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The application of the sequential moderation test to issues associated with
dynamic criteria is discussed.
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Tests of Parallelism in Subgrouping Moderator Analysis and

Sequential Moderation

Subgrouping moderator analysis has been employed extensively in

Industrial/Organizational psychology. This procedure involves typically

(a) the sorting of a heterogenec s sample into more homogeneous subgroups,

where the variable used for sorting purposes is referred to as a moderator

(e.g., male versus female; high, middle, low socioeconomic status), and

(b) comparisons of relationships, based on variables other than the mod-

erator, among the subgroups (Zedeck, 1971). A significant difference in

relationships among the subgroups suggests that the magnitude of any partic-

ular relationship is dependent on the subgroup in which it was calculated.

Given significant differences, it is often said that the moderator "moder-

ated" the relationships.

Another form of moderation is sequential moderation (cf. Weitz, 1966;

Zedeck, 1971). An illustration of sequential moderation is the comparison

of predictor-criterion relationships for the same subjects, given the same

predictor scores and repeated measurements on a criterion. For example, it

might be found that the selection tests that predict job performance six

months after hire are not the same tests as those that predict job perform-

ance twelve months after hire. Results such as these suggest that the mag-

nitude of a predictor-criterion relationship for a particular predictor is

dependent on the time of measurement of the criterion. The moderator in

this illustration is time, although the true moderator may be changes in

organizational demands or abilities used (Smith, 1976), and the analytic

question is whether predictor-criterion relationships change (differentially)

E .... .... i li I I .... ... . f r•i,,m .... . ii
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as a function of time. Sequential moderation has not been employed fre-

quently, although its potential contribution to longitudinal studies of

psychological processes is clearly evident.

The objective of this article is to present analytic procedures for

subgrouping moderator analysis and sequential moderation based on tests

of "parallelism of regressions." With respect to subgrouping moderator

analysis, the question addressed is whether unstandardized regression

weights (b-weights), determined by separate regressions of one or more cri-

teria on one or more predictors in each subgroup, differ significantly among

the subgroups. Procedures are discussed also for multiple comparisons (when

more than two subgroups are involved) and for ascertaining the relative con-

tribution of a predictor to the overall differences in b-weights among the

subgroups. With respect to sequential moderation, a test is presented for

assessing the equality of b-weights over time, given the same subjects, same

predictor scores, and repeated measurements on a criterion variable. Anal-

ytic procedures are discussed separately for subgrouping moderator analysis

and sequential moderation. Empirical illustrations are presented for each

procedure.

Subgrouping Moderator Analysis

Need for New Approaches

A review of recent articles from the job characteristic and role per-

ception literatures illustrates problems associated with subgrouping moder-

ator analytic procedures presently in use.' Figure I displays an analytic

design not unlike many found in these studies/reviews, where A is the moder-

ator variable that defines the subgroups (e.g., urban versus rural background).

In Figure 1, the typical statistical procedure is to compare, separately,

I
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pairwise correlation coefficient (e.g., r vs. r , r vs. r , and
ill 112 121 122

so forth), which in this illustration would result in a series of six univariate

t-tests (three for each criterion). Results of the six tests are then usually

discussed with respect to whether A is a moderator for (a) some predictor-

criterion relationships but not other predictor-criterion relationships in

regard to each criterion, and (b) overall predictor-criterion relationships

for some criteria but not others (e.g., A moderates X, Y relationships for

Y but not Y ). In cases where more than two subgroups are involved, the
1 2

approaches have been either to contrast only two subgroups, typically extreme

subgroups (e.g., top vs. bottom quartiles), or to contrast all possible pairs

of subgroups. In either case, the analysis is again based on a series of

univariate t-tests.
2

Insert Figure 1 about here

Problems with the analytic procedures described above include, but are

not necessarily limited to, the following.

(1) It has been well-documented that comparisons of correlation coeffi-

cients across independent subgroups is a potentially hazardous procedure if

standard deviations on the variables differ among subgroups (cf. Blalock, 1964;

Gulliksen & Wilks, 1950; Linn, 1978; Tukey, 1964). The preferred approach is

to employ b-weights (cf. Linn, 1978; Tukey, 1964). However, when multiple,

correlated predictors are involved, a simple conversion of r-coefficients to

bivariate b-weights will not suffice because the predictors do not operate

independently. The same point applies to criteria if the criteria are corre-

lated. Failure to consider relationships among predictors and criteria not

only may lead to overestimation/underestimation of the extent of moderator
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effects, but also fails to capitalize on the increased statistical power

that is potentially achievable by employing multivariate procedures (Winer,

1971).

