison can be made of the efficiency

of each orb

ALTITUDE
(km)

it. These L/D ratios are listed in Table XVI.

Table XVI
L/D Ratios Inside Atmosphere (pv=60 mps)

L/D RATIO (a= 25°)

80/300 80/500 80/650

100 .761 1.10 1.09
90 | 1.12 1.13 1.18

80 1.35 1.38 1.40
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The L/D ratios in Table XVI indicate that as the orbiter
enters the atmosphere at a higher velocity because of a
more elliptical orbit, the aerodynamic turn maneuver is more
efficient. The more efficient maneuver obtains more inclin-
ation than the less efficient maneuver for the same specified
velocity loss.

At this point, it is desirable to look at the results
of changing the acceptable velocity loss per orbit. A
velocity loss of 300 mps is considered to be the maximum
acceptable Av loss in an aerodynamic turn maneuver. This
figure is used since that it the maximum Av the orbiter

rocket motor can produce using internal fuel.

The inclination changes listed in Table XI which were

obtained using only the rocket motor show that Al 1s a

linear function of av for all values of Av considered in this

problem. Based on these results 1t appears that accepting

a larger Av loss per orbit during the aerodynamic turn Maneuver

would give a larger Al proportional to the increase in av.
Table XVII indicates thils did not occur. In fact the

lower velocity loss returned a proportionally higher Ai.
Table XVII
Inclination Change for Various Velocity Losses (80/500 orbit)

VELOCITY LOSS (mps)
30 40 50 60

81i(deg) 27 .35 .37 LAk
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These results show that 41 is not a linear function of
Av for the aerodynamic turn maneuver.

When the optimization routine is constrained to
lose a larger velocity per orbit, there are essentially
two ways to do this. One, the orbiter can descend to a
lower altitude and stay longer in the atmosphere. Since the
program used here specified the orbit to be optimized,
this option was not available. The second method which
could be used is to increase the angle of attack. What
must be anclyzed here is the effect of constraints in
the optimization routine. Because the optimization
problem is set up to obtain the maximum 4i for a given
Av, the program makes no effort to find the most efficient
L/D ratio for each orbit. The optimum control history
for each orbit will be applicable for a specific velocity
loss. However, there may be another velocity loss which
will produce the most efficient 41 in terms ol Av expended
to obtain the inclination change. Thus, the lower specified
veloclity loss returned a larger Al on a percentage basis.
To understand why this occcurs it is necessary to calculate
the L/D ratios at various angles of attack. The L/D

ratios for different angles of attack at perigee VBAR

are listed in Table XVIII.
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Table XVIII

L/D Ratios versus Angle of Attack (Perigee VBAR)

L/D RATIOS
80/300 80/500 80/650

20° 1.21 1.30 1.39
Angle of o
Attack 30 1.19 1.23 1.275
(deg) o

40 .963 .982 1.00

50° .726 | .732 an

Table XVIII shows that as angle of attack increases above

© the orbiter L/D ratio becomes less efficient. Aero-

20
dynamic 1lift and drag coefficients are available only
for angles of attack between 200 and 500. Thus, the
most efficient aerodynamic turn maneuver for any orbit
in terms of L/D ratios would seek to maximize A1 for Av
which called for an angle of attack of 20°. The optim-
ization problem can be changed slightly so that angle
of attack is constrained to remain at 20°. Various
acceptable Av's could be tried until an optimum control
history for angle of bank 1s determined that maximizes
inclination change.

The inclination change which this procedure would
generate is going to be small (approximately .200).
However, this inclination change will be the largest one

possible for the most efficient orbiter L/D ratio. The

orbiter can now utilize this optimum cont ol history over
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several orbits until the desired orbit plane change is

obtained. Using this approach until the total Av of

the orbits reaches the 300 maximum allowed, a large total

Al is possible. This technique on the 80/500 orbit

produces a total inclination change of 3o while the 80/650
orbit achieves a 4° inclination change. Thus, the Ai
obtained by the aerodynamic turn maneuver exceeds the inelin-
ation change of 2.15° generated by the rocket burn (Table XI)

by U40% on the 80/500 orbit and by 86% on the 80/650 orbit.

Higher-Order Control Analysis

The optimization program was started with the "best
guess" of the controls coefficients as explained in Chapter
IV . The control coefficients were initially constant
values. The program was allowed to optimize until the
increases in inclination change were insignificant. Controls
were then increased to three parameters for both the
angle of attack and angle of bank and the process repeated.

