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2d. Cont'd.

When the time-bandwidth product (of observation time and signal bandwidth)
is large enough, and there is at least a moderate amount of frequency modula-
tion, the optimum processor is well-approximated by a filter followed by an
energy detector; the filter passband is that of the spectrum of the received
signal.- The time-bandwidth product is large enough, approximately, when its
square-root~is greater than the maximum of 10 and 3d,, where d_ is the voltage
deflection criterion of the filter-energy-detector pPocessor. zEquivalently,
the ratio of the received signal energy per independent component to the
received noise power“density must be small, and the time-bandwidth product
large, in order for the filter-energy-detector term of the log-likelihood ratio
series to dominate decisions>¥The frequency modulation is termed moderate when
the ratio of the RMS frequency deviation to the equivalent bandwidth of the
frequency-modulating process is of the order of 2-3.

Numerous approximations have been necessary to facilitate evaluation of
some of the multiple integrals; to what degree the sufficient conditions cited
above can be relaxed, without violating the conclusions, is unknown,
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INTRODUCTION

Detection of a tone of known frequency and limited duration, in the
presence of noise, is often accomplished by passing the received waveform through
a matched filter and comparing a sample of the filter output with a threshold.

(For unknown phase of the tone, it is the filter output envelope that is compared
with a threshold.) The bandwidth of this receiving filter is very narrow, in fact
approximately equal to the inverse of the signal duration; in this manner, the noise
passed by the receiving filter is greatly attenuated, and decent decisions about
signal presence or absence can be made. Typically, the ratio of received signal
energy to noise power density level, of the order of 10, is required for low false
alarm probabilities and acceptable detection probabilities.

However if the tone is phase-or frequency-modulated in a random fashion,
the spectrum of the received signal is spread significantly beyond the inverse signal
duration, and any receiving filter must be broadened to accept the received signal.
As a result, considerably more noise is passed to the receiving filter output,
adversely affecting decision capability. The fact that the modulation is random,
that is, unknown to the receiver, prevents much coherent processing of the received
signal, if the modulation is significant. If the deviation and bandwidth of the
frequency-modulating process were known (or better, if the spectrum of the frequency-

- e ey e s e

modulating process were known), the question arises as to just how much could be E

achieved in detection capability by taking advantage of this information. l
We will address the problem of optimum detection of such signals in

the following, with particular emphasis on the case where the product of observation

time (signal duration) and signal bandwidth is much larger than unity. For long

duration signals, this situation can easily arise with fairly small amounts of

phase- or frequency-modulation. We will also consider simpler sub-optimum processors

and attempt to deduce their performance. The severe analytic problems preclude

complete solution, and some considerable simulation effort will be necessary in

the future in order to give quantitative comparisons. Some related work is given

in Ref. 1 for the first-order term in a series expansion of the optimum processor,

useful for low input signal-to-noise ratios.




LIKELTHOOD RATIOS

General Case

In an observation of M samples, either the condition noise-alone or
signal-plus-noise prevails. On the basis of these M samples, an optimum decision
about signal presence or absence is to be made. The signal samples are denoted

by
(sl S: SM)) (1)

and the observation is denoted by
X = (X, Xy oo xh)- (2)
If we let H, denote the signal-absent hypothesis, and H, denote the
signal-present hypothesis, the optimum decision rule is based upon a comparison
of the likelihood ratio (LK) with a threshold (Refs. 2, 3):

LR(X) = %%%

where P,(X) is the noise-alone probability density function (PDF) of observation X,
and p(X) is the PDF of X with signal present. We can express (3), for any
*

signal statistics, as
dS p(X1S)
LR - fdsy X>3P(> | “

(3)

where y,(XlS) is the conditional PDF of X, given signal values S, and y.(S) is the
a priori PDF of S.
A modified notation for (4) is adopted in the following, namely

LR(X)= <k (X\S» <_EJZJ§§L> =WREXIS,  ®

where the ensemble average,(), is over the signal statistics, whatever they are,
considering observation X as a fixed quantity. (See also Ref. 3, page 132, eq.
(1.4)). (5) is an average over the conditional LR.

For continuous observation of waveform Xt} over a time interval
(a,t,) where the signal exists (it present), the LR in (5) becomes

- . e ey A A D A U S Y A S MR S R Sm TR G e G D S G o W W e

*Integrals without 1imits are over the range of non-zero integrand.




LK(XH')i Lcte< .h)= < b (Xﬂ)\sm= +<t< ‘h) > , (6)

pixiD: G<t<ty)

where the ensemble average, < ), is over the random signal process s, considering
observation x#) as a fixed waveform. This interpretation of the bracket <> will
be used throughout the following report.

Additive Signal and White Gaussian Noise

The results above pertain to any signal and noise model. We now
specialize to additive signal and noise. In particular, for f1at* Tow-pass
Gaussian noise of bandwidth W, (~W..,W.. Hz double-sided), noise samples taken
every (2W.)"' seconds apart are independent; then (for real processes)

M

P = Tz orl 45 2

m=)

and

P (X|9)- ﬁ:?#ﬁ? ”r(‘(—"“z.:sﬁq} ’ (8) ‘

where Gf is the noise variance, precumed known. Then (5) yields

LR (X) = <Q*r[7rl?é"*‘" ) E]F'v,g 5¢]> , (9)

where the ensemble average is over {sgyf only.

Since 6f=rN.Nn, where N, 1is the single-sided noise density level
in watts/Hz (presumed known), then in the 1imit as the noise bandwidth W, — «, (9)
(and (6)) becomes

LR (x: b tety) = <exr[§—£&xne)s9 - K}.,‘i* 5 &{]> (10)

(See also Ref. 3, pages 108-9.)
If the signal s¥) and observation xW) are narrowband about center 4

Py

*For narrowband signals, the assumption that the noise spectrum is flat in this
narrow band is not very restrictive.
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frequency f,, and if TE> 1, where observation time (signal duration)
T= tb-'t., then (10) can be expressed as (see also Ref. 3, page 160, eq. (5.2))

4 H,
R( <t t) = Comlitel #0705 l ‘&\ﬂo\,b’ .

where Re denotes the real part, and s® and xH:) are the complex envelopes of
signal and observation respectively:

sH)= Ref sPexplartt)] ,  xb) = Re ] xexplizrf ). (12)

It should be noted that although we have presumed TE > 1, we have not fixed
TWs, the product of obseryation time (signal duration) and signal bandwidth.
Also we have not yet specified the signal statistics in any way.
Fixed Received Signal Energy

A special case of the above is afforded when the received signal

energy in the observation interval,

% 4 N
E =£ch+ s’ = {—‘L& |s®], (13)

is constant, even though the received signal s) is a random process. (An
example is the narrowband phase-modulated signal

s = A wos[zrfit+ o)+ 6], K< t<ti, (1)

where T£,> |, A is a constant (but perhaps unknown), 6&) is a random process,
and ¢ is a random variable; the product TW; is arbitrary. Then, E=AT/Z2 ).
In this special case of (13), (11) yields

LR (xlO: {;,<+<Jc;> = e/xy(-% <ex7[-ifReivN: BH')ﬁ*(‘l?)]>_ (15)

This simplified form for the LR (for fixed received signal energy) points out
the magnitude of the analytical difficulty of the problem we are addressing.
Namely, the ensemble average on the right-hand side of (15) is the characteristic
function* of the random variable

4
ReL‘o‘l‘l B st (16)

- - - - - = - - e e e D e e R A LT e e

*Actually, it is the moment-generating function.




at argument (¢ = '/N., But (16) is a linearly-filtered version of random
process sH), with fixed waveform X[); recall that x{f) is considered fixed
in the ensemble average in (15). And since calculation of the PDF of the output
of a linear filter (for other than Gaussian input processes) has remained an
unsolved problem in the literature for many years now, there is no hope of exact
evaluation of (15) for general random processes gH). Rather, all we can hope
for is good approximations for some signal processes under certain conditions.
The situation for the more general case, (11), is even worse, due to the
additional randomness of the received signal energy. Notice that the only
restriction on the signal statistics in (15) is that stated in (13); we are not
restricted to the model of example (14).

In the following, we shall generally make the assumption about the
received signal energy being constant; notice that this disallows SH or il
from being a Gaussian random process. We shall also conce: rate on narrowband
signals, for which T4 >>|; however, TW, is arbitrary initially. Hence the
pertinent expression for the LR is (15).

It is perhaps worthwhile at this point to fix the ideas presented
thus far with a couple of examples. In particular, averaging with respect to
signal statistics, while holding the received waveform (observation) fixed, will
be illustrated. The received signal energy is not constant for these two examples.
Low Pass Example

Let the received signal be

sH=Amld, L<t<ty, (17)

where A 1is random but positive, and mH) is a known deterministic real function.
Since the only randomness in the received signal is through the scaling parameter A,

+ 2 Y
LR = <exr[%j+:&xu‘)'v|(f)’ ‘,i%j;‘* le'l’)] }

= <%r[Aa - A’b]} , (18)

(10) becomes

where

, 4 4
a;Ejﬁdt xBmit) | LE_NI"-‘L dtm'). (19)
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Notice that the observation xH) appears in the LR only through the coherent
integration yielding parameter a. Now we can express (18) as

LR = fo dA y(k) e/xy[Aa—A’b], (20)

But since
a% LR = J:JA p(A) A m[Aa-Aﬂ (21)

is positive for any PDF 70“, when A is limited to positive values, then LR
is monotonically increasing with the parameter @ . Hence comparison of LR with
a threshold is synonymous with comparison of parameter a with a threshold.
Thus the optimum processor is

H H,

%&L XH')MH') 3 ‘u\\fesho)é, (22)
H,

regardless of the PDF PQD, when random variable A is limited to positive values.
(22) is recognized as the standard coherent correlation detector operating on
observation xH)

Narrowband Example

Let the received signal be

s = A Re{shienp (i2rft+ id)f ) <tet, (23)

where A is random and positive, and & is random and uniformly distributed over
2w, Variables A and $ are independent; there is no need to consider negative A,
since this effect can be absorbed by values of ¢. T.e complex envelope is then

s6)= A e i) 510, (24)

where W) s a known deterministic low-frequency complex function. Since the
randomness of 510 arises only through A and ¢ (11) yields

G &fmk);”we“ -——§d¢)f(+>\]>

<I ( \ f&xﬂ f"&)D Oxy Jf d’c\ﬂf)r>>A
ST om0, = JH BT x4,

LR




where " 5 l
T ?H(ff Ty il elete (26)

Notice that observation l&) appears in the LR only through the coherent
integration yielding parameter a. But since (using (25))

2R = Lot ) A T () orsl) @)

is positive for any PDF p(A), then LR is monotonically increasing with the
parameter &, Hence comparison of LR with a threshold is synonymous with
comparison of @ with a threshold. Thus the optimum processor is

& M,
I g‘dt ;&)i*ﬂ)\ E ‘Un'eshold, (28)

regardless of the PDF p(A). (28) is recognized as a threshold comparison of
the envelope of the output of a matched filter operating on observation xi).




SERIES EXPANSION FOR LOGARITHM OF LIKELIHOOD RATIO

The starting point for this development is (15), which applies to
arbitrary narrowband signal statistics, subject to fixed received signal energy.
When we define random variable

V= -’-\L‘fKe S & x 1) 5T, (29)

(using the fact that received signal sHi) and observation xft) are non-zero
only in (h,%)), then (15) can be expressed as

LR = o) <o, ()

where the ensemble average is over the signal statistics. Now from (29), we
find

<v> =3 Re Jcﬂ ) <5 >, (31)

(]

where <E1Q> will be called the deterministic signal component. Then define the
residual of random variable v as

r=v-<vw> = —N'o— Ke j & xh) a"ib, (32)

where we have also defined the “ac" component of the signal complex envelope as

al) = sh- s> (33)

(Later we shall generally consider signal models for which the deterministic
signal component is absent, i.e.,

< sk =0, (34)

which is the usual case for phase-random narrowband waveforms. For example, (24)
was just such a case.)
Substitution of (32) in (30) yields

wxp(-£) Coxpl < + ]

oxp(- £ 4 <v3) Comp[DD (35)

LR

1]

it




At this point, we define the characteristic function of random variable r
in (32) to be the ensemble average

£li9)= Soplizd =

Once again, we note, with reference to the definition of r 1in (32), that the
randomness of r is to be considered due to that of ac signal gft) (through (33)),
and that observation AH) must be considered fixed in (32) for this ensemble
average in (36).

The natural logarithm of the characteristic function of r can be

expanded as
(o]

In 'E,(i?) = ZLEZ)(K ’ (37)

where '}fj is the k-th cumulant of random variable r. (See, for example, Ref,
4, Chapter 3). The sum starts at k = 2 since (see (32))

f"‘): <D = <v-<wD = 0. (38)
For example, we have (Ref. 4, page 71, eq. 3.43)
)
%= <rD

= <rd

(9] 4 N
W= D35S (39)
Since the natural logarithm is a monotonic transformation, comparison

of LR in (35) with a threshold is synonymous with comparison of In LR with a
(different) theshold. Then using (35), (36), and (37), we find

In lR= -5 +<v> + In £0)

E Sy _E sy 40
-’-'n’ +<v>+k=sz" = N, +k=zlk!£) (40)

where 'X:) is the k-th cumulant of random variable v; see (32). The first term
in I LR, namely -E/N.-, is a constant, independent of the observation X{), and
can therefore be ignored (i.e., absorbed in a modified threshold in the decision
comparison).

The second term, <v>, in LR is proportional to a coherent
correlation of the received waveform with the deterministic component of the signal
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waveform; consider the following development (where cu, =.Zrﬁ):

Z (o <D = ok Re{xBe ™I CRef s ™S
& o rlsbene s> ]

-2 (31 0] LG epe™]
=‘,‘lj’—Re‘(d€ 0 <S> = <V, (a1)

where we have used (12), the fact that T£>>1, and (31). (As noted in (34),
this term will generally be zero for our signal models of interest; that is, there
will be no deterministic signal component in the received waveform, and hence the
<D ='Y?) term will be absent from the In LR expansion in (40).)

A11 the other terms in ln LR in (40) involve r defined in (32) (or
v defined in (29)). In particular, since (32) can be written as

r= Z_‘NZS dt [x10 €6 + e )] (42)

then we have, using (39), the second cumulant

V=< = 2 ([ <Ll )+ 0[R2+ R ]

= o b 2 k) <ol TR + Guphe conjugak, (83)
where we have used the fact that

Calyal)> -0, ol &t (44)

for complex envelopes of narrowband random processes; see for example, Ref. 3,
page 53, eq. (5.12). Now it may easily be shown that each of the two terms in
(43) is real; therefore

A= s [ dh xke) SRR, ), ()

where Ry is the autocorrelation of ac component alt), assumed stationary in the
observation interval; that is,

<ak)a'k)D = Robk-t) for t, tebk,8). (46)

An alternative expression to (45) will be developed below.

10




The remaining cumulants in (40) require higher-order moments
of al#), and must await evaluation until we specify the exact signal model of
interest, which we have not yet done. However it is very important to observe
that if

r= K'I: Re fd{- x9a™ (47)

were a Gaussian random variable, then all its cumulants X(,?, for k23, would
be identically zero, and the series for I LR in (40) would terminate with the
term (45). Since xH) in (47) is to be considered fixed in this particular
statistical consideration of v it is seen from (47) and (33) that r is the sum
of a large number of statistically independent components if the time-bandwidth
product of the received signal is large, that is,if

TW, > |, (48)

and if a® is fully random (to be explained). This is due to the fact that the
integral in (47) is over a time duration of T seconds and that al has a statistically-
independent "wiggle" approximately every I/M& seconds. Then by appeal to the Central
Limit Theorem, ¥ will be nearly Gaussian when (48) obtains, and the cumulants for
k23 in (40) can then be well approximated by zero. We will attempt to quantitatively
justify this claim Tater, for a particular signal model.

The expression for the I LR is, from (40),

» "
\nm=—-&+<V> +~;j)£f)+-é—z; + X (49)

Now Zi’ is actually a random variable, governed by the statistics of the
observation XH), ta<t<t,; remember we have already averaged over the statistics
of sk, in (36) and (37). Furthermore )ﬁ? has different statistics for signal-
present (HJ versus signal-absent (H.). Although the sum of the random variables
in (49) is to be compared with a threshold, it is not the absolute level of the

mean values of }ﬁo//k! > under H, and N, , that is important; rather, it is the
difference in these means under H, and H, that is important. After all, means

can be absorbed in a modified threshold. Therefore we will attempt to determine

the means and standard deviations of some of the random variables ﬂ/}{},

and make some quantitative statements as to when and where (49) can be terminated.

1
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E Another important point should be made here regarding (49). One

‘ sub-optimum processor is afforded by simply terminating (49) with the term K’/Z

_Now even though the rest of the terms in the series may not be small, and therefore
cannot be dropped from the optimum processor, it is conceivable that the decisions
yielded by this sub-optimum processor often agree with those yielded by the

i optimum processor (each processor with its own threshold). This will be the case

when (48) is true; an important question is: how small can TW get before the
optimum processor significantly outperforms this sub-optimum processor? An example
: in appendix A shows no difference in performance for very small TWs, namely
‘ ‘/{-; < T < '/Ws . Thus at the two extremes of very large and small TW;, this
sub-optimum processor performs just as well as the optimum processor.

It is worthwhile to note that if we were to expand the LR in (35)
in a series, we would obtain a far less useful result; namely

LR = oxp (—g F<vd) ngbﬁ<r">- (50)

Now this series would not terminate, even for r equal to a Gaussian random variable.
And for r near-Gaussian, it is not obvious how many terms of (50) need to be
retained for a good approximation. Thus (49) is expected to be more useful,
especially when (48) is true.

