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Preface

This Final Report contains the M.S. 7esis of Mr. Douglas Himberger,

submitted for publication December 1979. AThe work describes the mathematical

background and the physical principles which were used to perform calculations

of sonic reflectivity from the water side of a water-ice-air layered system

where the angle of incidence is varied to produce changes of the magnitude

and the phase of the incident sonic beam as it is reflected from the ice.

It is shown that evaluation of these changes in reflectivity can be used to

determine the thickness of the ice without having to be in direct mechanical

contact with the ice.

The computation of modulus and phase of the reflected beam is accomplished

via a modified Simplex Computation Method. The basic concepts of the method

are describe 1 as are the modifications incorportated to make the program

useful for calculations of ice thicknesses which one would ordinarily expect

to encounter in the Arctic Ocean. .. , -

The Report shows that there are ranges of angle of sonic incidence and

ranges of the expected product ice thickness times sonic frequency where the

results of reflectivity measurements are sufficiently characteristic so that

variations in the mechanical properties of the ice (as for instance, longi-

tudinal and shear wave propagation velocities) influence the interpretation

of the results to a negligible extent so that an assessment of the ice thick-

ness is in principle possible for any kind of ice. It is also pointed out

in which ranges of angle of incidence and sonic frequency times expected

ice thickness the results of reflectivity measurements will depend highly

on a previous knowledge of the mechanical properties of the ice, i.e., which

ranges should be avoided.

i



Examples of calculations and some experimental measurement points are

given to illustrate the usefulness of the technique. A complete computer

program is given which can be used to calculate any combination of parameters

of interest. A number of figures are presented to illustrate the influence of

changes in the parameters on the relfectivity results and thus on the degree

of reliability of thickness measurements.

b

Walter G. Mayer

Principal Investigator

Washington, D.C., December 1979

AcceSsi On For

unIS GFM&I

Dc TAB

c ounaea I]e
J'l:if cytin__._---
Dy ' i-- ' --

L-'I£~aCr
Dist

ii



F2

CHAPTER 1

INTRODUCTICTI

Knowledge of the propagation characteristics of sound waves,

particularly of those in the ultrasonic region, is critical in many

areas of scientific research. Notable fields among these are seismic

studies, nondestructive testing, and sonar detection. An evaluation

of sound reflection from and/or transmission through a particular me-

dium may reveal information about a number of physical parameters of

that medium. One of these parameters is the thickness of a solid re-

flector bounded by a liquid. Firestone [1] observed that a sound wave

impinging on a flat solid plate, immersed in a liquid, will be reflected

or transmitted depending on the angle of incidence. Maximum trans-

mission will occur if the incident sound wave excites a normal mode

of vibration of the plate. These nornnal modes of vibration were de-

scribed by Lamb (2] who found that the rzber of possible modes and

their propagation velocities are determined by the elastic properties

of the solid, the frequency of excitation, f, and the thickness of the

plate, d. Ecperimentally [3], the mode structure does not change sig-

nificantly if one considers a solid plate vibrating in a vacuum (the

approach used by lamb) or in a fluid as long as the density of the

solid is at least three or four times greater than the density of the

surrounding medium.

L Huang [4] developed a set of fonyulas which show that the mode

-l1 -
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structure changes significantly when the solid plate is bounded by a

liquid on one side and air on the other. Of particular interest is the

case where such an asymetric loading exists and where the density of

the solid is less than the density of the liquid. An example of such

a system is an ice sheet floating on water. Since the ice sheet exhi-

bits normal modes of vibration when excited by an underwater acoustic

wave, it is conceivable that one can detemine the thickness of the ice

fron the results of reflectivity measurements at various angles of in-

cidence.

This thesis presents a method of detenmining computationally the

reflectivity as a function of angle of incidence for a three layer,

three substance systen, specifically for the air/ice/water subsystem.

Calculations are presented for an fd (frequency-thickness product)

range up to 4 x 106 Hz-mm.

L



CAPTER II ~

*

The basic starting point for the study of sound reflectivity char-

acteristics is the analysis of the behavior of sound impinging on a

flat interface between tw differing substances. In general, a sound

wave (or bean) incident at a flat interface obeys the law of specular

reflection; that is, the angle of reflection is equal to the angle of

incidence. However, there are several instances [51 where this does not

hold true. In addition to the wave being reflected specularly (and

being transuitted to some degree), a surface wave may be set up in the

solid for several angles of incidence (assuming one of the layers is a

solid). These are waves that propagate along the interface between -de

solid and the liquid. These "leaky" surface wave.- are attenuated as

they re-radiate energy back into the liquid. The generation of leaky

surface waves at these special angles of incidence gives rise to an un-

usual type of reflection, known as "non-specular", and gives an indi-

cation that the other parameters of the system (thickness, frequency)

are in a particular arrangement. To determine when these special re-

flectins occur, one must first find a functional description of the

reflection and solve for zero reflection (maxiun transmission).

The most simple system, which Lord Rayleigh [(61 studied, is one of

an infinitely thick solid plate bounded by a vacuum. He determined

that the solid can support one surface wave, the Rayleigh wave. How-
L
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ver, this surface wave cannot be excited by an incident bean as there

is no medium to propagate such a sound been to the solid.

Because it was shown to have similar vibrational modes [3], the

next system to consider is that of an infinitely thick plate bounded by

sane liquid. Schoch [5] and Brekhovskikh [ 71 studied sonic reflectionI, at the interface formed by this liquid/solid system (or L/S system) and

reported non-specular reflections. Figure 1 shows the law of specular

reflection for the incident bean and the transnission of part of the

bean by both shear and lcngitudinal waves in the solid. The directions

of propagation of the various waves can be found from Snell's law,

given by

sin e sin ed  sin Is

vvd vV d s

where t denotes liquid, s denotes shear, and d denotes longitudinal.

For most liquid/solid systems the magnitudes of the velocities are re-

lated by the inequality Vd > vs > v . Using these facts and the for-

malism of Pitts [8], one can arrive at a reflection coefficient ( a

ratio of the amplibudes of the reflected wave and the incident wave) as

a function of the angle of incidence and the densities of the liquid

and the solid. The reflection coefficient, as formulated by Pitts, is

given by

L A
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Incident Reflected
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es ed
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Wave

Sheer
Wave

Figure 1 -Reflection and transmission of sound wave
at a liquid/solid interfacee
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(k2_2 2 +Ak2KK- 4K/
Rk s N xx s ~xsd s sd', (2)

(k -2k2)2 +4k 2KK 4s x xsd sd

where the following definitions are used

k = wave number,

K = k1cos e= k /l-sin2 e , (3)

KS= ksCOS S= k /(v/v s ) 
2  sin2 e , (4)

Kd= kdcs e= k /(v/v d)  sin e

0 = angle of incidence

p = density of liquid/ density of solid. (6)

Equation (2) has a zero for a specific angle of incidence (in a

system where all other parameters are defined). It is at this angle

where a surface wave, the leaky Rayleigh, can be excited. There are,

however, certain systems, as found by Brower, Himberger, and Mayer [9],

where this solution may not exist due to certain cambinations of v ,

vs , vd , and p. For the systems where a solution does exist, a simple

scan or search method would be sufficient to solve for the zero. The

function is also simple enough that a type of gradient or derivative

method could be used (this type of method's use depends on the ease

with which the function's derivative can be found).

