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Preface

This Final Report contains the_M.S.f;ﬁgg;; of Mr. Douglas Himberge;,
submitted for publication December 1979.g§The work describes the mathematical
background and the physical principles which were used to perform calculations

o of sonic reflectivity from the water side of a water-ice-air layered system
where the angle of incidence is varied to produce changes of the magnitude
and the phase of the incident sonic beam as it is reflected from the ice.

N It is shown that evaluation of these changes in reflectivity can be used to

determine the thickness of the ice without having to be in direct mechanical
contact with the ice.

The computation of modulus and phase of the reflected beam is accomplished
via a modified Simplex Computation Method. The basic concepts of the method
are describeg,as are the modifications incorportated to make the program

o

useful for calculations of ice thicknesses which one would\ordinarily expect

to encounter in the Arctic Ocean. - 1w,f+'k,vhp C AT v A |

The Report shows that there are ranges of angle of sonic incidence and
ranges of the expected product ice thickness times sonic frequency where the
results of reflectivity measurements are sufficiently characteristic so that
variations in the mechanical properties of the ice (as for instance, longi-
tudinal and shear wave propagation velocities) influence the interpretation
of the results to a negligible extent so that an assessment of the ice thick-
ness is in principle possible for any kind of ice. It is also pointed out
in which ranges of angle of incidence and sonic frequency times expected
ice thickness the results of reflectivity measurements will depend highly

on a previous knowledge of the mechanical properties of the ice, i.e., which

ranges should be avoided.




‘._-.“..; e, rerermet et

Examples of calculations and some experimental measurement points are

given to illustrate the usefulness of the technique. A complete computer

29 program is given which can be used to calculate any combination of parameters

of interest. A number of figures are presented to illustrate the influence of

changes in the parameters on the relfectivity results and thus on the degree

of reliability of thickness measurements.

! W - Yhma

Walter G. Mayer

Principal Investigator

2 Washington, D.C., December 1979
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CHAPTER 1

INTRODUCTION

. Knowledge of the propagation characteristics of sound waves,
particularly of those in the ultrasonic region, is critical in many

areas of scientific research. Notable fields among these are seismic

s o '*‘;J, )

studies, nondestructive testing, and sonar detection. An evaluation

of sound reflection from and/or transmission through a particular me-—
dium may reveal information about a mmber of physical parameters of
that medium. One of these parameters is the thickness of a solid re-
flector bourded by a liquid. Firestone [1] observed that a sound wave
impinging on a flat solid plate, immersed in a liquid, will be reflected
or transmitted deperding on the angle of incidence. Maximm trans-

mission will occur if the incident sound wave excites a nomal mode

of vibration of the plate. These nomal modes of vibration were de-
scribed by Lamb [2] who found that the mumber of possible modes and
their propagation velocities are determined by the elastic properties

of the solid, the frequency of excitation, £, and the thickness of the
plate, 4. Experimentally [3], the mode structure does not change sig-
nificantly if one considers a solid plate vibrating in a vacuum (the

' approach used by Lamb) or in a fluid as long as the density of the

solid is at least three or four times greater than the density of the

| Huang [4] developed a set of formulas which show that the mode |

-1-




l;tr:ucture: changes significantly when the solid plate is bounded by a 1

liquid on one side ard air on the other. Of particular interest is the
case where such an asymmetric loading exists and where the density of
the solid is less than the density of the liquid. 2an example of such
a system is an ice sheet floating on water. Since the ice sheet exhi-
bits normal modes of vibration when excited by an underwater acoustic
wave, it is conceivable that one can detemmine the thickness of the ice
fram the results of reflectivity measurements at various angles of in-
cidence.

This thesis presents a method of detemmining computationally the

reflectivity as a function of angle of incidence for a three layer,

three substance system, specifically for the air/ice/water subsystem.
Calculations are presented for an fd (frequency-thickness product)

range up to 4 x 106 Hz*mm.




CHAPTER IT

BACKGROUND

The basic starting point for the study of sound reflectivity char~
acteristics is the analysis of the behavior of sound impinging on a
flat interface between two differing substances. 1In general, a sound
wave (or beam) incident at a flat interface cbeys the law of specular
reflection; that is, the angle of reflection is equal to the angle of
incidence. However, there are several instances [5] where this does not
hold true. In addition to the wave being reflected specularly (and
being transmitted to some degree), a surface wave may be set up in the
solid for several angles of incidence (assuming one of the layers is a
solid). These are waves that propagate along the interface between the
solid and the liquid. These "leaky" surface waver are attenuated as
they re-radiate energy back into the liquid. The generation of leaky
surface waves at these special angles of incidence gives rise to an un-
usual type of reflection, known as "non-specular", and gives an indi-
cation that the other parameters of the system (thickness, frequency)
are in a particular arrangement. To determine when these special re-

flections occur, one must first find a functional description of the
reflection and solve for zero reflection (maximum transmission).

i The most simple system, which Lord Rayleigh [6] studied, is one of
an infinitely thick solid plate bounded by a vacuum. He determined

th_'nat the solid can support one surface wave, the Rayleigh wave. How- N




g/er, this surface wave cannot be excited by an incident beam as ti\e:c'e—I
is no medium to propagate such a sound beam to the solid.

Because it was shown to have similar vibrational modes [3], the
next system to consider is that of an infinitely thick plate bounded by
sare liquid. Schoch [5] and Brekhovskikh [7] studied sonic reflection
at the interface fommed by this liquid/solid system (or L/S system) and
reported non-specular reflections. Figure 1 shows the law of specular
reflection for the incident beam and the transmission of part of the
beam by both shear and longitudinal waves in the solid. The directions
of propagation of the various waves can be found fram Snell's law,
given by

sin 9, sin 63 sin 04

= = (1)

v v
1 d S

where 1 denotes 1iquid, s denotes shear, and d denotes longitudinal.

Por most liquid/solid systems the magnitudes of the velocities are re-
lated by the inequality v a
malign of Pitts [8], one can arrive at a reflection coefficient ( a

>Vg >V Using these facts and the for-

ratio of the amplitudes of the reflected wave and the incident wave) as
a function of the angle of incidence and the densities of the liquid
and the solid. The reflection coefficient, as formulated by Pitts, is

given by

L -
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Figure 1 == Reflection and transmission of sound wave
at a liquid/solid interface.




I 1
2 2,2 4
R(k ) = (kS - ka) + 4k§<st - pkst/K , (2)
* TR - 2D ¢ ok K, + oKR K
-] X x'sd " "tsha
where the following definitions are used
k = wave nmumber,
K = k,cos 0=k Asin® & , (3)
= =x " 2 _ sin® (4)
Ks kscos 8=k (vl/vs) sin© 6 ,
Kd= kdcos 0=k »/(:zl/vd)2 - sin2 e , (3)
® = angle of incidence ,
o = density of liquid/ density of solid. (6)

BEquation (2) has a zero for a specific angle of incidence (in a
system where all other parameters are defined). It is at this angle
where a surface wave, the leaky Rayleigh, can be excited. There are,
however, certain systems, as found by Brower, Himberger, and Maver [9],
where this solution may not exist due to certain cambinations of V.o
Vg o Vg o ard p. For the systams where a solution does exist, a simple
scan or search method would be sufficient to solve for the zero. The
function is also simple enough that a type of gradient or derivative
method could be used (this type of method's use deperds on the ease
with which the function's derivative can be found).