This procedure was accomplished again for five,

*’ seven, and nine control parameters for only the angle

of bank. Higher order controls for the angle of attack
f did not prove necessary since angle of attack essentially
:

remained constant between 21°-24° depending on the

reference orbit.

The increases in control parameters for the angle
of bank proved beneficial with each increase raising the
inclination change obtained. This occured through seven

control parameters for the angle of bank. Beyond seven

bh
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parameters, there was no appreciable increase in inclination
change. The plots of control history and inclination change
are listed in Figures 3,4,5, and 6. The increase in 81 as the
control parameters increased from one to seven is approximatel:y
.llo. Thils indicates a nearly 30% improvement in inclinatiocn
change can be gained from tne use of higher order controls
rather than a constant bank angle.

The control history for the seven bank angle parameters
indicates a converged solution. The oscillations in the ktank
angle history for that portion of the turn inside the atmoschers
(.3 <Time <.6) have damped out. Further increases in the
number of bank angle parameters had little effect on the
control history.

An analysis of the control history indicates the
converged solution commands the shuttle to roll 1inverted,
¢=l8OO, as the atmosphere is approached. This will orient
the 1ift vector to aid in reaching perigee. The bank angle
is slowly reduced until the atmosphere is reached with
¢=80ﬂ(TIME=.3). Most of the inclination change occurs
between .3 <I'IME<.6, where the bank angle slowly decreases
from 80° to 60°. As the atmosphere is departed (TIME=.6),
the 1ift vector is oriented up (¢=Oo) to assist in returring
to the specified final altitude. Flying this control
schedule 1s easily within the capabilities of the orbiter's

computer.
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This study has shown that the aerodynamic turn maneuver
is profitable for the Space Shuttle Orbiter and a flyable
control history does result from the use of higher order
controls and optimization. However, the small inclination
changes available from the maneuver and the low perigee,
high eccentricity orbits which must be used to get meaningful
inclination changes, severely limit the usefulness of this

maneuver. Additional research on this subject 1s not

recommended.
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®¥(Ref 5:53)

APPENDIY A

Lockheed Bridging Formula¥*
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The Lockheed Bridging Formula is used to evaluate the

aerodynamic force coefficients for the Space Shuttle Orbiter.
The formula bridges the transitional flow regime from

continuum flow to free-molecular flow. The formula is:

= _ .. .n
Ctrans Ccont + (CF.M. Ccont) sin"(m(A + B lOgloKn))
where
CCont = viscous force coefficient values at VBAR = 0.08
CF M. = viscous force coefficient values at VBAR = 5.2
(free-molecular flow)
n =2
A = 3/8
B =1/8
Kn = Knudsen number = A/Lref
Lref = 12.059 meters !
A = mean free path = RT/P (2Nc2)—l

= universal gas constant = 8.314 x 103 N-m/kg K

= pressure

26

R
T = temperatufe
P
N 1

= Avogadro's number = 6.022 x 10°° kmol

c = effective molecular collision diameter

3.65 x 10710 meters




APPENDIX B

Optimization Program
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The program used to solve the optimization of the
orbiter aerodynamic turn maneuver is listed in this appen-
dix. A flow chart is included to show the calling order
of the subroutines (Fig 7). The program, as listed here,
is set up to solve the optimization problem using the
gradient technique. Comments are incorporated into the
program to explain the function of the subroutines and

define key variables.
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CONTROLS
INPUT