(2) It is straightforward that a series of univariate t-tests compounds

the probability of making a Type I error, especially given that the same

criterion data are employed in more than one test.

(3) Comparisons based on extreme subgroups (e.g., high vs. low quar-

tiles on A) may suffer not only from the two problems above, but also from a

drop in statistical power resulting from using only part of the overall

sample (cf. Schmidt & Hunter, 1978), as well as the inability to generalize

findings to all the subpopulations.

(4) Comparisons of all possible combinations of subgroups may be

vulnerable to problems discussed in points (1) through (3) and may further

compound the Type I error as a result of the increased number of t-tests

conducted.

In summary, since the problems cited are representative of common practice

in the job characteristic and role perception literatures [as well as in other

literatures such as differential validity (cf. Katzell & Dyer, 1977)], it

would not be unreasonable to expect that these literatures contain both

Type I and Type II errors. If anything, we have probably understated the case

inasmuch as conclusions are often drawn regarding the efficacy of different

moderators, again without the benefit of significance tests.

Without belaboring these issues further, corrective actions for the four

problems discussed above are proposed. The corrective actions consist of

analytic procedures in which controls are effected for Type I errors, corre-

lations among predictors (and criteria) are taken into account, statistical
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power is believed to be increased, and a basis is provided for contrasting

two or more subgroups simultaneously.

Proposed Analytic Procedures

Univariate tests. An illustration of the first model to be addressed is

presented in Figure 2. In this figure, there are K independent subgroups

(i.e.,A defines K independent subgroups, which is represented statistically

by k 1, ... , K), J predictors ( 1 = , ... , J), and one criterion (Y1 ).

The bljk are are b-weights, determined by separate multiple regressions of

YI on the J predictors in each of the subgroups. (Note that the use of mul-

tiple regression takes into account the covariances among the X. in each

-i

subgroup). The question to be asked is whether a significant difference

exists among the b-weights across the K subgroups. The null hypothesis is:

H0 : rI  =r ... = r K , where eaeh Fk is a column vector of subpopu-

lation b-weights resulting from the regression of Y on the X.

in subpopulation k.

Insert Figure 2 about here

The logic of the test is that if H0 cannot be rejected, then a common

set of b-weights can be applied to all K subgroups without affecting signi-

ficantly the pooled residual sum of squares for predicting Yl,as compared

to the pooled residual sum of squares obtained by determining the b-weights

uniquely for each subgroup (Tim, 1975). Consequently, the significance

test can be viewed as (a) a test of differences between B and uniquely de-c

termined Bk, where B is an (estimated) vector of b-weights common to all

ko ,
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subgroups (. ) and the Bk are estimates of the ; or (b) the degree to

which the pooled residual sum of squares is increased bv using a common

regression equation to predict YI in all subgroups versus employing unique

regression equations for each subgroup. If the significance test leads to

rejection of the null hypothesis, then a common B should not be appliedC

in all K subgroups. This implies directly that not all of the 'k are equal,

which in turn suggests that A may be regarded as a moderator, where moder-

ation is indicated by unequal b-weight vectors (the question of intercepts

is addressed later in this article).

The required significance test is presented in many advanced statistical

texts as a test of parallelism of regression slopes, planes, or hyperplanes;

the term "heterogeneous regression" is also employed [cf. Finr (1974, pp.377-

378); Rao (1965, pp.237-240); Timm (1975, pp.331-347); Velicer (1972);Williams

3
(1959, chapter 8)] That is, the null hypothesis, 7 = F = .- = FK is

k K

tested by ascertaining whether the sample estimates of the-7 k , the Bk , are

parallel (across subgroups). The test is predicated on determining whether

one B can be used in place of the separate Bk-  as discussed above. Givenc

the rather extensive treatments of the test in several of the references (see

especially Timm), as well as the fact that the test is the same as that em-

ployed in analysis of covariance to test the assumption of common regression

slopes (cf. Tatsuoka, 1971, pp.40-60), only the significance test itself is

presented. The form of the test we have employed is presented in Timm

(1975, p.335), and, for sample data, is as follows:

E (B~ B) S /J (K-1)

F = (1)

E (S - B SS B) / (N - J K -K)
k YYk - Xk
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where:

Bk is a (column) vector of unique b-weights determined by multiple regression

in subgroup k (primes connote the transpose);

S is a column vector of sum of cross-products between y and the x. in

subgroup k (lower-case y and x represent deviation scores);

Syyk is the sum of squares of y in subgroup k;

SS is the sum of squares and cross-products (SSCP) matrix of the x.