The systan becames more complicated when the solid is made to be

of finite thickness ard is loaded on both sides by a liquid, in which _|




T

case two baurdaries must now be considered. Figure 2, taken fram Pitts
[8] , shows this situation in temms of the previocusly defined quanti-

ties. The coefficient formulated by Pitts [8] for this system is given

by
Rik,) = N/ (fsfa)
where
£, = (ki _ 2k’2{)2 (A + cosP) 4k§Kst (1 + cosQ)
sin P sin Q
ip kiKg

K

= 12 _ 222 (1 - cosP) (1 - cosQ)
£, = 0l - %) + 4k}2{KSKd

sin P sin Q
.4
ip kst
K
.2 2.4 2 2822
n= 0l - 2Dt 16k:1<§xd pzksxd/x

2 2,2, 2 . .
+ 8(k s~ 2kx) ZlS(Kst (1-cosPcosQ) / (sinPsinQ) ,

P=dkdcosed ’
= (2]
Q dkscos s , and

d = thickness of plate.

(7)

(8)

(9)

(10)
(11)

(12)
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The relationship between the angle of incidence, 6, and the thickness

of the solid plate is camplicated. This situation requires a more so-
phisticated type of optimizing technique.

One finds several zerces for (7) for a given fd or argle of inci-
dence. These solutions correspond to the modes of vibration the inci-
dent beam is capable of exciting in the solid plate. An example system
is the water/brass/water system of Pitts [8]. Figures 3 and 4 show the
real part of the zeroes of the fs and fa terms for different fd's and
incident angles. Although solutions to these temms, equations (8) and
(9), represent solutions to the denaminatar of the reflection coeffi-
cient, and thus are poles, it has been shown [8] that the solutions to
the mumerator (the zeroes) have the same real sin 6 value. It has also
been shown [8] that these pole-zero pairs are camplex conjugates of
each other when the imaginary part is also included. It is, however,
the real part of the angle that will be measured when a non-specular
reflection is observed. The curves in figs. 3 and 4, taken fram Pitts
[8] , are referred to as modes, representing the modes of vihration of
the solid plate.

The relation given by (7) becames more camplicated when one goes
to an even more general system in which the plate is surrounded by two

dissimilar fluids, or by a fluid and a gas, as in the air/ice/water

case. There is no distinction between "symmetric" and "anti-symmetric"
solutions to the reflection coefficient (Pitts' solutions to the fs

and fa terms respectively) because neither the system nor the coeffi- 1
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The real part of the symmetric poles of
the reflection coefficient in the complex
sinf® plane for a brass plate in water as
a function of fd. (After Pitts [8])
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R of the reflection coefficient in the
complex sin® plane for a brass plate in
water as a function of fd. (After Pitts [8])
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r;ient are symmetric. One can no longer hreak up the coefficient into 1
two sinple terms and find the zeroes for each of these terms. The en-
. tire equation must be solved simultanecusly. Fram Huang [4], the co-
' efficient for this type of system is given by
B
R=ND , (13)
]
i ‘!
3 N = A(B-C) + (E#F)G , (14)
14
, D = A(B¥C) - (E-F)G , (15)
3 and 2 2 X
A=2{ q- [F(sin{ nfd/vl[(vl/vd) -sin“ @]* }) °
. 2 .2 gk
(sin( fd/vl[(vl/vs) - sin® 6]* N1} , (16)

B={1-2[(v s/vl)sa'.nelz}2 sin{ "fd/"l[("l/"d)z - sinze] ;5} .

cos{nfd/vl[( /V) - sin 6];5} +

(4L tvv)) dsinol [ (v) i) 2-sin®el *[ (v) /v ) 2-sine] )

cos {nfd/vl[(vl/v d) 2-sin‘?e\]!s} sin{ wfd/vl[ (vl/vs)z-sinze]%} ’

C=E cos {nfd/vl[ (vl/v d) 2-s:'ane]%}cos {wfd/vl[ (vl/v

E =i (a1/p2) {[(v; g sin’el/ (-sin’e) ")

F=1i (p3/py) ( [(vl/vd) 2-sinze]!’/[(vl/v3)2-sinze];s}

e e mms e comm w ey
N 3

(17)

-sin e]!’} '
(18)

(19)

' (20)
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6 = (1-2[(v/v)sin 01)? sin(rga/v, [ (v,/v ) 2-sin] %} -
cos {wrfd/vl[(vl/vs) 2-sinze]%} +
41 vyv)) *sine] [ (v) /v, P-sin®e] [ (v /v) *~sin%e] * -
g sin {nfd/v, [ (v)/v ) %-sin%]®) cos (rfa/v;[(v, /v 2-sin®e] D)
(21)
| Q= {l-2[(vs/vl)sin 612}2 cos {nfd/vl[(vl/vd) 2—sinzeu]!’} .
sin{rfd/vy [ (vy/v) 2—sin26] !5} +
41 v sv)) dsine] [ vy /v P-sin®o) [ (v /o) Fsin®e)® ,  22)

vy = velocity in medium 1 (liquid or gas) |,
vy = velocity in medium 3 (liquid or gas) ,
p1 = density of medium 1 ,

pr» = density of medium 2 (solid) |,

p3 = density of medium 3

BEquations (16) through (22) are expressed on temms of velocities
rather than wave mmbers as in (2), (8)-(12). Optimizing (13) re-
quires more than a simple technique.

The air/ice/water systeam is a special case of an L/S/L system

because v, and vy may be related by
(I -

e 2 o
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Vg 2V, (in most cases)

-

vs < v1 , (in rare cases)

where again v, refers to the sound velocity in the water and Vg refers

to the shear velocity in the ice. Clearly, the sound velocity in air

e ———— —— e .5

systems because the density of the solid is less than that of the load-

; } is always less than Vg Moreover, this system differs fram most L/S/L

ing liquid (pice =0.917, Puater =1.02).

)

Althc?ugh the shear wave velocity in the ice may be less than the
sound velocity in water [10], the present paper is concerned only with
L/S/L systems where v_ > v+ the more cammon situation.

A computational method, the simplex, was adapted to solve (13)
representing this camplicated general system. The interpretation of
the results then determined the feasibility of finding the thickness

of an ice layer by observing the variations in the reflection as a

function of sonic frequency and angle of incidence.




. QUAPTER III
THE SIMPLEX

To solve the reflection coefficient expressed by (13) in the most
£ efficient and flexible manner, five methods were investigated: the
Newton-Raphson gradient method [11], the Rosenbrock direct-search me-
thod [12], the Powell 'sum of squared residuals' method [13], the
Powell direct search method [14], and the Nelder and Mead simplex dir-
ect search method [15].