Figure 7, Optimization Program Flowchart
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¥
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s sv¥ress THE PROGRAM MAIN COMPUTES THE PARTIAL
DERIVITIVES USED IN THE PARAMETER OPTIMI7ATION SCHEJYE,
A SECONND-NRDER PARKAMETER GCPTIMIZATION TECHNIQUE IS JSED
BASED JN THE PAPEFR BY EDGEMAN AND HULL R2Y THE SAME NAME.
I YR IXIIXR N
PROGRAM SHUTTLECINPUT yOUTFUT,TAPES=INPUT, PLOT)
EXTERNAL F
DIMENSION CDV(8412),CLV(B312),ARAY (22,53),7B(6),Y1(6) §
DIMINSION XI(6),YP(6) yWORK(25I) yIHIRK(I ), IINM(2),Y (D)
DIMENSION GB(12),GBB(10,10)FBT(10),FB3(10,10),FBBYI(13,10) |
OIMENSION 0B(13),V(10),Z2(10)
DIMENSION XP(B)408P(1C)y RG(L) 4HBH3T(L,4) s HBHBTI (G440 |
DIMENSTON XPP(n) 4 XP1(06)y XP2(06) 4 XP3 ()4 XPLIBE)
DIMENSION HP(2),HPP(2),HF1(2),HP2(2) 4HP 3(2),4HPL(2)
DIMENSTIOM H(2)yH2(2,1¢C) HEB(291091D)4E(2910)
~F1(bhylh) gFI(hyu)46G(2)
DIMENSION RP(2),RN(2)50C(2)45(10),C(2)4+8T(10,2)
DIMENSION DELINC(?)
DIMENSION AOS(53)sINKCHG (50) yRADIAN(SGN) JACA(B0) ,TIMI(5Y)
COMMON/3/7R(18)
COMMON/BP/BP(16)
COMMON/N/NE 4yNPyNPP14NPP2
COMMON U,RHOsVISC,REN,VPARyPHI,COEFDRG, COFFLFT
COMMON CODV,CLV,ARAYyV1,4FRALDT
COMMON NOM
Rz AL NOM, INKCHG
READ¥,, (XTI (I)y1=1,406)
INITIAL CONDITIONSy XI(1 THRU 33 IS X,Yy” POSITION
INITIAL CONRITIONS, XI(& THRU B6) IS VX,YY,VZ VELOCITY
READ*, ((CDV(NyM) yN=1,8)yM=1,13)
READ*, ((CLY (NyM) yN=1,8)y M=1,13)
READ*, (CARAY(I J) gJ=1,45) 41=1,22)
COV IS THE DRAG COEFFICIENT DATA
CLV IS THE LIFT COEFFICIENT DATA
ARAY I3 THE ATMOSPHERIC MOOEL DATA
NE=NUMRER OF STATE EGQUATIONS
NP=NUMRER OF PARAMETERS
NC=NUMYBER OF CONSTRAINTS
NPP1 AND NPP2 ARE THE WNUMBZR OF CONTROL PARAMETER
COEFFIZIENTS FOR ANGLE OF ATTACK AND BAMK,RESPECTIVELY
N=6 :
NE=6
NP=7
NC=2
NPP1=3
NPP2=3
c C1i AND C2 ARE THE CONSTRAINTS. HERE FIMNAL ALYITUDE AND VEL.
_C1=6538%.0

OO0

OO0

ADOOOOOOO0
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100

8¢

OO0 N
WY

632

733

C2=((XI(L)B*¥2+XI (R)** 24X T (H)*%2)%¥ ,5)=, 6
IT=I7TI=1

B VALUES ARE COEFFICIENTS OF CONTROL PARPMMETEKRS
Bl1)=18L1,45654222

B(2)=23.1L486031¢9

B(3)=4N0072784470L0E91

B(4)=,010L44109651L7

B(5)=,332318E757106

B(8)==-1,1A885024L810

B(7)=,003779877382372

C*S ARE INITIAL LAMBDA VALUES.

C(1)=.,001

c(2)=,0"71

PCT=0.1%

DELB IS PEKTUSATION STEP SIZt
DELR=1.0E=C2

OT IS THE TIME STEP S1Z¢t

DT=.6ERFR565E-03

CONTINJE

PRINT 8C0,1IT

FORMAT(1H,*ITERATION *,13)

D0 71 [=1,NP

BP(I)=3(I)

NEXT STATEMENT CONTROLS WHICH ITERATION GETS PLOTTZD.
PLOT ROUTINE PLOTS A LEFT Y AXIS (ANSLE COF BANK) VIFSJS
THE X AXIS (TIME) AND A RIGHT Y AXIS (INCLINATION CHANGE)
PLOT IS < INCHES HIGH BY 5 INCHZS WIOE,
IF(ITeNES3) GO TO 722
T=3.0

D0 532 N=1,23

INKCHG (N) =ABS(INKCHG(N))

CONTINUE

D0 733 N=1,21

CALL THETA(TsUNM)
ADB(N)=UNM(2)¥57,29577¢5 1
TIME(N) =T

T=T+0,05

CONTINUE

CALL PLOY(OO’-CS,-3)

CALL PLOT (2e592¢54=3)

CALL PLOT(5e90ey=2)

CALL PLOT(0es749-2)

CALL PLOT(=6e9Bey=2)

CALL PLOT(0as=7ey=-2)

CALL °LOT(.5,.5,-3)

CALL SCALE(TIME,F,92141)

CALL SCALE(AOByH«921,y1)

CALL QXIS(UQQOQQHHTIHE;°“,50,0.09005102)




