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2h ont ' d.

When the time-bandwidth product (of observation time and signal bandwidth)
is large enough, and there is at least a moderate amount of frequency modula-
tion, the optimum processor is well-approximated by a filter followed by an
energy detector; the filter passband is that of the spectrum of the received
signal.,_The time-bandwidth product is large enough, approximately, when its
square-roolis greater than the maximum of 10 and 3d, where d is the voltage
deflection criZterion of the filter-energy-detector ptocessor. Equivalently,
the ratio of the received signal energy per independent component to the
received noise power'density must be small, and the time-bandwidth product
large, in order for the fiL2er-energy-detector term of the log-likelihood ratio
series to dominate decisions>-The frequency modulation is termed moderate when
the ratio of the RMS frequency deviation to the equivalent bandwidth of the
frequency-modulating process is of the order of 2-3.

Numerous approximations have been necessary to facilitate evaluation of
some of the multiple integrals; to what degree the sufficient conditions cited
above can be relaxed, without violating the conclusions, is unknown.
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INTRODUCTION

Detection of a tone of known frequency and limited duration, in the

presence of noise, is often accomplished by passing the received waveform through

a matched filter and comparing a sample of the filter output with a threshold.

(For unknown phase of the tone, it is the filter output envelope that is compared

with a threshold.) The bandwidth of this receiving filter is very narrow, in fact

approximately equal to the inverse of the signal duration; in this manner, the noise

passed by the receiving filter is greatly attenuated, and decent decisions about

signal presence or absence can be made. Typically, the ratio of received signal

energy to noise power density level, of the order of 10, is required for low false

alarm probabilities and acceptable detection probabilities.

However if the tone is phase-or frequency-modulated in a random fashion,

the spectrum of the received signal is spread significantly beyond the inverse signal

duration, and any receiving filter must be broadened to accept the received signal.

As a result, considerably more noise is passed to the receiving filter output,

adversely affecting decision capability. The fact that the modulation is random,

that is, unknown to the receiver, prevents much coherent processing of the received

signal, if the modulation is significant. If the deviation and bandwidth of the
frequency-modulating process were known (or better, if the spectrum of the frequency-

modulating process were known), the question arises as to just how much could be

achieved in detection capability by taking advantage of this information.

We will address the problem of optimum detection of such signals in

the following, with particular emphasis on the case where the product of observation

time (signal duration) and signal bandwidth is much larger than unity. For long

duration signals, this situation can easily arise with fairly small amounts of

phase- or frequency-modulation. We will also consider simpler sub-optimum processors

and attempt to deduce their performance. The severe analytic problems preclude

complete solution, and some considerable simulation effort will be necessary in

the future in order to give quantitative comparisons. Some related work is given

in Ref. 1 for the first-order term in a series expansion of the optimum processor,

useful for low input signal-to-noise ratios.
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LIKELIHOOD RATIOS

General Case

In an observation of M samples, either the condition noise-alone or

signal-plus-noise prevails. On the basis of these M samples, an optimum decision

about signal presence or absence is to be made. The signal samples are denoted

by

and the observation is denoted by

X = (, 2 ' 14). (2)
If we let H denote the signal-absent hypothesis, and H, denote the

signal-present hypothesis, the optimum decision rule is based upon a comparison

of the likelihood ratio (LI) with a threshold (Refs. 2, 3):

LR (X) rx) (3)

where M^XV is the noise-alone probability density function (PDF) of observation X,

and p,(4 is the FDF of X with signal present. We can express (3), for any

signal statistics, as

fdS C(XIS) P (S)r.(X) r N 4

where p,(XIS) is the conditional PF of X, given signal values S, and p,(S) is the

a priori PDF of S.

A modified notation for (4) is adopted in the following, namely

L'R (Y)= (X 10 =) _ - (X < X(5

where the ensemble average, <>, is over the signal statistics, whatever they are,

considering observation X as a fixed quantity. (See also Ref. 3, page 132, eq.

(1.4)). (5) is an average over thi conditional LR.

For continuous observation of waveform Xki) over a time interval

(+4, ) where the signal exists (if present4 the LR in (5) becomes

................................
*Integrals without limits are over the range of non-zero integrand.
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where the ensemble average, < >, is over the random signal process sO), considering

observation x(At) as a fixed waveform. This interpretation of the bracket <> will

be used throughout the following report.

Additive Signal and White Gaussian Noise

The results above pertain to any signal and noise model. We now,

specialize to additive signal and noise. In particular, for flat low-pass

Gaussian noise of bandwidth W, (-W.,W, Ht double-sided), noise samples taken

every (2WXT-  seconds apart are independent; then (for real processes)

M

]T (7)

and M

252 (8)

where C, is the noise variance, presumed known. Then (5) yields

LRrL 00 < 5

where the ensemble average is over Q1 only.

Since N, " /, where N. is the single-sided noise density level

in watts/Hz (presumed known), then in the limit as the noise bandwidth W,-60, (9)

(and (6)) becomes

L~(<e N Jjb N0

(See also Ref. 3, pages 108-9.)

If the signal ) and observation X) are narrowband about center

-----------------------------------
*For narrowband signals, the assumption that the noise spectrum is flat in this

narrow band is not very restrictive.
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frequency 4,, and if T>)I, where observation time (,signal duration)

then (10) can be expressed as (see also Ref. 3, page 160, eq. (5.2))

4L.

where le denotes the real part, and 0K) and Y_) are the complex envelopes of

signal and observation respectively:

ex Of, 0 2.4)j(12)

It should be noted that although we have presumed T. o I, we have not fixed

TWs, the product of observation time (signal duration) and signal bandwidth.

Also we have not yet specified the signal statistics in any way.

Fixed Received Signal Energy

A special case of the above is afforded when the received signal

energy in the observation interval,

is constant, even though the received signal s14) is a random process. (An

example is the narrowband phase-modulated signal

A c+ 4 . < (14)

where Tf)>> 1) A is a constant (but perhaps unknown), 0( ) is a random process,

and + is a random variable; the product TWs is arbitrary. Then, E-A 21/2 ).

In this special case of (13), (11) yields

LF(x~ ~+<{ ~ <e , i> (15)

This simplified form for the LR (for fixed received signal energy) points out

the magnitude of the analytical difficulty of the problem we are addressing.

Namely, the ensemble average on the right-hand side of (15) is the characteristic

function of the random variable

KeJ. ) t-) , (16)

*Actually, it is the moment-generating function.

4
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at argument 5=fI/t4. But (16) is a linearly-filtered version of random

process i), with fixed waveform A); recall that z() is considered fixed

in the ensemble average in (15). And since calculation of the PDF of the output

of a linear filter (for other than Gaussian input processes) has remained an

unsolved problem in the literature for many years now, there is no hope of exact

evaluation of (15) for general random processes 1) Rather, all we can hope

for is good approximations for some signal processes under certain conditions.

The situation for the more general case, (11), is even worse, due to the
additional randomness of the received signal energy. Notice that the only

restriction on the signal statistics in (15) is that stated in (13); we are not

restricted to the model of example (14).
In the following, we shall generally make the assumption about the

received signal energy being constant; notice that this disallows s t) or I/f)
from being a Gaussian random process. We shall also concei rate on narrowband

signals, for which Tj however,fW is arbitrary initially. Hence the

pertinent expression for the LR is (15).

It is perhaps worthwhile at this point to fix the ideas presented

thus far with a couple of examples. In particular, averaging with respect to

signal statistics, while holding the received waveform (observation) fixed, will

be illustrated. The received signal energy is not constant for these two examples.

Low Pass Example

Let the received signal be

s 0)=A vn W), f.<t< t < (17)

where A is random but positive, and iodt) is a known deterministic real function.

Since the only randomness in the received signal is through the scaling parameter

(10) becomes

[Act-A 26] A(18)

where

Sz f dlLf (19)
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Notice that the observation A4) appears in the LR only through the coherent

integration yielding parameter q. Now we can express (18) as

ol = eAa -go. (20)

But since

LE~ fdA F(A) A e/rAk lb (21)

is positive for any PDF ?(A)., when A is limited to positive values, then LR

is monotonically increasing with the parameter a . Hence comparison of LR with

a threshold is synonymous with comparison of parameter a with a threshold.

Thus the optimum processor is

{ ~4x~f~ff~)~ 44r~s~)A,(22)
H,

regardless of the PDF p(A), when random variable A is limited to positive values.

(22) is reLognized as the standard coherent correlation detector operating on

observation xf).

Narrowband Example

Let the received signal be

AW) R1e P 0 xr21rTJ +I)] 1 ~ (b (23)

where A is random and positive, and 4 is random and uniformly distributed over
2yr. Variables A and are independent; there is no need to consider negative A,

since this effect can be absorbed by values of 4. T,,e complex envelope is then

fk) A r (1) 0#), (24)

where ') is a known deterministic low-frequency complex function. Since the

randomness of _ arises only through A and +, (11) yields

A 0

6



where

-(No26)

Notice that observation 10t appears in the LR only through the coherent

integration yielding parameter a. But since (using (25))

LR= fdA tiA 1(A.)- '(Ax1 (27)

is positive for any PDF FV), then LR is monotonically increasing with the

parameter (t. Hence comparison of LR with a threshold is synonymous with

comparison of a with a threshold. Thus the optimum processor is

regardless of the PDF p(A). (28) is recognized as a threshold comparison of

the envelope of the output of a matched filter operating on observation i).

7
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SERIES EXPANSION FOR LOGARITHM OF LIKELIHOOD RATIO

The starting point for this development is (15), which applies to

arbitrary narrowband signal statistics, subject to fixed received signal energy.

When we define random variable

V R~e k~~*) (29)

(using the fact that received signal FI*) and observation x R) are non-zero

only in then (15) can be expressed as

L7 A (--)<rv> (30)

where the ensemble average is over the signal statistics. Now from (29), we

find

<V'> NOReJS4 .1)< ) > (31)

where <f* will be called the deterministic signal component. Then define the

residual of random variable V as

r=V - v> R1ef* _q% , (32)

where we have also defined the "ac" component of the signal complex envelope as

9V=20-0 0 -(33)

(Later we shall generally consider signal models for which the deterministic
signal component is abspnt, i.e.,

< _10 = C, (34)

which is the usual case for phase-random narrowband waveforms. For example, (24)

was just such a case.)

Substitution of (32) in (30) yields

IL9

* (35)

8



At this point, we define the characteristic function of random variable r
in (32) to be the ensemble average

4~ (r) =(~p~~r)>(36)

Once again, we note, with reference to the definition of r in (32), that the

randomness of r is to be considered due to that of ac signal _q() (through (33)),

and that observation S) must be considered fixed in (32) for this ensemble
average in (36).

The natural logarithm of the characteristic function of e- can be

expanded as

where )r) is the k-th cumulant of random variable r (See, for example, Ref.

4, Chapter 3). The sum starts at k 2 since (see (32))

)4 = K r> = < >>=0. (38)

For example, we have (Ref. 4, page 71, eq. 3.43)

X< r">

4) - (39)

Since the natural logarithm is a monotonic transformation, comparison

of LR in (35) with a threshold is synonymous with comparison of In LR with a

(different) theshold. Then using (35), (36), and (37), we find

In L= .i <-v> + In -fr )

E (40)+- <v V- +- ko 1" (0
NO 'z k!l Nk;.-,gN,

where is the k-th cumulant of random variable v; see (32). The first term

in Ih LR, namely -E/N,, is a constant, independent of the observation Aff), and

can therefore be ignored (i.e., absorbed in a modified threshold in the decision
compari son ).

The second term, <V, in I LR is proportional to a coherent

correlation of the received waveform with the deterministic component of the signal

9



waveform; consider the following development (where c = 2w-F):

-f~ 4t)s) p At~ 10V e +

R f A X <_' (41)

where we have used (12), the fact that Tf>>4) and (31). (As noted in (34),
this term will generally be zero for our signal models of interest; that is, there
will be no deterministic signal component in the received waveform, and hence the

< =v term will be absent from the In LR expansion in (40).)
All the other terms in Iw LR in (40) involve jr defined in (32) (or

v defined in (29)). In particular, since (32) can be written as

I S 4 [.XIis~% 9fh~)J (42)

then we have, using (39), the second cumulant

A +J~fd CO +k ros Cj lde, (43)

where we have used the fact that

< o 0fl 2 Q>(44)

for complex envelopes of narrowband random processes; see for example, Ref. 3,
page 53, eq. (5.12). Now it may easily be shown that each of the two terms in
(43) is real; therefore

where Rg is the autocorrelation of ac component Wf), assumed stationary in the
observation interval; that is,

< 1 t-, r :,f (46)
An alternative expression to (45) will be developed below.

10
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The remaining cumulants in (40) require higher-order moments

of ek), and must await evaluation until we specify the exact signal model of

interest, which we have not yet done. However it is very important to observe

that if

(47)

were a Gaussian random variable, then all its cumulants for k 2!3, would

be identically zero, and the series for 6 LR in (40) would terminate with the

term (45). Since 2;K) in (47) is to be considered fixed in this particular

statistical consideration of r, it is seen from (47) and (33) that r is the sum

of a large number of statistically independent components if the time-bandwidth

product of the received signal is large, that is, if

TFWs >N I, (48)

and if gA) is fully random (to be explained). This is due to the fact that the

integral in (47) is over a time duration of T seconds and that 0I- has a statistically-

independent "wiggle" approximately every 1/W seconds. Then by appeal to the Central

Limit Theorem, r will be nearly Gaussian when (48) obtains, and the cumulants for

k-3 in (40) can then be well approximated by zero. We will attempt to quantitatively

justify this claim later, for a particular signal model.

The expression for the It LR is, from (40),

I - - I""- +" - - 4'". (49)

Now is actually a random variable, governed by the statistics of the

observation -4 P a+ < ; remember we have already averaged over the statistics

of I Po in (36) and (37). Furthermore A has different statistics for signal-

present (H,) versus signal-absent (H.). Although the sum of the random variables

in (49) is to be compared with a threshold, it is not the absolute level of the

mean values of A! . under H. and H, that is important; rather, it is the
difference in these means under H, and I4 that is important. After all, means

can be absorbed in a modified threshold. Therefore we will attempt to determine

the means and standard deviations of some of the random variables [V"/kK1,
and make some quantitative statements as to when and where (49) can be terminated.

I.I



Another important point should be made here regarding (49). One

sub-optimum processor is afforded by simply terminating (49) with the term 12n

Now even though the rest of the terms in the series may not be small, and therefore

cannot be dropped from the optimum processor, it is conceivable that the decisions

yielded by this sub-optimum processor often agree with those yielded by the

optimum processor (each processor with its own threshold). This will be the case

when (48) is true; an important question is: how small can TA get before the

optimum processor significantly outperforms this sub-optimum processor? An example

in appendix A shows no difference in performance for very small TW3, namely

/4< T< I/Ws. Thus at the two extremes of very large and small TV/, this

sub-optimum processor performs just as well as the optimum processor.