One of these minimization techniques was excluded fram consider-
ation as & result of initial investigation. The Newton—Raphson (and
others similar to it, such as the Fletcher-Powell method [16]) is a
gradient methad which requires that not only the function itself be
defined but also the derivative of the function be known. For many
functions this is not a problem, but upon close inspection one sees
that (13) does not appear to lerd itself to this type of technique be-
cause of the complexity of the function and the difficulty of finding
its derivative.

Powell's 'squared residual' optimization technique (and others
with similar characteristics such as Barnes' method [17]) does not re-
quire that the derivative of the function be known. While this is an
advantage in many cases, Powell's method is not suited for all func-

tions. Bax [18] states, "It may not be possible to reformulate every

Eptimization problem as the solution of a set of simultanecus equa- |

- 15 -
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A
I--t:ion.s: [which Powell's method requires for the 'squared residuals']. . .

Certainly it is often not feasible to attempt this." It is unlikely
that (13) ocould easily be separated into the desired set of equations.
For a camplicated function, Box [18] states, "It has been known for

e s

the computation of all residuals for a single set of parameter values i
to take up to 1,000 times as long as the organization of the search." i
Even if the set of equations necessary for Powell's method was avail-
able, the factor of computation time would remove this type of tech-

nique fram consideration.

Same type of 'direct search' method is more likely to minimize (13)
without the problems associated with the previous methods discussed.
The direct search methods investigated were Rosenhrock's [12], Powell's
[14], and Nelder and Mead's [15].

Kowalik and Osbourne {19] campare Nelder and Mead's method, the
simplex, to Rosenbrock's method ard state the two methods have "com—
parable efficiency when tested on problems with a small number of in-
dependent variables. . . however, . [for same specific functions]
the Simplex method has shown superiority over [Rosenbrock's method]". |
Kowalik and Osbourne also agree with Nelder and Mead in the latters' ‘v J
evaluation that the simplex method held an advantage over Powell's '

method in having a faster convergence for several example functions.
In addition, should the function have two or more solutions within
close proximity, Nelder and Mead state that the simplex "will con-

L\ierge even when the initial simplex straddles two or more valleys, |

C RIS




‘s
; _l
- I_a property which is not shared by, e.g., Powell's method." Because

, the forms of the modes (the solutions) of (13) are not known, the abil-
L ity of the method to converge regardless of the initial gquess is use-
ful. The simplex method, in Nelder and Mead's words, is "highly
opportunist, in that the least possible information is used at each
stage and no acoount is kept of past positions. No assumptions are
made about the surface except that it is continuous and has a unique
minimm in the area of the search." In addition, the simplex method,
according to Nelder and Mead, is "computationally o~ampact”. For all
of the above reasons, the simplex was chosen as the minimizing tech-
nique to solve for the zeroes and poles of (13).

The simplex method of optimization was developed by Himsworth,
Spendley and Hext [20]; it was later studied in detail by Nelder and
Mead [15]. Although the technique was originally developed for use
in business and econamics (plant management, etc.), the method was
used in mathematics and science fields to same degree in the early
1960's. Its use in technical fields has decreased however, and to-
day the method is utilized almost exclusively by the business world.

The simplex is a 'steep ascent' method that needs no derivatives

and simply forms a geametric figure, the simplex (fram which its name

is derived), and calculates the actual functional value at the ver-
tices of this figure. The definition of a simplex is given below as
a direct quote fram Kowalik and Osbourne [19];

L
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F -
» r:'. . .a set of ntl points in n-dimensional space fomms a simplex. When
. these points are equidistant the simplex is said to be regular.” The

role of the simplex is to find the minimm of a particular function by

"sliding" along the functional value, whether this sliding is done

along a one—dimensional line, a two dimensional plane, or a three di-
mensional surface. The simplex, as stated by Nelder and Mead (15],
"adapts itself to the local landscape, elongating down long inclined
planes, changing direction on encountering a valley at an angle, and
contracting in the neighborhood of a minimm." For added flexibility
in finding minima, Nelder and Mead generalized the simplex to make it
non-reqular, that is, not necessarily regular or symmetric in nature.
The algorithmic process of the simplex is given in fig. 5, taken
fram Nelder and Mead [15]. The simplex has three basic operations;

reflection, expansion, and contraction. The definitions of these op-

erations and of basic temms are given by Kowalik and Osbourne (19] as
follows:

; "(1) x, is the vertex which correspords to f(x)=

max f(xi), where i=1,2,...,n+l.

(2) Xg is the vertex which corresponds to f(xs)=

max f(xi), where i # h.

(3) X, is the vertex corresponding to f(x£)=

min £(x;), where i=1,2,...,nt+l.

(4) X, is the centroid of all x,. i# hand is
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[ 3 r -
n+l
' x = 1 E X
o] n i
. - i=1
A izh
~ We now define the three basic operations used
i in the method:
Y
'j (1) Reflection, where x, is replaced by
o xr=(1+a)xo-axh,
¥ where the reflection coefficient o > 0 is egual

; to the ratio of the distance [x x ] to ax 1 -

(2) Expansion, where x . is expanded in the di-

rection along which a further improvement of the

function value is expected. We use the relation
X, =X, + (1 - ix,,

where the expansion coefficient y> 1 is the ratio

of the distance [xexO] to [xrxo] .

(3) Contraction, by which we contract the simplex,

X
o

where the contraction coefficient 8 is the ratio of

B x-h + (1- B)xor

the distance [x X o] to [xhxol and satisfies

0 <B<1l.

As we have mentioned, the method can be viewed as
the moving, shrinking, and expanding progress of the

L simplex toward the minimum. This motion is accam- -

- et ————
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plished in the following way:

(i) An initial simplex is formed, and the func-
tion is evaluated at each of the vertices in order
to determine XprXg o X and X

(ii)We first try reflection and evaluate the
function at the reflected point.

(iii) If f(xs) > f{x) > £(x,), then we replace

Xy by X, and resta:;t the process with the newly
formed simplex.

(iv) However, if f(xr) < f(xl), we may expect that
the direction X X oould give us an even lower
value of the function if we move further. There-
fore we expand cur new simplex in this direction.
The expansion succeeds is f(xg) > f(xe), and in
thiscasexhis replacedbyxr, and in either case
we restart the process fram our new simplex.

(v) If the reflection move (ii) yields X, such that
f(xh) > f(xr) > f(xs), we replace Xy by X, and
make the contracting move. This replacement is

not executed when f(xr) > f(xh). After the contrac-
ting move we compare the f(xh) and f(xc). If f(xh)>

f (xc) , we consider that the ocontraction is success—

ful, X is replaced by X and we start from the




new simplex.
In a case of failure, i.e., f(xh) < f(xc), the last
simplex is shrunk about the point of the lowest func-

tion value x % by the relation

x-=35(xi+x )

1 2

and we begin fram (i).
The stopping criterion suggested by Nelder and

Mead is

n+l 2.k
{ 1/n Z :[f(xi) -f(xo)] ¥t o< e,

i=1

where € is same small preset number."
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CHAPTER IV
MODIFICATIONS OF THE SIMPLEX

The simplex routine was executed in a FORTRAN IV camputer pro-
gram for use on both the IBM 370/148 camputer at the Academic Campu~
tation Center at Georgetown University and a DEC PDP-MINC 11 system
at Harry Diamond Laboratories. FORTRAN was used because of its
capacity for handling involved calculations with ease as well as
its ability to deal with complex numbers. This was necessary due to
the fact that (13) has solutions that are in general camplex.