CALL AXIS(0s90eyi7HANGLE OF BANK (8) 917 96499069 040,y3C0)
TIME(22)=0.,0
TIME(23) =42
A03(22)=0.0(
£08(23)=2%,
CALL LINE(TIME,ACBy214142,29)
: IS=1IS~-1
h CALL SCALE(INKCHGsHeyISy 1)
GALL AXIS (549049 22HINCLINATION CHANGE (%) 4=22464987: 0y
LINKCHG(IS+1) 4 INKCHG(IS+2))
CALL LINE(TINE INKCHG,31S4192,417)
CALL PLOYE(N)
GO TO 5¢C
732 PRINT 801,98
801 FORMAT (1 X46E21,12)
D0 12 I=1.NE
12 Y1 (I)=XTI(I) 1
NOM=0.)
CALL EOM(T,Y1,DEGyINKCHG yISs~1.0)
NOM=NOY+1.0
H(1)=(RA-"1)/10C0.
H(2)=((Y1(4)%%2+Y1 (D) #*24Y1(6)*¥2) ¥+ 5) -C2
PRINT*,"“H(1) AND H{(2)= "“,H(1),H(2)
DELINC(1)==-DEG
DO 78 K=14NP
DO 75 L=1,4NP
7% SP(L)Y=3(L)
0BP(K) =DFLB*BP(K)
IF(ABS(0BP(K)) LELOELB)! DOBP(K)=DELSH
BP (K)=8P (K) +DBP(K)
D0 43 I=41,NE
13 XP(IY=XI(1)
SP=2,0 '
CALL EOM(TyXPyDEGyINKCHG,IIP,SP)
HP (1) =0=-C1
HP (2)=((XP(L)¥¥2+XP(5)¥*2+¢XP () *¥%2)3%% 3)=C2
DELINZ(2)=-DEG
00 750 L=1,NP
752 8P (L)=3(L)
8P (X) =3P (K) -D8P(K)
00 1% I=4,NE
14 XPP(I)=XI(I)
CALL EOY(TyXPP4yDEGy INKCHG,IIP4,SP)
HPP(1)=RA-C1
HPP(2)=((XPP(4)**2+XPP(C }*22+XPP(H)*+2) ¥* ,5) (2
DELINC(3)==DEG *

f 00 77 L=1,4NC
77 43(L,K) = (HP (L) =HPP(L) ) 7(2,0%03P(K))




6ovb

110
10

549

"68(K)=(DELINC(2) -DELINC(3))/ (2,L*D3P(K))

CONTINUE

THIS SECTION IS THE PARAMETER OPTIMIZATICN SCHEME
PRINT#,* ™

PRINT®*, ¢%%2 HB MATRIX > %*xu
PRINT*y ((HB(IyM) 4 M=1,yNP) 4 I=14,NC)
PRINT®,™

PRINT*,"**2x GB VECTOR ¥ &&¥e
PRINT*,; (GB(K) yK=1,4NP)

PRINT*,"

D0 & I=1,NP

00 & J=1,NC

H3T (1,4 3)=HB(J,I)

DO 5 I=14NC

DO 5 K=1,4NC

HIHBT(I,K)=Ced

DO 5 J=1,4NP

H3HBT (T4 K)=HBHBT (T,K) +H8 (1, J)*HBT (J,K)
CALL GAUSD(NCy1eGE=30,HRHBTyHBHBTI 4KER, §)
00 552 T=1,4NC

RG(I)=0.0

DO 6555 J=14NP

RG(IY=RG(T) +HB(I,J)*G8B(J)
SS=,0000n0CY

Q=,001

00 7 I=1,NC

C(I)=0,0

DO 7 J=14NC

C(I)=C(I) +HBHBTI(I,J)*(Q*H(J)=-RG(J))
CONTINUZ

PRINT#*,*

PRINTY  *#%%x¥ C VECTOR ¥t ¥
PRINT.’- ”»

PRINT®," ",C(1)," *sC(2)
DO 19 I=1,4NP
CC=0.0

D0 110 J=1,NC
CC=CC+2(J)*HB(JyI)

"FBT(1)=6R(I)+CC

PRINT®," ™
PRINT'- ""U L X2 XX X3 'F“FBT Vv ECTOR I XTI RINSE R LER TS Y Y LU
PRINT®,=
PRINT®, (FBT (K) 4K=1,NP)
D0 549 I=1,NP