The system beca es more cmiplicated when the solid is made to be

[f finite thickness and is loaded on both sides by a liquid, in which _
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F -r
case two boraries must now be considered. Figure 2, taken fran Pitts

[8] , shs this situation in terms of the previously defined quanti-

ties. The coefficient fonmilated by Pitts [8] for this systen is given

by

R(kx) = N/(fsfa) (7)

~where
f- 2 2 2 (1+ cosP) ,,,2K, (cs,

s x(k s2 ~ xd
Sin P sin Q

4
ip ksKd (8)

K

fa (k 2  2 22 (1 -cosP) + 4k 2 KK (1-osQ)

a s xxsd

sin P sin Q
_ ip K

sd (9)

K

2 24 16k 4K2K2  2k8 2 -2
N=x(k 2k) + d sd

+ 8(k 2- 2) K2sKd ( --CosPcosQ ) / S inPsinQ), (10)

P=dkd co sed , (11)

Q = d k s cos 0 s  ,and (2

d = thickness of plate.

L
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The relationship between the angle of incidence, 0, and the thickness

of the solid plate is cczplicated. This situation requires a more so-

phisticated type of optimizing technique.

One finds several zeroes for (7) for a given fd or angle of inci-

dence. These solutions correspond to the modes of vibration the inci-

dent bean is capable of exciting in the solid plate. An exawple system

is the water/brass/water systen of Pitts [8]. Figures 3 and 4 show the

real part of the zeroes of the fs and fa terms for different fd's and

incident angles. Although solutions to these terms, equations (8) and

(9), represent solutions to the denominator of the reflection coeffi-

cient, and thus are poles, it has been shown [8] that the solutions to

the numerator (the zeroes) have the sane real sin 0 value. It has also

been shown [8] that these pole-zero pairs are complex conjugates of

each other when the imaginary part is also included. It is, however,

the real part of the angle that will be measured when a non-specular

reflection is observed. The carves in figs. 3 and 4, taken fram Pitts

[8] , are referred to as modes, representing the modes of vibration of

the solid plate.

The relation given by (7) becanes more camplicated when one goes

to an even more general system in which the plate is surrounded by two

dissimilar fluids, or by a fluid and a gas, as in the air/ice/water

case. There is no distinction between "symmetric" and "anti-symetric"

solutions to the reflection coefficient (Pitts' solutions to the f

nd f a terms respectively) because neither the system nor the coeffi-

-. . ... .. . . .. . .. .. . . ".':" . -7.7 : - ? . " , . ,. :. . . / - .. .'



4

- 10 -

F

1 .0 ' ' ! 1 . 1 " I I I I i I I I

II

1.

a)a

.0.5.,

so

Si

S 2  S 3  S4 S5 S 6 S 7 S8 SS S1 O

0 I Y I , iI l I V

0 5 10 15

fd (MHz-mm)

Figure 3. The real part of the symmetric poles of
the reflection coefficient in the complex
sine plane for a brass plate in water as
a function of fd. (After Pitts [8])
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Icient are symmetric. one can no longer break up the coefficient into

two simple terms and find the zeroes for each of these terms. The en-

tire equation must be solved simultaneously. Fran Huang [4], the co-

efficient for this type of systen is given by

R = N/D , (13)

where
N = A(B-C) + (E+F)G , (14)

D = A (B+C) - (E-F) G ,(15)

A =2{ f - [F(sinf ffd/vl [ (vl/vd) 2 - sin 2] f)
(siri T fd/vl[(vl/vs)2 - sin2 e] })]} , (16)1-[(i v)sn] 2

B f{ 1-2[ (v/Vl)SinS] 2} 2 sin( IrfdArl[ (vl/vd)2 sin2G]j}-

2 2

cos { fd/v I [ (vl/vs) - sin I +

4 2 vlv)2 2 lvs 2 2
{4 [(v/v I ) 4sin2] [(Vl/Vd) -sin2 e[ (Vl/v s) 2-sin2 2}i h

cos f 7rfd/v I [ (vl/vd) 2-sin2 8] 01 sin { ifd/v[ (VT/Vr) 2 sin 2e] }

(17)

C = E cos {7rfd/vl[(vl/vd) 2 -sin2 e] I}cos fIrfd/v 1[(vl/vs)2-sin2  f
(18)

E = i (pj/P2) {[(Vl/Vd) 2sin2e] /(l-sin2e) } (19)

-sin els/(1-sin(9))
F = i (P3/02) [(Vl/Vd) -sin2e] /[(vl/v 3)2-sin26] }  , (20)

L
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G = {1-2[ (vs/v)sin el 2} 2 sin{wfd/vl[ (vl/v) 2-sin2e1 •

cos {,fd/Vl[(Vl/vs) 2-sin2(] }  +

4[(v/v I ) sin 2] [ (vl/vd) 2-sin 2] [(Vl/V s ) 2-sin2 a]

sin {infd/vI[ (vl/vd) 2-sin2] } cos {lrfd/vl[(vl/vd) 2-sin2 ()

(21)

= {l-2[(v 5/vl)sin 9]2} 2 cos {fd/vl[(vl/vd)2 •

sin{irfd/vl[(vl/vs ) 2-sin 2] h} +

4 [ (v./v I ) 4sin2e][ (Vl/Vd) 2-sin28)] [(Vl/Vs ) 2-sin2] 9 , (22)

v I = velocity in medium 1 (liquid or gas) .

v 3 = velocity in medimn 3 (liquid or gas) ,

p1 = density of medium 1

P2 = density of medium 2 (solid)

P3 = density of medium 3

Equations (16) through (22) are expressed on tens of velocities

rather than wave numbers as in (2), (8)-(12). Optimizing (13) re-

quires =ere than a simple technique.

The air/ice/water system is a special case of an L/S/L system

because v and vs may be related byu1



-14-

v > v , (in most cases)

v < v , (in rare cases)

where again v refers to the sound velocity in the water and v5 refers

to the shear velocity in the ice. Clearly, the sound velocity in air

is always less than vs . Moreover, this systen differs fran most L/S/L

systesm because the density of the solid is less than that of the load-

ing liquid (Pice =0.917, Pwater =1.02).

Although the shear wave velocity in the ice may be less than the

sound velocity in water [101, the present paper is concerned only with

L/S/L systens where v > v , the more common situation.