The program itself was based on a simplex program developed by
Huang [4] to deal with similar problems; both are derived fram Nel-
der and Mead's flowchart as given in chapter IIT of this paper.

The functional changes made in Huang's program involve the fol-
lowing parts of the routine;

(i) when no 'new minimm' is reached by a reflection (the
operations identified in section (v) of Kowalik and
Osbourne, as quoted in chapter III), the new contrac-
ted simplex parameters are specified.

(ii) when setting up the initial simplex, the centroid

calculation is set as specified by Nelder and Mead
as].
These changes in Huang's program made the new simplex routine both

li:unput'at-_ionally faster and numerically more consistent. The number

-23 -
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'T)f iterations needed to reach the minirum of a test function was re- i

duced from an average of 150 to 80. The minimum found in the test
function was consistent to five decimal places even when the iter-
ation was begun at several different starting points.

Nelder and Mead [15] state that a "general prablem encountered by
all minimization methods is that of false convergence at a point other
than the minimum. This difficulty has been found using the simplex
method...". It is because of these 'false minima' that the ability to
trace a mode, such as one similar to those in figs. 3 and 4, becames
important. Lacking this ability, it would be difficult to differen-
tiate between local minima and the physically meaningful solutions.
Several features were added to the simplex which ramove this difficul-
ty. The first was a set of signal 'flags' telling the investigator
what series of reflections, contractions, etc. of the simplex were
used to reach a final minimum. This was done in order to predict to
which minimum the simplex would iterate from a given starting point.

Secondly, the program was put into two separate forms; a concise,
simple 'scan' of a given fd for all values of sin 0, ard a rigorous
mode~-tracing form that not only followed a particular mode but gave
information about adjacent modes. The first formm was used to find the
starting points of any and all modes for a set of parameters and the
second was used to generate full sets of curves for these parameters.

Several special features were added to the mode-tracing form.

Lz'rmgh the simplex inherently samples the function's three dimensional_j
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space (in the present case these dimensions being the product fd,

-

e A L . s 0 i . L A R s W AR s D B g S i i Sy e

- 25 -

1

the value of sin 6, and the functional value for any of these two
parameters) until it finds a valley into which to go, the new fom of
the simplex was 'forced' to search in a given volume of a suspected
minimum even if another mode was nearby. while this search was in
progress, other minima found (or even tended towards) were indicated
in the output so that a better knowledge of the function in the three
dimensional space under scrutiny would be gained. When dealing with
the beginning of the mode in question, this range of farced iteration
was detemined by the initial fd scan form of the simplex. In follow—
ing the mode, once a solution was found in the sampling volume, the
range of forced iteration was determined by the last point found and a
judicious choice of limits set by the operator watching the tracing '
of the mode.

When the simplex could not iterate to a minimum within the given
limit of iterations (determined by the amount of camputer time avail-
able), the output also included the intermediate value reached so that
some information would be gained about a troublesame range of the func-
tion. This point could then be re-examined after slightly varying the
starting point, the iteration step size, or both.

The function described by (13) varies in such a way as to make the
above additions to the simplex useful, For most test functions such
as those used by Box [18], Kowalik and Osbourne [19], and this author

L_(duri.ng the preliminary simplex testing), no surface around a minimum |

e Lo e e e < . . JE L > e




[—had a form that caused the simplex method problems with respect to 1

local minima, adjacent modes, etc. For the function given by (13) how-
ever, this was not true. Figure 6 shows two different example minima,
each with considerably different approach slopes. If a function varied
in a manner shown in fig. 6(b), a small change in the independent var-
iable (in the present case, the f£d or sin 0) would cause a great change
in the deperdent variable (the functional value in the present case).
This rapid variance would cause the simplex to miss or 'step over' one
mode in favor of another close and more gradually approached mode, such
as the one shown in fig. 6(a). When this happened in tracing a mode,

a physically meaningful solution was regarded at times as a local min-
imm. Unfortunately, the form of the solution to the reflection coef-
ficient of the air/ice/water case has many such'steep approaches to
minima. An example of this 'steep valley' situation is indicated in
Table I which represents a zero of the denaminator of the reflection
efficient (eg. (13)) when the system has a density ratio of the first
liquid to the solid of 0.3 (campared to 1.1 for normal water/ice den-
sity ratio), and velocities in ranges similar to the normal air/ice/

water case.

Table I. "Steep Valley" variation of function value.

Starting sin © Real sing Imag. sing Function Val.
0.540 0.562996 -.0117405 -.568E-06
0.600 0.562996 -.0117408 -.293E-05

vi=1500 vs=1550 va=3500 v3=340 fa=0.65 pz/ps=0.3




- 27 -

(a)

‘g _ ., o ma - , ‘

o gl o
Dependent Variable

——

Independent Variable

(b)

Dependent Variable

\

Independent Variable

Figure 6. Example of gradually-approached solution to
reflection coefficient (a) and steeply-approached
solution (b). Ordinate is the independent var-
iable, absissa is the dependent variable.
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equal to six places, a change in the sixth decimal place of the imagi-
nary part causes a change in the functional value of one order of mag-
nitude. This solution was missed in both a scan and a mode trace when
using the old simplex form.

Besides improving the reliability of the simplex in terms of find-
ing solutions, the additions enable the new form to trace camplete modes
in one~tenth the time of the old form. This reduction in camputation
time makes the simplex a reasonable tool for solving camplicated func-
tions such as (13). The final form of the simplex mode trace routine

is given in Apperdix A.
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CHAPTER V

RESULTS

A. Two-substance system results.

The modified simplex optimizing technique, as described in chap-
ter 4, was used to solve (13) for parameters of a water/brass/water
system, previously described by Pitts [8]. Table II contains the re-

sults of the simplex and those of Pitts.

Table II. Water/Brass/Water Reflection Coefficient Poles

(fd = 5)
Pitts Simplex
Re (sino) Im(sine) Re(sino) Im(sine)
0.002 0.454 0.290307E-02  0.454711E00
0.004 0.302 0.485337E-02  0.302640E00
0.182 0.0075 0.18264500  0.751577E-02
0.273 0.0017 0.273108E00  0.177726E-02
0.342 0.0001 0.342847E00  0.995920E-04
0.408 0.0048 0.408948E00  0.487755E-02
0.544 0.0057 0.544637E00  0.578639E-02
0.656 0.0034 0.656149E00  0.347561E-02
0.747 0.0136 0.747784E00  0.136844E-01
0.750 0.0125 0.750331E00  0.125455E-01

The results of the simplex confimm Pitts' original calculations for

the water/brass/water system. The results also confirmm that (13) re-
L _l
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I:iuces to (7) when the same liquid bounds the plate on both sides.