' " predictors in subgroup k;
-1

B is a (column) vector of common b-weights, obtained by (2 SSk) (2 S );
C k xx k xYk

and

N is the total number of subjects across all subgroups; K is the total

number of subgroups, and J is the number of predictors.

Prior to division by degrees of freedom, the numerator of Equation 1

indicates the extent to which the pooled residual sum of squares is increased

by employing B for all subgroups rather than the unique Bk for each subgroup.

The denominator indicates the pooled residual sum of squares resulting from

using the unique Bk in each subgroup. The question, therefore, is whether

error in the prediction of Y based on the X. is increased significantly by

employing Bc rather than the separate Bk, in relation to the error made by

using only the Bk . The F-test has J(K-l) and (N-JK-K) degrees of freedom,

and, to employ the test, it is assumed that the residuals (errors) are nor-

mally distributed in the subpopulations. As noted above, a significant F-test
indicates that not all of the rk are equal, and further suggests that A

moderates the X , Y relationships.

If the F-test presented in Equation I is significant, then it may be of

interest to ascertain whether a particular predictor contributed significantly
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to overall moderation among the subgroups. For example, review of the

b-weights might indicate that predictor X in Figure 2 w is a major contrib-

utor to overall moderation. Consequently, the investigator may wish to

compare the b-weights for X2 separately. The null hypothesis is: H02I
121 = 1 2 Y 2k y , where the Y are subpopulation para-121_ 122 12 12K 12k

meters, estimated by the b subgroup weights. A significance test for a
12k

"general" predictor, X , presented by Williams (1959, p.13 2 ), is as follows:

- 2
S[ (b -b..) / S" I / (K-l)
k 'I xxk (2)

YZ

where:

the b.. are the separate b-weights for criterion Y. and predictor X. acrossi-k _ _

the subgroups (based on the regressions of Y. on all X. in each subgroup).

b is the weighted mean of the b weights, determined by

E(bij Sj j ) (E I/S j j )
k i k x k k xxk

44 -1

Sji is the II diagonal element in SS ; and
x XXk

is the residual mean square presented in the denominator of Equation 1.

The F-test has (K-l) and (N - JK - K) degrees of freedom.

Of additional interest might be post hoc, multiple comparisons of spec-

ific subgroups. For example, suppose K = 4, and following a significant

F-test based on Equation 1 and review of the b-weights in each subgroup,

it is decided that differences in the b-weights for the A and A subgroups1 4

were primarily responsible for the overall differences among the four sub-

groups. An F-test for the difference between the B and B sample b-weight

vectors follows, in part, the procedures underlying the development of
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Equation 1. That is, the numerator has the following form:

B B ) S + (B4  B ) (3)c1 4  XY c14 xY 4

which has J degrees of freedom. B in Equation 3 is a vector of common-- C1 4

b-weights for subgroups A1 and A4, and is obtained by the equation given

for B ; only here k assumes values of I and 4 only. Fo."iwing the generalC

logic of multiple comparison tests, the denominator fo Lesting the hypoth-

esis that rI and F4 are equal is the same as that for Equation 1 (with the

same degrees of freedom).

Of concern at this point is that three tests of significance have been

described, two of which may involve more than one test (i.e., Equations 2

and 3). Corrections for the possibility of compounding Type I errors are

required. In this respect, rationale presented by Specht and Warren (1976,

p.57, fn.2) regarding comparisons of structural equations across subgroups

is recommended. This rationale consists of a sequential reduction in the

alpha levels for different types of significance tests. Applying this logic

to the present discussion suggests that the alpha level for the overall

test of parallelism might be set at .05 (or whatever the investigation

deems appropriate), the alpha level for the test of a general predictor

(Equation 2) set at .025, and the alpha level for the multiple comparison

test(s) set at.Ol(the order of the latter two tests is arbitrary). In

addition, with respect to the multiple comparison tests, it is advisable

to adjust further the alpha level for each test in order to insure that the

alpha level for the set of tests does not exceed a predetermined level (e.g.,

< .01). In this condition, the investigator may wish to employ the logic

of error rates (e.g., Winer, 1971) to set the alpha level for each multiple

comparison test. Similar logic applies to more than one test based on
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Equation 2 inasmuch as the identification of one or more general predictors

requires an a posteriori review of results.