A computational method, the simplex, was adapted to solve (13)

representing this camplicated general systen. The interpretation of

the results then determined the feasibility of finding the thickness

of an ice layer by observing the variations in the reflection as a

function of sonic frequency and angle of incidence.

L

L _
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~c APER III

THE STPLEX

To solve the reflection coefficient expressed by (13) in the most

efficient and flexible manner, five methods were investigated: the

Newton-Paphson gradient method [11], the Rosenbrock direct-search me-

thDd [12], the Powell 'sm of squared residuals' method [13], the

Powell direct search method [14], and the Nelder and Mead simplex dir-

ect search method [15].

One of these minimization techniques was excluded fram consider-

ation as a result of initial investigation. The Newton-Raphson (and

others similar to it, such as the Fletcher-Powell method [16]) is a

gradient method %hich requires that not only the function itself be

defined but also the derivative of the function be known. For many

functions this is not a problem, but upon close inspection one sees

that (13) does not appear to lend itself to this type of technique be-

cause of the complexity of the function and the difficulty of finding

its derivative.

Powell's 'squared residual' optimization technique (and others

with similar characteristics such as Barnes' method [17]) does not re-

quire that the derivative of the function be known. While this is an

advantage in many cases, Powell's method is not suited for all func-

tions. Box (18] states, "It may not be possible to refonmulate every

pptimization problm as the solution of a set of simultaneous equa-

- 15 -
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tions [which Powell 's method requires for the 'squared residuals'].

Certainly it is often not feasible to attempt this." It is unlikely

that (13) could easily be separated into the desired set of equations.

For a ::mplicated function, Box [181 states, "It has been known for

the omiputation of all residuals for a single set of parameter values

to take up to 1, 000 times as long as the organization of the search."

Even if the set of equations necessary for Powell's method was avail-

able, the factor of computation time woild remove this type of tech-

nique fra consideration.

Same type of 'direct search' method is more likely to minimize (13)

without the problems associated with the previous methods discussed.

The direct search methods investigated were Rosenbrock's (12], Powell's

114], and Nelder and Mead's [15].

Kowalik and Osbourne (191 compare Nelder and Mead's method, the

sinplex, to Rosenbrock's method and state the two methods have "cam-

parable efficiency when tested on problems with a small number of in-

dependent variables. . . however, . . . [for some specific functions]

the Simplex method has shown superiority over [Isenbrock's method]".

Klowalik and Osbourne also agree with Nelder and Mead in the latters'

evaluation that the simplex method held an advantage over Powell's

method in having a faster convergence for several example functions.

In addition, should the function have two or more solutions within

close proximity, Nelder and Mead state that the sinplex "will con-

Lvrge even when the initial simplex straddles two or more valleys, _j

~ Ai
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a property which is not shared by, e.g., Powell' s method." Because

the fonus of the modes (the solutions) of (13) are not known, the abil-

ity of the method to converge regardless of the initial guess is use-

ful. The simplex method, in Nelder and Mead's words, is "highly

opportunist, in that the least possible information is used at each

stage and no account is kept of past positions. No assmtions are

made about the surface except that it is continuous and has a unique

minixn in the area of the search." In addition, the simplex method,

according to Nelder and Mead, is "cmiputationally cczpact". For all

of the above reasons, the simplex was chosen as the minimizing tech-

nique to solve for the zeroes and poles of (13).

The simplex method of optimization was developed by Himsworth,

Spendley and Hext [201; it was later studied in detail by Nelder and

Mead (151. Although the technique was originally developed for use

in business and economics (plant management, etc.), the method was

used in mathematics and science fields to same degree in the early

1960's. Its use in technical fields has decreased however, and to-

day the method is utilized almost exclusively by the business world.

The smplex is a 'steep ascent' method that needs no derivatives

and simply form a geometric figure, the simplex (from which its name

is derived), and calculates the actual functional value at the ver-

tices of this figure. The definition of a simplex is given below as

a direct quote from Kowalik and Osbourne E191;

L
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F
.a set of n+1 points in n-dimensional space fonns a simplex. When

these points are equidistant the simplex is said to be regular." ."he

role of the simplex is to find the mininmn of a particular function by

"sliding" along the functional value, whether this sliding is done

along a one-dimensional line, a two dimensional plane, or a three di-

mensional surface. The siMlex, as stated by Nelder and Mead [15],

"adapts itself to the local landscape, elongating down long inclined

planes, changing direction on encountering a valley at an angle, and

contracting in the neighborhood of a mininun." For added flexibility

in finding minima, Nelder and Mead generalized the simplex to make it

non-regular, that is, not necessarily regular or symmetric in nature.

The algorithmic process of the simplex is given in fig. 5, taken

frCm Nelder and Mead EL5]. The simplex has three basic operations;

reflection, expansion, and contraction. The definitions of these op-

erations and of basic terms are given by Kowalik and Osbourne [191 as

follows:

"(1) xh is the vertex which corresponds to f(xh)=

max f(xi), where i=l,2,...,n+l.

(2) xs is the vertex which corresponds to f(Xs

max f(x i ), where i # h.

(3) x is the vertex corresponding to f(x)

min f(x i ), where i=i,2,...,n+l.

(4) xO is the centroid of all x i , i h and is

L given by
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n+l

O0 n 
i

i=1

i~h

We now define the three basic operations used

in the method:

(1) Reflection, where xh is replaced by

Xr (i+ a)XO - a Xh  0

where the reflection coefficient a > 0 is equal

to the ratio of the distance [xxo] to [h o ]

(2) Epansion, where xr is expanded in the di-

rection along which a further improvenent of the

function value is expected. We use the relation

xe = 'xr + (1 - xO

where the expansion coefficient y> 1 is the ratio

of the distance [xX] to [xrx] 

(3) Contraction, by which we contract the simplex,

xc = a xh + (1- 8)x o ,

where the contraction coefficient B is the ratio of

the distance [XcXo] to [xhXO] and satisfies

0 < < 1.

As we have mentioned, the method can be viewed as

the moving, shrinking, and epanding progress of the

L simplex toward the mirmn. This motion is accam-
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F

plished in the following way:

(i) An initial simplec is formed, and the func-

tion is evaluated at each of the vertices in order

to detenine XhsXl and xo .

(ii)We first try reflection and evaluate the

function at the reflected point.

(iii) If f(Xs) > f(Xr) > f(x ), then we replace

xh by xr and restart the process with the newly

formed simplex.

(iv) However, if f(xr) < f(x,), we may expect that

the direction Xr-X could give us an even lower

value of the function if we move further. There-

fore we expand our new simnplex in this direction.

The expansion succeeds is f(x 2 ) > f(Xe), and in

this case xh is replaced by xr , and in either case

we restart the process fran our new simplex.