B. Three-substance system results.

Values for air, ice and water parameters, given by Sats [10], were
substituted in (13) and this function was run in the simplex. Figure
7 shows the results of the runs for the air/ice/water reflection coef-
ficient for fd's of zero to four. The graph shows a general form simi-
lar to that of figs. 3 and 4 fram Pitts [8]. There are several major
differences, however. Two of the modes shown in fig. 7 are not con-
tinuocus whereas all of the modes in previous studies have been. The
modes intercepting the abscissa (representing integer half-wavelength
"standing wave" solutions for incaming beams of normal incidence) cor-
respond to the half-wavelengths of the shear wave as expected, but no
intercepts representing the longitudinal wave occur. Finally, one of
the modes has a definite negative slope, suggesting a negative group
velocity. Viktorov [21] anticipated this possibility, but it has not
been confirmed. Due to the above differences, several changes were

investigated in an effort to clarify the situation.

C. Adjustment of solid density.

Brower, Himberger, and Mayer [9] showed that leaky Rayleigh sur-
face waves cannot be generated on certain systems, specifically the
ice/water system. Zeroes of the reflection coefficient are known to

have a definite relationship to non-specular reflection and hence to

l3l.u:facze waves, Since the ice/water system was found to be a system N
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where the leaky Rayleigh wave camnot exist, a similar system such as
the air/ice/water system could well have differences attributable to
this unique situation which does not exist for other air/solid/liquid
systems. To check this theory, four different ice densities were used
in (13), giving different values for the density ratio of p z/ps’ Fig-
ure 8 shows the "plateau"” from Brower et. al. [9], below which the
leaky Rayleigh wave exists, above which it does not, and the four den-
sity ratios — two above and two below the “"plateau". This change of
parameter value was purely of investigative nature since the density-
modified "ice" represented not ice at all, but a solid with identical
shear arnd longitudinal wave velocities and different density.

Several changes can be seen in figs. 9-12, which show the solu-
tions to (13) for the four density ratios. The mode that, in fig. 7,
had a negative slope now has a positive slope throughout the investi-
gated range. This same mode now approaches asymptotically the Ray-
leigh wave velocity for this system as predicted by Pitts [8]. The
top mode which was discontinuous in fig. 7 is now part of this new
positive slope mode. Scame problems are still present, however. One
mode, in both figs. 9 and 10, has a negative sloped area and is dis-
continuous. There still are no modes representing the longitudinal
wave intercepting the abscissa (sine=0).

D. Adjustment of acoustic impedance.

The acoustic impedance is often important when considering re-
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Figure 8. '"Plateau" of existence for Rayleigh wave. Points
below plateau represent systems where the Rayleigh
surface wave does exist, points above represent
those where it does not. Point 1 has density ratio
of 0.1; point 2, 0.3; point 3, 1.11; point 4, 11.
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jﬁce= 10.2. Density ratio of liquid to solid

is below "plateaﬁ" (ratio=0.1) where leaky
Rayleigh exists.
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Mode trace for air/ice/water system. Average
Sat§ values used. Density ratio of liquid to

solid is atove "plateau" (?atio=1.11) where
leaky Rayleigh does not exist.
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M . 1
flections from an interface. A matched-impedance system, or one in

which the wave velocity times the density of each substance is equal,
generally behaves differently t\:han one that is not matched. Again, a
hypothesis was made that a matched-impedance system between the ice and
water would eliminate the problem of discontinous and negative sloped
modes as shown in figs. 7 and 9-12. To consider the hypothetical case
of matched impecances of water and ice, the ice density was again
changed. Figure 13 shows the solutions to the impedance-matched sys-
tem, the normal ice/water/air system, and one of the "below platean"
density ratio systems. The impedance-matched system gives results that
differ little fram the normal system. Specifically, the previously
discussed problems are still present, leading one to believe that the
relatively small difference in acoustic impedances between ice and

water is not the reason discontinuous modes exist.

E. Expansion of continuous-mode range.

The curves located in the area bounded by fd of 1.75 and 4 and
sino of 0.2 and 1.0 do not show discontinuities and negative slopes.
Due to the frequencies and plate thicknesses cammonly used in the
laboratory, this area of solutions is the area most often verified
by experimentation. For these reasons, (13) was run in the simplex
using high, average, amd low shear and longitudinal wave velocities
for ice (from Satd [10]) in this bounded area, other parameters

(density, etc.) being held constant. Shown in figs. 14 and 15 are the
L 4
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results of these simplex runs. The modes shown are continuous and

positive sloped. The shapes of the modes vary only slightly with
change in velocity values and remain well-behaved (that is, easily
traced) throughout this area.

The variation in spacing of modes in terms of sin® is primarily
a function of fd. Variations in density and velocity parameters for
different types of ice are thus of minor importance.

This affords one the opportunity to determine the thickness of
the ice by observing at what angles of incidence a plate mode is set
up while f is being held constant. This method of determmining ice
thickness is not easily applicable when fd lies outside the values
given above because the mode structure and spacing in other areas of
the sino versus fd diagrams does depend significantly on the ice den-

sity and the values of the sonic velocity in the ice.

F. Imaginary part of solutions.
The imaginary parts of the solutions for the siné values were cal-

culated throughout the simplex runs for the air/ice/water system (see
sanple cutput in Apperdix B). Though it is the real part of the sine
value that is observed experimentally, the imaginary part holds impor-
tant information. When tracing two crossing modes, the imaginary parts
of the solutions distinguish the two modes fram one another. This is
especially useful when there is a question whether the two modes cross

at all, as in the example shown in fig. 16. Ignoring the "traceable"
L |
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Figure 16. Example of mode trace for modes where crossing
Squares are data points, (a)

is in question.
and (b) are possible choices for mode shapes.
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* r;uality of the imaginary part of the solution, fig. 16 (a) or (b) R
"” may each be considered equally correct in representing the physical sit-
3 uation,

Pitts [8] has also stated that the magnitude of the imaginary part
of the solution indicates whether the zero will be a physical as well
as mathematical solution to the system. There has been no detemmina-

3 tion, however, as to the limits of the magnitude of the imaginary part

where this is a factor.




CHAPTER VI

QONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

Bquation (13) represents a camplicated function which causes prob-
lems with optimization not found in simpler functions such as that
represented by (7). Highly varying functional values, portions of
modes with negative slope, and discontinuous modes all contribute to
the difficulties experienced in solving the equations for air/ice/
water system modes.

The simplex, in its modified form, is able to efficiently optimize
complicated functions such as (13). With operator intervention (watch-
ing imaginary part progression, etc.), the routine can trace modes as
well as sample modes of a particular fd. This canbination allows con—
plete made traces for all values of sino® and fd for two and three sub—
stance systems, yielding precise and reproducible results.