Example of Exact LR for Several Narrowband Pulses

By way of illustration of some of the techniques above, consider the
signal model

si) = Re ?Aﬂﬁl@w[fq‘ﬁiﬁj, L<t<§, (51)

where Hﬁ are independent random variables uniformly distributed over 2m (%K)}
are known complex deterministic low-frequency waveforms, fAA are known amplitudes,
and (f;} are known center frequencies. We assume that the complex waveforms

53({-) oxp (; @L{)} are orthogonal, perhaps through time or frequency separation,
and that '\]{( >>), where 'l:, is the duration of k) . Then it follows that
the received signal energy, [dt s’W), is virtually independent of {§3, and
hence is non-random.

The signal complex envelope is

§l‘7)= %A}i“‘)yxf[lég""e‘)’w-)t]) (52)

! 12
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for which, obviously, the deterministic component <slOD =0. Then (32) yields
T=":T Sdleé)Z_A “l‘:)%q[—i@-l@i q)f] (53)

The ensemble average in (35) is then

<Q > -IT<Q)(7 RQJ&{ X K’)? i) txy[ (- u;){-] %f[—oﬁ]] >

TT T (—&\ BT {e)e»q[ (- %)QD (54)

tence (35) yields (with the aid of (31))
A . ‘
\Vl LR = _—Eo— + ,Qz n L (’ﬁ:‘ l f‘)’t l'()gj‘&)%? (“’%f' ”‘9('{'),) (55)

A block diagram of the optimum processor for this signal model is shown in

figure 1 below. The non-linearity In L,( ) is approximately a squarer for small
arguments (inputs), and is approximately Tinear for large arguments. Thus coherent
processing of each component is accomplished, and then followed by non-linear
envelope detection and summation.

H T
xb) R - th Aj 5 Absolu te
Lttty it:;::;g- | E L‘& Magni tude an; 0 22
, vf tt) J L J N {
com.,mnt Nonlinear envelope
rrocc»ins detection
Fi qure |, Orﬁ mum  Processor for Sewveral Navvowband Pulses ’
13




)
BLOCK DIAGRAM FOR PROCESSOR YIELDING 7‘:/2

In this section we will give a block diagram of a processor which
accepts complex envelope waveform XH), f,<t< §, at its input, and emits
the quantity Z(;)/z To do this, we first define correlation

RO = Ry)-Robs) 5 Rbe)= 0. (56)

An example of a signal process for which K,@)#6 (even though the deterministic
signal component <s®> = 0) is given in appendix B, Furthermore, it is shown
there that the deterministic signal component corresponds to pure tones
in sft) of known phase, whereas the ac component with R,e)# (0 corresponds to
pure tones in s(t) of random phase. The quantity ng) must be real, since
it gives rise to an impulse in real power spectrum G-‘H-), at f=o.

Substitution of (56) in (45) yields

\ft;’,
2 =

This processor is indicated in block diagram form in figure 2. The power

’ *(ﬁ)‘ﬁ & o xR (4-t) (57)

Voltage Grain 4 Magnitude
] VR, o) f dt S‘iuore
2N, ta
x| £
+‘< 4« tb 2
Voltage Guin X
e y&_) Mﬂmbﬁd{

» Hif) Spuare _Ld*

e - Gy

F“S“,., 2. 'Procusor £ Geverate {‘X‘I) "nm l&)
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spect:lr-um"r & W) is defined as the usual Fourier transform of correlation R.(0),

&6 = [dtenplizmf)R P, (58)

and AP is a low-pass Eckart filter.

The way to show that the lower branch of figure 2 generates the

second term in (57) is as follows: the output of the bottom integrator in
figure 2 is

fot | {auhte sl = Joudv xl) 50 Jot hi-)h k-0, (59)

But

(gbnehen) = [ HOF erpliorf 0-0)]

R, (v- u)

-, (60)
(2N,)

= én-); f&ﬁ GA{) Wr[l\ 2'»"‘:(V-ui] =

where h and H are a Fourier transform pair (impulse response and transfer

function), and we used (58). Thus the last quantity in (59) becomes precisely
the last term in (57).

*Since  Goif)= GalD-RaM S, G must be non-negative, since & )

is a legal spectrum. Therefore the choice of JH(f)® in figure 2 is always
legal.




The upper branch of the processor in figure 2 depends on the
statistic |[ﬂ:§H§|z (see (57)), which corresponds to a coherent cross-
correlation, over the entire observation interval, of the received waveform with

a constant carrier at f, followed by square-law envelope detection at the end
of the observation interval. Whether this coherent component is significant
depends on the relative sizes of Ry and RK,lp; see appendix B in this
regard. It should be made clear that the upper branch of figure 2 is present
even when the received signal has no deterministic component, i.e., when

< sk)> =0. The distinction between the two cases is well illustrated by the
special case of a pure tone signal of random phase, COS(:Hfﬁfrﬁkb), This
signal has no deterministic component because the average over ¢ gives zero.

However, cross-correlation of this signal with a local carrier at f,, with
in-phase and quadrature components, followed by squaring and summing outputs,
affords a significant amount of coherent signal processing gain that cannot be
] disregarded; in fact, the performance is but slightly poorer than detection of
a signal with known phase, ¢ (see Ref. 3, pages 88 and 155). When the signal
satisfies both of the properties

s> =0 and R (9 = 0, (61)

we then say that the signal is fully-random; this case will occupy most of our
attention in the following.

The lower branch of the processor in figure 2 is a linear Eckart
filter followed by an energy detector. Since the linear filter impulse response
is non-zero in duration (being the Fourier transform of H{)), the finite-
duration input XxW) is smeared by this filtering operation; hence the integration
in this lower branch is over all time, not just (ka,{;) as in the upper branch,
This Eckart filter followed by an energy detector is exactly the filter
characteristic which maximizes the output deflection; see appendix C.

Furthermore, the linear filtering action of HK) in figure 2 is
such as to perform coherent integration on the random input signal over as long
a time as possible. To see this, we notice that the output of filter Hf) can
be written as

3(6= Jdr 2D hit-D. (62)
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But since the passband of H{f) 1is the same as the bandwidth of &), the
impulse response duration of hf) is approximately the correlation time of
Rof). That is,

&)

(63)
Ny

W =

transforms into

1
jdu hiw) ‘\*(U‘T) = (%512 ' (64)

Thus the effective integration time in (62) is approximately the correlation time
of the random signal process, and is as long a time as coherent integration could
reasonably be anticipated. The squarer and integrator following HG) in figure
2 can be looked upon as a sum of squared envelopes, for the continuum of possible
relative time delays that the filter impulse response and input waveform can
take on (see (62)). For a very narrowband spectrum &lf), the correlation time
of Rb) will be large, and considerable coherent processing is achievable via
(62), prior to energy detection. This processing of the random signal is
achievable even if the upper branch of figure 2 is absent; that is, even if there
are no pure tones of random phase in the signal.

An alternative interpretation of the quantity -{76:’ in (57) is
possible. lLet the voltage density spectrum of the received waveform complex
envelope be defined as

XW) = [dt x) explci2nft). (65)

This is fine-grained frequency analysis, i.e., resolution ‘M in frequency. Then
it is easily shown that (57) can be written as

L 222 3ol + [ & 5 pxel )

Ny

Realization of this form requires a fine-grained frequency analysis over H;,f;x
weighting of the energy-density function Il((f)r with an Eckart filter function,
and summing; however the weighting at zero-frequency is distinctly different

17

l‘" s
§




el

-——— -

from that at non-zero frequency. Namely the weighting is (see (45) and (56))

G 6= R SIF) + & 1), (67)

Since the expression for -‘iﬁn in (45) involves RgH,-t)
only for the range of arguments f< ¢, i<+, , it is seen that only the
values of Rgfy for Jul< T are relevant. The question then arises as to
whether the procedure in (56) et seq. is necessary. This problem is addressed
in appendix D, where it is shown that other approaches may not yield Tegal
choices for IHH;)'z; that is, lH(‘f‘)'2 may be required to be negative for

some values of *F, which is impossible. At least, (56) guarantees a legal choice
for 1A,

18
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MEAN VALUES OF X

It was noted in (49) et seq. that cumulants {)4?} are
actually random variables, since they are functionals of the observation X,
In an attempt to determine what terms in (49) are most important, we begin by
first evaluating the mean values of Ign both with and without signal present.
For hypothesis H, (noise-only), the mean value of {)ﬂ? is available from
(45) as

Y
v | * _
'%_— X"x)(’\’) = "'N; {Jd{' d{i n“-,)n k‘) Rﬂ u‘ ‘t'); (68)

*
where an overbar denotes an ensemble average with respect to the statistics
of the received waveform. For the complex envelope noise, we have (Ref. 3,
ch. 2, (4.10) and (5.15))

— e

nk) ) = 2N SH-t). (69)

Substitution in (68) yields
+

v S
0 = 3 | #R0) - gﬂﬁe <lebl>

) .
= 2—‘\1 <Lﬂ&&lg@

4
2

t>' (70)

Now if <s@)> =0, no deterministic signal component, which is
the usual case for phase-random narrowband signals, and the only case that we
will consider henceforth, then a k)= s§), and we have, using (13),

AR ;‘g<!:at\s'e)\‘> - <> =1 (1)

g =-=mm-emce—memmmemmmemme—me—meemeeooso-m—se——osoeo-
This average is over an ensemble of received signal and noise realizations which

are both totally independent of the earlier signal ensemble average, although the
same signal statistics are valid.
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(From (70) and (71), we extract the relation (to be used often later)

TRQ ‘O) = TR§ lo) = ZE ) (72)

Since the quantity EV%$ must be large compared to 1 in order to
get decent detection performance, even for coherent processing of a known
deterministic signal, it is seen that, in this more-random signal case, the
mean value %;32?{5} is very large, even when no signal is present. However,

of more importance is the difference of means of + &‘, with and without

signal.
For signal present, (45) yields (since signal and noise are
independent)
. 4
J{)Z_f(sw) - ;Lf Sg éﬁd’h[gl{,);*(&,)-& nl)n™ ;)] R h-t). (73)
'y

*
Now recalling <sI)D =0, we have

—

s ) = <sh)sh)> = R M) = R - 4), (74)

and (73) becomes, upon use of (69) and (72),

o A .
L YYlen) = ;tg d ok | R, -4 ’LT&:

— (—NE—>1 Iz + TEL-— ) (75)
where we have defined
4 ) T
L=% SJ(S é‘c.dh\(o&,—w\ = #Ldr(\—lr;'—) l/ofc)l‘ (76)
and R I
(ob = %'o; - (77)
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The difference of mean outputs, with and without signal present,
is available from (71) and (75):

L) - £ () = e

The size of this difference depends critically on the value ofXI,The quantity
1':' is a measure of the effective number of statisticaliy independent wiggles
of sW) in (-k‘,h); see Ref. 5, pages 5-10. Its value is strongly
dependent on the size of Rqfpe), For example, if Ryft) does not decay with T,
but remains constant at its origin value, then lolt)=l and T, =1t; this
is consistent with the physical observation that an unmodulated signal has
only one statistically independent value. On the other hand, if (61) is true,
then for T> 3/W,, (76) yields . .
400
T, = %\__Ldt](p,t)r = -LM = A iﬂ&hﬂ.

TR T T %o

_ L [# & A
T [f#ew] TW

where we have employed (77), (74), Parseval's Theorem, and defined the statistical
bandwidth of fully-random received signal s as”

a
w . J¥6e)] (60)
S T T Turer(mn
Jdr6: )

In this case, I,< f.; ; generally I, can be much smaller than unity if TW>L
Notice that TW; only has to be moderately larger than 1 in order for (79) to
be a rather good approximation.

In general, (76) aid (77) show that ~, s |. The nature of the
dependence of T. on R,k) and TW; can perhaps best be illustrated by an

(79)

S
Since Ggxlf) 1is the power density spectrum of complex envelope sW), it is a
Tow-pass spectrum centered about f =o0. Thus Wy measures the "width" of &;{f)

[ : on both the positive and negative frequency scales together. Alternatively, W;

I measures the width of the narrewband spectrum of sf#) about its carrier frequency.
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example. Let the signal correlation be exponential:

Ry (0) =[ Ry(o)- Ry b)) exp(- W el + Rulo)

equivalently, using (77),

(:hr)=6-c) aplwld)+ ¢, <= Rb)/RD.

Then from (76),

» (- )0+3e) - ¢ - x = e
SR CEE NS TN g

As particular cases,

lim T, =1 fr ol c;
%0
im T, = ¢t F c#0;

X -+ Jo0
Iz”‘)‘?("i‘; as x=>+= 1F c=o0;

=1 hr all x o=t
- 2%
r, -2t oo (54)

These relations agree with those stated above. A plot of (83) is given in
figure 3. The smallest value of TI,, and hence the smallest value of the
difference of means, {78), is attained when ©=0, i.e., Ralo) = O, . This
situation will yield the most difficulty in signal detection, and is the one
we concentrate on henceforth; that is, we consider only the fully-random signal,
characterized by (61). Notice from figure 3, that for c=o0, I, 1is very well
approximated by T—;Tls (l - i—,'w), for TW; as small as 1.5. In fact, (TW,)"
is a good approximation to I, for TWe> |0.

When the signal is obtained via Gaussian frequency-modulation of

a carrier, the pertinent requirements on the spectrum &, ) of the modulating

process, to yield a fully-random signal, are derived in appendix E and are
related to the behavior of &{f) near $=0 This case of Gaussian frequency-
modulation with property (61) will occupy the remainder of our attention.
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VARIANCES OF %7

For noise-alone, the mean value of )ﬁ’ is available in (71).
To evaluate the variance, we start with (45) and (74) and form the mean square

quantity
4
MS{‘;LXT(N)} = ,';L?\U J"h "tdgdﬂ'—"ﬁ)f&)” lé)ﬂ*”z) Rz Hr’f.))?; HT'LJ) (85)
t,

Now since n{p) is a complex-envelope Gaussian process, we can employ Ref. 6
and (69), and obtain for the fourth-order average in (85), the value

@Nj[ﬁ (b4 S by- 4) + Slt-) § b £)]. (86)

Substitution of (86) into (85) yields
4
B A R gé&.dt[?_i o+ IRb- 0] &7

Employment of (72) and (75) yields

E
Ly }:é‘ (l+ ) 88
mst L vy =G/ B (88)
Combining this result with (71), the standard deviation of interest is

sp{ 32N} = VT (89)

Notice that this quantity can be significantly smaller than (71), the mean value,
if TI,<«< ). This latter situation will occur if TWs> | ; see (79).

We are now able to form a deflection statistic for the random
quantity%?ﬁ) in the In LR. Using (78) and (89), it is defined as

4,

(90)

1206w -+ &
- T‘E

5D EXOW)
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This relation has been derived without any specific assumptions about the
detailed signal statistics, except for the randomness assumption (61). If
our processor is limited to just the f :’ term of the In LR processor in

(40) (recall that the <v> term is zero by (61)), we would require that (90)
be somewhat larger than unity, in order that good performance be attainable.

A reasonable ballpark figure for low false alarm probability (10'3) and decent

detection probability (.5) is to have deflection

4~ V0 (91)

higher-quality performance will require still larger values of d;. Then (90)
indicates that we will have to require

N, VI, n -

But if TWs> |, E/ﬁk is going to have to be rather large to get good
performance from fx? alone, for this fully-random signal. The factor Ii

is a measure of the penalty of having to detect a fully-random signal rather
than a completely-known deterministic signal, by employing just the second
cumulant, 57, of the infinite series (49).

For the signal-plus-noise hypothesis, the mean value of -'g,ﬁ’
is available in (75). To evaluate the variance, we start with (45) and (74)
and form the mean square quantity

’fs
MS{‘L)'—, (S*N)} NN" d&, ¢ dt, ot R K- {'t)Ri H:v-{)) F(t,,{,, f),‘fo); (93)

where fourth-order average

(4t = [0+ )][500+ 870)] s 2] (%) o) ] (04)

Using the statistical independence of signal and noise, their zero means, and
property (44), we find (using an obvious shorthand notation)
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- ¥ 5. 2% "
F= 55500 + 535 nnf+ 5550,

} Fynnd + 55Tl +nnfnaf (95)

A11 the terms in (95) have been encountered previously, with
the exception of the leading term. In order to evaluate it, we will need to
be specific about the signal statistics. As noted below (84), our interest
is in Gaussian frequency-modulation of a carrier, with property (61). The
pertinent second-order characteristics of this signal model are presented in
appendix E. In order to evaluate the fourth-order moment required in (95),
we employ (E-6) in the form

+
§‘-{—)=A eA(P[\\’lTLdum(u)-"iCb]) h<+<{i) (96)

where mlt) is the Gaussian frequency-modulating process, to obtain

- t, %
S, s¥s, 5 = A4¢/xp[|' 2-er_é dumb) + 1 2#&)&“ mlvﬂ

= A" %y[i 11r‘j du mlu)w(u; i)] (97)
where

w(u-,i) s Ulu-4)-Ulu-4) + Ulu-4)U lu-1,) (98)

and J() is the unit step function:

Ul = z X x>o} . (99)

0, X <O

Equations (97) and (98) hold for any values of {3){,){3,{; in f;,{a),
irrespective of their location and ordering in size.
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Now since frequency-modulating process m({w) in (97) is zero-mean
Gaussian, the integral on u, denoted by §, is also zero-mean Gaussian, and we
can immediately write (97) as

55 55 = Al exf[ih{_] - /\"tvx,v[—%(lvr)a ?]
A exp[-20 o dv R fu-y)w (u; £)w(v; £)]

"

Y Mp[— 2 [ 3F &, 1) JWIF; t)l’], (100)

where

W;+) = Jc,u exp(-1 2rfu)w(u; 1)
- o) eplidet) +expbizrtt) - op(iaeAt)] o

Here we have employed the Fourier transform relation between frequency-modulating

spectrum &, ¢) and its correlation R, k) (see appendix E), and used (98).
Equation (100) is a compact expression for the fourth-order moment,

and can be numerically evaluated by one integral when values for {‘.,t,f,){-,

are specified. However, it is not directly suitable for our use in (95) and

(93). Rather, we expand |W]" by means of (101), and obtain

Sy 3, 5, 5: = A* W}[é‘{ 0'2“';- +4) + Tl“’v‘ +))
_ k) - Ol ) -l - 1)) ] (102)
where “9
oo = 2{# e [I- s brFr)] (103)
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In appendix E, this real even function elt) is interpreted as the variance
of the “random walk" process 21rfdunnh) during an interval of JT] seconds.
Thus we have a closed form expression for the fourth-order moment in (102),
provided that (103) can be evaluated in closed form.