(v) If the reflection move (ii) yields xr such that

f(xh) > f(x r ) > f(x s ), we replace x h by xr and

make the contracting move. This replacement is

not executed when f (Xr) > f(xh). After the contrac-

ting move we ompare the f (xh) and f (Xc). If f(xh)>

f (xc), we consider that the contraction is success-

ful, xh is replaced by xc , and we start from the
L -
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new simplex.

In a case of failure, i.e., f(x h) <f(xc), the last

simplex is shrunk about the point of the lowest func-

tion value x by the relation

xi (xi + x

* and we begin fran (i) .

*The stopping criterion suggested by Nelder and

Mea is

1/n [flx[ ) - f(x0 )A 2 < E:

i--l

wi-re E: is sane snail preset ntmiber.



CHAPTER IV

I MODIFICATIONS OF THE SIM4PIEXKThe simplex routine was eecuted in a FORTRAN IV computer pro-

gram for use on both the IE4 370/148 camputer at the Academic CcOmp-

tation Center at Georgetown University and a DEC PDP-M= 11 system

at Harry Diamond Laboratories. FORTRAN was used because of its

capacity for handling involved calculations with ease as well as

its ability to deal with camplex numbers. This was necessary due to

the fact that (13) has solutions that are in general camplex.

The program itself was based on a simplex program developed by

Huang [4] to deal with similar problems; both are derived from Nel-

der and Mead's flohart as given in chapter III of this paper.

The functional changes made in Huang's program involve the fol-

lowing parts of the routine;

(i) When no 'new miniuan' is reached by a reflection (the

operations identified in section (v) of Kowalik and

Osbourne, as quoted in chapter III), the new contrac-

ted simplex parameters are specified.

(ii) When setting up the initial simplex, the centroid

calculation is set as specified by Nelder and Mead

[151.

These changes in Huang's program made the new simplex routine both

camputationally faster and mmerically more consistent. The number

- 23 -
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of iterations needed to reach the minmiun of a test function was re-

duced fran an average of 150 to 80. The minimum found in the test

function was consistent to five decimal places even when the iter-

ation was begun at several different starting points.

Nelder and Mead [15] state that a "general problem encountered by

all minimization methods is that of false convergence at a point other

than the mininum. This difficulty has been found using the simplex

method... ". It is because of these 'false minima' that the ability to

trace a mode, such as one similar to those in figs. 3 and 4, becmes

important. Lacking this ability, it would be difficult to differen-

tiate between local minima and the physically meaningful solutions.

Several features were added to the simplec which remove this difficul-

ty. The first was a set of signal 'flags' telling the investigator

what series of reflections, contractions, etc. of the simplex were

used to reach a final minumm. This was done in order to predict to

which minimm the simplex would iterate fran a given starting point.

Secondly, the program was put into two separate fonrs; a concise,

simple 'scan' of a given fd for all values of sin 0, and a rigorous

mode-tracing form that not only followed a particular mode but gave

information about adjacent modes. The first form was used to find the

starting points of any and all modes for a set of parameters and the

second was used to generate full sets of curves for these parameters.

Several special features were added to the mode-tracing form.

Though the simplex inherently samples the function's three dimensional 1
, J
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F

space (in the present case these durensions being the product fd,

the value of sin G, and the functional value for any of these two

parameters) until it finds a valley into which to go, the new form of

the simplex was 'forced' to search in a given volume of a suspected

mininun even if another made was nearby. Wile this search was in

progress, other minima found (or even tended towards) were indicated

in the output so that a better knowledge of the function in the three

dimensional space under scrutiny would be gained. When dealing with

the beginning of the mode in question, this range of forced iteration

was determined by the initial fd scan form of the simplex. In follow-

ing the mode, once a solution was found in the sampling volume, the

range of forced iteration was determined by the last point found and a

judicious choice of limits set by the operator watching the tracing

of the mode.

When the simplex could not iterate to a minnu within the given

limit of iterations (determined by the amount of computer time avail-

able), the output also included the intenediate value reached so that

some information would be gained about a troublesome range of the func-

tion. This point could then be re-examined after slightly varying the

starting point, the iteration step size, or both.

The function described by (13) varies in such a way as to make the

above additions to the simplex useful. For most test functions such

as those used by Box 118], Kowalik and Osbaurne 1191, and this author

L during the preliminary simplex testing), no surface around a minimum
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had a form that caused the sinplex method problems with respect to

local minima, adjacent nodes, etc. For the function given by (13) how-

ever, this was not true. Figure 6 shows two different example minima,

each with considerably different approach slopes. If a function varied

in a manner shown in fig. 6(b), a small change in the independent var-

iable (in the present case, the fd or sin G) would cause a great change

in the dependent variable (the functional value in the present case).

This rapid variance would cause the simplex to miss or 'step over' one

mode in favor of another close and more gradually approached node, such

as the one shown in fig. 6(a). When this happened in tracing a mode,

a physically meaningful solution was regarded at times as a local min-

imum. Unfortunately, the form of the solution to the reflection coef-

ficient of the air/ice/water case has many such-steep approaches to

minima. An example of this 'steep valley' situation is indicated in

Table I which represents a zero of the denmninator of the reflection

coefficient (eq. (13)) when the system has a density ratio of the first

liquid to the solid of 0.3 (ccmpared to 1.1 for normal water/ice den-

sity ratio), and velocities in ranges similar to the normal air/ice/

water case.

Table I. "Ste Valle" variation of function value.

Starting sin 9 Real sine rmag. sine Function Val.

0.540 0.562996 -.0117405 -.568E-06
0.600 0.562996 -.0117408 -.293E-05

L vi=1500 vs=1550 vd 3500 v3=340 fd=0.65 Pz/ps=0.3
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(a)

i4J

Independent Variable

(b)

4J

Independent Variable

Figure 6. Example of gradually-approached solution to
reflection coefficient (a) and steeply-approached
solution (b). Ordinate is the independent var-
iable, absissa is the dependent variable.

L -1
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CThe approach slope is so steep that when the real parts of sin 0 are

equal to six places, a change in the sixth decimal place of the imagi-

nary part causes a change in the functional value of one order of mag-

nitude. This solution was missed in both a scan and a mode trace when

using the old simplex farm.

Besides improving the reliability of the simplex in terms of find-

ing solutions, the additions enable the new form to trace complete nodes

in cne-tenth the time of the old form. This reduction in carptation

time makes the simplex a reasonable tool for solving camplicated func-

tions such as (13). The final form of the simplex mode trace routine

is given in Appendix A.

IL
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F ~CHAPER V

REMMTS

A. IWO-substance system results.

The modified sinplex optimizing technique, as described in chap-

ter 4, was used to solve (13) for parameters of a water/brass/water

systemn, previously described by Pitts [8]. Table II contains the re-

sults of the simplex and those of Pitts.