Due to repeated use of the subroutine which calculates functional
values (on the order of 100 to 500 times per data point), the program
should be run on a computer with direct access to the central proces-
sing unit (such as the DBEC PDP-MINC 11) or one which has optional use

of virtual memory, thus cutting camputation costs by as much as 90%.

By actual runs, the water/brass/water system results of Pitts [8]

have been confirmed. Same of the calculated results of the air/ice/

water system have been verified qualitatively only. Preliminary lab-
L -
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» 'c_:ratozy runs suggest the calculated modes are correct. Due to prob- R
é* lems with experimental set-up, determination of actual parameters, and
E . recording of data, insufficient verification has resulted fram the lab-

oratory. Figure 17 shows the theoretical trace of the average Sato
parameter values for air/ice/water and two experimental points. The
frequency used was 1.84 MHz, plate thickness was approximately 1 mm
(melting of ice prevented precise measurement), giving an fd of approx-

imately 1.8. Due to constraints in transducer housing and set-up, only

angles between 15° and 60° could be viewed. Two non-specular reflec-
tions were observed, at 26° and 37°, giving the two points shown in
k{ fig. 17. Given the uncertainty in the actual parameters of the system
and the experimental problems, the points correspond well with the

! calculated values.

i Future research should include contimued confirmation of calcu-
lated solutions to the air/ice/water system. Methods for precise de-
termination of actual parameter values such as shear and longitudinal
wave velocities should be pursued. Though Negishi [22] has recently
reported on negative group velocities, this area should be investiga-
ted to confirm or deny the existence of this phenamenom. Pitts has
recently done research on systems of water/aluminum in which negative
3 ) slopes occur in the mode traces. The mere presence of a negative
slope may or may not indicate the existence of unusual propagation
characteristics.

‘ L A functional basis should be found to explain discontinuous modes.—‘
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» r 7
Though no physical reason is apparent for such discontinuities, these

) modes may be the "missing” intercepts representing the longitudinal
' - wave.,
; Should the modes in figs. 14 and 15 be confimmed by experimenta-

tion, they will be valuable in practical applications such as sonar, i

non-destructive testing, and seismic studies. The simplex will then

have proven to be a fast, efficient method of detemmining solutions to

AN gl T T

the air/ice/water system, as well as any other similar system consist-
b :
’ ing of a gas-solid-liquid layered structure. i
k
[.
i
:




A. Simplex FORTRAN IV camputer program in mode-trace form. Air/
Ice/Water system reflection coefficient for simplex subroutine.
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SHEEACISREIAIIRIIINININS 4002040080048 000000034844904832480009

98449 SIMPLEX CPTIMIZING PRIGRAM —— LINEAR PROGRAMMING *s

QR0 300008 3048303849889 02 403000488443 40080004004040304%3RA80%2S
GRIGINAL WOGRK CCNE EY FUING ANC ERChER .
"REVISEC BY NG ANC FIMBERGLR, 2LG178 ;

FURTHER REVISEC 8Y FIMEEFGER, SEPT. 76-4PKkIL 79

ThiS FCR™ CF SIMPLEX TRACES A NCCE FARCM FC=2G TC FC=4.0 I
OTHER FGRMS SCAN A PARTICLLAR FC FRUM SIN THETA=C TG 1.0

THE VARIABLE ARRAY LFLAG IS SEY LP TG INCICATE THE CRCER
IN wHICH THE SINPLEX METHCO REACHES ITS FIMAL ANSWER —

Ly A REFLECTICN HAS OCCLRKEL

2¢ A CONTRACTICN FAS CCCLKRED

39 A NEw MINIMLM wAS NGT KEZCREC

&y A PARAMETER REPLACENMENT

59 AN EXPANSICN GCCURREL

6s A FAILEC CONTRACTIGA

14
ThE PCINTS AT whiICH TRESE ARE PRINTEC IN THE FRCGRAM IS A GOGD
INCICATICN GF WwhAT THE VARICULS BRANCHES ARE CLING

a4dddadaedaaaea A BASIC VERSICN CF ThIS PRGGRAM hAS ALSO
dzdadaaaasad BEEN WRITEMN — WANG SFECIAL FUNCTICNS USEC

(1111] SEE NELDER ANL VEAC REFEREMNCE IN ®#.S. THESIS
bBRAN OF HIMBERGER FCGR CEVAILS CN SIMPLEX

DIMENSION XL(Z2)+PRaM(203)FMINI3),CEATI2)

OIMENRSIAN XR(ZI,xCL2b,XE(2V

DIMENSIUN LFLAG(SCO)

€<<<< THE ARRAY SF METAINS THE LAST ITTERATED VALLE 1C
<< CHECK AGAINST THE FRESEMNT CNE — FCLR TRACING MCOES
DIMENSION SPL5C)

INTEGER X

INTEGER L

C=1

FO=4.(5

n=l

SPinI=C. 19781

FDsFC~-C.C5

IFIFC.LT.1L.75) GC TG 5C0

B=SPIn)

60 706 3

B=B¢C.(C1

IF(BeGT(SPI1340e1C)) GG TO 1

L=C

$30%¢  x1(1) IS [FE STAKTING REAL SIN GLESS

$48%2  ANU x1(2) IS THE IMAGINARY SIN GLESS

X1(1)=0 .

X1{2)=-0.01

$88%% STL ANG ST2 ARE ThE INCREMEMTAL VALLES ThE SIMPLEX
88008 USES TC FGRM THE SIMPLEX® ITSELF

STl=g0.C0t

$T2=-C.COL

K=Q -

S08%¢ THE ARRAY *PARM® HCLCS ThE FCINTS THEMSELVES
PARMIL,1)=K1(1)

.
i
s
+
1
3




“

oNnd

OSOOOOOO .

10

15
20
25

30
as

40

41
45

50

- 8] -
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PARM(1,2)=X1(1)¢STL

PARNMLZeL)=XL 2]}

PARM{242)=X112)

PARMLL,3)=X2(1)

PARMI2,3)=X1(24+451¢

COANTINMNLE

00 20 I=1,3

DC 1C J=1,2

X1(J)=FARM(J, 1)

*8¢%%  THE SLURLUTINE IS CALLEC LPCN REFEATEODOLY TC FINC
*999%  THE FUNCTICNAL VALUE CF ThE VARICLS POINTS IN ThE SIMPLEX
CALL FUNCT(XLloFloFLohy&la6)

FMINU{1)=F1

CCATINUE

{1=1

12=1

13=1

0C 30 1=2,3

IF(FFIN(TL)LTLFMINCIN) (1]

CONTINLE

00 35 [=1,2

CENTUL)=0,

DG 45 [=1,3

IF(I.EC.I1} GG TC 45

00 4C u=1,2

CENTUJISCENT(J)+PARN(J.I)

IF (FMINUI2VLGTLFEMINCGINY) G2 TC 41

13=]2 '

12=1

GG TC 45

I3=1

CONTINLE

DG 50 I=1,2

CENTLII=CENT(11/2.0

288 00%%x  THE SCRITER® IS THE CRITERICN LSEC TG CETERMINE
449428808 THE PCINT AT wkICH THE SIMFLEX HAS ITERATEC
*¥s2%08%¢8x (LCSELY ENCUCH 1O wRAY FAS BEEN CALLEC *2€ERG® k.
CRITER=]1,0E~06 L . . . T S 3