Now also, for the frequency-modulated signal process in (96), we
have

Ryt t)= TRV = A w20, du i)

' wy[—{-()‘m,-ﬁ)] ) (104)

which is real. The last step follows from appendix E, or by setting t; =+
in (97) and (102), and noting from (103) that ¢ fo) = 0. But now (104) enables
us to write (102) as

Rsb-0ORU-t) R b-4) R, ls-+)
Rs'ﬁf’*? Rslﬂ-{a)

5 (105)

sh)s*h) s k) ) -

in terms of second-order statistics. This equation is exact for signal model

(S56). For comparison, if sl) were a Gaussian process, the right-hand side

of (105) would have been expressible in terms of second-order statistics (according
to Ref. 6) as

Rsh-ta R -1) + Rel-4) Rik-8). (106)

(The approximation afforded by the replacement of (105) by (106) will be of
interest later; see especially appendix F, (F-42) et seq.)

Thus the leading term in (95) is given by (105); the remaining
terms in (95) are developed below, by using (74) and (69):
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5 5 md = RM-t) 20 §Hh-+)
5F wfm = Re(b-t) 2n G664
¥, onmt = Rolh-t) 20 S(6-4)
o0 w2 Ryfh-4) WS U-4), (107)

and the last term in (95) is given by (86). Thus F in (95) is given by the
sum of (105), (107), and (86). Employing these results in (93), there follows,

by use of (74), (77), (72), and (76),
MS{-’if)(s‘rN)] _ %)16 +Iz> + 2(&7(1‘9» I,) + 6).3_)" T, (108)

*
where we have defined

I:) - —'——J?( d{, ¢t d{}fu‘z"h)/({"{’)//ﬁ'é‘) (109)

T° i
and
4, > 2
T,- A fd‘:,é&,%d‘:, #(ﬂ—h)\ ,P"a‘ﬁ), Ij/ﬁ-{}),o(‘ﬁ-fy) ‘ (110)
2 T i{ }/Iﬁ;“fgyp(ér-{3)r

Both of these quantities are smaller than unity; in fact, they can
be much smaller than unity. For signal absent, only the first term in (108)
remains (see (95)), and (108) reduces to (88).

When we combine (75) with (108), there follows

%
In denotes a p-9 fold integral, with p numerator f-functions and;denominator
f—functions. If 9 is zero, the notation is simply ];.
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) f5) 2o (E]5, ),

The first term in (111) is identical to the square of (89); the other two terms
] are due to the randomness of the signal.

Approximation to I,
In order to evaluate I, and I of (109) and (110), we need to make
some approximations. These approximations will be developed by re-consideration

of I, and carried over to the cases for T, and I, where exact evaluation
is very difficult. First, in (76), Tet =4 ~[+t)/2 fr k= 2. Then

Th
I - ‘-;'I_S;/S;““- du, ]{)(u,—w)r = ﬂc)u. du, rfu,) rlu,)llo(u.-u,)r, (M2)

where rectangular weighting

r'u) E{ '/t" ) Ju) <.T/2}. (113) . l

0, o{hevw'se_
Let X= U-u, in (112); then
L, = Jfdu, devioyrlu- Dol = & bl (114)

where

4,00 = du rly) r(u-9 (115)

is the autocorrelation function of rectangular weighting (113). This auto- |
correlation is triangular and extends over the range [-T, T). On the other }
hand, the effective width of If(X)la is approximately V%;'. Thus if

TWe > 1, | 6))>  has decayed to zero long before ¢,/ has changed
' significantly from its origin value. This allows (114) to be expressed
I approximately as
!
!
|

I = 409 [ o - L ol I
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In order to evaluate (116), we will approximate signal correlation
f) by a Gaussian function. We choose

/ah')z %r(‘? _:'Cz> fr Wl T (Mm7) 1

The choice of scale factor has been made to satisfy condition (80); thus W; is i
the statistical bandwidth of the received signal. In appendix E, it is shown
in (E-28)-(E-33) that (117) is in fact a good approximation to the true signal
correlation when the rms frequency deviation is somewhat larger than the
equivalent bandwidth of the frequency-modulating process. Furthermore, even
when this condition is not true, Ws in (117) could be chosen so that (117) fits
@s well as possible in some sense) to the exact signal correlation, given by
(E-11) and (E-9). Several examples for modulating and signal spectra are given
at the end of appendix E, and the approximation (117) is demonstrated.

Substituting (117) in (116), we find l
z L TWe > | (118)
L gy for TH>1

this result is consistent with (79) et seq. TW; does not have to be too large

for (118) to be a reasonable approximation.

Equation {118) is a fairly good approximation to the exact curve
for €=0 in figure 3, where the signal correlation was exponential; see (81).
When the signal correlation 'o is Gaussian, as given by (117), the exact value
of I, is available from (76) according to

I, - AF [’f(*)-‘f - lﬁﬂfﬁ] o= T (19)

Error function ® is defined in appendix E, example 2. Comparison of the

approximate and exact values of T,, given by (118) and (119), is presented in
figure 4. It is seen that (118) is a rather good approximation, especially for

Targe TW; . Thus the approximation technique developed in (112)-(116) will be
used to approximately evaluate T, and T, given in (109) and (110). Actually, H

all the above has been done merely to set the stage for the approximate evaluation
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of IT; and I, since exact evaluation of I, via (76) is rather straightforward
in most cases; see, e.g., (83) and (119). However, exact evaluation of (109)

and (110) can be extremely difficult.

Approximation to I,

Use of (113) allows us to express (109) as

]; = Jﬂf}u. du, du, r(w) Y'(u,) rlu,)/”(”r U»)/O (u,- uJ)/D('{a‘ “z). (120)

Letting x= u,-u, y= Us- Ua,

I, - Jjj dx du, dy rlup-x) rluy) rlu, J@/ (x)/o (- x—g)/ (:,)
= ﬁdx y ‘*‘3(")9/0{")/0(‘ "'3)/”@)) (121)

where

9, (x,4) ff du r(u-%)r(u) r(uty). (122)
Now if  TWp»y, (121, (122), and (113) yield

T, = @(o,o)ﬂdx dy /o(’()f(—x-5>(o(y) = ;l_;l(dx dﬂ/(x)/o(-x—y)//y), (123) |

since the integrand of (123)— O no matter how x,y— % % . Next we
appeal ® approximation (117) in order tc evaluate (123); we have then

T, = = Jfok dy en-mal tegtomy)] = é/»% ' GO

The last step was made by use of K-fold multiple integral relation

there follows

de “r[‘XTMX] - 6;{%‘\) , det M >0, (125) ',

PV T

 andii
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>
where column matrix X = [x, X.;] , and M is a symmetric K x K matrix.
Equation (124) constitutes our desired approximation to TI,.

r

Approximation to Y- T,

If we try to approximate I, in (110) directly, as above, we
encounter the difficulty that the appropriate correlation does not decay to zero
for large arguments. Specifically, if +,=t and '!5=+.4. in (110), the
integrand remains at value 1. Furthermore the variance expression of interest,
{(111), involves the combination Iu‘I;- Evaluation of this latter quantity
is undertaken in appendix F; the end result s

0
T.-I = —> 126
627 2 (T, 2 (126)

(D2 . . . X
where I,,' is a dimensionless quantity of the order of 1. A short list of
values of I? is given in table 1, for Gaussian frequency-modulating process md)
with an exponential correlation R, f); the frequency-modulation index

D= W, (127)

is the ratio of the RMS frequency-deviation to the equivalent bandwidth of the
frequency-modulating process mit). A larger table and plot are given in appendix F

| .5 1 2 3 4 5 6
I
| .356 .418 .642 .881 1.124 1.368 1.612

Table 1. Values of I‘,',) for Exponential Correlation
of Frequency Modulating Process m(t)
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Approximation to Variance
When we combine (118), (124), and (126) in (111), we obtain the
approximation

Var{{ﬂ)(s”‘)} = gi)zﬁ +<€;>3 (‘;"w% ¥ %y _("?'_:v%

2 " )
=<ﬁ> TV,TS[' ol A =4 Rs] for lage TW, (128A)
where
E/N, - Yeceived Signal  power
% = TW,  NW,  Yexeed msise power in sigml DBand (1288)

is the input signal-to-noise power ratio (SNR) in the signal bandwidth*. For
very large TW;, keeping Eﬁ%é fixed for the moment, the first term in (128A)
dominates; that is, for low input SNR, the first term is the same as the square
of (89) with approximation (118). In terms of deflection 4, defined in (90), we
can employ (92) and (118) to write the requirement on E/AL as

E - =4 [Tw TW, (129)
N E d TW, 1cbr )Wgt ,

in which case (128A) and (128B) become

Vbt = &[4 g + (Y ] v
o E/Ne _ 4
R - T - (1308)

Another interpretation of Rs is furnished by expressing Rs= E./N., where Er%
is the signal energy per independent component. That is, in observation time T,
there are TW; effectively independent components of the received signal (see
the footnote to equation (80)). Then small Rs is synonymous with a small ratio
E,/Ns of the component signal energy to noise density ratio. This interpretation
will be of use later.
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The first term in (130A) is the only one that would remain for hypothesis H,,
signal absent; see (89). Thus the increase caused by signal randomness is
indicated by the last two terms in (128A) or (130A), in terms of input measure R
or output measure az; respectively. If f'rW, is somewhat larger than the
performance quality measure d. (see (90)-(91)), then (130A) is only slightly
larger than the variance with signal absent.

Although the variability of -{-X:' is somewhat greater with signal-
present than with signal-absent, this may not matter much if we are asking for
detection probabilities in the neighborhood of 0.5. For this case, the threshold
will 1ie approximately in the center of the probability density function of the
decision variable when signal is present, and the increased variability is not
relevant. And for false alarm probabilities in the \()-3 range, with TW>|,
the deflection criterion of (90) is the appropriate quantity to focus on. Thus,
if we confine attention to the ‘{’X‘I) term of the In LR development in (49),
requirement (129) is the one of major significance; whether higher-order terms
are important has not yet been ascertained.
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DERIVATION OF ?t;'

We are now prepared and interested in determining some of the
higher-order terms in the series expansion of In LR in (49). We recall that
r 1is given by (32) or (42), and that 'X;’ and Y:" are given by (39).
Substituting (96) into (32), we have

r=TRe { C%P(—v'¢)} =T (ce—w* C*Q;o), (131)

where we have defined the complex quantity
+
A .
C = —ﬁrj&gl":) W?["I ijtclum(u)] ' (132)

Now, according to (39), we must average r* over the signal statistics, i.e.,
over $ and mf®. Performing the average over ¢ first, we obtain from (131)

- A
<r3>¢ — !_e_< (CQ_'¢+ C*Q'O) >¢ = O, (]33)
since ¢ js uniformly distributed. Therefore

Yg) =0, (134)

meaning that the term %-Xg) in In LR of (49) is absent. In fact, all cumulants,
Xiﬂ, for k odd, are zero, by an argument similar to (131)-(133), for the signal
model (96).

37




[

o+ e pp—

DERIVATION OF

We now have to average ' over the signal statistics. From

(131), we find

G = <(Ce‘ bo e")’>¢ = gl

Hence, from (39),

e 3<1e ~3%

(135)

(136)

here we must still average \Cf‘ over the random signal frequency-modulating

process mi). We have, from (132),

el = Y [[[fdb dt st ot x TR X )XH) -

<exy[vi2-rrj;dumlu) -1 275:4“ Ml“ﬁ>ﬂ .

But we have already evaluated this statistical average, in (97)-(105).

we find

QS = (A5 [f okt ots 5" 3HY

p - ) p k- +) ple, 1) ph- t)
T ?;“i f@)ﬂ9 {' ﬁd

where we have also used (77).
Combining (138), (45), (74), and (75) in (136), we obtain

- LT[ 2 A xR DY)

pu ﬁ/“; ’%)[W’g) ] .
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Therefore

(138)

(139)




This is the next non-zero term* in expansion (49). Although it indicates
explicitlywhat has to be done on the received waveform X{i), no simple way

of realizing this processing has been discovered; in general, it appears that the
difficult processing indicated by the fourth-order integral must be evaluated.
Whether there is a special property of the combination of correlations in (139),
that enables a simpler or approximate realization, is unknown. The magnitude
of the difficulty of calculating (139) directly is pointed out by noting that
since samples must be taken in time at least as often as /M, seconds, and x#
is of duration T, a sum of terms of order (TVS must be effected. For large TW,
this is not going to be possible, in which case approximations must be found.
For now, however, we are interested in the average size of the term (139) in
the In LR series.

A partial check o (139) is ang rded by using the example of xW)= SH-+.),

whizch Isads to 24 = - At the same time, (132) then yields
Ic)* = AYNg , whﬂe (131) y1e1ds = LA NE and <=3 W), and
(39) yields the same value as above for /24. Alternatively, use of the

replacement-approximation of (105)-(106) results in zero for (139); this is

consistent with a Gaussian assumption for sH). More precisely, use of (F- 47)
in (139) yields

- A )‘ﬂ(wwe e bR LR, (- 4,44 4- 1),

v.lhire_;emainder R, (x,y,z) tends to zero no matter how x,y,2 {increase to
infinity.
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MEAN VALUES OF X

Signal Absent
Let the combination of correlation functions in (139) be denoted

by kernel K l{.,-h,{',,-!;) (which equals R;(-l:,—t—,,{—,—i-,, £-4)). Then

for noise-alone, using (85) and (86), along with (76), we have mean value

+ b
;L_-X?(N) N Tt‘ %f— g‘ﬁ dl,d{, J‘a C}ﬁr ‘

[5k-4) SHs ) + S £) Sht)] K, 6,8, 4)

L
"N

o h
Az j{ &, &{-}[K ({”'{’”{:”'(‘3)"’ kkv;{)){?)-")]
3N

IS 4 2 v
=~y %Ag&‘&t’lf&%’)\ o _’E@_) L. (140)

For comparison, (71) yields the mean value of the previous term
in the Y LR expansion (49):

——

r) E
"{ (N) = ",J; : (141)

Since T, :(TN:Y for TW> ) via (118), (140) becomes small relative to
(141), as TWy increases, as was anticipated, provided that E/N, is held
constant; however, large values of TW; would be required, due to the additional
power of E/N, involved in (140). Furthermore, the situation of fixed E/N, is
not the one of interest; rather, if we attempt to keep the deflection criterion
d, of (90) constant, we have from (92),

LN = -3, (192)

which is constant (and large), while
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%%B(N) = V—% 2 by TW  for TW > ). (143)

In order that (142) be much smaller (in magnitude) than (143), we would
require J;d,/ﬁw: =4 R <<, which would indicate large values for TW,
since values of d, 2.’5’ are typical requirements for good detection
performance; see the discussion surrounding (90)-(91). However, these mean
values are not the final or most meaningful measures of performance; additional
important parameters are evaluated below.
Signal Present

The derivation of the mean value of 2; in (139), for signal
present, is rather involved and is presented in append1x G; the result is

Mm ) (%jr‘_ (ET,,)BIJ + %(ETY (1‘,,5 2T,), (124)

where

By
b-+) ol
T, *'T'ngf*. 0, [f“ f";’f; *L)ﬁ;/f}f) ﬁ)] , (143)

and T,,I,, and I, are given by (76), (109), and (110). Evaluation of To-2I,
in appendix G, and use of (118) and (124), yields

L3F%wn) = \jﬁ‘/i (——j I':)/" (146)

ENY % L p2
-5 -T{Z[H-{;%Rs -1 R Bl TH, e

»
where IQ is & dimensionless quantity of the order of unity. In terms of
deflection d,, we use (129) to express (146) as
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Comparison of (142) and (148) reveals that the difference of mean fourth-order
outputs is

2 p 4 3L _d
‘{;'K’(SJFN)‘Z%X:Y(N) =‘Edz. \/ﬁ:[” ¥ oy d e (149)

which can be large for d;~ /ﬁ?- However, when we recall that the difference
of mean second-order outputs is

2
2] _1yY :(_E_> T = d 150
—iL ‘Z’ (S+N) 2 X, (N) N, 2 2 (150)
where we used (78) and (92), then we see that the latter difference is much B

larger if Rg= &, /VTW is small. But this is still not the final statement,
for we still have to address the deflection criterion of random variable 'Iﬂv,
which will involve the variance of Xr)(N) » in addition to the difference

of means considered above.
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VARIANCE OF XT(N)

Since 2:’ is given by the four-fold integral in (139), evaluation
of its variance will involve an eight-fold integral. To simplify this task, we
will consider the variance only for noise-alone. The derivation is given in
appendix H, with the result that

Vorf 20 = (R (Tu- 470 67427, o)

where the various quantities have been defined in (76), (110), (145), and also

I

;': J‘QS d, dt, ot d ()l'q- t) f &-@)//4,-4;) /lﬁ- 1). (152)

The expression (151) is simplified in appendix H, to
® + |
o) ‘} . 5D (E> 1
L = —— )
\/orEHY.,(N) 3 N/ Wy (153)

)
where T, is a dimensionless quantity of the order of unity, and is available
from If’ and ]j? according to (H-8). In terms of deflection d,, (129) yields

()

T, d
\/arf;';Yf(N)} = ST (154)

For comparison, the variance of the first term in the I LR series
is given by (89) and (118) as

Var{ 1YW} =(E] 77 = L (155

The ratio of (154) to (155) is of the order of (4, /YW Y = R2, which will be
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rather small if yTw, 1is somewhat larger than d,.