It is worthwhile to note that if we were to expand the LR in (35)

in a series, we would obtain a far less useful result; namely

Now this series would not terminate, even for r equal to a Gaussian random variable.

And for r near-Gaussian, it is not obvious how many terms of (50) need to be

retained for a good approximation. Thus (49) is expected to be more useful,

especially when (48) is true.

Example of Exact LR for Several Narrowband Pulses

By way of illustration of some of the techniques above, consider the

signal model

c t). e A, 0.Ah+;~,~(1
where IC are independent random variables uniformly distributed over 2r, 103

are known complex deterministic low-frequency waveforms, f&A are known amplitudes,

and are known center frequencies. We assume that the complex waveforms

4 p)(i 4)J are orthogonal, perhaps through time or frequency separation,

and that T 4t , where T is the duration of ;If) Then it follows that

the received signal energy, fc sj,), is virtually independent of f 3, and

hence is non-random.

The signal complex envelope is

s A wtb)-1 . (52)

12



for which, obviously, the deterministic component (2)> -0. Then (32) yields

The ensemble average in (35) is then

-T1F T- IS ( N, ' (54)

Hence (35) yields (with the aid of (31))

Ivi LR + -ID fv42, ., 55

A block diagram of the optimum processor for this signal model is shown in

figure 1 below. The non-linearity I ( () is approximately a squarer for small

arguments (inputs), and is approximately linear for large arguments. Thus coherent

processing of each component is accomplished, and then followed by non-linear

envelope detection and summation.

N, +~t Md3ntaia

~i e

IL

FIr , Orti"u Processor 4 r ,5 ,,.l NQ r"vWLh POWS

13



BLOCK DIAGRAM FOR PROCESSOR YIELDING Y2

In this section we will give a block diagram of a processor which

accepts complex envelope waveform c t<c< f6 at its input, and emits

the quantity r)/2. To do this, we first define correlation

I R))k-4 ~ '~ ,V (56)

An example of a signal process for which RL(e)*6 (even though the deterministic

signal component <()> = O) is given in appendix B. Furthermore, it is shown

there that the deterministic signal component corresponds to pure tones

in si ) of known phase, whereas the ac component with 'R0 )#O corresponds to

pure tones in s(t) of random phase. The quantity &a6) must be real, since

it gives rise to an impulse in real power spectrum Cijf), at f=o.

Substitution of (56) in (45) yields

)fcA 4 2 4 J Sf X (57)

This processor is indicated in block diagram form in figure 2. The power

1 14
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spectrum Go(4) is defined as the usual Fourier transform of correlation RoIi3,

W Jet ~~-2, f-) t) , (58)

and hitf) is a low-pass Eckart filter.

The way to show that the lower branch of figure 2 generates the

second term in (57) is as follows: the output of the bottom integrator in

figure 2 is

faI f h -u (V2I = Jfu dm zIu) v j4v x10PO-A (59)

But

j f_ __ <[ 4:4 10 1'[24 v<,- _ 3':7(-w)

- (j . 4r / L24wT ) (V)v u (60)

where h and JI are a Fourier transform pair (impulse response and transfer

function), and we used (58). Thus the last quantity in (59) becomes precisely

the last term in (57).

Since CIf)= 6a If)- IW) (), GQ(f) must be non-negative, since i((f)

is a legal spectrum. Therefore the choice of )H(f)12  in figure 2 is always
legal.

ilk
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The upper branch of the processor in figure 2 depends on the

statistic If* i)JI (see (57)), which corresponds to a coherent cross-

correlation, over the entire observation interval, of the received waveform with

a constant carrier at -., followed by square-law envelope detection at the end

of the observation interval. Whether this coherent component is significant

depends on the relative sizes of R.1s) and R9kQ; see appendix B in this

regard. It should be made clear that the upper branch of figure 2 is present

even when the received signal has no deterministic component, i.e., when

< i0 =O. The distinction between the two cases is well illustrated by the

special case of a pure tone signal of random phase, cos(2,r&.-+O). This

signal has no deterministic component because the average over + gives zero.

However, cross-correlation of this signal with a local carrier at +,, with

in-phase and quadrature components, followed by squaring and summing outputs,

afford a significant amount of coherent signal processing gain that cannot be

disregarded; in fact, the performance is but slightly poorer than detection of

a signal with known phase, 0 (see Ref. 3, pages 88 and 155). When the signal

satisfies both of the properties

< .5w)= ) (61)

we then say that the signal is fully-random; this case will occupy most of our

attention in the following.

The lower branch of the processor in figure 2 is a linear Eckart

filter followed by an energy detector. Since the linear filter impulse response

is non-zero in duration (being the Fourier transform of ft()), the finite-

duration input 30 is smeared by this filtering operation; hence the integration

in this lower branch is over all time, not just R4.,h) as in the upper branch.

This Eckart filter followed by an energy detector is exactly the filter

characteristic which maximizes the output deflection; see appendix C.

Furthermore, the linear filtering action of HV) in figure 2 is

such as to perform coherent integration on the random input signal over as long

a time as possible. To see this, we notice that the output of filter HF) can

be written as

4Jr 2l) T) (62)

16
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But since the passband of MV') is the same as the bandwidth of (rf), the

impulse response duration of hki) is approximately the correlation time of

RO r). That is,

H()I2 63)

transforms 
into

= 2J . (64)

Thus the effective integration time in (62) is approximately the correlation time

of the random signal process, and is as long a time as coherent integration could

reasonably be anticipated. The squarer and integrator following lif) in figure

2 can be looked upon as a sum of squared envelopes, for the continuum of possible

relative time delays that the filter impulse response and input waveform can

take on (see (62)). For a very narrowband spectrum Qrof2  the correlation time

of 9.I1) will be large, and considerable coherent processing is achievable via

(62), prior to energy detection. This processing of the random signal is

achievable even if the upper branch of figure 2 is absent; that is, even if there

are no pure tones of random phase in the signal.
i.)

An alternative interpretation of the quantity IIK4 in (57) is

possible. Let the voltage density spectrum of the received waveform complex

envelope be defined as

X+ (f fdf 2jk) "ip(-'f) (65)

This is fine-grained frequency analysis, i.e., resolution I/H in frequency. Then

it is easily shown that (57) can be written as

Realization of this form requirec a fine-grained frequency analysis over (_0,

weighting of the energy-density function IX(f) with an Eckart filter function,

and summing; however the weighting at zero-frequency is distinctly different

' 17



from that at non-zero frequency. Namely the weighting is (see (45) and (56))

Since the expression for IZ in (45) involves &K.i,-Q)

only for the range of arguments '4 < t-z, 4 -c +, , it is seen that only the

values of Rjj for ju< T are relevant. The question then arises as to

whether the procedure in (56) et seq. is necessary. This problem is addressed

in appendix D, where it is shown that other approaches may not yield legal

choices for that is, IH(f)11  may be required to be negative for

some values of 4 which is impossible. At least, (56) guarantees a legal choice

for h4'f~I2.
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MEAN VALUES OF 2

It was noted in (49) et seq. that cumulants are

actually random variables, since they are functionals of the observation X{I).

In an attempt to determine what terms in (49) are most important, we begin by

first evaluating the mean values of XE), both with and without signal present.

For hypothesis 4, (noise-only), the mean value of is available from

(45) as

£ -'-- XJ + k- )n* i) W. k-) (68)
24.

where an overbar denotes an ensemble average with respect to the statistics

of the received waveform. For the complex envelope noise, we have (Ref. 3,

ch. 2, (4.10) and (5.15))

n) _f = 2{ tr ) (69)

Substitution in (68) yields

-- TVj-) JtR (o + J <bI)
2a

Now if KS+)> =0, no deterministic signal component, which is

the usual case for phase-random narrowband signals, and the only case that we

will consider henceforth, then Q ! L _s), and we have, using (13),

f-a1w> = , <2 E;>-~ (71)

------------------------------------------------
This average is over an ensemble of received signal and noise realizations which
are both totally independent of the earlier signal ensemble average, although the
same signal statistics are valid.
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(From (70) and (71), we extract the relation (to be used often later)

T a(O)-- TR, to) = ZE.) (72)

Since the quantity EN4 must be large compared to 1 in order to

get decent detection performance, even for coherent processing of a known

deterministic signal, it is seen that, in this more-random signal case, the

mean value w)(Nj) is very large, even when no signal is present. However,

of more importance is the difference of means of _ with and without

signal.

For signal present, (45) yields (since signal and noise are

independent)

I ff eRA R" (73)

Now recalling <sIi)> = 0, we have

s~t< &*{ U K --) L =R.k-4~ &{) (74)

and (73) becomes, upon use of (69) and (72),

1 _ (+ - 414.UIU -

(E. + E (75)

where we have defined

T (76)

and

- Io) (77)

-----------------------------
See footnote on previous page.
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The difference of mean outputs, with and without signal present,

is available from (71) and (75):

tZ~s-~J - ~)4%) =(78)

The size of this difference depends critically on the value ofI2.The quantity

is a measure of the effective number of statistically independent wiggles

of F ) in (+-1 +t); see Ref. 5, pages 5-10. Its value is strongly

dependent on the size of XFie). For example, if Rafr) does not decay with t,

but remains constant at its origin value, then (ofr)-] and T, = I; this

is consistent with the physical observation that an unmodulated signal has

only one statistically independent value. On the other hand, if (61) is true,

then for T > 3/W., (76) yields

(R to) T 2 0)

__ J~t~kt/(79)
T C.TWs

where we have employed (77), (74), Parseval's Theorem, and defined the statistical

bandwidth of fully-random received signal as(* os

W(80)

In this case, T2 < ; generally 1. can be much smaller than unity if "V>>l.

Notice that T-Wk only has to be moderately larger than I in order for (79) to

be a rather good approximation.

In general, (76) aid (77) show that -5 I. The nature of the

dependence of I. on R,;*) and T% can perhaps best be illustrated by an

----------------------------------------------------------
Since rjLF) is the power density spectrum of complex envelope 51), it is a
low-pass spectrum centered about f zo. Thus Ws measures the "width" of G)W)
on both the positive and negative frequency scales together. Alternatively, W
measures the width of the narrwband spectrum of sff) about its carrier frequency.
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example. Let the signal correlation be exponential:

R1 () () -Rs )] ~xr( V4H) - jL 6)(81)

equivalently, using (77),

(k-_( r "f(KH)+C r- e c/ 1( (82)

Then from (76),

, = 2 + 1+ 3 
(832=x . .. 4-c-3CeY TW, (83)

As particular cases,

X4,X -0 ide

L(1_~) cj ~,e

2x-I-e c o. (84)

These relations agree with those stated above. A plot of (83) is given in

figure 3. The smallest value of -1, and hence the smallest value of the

difference of means, (78), is attained when c= 0, i.e., aI) = 0. . This

situation will yield the most difficulty in signal detection, and is the one

we concentrate on henceforth; that is, we consider only the fully-random signal,

characterized by (61). Notice from figure 3, that for c=O) -X is very well

approximated by Is (I - LI), for TV's as small as 1.5. In fact, (TWY'

is a good approximation to I, for T4> 10.

When the signal is obtained via Gaussian frequency-modulation of

a carrier, the pertinent requirements on the spectrum 6,,t) of the modulating

process, to yield a fully-random signal, are derived in appendix E and are

related to the behavior of G.Af) near -=. This case of Gaussian frequency-

modulation with property (61) will occupy the remainder of our attention.
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VARIANCES OF

For noise-alone, the mean value of is available in (71).

To evaluate the variance, we start with (45) and (74) and form the mean square

quantity

" - - i ci)k € * 4;-t} 4 MA). (85)

Now since _i({) is a complex-envelope Gaussian process, we can employ Ref. 6

and (69), and obtain for the fourth-order average in (85), the value

k3 tq) [I±. (t --- S )].-) (86)

Substitution of (86) into (85) yields

_L t ()4 (87)

Employment of (72) and (75) yields

M~ E)2I (88)
Ms 1 7= KO (N" N

Combining this result with (71), the standard deviation of interest is

(89)

Notice that this quantity can be significantly smaller than (71), the mean value,

if -, <<. This latter situation will occur if TWsV> I; see (79).

We are now able to form a deflection statistic for the random

quantity jL ) in the ih LR. Using (78) and (89), it is defined as

-2L T.I.(90)

2 24
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This relation has been derived without any specific assumptions about the

detailed signal statistics, except for the randomness assumption (61). If

our processor is limited to just the term of the 1% LR processor in

(40) (recall that the <v> term is zero by (61)), we would require that (90)

be somewhat larger than unity, in order that good performance be attainable.

A reasonable ballpark figure for low false alarm probability (10- 3) and decent

detection probability (.5) is to have deflection

4 - lo ;(91)

higher-quality performance will require still larger values of 42. Then (90)

indicates that we will have to require

_o ~(92)
No - "V --

But if TW->> I, E/-N is going to have to be rather large to get good
performance from j4I alone, for this fully-random signal. The factor T

is a measure of the penalty of having to detect a fully-random signal rather

than a completely-known deterministic signal, by employing just the second

cumulant,11, of the infinite series (49).

For the signal-plus-noise hypothesis, the mean value of-A

is available in (75). To evaluate the variance, we start with (45) and (74)

and form the mean square quantity

M5 t4'(5N)J~ =~j~~ 16d{ A.*4 J 4- R f~±)F(, 2 *) (93)

where fourth-order average

R [If44 -i =.) [k [ *k)+ [i +VV (94)

Using the statistical independence of signal and noise, their zero means, and

property (44), we find (using an obvious shorthand notation)

25



F~ ~ '5-3 4-;~:;-; 31 ;;s42 nTiq)

+ S5 1,:+ + T~
7

!l,(95)

All the terms in (95) have been encountered previously, with

the exception of the leading term. In order to evaluate it, we will need to

be specific about the signal statistics. As noted below (84), our interest

is in Gaussian frequency-modulation of a carrier, with property (61). The

pertinent second-order characteristics of this signal model are presented in

appendix E. In order to evaluate the fourth-order moment required in (95),

we employ (E-6) in the form

=A ex 24, Jd m )--i4 &.i--< ) (96)

where rA is the Gaussian frequency-modulating process, to obtain

4+

A +4 "?I--r JAr() (97)

where

1C Jt(L-4QJ 4-+) 4- X(u- )-Uu(,-+,) (98)

and TJ( is the unit step function:

UN IX~oj(99)

Equations (97) and (98) hold for any values of +4 in (+. f),

irrespective of their location and ordering in size.