00 549 J=1,NP
FBBI(I,J)=0.9

IF(I.EQeJ) FBBI(I,J)=14C
CONTINJE




20

25

30

548

40

45

145

255

150

82

D0 20 I=1,4NC

00 29 (=1,NP

E(IyK)=0,1

00 20 J=14NP
E(I4K)=E(I4K) ¢FRBI(JyKI*HE(I I
D0 25 I=14NC

D0 25 K=1,yNC

F1(I,X)=Cla0 -

DO 25 J=14NP
FL(I,KY=F1(I,KI+E(X4J)*HBT(J,4X)
CALL GAUSQ(NC,i-05’30,F1’FI’KER'“)
DO 33 I=1,4NC

G(I)=0.C

DO 30 J=14NP
G(IN=G(I)+E(I,J)*FBT(J)
D0 548 I=1,NC

DC(INY=9.0

00 +0 I=1,yNP

S(I)=0.9

D0 40 J=1,4NC
S(Y)=S(I)+HBT (I, J)*DC (N
D0 45 I=41,4NP

V(I)=0.0

¥(I)=0.0

DO 45 J=14NP
V(I)=V(I)+FBBI(I,J)*FBT(J)
Z(I)=7(1) +FBBI(I,NI*S (N
DR(I)=-(SS*V(I))~Z(I)
08N=0.0

00 145 I=1,NP
DBN=D8N+DS8(I)*#DB(I)
DBN=SART (N3N)

B8N=049

00 255 I=1,NP
BN=8N+3(I)*8(I)

CONTINUE

BN=SART(BN)

HN=G o0

D0 150 I=1,NC
HN=HN+H(I)*H(I)

HN=SORT (HN)

PRINT®,* ™

PRINT®,"%"%% DBN HN #®ax"
PRINT*," *

PRINT 82,0B8NyHN
FORMAT (4X 9 2E2C04847)
PRINT' ,ll (1]

pRINTl."l*!# 08 LY XX L
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83

84

50

55

60

85

86

160

11
12

PRINT®,"™* *

PRINT 83,08

FORMAT (4Xy6E20.847)

PRINT®,"™ *

PRINT*,"%*%%¥ [QC ¥¥ase

PRINT',I. (1]

PRINT 8%4,0DC

FORMAT (35X 9 3E23434777) ‘
IF((O3NLTa1s3E=06) ANDe (ENeLTe1,0E=-23)) GO TO 60
00 50 I=14NF

B(I)=3(I)+0B(I)

IF(8(2)eGT4E0.0) B8(2)=50,0
IF(B(2)4LTe2043) B(2) =20 G
IF(B(3)elTe=301lt) B(3)=-341ins

IF(3(3) «GTe3elid) B(N=3,1y4

D0 55 I=1,4NC

C(IN=C(I)+DC(I)

IT=IT+1

IF(ITS5TLITI+25) 60 TO €&

GO TO 170

CONTINJE

PRINT 85

FORMAT (2X* CONVERGENCE *)

PRINT 85,4R

FORMAT (/7 /34X, 6E21e1257/)

STOP

END

#4332 SUIROUTINE GAUSD IS A MATRIX INVERSION ROUTINE®X®*¥F
SUBROUTINE GAUSD(M,EPSyRELCC +KERyLAY)
DIMENSION BB(LAY,ZLAY) ,CC (LAY ,LAY) 4 A(23, 203),X(20,20)
EP=EPS

N=M

00 139 J=i,yN

00 109 X=1,N

A(JyK) =3B(J4K)

00 1 I=1,N

B0 1 J=1,N

X(I,J)=’J.U

DO 2 K=i4N

X{KyK)=1,0

00 34 L=1,N

KP=)

Z=3.0

D0 12 K=_yN

IF(Z-ABS(A(KyL))) 12,212,312
Z=AB8S(A(K,L))

KP=K

_CONTINUE
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13

14

32
33
35

36
34

41

42
43

IF(L=-KP)13,20,29

00 14 J=LyN

Z=A(L,yJ)

ALy J) S8 (KP4J))

A(KP,yJ)=7

D0 15 J=1,yN

Z=X{(L,y J)

X(LoJ) =X(KPyJ)

X(KPyJ) =7
IF(ABS(A(L,L))-CEP)S5(,4E0y 36
IF(L-N)31,3L,34

LPi=L+¢4

DO 36 K=LP1i,N
IF(A(K,L))32,35,32
RATIO=A(K,L)/7A(L,L)

00 33 J=LP1,4N

A(Ky J) =8 (K, J)=RATIO¥A (L, J)
DO 35 J=1,4N

X{KyJ) =X (K, J) =RATIO*X (Ly J)
CONTINUE

CONTINJE

DO &3 I=1iyN

II=N+1-1

DO 43 J=1,N

S=0.9

IF(II'N)“13“3,“3

IIP1=I1I+4

D0 42 K=IIPi,N
S=SH+A(II LK) *X(KyJ)
X(ITyJ)=A(X{ITIyI) =S)/A(II,HII)
RER=1

D0 200 J=1,4N

00 200 K=31,N
CC(JyKI=X(JyK).