Multivariate test. The presentation thus far has addressed only one

criterion. It is possible to include more than one criterion in the test

of parallelism for independent data sets, in which case the hypothesis to

be tested is that matrices of unstandardized regression weights are the same

for all K subgroups. That is, the null hypothesis if F, = - = =

rK , where the Fk are J by I ubpopulation matrices of unstandardized re-

gression weights. In the sample estimates nf the Tk ) the Bk , each column

of each matrix represents the b-weights for the regression of a particular

Y. i = 1, ... , I criteria) on the X. predictors in the kth subgroup (the1 - - _

X. are the same for each criterion). The analog of Equation 1 for the over-

all test of parallelism for I criteria across K subgroups is as follows

(cf. Timm, 1975, p.343).

Q(SS B 'SSxxk Bk )
E k YYk k Xkk

- = (4)

(SS Bc SS B )

where:

SS is the SSCP matrix of the yi criteria in subgroup k;

Bk is a J x I matrix of b-weights;

SS is the SSCP matrix of the x. predictors in subgroup k; and

Bc is a matrix of common b-weights (one column for each criterion), obtained

by (E SS ) (E SS ), were SS is the x, y sum of cross-products
- x--- Xtk k _'k XYk

matrix for subgroup k.

The numerator in Equation 4 is the determinant of an error SSCP matrix,

designated QE" QE is an estimate of the pooled residuals for the criteria
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after each Y. is regressed on the X. in each of K subgroups. The denomina-

tor of Equation 4 is the determinant of the sum of QE and a hypothesis SSCP

matrix. The sum is designated QC , and is equivalent to an estimate of the

pooled residuals in the criteria after a conmmon set of b-weights are determined

for each Yi across the K subgroups (the b-weights for a particular Y are

the same across the K subgroups, but the b-weights for different Yi may be

different). Division of JQJby IJQJ provides Wilks' lambacrtio

(A), which can be tested by the U distribution with (1, J (K-l), N - JK - K)

degrees of freedom (other multivariate test criteria may also be employed).

The required assumption is that the criterion variables have an underlying

multivariate normal distribution (in the subpopulations).

If a significant A is obtained, the investigator may wish to conduct

tests on one or more of the separate Yi. using the procedures discussed in

Equations 1 through 3. This requires additional concern for Type I errors.

Following prior logic, a sequential decrease in alpha levels may be desirable,

beginning with .05 for the overall multivariate test, and progressively

smaller alpha levels for each succeeding test or set of tests.

Empirical illustration. Data were created and used to provide examples

of the tests in Equations 1 through 4. Created data were employed to provide

investigators an opportunity to check computer programs against a full set of

empirical data.4 The created data are presented in Table 1, and consist of

three subgroups, two criteria, and two predictors, with an n of 15 in each

subgroup (N= n = 45). Descriptive statistics are presented at the bottom

of Table 1, where a review of the correlation coefficients and multiple cor-

relations displays the patterns used to create the data. With respect to

the first criterion (Y1 ), the salient features are (a) relatively large pre-

dictor-criterion relationships in subgroups 1 and 3, and comparatively lower

- - - .
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predictor-criterion relationships in subgroup 2; and (b) a disordinal

interaction between subgroups I and 3, where the predictor-criterion rela-

tionships are positive in subgroup 1 and negative in subgroup 3. In regard

to the second criterion (Y2), the pattern of relationships is the same as

that for YI; the difference occurs in that the predictor-criterion rela-

tionships are smaller in magnitude for Y9 These patterns were chosen be-

cause they ensured (a) at least moderate, although not necessarily significant,

correlations among the predictors and among the criteria in most cases, from

which multivariate analysis draws its power; and (b) rejection of the null

hypothesis of parallelism for tests involving at least the Y criterion,

which is desirable for an illustration. Moreover, correlations of the mag-

nitudes presented in Table 1 are not unrealistic given ns of 15, although

the disordinal interactions (subgroup 1 versus subgroup 3) are admittedly

somewhat illusional, especially for Y

Insert Table 1 about here

Statistical information required to conduct the tests in Equations 1

through 4 is shown in Table 2. In effect, the information in this table is

required for some aspect of the multivariate test of parallelism (Equation 4).