- PCLE=Ca o

60

85

$$58538588 THE SIMPLEX ACTUALLY *FALLS LPON® ITSELF

$3933433%8 GR CCLLAFSES = whEN THE GCISTANCE BEInEEMN

$338513388  TRE PGINTS OF ThE SSINELEX' IS < ThE CRITER,

$3$833338S  YCL HMAVE REACMELC A Y¢2ERC**. AOTE THAT THIS

$49399338S  *PZERG'' MAY ANGT BE ICENTICALLY EGULAL TC ©

$18$333858s  IN FACT, IF LT [S APPRCX. ZERC, IT NAY BE CALY

$9$8333558 A LGCAL MINIMUM —— NCT PART CF THE MOGE SIRUCTURE

00 60 I=1,3

PGLE=PCLE+(FMINII)=FMIN{ID))eeg

CCATIALE

PCLE=SCRT(POLE/2.G)

IF(PCLELLE.CRITER) GC TG 16C

DC 65 I=1,2

XREI)=2,%CENT(1)=FARMLI, (1)

XLCI)=xR(1) '

L=L+}

$458558989558333388 REFLECTICN $385988843453383835538 :
LFLAG(L)=1 H
CALL FUNCT(XLoFRFLoRoEL166) ]
IF(FMIN(I2) oGEFRoANDoFR.GELFMIN(IZ)) CC TC 130

L I - Yaura - -
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b 95

100
105

110
115

120
125

130
135

140

145

150
155
156
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LF(FRLTIFNINUIZ)) GC TO 140
lf(leN‘ll)on.fﬂaANCoFR.GI.‘NIN(li’l ¢C 1C 35

DC SC 1=1,2

RCUUI=CaS*PARNI 1, 11)+0.5%CENT (D)

X1ULy=xCAL)

LsL+]

$385888833333938¢¢ CUNTRAGTIGA 1464548884888 ¢8¢883¢
LFLAGIL)=2

CALL FURCTUXLoFCoFL,Ke&L66)

GG 10 145

Lale]) ,
$188848538353348834¢ NC ANEW NMINIFLMN $358$38838883383%%
LFLAGIL =3

DO 1C0 I=1,2

PARF( S 1L )=xRE1)

XCULmaS5%PARM I L1 )+ oSOCENT(T)

Xi(L)sxCll1)

CALL FUNCTUXLFCoFLoKkeE1661)

IF(EMIN(IL)GTFC) GG TC 120

LapLe]

3“3‘333‘3"5‘5555 REPL. PARAYN, §845838435383335838
LFLAG(L)=4

GO 115 1=1,3

00 11C J=1,2

PlRH(J']"U.S‘(PlﬁH(JO!"FJFH(U|X3"

CONTINLE

GO TG ¢

D0 125 [=1,2

X1{I)=xCt )

PARMLULkL)=XCL 1)

FHINLILl)=FC

GG TC 155

€C 135 l=142

XL{I)=XR (1}

PARM{ L 11)=XR(])

FRIN(IL)=FR

GO IC 155

CONTINLE

DC 145 [=],2

XECL)=248XR(I)I=CENT(])

X1{I)=XE(1)

CALL FUNCTIX1oFE(FLoKyEL6€)

LELFMINCI3)LLEL.FE) GG YO 1l¢6

Lal+]l

$348548885383534833$ EXPANSICN §I4188888888888888838
LFLAG(L)=5

B0 15C I=1,2

XL{T13=XE(])

PARMUI L d=XE(CL)

FMIN(L1)=FE

CONTINLE

6C 1C 25

L=i¢}

$E33509838838833398 FAILEC COMNTRACTICA $$38385333838
LFLAG(L =6

GO Y0 13¢

$5888 THE LFLAG ARRAY FAS NCT BEEMN FRINTEC QUT IN ThIS FGRM
§333% CF THE CLIPFLEX RCUTINE IC SAVE 3/C TINE

€<<<<  THIS AGLTINE CHECKS TC SEE IF INITIAL ZERG IS AT CORRECT

fem b

< R




C
»
1] -
c
3 <
2]
c
¢
c
c

<<<C<  STARTING FUINT — AGAIN FCR MCCE TRACING 3>>>)
160 IF(C.NE.L.C) GL VG 161
LF(PARM{L,[3)alToCalB0GRPARP (1413061222200 GC YO 167
we2
SPIn)sPARM(1,13)
MRITE(E,185) (FARM(J,13) d=1e2)
WRETE(6019C) FMIN(I3),KeFC 8
C=Cel
6C 1C 1 .
<€C<<  THIS RCLTINE IS USEC FCR CRECKING TL SEE IF SAME MODE
<<CC<  MAS BEEN FCUNL = IF NGTs IT OISCCLNTS IT ANC TRIES AGAIN
161 CCNTIME
LECPARM(L, 133 6T o (SP{WI¢0CLICRPARMILLI2)LTL(SFINI=0.03))
16C 1C 1€2
WRITE(61185) (PARM(Js131ydnle2)
WRITE(6419C) FRINCI3 0K FC o8
Wahtl
SPUn)=FARM(1,13)
CaCel
6o 10 1
162 WRITE169200) FOoFMIN(I2) B3l PARN{Jy13),J=1,2)
IF(G.EC.1.00 GG TC 2
GG 1G 2
166 1F(Ge£€Qa1.0) GG TC 16§ _
TF(PARM{ L, 130oGT(SP (W1 ¢CeCl)oCR.PARNEL, 130l T (SF()=0,03))
1G0 70 162
WRITE(6¢193) FMIN(IZ),FD B2 (PARNIIs13),ym1,2)
Wil
SPnI=PARM(1,13)
S=Gel
167 IF(G.EC.1.0) GG 1C 2
168 GG 10 1
165 WRITELE,194)
GC TG 160
FCRFAT SECTICA
185 FCRMAT(///% FINAL FARAMETER VALLES - KEAL AND IMAG. PARTS GF SIN®
I7(2E15.61) -
150 FCRMAT(/,* FUNCTICN VALUEZ®,E15.64% -4 -FTER=4, 1T * FC474F6.2y
C! Bx'yELS5.€)

193 FCRMATU(/¢® NC AFTER 3C0 ITER«®4EL1S5«69" = FLACT. VALUE®,

I7% FO3Y 3Fbe2¢® B="9EL15460/9" PARAMe VALLES REACREG=',/4+(2€15.61))
194 FCRMAT(/4* FINCING FIRST FLLE~-NCT CCAVERGENT, CCATENULING?)
169 CCATINME
200 FCRMAT(//* PARAM. VALs NCY WITHIN LIMIYS CF PREVIGUS VAL.',

[/79? FC3? ¢FEu2e® FLACTS VALLZ®4ELS. €5t E2%4£154€697,

1' PARAMETER VALUES=?! J{2EL%.61))