26



Now since frequency-modulating process m(u) in (97) is zero-mean

Gaussian, the integral on La, denoted by S, is also zero-mean Gaussian, and we

can immediately write (97) as

5 S5 A4 Tpj2~

=A qd-~ ~ Jv I-w(W; 1) W(V*)

+ r I,,u..lyA I\2
A APL-2,'rJf tFT,, INVt;f)IJ, (100)

where WII;I) J er W(-i2,,+,)(u,_)

= (-; ,,- ,)- -4; ) -;2w-f, 4 ) - e,'l,(-i 2,€t)] (101)

Here we have employed the Fourier transform relation between frequency-modulating

spectrum &,,4) and its correlation R KI) (see appendix E), and used (98).
Equation (100) is a compact expression for the fourth-order moment,

and can be numerically evaluated by one integral when values for f,+0,44

are specified. However, it is not directly suitable for our use in (95) and
(93). Rather, we expand IW2  by means of (101), and obtain

, :,: = At ,¢ p[ f,, -4) ,,- ,-'(+,-It,)

- -,.. - .-) - +/) ,-4.)-o/+,+ )I~], ](102)

where ,
Ir Cos~ (2rf (103)
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In appendix E, this real even function 100r) is interpreted as the variance

of the "random walk" process 2-4 lv) during an interval of Id seconds.

Thus we have a closed form expression for the fourth-order moment in (102),

provided that (103) can be evaluated in closed form.

Now also, for the frequency-modulated signal process in (96), we

have

'R5(I..): ii".) = A"

A-2  -+ r- ) ,(104)
which is real. The last step follows from appendix E, or by setting +={.

in (97) and (102), and noting from (103) that "2 (o) 0. But now (104) enables

us to write (102) as

-- ,(105)

in terms of second-order statistics. This equation is exact for signal model

(96). For comparison, if *0 were a Gaussian process, the right-hand side

of (105) would have been expressible in terms of second-order statistics (according

to Ref. 6) as

j ,- 4- (106)

(The approximation afforded by the replacement of (105) by (106) will be of

interest later; see especially appendix F, (F-42) et seq.)

Thus the leading term in (95) is given by (105); the remaining

terms in (95) are developed below, by using (74) and (69):

ilk2
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~~ = ~.A 2-4

3 24 (4r= (107)

and the last term in (95) is given by (86). Thus F in (95) is given by the

sum of (105), (107), and (86). Employing these results in (93), there follows,

by use of (74), (77), (72), and (76),

+ -;hi 1 ) + 2(~~T~ T+ + (108)

where we have defined

= iJf3 -~(( *(4~ (109)

and

If (110)SI (~A I&~.J f~1~)(-~To. 7 ,

Both of these quantities are smaller than unity; in fact, they can

be much smaller than unity. For signal absent, only the first term in (108)

remains (see (95)), and (108) reduces to (88).

When we combine (75) with (108), there follows

---------------------------------------------------------
ITF denotes a p-% fold integral, with p numerator i-functions and ,denominator

p-functions. If is zero, the notation is simply Tv,.
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The first term in (111) is identical to the square of (89); the other two terms

are due to the randomness of the signal.

Approximation to It

In order to evaluate 13 and L 2 of (109) and (110), we need to make

some approximations. These approximations will be developed by re-consideration

of IT, and carried over to the cases for T, and 1" , where exact evaluation

is very difficult. First, in (76), let Ia = +.4-tb)/Z . )= 9.2. Then

T/2

where rectangular weighting

r () (113)

Let X= tA-LUz in (112); then

J., dw r u,)= f (X) I(X , (114)

where

w h e r e A r lu ) r ( u - -x ) ( 1 1 5 )

is the autocorrelation function of rectangular weighting (113). This auto-

correlation is triangular and extends over the range (-T, r). On the other

hand, the effective width of J1 l(x)1 is approximately W'. Thus if

TWi , )p (x)) has decayed to zero long before br) has changed
significant y from its origin value. This allows (114) to be expressed

approximately as

T2.. i~~bot~Il~ J .W ; -~w>> (116)
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In order to evaluate (116), we will approximate signal correlation

e by a Gaussian function. We choose

r (r __ "r(- : .1-0 'r r.(117)

The choice of scale factor has been made to satisfy condition (80); thus W is

the statistical bandwidth of the received signal. In appendix E, it is shown

in (E-28)-(E-33) that (117) is in fact a good approximation to the true signal

correlation when the rms frequency deviation is somewhat larger than the

equivalent bandwidth of the frequency-modulating process. Furthermore, even

when this condition is not true, Ws in (117) could be chosen so that (117) fits

6s well as possible in some sense to the exact signal correlation, given by

(E-ll) and (E-9). Several examples for modulating and signal spectra are given

at the end of appendix E, and the approximation (117) is demonstrated.

Substituting (117) in (116), we find

1 ,- L -far TW ,I> (118)

this result is consistent with (79) et seq. TW, does not have to be too large

for (118) to be a reasonable approximation.

Equation (118) is a fairly good approximation to the exact curve

for C-0 in figure 3, where the signal correlation was exponential; see (81).

When the signal correlation p is Gaussian, as given by (117), the exact value

of I is available from (76) according to

2_ 2. _L - I - , j 0( = V27 (llg
T-.= D I(e)-2 D (119)

Error function I is defined in appendix E, example 2. Comparison of the

approximate and exact values of 11 , given by (118) and (119), is presented in

figure 4. It is seen that (118) is a rather good approximation, especially for

large TWo . Thus the approximation technique developed in (112)-(116) will be

used to approximately evaluate T,) and Ic, given in (109) and (110). Actually,

all the above has been done merely to set the stage for the approximate evaluation
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of I. and T, since exact evaluation of I, via (76) is rather straightforward

in most cases; see, e.g., (83) and (119). However, exact evaluation of (109)

and (110) can be extremely difficult.

Approximation to 13

Use of (113) allows us to express (109) as

J~j~~ dL~i~, u,)r~u~r~u)(oUa-J)(hJP-~3)P~u- LX).(120)

Letting X= tL4-A,) -LA- there follows

W d X- (121)

where

Now if Ts>)l, (121), (122), and (113) yield

T3j z (0, )fdy ( X o(( (V = (-X),() (123)

since the integrand of (123)--* 0 no matter how ) -c) ± . Next we

appeal b approximation (117) in order to evaluate (123); we have then

rr11r 2 1  ~ 21V3-
(r+I ' (124)

The last step was made by use of K-fold multiple integral relation

X
dX= J ) , d M>o> (125)
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where column matrix X X, -, and M is a symmetric K x K matrix.

Equation (124) constitutes our desired approximation to I,.

Approximation to T62- 7

If we try to approximate '1, in (110) directly, as above, we

encounter the difficulty that the appropriate correlation does not decay to zero

for large arguments. Specifically, if J-,-+ and -=f in (110), the

integrand remains at value 1. Furthermore the variance expression of interest,

(111), involves the combination JL-1, . Evaluation of this latter quantity

is undertaken in appendix F; the end result 's

62 2 .5) 3(126)

where 1. is a dimensionless quantity of the order of 1. A short list of_0)

values of T, is given in table 1, for Gaussian frequency-modulating process mW

with an exponential correlation R jr); the frequency-modulation index

D = 1 (127)

is the ratio of the RMS frequency-deviation to the equivalent bandwidth of the

frequency-modulating process vm(t). A larger table and plot are given in appendix F

D .5 1 2 3 4 5 6

.356 .418 .642 .881 1.124 1.368 1.612

Table 1. Values of 1) for Exponential Correlation

of Frequency Modulating Process m(t)
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Approximation to Variance

When we combine (118), (124), and (126) in (111), we obtain the

approximation

E -L[I Ir + r )qe ~s,(1 28A)
A)s T~~ Tr )032TS

where

- '/ rece__vaJ .36"41 pOL (128B)
TW3  tJWS ~ 1,. ~iecJe . I~Ib Ic

is the input signal-to-noise power ratio (SNR) in the signal bandwidth*. For

very large T't45 , keeping E/14 fixed for the moment, the first term in (128A)

dominates; that is, for low input SNR, the first term is the same as the square

of (89) with approximation (118). In terms of deflection 4. defined in (90), we

can employ (92) and (118) to write the requirement on E/A4 as

TW.,,(129)

in which case (128A) and (128B) become

d2 +[I+ + (130A)

and
E d(1308)
TW5 TS

--------------------------------------------------------- rAnother interpretation of Rs is furnished by expressing Rs -E,/NJ., where Ex
is the signal energy per independent component. That is, in observation time T,
there are TW effectively independent components of the received signal (see
the footnote to equation (80)). Then small Vs is synonymous with a small ratio
E,/Pi. of the component signal energy to noise density ratio. This interpretation
will be of use later.
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The first term in (130A) is the only one that would remain for hypothesis H,
signal absent; see (89). Thus the increase caused by signal randomness is

indicated by the last two terms in (128A) or (130A), in terms of Input measure

or output measure aa, respectively. If F is somewhat larger than the

performance quality measure A (see (90)-(91)), then (130A) is only slightly

larger than the variance with signal absent.

Although the variability of 1 is somewhat greater with signal-

present than with signal-absent, this may not matter much if we are asking for

detection probabilities in the neighborhood of 0.5. For this case, the threshold

will lie approximately in the center of the probability density function of the

decision variable when signal is present, and the increased variability is not

relevant. And for false alarm probabilities in the I0-  range, with "T%>>,

the deflection criterion of (90) is the appropriate quantity to focus on. Thus,

if we confine attention to the term of the In LR development in (49),

requirement (129) is the one of major significance; whether higher-order terms

are important has not yet been ascertained.
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DERIVATION OF

We are now prepared and interested in determining some of the

higher-order terms in the series expansion of I" LR in (49). We recall that

r is given by (32) or (42), and that and Y.. are given by (39).

Substituting (96) into (32), we have

r Re ex (-i )3 = -L t; (131)

where we have defined the complex quantity

CI 'A YM - 'io)] (132)

Now, according to (39), we must average r3 over the signal statistics, i.e.,

over $band 4. Performing the average over first, we obtain from (131)

+_ 4 ~ , 0 (133)

since is uniformly distributed. Therefore

' ) , (134)

meaning that the term in In LR of (49) is absent. In fact, all cumulants,
Wr)

for k odd, are zero, by an argument similar to (131 )-(133), for the signal

model (96).
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DERIVATION OF /4

We now have to average r over the signal statistics. From

(131), we find

(¢x4 -,6+ c! / = Cl* (

Hence, from (39),
0 r (136)

here we must still average Ict over the random signal frequency-modulating

process 1. We have, from (132),

2IV)> (137)

But we have already evaluated this statistical 
average, in (97)-(105). Therefore

we find

(4 , i (138):, , <

where we have also used (77).

Combining (138), (45), (74), and (75) in (136), we obtain

(139)
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This is the next non-zero term in expansion (49). Although it indicates

explicitlywhat has to be done on the received waveform 10t), no simple way

of realizing this processing has been discovered; in general, it appears that the

difficult processing indicated by the fourth-order integral must be evaluated.

Whether there is a special property of the combination of correlations in (139),

that enables a simpler or approximate realization, is unknown. The magnitude

of the difficulty of calculating (139) directly is pointed out by noting that

since samples must be taken in time at least as often as I/A4 seconds, and XY)
is of duration T, a sum of terms of order I must be effected. For large TW.,

this is not going to be possible, in which case approximations must be found.

For now, however, we are interested in the average size of the term (139) in

the yit LR series.

---------------------------------------------------
A partial check o (139) is af grded by using the example of xH= 4-4),
which leads to 4(r/24 = - 6N /,4. At the same time, (132) then yields
IC1 z A/J , while (131) yields <e>= ±A3/pJL and <r4>--@-g.,)1 , and
(39) yields the same value as above for )4/2+. Alternatively, use of the
replacement-approximation of (105)-(106) results in zero for (139); this is
consistent with a Gaussian assumption for 514). More precisely, use of (F-47)
in (139) yields

4, 3 (41 to)JJJ -

where remainder tends to zero no matter how X)y)* increase to
infinity.
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MEAN VALUES OF

Signal Absent

Let the combination of correlation functions in (139) be denoted

by kernel ,;+4,-I) (which equals R3 Ri.-t;,A-q.-4,)). Then

for noise-alone, using (85) and (86), along with (76), we have mean value
4

- No =

_L A AW2)_ (140)
-5( 1 ,j-)+JJ) r = -

For comparison, (71) yields the mean value of the previous term

in the I LR expansion (49):

t= S - . (141)

Since 12. z (TNV-  for T'N I via (118), (140) becomes small relative to

(141), as TW increases, as was anticipated, provided that E/N is held

constant; however, large values of TW, would be required, due to the additional

power of F&/N involved in (140). Furthermore, the situation of fixed C/NI, is
not the one of interest; rather, if we attempt to keep the deflection criterion

d2 of (90) constant, we have from (92),

1N) ; - _ . , (142)
24. 4"

which is constant (and large), while
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z T(N)>> (143)

In order that (142) be much smaller (in magnitude) than (143), we would

require J-a Wss  -JRs << I, which would indicate large values for TW.,

since values of d2 Z if are typical requirements for good detection

performance; see the discussion surrounding (90)-(91). However, these mean

values are not the final or most meaningful measures of performance; additional

important parameters are evaluated below.

Signal Present

The derivation of the mean value of 2-.4 in (139), for signal

present, is rather involved and is presented in appendix G; the result is

E ~ ~ (T 2 T6)+( ) (144)

where

+)A3 A A,(145)

and I,, 3 , and I~. are given by (76), (109), and (110). Evaluation of T*-2T,

in appendix G, and use of (118) and (124), yields

2+ + qE + (146)

:- T 4- NR3 m W o r . (147)K / TW 1 F3)

where is a dimensionless quantity of the order of unity. In terms of

deflection d, we use (129) to express (146) as

ilk
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< (148)

Comparison of (142) and (148) reveals that the difference of mean fourth-order

outputs is

l~I2r 8 k 1(149)

which can be large for r "i'. However, when we recall that the difference

of mean second-order outputs is

_yN (5+ N) T (150)

2..

where we used (78) and (92), then we see that the latter difference is much

larger if Is = 4,,/vi'f is small. But this is still not the final statement,

for we still have to address the deflection criterion of random variable ?

which will involve the variance of W'(i h), in addition to the difference

of means considered above.
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VARIANCE OF ;(N)

Since is given by the four-fold integral In (139), evaluation

of its variance will involve an eight-fold integral. To simplify this task, we

will consider the variance only for noise-alone. The derivation is gtven in

appendix H, with the result that

VO L= I 1 (151)

where the various quantities have been defined in (76), (110), (145), and also

TE (152)

The expression (151) is simplified in appendix H, to

VorY~~~5~ (153)

where PI is a dimensionless quantity of the order of unity, and is available

from I and I according to (H-8). In terms of deflection da, (129) yields

+ T A-- T (154)

For comparison, the variance of the first term in the )m LR series
is given by (89) and (118) as

Var 4:(MI - (155)

The ratio of (154) to (155) is of the order of , which will be
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rather small if IjW is somewhat larger than .