However, examination of selected portions of the matrices also provides most

of the data for the univariate tests. For example, the first column of the

SS, Bk , and B matrices contains data required to conduct the univariate

test of parallelism for the regression of Y on X and X2 . The only other

information required is the SS matrices and the upper-left portions of

the SS matrices (i.e., the S s), which are provided in the table, and

the degrees of freedom, which are based on J = 2, K = 3, and N = 45 (1 = 2

for the multivariate test). Information not included in this table can be
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computed directly from the data presented (e.g., pooled within-group SSCP

matrices). Finally, it is important to note that B in Table 2 is identical
C

for each subgroup, which connotes that the same sets of weights are applied

in each subgroup.

Insert Table 2 about here

Illustrative results of the tests presented in Equations 1 through 4 are

reported in Table 3. Section I of this table displays the results of the

multivariate test of parallelism for the two criteria,based on the rationale

discussed in the development of Equation 4. The null hypothesis is that the

three subpopulation (unique) b-weight matrices, whose estimates are seen by

the three Bk in Table 2, are equal; that is P = r r Equation 4 was1 2 3
employed to estimate the two SSCP matrices, Qand , the determinant

values of which are shown in Table 3. Division of I Q E i by I QC I resulted

in a A equal to .63, significant at the .05 level as tested by the U distri-

bution with (2, 4, 36) degrees of freedom. The null hypothesis of equal b-

weight matrices was rejected; however, more in-depth analyses are needed to

ascertain the basis for rejection.

Insert Table 3 about here

Separate tests of parallelism for each criterion, across the three sub-

groups, are exhibited in section II of Table 3. The null hypothesis for each

test was r r - r (the second subscript indicates subgroup). For

il i2 i3

example, the test for criterion Y (il) was based on a test of the equality

i

of the first column of the Bk matrices in Table 2, which are the sample
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estimates of the T . The actual test employed is given in Equation 1, where

each of the columns above was compared to column 1 of the B matrices inC

Table 2. As shown in Table 3, the null hypothesis was rejected for Y but
I

not Y This indicated that the b-weight vectors were nonparallel across the
2

three subgroups for criterion Y only. Based on discussions of the need to
1

protect against Type I error, the alpha level for the two F-tests was set at

.025.

Review of the first column of each Bk  matrix in Table 2 suggested that

the X predictor contributed to the rejection of the hypothesis of parallelism
1

for criterion Y . To test this hypothesis, Equation 2 was employed, the null
1

hypothesis being y .1 = y2= Y (i = Y = X ). The null hypothesis
I- i1

was rejected, as shown in section III of Table 3. The alpha level for this

test was set at .01 based on the logic of sequential reduction in alpha levels.

No further correction for error rates was initiated, based on Fisher's least

significant difference approach (Winer, 1971) and two possible tests for YI.

The final question addressed here was a post hoc comparision between

subgroup 1 and subgroup 3 based on the unique b-weight vectors for Y
1

Equation 3 was employed to conduct the test, and, as presented in section IV

of Table 3, the null hypothesis that the b-weight vectors were equal was

rejected. The alpha level employed for this test was .0017; a per experiment

alpha level of .005 was protected for three possible comparisons using Fisher's

least significant difference approach (less conservative tests may be

desired).
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Sequential Moderation

The issue addressed in this section concerns a test of the equality

of b-weights when the predictors are measured at a base time period (T)
0

and repeated measurements are taken later on the same criterion variable

at times T through T , where s is the subscript for the time of measure-
1 s

meat on the criterion (s = 1 ... S). The possibility that the b-weights

might change differentially over time is illustrated by studies of the

dynamic nature of criteria (Fleishman & Fruchter, 1960; Fleishman & Hempel,

1954; Ghiselli, 1956; Ghiselli & Haire, 1960; Inn, Hulin, & Tucker, 1972;

MacKinney, 1967; Smith, 1976). As reviewed by MacKinney (1967), the nature

of the requirements for job performance might change over time. These changes

may be a function of changes in envirornental presses, the skills required

to perform the job, types of training received, and so forth. It is reason-

able to expect that if the requirements for job performance change, then the

rank-order of.individuals on a job performance criterion, such as quality of

work, will change over repeated measurements (at different times) on this

criterion. It is also reasonable to expect that predictors of job performance,

such as selection tests, will exhibit different relationships with job per-

formance as a function of when job performance is measured.