We can now form a deflection statistic for the second term alone,

)ﬁf/24, in the In LR series. Using (140), (146), and (153), it is

ke 68 - 5% ()

oo W)

H

In terms of deflection 9., we use (129) to find

. (156)

(157)

Thus the second term in the ln LR series has about the same deflection criterion
as the first term, when VTW, is large relative to deflection d,. At first,
this result would seem to suggest that the In LR series ought to be carried to
at least two terms; however, a better measure for this conclusion is based upon
the deflection criterion of the combined statistic

-" ) 1 "
I'A’E’ez""(!:-{ 1+24X4’

rather than upon each term alone.
deflection of statistic (158).

We now undertake the evaluation of the
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DEFLECTION OF {,,

The difference of means of jL, for signal present versus noise-alone,
can be obtained from (78), (118), (140), and (146); we find, with the help
of (1308B),

Jn(s'}‘N) - /(M(N) :(-NE_.):T-J'VTS - —%(S_)JIJTG 4+ j_:;: (%:5(_1._%47_

@
;(—5—\5 1—_—:%—- [I - 727—1?5 + —:E”-KZ] ' (159)

The variance of ,Q4 for noise-alone is given by

Vor f dulN)} = Vor £ 4, (N)} + Vor ¢4, )
+ 2 [/Qz(’“‘)/&{“) - ﬁt("])£+(N)] ) (160)

With the exception of the third term, these quantities are available from (89),

(153), (71), and (140). The third term is evaluated in appendix I, with the
result ]

LWALN - LINALN) = —&’})3 I,. (161)

Combining this result with those cited above, and employing (118), (124), and
(130B), there follows

i) -5 - 6 g 2

. o
EY o[- T ]
'(N.,> = [l 5K+ 2R | (162)
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The deflection of M, is

AL e ) AR OR) 6
5D $4a(N)) No VTV ‘\h-fg—& +oR)
where we employed (159) and (162), and recall (1308),
RS='E—_L“:_CL_' (164)
N, TWe  V7wg

Expanding (163) in terms of powers of Rs, we find

b=k -“ﬁ‘[l-}‘ 0(12:)] = i[‘* o(;{\g)] (es)

Notice that the perturbation from 4, is an order of magnitude smaller,
depending on (ci,/\,/rW-’\\J_s—’>1 now. Thus the addition of 4, to 4 does not
significantly affect the deflection criterion; this strongly suggests that the
first non-zero data-dependent term in the In LR series, )?, =+ ‘:’, is
sufficient to base optimum decisions on, without regard for the higher-order
terms, when WTWS 234, and d,>/7(5’. This criterion is significantly weaker
than the earlier ones which were based on preliminary statistics, and not a
final performance measure.
Correlation Coefficient

One additional statistic relating Jf, and A, is of interest,

*
namely their correlation coefficient; for noise-alone, it is given by

gm-mmmemcemememm—ctceessececememam—somuesc—eacoooo-
Calculation of the correlation coefficient for signal-plus-noise would require

knowledge of the mean of &,(5+N) £,(5+N) and the variance of L[(5+N), in
addition to the other quantities that have been evaluated already. This would
mean evaluation of sixth-order and eighth-order signal and noise correlations and
subsequent simpiification and approximation; this task has not been undertaken.
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C.(N) =

(166)

Substitution of (161), (89), (153), (118), and (124) yields

C, (N = - Vfr? for Jarge TW;. (167)

Evaluation of Ig’ is undertaken in appendix J; we find via (J-13)
- _ = 3. 168
C.W) = -0611 fr D (168)

This rather large correlation coefficient indicates that the statistics J,(N)
and LM tend to vary together; that is, when one gets large, so does the
other (in magnitude), and vice versa. This result, combined with (165) above,
is further confirmation that the addition of £, to £, does not significantly
alter the decisions yielded by f, alone. This conclusion is drawn for large
TW, only. As an example, if we desire d,~/10' (see (90)-(91)), then (165)
suggests TW;>J00 as the condition for neglect of {4, Consideration of
(130B) reveals that we are then talking about input SNRs less than If//lo = -5dB
To summarize, if we want decent performance in terms of detection
and false alarm probabilities (dz?.m) 5 and if FW: is large relative
to d, (VTW' 2 34d,), then the input SNR is small (R < 1/3), the time-bandwidth
product is large (Tws> l00), and the 4_ term in the In LR series can be
dropped (use f, alone). In fact, if {TW >moax(0,3d), but d, is small,
then Rs< '/3 , and the 1, term can still be dropped without degradation in
performance; however the performance level, in terms of false-alarm and detection
probabilities, will be poor.
If we attempt to state the condition for neglect of A, in terms of
input SNR Rs, we can say that if R < )/3, then from (164), /TTS' >34d,. However,
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this does not necessarily mean that TW is large unless dzk 3. So small
input SNR is not a sufficient condition by itself; it must be augmented with
the requirement of good performance by the processor. Then we can state that

ﬂ, can be dropped in the v LR series.
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ON THE APPROACH OF r TO GAUSSIAN

It was noted in (47) et seq. that the random variable r should
approach Gaussian as TW; increases; we can now make some quantitative statements
about the rate of approach. If r were equal to a sum of N independent identically-
distributed random variables fi.}?, then we would find that the measure of non-

Gaussianness afforded by

WX
-—E’; \ z},z (169)

indicates a N decay. For our problem, however, r is given by (47) as a sum

of approximately TW; unequally-distributed independent components; the unequal
distribution follows from the weighting by the received waveform Xx{f, which

varies with time t. Furthermore, this results in {X:)} themselves being random
variables. Nevertheless, we can still derive a meaningful measure, similar to

(169), for our problem. )
"
We observe first that the random variables Z!)(N), K(S*N), Xi(N)
are clustered if TW;D ); that is, their standard deviations are much smaller

than their means, if TWg>» 1. From (71), (89), and (79),

SDLXT N o
I

(170)

From (75), (79), and (128),

Y2
SpOb) (+ 2R+ TP R

Lo (s+N) e +Rs

) an)

where R is defined in (164); the function of R; is approximately unity. And
from (140), (79), and (153),
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SD{Y‘;)(N)} - - [Iz_; ' (172)
%) ™

the numerator of (172) is approximately 3.44 for D = 3; see (J-13). For
large TWs, these last three quantities are small, and our conclusion about
clustered behavior is drawn.

This leads us to replace (169) by the measures

(173)

and

v Type
X,(SHJ) _.2 I+%Rs' —=Rs
0 (s+ 9 ™ 1+ %)

) (174)

which are obtainable respectively from (140), (79), (71), and (146), (75),
(79), (164). Since the function of Rs in (174) is approximately unity, both
measures (173) and (174) indicate a rate of decay proportional to (T'“Qf';
this inverse dependence on the effective number of independent components in r
is similar to (169). The scale factor in (173) and (174) is somewhat larger
and is probably due to the unequal weighting in (47), as mentioned above.
The cumulants 'Xg’ and X:’ are zero, whether signal is present
or not, as are all odd cumulants; thus )dr is the first non-Gaussian contributor
to the In LR series:

L9 IR
I LR""S“"{Y\ * ;};’X&'*.m X+ (175)

(-3
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where we employed (49), (41) et seq., and (134)., A1l of the above measures
lead to the conclusion that the most important term in (175) is the first
data-dependent term X,_M, at least for large TW;.
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POWER AND ENERGY RELATIONS

It has been noted above that, for large TW,, the dominant term
of the In LR series is the +X7 term, and that in order for this term to
realize deflection d,, we must have the ratio of received signal energy
to noise-density

_NE_ = dLyTW, , (176)

where d,~ \/l? for good performance; see (129). This relation requires the
received signal energy E to increase according to the square root of the signal
bandwidth, WSY', for fixed deflection 9, noise density N,,and observation
time T.

The ratio of the received signal power to the noise power in the
signal band is then

_ AI/Z _ ELT - dx
RN TR T A

which allows K5 to decrease as w;v. for fixed &, and T. The reason for
this decrease is that the received noise power in the signal band is increasing
according to Wg, as Ws increases. A better measure may be the ratio of
received signal power to the noise power in a 1 Hz band:

> W
_ILZE__ - d, Tf . (178)
N-1
12
Like E/N., this must also increase as Wst, for fixed d, and T Some
examples of these relations are presented in table 2.
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d, W, (4a) T (sed TN, ENM  Ri(dp) ALz i)

N
Ao 3‘§ 300 1000 20 -10 4.8
o ‘5 300 100 15 -5 9.8
L 30 0" ] 14
{1o” e 0 ] 0 0 -14.8

Table 2. Power and Energy Relations

The input signal-to-noise ratio, (177), can range below 0 dB if
Targe values of TW; are attainable; but rather large values for E/N, are required
in this case. For comparison and partial verification of the last example in table
2, Ref. 8, page 14 gives, for M = 1 alternative, D = 10-fold diversity, ¥ = o> ,B=5
the value E;/No= 1.3dB; thus, high orders of "diversity" (TWs>» 1) requn-e
large values for the received signal energy to noise density ratio, in order to
attain decent performance.

ThlS is not a very large value of TWs; thus the conclusion about [, = -{);
being a sufficient statistic, and the adequacy of d, as a performance measure,
are suspect for this last example.
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THIRD CUMULANT OF L (N)

The first two cumulants of J,-_)r,‘:)(n) have been derived in (71)
and (89); they are, using (90),

2 2
C,f—gE; : g:éf—')Iz: d, . (179)

For large TWs, these relations were the basis in (170) for showing that

L 7(N) s clustered around its mean value. Now we wish to show that

1 )A‘;’(N) is tending to a Gaussian random variable as TW; increases. (This
is true even though '{*Xt’(N) is a nonlinear double integral of the noise
waveform.) We do this by considering the normalized third cumulant Q/C,’/’,
which is a standard measure of non-Gaussianness of a random variable (see, e.q.
Ref. 4). We have

G = [‘HL‘,"(N)-"{)CS)(NW , (180)

We expand (180) out and use (71) and (88) to evaluate the first- and second-power
moments. The third moment can be evaluated by using the properties of complex
white Gaussian noise in (45), with the result that

&)
G = 2%‘) L, (181)

where I, is defined in (109). Therefore (179), in conjunction with (118) and
(124), yields

c3 =2 I) _ 1’/\[5

P

~a ) TW,

Lor \agg TW,. (182)

The square-root decay with the number of independent contributors is again
standard for this particular normalized cumulant; thus + Z!)(AD is tending
towards Gaussian. This result (182) could also be useful in setting thresholds
for specified false alarm probabilities of the processor employing only %)4')
in its decision-making.
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SIXTH CUMULANT 1) AND ITS MEAN

The conclusions drawn above have been based on consideration
" ? . .
of )& and x& and their statistics. We now consider the sixth cumulant
’X‘” and its mean 'X‘“(N) with noise-only; any other statistics require a
prohibitive amount of manipulations. The derivation is presented in appendix
K, with the result

(,‘TYX) 2304 (ﬁf)lﬂm* ok xk) - xh) -

[ -1 ) K 8) + 12Kk DK BRI Y] s

where
(k) = PRI PP ) ) P> (184)

yHD js the complex phasor process defined in (F-43), k; is available in
(F-44), and hg;=f. The complex processing required by the kernel of (183) has
not been evaluated, because it is too difficult to realize physically and sheds

no light on the processor.
The mean of (183) for noise-alone is derived in appendix K:

Py ’ ?
FORE LRS- A= S

For comparison, the means of the first three non-zero data-dependent terms in
the In LR series are summarized:

s E \ - E 4 p2
PEN =5 > 6N = ( ”‘)’5' A (186)

Thus the mean values of the higher-order terms are dropping off by additional
powers of the input SNR Ry, which is small. This leads to the conjecture that
the higher-order terms in the In LR series are progressively less important when

VT, > 3dy,i.e., small R;.
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SUMMARY

The logarithm of the likelihood ratio has been developed in an
infinite Volterra series, and the leading terms, from zeroth-order through
sixth-order, have been investigated in terms of their size and statistical
significance. It has been found for the fully-random signal, which is
characterized by no deterministic component and no carrier, that if false
alarm probabilities in the order of )63 and detection probabilities in the
order of .5 are desired, if the product, TWg, of observation time and received
signal bandwidth is Targe, and if there is at least a moderate frequency modulation
index D, then the ratio of total received signal energy to noise power density
level must be rather large, of the order of 3}TWs ,and the dominant term in the
log likelihood series is given by the filter-energy-detector term, )ﬁ?- The
requirement on the frequency modulation index D being at least of the order of
2-3 was introduced in the analysis in order to facilitate approximate evaluation
of some of the multiple integrals by means of Gaussian functiors. Thus this is
a sufficient condition employed for tractability; how small the modulation index
can become, without violating the conclusions above, is unknown.

Alternatively, if VTW: is larger than the maximum of 10 and 3d.,
where dz is the deflection criterion of the filter-energy-detector term )4?,
then the dominant term in the log likelihood series is )d?; this holds regardless
of the size of di, i.e., whether good or poor performance is to be obtained from
the filter-energy-detector. In this case, the input signal-to-noise power ratio
in the signal band is small. It is not sufficient to say that small input signal-
to-noise power ratio alone yields the filter-energy-detector as near-optimum.
Rather this condition must be augmented with a requirement for large TWs, i.e.,
J—TE > (]0, 3&;) , which means that larger time-bandwidth products are required
for better performance.

The input signal-to-noise ratio, R,, can be put in the form
'R,: E,/N., where &, is the received signal energy per independent signal
component and N, is the noise power density level; see the footnote to (128B).
When this ratio of component signal energy to noise density is small, and the
number of components, TWs, is large, the optimum processor is well approximated
by the filter-energy-detector. This same conclusion has been reached by the author
in some as yet unpublished work (Ref. 9) on the exact performance of a related
processor, the In T, combiner; see (51) et seq. Specifically, for a signal with K
orthogonal signal components, deterministic except for phase, the optimum processor
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is a sum of In I, of the sampled envelopes of the outputs of K filters, each
one matched to a different signal component. When the number of independent
components, K, tends to infinity, the optimum processor does not approach a

sum of envelopes-squared (the filter-energy-detector) unless the signal energy
to noise density ratio of each component tends to zero as K increases. Also,

in this case, the performance of the optimum processor and the sum of envelopes-
squared processor are close to each other in the region of reasonably-good

false alarm and detection probabilities. This exact back-up analysis of a
related processor tends to confirm the results achieved in the current study.

We have assumed here that the signal amplitude, A, is a constant
over the observation interval. This Ted to a more tractable analysis and did
not require any additional assumptions about amplitude statistics and their
dependence on frequency- or phase-modulation statistics. It is this author's
conjecture that in the case of random amplitude-modulation in addition, the
filter-energy-detector will again turn out to be near-optimum under the conditions
of small component signal energy to noise density and a large number of independent
components. This is based, in part, on the observation that the received signal
would be even more random than in this study, and that the filter-energy-detector
is a robust processor for the more-noise-like signals. Of course, the pre-filter
in the energy detector (see figure 2) would have to be broadened to cover the total
bandwidth of the received signal (with both AM and FM), thereby lowering the input
signal-to-noise ratio in the received signal band. This would cause a loss in
performance, but is unavoidable as the randomness of the received signal is
increased. Alternatively, to maintain a desired Tevel of performance, the
observation time would have to be increased; the result is a larger number of
independent signal components and a still-better approximation to the optimum
processor.

Due to mathematical difficulty, it has not been possible to develop
anything but an infinite series for the 1og 1ikelihood ratio. We then had to
analyze the low-order terms (through order seven which is zero) to determine
which were significant, and under what conditions the leading Jdata-dependent
term was dominant. Every statistic (we could reasonably evaluate) pointed to the
filter-energy-detector as being the dominant term, under the conditions cited
above. Evaluation of higher-order statistics of ;’, such as their higher-
order cumulants (see (182), for example) or higher-order terms (i.e., iarger k,
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as in (183) and (186), for example) is possible, but is extremely tedious. It
also requires approximations to still higher-order multiple integrals, which

have proven very time-consuming to evaluate exactly. Furthermore, the difficulty
of realizing Volterra kernals such as (139) and (183) appears to preclude this
series as a practical solution to the problem of optimum detection of frequency-
modulated tones. Rather it appears to this author that for moderate TWs products,
approximations to the likelihood ratio directly should be attempted. Analysis of
their performance will probably require extensive simulation effort.
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APPENDIX A. OPTIMUM PROCESSOR FOR SMALL TW;

If TWs< ), we can give an explicit expression for the LR.
From (32),
s T ¥ LsT<E
reRedxa] frog W, (A-1)

where X and @ are the values of !.ll) and 2l9 at the endpoint 4. Now let
us consider 5 = |sloxp(id), where ¢ is uniformly distributed over 2w
From (13), since E= 4Is\* T, then 15| can not be random, since E is
fixed. Now we have deterministic component <s%» =0, and therefore, from (33),

g =5 =|s) ep(ig). (A-2)
Rso <v>=0 from (31). Then (35) yields (since ® is uniformly distributed)
LR = exp ‘%)(ap[ﬁke{x a_*}]>
- exp(-§) T, (3 121 1) (8-3)

Hence comparison of I%| with a threshold is optimum,
On the other hand, the quantity

%X:) = 1D =1 <{ﬁ }5] Ix) (os(crgx.— ¢)}l> = f(% | s IXDI_ (A-4)

This again yields the rule: compare 1X] with a threshold.

This rule for decision-making is physically reasonable, since a
single sample, of a complex envelope with uniform phase, contains only one item
of information on which to base decisiors, namely the magnitude of the complex
envelope.
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APPENDIX B. SOME SIGNAL MODELS AND THEIR INTERPRETATION

Consider the phase-modulated signal process (also given in (14))

s - Acos[Zer.t+ 9“‘)""5]. t<t<ty,

where phase-modulating process O¥) is a zero-mean real stationary Gaussian
random process, and ¢ is uniformly distributed over Zwy. Then complex envelope

sib=A exp[l'e({‘)"‘iﬂ, t<t<ty.