GO TO 75

KER=2

PRINT 7%

FORMAT (1 X, *MATRIX SINGULAR IN GAUSD*)
CONTINUE

RETURN

END

$¢%+#SUBROUTINE THETA COMPUTES THE ANGLE OF ATTACK AND BANK
ANGLES USING THE CHcBYS CHEV POLYNOMIAL FORM FROM SJB.CHEBY,

SUBROUTINE THETA(T,yUNM)
OIMENSION UNM(2)
COMMON/38P/BP(16)
COMMON/N/ME yNPyNPP1,yNPP2

. COMMON/TSH/TOT(8)
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CALL CHERY(T)
UNM(1)=0.10
D0 20 I=1,NPP1
20 UNM(1) =JNM(1) +RP(I+1) *TOT (I)
UNM(2)=0,.1
DO 23 I=14NPP2
23 UNM(2)=UNM(2) +BP (I+NPP1+ 1)*TOT(I)
RETURN
END
c “*#v¢SU3RNUTINE CHEBY COMFUTES THE CHEBYSHEV POLYNOYIALS*+¥ws
SUBROUTINE CHESBY(T)
COMMON/TSH/TOT (8)
TOT(1)=1,."
TOT(2)=2,0*¥T~1,0
TOT(3) =3[ *T**2-8,0*T +1.
TOT(L)=32,0%T*#¥3-48.7*T*4%2+18.,0%T-1.9
TOT(5) =128 CFTX*¥L 255U T¥*3+160.0*T*% 232, 0%T+1,0
TOT(6) =512, 0% T*¥5=128040*TH2441125 40 T*¥3=4]T.0%T**2¢5),0"*T=1.0
TOT(7)=20%8 e 0¥ T¥*0=014ke (*T*+545631240FT " ¥L~35844,G*TF*3
ﬁ*S‘»O.S"I’"*Z-?Z.O‘Ti'io 4]
TOT(8)=0,"
RETURN
END
¥ #¥ESUSROUTINE EOM COMFUTES THE INCLINATION CHANGE(DEG) .
IT USES THE CCHe9%) ROUTINE ODE TO DIFFERENTIATE THD
EQUATIONS OF MDTION WHICH ARE CONTAINEC IN SUBROUTINE F,
SUBROUTINE EOM(T,Y,DEGyINKCHG,IIP, SP)
EXTERNAL F
COMMON/83/73(10)
COMMON/3P /8P (16)
COMMON/N/NE ¢yNPyNPP1 ,NFP2
COMMON JyRHOGVISC,REN,VEAR,PHI,CIEFDRGy COEFLFT
COMMON SDV,CLV,ARAY,V1,kA,DT
COMMON NOM i
DIMENSION INKCHG(50) ‘
ODIMENSION CDV(8,12),0LVI(8,12)4,ARAY (22,5),28(8) .
OIMENSION Y(6)yYF(5),y WORK(2L0) 9 IWORK(5) 4UNM(2) ‘
REAL INXCHG ;
1IP=4 J
TTP=0.0 . !
00 2 I=1,6 i
2 Y(I)=sY(I)*1.,0E+4G3
00 3 I=146 |
‘ 3 BIN=Y(I)
! RELERR=1,0E~(6
bi T=0,
' TOoUT=4d,
_IFLAG=1

OO0




48
40

T3¢

736

45
46

b

XOUNT=9

CONTINUZ

TOUT=T+DT

CALL ODE(F36,YyTy TOUT,RELERRyRELZRRy IFL AGy WORKy IWORC)
IF(V3ARLT.0.30%) GO TO 59

IF (NOM~1,0) 48 944 gily

CONTINUE :
A1=ZB(2)*7B(6)=2B(3)*ZB(E)
Bi=Y(2'*Y(H)=Y(3)*¥Y (5)
C1=78(3)*78(4)~-Z5(1)*78B(6)
D1=Y(3)*Y(L)=Y(1)*Y (B)
E1=78(1)%¥78B(5)-28(2)%*72B(4)
Fi=Y(1)FY(5)=Y(2)*Y (L)
G=A1*D1+C01%D1+E1*F1