A model for the type of problem discussed above is shown in Figure 3,

which presents b-weight vectors (columns) for the separate regressions of

one criterion variable on the same J predictors (e.g., selection tests) on

S different occasions. The J predictors are measured at a base period only

(T ), repeated measurements are taken on the criterion at times 1 through S,
0

thus providing i separate Y on X multiple regressions. The same sample

of subjects is employed in each of the S regressions. The question is

whether a significant difference exists among'the b-weight vectors across
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the S different time periods. A significant difference in the b-weight

vectors suggests that predictor-criterion relationships are moderated by

time, which, as noted earlier, is indicative of changes in rank-order on

the criterion, and may connote changes in such things as skill requirements.

Insert Figure 3 about here

The null hypothesis is r = = P = = , where it is understood
1 2 s S

that each r refers to an unstandardized regression weight vector for the

S

same criterion variable (i.e., same scale of measurement) assessed at

different points in time. The approaches presented for tests of independent

sets of data will not suffice here inasmuch as the data, and thus the b-weight

vectors, are likely correlated. Specifically, the predictor data are identical

for each criterion, and the criteria are presumably correlated over time,

although these correlations need not be of large magnitudes. The correlations

among the b-weight vectors must be taken into account in the same sense that

correlation among means must be considered in correlated t-tests. In fact,

we employed the logic of Hotelling's T
2 for correlated data and repeated

measures ANOVA to develop the test presented below. To our knowledge, this

test has not been presented previously, although we benefitted from treat-

ments of tests for correlated data presented by Carter (1949), Kullback and

Rosenblatt (1957), and Williams (1959), and from derivations pertaining to

the analysis of multiple-cue.judgment tasks using the "Lens Model" approach

(Castellan, 1973). 5

The discussion of determining an analytic procedure begins with Hotelling's

T2 statistic for correlated data, which may be viewed as comprising a hypothesis

matrix, Q , which takes the form:
H
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Q -( Y )(Y -Y (5)
H 1 2 1 2

and an error matrix, Q , which takes the form:

E E
E (2 1 2

YI and Y2 are vectors of means based on repeated measurements on a set of

Y variables for the same subjects, V indicates variance, and C indicates

covariance.

if Y andY2 are replaced by b-weight vectors resulting from the regres-

sions of the Y on the same X. for the same subjects, at times I and

2 (s = 1, 2), QH in Equation 5 is transformed into

QH= (B1 - B2) (B1 - B2) (7)

while QE in Equation 6 is

QE V B I+ 2 - 2C B1B2 8

Note that the Y must be based on the same scale in Equations 7 and 8 in

order for the comparison of b-weights to be meaningful. It is not necessary,

however, for the Y to have the same means or same standard deviations across5

the S time periods.

We wish now to employ the approach of using common regression coeffi-

cients as the basis for testing differences among the correlated b-weight

vectors. This provides the opportunity to extend the analytic design to

accommodate more than two b-weight vectors (i.e., more than two measurements

on the criterion). The multivariate design employs QH to represent a hypoth-

esis SSCP matrix, and QE to represent a residual SSCP matrix.

Equation 7 was employed as a starting point to design QH ' but using the

difference between each b-weight vector and a common b-weight vector rather

than calculating the difference between two b-weight vectors directly. With
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two b-weigh7 vectors, Q is as follows:

QH = (B1 - Bc ) (B 1 B gC + (B2 - B ) (B2 B B

= E (B - Be) (B - Bc) (9)
S . . .

where B is a b-weight vector for criterion Y measured at time s (s = 1,2),

B is a vector of b-weights common to Y1 and Y., and the order of the QH

matrix is J by J. Using logic similar to that presented for the tests of

independent data, if a common B can be applied for predicting the separatec

criterion measurements without significantly increasing the residuals, then

the uniquely determined b-weight vectors for each Y are not significantly-- S

different.