Obviously <.$,H-)> = 0; hence there is no deterministic signal component. The
ac signal component is, from (33),

albh=sB= A exr[iéﬁ)+iﬂ)t<f<{b-

Then the averages over d),
<g|9>¢ =0, <9’£.)gl%,)> = 0,

as expected. Also

<gk,)a*’€.)> = A enplioh)- e#.5]>9

- R o[ Rb)+ Rbet)] = Rybo-t),

where we have used the Gaussian character of the difference variable §I9-6,10,
and defined the autocorrelation of stationary process eﬂ—) as

GOk = R, ft,-+,).

So we have, from (B-5)

Rgl)= A, Rybd= A wr[—R.(o)],
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since X°@0 =(0. The latter quantity in (B-7) is not zero unless
Relo) = <D is infinite. However if the mean-square phase-modulation
is large, i.e.,

<01|9>e =Re(0) > 1, (B-8)
then (B-7) yields

Rn ,'d>
R (o)

= %r[—&(o)] 2 0. (B-9)

But, in general, a small mean-square phase-modulation will give rise to a non-
zero value for Ry(e). This holds even though there is no deterministic signal
component, i.e., s> =0.

For the case of frequency-modulation rather than phase-modulation,
we have

+
o = Zdeu mh) , fo<t<t, (8-10)

where rnH) is the instantaneous frequency-modulating process, assumed stationary.
This form allows BHQ to be a non-stationary process. The properties of Gaussian
frequency-modulation are taken up in appendix E; it is shown that the exponential
quantity in (B-5) is replaced according to

R -Rk) = fdfﬁ’,({)—tgfrgﬂﬁ) (B-11)

where GE.H) is the power density spectrum of stationary frequency-modulating
process m{). Hence (B-5) yields

Rof) = A’m[—j#e,w '

The behavior of (B-11), as T—a, depends on the behavior of Q,,H—‘)
near f=0; numerous examples are given in appendix E. Suffice it to say, for
now, that examples exist where (B-11) tends to infinity, and other examples where
(B-11) tends to a finite constant. Thus (B-12) can tend to zero or non-zero values,
respectively, as T-»¢. Furthermore, this holds even though the mean-square
frequency modulation,

- Cos{f‘lw-fl‘) :} (8-12)
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o = <mh> = _/d»‘ G, i), (B-13)

is finite. Thus detection of frequency-modulated processes will be different
for the two cases of (B~11) being finite or infinite in the limit as T» o9 ;
see figure 2 in the main text.

When the signal has no deterministic component, i.e.,

(s = o, (B-14)

and in addition

Ra(«) =0, (B-15)

we call the signal fully-random; this is the case of major interest here.
However, below, we delineate the components of the signal in the general case,
so that we can properly interpret our case of interest.

Interpretation of Signal Components
The narrowband signal is represented in terms of its complex

envelope according to
s = RJ;H—)exy(ihﬁ-D}, f<t<ty. (8-16)

The ac component of the complex envelope is
ald= sH)- <D, (B-17)

Hence the signal can be represented as

s = Red< s> oxp(i whd)) + Ref 2 ) ep i 2}
di + alp), (B-18)

4]

where dif) s a deterministic narrowband waveform with known phase-modulation,
centered at frequency 4%. This component could include pure-tone components of
known phase, including as a special case, a carrier at {,, and/or sidebands in
the neighborhood of ¥,
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The correlation of signal Sﬂb is, using (B-18),

Rok b) = Sshysh)> = db)Ik)+ RfE-4), £ <thch, (5-19)

where ac component a“.) is assumed wide-sense stationary in the observation
interval. The latter term can be developed as follows:

Ret0) = <akia kD) = +<1 aoqliefd) + a*{f)exy(-;},ﬁ{.)} .
iQ“’—T)er(izwfu'-l))i- fﬂ-—t)mr(.;H’&-e)}> = %.- Re{Rn h’)%)’(ﬂfﬁa}> (B-20)

where Rnh:) is the correlation of the ac component of the complex envelope.
Now if

Ry ) ~ qu @X”(i?vrf,"l’) as T +4, (8-21)

each term represents a pure-tone component of random phase, at frequency £+F.,
of magnitude 'HQI If 'F;=0 for some value of k, this term indicates a
pure-tone component of random phase at carrier frequency ﬁ.

Thus the deterministic component of the signal can contain pure-
tone components of known phase, while the ac component can contain pure-tone
components of random phase. Coherent processing on both of these components
is possible and will be so indicated by the optimum processor.
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APPENDIX C. DEFLECTION CRITERION

In this appendix, we consider maximization of the deflection at
the output of the filter-energy-detector in figure C-1.

X&) ) A
> h(© J SQUARER > j&t 2,
Livear
Filter

F\‘ﬁ\"ﬁ C-1. FiHer Enev\tu-be‘l‘ufor

The input %K) is composed of either signal-plus-noise or noise-alone:

s+n )
X ft) = OR fr b<t<t, T-4-4, (c-1)

nft)

where the signal and noise are stationary processes during the gated interval
of time, independent of each other. The only assumption on the signal statistics
is that ensemble average

Rg H‘)"f;), tﬂ < t., t;< fb
al{-’)sk;‘) = . (c-2)

O) o{hexw}se

That is, ‘Sﬁa is stationary in the observation interval. A similar relationship : h
holds for the noise nH:). Since input x is a gated process, jl(:) is
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non-stationary. We allow filter l1h) to be unrealizeable, and we integrate
the squarer output over all time to ensure we collect all the signal output.

The output of figure C-1 is

+o A

e [ kyh = [ [f: o b )]
b
=j:d‘c gdu dv xu)x (Vh H-0)hft-v)
= _(?du dv xlu)x(v) A, (u-v),

where ﬁg is the autocorrelation function of the filter impulse response:

M (50) = ) b hle-Dhle)

Equation (C-3) may be expressed alternatively as
400 . o0 2
o [V = [ o morier,
Y oe -

using Parseval's theorem, where

b
HiF = jJT e'xr(—inFT)bh),

X{h)= f;& exp(-12m ) xIb).

Equations (C-3) and (C-5) indicate the generic form of processing attainable
by the block diagram of figure C-1, for any time-bandwidth values and any signal

and noise statistics.

The mean value of the output of figure C-1,

present, is available from (C-3) and (C-2) as

Ez 2' S+N} = Q du dv [R, (u—v) +R, (u-V)]A., (u-v). (c-7)

Then obviously, for noise-alone, the mean output is
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EfeIn} - j‘} dudy R, (w-9) A, (5-3). s

The difference in these mean outputs is equal to the mean output for signal-
alone at the input, and is

4,
EQz)S+N}- Ef2)N) = ES2|s} - Jﬁfﬂ'u dv Rs(u-vA, (u-v)

- | & orR AR

—

j:# e [e e ‘“‘*’] , o)

where T =4-t and Goff) is the signal power density spectrum. (We think
of underlying process sH as being stationary over all time, but being gated
and observable only during W,,H). If we let ‘;MD be the gating function,
then we have (more generally than (C-2}) the input observable signal correlation

[3&,) SH—,)][BH;) Sn‘z)] = 3’{')3&;) Rs i 't;) ‘F(,r ol) "‘.) 4 ) (C-10)

Exact relationship (C-9) holds for any interval T and any signal spectrum Gsf)
(including a possible dc component, corresponding to a deterministic component

of si).

Now we make a simplifying approximation: let
-1
TN od Rild=0. (c-11)

Thus, &®) will have no impulse at the origin. Then (C-9) yields the useful
approximation

+00 420
EelS) 2 T [ dertopr) = TG 6) ) (c-12)
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Now we address the noise output component. For noise-alone at
the input to figure C-1, we have

40
Py = _Lﬁf yflt) (c-13)

Its mean-square value is
+00 —_—
2 = [[ R, (c-18)
-

We now assume that 3.“) is a zero-mean Gaussian process; a sufficient condition
for this to be true is for noise input 11“) to be zero-mean Gaussian. Then
(C-14) becomes

+e0 2
% - [[4h[EHED + 2 5%E) | (19

giving
$o00 2
Vor ile} = 2:& dat, dt, 3&,53»’@15 : (C-16)

But consideration of figure C-1 and (C-1) gives

%
3..@ y 1) Q(t)u & ) h th-w)hi-v)

1
gduév R. (u-v)hﬂ,-V)h‘{-;-V)- (c-17)

Hence (C-16), (C-17), and (C-4) yield

Vor{i‘m} = 2_}5*.&[?&“&(“-")““‘"“)"“1“')]

2

b
= 2 [[(fauss 4o R - IR, DA, (wp) A, (v-5), (c-18)
+0
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which is exact for any noise spectrum.
An alternative exact expression to (C-18) is available by employing
(C-6); it is

40

Varlaln} = 21[ & o WOT WOT |14, £ (619)
where n
Kn (\Q,ﬂ) = g dudv R, (u-v) e/xy[-i 2w lfus v)] (c-20)

is a two-dimensional noise spectrum.
For the special case of white noise, we have

RO =2 0p, &)= S, £ (c-21)

and (C-18) yields
. -
Vlwle N} = J.N;_g du dps A, (u-;:) = '{'N;-_[rch: (r-reD A . (c-22)

This expression is exact for white noise. The alternative expression (C-19) is
unchanged, but (C-20) specializes to

&n (Fo,ﬁcb)r = 'l— N:Tz ﬁ"‘i(ﬁ*ﬁ)ﬂ) (C-23)

where 5;WC(K) = Siv’@rx)/(rrx).

If we make the reasonable assumption that the frequency width of H@
in figure C-1 is comparable to that of the input signal, then for T W;'
and A,p)=0, we have, from (C-22)

Varteh = 18T [ A = £R0T] NP, et
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the latter step via (C-4) and (C-6). This approximation is valid for large TW,.
Finally, we define the deflection at the output of figure C-1 as

PR ZCE RO

(c-25
Vor{zIN} )
Now calling on (C-9), (C-12), and (C-24), we obtain the deflection as
400 2
. a7 Lawmer]
d = ~ (c-26)

NG 5o o)

This expression is valid for white noise and TW> | Its sensitivity to different
filters NY) in figure C-1 is easily investigated.

The deflection in (C-26) is maximized by the choice of the Eckart
filter

ol -k B L e Tw e

N

The maximum value of the deflection (C-26) is then

£ o2 H 6 b hgeTw  ©aw)

= 3
0 No 2

Alternative expressions to (C-28) are

where the single-sided signal statistical bandwidth V@ is defined as
2
L8 6,0)

% T e (e-20)

4t —— e




and the received signal power is

3. [T#60. .

The quantity S/No in (C-29) is the ratio of total received signal power to the
noise power in a 1 Hz band; the latter quantity S/(M,N,) in (C-29) is the ratio
of total signal power to the noise power in the signal band.
In summary, for maximum deflection at the output of figure C-1,

the optimum filter-power-transfer function is proportional to the signal power
density spectrum (for white noise and no deterministic signal component); see
(C-27). This result obtains regardless of the size of the input signal-to-noise
ratio. Also then, from (C-4), (C-6), and (C-27),

+ R

A = | i explizei) L] - k R, (c-32)
—%0

which is proportional to the signal autocorrelation function.
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APPENDIX D. DOIFFERENT FILTER CHOICES

We have, from (45),

1Y = 3 [ & xR, - t). o
Let weighting
1, W<
w(w = {arbﬂmg, lu)>‘r% .21
and define
[l Raheglc 206 = & O, ol -

Then inverting (D-3), and appealing to (D-2), we have

+0
Rs"‘)zj.ﬁf “P(‘lff“)é‘rw(@) S R (D-4)

Now we employ (D-4) in (D-1), recalling that xt)=0 for th, i34,

to get
: I a4 V)z

£ = s o d xS [ i emlinet(6-4)] 6 6)

- Je (e wxul o)

This relation holds true for any weighting w satisfying (D-2).
Since the output of the bottom channel of figure 2 can be expressed

Fayer = [#ver = (o WOPXer, 0-6)

as




|
!
}
f
'

it would appear that the choice

) - G“)

> (D-7)

yields the desired quantity (D-5). However, use of (D-3) shows that

&6 = & W), (D-8)

where W) is the Fourier transform of weighting (D-2). But (D-8) might be
negative for some ¥; for example, if wl(W is chosen to be zero for Wi>T
in (D-2), then W) = sin(wfT)/(rf), which goes negative repeatedly, and could
cause (D-8) to become negative. Of course the selection of w(W=1 for all u
yields Wi = $U), and (D-8) is guaranteed non-negative; this is the case
considered in the main body of the report.
Realization of Second-Order ¥ernel via Busti's Technigque

Here we will instead employ the technique given in Ref. 7, pp. 4-6,

to derive the filtering block diagram necessary to realize )t‘?. From (D-1),
the second-order kernel is K, l,-1), a1 #,t., with kernel transform

oo (ot iab) R lot) - Sero)&@). oo
Now the most general second-order kernel is (Ref. 7, eq. 7)
Kq (w) K, (w,) K (w3 w,) (p-10)
So if we choose

K= §0), k=) fr ol T, o1m)

we have to require

S(wﬁw;)ﬁ o) = § o) K, (@) K, (-0 (-w) = § (o )K, 10,)K," W), (p-12)

where we have used the real character of impulse response K, {c). That is,




K, ) Ky &) = & o).

The block diagram of the second-order processor is then indicated in figure
D-1; some arbitrariness is present in (D-13).

Ko 1 .
._-iﬁ__. X -Ld-t e | ;
G

Raan Dt Se.cond-Order Pfor.e.ssor

For the particular special case of K(w) = KJ«)), (D-13) becomes

1K, () | - by (), (D-14)

and we have the block diagram presented in the main body of this report, when we
recall that G&,(w) could contain an impulse at the origin if Rald #0; see
(67). Thus this alternative procedure yields the same second-order processor.




APPENDIX E. GAUSSIAN FREQUENCY-MODULATION

The signal of interest here is the frequency-modulated process

¢
sl = A cos[sz.,{ + 2TrLadumlu) ¥ ﬂ, tL<t<t. (E-1)

The phase shift ¢is a random variable and is uniformly distributed over 2w
4 The instantaneous frequency of the signal in (E-1) is

£4ml  He, (E-2)

where frequency-modulating process mlb is stationary, Gaussian, zero mean
(no loss of generality), and correlation

miE)mit) = R H-8), <t <t (E-3)

The (double-sided) power density spectrum of the low-pass frequency-modulating
process m ) s

G ) = [t opl-i2nto) R, (D) (e-4)

and the mean-square frequency deviation is

02 = wh) = R0 = { o &, ). (E-5)

The complex-envelope signal is, from (E-1),

+
5"9 = A EIXP[( 2‘!!’_&(’\4 M‘U) +|.¢TJ) -‘a<f< {‘,. (E-6)

The mean of this signal is zero, since $ is uniformly distributed. Thus there
is no deterministic signal component.
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The autocorrelation of IH) is, for 4, <4,4 < H,

Rg “..,'L) = 3 “a);*(k.) = A2 yxr[iz-vrj:du m[u)] : (E-7)

where we have assumed A non-random. Since \m“:) is a Gaussian random process,
the dimensionless real random variable

+
y = 2TS+, U m lu) (E-8)

is Gaussian, with mean zero, and mean-square value

4, T X -
F =4 [ dudvRloed - AR AL hjtdu&-h))&,(u)
=+jd{e,4({)i‘";—€“ir) -2( 4 G;m Fased)] = 07 ), (-9)

where we have employed (E-3), (E-4), and defined T = I'(‘,-{-,]. Therefore (E-7)
is expressible as

Rt 4) =K og(iy) = AepldT) = Neg[-4e0] w0

using the Gaussian character of y and (E-9). Since the right-hand side of
(E-10) is a function only of T= [,-4,], sH) is wide-sense stationary for
k, < t <&, and we say that

K, h’) = A2 e/xr[— %.‘03 h’-‘ﬂ m ‘Hz olswva":ion in&rva’. (E-11)

According to (E-9), 0"fc) can be interpreted as the variance, after T seconds,
of the “random walk" process Yy in (E-8).
Since ¢ lo)=0 from (E-9), we find

Ryb) = |sb) = A7, (E-12)
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using (E-7) and (E-11); that is, the power in the frequency-modulated signal slo
is independent of the frequency modulating process mk) or its spectrum &, ).
Limiting Behavior

From (E-9) and (E-5), we find

T
“\2 h—) ] 4“"77'15 du (r..lu')Rm (0) = 4'"'20‘,: .Cl) 0” T20. (E-13)
=T

Furthermore (E-9) yields directly
R~ 4venT s T- 0+ (E-14)
In order to determine the behavior of RKe¢lr) as T- 4%, we need

to know the behavior of ¢“f), which in turn depends on &, ) via (E-9). In
particular, suppose that i

G.,,({)** amp as = 0;»>-) (E-15)

ke require V> -1 so that the mean-square frequency deviation (E-5) remain
finite. Then we find, from {E-9) and {E-15), the proportionality behaviors

Tw 1[or ~)<v<|
i) ¢ (T hr  p=) [ B TE (E-16)

¢ for V> |

Thus for —)< P <), 6 h) tends to infinity as T does. This in turn dictates,

via (E-11), that

b

0, -l<p = |
R &)N Qs T +-. (E-17)
s

Kem[- o) 2>

Thus, according to appendix B, there is no carrier term present if -l<¥s|; but
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there is a carrier term of random phase if )>|, that is, if &, ()~ 0 faster
than ¥ at the origin. In either case, there is no carrier term of known phase
present, because the uniform phase of ¢ in (E-1) precludes any deterministic
component.

If we assume that ¢7f) approaches the constant value g h) as
T-+%®, then we can express (E-11) as

K, o) = A'{ eql-4 k) wr[—%r’k):\ + wy[-%v’ lw)]} (E-18)

Then the spectrum of the complex envelope §‘|:) is

Go 1) = A exp]- +)] S0 + B, (6-19)

wherea
B = A [dr expliznfoenp[-4)-ecpl- 3570} (&-20)

The former component in (E-19) represents a pure-tone carrier term of random
phase at frequency ﬁ,, while the latter term represents a distributed spectrum
about the carrier; recall we are dealing with complex envelopes here. The
relations (E-19) and (E-20) actually hold whether ¢*M) is finite or infinite;
in the latter case, there is no carrier.