Table II. Water/Brass/Water Reflection Coefficient Poles

(fd = 5)

Pitts Sinplex

Re(sine) In(sino) Re(sine) im(sine)

0.002 0.454 0.290307E-02 0.454711EOO

0.004 0.302 0.485337E-02 0.302640E00

0.182 0.0075 0.182645E00 0.751577E-02

0.273 0.0017 0.273108E00 0.177726E-02

0.342 0.0001 0.342847E00 0.995920E-04

0.408 0.0048 0.408948E00 0.487755E-02

0.544 0.0057 0.544637E00 0.578639E-02

0.656 0.0034 0.656149E00 0.347561E-02

0.747 0.0136 0.747784E00 0.136844E-01

0.750 0.0125 0.750331E00 0.125455E-01

The results of the sinplex confirn Pitts' original calculations for

the water/brass/water systen. The results also confinn that (13) re-

L
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duces to (7) when the sane liquid bounds the plate on both sides.

B. Three-Substance system results.

Values for air, ice and water parameters, given by Sat6 [10], ware

substituted in (13) and this function was run in the simplex. Figure

7 shows the results of the runs for the air/ice/water reflection coef-

ficient for fd's of zero to four. The graph shows a general form simi-

lar to that of figs. 3 and 4 fram Pitts [8]. There are several major

differences, however. Two of the modes shown in fig. 7 are not con-

tinuous whereas all of the modes in previous studies have been. The

ndes intercepting the abscissa (representing integer half-wavelength

"standing wave" solutions for incomiing beams of normal incidence) cor-

respond to the half-wavelengths of the shear wave as expected, but no

intercepts representing the longitudinal wave occur. Finally, one of

the modes has a definite negative slope, suggesting a negative group

velocity. Viktorov [211 anticipated this possibility, but it has not

been confirmed. Due to the above differences, several changes were

investigated in an effort to clarify the situation.

C. Adjustment of solid density.

Bror, Himberger, and Mayer [91 showed that leaky Rayleigh sur-

face waves cannot be generated on certain systens, specifically the

ice/water system. Zeroes of the reflection coefficient are krlown to

have a definite relationship to non-specular reflection and hence to

sirface waves, Since the icL/water system was found to be a system

i . . ...L
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Figure 7. Mode trace for air/ice/water system. Sato'

values used; v d= 3500 rn/s. vs= 1550 rn/s,

v= 1500 rn/s. vai= 34 n/S', Pice= .917,

.Pwater 1.02, ?air= 0.001183.
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where the leaky Rayleigh wave cannot exist, a similar system such as

the air/ice/water systen could well have differences attributable to

this unique situation which does not exist for other air/solid/liquid

systems. To check this theory, four different ice densities were used

in (13), giving different values for the density ratio of p /Ps. Fig-

ure 8 shows the "plateau" from Brower et. al. [9], below which the

leaky Rayleigh wave exists, above which it does not, and the four den-

sity ratios - two above and two below the "plateau". This change of

parameter value was purely of investigative nature since the density-

modified "ice" represented not ice at all, but a solid with identical

shear and longitudinal wave velocities and different density.

Several changes can be seen in figs. 9-12, which show the solu-

tions to (13) for the four density ratios. The mode that, in fig. 7,

had a negative slope now has a positive slope throughout the investi-

gated range. This sane mode now approaches asymptotically the Ray-

leigh wave velocity for this system as predicted by Pitts [8]. The

top node which was discontinuous in fig. 7 is now part of this new

positive slope mode. Some problems are still present, however. One

mode, in both figs. 9 and 10, has a negative sloped area and is dis-

continuous. There still are no modes representing the longitudinal

wave intercepting the abscissa (sine-0).

D. Adjustment of acoustic tmpedance.

The acoustic impedance is often important when considering re-

L
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Figure 8. "Plateau" of existence for Rayleigh wave. Points
below plateau represent systems where the Rayleigh
surface wave does exist, points above represent
those where it does not. Point I has density ratio
of 0.1; point 2, 0.3; point 3, 1.11; point 4, 11.
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* Figure 9. Mode trace for air/ice/water system with mod-
* ified ice density. Average Sato values used,

Y ice =10.2. Density ratio o f liquid to solid
is below "Plateau" (ratio=0.1) where leaky
Rayleigh exists.
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Figure 10. Mode trace for air/ice/water system with mod-
ified ice density, Average Sat6 values used,

?ie3.06. Density ratio of liquid to solid
is below "plateau" (r-itio=O.3) where leaky
Rayleigh exi-sts.



-36-

au

0

'-I

cc

Figure 11. Mode trace for air/ice/water system. Average
Sat6 values used. Density ratio of liquid to

solid is above "plateau"l (ratio=1.11) where
leaky Rayleigh does not exist.
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Figure 12. Mode trace for air/ice/water system with mod-
ified ice density. Average Sato' values used,

Aice = .0 Density ratio of liquid to solid
is above "plateau" (ratio=11) where leaky
Rayleigh does not exist.
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flectians from an interface. A matched-impedance system, or one in

which the wave velocity times the density of each substance is equal,

generally behaves differently than one that is not matched. Again, a

hypothesis was made that a matched-impedance systen between the ice and

water would eliminate the problem of discontinous and negative sloped

modes as shown in figs. 7 and 9-12. To consider the hypothetical case

of matched inpecances of water and ice, the ice density was again

changed. Figure 13 shows the solutions to the impedance-matched sys-

ten, the normal ice/water/air system, and one of the "below plateau"

density ratio systems. The impedance-matched system gives results that

differ little from the normal systen. Specifically, the previously

discussed problems are still present, leading one to believe that the

relatively sall difference in acoustic impedances between ice and

water is not the reason discontinuous modes exist.

E. Expansion of continuous-mode range.

The curves located in the area bounded by fd of 1.75 and 4 and

sine of 0.2 and 1.0 do not show discontinuities and negative slopes.

Due to the frequencies and plate thicknesses commonly used in the

laboratory, this area of solutions is the area most often verified

by experimentation. For these reasons, (13) was run in the siplex

using high, average, and low shear and longitudinal wave velocities

for ice (fron Sat6 (10]) in this bounded area, other paraneters

(density, etc.) being held constant. Shown in figs. 14 and 15 are the
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results of these simplex runs. The modes shown are continuous and

positive sloped. The shapes of the modes vary only slightly with

change in velocity values and remain well-behaved (that is, easily

traced) throughout this area.

The variation in spacing of modes in terms of sin is prinarily

a function of fd. Variations in density and velocity parameters for

$' different types of ice are thus of minor importance.

This affords one the opportunity to determine the thickness of

the ice by observing at what angles of incidence a plate mode is set

up while f is being held constant. This method of determining ice

thickness is not easily applicable when fd lies outside the values

given above because the mode structure and spacing in other areas of

the sine versus fd diagrams does depend significantly on the ice den-

sity and the values of the sonic velocity in the ice.