We can now form a deflection statistic for the second term alone,

/24, in the In LR series. Using (140), (146), and (153), it is

In terms of deflection , we use (129) to find

2

jz (157)

Thus the second term in the 6' LR series has about the same deflection criterion

as the first term, when (f* is large relative to deflection 42. At first,

this result would seem to suggest that the In LR series ought to be carried to

at least two terms; however, a better measure for this conclusion is based upon

the deflection criterion of the combined statistic

I~~h~~4  (158)

rather than upon each term alone. We now undertake the evaluation of the

deflection of statistic (158).
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DEFLECTION OF

The difference of means of 1 for signal present versus noise-alone,

can be obtained from (78), (118), (140), and (146); we find, with the help

of (130B),

E I E "

~C5-N)L.() T~s +-J

The variance of . for noise-alone is given by

VQV-+ \Jo1?hfPIN)]

+ 2 - MU N (160)

With the exception of the third term, these quantities are available from (89),

(153), (71), and (140). The third term is evaluated in appendix I, with the

result

- - . (161)

Combining this result with those cited above, and employing (118), (124), and

(130B), there follows
(0) i4-

[E ±_ S +T]"L(162)
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The deflection of -Q24 is

TX -N 0 NO
________or - 2 (163)

where we employed (159) and (162), and recall (130B),

No T S & (164)

Expanding (163) in terms of powers of 1s, we find

_ = ~'~"~~JJ.(165)

Notice that the perturbation from 42 is an order of magnitude smaller,

depending on (i//TJs) now. Thus the addition of -4 to 1. does not

significantly affect the deflection criterion; this strongly suggests that the

first non-zero data-dependent term in the In LR series, -, = I V.", is

sufficient to base optimum decisions on, without regard for the higher-order

terms, when ' 3d and i F This criterion is significantly weaker

than the earlier ones which were based on preliminary statistics, and not a

final performance measure.

Correlation Coefficient

One additional statistic relating P, and I.. is of interest,
.

namely their correlation coefficient; for noise-alone, it is given by

-----------------------------------------------
Calculation of the correlation coefficient for signal-plus-noise would require

knowledge of the mean of M9S"Js) L..S+ N) and the variance of )4$+ N), in
addition to the other quantities that have been evaluated already. This would
mean evaluation of sixth-order and eighth-order signal and noise correlations and
subsequent simplification and approximation; this task has not been undertaken.
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C2.(N) )2T 4F)(166)

Substitution of (161), (89), (153), (118), and (124) yields

4%Ot(N) = T (167)

Evaluation of 1D is undertaken in appendix J; we find via (J-13)

C2+(N) =- 0, (011 4y- 1=3. (168)

This rather large correlation coefficient indicates that the statistics 12(N)

and *W)tend to vary together; that is, when one gets large, so does the

other (in magnitude), and vice versa. This result, combined with (165) above,

is further confirmation that the addition of ;. to 1, does not significantly

alter the decisions yielded by . alone. This conclusion is drawn for large

TW only. As an example, if we desire 4,~Vi? (see (90)-(91)), then (165)

suggests TFs>10 as the condition for neglect of 1+. Consideration of

(130B) reveals that we are then talking about input SNRs less than I/ro =-5dB.
To summarize, if we want decent performance in terms of detection

and false alarm probabilities (dx .-TO) and if V is large relative

to d., 3d', then the input SNR is small (I?, l/3), the time-bandwidth

product is large (TWs> 10o), and the 4 term in the ll LR series can be

dropped (use ] alone). In fact, if JTs > 4ax(IO
,3d), but i2 is small,

then R 1 < 1/3 , and the )+ term can still be dropped without degradation in

performance; however the performance level, in terms of false-alarm and detection

probabilities, will be poor.

If we attempt to state the condition for neglect of A. in terms of

input SNR Rs, we can say that if Ts < /3, then from (164), )/ >3 a. However,
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this does not necessarily mean that TWs is large unless d2 3 3. So small

input SNR is not a sufficient condition by itself; it must be augmented with

the requirement of good performance by the processor. Then we can state that

4 can be dropped in the i LR series.
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ON THE APPROACH OF Ir TO GAUSSIAN

It was noted in (47) et seq. that the random variable r should

approach Gaussian as TW, increases; we can now make some quantitative statements

about the rate of approach. If ir were equal to a sum of N independent Identically-

distributed random variables i}, then we would find that the measure of non-

Gaussianness afforded by

X4- (169)

indicates a '/N decay. For our problem, however, r is given by (47) as a sum

of approximately TWs unequally-distributed independent components; the unequal

distribution follows from the weighting by the received waveform x0, which
varies with time -. Furthermore, this results in ;'4} themselves being random

variables. Nevertheless, we can still derive a meaningful measure, similar to

(169), for our problem.

We observe first that the random variables w4(N), + , (N)

are clustered if TWs N) ; that is, their standard deviations are much smaller

than their means, if TWsI. From (71), (89), and (79),

- -i-(170)

From (75), (79), and (128),

5 __ 6 (171)

^1' S * N) +WR5

where 'Rs is defined in (164); the function of Rs is approximately unity. And

from (140), (79), and (153),
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____ ____ -_(172)

the numerator of (172) is approximately 3.44 for D = 3; see (J-13). For

large TWs, these last three quantities are small, and our conclusion about

clustered behavior is drawn.

This leads us to replace (169) by the measures

) - - (173)

and

_ + R(174)

which are obtainable respectively from (140), (79), (71), and (146), (75),

(79), (164). Since the function of Rs in (174) is approximately unity, both

measures (173) and (174) indicate a rate of decay proportional to TW'

this inverse dependence on the effective number of independent components in r

is similar to (169). The scale factor in (173) and (174) is somewhat larger

and is probably due to the unequal weighting in (47), as mentioned above.

The cumulants X. and A are zero, whether signal is present

or not, as are all odd cumulants; thus is the first non-Gaussian contributor

to the In LR series:

_R 4- 4-4 4 1 (175)
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where we employed (49), (41) et seq., and (134). All of the above measures

lead to the conclusion that the most important term in (175) is the first

data-dependent term )Z , at least for large TWs.
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POWER AND ENERGY RELATIONS

It has been noted above that, for large TW,, the dominant term

of the I LR series is the Z term, and that in order for this term to

realize deflection d2) we must have the ratio of received signal energy

to noise-density

_U - (176)

No

where I' for good performance; see (129). This relation requires the

received signal energy E to increase according to the square root of the signal

bandwidth, W for fixed deflection d2, noise density 4,and observation

time T.

The ratio of the received signal power to the noise power in the

signal band is then

R12 (177)

which allows 1s to decrease as WS- for fixed d. and T. The reason for

this decrease is that the received noise power in the signal band is increasing

according to Ws, as Ws increases. A better measure may be the ratio of

received signal power to the noise power in a 1 Hz band:

= (178)

'IA
Like E/J, this must also increase as W , for fixed & and T. Some

examples of these relations are presented in table 2.
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A2r

f 03 300 1000 20 -10 -4.83

1 300 100 15 - 5 -9.8
3*

1 300 10 10 0 -14.8

Table 2. Power and Energy Relations

The input signal-to-noise ratio, (177), can range below 0 dB if

large values of TW s are attainable; but rather large values for E/4 are required

in this case. For comparison and partial verification of the last example in table

2, Ref. 8, page 14 gives, for M = 1 alternativeD = 10-fold diversity, ?F = -0 P=.5s,

the value 1P0No- 11.30; thus, high orders of "diversity" ( W,*>I) require

large values for the received signal energy to noise density ratio, in order to

attain decent performance.

--------------------------------
This is not a very large value of -TW5, thus the conclusion about 4=1)

being a sufficient statistic, and the adequacy of 'a as a performance measure,
are suspect for this last example.
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THIRD CUMULANT OF

The first two cumulants of - ! have been derived in (71)

and (89); they are, using (90),

(179)

For large TWs, these relations were the basis in (170) for showing that
is clustered around its mean value. Now we wish to show that

- r (N) is tending to a Gaussian random variable as TWs increases. (This

is true even though )(,, (N) is a nonlinear double integral of the noise

waveform.) We do this by considering the normalized third cumulant (/C Y.,

which is a standard measure of non-Gaussianness of a random variable (see, e.g.

Ref. 4). We have

(180)

We expand (180) out and use (71) and (88) to evaluate the first- and second-power

moments. The third moment can be evaluated by using the properties of complex

white Gaussian noise in (45), with the result that

C3 = Zk) 1, (181)

where 1. is defined in (109). Therefore (179), in conjunction with (118) and

(124), yields

.2 -3 -- it-tT WS. (182)

The square-root decay with the number of independent contributors is again

standard for this particular normalized cumulant; thus )(A) is tending

towards Gaussian. This result (182) could also be useful in setting thresholds

for specified false alarm probabilities of the processor employing only

in its decision-making.
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SIXTH CUMULANT AND ITS MEAN

The conclusions drawn above have been based on consideration

of and 4 and their statistics. We now consider the sixth cumulant

and its mean IF,(N) with noise-only; any other statistics require a

prohibitive amount of manipulations. The derivation is presented in appendix

K, with the result

. Z ) 3 +O

where

K {,.t 6) < ok) 4PV

ytt) is the complex phasor process defined in (F-43), 1<4 is available in
(F-44), and k==o. The complex processing required by the kernel of (183) has

not been evaluated, because it is too difficult to realize physically and sheds

no light on the processor.

The mean of (183) for noise-alone is derived in appendix K:

-= t- 1 ' - ,S<(N) ( )' 1. __,__a T . (185)

For comparison, the means of the first three non-zero data-dependent terms in

the In LR series are summarized:

Thus the mean values of the higher-order terms are dropping off by additional

powers of the input SNR R,, which is small. This leads to the conjecture that
the higher-order terms in the 1h LR series are progressively less important when

> Ja,i.e., small R.
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SUMMARY

The logarithm of the likelihood ratio has been developed in an

infinite Volterra series, and the leading terms, from zeroth-order through

sixth-order, have been investigated in terms of their size and statistical

significance. It has been found for the fully-random signal, which is

characterized by no deterministic component and no carrier, that if false

alarm probabilities in the order of 16 and detection probabilities in the

order of .5 are desired, if the product, TWs, of observation time and received

signal bandwidth is large, and if there is at least a moderate frequency modulation

index D, then the ratio of total received signal energy to noise power density

level must be rather large, of the order of 3(Tws and the dominant term in the

log likelihood series is given by the filter-energy-detector term, )?'. The

requirement on the frequency modulation index D being at least of the order of

2-3 was introduced in the analysis in order to facilitate approximate evaluation

of some of the multiple integrals by means of Gaussian functiors. Thus this is

a sufficient condition employed for tractability; how small the modulation index

can become, without violating the conclusions above, is unknown.

Alternatively, if WW, is larger than the maximum of 10 and 3d2,

where 42 is the deflection criterion of the filter-energy-detector term

then the dominant term in the log likelihood series is ); this holds regardless

of the size of a2, i.e., whether good or poor performance is to be obtained from
the filter-energy-detector. In this case, the input signal-to-noise power ratio

in the signal band is small. It is not sufficient to say that small input signal-

to-noise power ratio alone yields the filter-energy-detector as near-optimum.

Rather this condition must be augmented with a requirement for large TWS, i.e.,

> (ic, 3.l), which means that larger time-bandwidth products are required

for better performance.

The input signal-to-noise ratio, R,, can be put in the form
= E,/N), where E, is the received signal energy per independent signal

component and N4 is the noise power density level; see the footnote to (128B).

When this ratio of component signal energy to noise density is small, and the

number of components, TW5 , is large, the optimum processor is well approximated

by the filter-energy-detector. This same conclusion has been reached by the author

in some as yet unpublished work (Ref. 9) on the exact performance of a related

processor, the InT. combiner; see (51) et seq. Specifically, for a signal with K

orthogonal signal components, deterministic except for phase, the optimum processor
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is a sum of In T, of the sampled envelopes of the outputs of K filters, each

one matched to a different signal component. When the number of independent

components, K, tends to infinity, the optimum processor does not approach a

sum of envelopes-squared (the filter-energy-detector) unless the signal energy

to noise density ratio of each component tends to zero as K increases. Also,

in this case, the performance of the optimum processor and the sum of envelopes-

squared processor are close to each other in the region of reasonably-good

false alarm and detection probabilities. This exact back-up analysis of a

related processor tends to confirm the results achieved in the current study.

We have assumed here that the signal amplitude, A, is a constant

over the observation interval. This led to a more tractable analysis and did

not require any additional assumptions about amplitude statistics and their

dependence on frequency- or phase-modulation statistics. It is this author's

conjecture that in the case of random amplitude-modulation in addition, the

filter-energy-detector will again turn out to be near-optimum under the conditions

of small component signal energy to noise density and a large number of independent

components. This is based, in part, on the observation that the received signal

would be even more random than in this study, and that the filter-energy-detector

is a robust processor for the more-noise-like signals. Of course, the pre-filter

in the energy detector (see figure 2) would have to be broadened to cover the total

bandwidth of the received signal (with both AM and FM), thereby lowering the input

signal-to-noise ratio in the received signal band. This would cause a loss in

performance, but is unavoidable as the randomness of the received signal is

increased. Alternatively, to maintain a desired level of performance, the

observation time would have to be increased; the result is a larger number of

independent signal components and a still-better approximation to the optimum

processor.

Due to mathematical difficulty, it has not been possible to develop

anything but an infinite series for the log likelihood ratio. We then had to

analyze the low-order terms (through order seven which is zero) to determine

which were significant, and under what conditions the leading data-dependent

term was dominant. Every statistic (we could reasonably evaluate) pointed to the

filter-energy-detector as being the dominant term, under the conditions cited

above. Evaluation of higher-order statistics of such as their higher-

order cumulants (see (182), for example) or higher-order terms (i.e., larger k,
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as in (183) and (186), for example) is possible, but is extremely tedious. It

also requires approximations to still higher-order multiple integrals, which

have proven very time-consuming to evaluate exactly. Furthermore, the difficulty

of realizing Volterra kernals such as (139) and (183) appears to preclude this

series as a practical solution to the problem of optimum detection of frequency-

modulated tones. Rather it appears to this author that for moderate TWs products,

approximations to the likelihood ratio directly should be attempted. Analysis of

their performance will probably require extensive simulation effort.
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APPENDIX A. OPTIMUM PROCESSOR FOR SMALL TW,

If TWP" 1, we can give an explicit expression for the LR.