H=(A1¥ P 24C14%24E1+%2) 230 5
O0=(B1¥¥24D1*¥*%24F1¥%2) »¥; | §
CI=G/(H*D)

IF(ABS(CIYeGTele) CI=1,

- AI=ACOS(CTI)

DEG=AI*180,0/3,14159
IF(SP.GTW2.0) GO TO 736
IF(TOUT.GE.TTP) GO Y0 735

GO TO0 736

CONTINUE

INKCHG(IIP) =DEG

TTP=TTP+,i{5

IIP=TI>+4

00 &4 K=1,5

Y(K)=Y(K)¥1.,0E-03

VEL=(Y (3) 2% 2+Y(S)**24Y(E)*22) %%, 5
IF(TOUTeGEe1e0) GO TO 40
IF(KOUNT.GT40) GO TO &5
PRINT*,"THIS IS NOMINAL DATA*

GO0 TO %6

IF (KOUNT.LT.50)G0 TO 44

CONT INUE

APER=U/1030,

IF(KOUNT (GE«50) KOUNT=1
KOUNT=KOUNT +1

IF(TOUT.LEs14d) GO TO 14
IF(TOUT.GE+1.0) GO TO 4f
PRINT*,"“THE GEOCENTRIC ALT IS "4RA
RETURN

PRINT?¥,"VRAR LESS THAN CL.005 *,VBAR
RE TURN

END

*#R3¥SUBROUTINE F CONTAINS THE EQUATIONS OF MOTION WHICH
ARE USZD BY ODE.
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SUBROUTINE F(T,Y,YP)

COMMON U4PHO,VISC,KEN,VBARyPHI,COEFDF.Gy COFFLFT
COMMON ZOV,CLV,ARAY yW1,FA,DT

COMMON/3P/BP(15)

DIMENSION Y(6),YP(B)yCOV (8y12) 4yCLV(E912),ARAY(22,5),UNM(2)
GM=3,98E2216E+14

OM=7,292115Q9€=-05

SA=938.9

SM=97507%,C

RAS({Y(1)"*2+4Y(2)2%2+Y (3) +32)¥%,5
VSSY(4)*%24Y(5)%¥ 24V ()Y *¥2

Vi=yS*¢,5

CALL ATYOS(TM,WMOL)

CALL VISCPAR(TM,WMOL)

CALL THETA(T,UNM)

CALL SIVINT (ALPHA,UNM)

PHI=UNM(2)

SPHI=SIN(PHI)

CPHI=COS(PHI)

SLIFT=.5%COEFLFT¥*SA¥RHO* VS

DRAG=4 5FCOEFDRG*SA¥RHG*VS

SLM=SLIFT/SM

SOM=DRAS/SM

AV=Y(4)-0M*Y (2)

BV=Y(5) +OM*Y (1)

cV=Y (%)

AH=BV*Y(3)=-CV*Y(2)

BH==(AVFY(3)-CV¥Y (1))

CH=AV*Y(2)=-BV*Y (1)

AL=CV*34=-8y*CH

BlL==(CV*AH=-CH?* AY)

CL=BV*A4=-BH*AY

SV=(AV¥F24+3VF224CV*22) %" 5
SH=(AH®* 2+BH** 2+ CH**2) »*
SL=(AL®*2+8L¥%24+CL¥¥2) 2+ .5

RI=(Y(L)®52+4Y(2)5*24Y (3)*#32)%¥%1 .5

YP(1)=Y(4)*BP(1)

YP(2)=Y({5)*BP(1)

YP(3)=Y(B)*BP(1)

YS4==(GM/R3*Y (1)) +SLM* (~SFHI*AH/SH+CPHI *AL/SL)~SDOM*AV/SY
YP(4)=YS4H*8P(1) '
YSS5==(GH/RI*Y(2)) +SLM* (~SPHI*BH/SH+CPHI®BL/SL) -SDM*2V/3V
YP(5)=¢Y55*8P(1)
YS6==(GM/R3I*Y(3)) +SLM* (~SFHI*CH/SH+CPHI *CL/SL)~SDM* V/3V
YP(5)=Y35%BP(1)

RETURN

_END
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c T 4R+¥¥SUYARDUTINE ATMOS COMPUTES THE MOL EC,WSIGHT (WM2L) 8.