F. Mna ry part of solutions.

The imaginary parts of the solutions for the sine values were cal-

culated throughout the simplex runs for the air/ice/water system (see

sample output in Appendix B). Though it is the real part of the sine

value that is observed experimentally, the imaginary part holds impor-

tant information. mien tracing two crossing modes, the imaginary parts

of the solutions distinguish the two modes frao one another. This is

especially useful when there is a question whether the two modes cross

at all, as in the example shown in fig. 16. Ignoring the "traceable"

L
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(a)

0

-I0

fd

Figure 16. Example of mode trace for modes where crossing
is in question. Squares are data points, (a)
and (b) are possible choices for mode shapes.
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rquality of the imaginaxy part of the solution, fig. 16 (a) or (b)

may each be considered equally correct in representing the physical sit-

uation.

Pitts [81 has also stated that the magnitude of the imaginary part

of the solution indicates uhether the zero will be a physical as well

as matlvmtical solution to the system. There has been no detemina-

tion, however, as to the limits of the magnitude of the imaginary part

where this is a factor.

L I
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CCNLUSIONS AND S[GGESTIO S FOR

FUIUM RESEA

EDuatian (13) represents a complicated function which causes prob-

lems with optimization not found in simpler functions such as that

represented by (7). Highly varying functional values, portions of

modes with negative slope, and discontinuous modes all contribute to

the difficulties experienced in solving the equations for air/ice/

water systen modes.

The simplex, in its modified fonn, is able to efficiently optimize

complicated functions such as (13). With operator intervention (watch-

ing imaginary part progression, etc.), the routine can trace modes as

well as sample modes of a particular fd. This combination allows com-

plete mode traces for all values of sin and fd for two and three sub-

stance systems, yielding precise and reproducible results.

Due to repeated use of the subroutine which calculates functional1 I
values (on the order of 100 to 500 times per data point), the program

should be run on a amiputer with direct access to the central proces-

sing unit (such as the EEC PDP-MINC 11) or one which has optional use

of virtual nunory, thus cutting ccznutation costs by as much as 90%.

By actual runs, the water/brass/water systen results of Pitts [8]

have been confirmed. Sae of the calculated results of the air/ice/

water systEn have been verified qualitatively only. Preliminary lab-
L
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oratory runs suggest the calculated modes are correct. Due to prob-

lems with experimental set-up, determination of actual parameters, and

recording of data, insufficient verification has resulted fran the lab-

oratory. Figure 17 shows the theoretical trace of the average Sat6

parameter values for air/ice/water and two experimental points. The

frequency used was 1.84 MHz, plate thickness was approximately 1 mm

(melting of ice prevented precise measurenent), giving an fd of apprcx-

imately 1.8. Due to constraints in transducer housing and set-up, only

angles between 150 and 600 could be viewed. Two nn-specular reflec-

tions were observed, at 260 and 370, giving the two points shan in

fig. 17. Given the uncertainty in the actual parameters of the systen

and the experimental problems, the points correspond well with the

calculated values.

Future research should include continued confirmation of calcu-

lated solutions to the air/ice/water system. Methods for precise de-

termination of actual parameter values such as shear and longitudinal

wave velocities should be pursued. Though Negishi [22] has recently

reported on negative group velocities, this area should be investiga-

ted to confirm or deny the existence of this pheomnenom. Pitts has

recently done research on systems of water/aluminm in which negative

slopes occur in the mode traces. The mere presence of a negative

slope may or may not indicate the existence of unusual propagation

characteristics.

A functional basis should be found to explain discontinuous modes.
L
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F Tiough no physical reason is apparent for such discontinuities, these

modes may be the "missing" intercepts representing the longitudinal

wave.

Should the modes in figs. 14 and 15 be confinned by experimenta-

tion, they will be valuable in practical applications such as sonar,

n(o-destructive testing, and seismic studies. The simplex will then

have proven to be a fast, efficient method of detenuining solutions to

the air/ice/water systen, as well as any other similar systen consist-

ing of a gas-solid-liquid layered structure.

it?



APPNDICES

A. SinV1ex ~fMUMA IV Oaiputer program In MOde-traCe form. Ai-r!
ice/Water system reflection coefficient for sizrplex subroutine.
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C 'SI" SIMPLEX CPTI!'ILING PRCCRAM LINEAR PAUGSAAMMING 5

C GRIGINAL W&AK CChE EV 1-6NG AhC ERCibE
c REV~ISED BY NC ANC 11If'eERGLRt ALG78

C

C THIS FCRMd CF SIPPLEX TRACES A I'CCE FRE?' FC=G TC FC=4.0

C OTIhER FGHMIS SCAN A PARTICLLAR FC FfUM SIN IIIETA=G IG 1.0
C
C T1HE VARIABLE AfifAt LFLAG IS SET LP TG INCICATE TH-E CAiCER
C IN WHICH TI-E SIMPLEX METHEO FEtCHE! ITS F16AL ANSWER-
C Is A REFLECTIEN HAS OCCL~kEC
C 2v A CCNTRACTIN I-AS CCCLI'REO

*C 3, A NEW~ MIhIMLX kAS NCI XElCI-EE
C 4, A PARAMETEA REPLACEPENI
C 5, AN EXPANSICN CCCLlk9EC

*C 6, A FAILEC CLN\TRACTLt~N

*1 THE PCINTS AT WHiICH TH-ESE ARE PRINTED IN THE FACGRAM IS A GOOD

C IhDICATICA CiF WHAT TH-E VARICIJS eRAhC#-Es ARE ECING

C A BASIC VERSION CF THIS PROGRAM H4AS ALSO
C a.....a. BEEN hRITEN - 1,ANG SFECIAL FLACTICNS, USEC

C ioo#5 SEE NELOER PNG NEAC REFESENCE IN P.S. THESIS
C 499 OF H114SERGEA~ FCR DETAILS CN SIMPLEX
C

DIMqENSION X'L 1)PAkaM(2.3) FMIN43),CENT(2I
CIMENSION J(P (21%xCCZIE(ZI
DIRENSIOJN LFLAGISCO)