From (32),

r± (A-1)

where X and a are the values of w_&) and 210 at the endpoint b. Now let

us consider _s = 12Qxp(iO), where + is uniformly distributed over 27r.

From (13), since E= llT, then I.I can not be random, since E is

fixed. Now we have deterministic component <'> =o, and therefore, from (33),

Also <v>=O from (31). Then (35) yields (since ) is uniformly distributed)

Hence comparison of 1XI with a threshold is optimuw.

On the other hand, the quantity

<J-xo -L Q ==I(3ayIL (A-4)

This again yields the rule: compare XII with a threshold.

This rule for decision-making is physically reasonable, since a

single sample, of a complex envelope with uniform phase, contains only one item

of information on which to base decision, namely the magnitude of the complex

envelope.

-, 59



APPENDIX B. SOME SIGNAL MODELS AND THEIR INTERPRETATION

Consider the phase-modulated signal process (also given in (14))

where phase-modulating process 0) is a zero-mean real stationary Gaussian

random process, and + is uniformly distributed over 2r. Then complex envelope

Obviously 0;f4)> 0, hence there is no deterministic signal component. The

ac signal component is, from (33),

AI)=' g) A er[) K)+ <(B-3)

Then the averages over

-~ 00(-4

as expected. Also

F~ + ~e~[~)--J ~ (B-5)

where we have used the Gaussian character of the difference variable &JO-O),O

and defined the autocorrelation of stationary process as

(B-6)

So we have, from (B-5)

g to) A)= A ~ , (B-7)
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since 0,(w)=0. The latter quantity in (B-7) is not zero unless

(0l) --<e AAO is infinite. However if the mean-square phase-modulation

is large, i.e.,

then (B-7) yields

LX~t 2. = (0)] (B-9)
RIL (o)

But, in general, a small mean-square phase-modulation will give rise to a non-

zero value for g6(,). This holds even though there is no deterministic signal

component, i.e., <i ))> = O.

For the case of frequency-modulation rather than phase-modulation,

we have

f):2.wr{J. OW () f << <j, (B-10)

where mK is the instantaneous frequency-modulating process, assumed stationary.

This form allows O(I to be a non-stationary process. The properties of Gaussian

frequency-modulation are taken up in appendix E; it is shown that the exponential

quantity in (B-5) is replaced according to

, C 4 Co5(2.w-f (B-11)

where CTjR) is the power density spectrum of stationary frequency-modulating

process ?(+). Hence (B-5) yields

te J. (B-12)

The behavior of (B-ll), as t-o-o, depends on the behavior of OF)
near += o; numerous examples are given in appendix E. Suffice it to say, for

now, that examples exist where (B-li) tends to infinity, and other examples where

(B-l) tends to a finite constant. Thus (B-12) can tend to zero or non-zero values,

respectively, as t-.ca. Furthermore, this holds even though the mean-square

frequency modulation,
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JcY GAF), (B-i 3)

is finite. Thus detection of frequency-modulated processes will be different

for the two cases of (B-I) being finite or infinite in the limit as t-.;

see figure 2 in the main text.

When the signal has no deterministic component, i.e.,

0. (B-14)

and in addition

we call the signal fully-random; this is the case of major interest here.

However, below, we delineate the components of the signal in the general case,

so that we can properly interpret our case of interest.

Interpretation of Signal Components

The narrowband signal is represented in terms of its complex

envelope according to

The ac component of the complex envelope is

a )=A (B-17)

Hence the signal can be represented as

Rk) e? < )> " y (f244)] +R k)tf(?wo 0

- d1) + Q ) (B-18)

where d) is a deterministic narrowband waveform with known phase-modulation,

centered at frequency f,. This component could include pure-tone components of

known phase, including as a special case, a carrier at ie, and/or sidebands in

the neighborhood of 4fo .
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The correlation of signal SK) is, using (B-18),

E <,Y#,)) KPt)rJf + +.1+),) -C z,+ij< 4 , (B-19)

where ac component A) is assumed wide-sense stationary in the observation

interval. The latter term can be developed as follows:

gW-)ft?(QriVt)+ _ek-T)mp(- I2f.)1> J- Re Xe,) ftr(2d4 (8-20)

where RIr) is the correlation of the ac component of the complex envelope.

Now if

2L C L ekyii-r a f- (B-21)

each term represents a pure-tone component of random phase, at frequency f F,

of magnitude -cJ. If f 0 for some value of k, this term indicates a
pure-tone component of random phase at carrier frequency f.

Thus the deterministic component of the signal can contain pure-
tone components of known phase, while the ac component can contain pure-tone

components of random phase. Coherent processing on both of these components

is possible and will be so indicated by the optimum processor.
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APPENDIX C. DEFLECTION CRITERION

In this appendix, we consider maximization of the deflection at

the output of the filter-energy-detector in figure C-i.

c-x F Ikr £ -beteAtor

The input xk) is composed of either signal-plus-noise or noise-alone:

folr ~+a <ltl T~{a (C-i)

where the signal and noise are stationary processes during the gated interval

of time, independent of each other. The only assumption on the signal statistics

is that ensemble average

0, Aw~js~ }(C-2)
That is, 54 is stationary in the observation interval. A similar relationship

holds for the noise hit). Since input X19 is a gated process, y) is
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non-stationary. We allow filter h(r) to be unrealizeable, and we integrate

the squarer output over all time to ensure we collect all the signal output.

The output of figure C-1 is

+

rA If*~~ 4 JV X& W [Xi ()1U)JA

= dv x I)x(v) A (u-v), (C-3)

where A is the autocorrelation function of the filter impulse response:
+00

-00

Equation (C-3) may be expressed alternatively as

400 4

using Parseval's theorem, where
4o0

Hf) = J e rj-iairrt), c

Equations (C-3) and (C-5) indicate the generic form of processing attainable

by the block diagram of figure C-l, for any time-bandwidth values and any signal

and noise statistics.

The mean value of the output of figure C-l, for signal and noise

present, is available from (C-3) and (C-2) as

)21 i+ J 4v [9, (t1- v) + N(-01A,(u- . (C-7)

Then obviously, for noise-alone, the mean output is

65



E -l it av (,k-Y) 4 (UV).(C-8)

The difference in these mean outputs is equal to the mean output for signal-

alone at the input, and is

j- )N3 J v -s fu-v)Ah ( -

where F=¢-1 and if) is the signal power density spectrum. (We think

of underlying process 5) as being stationary over all time, but being gated

and observable only during (t,,41). If we let JIL be the gating function,

then we have (more generally than (C-2)) the input observable signal correlation

rut 3 !1 i1 /4br, a) {,,{) (C-l0)

Exact relationship (C-9) holds for any interval T and any signal spectrum RSNf

(including a possible dc component, corresponding to a deterministic component

of So).

Now we make a simplifying approximation: let

->> W' o.d R5(06): 0 (C-11)

Thus, 6-j) will have no impulse at the origin. Then (C-9) yields the useful

approximation

El,+0 FSS -=T ,) ) = r.)IH (C-12)
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Now we address the noise output component. For noise-alone at

the input to figure C-1, we have

jo~t a &(C-13)

Its mean-square value is

We now assume that S(+) is a zero-mean Gaussian process; a sufficient condition

for this to be true is for noise input nit) to be zero-mean Gaussian. Then

(C-14) becomes

4oo _ __ _ _

+ 2 (C-15)

giving
j-oo 2

Vo, -21 NJ 2J~~, Yj~ (C-16)

But consideration of figure C-I and (C-1) gives

Hence (C-16), (C-17), and (C-4) yield

S- u. fS av4 J I u, -Y, k tIJ- )Ahu,$), (v-a), (C-18)
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which is exact for any noise spectrum.

An alternative exact expression to (C-18) is available by employing

(C-6); it is

V~tr~)i 2 )H()')IP16h .,b (1)

where

4a,

is a two-dimensional noise spectrum.

For the special case of white noise, we have

and (C-18) yields

, ,A Jr( - Ir) K H (C-22)
-T

This expression is exact for white noise. The alternative expression (C-19) is

unchanged, but (C-20) specializes to

X _ N 2 I ( C -2 3 )

where 5ic(X) - 5 eX)/wX).

If we make the reasonable assumption that the frequency width of I.)
in figure C-l is comparable to that of the input signal, then for ' -

and A% O= we have, from (C-22)

T I k l ) (c-24)
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the latter step via (C-4) and (C-6). This approximation is valid for large TW.

Finally, we define the deflection at the output of figure C-I as

Vor{?ItN (C-25)

Now calling on (C-9), (C-12), and (C-24), we obtain the deflection as

N2= 2L f 5  {)~1 (C-26)

This expression is valid for white noise and TW i. Its sensitivity to different

filters RV) in figure C-1 is easily investigated.

The deflection in (C-26) is maximized by the choice of the Eckart

filter

The maximum value of the deflection (C-26) is then

2r d ~ () 1 qa.~ (C-28)

Alternative expressions to (C-28) are

T Ws , (c-29)

where the single-sided signal statistical bandwidth is defined as

WS =  0 ( (C-30)
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and the received signal power is

The quantity S/tJ. in (C-29) is the ratio of total received signal power to the

noise power in a 1 Hz band; the latter quantity S/(14W,) in (C-29) is the ratio

of total signal power to the noise power in the signal band.

In summary, for maximum deflection at the output of figure C-1,

the optimum filter-power-transfer function is proportional to the signal power

density spectrum (for white noise and no deterministic signal component); see

(C-27). This result obtains regardless of the size of the input signal-to-noise

ratio. Also then, from (C-4), (C-6), and (C-27),

= g~ ~ j.ir))-~(f) 1(RsWr), (C-32)

which is proportional to the signal autocorrelation function.
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APPENDIX D. DIFFERENT FILTER CHOICES

We have, from (45),

' f2. 4•i (D-l)

Let weighting

W-o , v1>T (D-2)

and define

Q-wW4. (D-3)

Then inverting (D-3), and appealing to (D-2), we have

A~u) u .,,; -,d,) -,l ,A l < -. (D-4)

Now we employ (D-4) in (D-1), recalling that XI)b for t-&.,b*+,
to get

4 .,./ (D-5)

This relation holds true for any weighting w satisfying (D-2).

Since the output of the bottom channel of figure 2 can be expressed

as

r~ i1HV)I iXo ) 0 (0-6)
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it would appear that the choice

(D-7)

yields the desired quantity (D-5). However, use of (D-3) showsthat

where W) is the Fourier transform of weighting (D-2). But (D-8) might be

negative for some j for example, if w(4) is chosen to be zero for 10>-T

in (D-2), then WVf) = s;(,rfT)/(w ), which goes negative repeatedly, and could

cause (D-8) to become negative. Of course the selection of w(u)= I for all IA

yields W')= $1.O, and (D-8) is guaranteed non-negative; this is the case

considered in the main body of the report.

Realization of Second-Order Kernel Via Bush's Techniqup

Here we will instead employ the technique given in Ref. 7, pp. 4-6,

to derive the filtering block diagram necessary to realize )C. From (D-1),

the second-order kernel is Ift -4,)) all -jji, with kernel transform

Now the most general second-order kernel is (Ref. 7, eq. 7)

k ~ ), (D-10)

So if we choose

we have to require

~~(~4L~) (W) K,) (- Q)) WG+ k )K, (1Z) kb*'(4 (D-12)

where we have used the real character of impulse response kblr-). That is,
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The block diagram of the second-order processor is then indicated in figure

D-1; some arbitrariness is present in (D-13).

b~ -4, 5tco, a-Cd,",r froceior

For the particular special case of 1(w) - &o), (D-13) becomes

Ik() 2  = G~)(0-14)
and we have the block diagram presented in the main body of this report, when we
recall that (-( could contain an impulse at the origin if Xj( )#O; see
(67). Thus this alternative procedure yields the same second-order processor.
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APPENDIX E. GAUSSIAN FREQUENCY-MODULATION

The signal of interest here is the frequency-modulated process

The phase shift 4 isa random variable and is uniformly distributed over 2ir
The instantaneous frequency of the signal in (E-l) is

where frequency-modulating process MI-) is stationary, Gaussian, zero mean

(no loss of generality), and correlation

The (double-sided) power density spectrum of the low-pass frequency-modulating

process E4) is

and the mean-square frequency deviation is

LT; R (0)(E-5)

The complex-envelope signal is, from (E-l),

5 )=A L 2-r m m u)+i#, + (E-6)

The mean of this signal is zero, since 4 is uniformly distributed. Thus there

is no deterministic signal component.
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The autocorrelation of _.4) is, for 4 +)

where we have assumed A non-random. Since ld) is a Gaussian random process,

the dimensionless real random variable

2-r lt U) (E-8)

is Gaussian, with mean zero, and mean-square value

2 'iu- f JtA 1U4 R~I ) 3.817 jT JX j 44 -R 4 r )(u

where we have employed (E-3), (E-4), and defined 1 Therefore (E-7)

is expressible as

A ; q A e- -(IY) A = (E-10)

using the Gaussian character of and (E-9). Since the right-hand side of

(E-1O) is a function only of -t = KI i1) is wide-sense stationary for

< and we say that

A )I o" r)] o. 4 sw o VajonI -WuTe4v) (E-1l)

According to (E-9), et) can be interpreted as the variance, after T- seconds,

of the "random walk" process in (E-B).

Since (o0)=0 from (E-9), we find

100 A (E-12)
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using (E-7) and (E-11); that is, the power in the frequency-modulated signal sf0

is independent of the frequency modulating process r k) or its spectrum 4,().
Limiting Behavior

From (E-9) and (E-5), we find

Furthermore (E-9) yields directly

ctT  17-.o+. (E-14)

In order to determine the behavior of ?rH) as r- 3 we need

to know the behavior of o-k)) which in turn depends on Grj) via (E-9). In

particular, suppose that

We require 1)>-I so that the mean-square frequency deviation (E-5) remain

finite. Then we find, from (E-9) and (E-15), the proportionality behaviors

T T- y 6r P I +0.(-6

Thus for - S O P _ J, d) tends to infinity as T does. This in turn dictates,

via (E-ll), that

,j,'~ O s T-. +Do. (E-17)

Thus, according to appendix B, there is no carrier term present if -i-VI;j but
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there is a carrier term of random phase if >I, that is, if .,df)-,O faster

than f at the origin. In either case, there is no carrier term of known phase

present, because the uniform phase of * in (E-l) precludes any deterministic

component.