If &,lp#0, then P=0 in (E-15). Then (E-9) yields

o2 D) ~ 41r"rSduR..,(u) =4 G )T as T>+m, \E-21)

in agreement with the first line of (E-16). Thus in this special case, there
is no carrier term, and the signal correlation (E-11) or (E-18) decays exponentially

T o -9, bhere also follows
0 t T
:_%—0“ k) = +WJ&FE.,(-F)3'1%1Q = ‘?"r‘:(rdu R ), (E-22)
and

-C‘IE; k) = §+'R b (E-23)

12




Since the integral on € in (E-22) can be negative for some values of T, 0% /)
is not always monotonically increasing with T, despite its interpretation below
(E-9) as the variance of the random walk process § in (E-8). An example would
occur for spectrum G‘,,,(-F) narrowband about a non-zero frequency.
Approximations

Equations (E-14) and (E-21) suggest an approximation for g¥k)
when G-.‘IO) #0, namely

2
)y —m T , T20. (E-24)

Substitution in (E-11) then yields the approximation

2

RslD x A exy[- 2r 0n T ] , T20, &l #o. (E-25)

|+0;,’T/ &, [v)

We now give several examples of spectrum G-.,({) for the frequency-
modulating process mM), and illustrate the properties derived above. In these
examples, W,_ is a characteristic frequency of spectrum 6:..,“:), but it is not
necessarily the bandwidth of mlt). However, in the first three examples, where
&Gaf0)# 0, Wi can be interpreted as an equivalent bandwidth, in the following
sense:

4+
[ H#el) nl0) _
W = Glo) G (0 ‘-‘;Jo)

@, (o) # 0. (E-26)

That is, W., is the width of a rectangle with amplitude equal to the origin value
of the spectrum 6w lf), such that the rectangle and true spectrum have the same
power. In this case, (E~24) yields the approximation

2 4'71”6"11" m
x T 'mt = y T 20, G&,b) #0. (E-27)
TR =T A um.r ?
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This approximation is plotted in figure E-1 as the bottom curve; the remaining
curves are the exact results for the first three examples given below, and are

seen to be well approximated by (E-27).
Equation (E-9) points out another approximation that could be

extremely useful; we have

o = 4'#21"\(3{ &.6) Pl:—r(}'—ti]? (E-28)

Now the equivalent width of G;‘QF) is W, ; see (E-26). On the other hand, the
sinc? function in (E-28) reaches a null at f= V/r. Then if

> 4W,, (E-29)
(E-28) yields
k) = ?w’t'Jc}F 6.6 = 4rs T (E-30)
That is,
Lgih) & 2w 5—;;—(\‘1-'1?‘ F W< "+L ' (E-31)
2 W,
But (E-31) is equal to
J%t‘%- at Wt -3 (£-32)
(5]

which is large compared with unity if %) 3. Therefore K,h-) is substantially
zero for T> Qh(..)_',and we have

Ri k) = A’yxr[‘ {r",é}g A’%?[-zvr‘l‘:"c;] {OT o)l T, ,-F D= f“":: > 3. (E-33)

That is, the frequency-modulated signal correlation is approximately Gaussian if
the RMS frequency deviation is somewhat larger than the equivalent bandwidth
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of the frequency-modulating process mft), Some examples of this comparison are
given below.

The spectrum corresponding to (E-33) is

G.lF) = ﬁér::o; Wr[‘ ;%‘] f D =Ew'f’: > 3, (E-34)

This is a Gaussian spectrum with standard deviation equal to o, , which is the
RMS frequency deviation of the frequency-modulating process wmf#).

Examples
Example 1.

R ) = 0 exp(-2W, k)

. G /W.
G., l"') )+ ("'{/Nn))

G (/2 = .29 Gil0) , &, (Wh)= . 092 6. [0)

. 6 _2WuT-l+exp(-2wd o
I 120

This curve is plotted in figure E-1. Also

kS
1)~ 4 Im T a5 T 4w
o k)~ 4 v
Since =0 (see (E-15) and (E-16)), O2le) =, and there is no carrier. The

distributed spectral component of the frequency-modulated signal is given by
(E-20) as

Bl = A’J&c oxp (i 2rf D) exp[-10” k)]
= —ﬁigdx ms(‘vr-;,E;% @xr[: ) (x—\ ‘e )]

The parameter D =0;,}vl. is a measure of the frequency modulation index, being
the ratio of the RMS frequency deviation, 6», to the equivalent bandwidth, Wy,
(characteristic frequency) of the frequency modulating process wmi). It is also
a measure of the RMS phase deviation of the signal process, since ‘,D‘ appears as
a factor in the expression for G“'h:) above.
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Plots of B({i) are given in xef. 10, page 609, figure 14.4; however,
they are plotted in linear units (watts/Hz) rather than in dB, and the deep
skirts of the modulated-signal spectrum are not observable. We plot the (positive-
frequency part of the even) signal power density spectrum for this example in
figure E-2 in dB, where the curves are all normalized to unit area (over -« 4«),
The three parts of the figure present the same information on different abscissas.
Figure E-2(a) is most easily interpreted as considering W, fixed, and varying e;,
through the frequency-modulation index D. The curves labelled with an "E" are
the exact signal spectra obtained from the above equation for B(f), for ])=2k, k= -1(0)3.
Corresponding to each value of D (or k) is also plotted the Gaussian approximation,
labelled with "G", afforded by saying that

D x 42T fr al o

although it is recognized to be poor for large T (see figure E-1); it can be seen

that the Gaussian spectral approximation is very poor in the deep skirt region for
small values of index D, but is better for larger values of index D. As D increases,
the signal bandwidth Ws increases progressively.
Figures E-2(b) and E-2(c) are most easily interpreted as considering
RMS frequency deviation &, fixed, and varying modulating bandwidth W,, through
the index D. As D increases (i.e., modulating bandwidth W, decreases), the deep
skirts become narrower and drop by 3 dB per doubling of D; however, the skirts
are very slow in approaching the Timiting Gaussian spectrum indicated by the
D =e0 curve. For D>2, the -3 dB bandwidth of the signal spectrum is virtually
independent of D; in fact, this is true of any bandwidth measure above -20 dB.
However, it should be noted from figures E-2(b) and E-2{(c) that the
-3 dB bandwidth decreases as D decreases below 1 ( W, increases above ﬂ‘..,)_
That is, if RMS deviation &, is held fixed, and the modulating bandwidth W, is
increased, the -3 dB signal bandwidth decreases; this result is consistent with
Ref 10, page 609, figure 14.4b. It is also consistent with the observation above
that the RMS phase deviation is smaller, since it is proportional to D= ‘Tn/"‘ni
hence the frequency-modulated signal is more nearly a carrier of small phase
deviation and a narrowband spectrum. Physically, the frequency-modulating bandwidth
‘ W, can get so large that the accumulated phase perturbation during a time coherence
‘ interval W;' seconds is tending to zero, and the waveform is tending to be progressively
; more narrowband.
!
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However, the figures clarify that the approach to the narrowband
limit is not monotonic at all frequencies. Thus at f/&,= §, for example, the
spectral density initially increases as D decreases, until D=2-4= I/IS, at
which point the spectral density decreases with further decreases in D. In .
fact, by this time, the normalized spectral density in figure E-2(c) is well 1
approximated by the spectrum

D .
ey + s

For f=0, this function increases without limit as D decreases; for any other §

it eventually decreases as D decreases. Hence the bandwidth Ws of the signal
spectrum tends to zero as D decreases, and the assumption of large TW; will be

violated.

We will limit consideration to D> 2, for which the signal spectrum
is approximately Gaussian,and the bandwidth on the f/8, scale is virtually
independent of D (see figure E-2(b)). That is, W; is directly proportional
to On for D>2. This case also leads to a significant RMS phase deviation of
the frequency-modulated signal in the observation interval T. Once again, this
is in keeping with our interest of detecting the most random signal.

Some analytic expressions are available for the origin value and
the statistical bandwidth of the signal spectrum B(f). We have, from above,

T:%S:dx vxy[-vr’ D’(X-I'l-e“)}
&2 j‘o'* tm’)’-lwr[_vzba(‘:_,)l

2 . 2, 2,2 ___A:_
-8 R ) = - A40),

Bl

\

where we have used Ref,11, 3.383 1 and 9.212 1. For the normalized plots in

figure E-2, the quantity 7[(p) represents the origin value. A short table follows. -
Notice that the origin value increases without limit as D approaches zero, but

saturates as D> o0




A(») 10 loy A(p)

e -10 log D - 9.943
6.500 129
3.273 .150
1.682 .259
.9270 .329
.6035 .193
.4824 .166
.4364 .601
.4167 .802
.4076 .898
.4032 .945
16 .4011 -3.968
32 .4000 -3.979
<0 = - 43989 -3.991 = -5 logfaw)

Table E-1. Origin Value of Spectrum

The statistical bandwidth of the signal is
W, = U* G;\F)] - R:lo) _ ]
[¢&@®  [erin | dt/d"r)

= (Jor o[22 2w k-1 + expl-2m, k\)}])-'

27D

. 2 2 o2 )
U 1427075 20°9)
by a technique similar to that given above. Notice that the statistical bandwidth ‘
W decreases to zero as D decreases (i.e., W, increases for &, fixed), as 1

noted above. Also, the bandwidth on the ffq scale saturates as D— % A talle
of W/ Solows.
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D W, /% D W,/

small 2v'p 1 3.33
27 .3070 2 3.438 .
23 6553 6 3.509
2 1.148 10 3.524
23 1.942 20 3.534
272 2.679 50 3.541 )
27! 3.113 o 3.545 = 2% |
{

Table E-2. Bandwidth of Signal Spectrum

A cautionary note is in order here regarding the physical significance
of the statistical bandwidth. Consider a unit-power spectrum

a, re<t (zf;) + 6, rect (‘E)

where

The requirement of unil power means that Q,4,+ @, 4,=). Now suppose that
2
01 = A: = ‘- MF(-X) , 0' = W?(x ).

Then
o= orp( 2 o) ovpfad]
We then find that

Q=0 4, o, 0,4,>0

as X -—» oo
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That is, the spectrum tends to a flat one over Q'%,'i), with power 1; the
power in the narrow component of width 4, tends to zero. However, the
statistical bandwidth is

8+ 0,4 ?
wsg(O.» aa$ =[QX@&.x -2x |e]—’0 05 X - 03,

0,4,+0]4,

Thus, this measure of bandwidth tends to zero even though the spectrum approaches
a flat one of unit power over (-{3 4+). The situation is no better for the -3 dB
bandwidth, for it too approaches zero for this spectrum, in the limit.
Calculation of Spectrum:

The normalized spectrum is

G =[dr encp(-i2wfe) / fr)

<+ (Wos(rg Yo [5f 1]

If we add and subtract the asymptotic value, er[-rr’l)‘{-!-'}] from the integrand,

we obtain
5, &Gy = gy rd‘i oS TFV3)3’§[)

where

qly = e [-Ti3 ) fouglry 10}

Using Simpson's rule with end correction, and sampling at intervals conducive to
FFT processing, we obtain, for the integral above,

a Ke XZ::;W, wy(—i 2-rkn/N) | (ks)

where

gke) = 9(ka) + 34 g'0) &,

W = 75 {7,!6 4, 16 H,...i,
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For large D, this addition and subtraction procedure is not recommended, because
it requires the cancellation of two large quantities to realize the result.
Programs for the spectrum calculation are presented in table E-3.

Example 2.

Rmbt)= G ?Jxr(—WWm’C) & ) ‘-———ex?( /W, )
6 () = 46 6. (0), Ba(W.) =01 &.[0),
5y = 47 [l 8- 1] - o2

where

~x =N, T, x) Jd _u/n

The curve for o°f) is plotted in figure E-1. We also hove
.

Since V=C, there is no carrier. B(F) would have to be evaluated from (E-20),
perhaps via an FFT.

Example 3. 2

o
1+ (rw, o

6.0- 2 op(2k/M) 6. (%) =376 0), 6, (w) = 46, )

Rm h—) =

6‘1 1 ;]
0 = § Ty orchl) - £ I (+)],
4 2]
where o =W The curve for ® k) is plotted in figure E-1. Also
2 k} 0-,-
)~ 4w T o T + 0.

There is no carrier.
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113 PACE IS BEST QUALIYY PRAGTIGAMS
FROM D97y £ ove, ww; o 8

B

DIM Xe1:2943),701:20848>,C012313)
M=2a4a t Hi=2048 N=2~IHNTEGER
Nel=, @1
FLOTTER 1
FLOTTER T
GRAFHICS
SLHLE 8,12,-7,.4

GRID 1,1

FEHLF

g=2.o Ml

FOR J=~1 TO 3

=21
FelLoTosRR R vsDin
T=,.5-1"%

FOR [=0 T3 nH-2

L=1+3

VL GTLEMPI-T#L- 20 v ~F

Do)

oo

(O]

; “3572A"
 “GRAPHICS"

T
o

P vy
e oTn T

iy
LUl

EurCREY WD RSN B ST S SR P I TR
f)

3 PLOT U,Y

a IF vi-7 THEN 222
B IF uilg THEHW 228
5]

MEWT 1

FEHLF

HEXT 7T

FUR J=-1 T =
n=z-71

MAT W=ZER

1

3

EY

o
16
iy
128
128
144
1

1

1

1

1

1
gt
it

LU
DO

278 MAT YW=ZER

23 S PIxDo -2

Z9n Hilar=,9%

sgn FOR k=1 TO H-1

318 P=H2Del

ok Wek4+lo=EMPc-Sx F - 14ESRPO-F2 v
3ER IF #ik+1391E-2% THEM 350

240 HEAT K

Procedure in here.

-
-
-

1958 F=LoT oLzt

19ed 3=2- ch+Deld

1978 FOR 1a=1 T H-z+1!
192d U=S+014-11

1028 PLOT L LGTCR [40 5 +F
1108 IF .13 THEH 11326
1118 HEWT I4

1128 FEHUF
1138 HEUT !
1148 END

(a) Program for Figure E-2(a)
Table E-3. Programs for Spectrum Calculation
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134
1

1
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1

1
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4
S0
&
b

B

15}

)

I
=

WIS PAVE IS BEST QUALITY PRASEIGE M
GRAPHICS FROM Zory 5 35%:  lew ™0 DDE
FLOTTER I3 “9872R"
Y=
ZCALE @,%m,-§,1
SRID L5,1
FENLF
DM K01 20480
H=2B38 'ONg
coM s
Fe,SeLGTr2sFI0
FOR =R TO Ym STEF .
YLGTEERF (-, Sxv " 2a0-F
FLOAT Wy
NEXT ¥
PENHLP
FOR Td=-2 Td =-we =2TEF -1
=214
lel=,082=1
MAT »=TEFR
MAT v=2EF
S=iFlsDhr"2
F=Del-D
FuR =B TO H-~1
HOE4ALA=FHG R =F )
NEXT

Ly
LERN

R G
=Z042 N=2~INTEGEFR

T2 H-1 STER 2

Procedure in here.

Tl p T

HERE dEle 1

Fik =0 To W ITEF L0
WiIET oew st

Fr=4% Dhel

T=ThHT Fr -

Fr=Fr-1]

USE RN SR R S I NI L R o
FLOT W, LaTuwislie oo
MENT

FPEHLIF

HEWT T4

EHLD

DEF FHizip:

UoM s

u=tsEAFC~F2

o=
—

[

FOR H=1 T 1e3a

T=-T=*¥:H

2=G+T

IF RESVT7ABSLGY*»1E-12 THE:M 122
HET M

QUTFLT 9 »1loed TERNMT AT IR

FRUSE

FETURH E“Fi=5% P-1 0155

FHEMNN

(b) Program for Figure E-2(c)

Table E-3. Programs for Spectrum Calculation
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Example 4.

2 - ('T‘W..T)’
Rale) = o [ +ew.])

& F)= 2 -%E— —“\% exp (-2!?\/\'\&).

This spectrum goes to zero linearly at f=o, i.e. P=1 1in (E-15).
at f =.5W,; we have

&(W,) = 46, (sw), &, (15W,)=.-4G&,(5W,),
=4 %’g’ In [I-}-(TrW..Tﬂ,

by use of Ref. 11, 3.943. Also

It peaks

7 R~ 8%ﬁjlnr as T +°0

in keeping with (E-16). Thus there is no carrier. B(f) follows from (E-20) as

BF)= _Tl,. vﬁ‘: fdx c.s(Z;% >>a<y[~2-%|n(l+7f)]‘

The previous examples all had 0‘1ﬁ°)=co, and hence no carrier. The
2
next two examples have a carrier, since &, Pcf as £ 0.

Example 5.
Ra 1) = 60 (1- 202 ) oy (- W2 T

G) = 2B £ o (/W2

The peak of G ) occurs at f= N,/\F' =.5% W, ; then we have




BlV) = - 31 G(SEWL) , G (15 W) =016 G, (- SEWL,),
S =47 3 [1- el

6\1
0"1 P) = 4‘1'7' —w'!,— * 8.
(]
6\’
Thus there is a carrier. Define « =2-vrw'-";-Then

BH) = 2 dx as(2m ) [omy- .([, " - opi-ai]
=—:e' nﬂ‘;ﬁ:‘ﬂ_w’( nW’

The total signal spectrum is available from (E-19) as

&) =A< 5W +BE).