c (((THE ARMKAY SF KETAI&S THE LAST 17TERATED VALLE IC
C (« CHECK AGAINST TH-E FRESEIPT ChE - EL TRACING MCOES

DIMENSION SPISC)
INTEGER K
INTEGER L

FO=4.C5

SPIIC.1978L
I FD-FC-C.C5

IFIFC.LT.1.75) GE. TO 5CO

GO TO 3
2 8aO*C.CI

IFI8.GT.(SP(I).O.IGII GO TO I
3 LmC

C *" X14IJ IS ITHE STARTING REAL SIN GLESS,
C ****0 ANU AI(2) IS THE IPAGINARY SIN GLESS

C *** STL AND 512 ARE TH-E INCREPENTAL VALLES THE SIM4PLEX
C '" USES TG FGAM THE 'SIPPLEX0 ITSELF

St ligO.Co I
ST2-C.COL
Kag

C *G*** THE ARRAY 'PARXI HCLCS THE FCIATS TH-ENSELVES



PARiM(1,2)=Xl( 11STL
PARP(2tLISAL 12)
PARM2,21=a1 12)
PAM1 ,3 1=XII 1)
PA~l'(2#3JzXLL2*.S1i

5 CCNTINLE
00 20 1=193
DC LC jz1.2

10 XIIJ)*FARM(JI)
- C **@ TIJE Stohi.tUltINE IS CALLEC toPEN AEFEAIEDLV 7C FIhG

C *00** 114E FRaNC~IMNAL VALUE CF THE VARLCLS POINTS IN THE SIMPLEX
CALL fLKC1IXI*F1,FOIh,&1661

20 CCt4TIN)JE
25 111

12=1
13-1
00 30 1-293
IF,(F1N( II ).LI.FMIN(1) 1 11=1

30 CENTINLE
0O 35 1=192

35 CENT(I)=0.
DO 45 1-1,3
IFII.EG.11) GO TO 4.5
00i 4C j=1#2

4.0 CEN7(Ji=CENT(J)+PAKM(,J#I)
IF (FdIN1h12).GT.FtAIN(Ili CC TC 41
13z 12
12=1
GO rC 4.5

4.1 13al
'45 CCNTIhLE

GO 50 1=192
50 CENT(iI=CENTIII/2.0

C *44444*** TI-E CRITER0 IS TPE CRITERICN LSEC TO CETERMINE
C 44~44* THE FCINT AT htIIC- T1,E S1D'FLEA HAS LIERATEC
C ***** CLGSELY ENCLICH 10 ktHAT 1-AS BEEN CALLEC IZERO'

CRITER=1.OE-06
...............PCLE-Co

C SSSSi$ TI-E SIMPLEX AC7LALLY *FALLS LPON' ITSELF
C SI15SMS OR C(.LLAFSES - M.-EN 71-E GISTANCE EEIEEN
C 1331I1515 Th-E POINTS OF rhE ISItPFLEA' IS < THE CRITER,
C $55553355 '10). HiAVE REACHEC A 41ZERC48. NOTE 71-AT 11-IS
C 555335335 flZEJiU'' 14AY NOT 8e ICENTICALLY EGLoAL TC 0
C 555552 SSS IN FACT, IF It IS APPRE). ZEFCv IT 1-AV BE CNLY
C 353553555 A LOCAL MINIMUP -- NOT PART *CF THE MOGE SIAUCTURE

00 60 I=It3
POLE=PCLE+(FMINIL )-FPOIN(13I)ee2

60 CGNTINLE
PGLE=SWRT POL 62.GJ
IF(PCLE.LE.C4ITEI) GO TG 160
DC 65 1=1@2
XR(I 1=2.*CENT(I I-FARlI 1.111

85 X1(IlsAR(II
LaL,1

C 5555555555 REFLECTICK AlssssssislSssssss
LFLAC(IL u
CALL FtohCT(XL*FREC#KG1663
IFIFMIN(121.GE.FM4.ANO0.FR.CE.FPIN(13)) CC TC 130
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IF(FR*LT.FMINI1311 GG TO3 f40
IFFI(1.lf.kCF.if~~li CC TC '95

90 X1(IJmACALI
LxL*l

C *5ss*sississeisss ci4.ARcrlch t4s*siislsssss
LFLAG ILJ=2
CALL FoCl(XlvfCvf-CtKv&16dJ
GO TO 1%5

95 LAL*1
C sIississSsssissss NC N~EW PIN11P 6$$*5PS

LFLAGIL).3
D0 ICO 1=192

00CALL FLlNCTIXlvFC.FOK.C1661

105 IF(F?41Ih(11).GT.FC) Gr T12

C, sL6ssss s AEPL. PARAPe. IIsUAsississsss
LF 1.AG (L .4
GO 115 1=1,3
00 11c J=192

110PAQI,) .*PR(,1FAIIJZl
115 CCNTINLE

GO TO 5
120 00 125 1=1.2

XI(I I IClI L
125 PARM.1411I1I=XCtlI

FI~lt1)mFC
GG TO 155

130 CC 135 I119
XII I-R(Ill

135 PARHILIIAr~f(1)
FMINIII1)=FR
GO IC 155

140 CCIT IXL-E
DC 145 1=1.2
XE( £I12.*XR(IfrCEhT( 55

145 XIMM)MEI)
CALL FLNCllX1,1E#FC,,cG16t)
IF(Fl*CI(%135.LE.FE) GO TO 19.6
L-L.1

C 11issi1$1ss~isss EXPfiNSICH I S5S1SISNS
LFLAG CL Is
DO 150 INI,2
XLIl XECI

150 PAR(lILI=JCECII
FMINC 111-FE

155 CONTINLE
GC TC 25

156 L-L*1
c 5S5ssss~ FAILEC CCNIRACIIN i5551555sss

LFLAGIL 9.6
Go To 130

C 5155 THE LFLAG ARRAY #-AS hCT SEEA FAINTEC OUT Ih ThIS FMC 1555 CF THE eIPLEX ROUTINE IC SA'.E I/C TIt'E
C ((((( THIS ROLTINE CHECKS TC SEE IF IbITIAL ZERG IS AT CORRECT
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C 44<< STARTINC. FEINT -AGAIN FCA MCCE TRACIhG)))

16 F(PA $Pi1,L3.LT.C.180.GRt.PASII1.3a.G1.C-220I GC T0 161

6RLTE14PI851 (FAA$w1J.v33,.JxLv2J
bALTE(6,19C) FMLN( I3)#A9FCe

GCTC I
C 44<'< TIS AELYINE IS USEC FCIA CI-ECAING T& SEE IF SAME I400E
c ff<<< HAS BEEN FCUNC - IF- NCJ, 11 OISCCLhTS IT ANC TAIES AGAIN

161 CCTlt-LE
IF(PARtMIL,131.GT.ISP(W),0.C).CR.PA&41,13).LT.(SF(II,-0.0313

IGC TO L42
I.AITE(6, 185) (PAR11(Jv1319,JL#21
hAITE(6919C) EDILN(131 ,MFCs6

162C TO I

IF(GE(..0)Go IC 2
GO TO 2

166 IF(-..EQ-L.01 Go IC 169

IGO TO 162
kAITE (691933 FMlh(13),FDE.LPASI~MJL3iJ-1 .23

SP(bi-PARF4(1#131

167 MGI.EC.I.O) GO 10 2
168 GO 10 1
16S wRITEL6.19uI

GC TO L60
C FCFAT SECTICK

185 FCRI4AT(I/' FINAL FAJAAPETEP VALLES - fiEAL AND IPAG. PARTS CF SIN'
1/ (2EIS.631

ISO FCRI4AII/,' FijhCT!CN VALtUkts-,1.6p* -6 -7--ER-.t-7 FC:*2'F6.2v,

193 FCRMATII,t NC AFTERi 3CO ITER.'.EI5.691 a FLNCT. ALUE't
I/% FD*lvF6.29* Bz',E15.6,i,' EPARAI. IuALUES REAChEO'.dt(2EI5.611