If we assume that e-Ir) approaches the constant value 0rla) as

T-.+0, then we can express (E-11) as

Then the spectrum of the complex envelope E(I) is

CT, ) =A 40~a)1 S (T) ±B(P (E-19)

where

The former component in (E-19) represents a pure-tone carrier term of random

phase at frequency f., while the latter term represents a distributed spectrum

about the carrier; recall we are dealing with complex envelopes here, The

relations (E-19) and (E-20) actually hold whether e-k) is finite or infinite;

in the latter case, there is no carrier.

If a,,(o)JO, then P=) in (E-15). Then (E-9) yields

T tj) , 4-'T c~I OF U) = +W Cr. (0)T- 6"5 - A+s, J-21)

in agreement with the first line of (E-16). Thus in this special case, there

is no carrier term, and the signal correlation (E-ll) or (E-18) decays exponentially

with T. From (E- ), the m abo f eliows

e 0=+= Kfr Fg, IM), (E-22)

and

~ (E-23)
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Since the integral on 4 in (E-22) can be negative for some values of ", (Wr)

is not always monotonically increasing with T, despite its interpretation below

(E-9) as the variance of the random walk process 9 in (E-8). An example would

occur for spectrum rV) narrowband about a non-zero frequency.

Approximations

Equations (E-14) and (E-21) suggest an approximation for o'/c)
when fG(,.O) #0, namely

42 2-) & ,r r "1-- 0. (E-24)

Substitution in (E-ll) then yields the approximation

3 -1rzIT- 27 _ I -[ , -r2000. (E-25)

We now give several examples of spectrum erwv) for the frequency-

modulating process m-A4 and illustrate the properties derived above. In these

examples, W., is a characteristic frequency of spectrum &hIf), but it is not

necessarily the bandwidth of tnf4). However, in the first three examples, where

Cc.() 0 0, W, can be interpreted as an equivalent bandwidth, in the following

sense:

s o- ) Q_ (0) (E-26)

That is, W, is the width of a rectangle with amplitude equal to the origin value

of the spectrum 6r(f), such that the rectangle and true spectrum have the same

power. In this case, (E-24) yields the approximation
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This approximation is plotted in figure E-1 as the bottom curve; the remaining

curves are the exact results for the first three examples given below, and are

seen to be well approximated by (E-27).

Equation (E-9) points out another approximation that could be

extremely useful; we have

42(4f i ) 3nit)(-28)

Now the equivalent width of is Wj see (E-26). On the other hand, the

sinc2  function in (E-28) reaches a null at f-s tir. Then if

'- T _ / (E-29)

(E-28) yields

o~~k-f -"C' r.F = I r . (E-30)
4

2 
2 2

That is,

L6 M ) 2,rr -' -(W.r iT W~~ (E-31)

But (E-31) is equal to

-- ' (E-32)

which is large compared with unity if 3. Therefore XIc is substantially

zero for T17> .,)',and we have

1~k~e ff1A{2rw zi~ 3.T4 (E-33)

That is, the frequency-modulated signal correlation is approximately Gaussian if

the RMS frequency deviation is somewhat larger than the equivalent bandwidth
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of the frequency-modulating process m K), Some examples of this comparison are

given below.

The spectrum corresponding to (E-33) is

A_ _-.. 3* (E-34)

This is a Gaussian spectrum with standard deviation equal to 0-, which is the

RMS frequency deviation of the frequency-modulating process hmfl.

Examples

Example 1.

G:,, ): I+ (,,+W ,,,Y

. .21 o), &,,(,,) . fr. -0)
T + otp(-2W.;,,-?.0

2

This curve is plotted in figure E-I. A)so

Since P=O (see(E-15) and (E-16)1 orl) =  and there is no carrier. The

distributed spectral component of the frequency-modulated signal is given by

(E-20) as

B)=A2J (.2 ) " [F Ce

The parameter D is a measure of the frequency modulation index, being

the ratio of the RMS frequency deviation, 6-,, to the equivalent bandwidth, W,,

(characteristic frequency) of the frequency modulating process k). It is also
a measure of the RMS phase deviation of the signal process, since 39 appears as

a factor in the expression for etc) above.
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Plots of B() are given in Kef. 10, page 609, figure 14.4; however,

they are plotted in linear units (watts/Hz) rather than in dB, and the deep

skirts of the modulated-signal spectrum are not observable. We plot the (positive-

frequency part of the even) signal power density spectrum for this example in

figure E-2 in dB, where the curves are all normalized to unit area (over -be+.).

The three parts of the figure present the same information on different abscissas.

Figure E-2(a) is most easily interpreted as considering W, fixed, and varying Cm

through the frequency-modulation index D. The curves labelled with an "E" are

the exact signal spectra obtained from the above equation for )(f), for ]=2, k--1(i)3.

Corresponding to each value of D (or k) is also plotted the Gaussian approximation,

labelled with "G", afforded by saying that

+-'. 21- Y ll Z

although it is recognized to be poor for large - (see figure E-l); it can be seen

that the Gaussian spectral approximation is very poor in the deep skirt region for

small values of index D, but is better for larger values of index D. As D increases,

the signal bandwidth Ws increases progressively.

Figures E-2(b) and E-2(c) are most easily interpreted as considering

RMS frequency deviation 0; fixed, and varying modulating bandwidth W, through

the index D. As D increases (i.e., modulating bandwidth %4 decreases), the deep

skirts become narrower and drop by 3 dB per doubling of D; however, the skirts

are very slow in approaching the limiting Gaussian spectrum indicated by the

o =. curve. For D>Z, the -3 dB bandwidth of the signal spectrum is virtually

independent of 0; in fact, this is true of any bandwidth measure above -20 dB.

However, it should be noted from figures E-2(b) and E-2(c) that the

-3 dB bandwidth decreases as D decreases below 1 ( WKincreases above w,,).

That is, if RMS deviation 6, is held fixed, and the modulating bandwidth ,' is

increased, the -3 dB signal bandwidth decreases; this result is consistent with

Ref. 10, page 609, figure 14.4b. It is also consistent with the observation above

that the RMS phase deviation is smaller, since it is proportional to D= vw ;

hence the frequency-modulated signal is more nearly a carrier of small phase

deviation and a narrowband spectrum. Physically, the frequency-modulating bandwidth

W, can get so large that the accumulated phase perturbation during a time coherence
interval W,' seconds is tending to zero, and the waveform is tending to be progressively

more narrowband.
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However, the figures clarify that the approach to the narrowband

limit is not monotonic at all frequencies. Thus at f/d= , for example, the

spectral density initially increases as D decreases, until 3=2"= i/i, at

which point the spectral density decreases with further decreases in D. In

fact, by this time, the normalized spectral density in figure E-2(c) is well

approximated by the spectrum

For F=0, this function increases without limit as D decreases; for any other

it eventually decreases as D decreases. Hence the bandwidth Ws of the signal
spectrum tends to zero as D decreases, and the assumption of large TW3 will be

violated.

We will limit consideration to D> 2, for which the signal spectrum

is approximately Gaussian, and the bandwidth on the {/r scale is virtually
independent of D (see figure E-2(b)). That is, W is directly proportional

to To for D>2. This case also leads to a significant RMS phase deviation of

the frequency-modulated signal in the observation interval T. Once again, this

is in keeping with our interest of detecting the most random signal.

Some analytic expressions are available for the origin value and

the statistical bandwidth of the signal spectrum f). We have, from above,

^X ( X -- + ee_ )-
0# [M 0

-2 F-

where we have used Ref.ll, 3.383 1 and 9.212 1. For the normalized plots in
figure E-2, the quantity %P) represents the origin value. A short table follows.
Notice that the origin value increases without limit as D approaches zero, but

saturates as ID- .
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______~10 ____ o1 (D)
small -10 log D- 9.943
2-6 6.500 8.129

2- 5  3.273 5.150

2-  1.682 2.259

2-3  .9270 -0.329

2- 2  .6035 -2.193

2"I  .4824 -3.166

1 .4364 -3.601

2 .4167 -3.802

4 .4076 -3.898

8 .4032 -3.945

16 .4011 -3.968

32 .4000 -3.979

= .3989 -3.991 =-5 log(,)

Table E-1. Origin Value of Spectrum

The statistical bandwidth of the signal is

S Cr.2 fir R.4h-) fd r)

(S or Por[2.w2W~,ki- + My-N., KI)

(Ij2- V j

by a technique similar to that given above. Notice that the statistical bandwidth

%s decreases to zero as D decreases (i.e., W, increases for . fixed), as

noted above. Also, the bandwidth on the f/C scale saturates as D-4 w. A 4i
of W,/a- 1os.
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sma II 2-r2D 1 3.331

2-6 .3070 2 3.438

2- 5  6Ci, 6 3.509

2- 4  1.148 10 3.524

2-3 1.942 20 3.534

2-2 2.679 50 3.541

2-1 3.113 Q 3.545 =

Table E-2. Bandwidth of Signal Spectrum

A cautionary note is in order here regarding the physical significance

of the statistical bandwidth. Consider a unit-power spectrum

where ' Ahif

The requirement of unit power means that Q,A,+ q 1 41. Now suppose that

02. , = )- 01 0, eAC'd'}.

Then

We then find that -J as V *

288

8



That is, the spectrum tends to a flat one over £2 7A) with power 1; the

power in the narrow component of width A, tends to zero. However, the

statistical bandwidth is

Thus, this measure of bandwidth tends to zero even though the spectrum approaches

a flat one of unit power over (-,-J2-). The situation is no better for the -3dB

bandwidth, for it too approaches zero for this spectrum, in the limit.

Calculation of Spectrum:

The normalized spectrum is

If we add and subtract the asymptotic value, xp[-r rI1-&,from the integrand,

we obtain DL

where 11]

Using Simpson's rule with end correction, and sampling at intervals conducive to

FFT processing, we obtain, for the integral above,

where

WK~ -7 16; 1) (, ,,
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For large D, this addition and subtraction procedure is not recommended, because

it requires the cancellation of two large quantities to realize the result.

Programs for the spectrum calculation are presented in table E-3.

Example 2.
22

where

The curve for 6 -t) is plotted in figure E-l. We c o 6we

05 +*

Since V= C, there is no carrier. jI would have to be evaluated from (E-20),

perhaps via an FFT.

Example 3. (,'

where tvs ,T. The curve for O'HI) is plotted in figure E-l. Also

There is no carrier.
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101J ra&i IS ?EST QUAm PZ1kCtUAM
MTOMJ C", Fat; , 't@: WaUC

10 DIM : 048),'(7 1:2048), C(1 : 513)
2, N=2048 ' N. =2048 N=2. INTEGER
3 0 Tie1 . 01
40 PLOTTER IS " 9872A"

50 I PLOTTER IS "GRAPHICS
60 GRAPHICS
S.SC LE 0, 12, -7. 0

i, i GRID 1,1
9 17 PENUP
Iq S = 2< IN*
II i FOi !=-I TO .3

130 F=LGT,:.S,1OQRK, 2 F' I :*D*
140 T=. 5..D P. 2
15 0 FOP 1=0 TO N 2
16 0 LI = I * S

0 'Y=LGT,:.EKXP'-T*U. 2)
'  -F

180 PLOT U, '
190 IF Y".-7 THEN 22,
20 0 IF U.1ri2', THEN 220
2f10 NE:KT I
220 PENUP
230 NE:KT T

240 FOR J=-1 TO 3
250 D=2. I
260 MART -=ZEF:
270 PW j;T "," Y- ZEF
2, 2. '. ( I.

F
) I D I"I"

29 , 1 ) 5

n00 FOR :1 TO ti- I

',+I =E P- P I+EP:-P .)
30 IF ,+1.1E-2N1 THEN 350

41 IF X (F1::4 0 l HE ::T K

EFT ?Vbce~kve It, hrs.
1 Q.C F=L (ie 1..'

17 0 FOR 14=1 TO N 2+1
10!30 U=S*,'4-1:,
10 PLOT 1_,, LGO'' 14 )+F
1100 IF u..12 THEN 1120
1110 N1E'AT 14
1120 PENLIF
I11I N E::T J
1140 END

(a) Program for Figure E-2(a)

Table E-3. Programs for Spectrum Calculation
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1313 Ftgz IS UST gUA&mT ?ff4*%Aa
1&- GRAPHICS PO Do@tt:. jpJog
20 PLOTTER IS "98728"
.30 v116
40 SCALE 0,Vm,-6,1
50 I'ID .5,1
6u PEIUP
70 tuf ;t X,' : 2 (I48 ),q"Y 1 :2 g48 ), C(1: 51 3J,

N=2048 N(=2048 N=2Q-INTEGEP
. COM S
100 F=.5."LGT.2PI)
11 FOP Yi=0 TO Vr STEF .05
120 ' =LGT (:EXP( -. 5*<." 2, )-F
1:-; FLOT V,Y
140 NEXT V
1'- I PENIJP
IE. 0 FOR d=-.- TO -6 SIEF -1

I 1: =2. 0d
1 Li-: tiel .U02.-t

190 rIHT '2=ZER
0 ka M AT )'=2E P

210 S= ,( F I *D) - 2
-20 F=D I."D

2".0 FUR t -0 Ti I-1
24 V< + 1 )-F , K G F

250 .NEXT K
2,0 OUTPUT 0 "i " ' "D 't ] D 1); :"2 2 .

'ji JT PiIT 0;d 2 ir

2 1=1 7 + D I P
2-:,0 0=16. 15

0ILI FOR T: r L t4 STEP

Ll f ::- < :'*

I =14 15
-AL0 FiP I=3 TO H-1 '-TEP
3-50 :, K , *=: r. 0

U W- T

FET Proce~ure 'ltit6re.

1i'0 F'i C iR 0 T,. : -TEP .01

13I I-L FrV

1 0 F r F r"- 1
1140 ',..- : F. ... 1.... r

10 PL 0 T ' L , T, I + 11 1 itv2

I 16 0 HE:r
I 1 70 PENUP
1I!: NE::T 3d
I -0 END

1, .,0 0 IEF FI'i ,(F'>
1 0 EI P F

1 10 T=i

CITI1tO- 4 G=O

11 C5 FOR: N= 1 . 1N=1
2'.- . T=-T*'x.1.. H

1270 ;=G+T
! '.:0 1 F  A P, SI; : T A V;S G:I

t]: I E -I T TH E., 1 -- 0

1 12, NE"::T N
I1 j' OUTPT 0 000 T EF P AT' P
1 10." PAUSE
I G FETUFN F pP -S-. P-1 +'-
1. 0 tNErX

(b) Program for Figure E-2(c)
Table E-3. Programs for Spectrum Calculation
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Example 4. "F,., ) + (M W,(,.. ,, )] _

This spectrum goes to zero linearly at :o, i.e. P1I in (E-15). It peaks

at fi=.5Wm; we have&(v4) = ,. .,(5W), M0, ) =. . (,,.)