Evaluation of B(F) directly via an FFT appears fruitful; we have rapid

convergence of the integrand since
2

N -7 x
N B
Example 6. 2
Ry by - 3 =2 lmher)
[)+ (ﬂ'w_'c)]

&) = 2—\%:':— f,} wy(-'z\{-\/w.,)_
This spectrum peaks at =W, . We find
G W) = . 5% (W), 6a(3WL) = .16 Gi(We)
) = 47 e

T
1+ (rw, Ty

)= 45k 4




B A S S S S LTI

o‘l
Thus there is a carrier. Define o =2 —“-E- . Then

Bl = % ‘Aij:dx 605(2‘5_”9[—999{-« —,ﬁ:} - %pf— a(}]

=-11—,_-ve:e = k,rdxcos &)T‘W

Direct numerical evaluation of BYf) via an FFT could take advantage of the
following:

W?{' Hy} } [ -‘—:L)—
.,.%vxreﬁ('f)"’ I:(x’ _(:f){’}}])

and the bracketed term in the last line is O(x"") @5 X+ co.
Validity of Approximation (E-33) '

In order to determine the accuracy of (E-33), we define the two
dimensionless parameters

-
X=2re,T, D= 4 - (€-35)
(7]

Then we wish to compare correlations

ex)[—{-r‘(a;%)] and eoq»[—%f], (E-36)

for different values of D. In this normalized form, examples 1-3 take the
following respective forms for o (-{ér,-:

—(
sy 22 '2+<: where p- 35 (E-37A)

x/2
4 vCD[t@xEE‘@’? { = °’(g ] w\\ue{a \,,-,;»D 5 (E-378)
gDz[Fx qrc{m?& *-2‘- In (Hp’x‘)] where P = -—2“; . (E-37C)
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Asymptotically, these results take the forms

Cl-35) o x o

; (E-38A)
27wDx- 27D 05 x->+os
x‘(-.!‘;) 0s x>0+
247D ; (E-388)
2mrDx- 47D as x-+%
2
afy_ X _ -
X(I 2”‘> as x- O+
ZWDX-SD'\n%)-XI;GSXé*” . (E-38C)

Equation (E-36), with each of the examples in (E-37) substituted,
is plotted in figures E-3 through E-5, along with a good-fitting Gaussian
approximation. We notice that as D increases, the good-fitting Gaussian curve
approaches exr(—x’/2), Also the approximation of (E-33) is excellent for D>2
Thus when the RMS frequency deviation of the modulating process is somewhat
greater than the equivalent bandwidth of the modulating process, the correlation
of the FM signal is approximately Gauss{an. See also Ref. 10, Ch. 14.
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APPENDIX F. EVALUATION OF T

We wish to evaluate I, as given by (110). To this aim, we let
u.ﬁt,- ({-‘+ {‘)/2, and emplov (113) to express, for real (0,

I, - H_ﬂd\o, Judu,duu rlu,)rlu;)rhb)rfu,){D’(u,—U;)(ﬁ’(U,-W) ; g{' :33{:{:::3 - (F-1)

Approximate Evaluation

Before we evaluate this quantity, we first approximate it by using
the Gaussian replacement-approximation mentioned in (105)-(106). (A more
thorough treatment is given in (F-42) et seq.)) Then I, is replaced by

I~ jﬂ[ v, du i dut, v Iw)r ly, )rlu,)rlm){o lv,—ul){ﬂ (u,-u.)[o(u,—u.)/lu, -iy) +/0/u,—u,) / - u,)]
[ander b )rk)’ )]+ (1150 gl ) ol )l w)/""-"')

= I: +71,. (F-2)

Letting Uy = Uet% for k=1,2,2, the second term in (F-2) becomes
L = J:ﬂ JV, e\‘. dVa 434_(\(:) Vz ,V_))(O (V)’Va)(g (VJ‘ VJ)/ (v))/ (vl)) (F-3)

where

*’of("'r"‘)"&) = _(d“'« rluy) r(u, + v,) f(‘MVA) rlvs+ V:). (F-8)

For large TW,, (F-3) becomes
Iq. 2 ¢+(°)°1®j“d"v LA st(’(V,—\A){?(V;‘Vg)f(vj}(o(v,). (F-5)

And we have, from (F-4) and (113), ¢+(%0;°) = l/'ra, Furthermore, making
the Gaussian assumption (117) for the signal correlation '0, (F-5) becomes,




with the aid of (125),

I, = :,.Ls'ﬂ(dv, v dy, emy[-?fW;{ZV,"rw}nv§—2v,v,—2v,v,}] = —6\%;); . (F-6)

Employing this result in (F-2), we have
? L,— I+ b (F-7)
2 (TW,)

i.e., the replacement approximation leads to

V2
2 = .
I,-L,—- I, wy (F-8)

How good this replacement is, quantitatively, will be indicate~ below.
Exact Evaluation for Large TW;

Returning to the exact expression (F-1), Tet x= u,-u.,y=f'('v*“:),
V= Uy~ U, w=1(u;+4), and then eliminate y via Yy=w+T; there results

Pl 9 [t ) , (F-9)
e 59w %)

where @ is a shifted version of §, given in (F-4). Now as T4, the ratio
of four p-functions in (F-9) tends to 1. Therefore we add and subtract 1 from
this ratio; the added 1 leads to the quantity

[oxap ) acby o) = [fagmai] -z, 10

where we employed (115) and (114). The remaining quantity is

T, =% dv/o’k%amf &b, [5x)

ittt die kbbb b L R A L et 1, 28 -

More generally, we find, by use of (117) and (125), that IE =(2r/r) ﬁ’W,)’ r;
this includes (118), (124), and (F-6) as special cases. Wheh the signal correlation
is not assumed Gaussian, T, depends on the exact frequency-modulation statistics;
an example is presented at the end of this appendix.
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I

!r~ .

.

I 4 by g0 60 e ot ) gl - ]

by 0,0,0) [ dv dv G [defg ko 0)-1]

= ;‘SHJX dv(o‘bo{o’(v)f Jr[?lr,xﬂ)' ’1
ple-22) ol o)

K (t— x—,’_%‘/(‘c+ —;_*)

The particular value of (F-11) depends on the exact signal

62

[t4

where

3’h: XV )

correlation £ considered. We will consider Gaussian frequency modulation

with an exponential correlation, as an example. Then from appendix E, example

1, we have

280y o 281

/)(t) = WX}[’T D }]

where D =6;/ML is the ratio of RMS frequency deviation to the equivalent
bandwidth of the modulating process. For large D, we have the approximation
to (F-13)

/OQ o = exp [~2Tr‘o~’ T

In order to make this 1imit agree with the Gaussian approximation (117), we
set Zﬁ'o;,':W,,; we then eliminate &, from (F-13) to obtain

R O )

(Strictly, this expression, in terms of W;, holds only for large D; however,
the dependence on D is rather weak, as will be seen below, so we use (F-15)
for moderate D also.)

102

(F-11)

(F-12)

(F-13)

(F-14)

(F-15)




P ——

Now we can say that

(’(ﬁlw:) = ex,[.wlpa{%) -1+ exy(—-’,;",l)}] a/o, (). (F-16)

The reason for this scale change in (F-16) is that we can now write the
convenient normalization

(Op(x)z e/xp(—-:—)) for Jovge D. (F-17)

Plots of ‘D,b?} are given in figure F-1. It is seen to be weakly dependent on

D. Also, when we make the substitutions )(-»F- ,v—b » T W’ M(F M)
we have the clear dependence on TW

I,-. - tr];J—)’ (F-18)

where
Ig) _ _v.l;,;_ﬂ dx dv /0; &)/);(v) K(xv) (F-19)

is a function of only the one parameter D, and

K() = [de[gtmx0-1], )
( X)) = fv( “%\")ﬁ( x+v)

(T )/:(+2

We would Tike to determine the exact dependence of 1‘3) on D and
see if it is of the order of 1, as suggested by (F-8). It should be observed
that substitution of the Timiting form (F-17) directly in (F-21) yields
&H(t,mv) = ”7(’”’) and hence a divergent integral on T in (F-20). Thus,
the exact dependence of (F-16) (or whatever example is being considered) must be
preserved for accurate evaluation of (F-19); this is in contrast to the evaluation

(F-21)

P'*
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of X, and TI;, where the Gaussian approximation (F-17) was appHcable, see
the end of this appendix. The key reason for the dichotomy is the presence

of r-functions in the denominator of (F-1), instead of only in the numerator.
When a (o-function appears in the denominator, its exact rate of approach to
zero is of paramount importance, whereas if it is in the numerator, its rate
of approach to zero is far less critical. Then when we evaluate any Iy for
$> 0, it is very example-dependent and must be handled very carefully.
Numerical Considerations

Since (F-19) must be evaluated numerically, it behooves us to
utilize any symmetries involved; these symmetries will be derived for a general
signal correlation. First, since f’ is even,

30("1:) "r") - SD(T)") V) K(xv) = 2‘?*[3»&, "/V)"Z, . (F-22)

Second, Jp(t,—w,-v) 3,(T, V) ; K(-)(, -v) = K(X, v)
Y- ?fdxj’ dvIO (x)/o WK(x,v)
= .'_13{ ]:‘)X odV/ﬂ; X [)p(")[K )t,v)‘\- K(X)“V)] (F-23)
Third,
3p(t)x)‘v) = ‘3;'('#‘;')‘ > K(X,~V) ‘-’ch}r[m - J 5
(') Tk Kd" Wr‘ X)fw (")r!h'[ ﬁ;x,v)+ W ] (F-24)
Fourth,

SD(I’X'V) 3,(T V)") K (nv) = K(V)"))
Il') = rdxf (X‘U']o (v)f dr[gp(r,x,v)+ 3’(r u ] (F-25)

Now let X=2u,V: 25 in (F-25). There follows

I, - '_E‘ du 2V)L3y f (23)‘(“61: [ﬂ + ’/ R-2 ] (F-26) |
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where

& fp u-u) T+ "-")
T-u-rg)/,,(‘r-v- u- 5)

(F-26) is a general resu1t, applicable to any signal correlation example, where

Pol) = [ Fw
Let the result of the integration on T in (F-26) be denoted by
(u,g), and let the result of the integration on Y be denoted by ]5ﬁ0, Then

(F-27)

l') f d“(" buly) = A ZW\.) / &M)BO‘A) (F-28)

where Sh&} is a set of integration weights (e.g., Trapezoidal or Simpson),
ard KA must be taken large enough to include all relevant contributions to the
integral. Similarly,

ka k
Blk) ’L Wy f: YA (kiy) = 4 E‘ﬁ’zﬂ /’:: (212) A ks, Lo), (F-29)
and

A(ka, A) p)[ﬁ) + ’/ﬂ) ?;} (F-30)

where

K _ ﬂ,( (m—k-£>t> ‘/0,,( (M+X+J)A)
s /D((m-k»l)n) /,,( (w+k-2)4 )

In practice, evaluation of (F-30) for the example of (F-16) turned
out to be exceedingly slow, due to the slow rate of decay of the integrand.

(F-31)

Accordingly, for this particular example, a special modification was employed;
we express
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Alu,g)=?fdr+£dr [Rw/ﬂ-z] = AA,

Now for T2 U+y, the example of (F-16) yields
R= o] Foxp(-5)], F = 4w0 snh(55) 5mh(55).

In this case, then

A, = Kd‘?"”f[ Fogpl-%5 )]*“P[Fexy w»)] }

Letting X = FCxp(*;;‘b), and employing Ref. 12, (5.2.4),

A = T”’(: _o;x_ (€x+ eﬁx—2> = ?TD{ Chi(&) = G'—V} ,

~ where

=Y \—aq- >(

By use of Ref. 12, (5.2.18) and (5.1.11), an alternative form of A, is given
in terms of the exponential integral:

A: = ""DIE.(G)-* Ep(‘c’)+f1r+2)n6-+ ZY}

- -mD{EE) +R EL&) +2 he+ 2.

This latter form is the one utilized here.
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(F-35)
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Hence (F-32) becomes

Aly) = {9eRyR - mafE, B LD +2 el (F-38)

and (R30) is replaced by

Alks,du) = A%@’[&H/&-Z] ~D{E Q)+ RECG)+2b &+,  (F-39)

& =1r’»’(|—e«,>( 2"‘))) e«r )> (F-40)

Utilizing A(o,g) 0 ,and A(u,o) 0,  we can combine (F-28),
(F-29), and F-39), to%

IV - 238 S (zk )F&( (21)( w[”*/ﬁ -2]
—T{E. (e.>+xes.(-e>+>!» 6+2¥)) (=00

There are only two parameters to choose in (F-41), & and K. For a given a,

where

we compute for as large K as necessary to realize an unchanging sum; then we
decrease o by a factor of 2 and repeat the procedure. Then for the Trapezoidal
rule that we used, since the erroy in approximating an integral by a sum,1is
proportional to &', we extrapolated the approximate values to the limit (o A=O),
Results for this limiting procedure, using 4 =.2,.1, .05 are given in table F-1
and figure F-2; the program in BASIC for the HP 9845 follows. It is observed
that I:’ is of the order of 1, and increases linearly with D for large D.

D I(n D 1—("
w25 515852 KN 418002
.32 .416039 2 .641552
.4 .372120 3 .880873
. .355822 4 1.12359
.6 .357359 5 1.36758
.75 .374109 6 1.61220
]
! Table F-1. Values of 1':) for Exponential Correlation t
E of Frequency-Modulating Process mf ' i
- :
|
- b
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18 K=4%94a .
=8 Del=,1
E1%! L=3

E15) DIM Redidoo: , F2o11@a»,Ec1:1a92
8 REDIM Rudsdery, 21K, ECY D

el PRINT "K Del Di",K;Del;D

o oM T,3

T=1-CFIxD>

S=CpRlsDivnz

FilfF =3 T g%k

Rk FNFPCFs#Diel)

HEXT &=

T=2#Ds1%T

-
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]
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.
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: sasE Lz
T=FHEI (T +FHEL i =T 40+  LOGI T« ST /2 156302
. I=L=T. Del
T Fa+blsz-1
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v
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i
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FRINT
HE=T
S TOF
DEF FHFoX>

com o T,5

P=REZh«T

FETURN EuFv-s# fF-1+E R =P -
FHEHT

LEF FHE1(® ™ I Eoporential Integral Bl

,
B
W

v
Do

R
XY

T
Dol

)
T

BIEE I IR R B O "R U N S
EO R SR . B PO

0
D

Table F-2. Program for (F-41)
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Development of Fourth-Order Correlation
For the signal process in (96), we derived the fourth-order correlation

in (105):

¥ _ Reh-0Bs k)R bR ) ]
R Re bR, k) N

If we define the complex phase process

i) = exp inftd“,,,lu)] L<tcty, (F-43)
F 4 )

then (96) and (77) enable us to write (F-42) as

POFRFE - L4 ‘}?{;{%;3’;?,;‘_*;1;"'*’ B ot b, 44, e

where we have made express use of the stationarity. Furthermore, the left-hand
side of (F-44) can be written in the two alternative forms

ex}’[l erj:;u m(u) +1 2W¢Ju ) (u)] = E/Xy[l P _éu m (u) + iZw_(:,Ju mlu)]' (F-45)

The first form indicates that if +,-t, and +,-4, are kept fixed, but the
separation between these pairs of time points is increased, then 'P-’ R f.)

the second form indicates that if +4-4, and 4;-% are kept fixed but the
separation between these pairs of time points is increased, then B-» pt-4) ({,-ﬁ),

Furthermore, these are the only ways these time differences can increase without I;
tending to zero. Thus we can express

Bttt 4et)= ph- Dok t)4 k«h)/(frt)%é&ﬁ, b4, 4-4), <F-4s>

. m




where the remainder function R, goes to zero, no matter how the three difference
variables t-t,, ‘:,--E,, t~t, increase to infinity. Thus the first two terms
of (F-46), (which would be yielded for a complex Gaussian process 1»“:)), are
merely those terms which do not necessarily decay to zero as the difference
variables increase in an arbitrary manner.