194 FCRMA11I,' FINGING FIRST FLLE-hCT CCA EFGEhTv CGhrIwLINGfI
199 CCNTINI.E
200 F(.RMAT(i/' PAKAM. VAL. NCT 1%1TIIN LIMITS CF PREVWICUS VAL.,9

I,' FC',9F6.2v8 F-LNT. lVAL.zE15.t,' Es@.EIS.6u1,
10 PARAYETEA VAUES=*o(2EL!.ki)

310 CCINTNlhtE
S00 Slop

EhC
SL8RCLTINE F~iCT(X1,FlFC.I',')

C SUBAFCUT11VE FOR hUPERATCR CF LANGIS AEFLECTICN CCEFFICIENT
C FCA WATEA1ILE/AIR
C 641#669 L~bt VAL#ES, FCR VS ANE VL 1LSEC hhe

IhTEGER K~
OIMEN~sIU~N XI(2
CCPPLEX ACtEG.Di.G.RSsT@CIvANG
COPPLEX SYM9AS~vZ3vZ1.CC@CLsCGOCh
COMPLEY NUN
CCMPLEX 11,13
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U lag 11 I
t ~U2*X 1 (21

DEN3=0 .OU183

VIA 1.5

VC*3 .4

C;l*(C.COC, L.CCG1
P-3.14L55ZCOFLA~I.

Cft1.C-2.0*IA**21 *i

14..CQC*t LVSi~.)**4)*IANG..O )*E*G
P QwCSLI(P*f1

gaCC.CS(P*61
5-CSIAIPOG)
TaCEGSIPsG I

Z3*CI.WOEN3/GrNPJ*EYVj'3)
ZL-CL*(EN/ENP~J*(E/VUI

GC*1C*S*T),* *K)
OOh-GL*(ASY*GC-fI-Z31*C
t.LNSGL(ASv-G1*42L*Z3)*GC

68-A IMAG.NLN4)
FL-AGS(G7S +AES(G85

IIX.I.E.30c) GE It 10

10 RETUR~N
Ch~o



1~1

B. Sample simplex output for nrie-trace fom. Shan are points that
iterate to a solution to the reflection coefficient, points that
do riot converge within a set number of times but give intermediate
values, and points that do not belong to the traced mode but were
given during the course of the iteration for additional informa-
tion.

L
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FINAL PARAMETER VALUES -REAL AND IMAG. PARTS CF SIN
(.*318196E (o -C,141639E-lUL

FUNCTICN VALUE= 0.149012E-07 4 17ER.. 125 F0= 3.75
*8= 0.32646eE 00

NC AFTER 3C0 ITEP. 0.13411CE-06 =FUNCI. VALLE
FD= 3.70 6z 0*316L98E 00
PAfkAM* VALUES REACHEC=
C.3C8662E (0 -C.128520E-01

NC AFTER 300~ IER. 0.894070E-07 = FUNCI. VALUE
FU= 3.65 B= Oo308662E tic
PARAM.* VALUES REACHEO=

0*297508k. 00 -0.l.1 6E-0,

FINAL PARAMETER~ VALUES - R~EAL AND IMAG. PARTS CF SIN
0.28'.26."PE 00 *0.*959546E-02

* FUNCTION VALUE= 0.286847E-06 .1 ITER= 96 F0= 3.60
-am 0.297508E 00

.FINAL PARAMETER VALUES - REAL AND IMAG. PARTS CF SIN
- -.. ....- La268253E t.u -(k.114238E-02

FUNCTION VALUE= 0.186265E-07 *ITER- 105 FD= 3.55
sm 00284263E 00

FINAL PARAMETER VALUES - REAL AND II4AG. PARTS CF SIN
0.248497E 00 -0.563642E-02

F UNCTICN VALUE- 0*447035E-07 0 ITER= 96 FD= 3.50
.B= 0.268.258E 00

JIIC AFTER 300 ITER. 0.1Th554E-06.- FUNCT* VALUE ....._-
F0= 3.45 8= 0*248497E 00
PARAM. VALUES REACHiED=

0.-O223357E CC .- 0.398661E-02. ....

-PARAM. VAL9 NOT hhITtIN LIMITS OF PREVICUS VAL,
F0m 3.40 FUNCT* VAL~a 0.55879'.E-O7 8= 0.223357E 00

IPARAMETER VALUES= O.I89763E 00 -0*.231284E-02 -
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C. Sauple sinplex output for scan form with indiUcator ' flags. De-
scriptions of flags are included in FORTRAN IV program, appendlix

a A.

-----Ll
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a 0 0 0

UN-00 00 -00o00
go r40 0 00 I-N0000

3r C5 COC) '~ o o 0

~~N0a -ON0 ~0 0
O~u~~0 oo o roooo0

OIn-0000 OMNOC0OM
ty 0 0 O0 a N t0 0 0 C

MiN0000 C"Noooo0

1- CM0 115a0 PW 600 0 0
* N 'O ooO *ai"N40000* -d0 0 a U 01 N0 00 0W .NOOOO-'0 00

CO N IA~o U N000a

w%0 0 0 a t I000 000 N0 00 0 L I CY0 000a
it N~o ZN0000 C Y00CW -N.Ca0 001-0000

zMNO000c0
-~4 .4 0 00INOOOO

N-e0000~~ aje o ~ c

isw 0O- 0 0o0a0 f- 0 g.- U 4Nl-00000
4 dp N 0 0 0 0 t & .4 d 0000C

mo N'00000Nla, 1 4--00000NNNOO0O z0 a%0 " a 0 0 0*
0 W woo 0 00 0 ~ m t (A0-00000.o 1-NrI0000 0%N b.6 NO-N0000

In* " o 0 0 '0 -.o Z 0- a0z W .oo 0 Z ~OA N0 a 0
09 0-OODOO 0 40 64-0000
og MN-0000 L 0 40 IN-00000,0~ W-iNrOOOo $. Le NONIl Wi00000
* .c aN000o N 4u a wo",40000
'0 NNjo O 'A' %0 -0 0 N00of00

40 0 N dd0 0 0 Oa'0O4a >ad cgI0ooa
=40 d"00Oa aPu a0 a -%0000049 md 0 N01. 0 a~ 0 qe SNOCOOin0"W aN.a 0 a0 0 wo 0--aooo

wO M"-40000o 0 0 mWa t V W- -0 01-6~.~-0000 IL X % r- #.- ooc 0
WM2wC 44 40 o as$ win 4 0000040 Z'Ifl"iw 00 0 ..J 4Qo Ze-N00a00MMNNO0OO W04. .00 IgA r~000Q

.j* ccn~.d0 zU. 0. U.j W-Mi00OO
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