'- =4 In [I + (Tw,.,y
WM,

by use of Ref. 11 , 3.943. Also

6;- 1 -V s1 r4 + ,

in keeping with (E-16). Thus there is no carrier. (4) follows from (E-20) as

I ( x 2%S, 2 .. ±bd +x1.

The previous examples all had 'I*)=oo, and hence no carrier. The

next two examples have a carrier, since ,jf)c4 as 0.

Example 5.

1'2 0 =~2brT2N (-wW:V)

The peak of 6rj) occurs at f- 5/W'%=.W,; then we have
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.1 k1 0 G ,5- W-4) C. 56 w(. )

Thus there is a carrier. Define o< = -- Then
W.,

- 2  f V, nW4) / '

The total signal spectrum is available from (E-19) as

=)-- q(

Evaluation of B.) directly via an FFT appears fruitful; we have rapid

convergence of the integrand since

Example 6. (-.W--

= n - (wTw., -Cy ~3

This spectrum peaks at Wf=. We find

I r'l) ---",-, I + ,+{rW.-C

w94
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Thus there is a carrier. Define o( 2-- Then

~~P ._ r4J Ccs2& [~ o .i - t2 -ar

Direct numerical evaluation of BO via an FFT could take advantage of the

following:

C<

and the bracketed term in the last line is OW - ) 45 )

Validity of Approximation (E-33)

In order to determine the accuracy of (E-33), we define the two

dimensionless parameters

X = 2-rr-at;- t)= (E-35)

Then we wish to compare correlations

for different values of D. In this normalized form, examples 1-3 take the

following respective forms for e" -(- N :

42, r2 (E-37A)

-=_ (E-37B)

~l4~x d4~#) - WIO~e(E-37C)
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Asymptotically, these results take the forms

2" (1- _.L) 43X-0,

7 (E-38A)

2,rDx sx

)B (E,38B)

2,>- s x-, +

2i .Y-I In 4 x\)- 03 - (E-38C)

Equation (E-36), with each of the examples in (E-37) substituted,

is plotted in figures E-3 through E-5, along with a good-fitting Gaussian

approximation. We notice that as D increases, the good-fitting Gaussian curve

approaches Px,(- ( 2). Also the approximation of (E-33) is excellent for V>2.

Thus when the RMS frequency deviation of the modulating process Is somewhat

greater than the equivalent bandwidth of the modulating process, the correlation

of the FM signal is approximately Gaussian. See also Ref. 10, Ch. 14.
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APPENDIX F. EVALUATION OF T2

We wish to evaluate T" , as given by (110). To this aim, we let

Utz f -++ and emplov (113) to express, for real

= JJJ{~II , u, rju1) rlq.,) rl4) rl((rL)O'C 3 (U, I4 (F-i

Approximate Evaluation

Before we evaluate this quantity, we first approximate it by using

the Gaussian replacement-approximation mentioned in (105)-(106). (A more

thorough treatment is given in (F-42) et seq. ))le, jA is K-placed bq

+ T4. (F-2)

Letting U. LI4.+Vw for ks.,2,3, the second term in (F-2) becomes

+v,) , ( )( ((F- 3)

where

For large TWS, (F-3) becomes

And we have, from (F-4) and (113), + 10o)o) 1/T. Furthermore, making

the Gaussian assumption (117) for the signal correlation p, (F-5) becomes,
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with the aid of (125)*,

11,. - (TwY (F)

Employing this result in (F-2), we have

To. +(TV i(F- 7)

i.e., the replacement approximation leads to

How good this replacement is, quantitatively, will be indicate: below.
Exact Evaluation for Large TW,

Returning to the exact expression (F-1), let x u,-u,,i-frw),

V- U3-'4)"=j 2(u,+w 4), and then eliminate y via W wT-; there results

T*2 (F-9)

where is a shifted version of . given in (F-4). Now as t-C oo, the ratio
of four p-functions in (F-9) tends to 1. Therefore we add and subtract 1 from
this ratio; the added 1 leads to the quantity

ffdx 4(,)(V)f k 4(r'x() =)oi o (F-10)

where we employed (115) and (114). The remaining quantity is

----- ---------- -- ----- -- --- -- ----- -More generally, we find, by use of (117) and (125), that -W
this includes (118), (124), and (F-6) as special cases. Wheh the signal correlation
is not assumed Gaussiti, Xp depends on the exact frequency-modulation statistics;
an example is presented at the end of this appendix.
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f~ = f 4 Ov ?h)((V)fr (,X, V)[(rx.V)-

where

~tuX ( (F-i 12)
' (((U- t )

The particular value of (F-li) depends on the exact signal

correlation r considered. We will consider Gaussian frequency modulation

with an exponential correlation, as an example. Then from appendix E, example

1, we have

2 i a- C 2, 11 (F-I13)

where D = T- lW is the ratio of RMS frequency deviation to the equivalent

bandwidth of the modulating process. For large D, we have the approximation

to (F-13)

1O Ijr) E eAF-2"-A T, J (F-4)

In order to make this limit agree with the Gaussian approximation (117), we

set Zpr,,= W3 we then eliminate i,, from (F-13) to obtain

S)(- , I . (F-15)

(Strictly, this expression, in terms of Ws, holds only for large D; however,

the dependence on D is rather weak, as will be seen below, so we use (F-15)

for moderate 0 also.)
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Now we can say that

i=? C x -))J I~ + e). (F-16)

The reason for this scale change in (F-16) is that we can now write the

convenient normal i zati on

Plots of rpN are given in figure F-i. It is seen to be weakly dependent on
0. Also, when we make the substitutions x( - -,V-b , 4- , J I

we have the clear dependence on TW1 :

-T) (F-18)

where

T dx dy73 2~ ~i 1 0KVrX (F-19)

is a function of only the one parameter D, and

+ '2/. (F-21)

We would like to determine the exact dependence of Tb on D and

see If it is of the order of 1, as suggested by (F-8). It should be observed

that substitution of the limiting form (F-17) directly in (F-21) yields

, ) ,) = " p(Yv) and hence a divergent integral on T in (F-20). Thus,
the exact dependence of (F-16) (or whatever example is being considered) must be

preserved for accurate evaluation of (F-19); this is in contrast to the evaluation

103

=Mi



-.-5- 
- -

ir#-

Ex fka Co________of _epe____ulii_

- 1--- - - 104



of 1, and T7, where the Gaussian approximation (F-17) was applicable; see

the end of this appendix. The key reason for the dichotomy is the presence

of C-functions in the denominator of (F-1), instead of only in the numerator.

When a F-function appears in the denominator, its exact rate of approach to

zero is of paramount importance, whereas if it is in the numerator, its rate

of approach to zero is far less critical. Then when we evaluate any 17pt for

I> 0) it is very example-dependent and must be handled very carefully.

Numerical Considerations

Since (F-19) must be evaluated numerically, it behooves us to

utilize any symmetries involved; these symmetries will be derived for a general

signal correlation. First, since is even,

&D(-T,)V x, v) (r ~) k(Y) V) 2rvrr- j''X) V) -i (F-22)

Second,

e ,(t,-,-,) =k)(-, x,, K (-, -,) = K (, V )

2 (F-23)

Third,, = ,( (,

1-'--X r I F xv" ,+ - ]. (F-24)

Fourth, KCY)--K(,)Y

4 $~~(X)~~ (v~drv+( -225

Now let X--2u)Vz 24 in (F-25). There follows

I (;u)QJ > j (O'  y)f~t *, ,! 2], (F-26)
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where

+- ~ (F-27)

(F-26) is a general result, applicable to any signal correlation example, where

Let the result of the integration on 'r in (F-26) be denoted by

A (U q) and let the result of the integration on be denoted by Then4).

32 32 ( 4)(F-28)

where R ) is a set of integration weights (e.g., Trapezoidal or Simpson),

ard KA must be taken large enough to include all relevant contributions to the

integral. Similarly,
kA

70 )(0 (,q A() Akt1) (F-29)

and

A (k) A Iwj+~ A/~iJ (F-30)

where

A (~((IwJ~a)4((~~k-O ) *(F-31)

In practice, evaluation of (F-30) for the example of (F-16) turned

out to be exceedingly slow, due to the slow rate of decay of the integrand.

Accordingly, for this particular example, a special modification was employed;

we express
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AN - r[R -)R-] sA,4-A, (F-32)

Now for T-2! A+4J, the example of (F-16) yields

Seq-Foc( )] Fg (F-33)

In this case, then

A~[fd c(r)4 F() 2J. (-34)

Letting x p- and employing Ref. 12, (5.2.4),

A2 - (xrr ~2 -,r1 6r()v S-- (F-35)

where

2u\\ 24\(-6

By use of Ref. 12, (5.2.18) and (5.1.11), an alternative form of A is given

in terms of the exponential integral:

A2  --'r DI E, (G)4 E,(- G) +rt2 )1-V+2Y]

-,7r1 E,()+ +(~) 2 ~42)(F-37)

This latter form is the one utilized here.
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Hence (F-32) becomes

S6~ rj +11R -,I -7r.E, Q+ A*K( + bG+-2yj (F-38)

and (F.30) is replaced by

A (4)0= a I ,/ -2] -1[r,()+k4(-Frr)*2 L + 2Y), (F-39)

where f (F-40)

Utilizing A (%.9) = t) qmJ A(uo)= O, we can combine (F-28),

(F-29), and (F-39), toSet k 4 r

- ' E )- EIC(,)l }j4- - (-) F-41)

There are only two parameters to choose in (F-41), A and K. For a given a,

we compute for as large K as necessary to realize an unchanging sum; then we
decrease a by a factor of 2 and repeat the procedure. Then for the Trapezoidal

rule that we used, since the error, in approximating an integral by a sum,is

proportional to 2, we extrapolated the approximate values to the limit (W A=O).
Results for this limiting procedure, using Au.2.I , .oS'are given in table F-1
and figure F-2; the program in BASIC for the HP 9845 follows. It is observed

I)
that I is of the order of 1, and increases linearly with D for large D.

D) D 4 J'
.25 .515852 1 .418002
.32 .416039 2 .641552
.4 .372120 3 .880873

.5 .355822 4 1.12359

.6 .357359 5 l.36758

.75 .374109 6 1.61220

Table F-1. Values of "? for Exponential Correlation
of Frequency-Modulatinq Process mtO
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10 K=50
20 DeD. 1
30 L=3
401 I1M R( 400:, F '. 100) EI C E: I100)
50 REDIrl R,:"4*K.,2 (1"KEl:K)
,0 PRINT "K Del :K;De ;D

70 COM T,S

;o 3:( P I*D "2

100 FOP P".O TO 4*K

12..0 NEXT Ks

1 - 1 T=2*. l*T
140 FOR :.. TO K
150 R 2 ,:K--,- R ,. 2, * : i.* :-"

16 E K 1 EE F. V ,. - K- E * T:
170 NEcT K

19 C FOR I -:=l TO K
Z:00 S 0

-10 FOR Ls=I TO K
T T- ,(K + L F L

2_:' S= =. 5*,'T+.1.w -2I

C5'- $ =S -3.+ .5 . T + I T--2)
0 T =$ S<*E s+. E L s

2.'gJ T F,4E1K cT.x.+FNEI..... : -T : .--.. LC'S[T ,- .5,7'2#":..I'..,,,4:- .,---
=Ft -.~ + F =i E-TL G - I T. . 0*$-1~DT.Del

2' FnP C . I TO K.-.+ L - I
uki I I f+L .- rla.

7:1 1 I 1ri.+K +Ls:

' I -1B +M-Ks +L

25:: : I 4=M-.+K .Li
3;40 T=pm: Il,-F',12>.,6< ::,R:I30 C*' 14±Mi 1
34rCr i =F, I I P,1 ' P I-' R 4?, 0 , T:.3 + I ." T-2,.

P;g N~EX':.,T i'..

5-, IF L= THEN = 5

:. NE: 'T L's
400 :-;1::'= + R2,KF S 2
410 PRP I tT P I 1. 5De .1 KS. P '
4L0 tJ E:'..:1 .
4 -:0 :,TOP

440 DEW FNP('..,,
450 COM T, S
460 P=AL' -. T
411 F.E TU URN EP'.. . *: P- I +E.:F' P
400 FNEriD
4- .EF FIE I'. I E,.:.pc r nt al i tr, e'gral ,

* Table F-2. Program for (F-41)
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Development of Fourth-Order Correlation

For the signal process in (96), we derived the fourth-order correlation

in (105):

If we define the complex phase process

r) . '7fi2f , < ( b JA (F-43)

then (96) and (77) enable us to write (F-42) as

?I~~~~A~~~ -~~1  t ~h-),. 4i)
01Ai) 0-i+~ 'r X )? 44), (F-44)

where we have made express use of the stationarity. Furthermore, the left-hand

side of (F-44) can be written in the two alternative forms

The first form indicates that if 4,-t, and k-+.4 are kept fixed, but the

separation between these pairs of time points is increased, then * - 3-V;

the second form indicates that if 41-+ and 4,-+4 are kept fixed, but the

separation between these pairs of time points is increased, then r ,--
Furthermore, these are the only ways these time differences can increase without r

tending to zero. Thus we can express

1>. , +_ = t ( +-) + I? -) (F-46)
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where the remainder function 1 goes to zero, no matter how the three difference

variables f-f,, -,- , increase to infinity. Thus the first two terms

of (F-46), (which would be yielded for a complex Gaussian process j, are

merely those terms which do not necessarily decay to zero as the difference

variables increase in an arbitrary manner.

Combining (F-44) and (F-46), we have the very useful expression

which is exact, and where 1(o)a) tends to zero as %,Yl increase, whatever

their fashion. It should be noted that this expression and conclusion only hold

for a phase process like that in (F-43), where r is a legal correlation function

for . Thus for example, although ex)= exp(-xY2) is a legal correlation
function, it is not a legal correlation function for p, and R, need not tend

to zero as its arguments increase. In fact, we find for Gaussian e

= t{-~x-9~J t~p pK ~ e~ _f-i?2 j.4 (F-48)

which does not tend to zero for += .

If we employ (F-47) in (F-1), there follows immediately

+ - ~1+ JJ~r

+ (F-49)

where we employed (F-4) et seq. Thus the first two terms of (F-49) corroborate

(F-2), (F-7), and (F-8); however, we now see from (F-49) that the size of the

remainder term is also proportional to (WN) " . And indeed, (F-18) et seq. and

table F-I are a numerical calculation of the sum of the last two terms in (F-49);

in fact, the sum of the last two terms in (F-49) is exactly (F-ll):
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Exact Evaluation of T. for Frequency-Modulation with Exponential Correlation

The quantities T4. r,, 44.24 are defined in (76), (109), and (152)

respectively. For large N , these can be simplified to

#, jff Ox cdj 4 &(F-51)
If we assume that signal correlation is Gaussian, then we get the approximate

results (118), (124), and (F-6). However, it is of interest to determine the

exact dependence of YTri on D for the example of (F-13), to determine the

accuracy of this approximation. Making the change of variable employed in (F-16),

we obtain

(F-52)
(TWS-

where A

A

A .r
_U) _V -53)

Now the question is: how close are JT3 -. to I, 2/Q, f respectively?