310 CONTINVE
500 SIGP
ENC
SUBRCLTINE FUNCTIX19FLloFCoke®)
SUBRCUTINE FGR NUMERATCR CF FUANG®S REFLECTICN CCEFFICIENT
FCR WATEA/ICE/AIR
400608 LG VALLES FCR ¥S ANC VL LSEC édaapen
INTEGER K

OIMENSIUN X1(2)

COMPLEX AgCoEyGeheGoReSeTeClsANG

CONMPLEX SYMoASY ¢23421¢CCoELGD+OCN

COMPLEX AUM

CCHPLEX Y1,Y3




L

,‘;

PP

gy

10

Ul=xt (1}

U2=xl1(21}

ANGSCPPLX(UL 2D

OENL=}.C2

CEN3I=0.001183

DENP=C.SL7

Vi=l.5

Vix(.34

vE23.4

VS=x1.5

Cl=>(C.CO0Cs1.CCCH
P=3,141562¢%F0/v1
A=(vS/Vvl)®ANG
C={1.C~2.0%(A%32) )neg
EsCSURTUIVL/VEI#e2=(ANGe#2))
GaCSCATIIVI/VS)I#i~(ANGH*22))
He4 COCHIIVS/VI)NQ) S (ANGESZ JsgeG
Q=CSIN(P*EI}

R=CCCS{P*E)

5=LSIMIP*G)

T=CLOS(P*G)

SYNSC IR +Hs( 8]
ASYSCH(ST+hERSS
YIaCSCRT(IVLI/VI)ne2-(ANGH32))
YI=CSSRTIL=-1ANGO2))
23=2C1l3(CEN3/CINPISLE/IYI)
Z1=CL*(DENL/OENP IS (ELYL)
GC=Z1%ReT
GU=2.(C0%(SYMN~{13%C*S))
GC2{CoS58T) +(h2(R)
DOW=GLS(ASY*GC)=(21-23)%CGC
NLMaGL*(ASY-GCIe(21423)9GC
GTI=REAL (NLM)

G8=AIMAGINLM)
FLl=ABS(GTI+AES(GSY

 Ka3Kel

IF(X.LEL30C) 6L IC 10
RETUEMN )

RETURN

END

L U VSN

Ltdidad,




Sample simplex output for mode~trace form. Shown are points that
iterate to a solution to the reflection coefficient, points that
do not converge within a set number of times but give intermediate
values, and points that do not belong to the traced mode but were
given during the course of the iteration for additional informa-

tion.




rFlNAL PARAMETER VALUES = REAL AND IMAG. PARTS CF SIN

Ce3l8II6E (U =Cel4al63GE=CL

FUNCTICN VALUE= 0« 149012E=07 & ITER=. 125 FD= 3.75
8= 0«326462E 00

NC AFTER 3CO ITER. 0.13411CE=06 FUNCTe VALLE
.FO= 3.7C 8= 0.318198E 0GC
PARAMe VALUES REACHEG=

Ce3UB8662E (0 =Le128520E=C1

NC AFTER 30n ITER. 0.894070E=C7 FUNCT. VALUE
FO= 3.65 8= U«308662E 0O
PARAMe VALUES REACKHEU=

04297508E 00 =0.113176E=01

FINAL PARAMETER VALUES = REAL AND IMAG. GF SIN
04284262E 00 +0.55$546E=02

FUNCTION VALUE=  (04286847E=06 § ITER= FO=  3.60
-B=  0e297508E 00 - -

FINAL PARAMETER VALULES = REAL AND IMAG. CF SIN
| Ca268253E LU =G.774238E=C2

FUNCTICN VALUE= 0.186265€~07 % ITER= FD= 3455
B= 0.284263E VUL

FINAL PARAMETER VALUES = REAL AND IMAG. PARTS CF SIN
0.248497€E CO0 =0.563642E~-02

FUNCTICN VALUE=  0.447035E~07 # ITER= 96 FD= 3.50
B=  0.268258E 00

NC AFTER 300 ITER. 0e1755549E~06 = FUNCTe VALUE
FD= 3.45 8= 0.248497E 00 :
PARAM, VALUES REACHED=

.. 06223357E CC =0.3986061E=-02

PARAM, VAL, NOT WITHIN LIMITS OF PREVICGUS VAL. .
FD= 3.40 FUNCT. VALe= 0558754E=-07 8= 0«223357E CO
L PARAMETER VALUES= Ce189763E 00 =0.,231284E~02

TR Y} TV W oL g
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C. Sample simplex ocutput for scan form with indicator 'flags'. De-
scriptions of flags are included in FORTRAN IV program, appendix

) 0 ) A.
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: 00000000000000000000000000
Omoocoecoooooocooooooooamoocooooooooocoooooooocooooooooooocoooooocooccooocoooco
ooooooooocoooooooooooooooooooocoooooooooooooooacooooooooooooooooooooooooooooooo
OOOOQQOQCnocooooooooooooooooooooooooooococoococoooooooooooococooooocoooocoooooa
oooooooocmoooccoooooocooooooooooocoooocooooooooococoocoooocoooooooococoaoccooco
oooooooocoooooooooo—¢N-¢N-NaN-¢N~0u¢~—--o~N¢N—N-~o-_N-m--------m--
-~—---N~N~N—m-—odnam-m~m-—odwuN—n-~o-OHQ—N-~N~N-m—mum-mamnm-m-mumumu

00 36666L1°0 =8 0€e°1 =04 0G1 =3341 # 90~-3919802°0  =3NTIVA NOILINNI

o 00 3%69691°0= 00 360%S€%°0 .
zuwuOmhcdu.odzu024de¢H8mm:a<>aw»m:«aqa sz-u

00 3%69691°0~ 00 30T5SE%°0
T =33HIV 34 S3NIVA °WVEVd
: 00 266669L°0 =6 OE°l =04
ANTIVA *AONA3 = 90~3€%2L22°0  °d43Ll 0001 °i4v IN

“ 00000000000000000000000000
oococooooooooooooooocooooocoooooocoaoooooooooococcocoocoooococcoooooooooccooooc
oooooooocooooocoaoooooocoooooocooQocoooooceooocoocoooooooooooouoooooooococooooo
oooococoomoooocoooooooooooooauoooocoocoooaoooowooooooooooooooooooooooooooooocoo
ooaoosoooocooooooooocoooooooocooooooooooococooboecoooooocooooo~dc-—e-c-a—~—-
-N~m-N--~N~Ndo-~m----N~NquOuNuN~Ndm-—N-~cuN-~N-~—nn-@~o~n-—m-—N—N-
N-m~m~m~m-m—m-m-m-mum~m~N~N~N~0-~o-N~N--N~ﬁ-N~N~N-N-m~m~m~m~m~Mnn-m~m~m~

00 3666651°0 =8 0e°1 =04 281 =¥31Y # L0-311€28L°0 - =3NIWA NOI1INNZ

. 00 3%69691°0= 00 3609SE€%°0
z.muom»%u..e«:._oz«dwz..u,mwo:oumbw:::#z.u
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