Combining (F-44) and (F-46), we have the very useful expression

kRl ) oet) o\ b o
! (/lﬂ—ﬁb(oa,-{:',) /"» ﬁ)f(‘g t)Y/@, 9/!‘3 DHRE-4 -4 4 ﬁ). (F-47)

which is exact, and where ’X,(x,y,!) tends to zero as X,§,2 increase, whatever
their fashion. It should be noted that this expression and conclusion only hold
for a phase process like that in (F-43), where is a legal correlation function
for p- Thus for example, although ) = Wy(-xyz) is a legal correlation
function, it is not a legal correlation function for p, and R, need not tend

to zero as its arguments increase. In fact, we find for Gaussian (0,

Ru(ny= QXP[‘ 3 (eye ?ﬂ - *4‘}’[":‘*‘- %(?-5)’]-90[-%?'- ’{Q—*)'] : (F-8)

which does not tend to zero for 3=X+2.
If we employ (F-47) in (F-1), there follows immediately

T, = T+ T + Il dudgcharb) o o lafolodplis-t) By -, - )
= Tr T+ ffondy & 4, (x, 3 P p9-2)Fs 0 9,9)

e

1—:»,%’)_, b 5[ dy e PRy, e

where we employed (F-4) et seq. Thus the first two terms of (F-49) corroborate
(F-2), (F-7), and (F-8); however, we now see from (F-49) that the size of the
, remainder term is also proportional to (TW,)J. And indeed, (F-18) et seq. and
l table F-1 are a numerical calculation of the sum of the last two terms in (F-49);
f
!
:

-

in fact, the sum of the last two terms in (F-49) is exactly (F-11): 1
)

~Ti= 25 Jff i dyde ol e-plplp (4R +Ry by ) = N5 - (F-s50)

Ta 7 o dy /’W{( Y }"(‘J 3(')) wy




Exact Evaluation of I, for Frequency-Modulation with Exponential Correlation

The quantities Ta, I;,end I, are defined in (76), (109), and (152)
respectively. For large TWw, these can be simplified to

I, = ‘l-FI dIx 2I)(),
L= o dy plap(y-2(y)
T, =5 &y Jaflk)/(&-ﬁf(i‘-:&ﬂﬂ- (F-51)

If we assume that signal correlation is Gaussian, then we get the approximate
results (118), (124), and (F-6). However, it is of interest to determine the
exact dependence of 51',} on D for the example of (F-13), to determine the
accuracy of this approximation. Making the change of variable employed in (F-16),

we obtain N

T,
= —f—, F-52
L (Twsf (F-52)

where £ -y J du(O,‘ .
I, =1 Lfdu de, (u)/l, (u—v)/, W,
L, - Zxffedvdnp fu)(p,(v—u)/,(w-v =) (F-53)
Now the question is: how close are &, &, T, to 1,243, V&  respectively?
We employ (F-16) in (F-53) to obtain
A fenfrta ) o

By the change of variable Y =-mD Lf,there follows
A ) P
- h 2
T, = 2o DLdl' 7 o (-1»—’» (£-1)). (F-55)
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By repeated integration by parts, this is reduced to

A

) , , R
Iz = ;TI;‘E(,) '+21'3Da"2‘"3p))

(F-56)

where F is a confluent hypergeometric function. Evaluation of (F-55) or (F-56)

yields table F-3. The values of i; are well cyrroxinafod {y

A

D L
.25 1.32344
.5 1.13884
.75 1.08798
1 1.06436
2 1.03102
3 1.02043
4 1.01523
5 1.01214
6 1.01010
7 1.00864
8 1.00755
9 1.00670
10 1.00603
20 1.00300
30 1.00200
100 1.00060
00 1.00000

Table F-3.'iz Dependence on D
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which is obtainable from (F-16) by expanding in powers of 1/D. Thus a value

of D = 3 yields only a 2% error from the Gaussian-approximation value of 1.
For the evaluation of f; in (F-53), we denote the kernel by

k;(u,v), and note that
Ka(‘ uy-v)= ks (v, v),
KJ( v, u) = K (U)V)' (F-58)

to express

I, - %ﬁu p (u):(dv p (v) {o,, (u-v)
¢ ‘;*_12 é\erp (h)é&”f»(h)ﬂ(khb), (F-59)

where weights N,“”z{ for k:o, and "f’= ‘,E for |.Q)= k, for Trapezoidal
rule, and K must be chosen large enough for negligible change in the sum. A
program and numerical values for (F-59) follow in tables F-4 and F-5 respectively.
The values of i, are well approximated by

s .2, 8 .2 .'+> ]
R ,/5(‘* ). (F-60)

A value of D = 3 yields a 4.8% error, while a value of D = 6 yields a 2.3% error
from the Gaussian-approximation value of %hﬂ?.

For the evaluation of i; in (F-53), we denote the kernel by I(v,v,w)
and notice that

K4(—u, -v,-w) = k,, (U, v,w) . (F-61)

Therefore

i; - ;’5—;{: dv [I):Ju /0, (u)f, (u-v)] z= T—%;fdy U; du(:, (u)/,,(u—ér) (F-62)
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g Epsz=1€-¢€
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Si PRINT "Kc Eps Del D:",Kc;Eps;Del;D
(3 ODIM Pdo@s 20as

T con T,s

T=1-iFI#D)
LTI B (R
FOR K= TO
FACKI=FHPK+De 1
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mn
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A H=RARSOL?

B T=PAd A ePdir-L 0

B3 IF A=k THEH T=T-.9S
B 2=52+7

-

3R P s e e g e s e e e 0 (O

S1=31+402

IF Q:€Ep:z THEH Z2a
HEST K

PRINT “"EHD OF LJafF”
FRINMT 4 -Fl+Del 2+%1
STOF

DEF FHFuAS

com T, 3
P=REZ M0 +T

FETURH ExPo-2% F-1+ExF -Fa
FHEHD

Table F-4. Program for (F-59)

T
1.33012
1.23923
1.20997
1.19576
1.18736
1.18181
1.17788
1.17494
1.17266
1.17085
1.15630
1.15470 = 243
Table F-5. fi, Dependence on D
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using the evenness of ‘o,(x) about X =, If we choose increments 4 in U
and Za in v, we obtain

I,= 2 W, { (0 UA)/ (I -Qh)J (F-63)

where weights \\e =4 for k=0, and Mf’:% for L=k, and K and L must be
chosen large enough for negligible change in the final sum.A program and numerical
values for (F-63) follow in tables F-6 and F-7 respectively. The values of I
are well approximated by

I = ‘/{'*‘Q“ f(““*) (F-64)

A value of D = 3 yields a 7.7% error, while a value of D = 6 yields a 3.8% error
from the Gaussian-approximation value of V2.
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e Loe=159

R 5 Egz=1E-%

S e i =,
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S O O U G RN 5 SN S SRR P (W

o IF L=Fk THEHN T=7+.95
0 L=+ T
noIF T Eps THEH 224
B HEWT L
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Table F-6. Program for 5:4
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- = W O N ! S ow e =T
8 8 ©°

L,

1.78079

1.58273
1.52355
1.49512
1.47842
1.46744
1.45966
1.45387
1.44938
1.44581
1.41733
1.41421 =2

A
Table F-7. L, Dependence on D
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APPENDIX 6. MEAN VALUE OF X(5+N)

We wish to evaluate the mean value of (139) for signal and noise
present. In this case, the fourth-order average of interest was encountered
in (94) and is given by the sum of (105), (107), and (86). Substituting these
results in the average of (139) yields ﬂ

TTo - {8 [k Fp i)t 4)-

(A Bt -ttemt) 200 N plt Sl )+ ot ) S )+
plir 0S4 k-4)sket)} + 4TS Sh-4) +A-4) S (b- ], @

where

/'“- L) ol %) pl-4,) ok 4)
/9f£z 44);0 f' {ﬁ)

Blt-t, bt 41) =

as in (F-44). Evaluating the delta function integrals and employing E=A’T/2,
there results

f;Y:’(sm) =-3 %‘f)z L - (%Ia vt @(Iu‘ 21), (6-3)
where
I T b4
4

and T, I, and I, are defined in (76), (109), and (110).

We have already evaluated I, and I, in (118) and (124). We now evaluate
Tg- 2L, by means of the correlation development in (F-47). First, from (F-49),
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I - T+L+p [[[& 9y (o(x)fly-éﬁ, (xy, 9. (6-5)

Next, employing (F-44) and (F-47), (G-4) becomes s
ﬂ}f& o &b, (g«;-t)/f& *4)7»/6-#%«:& ARt 54 4-4)
=2, +271, +—l-ﬂ([u dt #, o, Q,(ﬁ-—é,,{, t,4- *;) (6-6)

where we have also employed (76) and (F-2), and defined

= Ra (Rg + 2/ “t’{’)/ HJ‘ t&) + 2/ &r 44) /0("3‘*2—}_ (6-7)

Since Q)(x,y,i)—-)o as XY+ (see (F-46) et seq.), we can modify (G-6)
(by methods now standard) to

T, =2T2 +2T,+ .r%fff I dy de §(v,y,2). (G-8)

Combining (G-5), (G-7), and (G-8), there follows
T, 23 = 2= [y BBl 2200, e

in terms of remainder function Ry defined by (F-47). Since R;(x,y,» decays
to zero within an interval of the order of W' in each variable, we have
2

- »
I-"— 2 I‘z = (.Tw‘? (G']O)

where I:’ is a quantity of the order of unity, as in appendix F.
Substituting (118), (124), and (G-10) in (G-3), there follows

AT e TR e

for large TWs.




APPENDIX H. VARIANCE OF Y5 ()

Let the collection of correlation functions in (139) be denoted
by K(—[—.,-L,’-l, 4,). Then for noise-alone, let

Y = ijm b b 2 B) 20 ) PR K (6, 4,5, 4)

L
S n»,»‘,n 13 )

where an obvious shorthand notation has been adopted. Then employing (86),
(139), and (76), the mean is

4N, i (S,, S + Sn sz) K»m = +”: ;f (K'm"' Km)

+N,f( ) + 'Zf”)) INT I

The derivation of X will be abbreviated considerably. First,
using Ref. 6 and a technique similar to (H-2),

—
7{" = g n.ﬂf N, ": s Ng " ": Kh)¢ ksnt

=16 N [ A Koy Ko, (H-3)
3

where quantity A is composed of 24 delta function terms which involve the various
combinations of one even with one odd number, out of the numbers 1-8. For example,
one combination is 12, 34, 56, 78; this leads to the integral contribution in

(H-3) containing K, Kc = EDED =1 Some of the other 24 terms are

far more complicated; for example, combination 16, 27, 38, 45 leads to

ms Ksm = (lo.,(,ﬁ //DJS . ’s /:/o (H-4)

Substitution of all the 24 terms in (H-3), and collection of like terms, yields, after




considerable labor,

XE = 6N, T (I‘.,-*il:u‘r ¢ L+ 313), (H-5)

where all the terms involving constants, T, ,and T, cancel out. Combining
(H-5) with (H-2), and recollecting the scale factor in (139), we get

Var{‘fzﬂ.’f’( N )} = 1"(‘5:‘5‘(‘[“— +T,+6T,+2 Iﬁ_ (H-fs)

In order to evaluate (H-6), we appeal to the development of the L
fourth-order correlation given in (F-42) et seq. Specifically, we employ (G-8),
(F-49), and (G-7), to obtain

I, -+T,+6L+21, - 4I++*T'—;_([fdxd3 & R, (x,9,2) x
[R,(X,v,il) - 2/(X)/(:i' 2+ 2/(*}0("'3)] (H-7)

Alternatively, by use of (G-10) and (F-50), we find
-2 1Y

I, -4T,+6L,+2T] = oyt ¢ L,

IV-20 4+ )

(T_“ﬁja CT‘*))’

(H-8)

Finally, substitution in (H-6) yields

it - £ -
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APPENDIX 1. CORRELATION OF 4 AND £,

The quantities 4, and L are given by (158), (45), (77), and (139)

L+ - '4‘7(}%)21[&, o xﬂ,)x*k)/ll;-'lq), (1-1)

as

LAY ([t xRV KE A 4,9, G

+ 24
where kernel K is the collection of correlation functions in (139) (as employed

in (140) and appendix H). For noise-alone, the average of the product is (Ref. 6
and appendix H)

TEW = ok (o) 0 § oo Ko, -

{SHSM Ssc + Shs.)‘sﬂ"" snsza Ss; + SM-SIS Sx+ Sw sns + Sr( szsx ]
32 N,) f [ "3>+f i "35 mn"’/ s ‘(m."’ 8 Kms + /’5’ '(sn]

F)’ g - 2 24y ,,/3:) = (—-:) @1‘, +4I,1 (1-3)

~ Combining this resu]t with (71) and (140}, there follows

(1-8)

TOLW - ZaW - -(£] ..
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APPENDIX J. EVALUATION OF I:)

I(:) is given in (H-8) in terms of I': and Ir, which are in
turn given by (F-50) and (G-9)-(G-10). Namely

2
7. 19 oWy I, (3-1)
Substitution yields

I:) = N; j&( t,x d‘j de R;(X,\b*) + +(Tws)JIq. ’ (39-2)

where two terms of the 'I:’— 21? expression cancel each other by use of the
property '

Y3(x)”)'}) = &(3,’))‘)} (9-3)

see (F-47). Letting Xx=u/(fPW), y=V/(/FN),z2 =w/(,/'v?W,) in (J-2), and
employing (F-52), there follows

Il:)= _.,_r.'—i'{ﬂ}d“ dv dw R;» (“)V)W) + +i+ , (9-4)

where

vow) = fv(”)'ﬂp(w’v)Pp(“’)A(v' u) ~ 2o fw-v)- plw -u). -
it Y O bl pbpld.

An example of /, is given in (F-16).
Two useful properties follow immediately from (J-5):

RJ»(U) V,W) = R;p (w) v)“))

R (-u,—v,-w)= Rg,, (“) W),

They enable us to express (J-4) as

R

124




In order to numerically evaluate the triple-integral in (J-7), it is nec. sary
to determine the regions of significant value of B,',,and to terminate the
integrals. Detailed evaluation of R;, for the example of (F-16) for D = 3

was undertaken, with the result that the first term in (J-7) can be well-approxi-
mated by

Vo ovell)  winpw L0}

4 2
dw MR (v,v,w) = Q, (3-8)
?{!;Jv v-ja:lv) -L6) > )

where
L(v=65-.08v, V=40 (3-9)

Letting the integral on w be denoted as A(v,w), and the integral on w denoted
as B(v), we have

N ¥ ) _ ) _Sh, k=0
Q’f“‘id"mﬁ gv%“')hzo“{ B(k“)ikh'v’& B ?!,o{hevwin}. (9-10)

Also vaLl) L
BO) = [ dAl) A (b v-LW)+de) 5 Law=2L0, @)
v-L{v) =0
. and ™in ,l(")}

M 2
A (V)W) = ) * XJ‘D (U,V)N) = 4, hi‘ N'? R)p ("L (V)+ ms,, V) W),.
—Lhv =0

%2 =M
Ma, = Mi,.f_w,L(v)} + L(v), wf) = {'/’ :&r“m’.} (3-12)

A program for the evaluation of (J~9)-(J-12) is given in table J-1. Extreme care
is necessary in the evaluation of R,,, due to the presence of 10, functions in
the denominator of (J-5). Exercise of the program for sampling fncrements .5
and .25 yielded the value Q = 5.75415 for D = 3.

Combining this result with table F-7, we find

T2« 1848 br D=3, CON




10 Yo=58

Y] [igey1=,2%
| 6 2

sl Fl=1 'FIsD:
Sy Fe=(F[<Li 2

8 COM Del,Lo,F1,F2

3 KoslHTCVe Deli+d .
[\ L=t ke

Sz

FOR k=0 TO K«

T=FHEE D

I¥ k=0 THEH T=T%.%

S=s+T

FRINT 4. FPI~1.5«Duses, K

MERT K

EHD

TEF FHE Y

CoM Del,bw

Lwze, S-, 3%

Lo=IHTeoelw-Tiel v+l

D=2+l

W=~

S=0

FOir L= TO Lc

S=Z+FHA W, Ma+L2 T

HEAT L

FETLREH Dw=s

FHENT .
DEY FHACW M2

CoM o Del,Lw

HR=MTHW . Leea .
Me=IHTCUB+Lus - [e] '+

Du=cUE+lod ~Mo

Dot I ot
DDA R 4

T N Ja oy P oes
T D

: S=0

9 FoOE M= Ta Me
T=FHEZO=Lu+MeDu, W W2

IF t1=Hc THEM T=T+.5

o4 T

HE=T

FETUFN L=y

-
L)
e

13 FHEHND

20 DEF FHEZ, v, W

28 AL=FHG O +F NGO W=
48 AZsFHGO M +FHG Y -1
S8 HAI=FHGOY s +FHGI W~

FETHRH EMFO-AL-RAZ+RAI  -EXF{-RL-EnPr - .
FHEMD

DEF FHG =

COM Del, L FL,FE

P=ABS H4F1

FRETURM Fa#iP-14E5Pi~F23

FHEND

-
b

Deg

oo

3
-
l
EA %)
a4
%]

[ )

4
4
3
4
3
4
4
Ky
3
34
s

o
o &

| Table J-1. Program for (J-9)-(J-12)
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In equations (153), (154), (156), (157), and (162), the Guantity

-“‘-:-?-é 2.962 for D=3) (9-14)

appears; it is of the order of unity, as anticipated.
Finally, reference to (J-1), (F-52), table F-1, and table F-7

enables us to evaluate

1’:)= +.440 fr D=3 (3-15)

In equations (146), (148), (149), (156), (157), and (159), the quantity
Y
2 (= L1 ﬁr_b=3) (3-16)

4
appears; it is of the order of unity, as anticipated.




APPENDIX K. DERIVATION OF ').’6” AND ITS MEAN

The cumulants through order 4 were given in (39). The fifth (and
all odd-orders) cumulant is zero, as shown in (131)-(133). The sixth cumulant
is given by (Ref. 4, 3.43)

X =G> - 18 <D <D+ 30 S (k-1)

From (131) and (132),

20 yo1f - 50t -
@ = 20 =5l o
where
C:ﬁ—f&x@p*@sﬁ-]x;- (k-3)
Here p"9 is the complex phasor process
9 = exp[rar [ demio] 4 <t<4 (8
7)—exy| ) duml)] :

Using relations similar to (K-2) for lower-orders, we find from
(K-1)

7(:°= ,-?[Qq% -9 )eD + 12 <)cr>31 (K-5)

where the averages are over the frequency-modulating process mi) in (K-4),
or equivalently over the phasor process pHD. Now from (K-3), '

<er> = (A [[ % K.

<\Cr’> = (—ﬁ—yfj X, - x: -

< )C)‘> - (ﬁ;)‘ J! X, ..x: 23955 (6)
K, =rpd> =G 0 pl>,

Kn» = <7‘:72 7§P<> ) Knus‘ = <?TP~”;‘?"P: R> - (k-7)

where
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Substitution of (K-6) in (K-5) yields the desired result

ﬁ‘) 6 6;) .( % X {Knyn 9 k»m Ks; + 12 Kqu ’(u] (k-8)

Evaluation of the kernel of (K-8) would require evaluation of the
sixth-order average in (K-7); although possible, this is very tedious and sheds
no light on the processor. Also, we can evaluate the mean value of ?h/),
without knowing all the details of the kernel of (K-8). Using the properties of
complex white Gaussian noise, we have

2‘{)(") % éé} b”’)) m [Knm "359+ K,,,,,,"' Kmnsa ;;m;"' Kmxn
- q {K kﬂ' + K'l35’ k53+ K'))! K5'5+ K)S'b) K53+ K));; Ksp + Kps); KSI}
+ )2§Kn Ks kss + )(n Kys Ko + Kn y;, Kss + k)skat kﬁ +

+ K,;, Kys Ks) + Kis kn kn}]
.2 @1‘5 [c -932 +4 5] +12{1+ 3L, + 21}

md

3
£V Iy '~ . 4 (E/N
_él-,—x‘ lN) = %6%) Ia = J’E%' -For )oqc TW:. (k-10)
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