We employ (F-16) in (F-53) to obtain

TA LA -1-) e.92(r) (F-54)

By the change of variable t=--'P L+,there follows

A i I'L-'.'( (F-55)
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By repeated integration by parts, this is reduced to

F I+ (, D (F-56)

where Fj is a confluent hypergeometric function. Evaluation of (F-55) or (F-56)

yields table F-3. The values of are well #pproxim"wu

A

.25 1.32344

.5 1.13884

.75 1.08798

1 1.06436

2 1.03102

3 1.02043

4 1.01523

5 1.01214

6 1.01010

7 1.00864

8 1.00755

9 1.00670

10 1.00603

20 1.00300

30 1.00200

100 1.00060

1.00000

A

Table F-3. Iz Dependence on D

A .0i

31+ (F-57)
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which is obtainable from (F-16) by expanding in powers of l/D. Thus a value

of D = 3 yields only a 2% error from the Gaussian-approximation value of 1.

For the evaluation of t in (F-53), we denote the kernel by

U)V_ and note that

3,(- u,- v) k(u v),

3 , V) 14 (kA)V), (F-58)

to express U

4I-
Lk

where weights WO-= for kz O, and for LQ= ), for Trapezoidal

rule, and K must be chosen large enough for negligible change in the sum. A

program and numerical values for (F-59) follow in tables F-4 and F-5 respectively.

The values of 1. are well approximated by

-= ___ - = 2 - (F-60)

A value of D = 3 yields a 4.8% error, while a value of D = 6 yields a 2.3% error

from the Gaussian-approximation value of 21P.

For the evaluation of t in (F-53), we denote the kernel by 4(vvw)
and notice that

Therefore

14 . [ (0 (U (F-62)
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30 Ep- = 1E-6
4 0 DeI . 2
50 PRINT "ci-" Eris Del D:",KC;Eps;i1eI;ID
.0 DIM PdF ,: 200:

7I COM T, S
80 T1 21.P11'

90 S='I P I *D.)"2
100 FOR =b TO 2Kc
11 0 Pd() =FH V' *K D g 1)
1 20 tl E KY; K

140 FOR K=0 TO K-:
i15A S-2=0

IC FOR L=-V Ti i

170 RFABSL3 L:
1 1 i T =  d : r Pd -r: -L)
190 IF Ar0 THEN T=T-.5

2 0r0 S2=,-i2+1
2: ' NE:.,T L
220 IF KIO THEN -- _2-5

2 '0 C! P d V ' --

240 := 1!

250 IF '::Ep. THEM C20
2 . t E>; T
17 0 PRINT "ENL' OliF LJUP"
28 PRINT 4 FIrl :*SI
290 STOP

LI 0 DEF FNR' .)
30C0O"1 T, 3

P2 '= A :S, '.:: T

"% P ETiRN E:P P -: F- 1 +EEP. -F.)
4Li FNEIiD

Table F-4. Program for (F-59)

'D A-
1 1.33412

2 1.23923

3 1.20997

4 1.19576

5 1.18736

6 1.18181

7 1.17788

8 1.17494

9 1.17266

10 1.17085

100 1.15630

1.15470 a th,

Table F-5. ": Dependence on D
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using the evenness of FPQ about X -0. If we choose increments A in i

and 7a in V, we obtain

IC (V Y) (F-63)
1T7"  =O -'k VAA(

where weights 4 = for k~o, and + for and K and L must be

chosen large enough for negligible change in the final sumA program and numerical

values for (F-63) follow in tables F-6 and F-7 respectively. The values of 3.;

are well approximated by

A value of D = 3 yields a 7.7% error, while a value of D = 6 yields a 3.8% error

from the Gaussian-approximation value of P2.

4 0 EF: = E-9
F LI; =. 1
E. 0 P R I N T [.:. L: EF.' -.. i F: , L , ; E .; i 1 1 1

C1 Dlr, FAd , 15

10O ::=':i : i * $'.''

11, FniR V.=0 TO 150

120 Pd,' FFP '.De :I
1 3-: 0 ri E T i.
14- CSI=
150 FF' K=0 TO U,
16 0 '-. 2 = C1

1 0 FOF Lz : T IL c
I::0 T F- .J - L . Fd .A bE,- -' L -2* .,
10 IF L'K THEH T=T*.5
2 t0 C! SL :, '2 t- I

21 r, IF r.Ep-. THEH .-A

.-, ' 2 =3 0-' 2"

240 IF K=0 THEH -2=S2.5
S, 1 S 1 =,. I +';2

2 0 F'lIT It Fl 1.5*t1e*.: I

2 7 rt E...' T K
$T:I

1 DEF FNP" '.' 
;

30 13 M' T S ]
:3 113[ P = AI 1, S. e, T

:. ki RETIURN E::-:F ' -*'F- 1+E':::P P
I 3 :C: RAF PID~ [

Table F-6. Program for
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1.78079

1.58273
3 1.52355
4 1.49512
5 1.47842

6 1.46744
7 1.45966
8 1.45387
9 1.44938

10 1.44581

100 1.41733

Table F-7. T4 Dependence on D
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APPENDIX G. MEAN VALUE OF )(, )

We wish to evaluate the mean value of (139) for signal and noise

present. In this case, the fourth-order average of interest was encountered

in (94) and is given by the sum of (105), (107), and (86). Substituting these

results in the average of (139) yields

24~SN T +3 +iT1d{ +dD~J 4 l Q)43 )
4-a

p _o ,_,)+k- ) ,.)} +N s-4)S k- +) + 5 ,-. S( -5 W (G-1)

where

t +3-t)+-+) (G-2

as in (F-44). Evaluating the delta function integrals and employing E=AT/,

there results

E

where

-
0

and T2,1,, and 162 are defined in (76), (109), and (110).

We have already evaluated T, and 3 in (118) and (124). We now evaluate

rU-zz16 by means of the correlation development in (F-47). First, from (F-49),
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Next, employing (F-44) and (F-47), (G-4) becomes

where we have also employed (76) and (F-2), and defined

93 =~fr + 2pM~*.) 2(~4.)(~.(G-7)

Since Q3(,y)%)--*0 as 0,-.o0 (see (F-46) et seq.), we can modify (G-6)

(by methods now standard) to

=24+ 2 M4 +4iLfff Oxr 43~ d (G-8)

Combining (G-5), (G-7), and (G-8), there follows

in terms of remainder function R3 defined by (F-47). Since 3(xp ,*) decays

to zero within an interval of the order of W;' in each variable, we have

Tjt -2 T6 = V(G-10)

where is a quantity of the order of unity, as in appendix F.

Substituting (118), (124), and (G-l0) in (G-3), there follows

for large T $.
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APPENDIX H. VARIANCE OF 4

Let the collection of correlation functions in (139) be denoted

by K (+1 Then for noise-alone, let

S ~I22~~4 R 13 ,(H-1)44

where an obvious shorthand notation has been adopted. Then employing (86),

(139), and (76), the mean is

=~~~~ t~: 2 f~~R2  tkSk+k
+= + TT (H-2)

The derivation of X will be abbreviated considerably. First,

using Ref. 6 and a technique similar to (H-2),

-~ - .3 V1 "S nV,, 1I1211+ )<567#8

f N " K,214 Krv (H-3)

where quantity A is composed of 24 delta function terms which involve the various

combinations of one even with one odd number, out of the numbers 1-8. For example,

one combination is 12, 34, 56, 78; this leads to the integral contribution in

(H-3) containing ko)3 Ksn = (.i)(-) = 1. Some of the other 24 terms are

far more complicated; for example, combination 16, 27, 38, 45 leads to

(4KR ) - (H-4)

Substitution of all the 24 terms in (H-3), and collection of like terms, yields, after
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considerable labor,

4

7 =)6(H- 5)

where all the terms involving constants, T.,and I , cancel out. Combining

(H-5) with (H-2), and recollecting the scale factor in (139), we get

Vor~4(N)](H-6)

In order to evaluate (H-6), we appeal to the development of the

fourth-order correlation given in (F-42) et seq. Specifically, we employ (G-8),

(F-49), and (G-7), to obtain

_- 2"1(oG T 3 Hi

Alternatively, by use of (G-1O) and (F-50), we find

I -+ (+-6Tr,4- T r T -2' + T4.

- 6wsj? (H-8)

Finally, substitution in (H-6) yields

(H-9
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APPENDIX I. CORRELATION OF). AND

The quantities I and 4 are given by (158), (45), (77), and (139)

as

.L -,.> % 1 = (1-2 )

where kernel K is the collection of correlation functions in (139) (as employed

in (140) and appendix H). For noise-alone, the average of the product is (Ref. 6

and appendix H)

= _+,S 1 S4" _23; + +SW, +&-l 5, 5 + C

(I-3
/EV 1 2 s& 'AS 2~ 3  (1-3)L~~fV~ rvAf,.k

Combining this result with (71) and (140), there follows

eN(N) -1E)1Y~ =A ) (1-4)
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APPENDIX J. EVALUATION OF 7

is given in (H-B) in terms of 7! and I , which are in

turn given by (F-50) and (G-9)-(G-lO). Namely

(J-l)T

Substitution yields V

b)( 3

b = , I% -R , (J-2)

where two terms of the TO.- 23 expression cancel each other by use of the

property

(,X)3 4)(J-3)

see (F-47). Letting X=I/( W,), V= W/(Fwf ) in (J-2),and

employing (F-52), there follows

'>: f d, J R,(uVv.w) + (J-4)

where

(u w ) w) Vu '(v(bwv ( V-4) (J-5)f" (V ?"(
An example of is given in (F-16).

Two useful properties follow immediately from (J-5):
R > ,.w): = .(w, ,,),

j> (- ,-,-,,) pt.(4,,V,-w) (J-6)

They enable us to express (J-4) as

2rj 4.' 
J7

-N 0 4A (VW

,124



In order to numerically evaluate the triple-integral in (J-7), it is nec, ,ary

to determine the regions of significant value of 1;,,and to terminate the

integrals. Detailed evaluation of 1, for the example of (F-16) for 0 - 3

was undertaken, with the result that the first term in (-7) can be well-approxi-

mated by

v+L(v) iu, L(v)

where

L ~v) 6.5-. o8v, V= +0. (J-9)

Letting the integral on Y. be denoted as A(v)w), and the integral on % denoted

as 3(v), we have

4 Y- Vk=oIA (J-10)

Also v+L(v) L_BV Y- (V ()+I. LA.- 2 L (Y). W,

v- Lv)

and 146 Uv3

A (v~) ~J lt6 1(t,, w) -d 75-w' % 3P~-()t~ )

M~1 ii[W,L$} + LI,), +L W = Y2 (J-12)

A program for the evaluation of (J-9)-(J-12) is given in table J-l. Extreme care

is necessary in the evaluation of % ,, due to the presence of functions in

the denominator of (J-5). Exercise of the program for sampling increments .5

and .25 yielded the value Q = 5.75415 for D = 3.

Combining this result with table F-7, we find

IV D= (J-1 3)
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10i Vc=5O
, Eei=.25

4 0 F1=1 kPI*D.I
su F2=(PI*rI)>:

CO co C el M 1i c I'-,Fl, F2
70C KcwINT .Vc 11l 1'4 1

1N, FOP v:.=0 TO Kc

I:~ 'Ci I 3.- 1 HE L 'T

150 Dj'r~ K'
1l6 C!EDYLt

40 FO L0 TO-' L

-50 S =S3+ FR N , W 0+ Lt Di.

R ETURNi1'4:
0O FNIEnT'

2?0 D1E FNHCg,',W.
CE CO CcI M 1 c I ,L
10 LIQ=!i T H: W, L'<:.

C0 M.- I NT -'( K O+L '.3. I + I
Di u i0 + L .'-3 lc

5$0 F OR' M=0- TI-1 plc

'0 IF 1111,: THEN T=i- 9

- ;o Ni E T ii41

4 10 FNEIJD
420 DEF FIIP'3f1U, ,,W

440 A2=FNG':. N: NG U -,-U'
450 Rq=Ft1G(V..'FNG.:-,I..
4E RET1IPH E:-A-2R E.::PK-I-FPFl

4S(1 DEF FNG'>:

54C, CON -I ,U* Fl

51 PETURN F2* PF-1 +E+ P -F>>

Table J-1. Program for (J-9)-(J-12)
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In equations (153), (154), (156), (157), and (162), the 4Uanttty

2.162 Irj23) (J-14)

appears; it is of the order of unity, as anticipated.

Finally, reference to (J-l), (F-52), table F-l, and table F-7

enables us to evaluate

1 ~ 4 ~q r~u3.(J-15)

In equations (146), (148), (149), (156), (157), and (159), the quantity

•~ ~ ~o I l l ,,>= }CJI;

appears; it is of the order of unity, as anticipated.
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APPENDIX K. DERIVATION OF AND ITS MEAN

The cumulants through order 4 were given in (39). The fifth (and

all odd-orders) cumulant is zero, as shown in (131)-(133). The sixth cumulant

is given by (Ref. 4, 3.43)

74 <r'> -). IKr*> <r-'> + 30<r (K-1)

From (131) and (132),

r> 2 (K-2)
2&

where

Here pI is the complex phasor process

r (K-4)

Using relations similar to (K-2) for lower-orders, we find from

(K-1)

wherec6' 9 <)rci'><)cj') + )2 <Ia ](K-5)

where the averages are over the frequency-modulating process mIf) in (K-4),.

or equivalently over the phasor process pi). Now from (K-3),

<lel> (0A) iff) X* Ka

<Icr> M ( 3f.J .X K'34

whre K)A' =()Jj,.x ?) (K-6)

< ml Y 2 5
~where

K, 2 ~ 4~>~ ~ K ~(K-7)
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Substitution of (K-6) in (K-5) yields the desired result

A ~ q k;mK, ~ K1 X~4] (K-8)

Evaluation of the kernel of (K-8) would require evaluation of the

sixth-order average in (K-7); although possible, this is very tedious and sheds

no light on the processor. Also, we can evaluate the mean value of )./

without knowing all the details of the kernel of (K-8). Using the properties of

complex white Gaussian noise, we have

- K, 3  + K1,. kn+ k1, KT+ Ks,, + K,,. K., + K,,Ksi

= "(K-9)

3~ /3 3 (E/ T3s (K-10)
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