c DERISTY OF THE ATMOSFHERE
SUSROUTINE ATMOS(TH,WMOL)
COMMON U4PHO,VISC,RENyVBAR,PHI,COQEFDRGy COEFLFT
COMMON CDV,CLV,ARAY,ZV1,RA,DT
DIMENSION COV(8412) 4yCLV(8,y12) ,ARAY (22,3)
GM=3.,9852216E+14
R=8,34L32F+(3
RHO0Z2=1.22%0
TMZ2=2238.15
U=RA=-£356756.0
00 7 M=1,422
IF(U=-ARAY (M,1))5,6,7
CONTINUEZ
M=23
M=M-1
IF(ARAY(My4))8,9,8
TM=ARAY (M, 2) +ARAY (M4 ) * (U-ARAY (M, 1))
Q=GM*ARAY (M,5) 7 (R*RL**3)
SIGMA=EXP ((1,0+(N/ARAY (M 4)) ) *(ALOG(ARAY (M, 2)/TM)) ) ERAY
-3
GO TO 1°¢
9 TM=ARAY (M, 2)
G=GM*ARAY (My5) 7/ (R*RA®+2)
SIGMA=ARAY (M, ) *EXP (= (Q” (U-ARAY(My 1} )) 7ARAY (My2))
10 RHO=RHO7%SIGMA
HMOL=ARLY (M,5)
RE TURN
ENO
c *4%%2SJRROUTINE VISCPAR COMPUTES VRBAR®*¥:¥
SUBROUTINE VISCPAR(TM,HWMOL)
COMMON U3RHO,VISC,REN,VRAR,PHI,COEFNRGy COFFLFT
COMMON CDV,CLV,AFAY,Vi,kA,DT
DIMENSION CDV(8,12) 4yCLV(B412) ,ARAY (2255)
T=TM*HMOL /28964 L
.VISC=(1.458E-06*T“1.5)/(T*liaoh)
REN=RAQ*V1*32,77/VISC
A=SORT (1,15%8¢31432E+U3*TM/28.96544)
TP=U45B8*T+136643+0,014625*((V1/A)**2)
EXP1==-5,0/T7
EXP2=-5,0/TP
ANUM=T +122,1*10**EXP1
ADEN=TP#122,1+15**EXP2
CP=((TP/T)*¥,5)% ANUM/ADBEN
VBAR=(VL/A) #*(CP/REN)**,C
RETURN
END

o oM ~
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C $4+4*¢S)BROUTINE BIVINT IS THE BIVARIANT INTERPOLATION SCHEMS
c USED T) GENERATED THE ORPITER COEFFICIENTS OF LIFT AND DRAG.

SUBROUTINE BIVINT (ALPHA, UNM)

COMMON U,R40O,VISC,KENyVBAR,PHI,COEFORG4COCFLFT

COMMON SOV,CLV,ARAY W1,FA,DT

DIMENSION CDV(84512)4CLV(8,12)ARAY (22,5),UNM(2)

IF(VBAR:GT4542) GO TO 1C

IFCUNM(1) el Te2045) UNM(1)=20,.0

IF(UNM(1)e5Te50e") UNM(1)=50.0

ALPHA=UNM(1)

00 3 I=2,18

IF(ALP4A-COV(TI,41))2,2,3

CONTINUZE

DA=CDOV (I, 1) -ALPHA

DO 5 J=2,12

IF(VBAR=CDV(14J) ) 4y4&y 5

CONTINUE

pv=COV (1, J) -VBAR

DELV=COV (1,0)=-CDV(1,U-1)

P=0DV/DELYV

Q=DA/5.3

COEFDRG={(1-P)* (1 -Q)*CDV(I J)+P* (1-Q)*COV(T4J-1) +Q* (1 -P)*
«COV(I=-1,J)+P¥Q*COV(I-1,J~1)

00 7 I=2,8

IF(ALPHA=CLV(I1))646,7

CONTINUEZ

DA=CLV(T,1) -ALPHA

D0 9 J=2,12

IF(VRAR=CLV(1,J))8,8,9

CONTINUZE

ov=CLV (1, J) -VBAR

DELV=CLV(1,J)=-CLV(1,J~1)

P=DV/0ELYV

N=DA/5.9

COEFLFT=(1=P)*(1-Q)*CLV(IJ)+P*¥(1-Q)>CL V(Y ,J~ 1)*Q‘(l'p)'CLV
= (1=1,J)+P*¥Q*CLV(I-1,4~1)

60 1O 11
10 COEFNR5=0,.0

COEFLFT=0,0
11 RETURN
END
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