A straightforward extension of Equation 9 allows one to include more

than two measurements on the criterion in the development of Q TH That is,

s may assume values beyond 2. The key question now is how to determine B

for two or more repeated measurements on Y. For illustrative purposes,

S is set equal to 3 to demonstrate the calculation of B .-- C

The determination of B is predicated on the inverse of the pooledc

(across time) X. variance-covariance (VC) matrices, postmultiplied by the__1

pooled X. , X covariance vectors. In matrix form, this is

where VC is the X variance-covariance matrix associated with the criter-

ion measured at time s, and CXY is the J by 1, X. , Y s covariance vector

for the criterion measured at time s. However, the VC matrices are
s

identical, which, with minor manipulation and S = 3, provides (the subscript

for VC is deleted):
s
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BC = 1/3 C + VC C + VC C I(x,x xy 2  x

= 1/3 (B1 + B2 + B 3)

or, in general terms

B 1/S (E Bs) (11)_£ -

In other words, the common coefficient for each X is simply the average

of the separate regression coefficients associated with that X. for each

time period.

Equation 8 provided the base for calculating the residual SSCP

matrix QE * In general form, where s may assume values greater than 2,

Equation 8 generalizes to the following:

QE = VB - 2 E CBB (for s <) (12)

The equation above is expanded below, where use is made of derivations

presented by Finn (1974) and Castellan (1973). The expansion reflects

simplifications resulting from the fact that the predictor variance-

covariance matrices (VC xx) and SSCP matrices (SS xx) are identical at
s s

each time of measurement, which also implies, for example, that

VCxx = VC x , where s < p (i.e., p = s + 1, ... S, which applies

only to the second term on the right-side of Equation 12). Moreover,

these identities allowed deletion of the subscripts for the predictor

variance-covariance and SSCP matrices. The expansion is as follows.

VB = (1 - R 2 ) V SS -1  (13)
s YS Ys xx

where R 2 is the squared multiple correlation resulting from the
Ys

regression of Y on the X at time s, and V represents the variance of

the Y criterion measured at time s.
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Cs C - B VCxB SSx (s < p) (14)

where C represents the covariance between repeated measures on the

criterion, with s < p , and B and B are b-weight vectors for the

regressions of Y on the X. at times s and p.

Based on Equations 13 and 14, QE may now be viewed as follows.

Q- R 2) V SS - 2 Z C - B VC B

(- 2)V -2 Z - B /VC B "]SS 1 (15)
L_ 5  J(_

QE in Equation 15 is of order J by J.

A multivariate significance test has the following form:

A IA-__ (16)

Q + Q

which follows the U distribution with [ S, J (S-1), (n-i)(S-1) - S J]

degrees of freedom, given that the values on the variables were sampled

from an underlying, joint multivariate normal distribution.

A significant A indicates that the b-weight vectors for the X, differ

significantly for repeated measurements on Y over S time periods. Given a

significant A, inspection of each b-weight vector may show that certain pre-

dictors have significant relationships with the criterion at one time period,

while other predictors have significant relationships with Y at a different

time period. These results would be consistent with the logic of dynamic

criteria and suggest sequential moderation. However, a significant A might

also reflect, in part, various statistical inadequacies and artifacts. For

LI
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example, the predictors may have differential rates of stability over time,

where the more stable predictors would have a greater likelihood of being

related to the criterion as the time interval between predictor ind criterion

measurements increased. Moreover, criterion measurements at each point in

time may not be equally reliable, which could lead to spurious differences in

the b-weight vectors. Thus, one must be careful when interpreting the results

provided by Equation 16, which is to say that consideration should be given

to both substantive issues and potential statistical bias.

Empirical illustration. Created data were employed to simulate a

sequential moderation design and to illustrate the use of Equation 16. The

design was similar to Figure 3, although more austere, and included two

predictors (X1, X2) measured at a base period (TO -- e.g., two selection

tests), and one criterion (Y s), on which repeated measurements were taken at

T and T2  (i.e., s - 1,2). The analytic question is whether the b-weights

for the Y1 on X and X2 regression differ significantly from the b-weights

for the Y2 on XI and X2 regression; the null hypothesis is r1 = 2'

The created data (n - 30) are presented in Table 4. Means, standard

deviations, and correlations among the variables are presented in section I of

Table 5. The correlations among the variables reflect the simulated design,

where (a) X1 and X2 were not correlated significantly, (b) Y1 and Y2 had a

significant but moderate correlation (which allowed for changes in rank-order

on the criterion over time), and (c) X had a high positive relationship

with Y and a comparatively lower relationship with Y 2 whereas X2 had a

high positive relationship with Y2 and a comparatively lower relationship

with Y1 " These data reflect a sequential moderation design wherein both

the criterion and the salience of a predictor change as a function of time,
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which in turn suggest that the Y on X regression planes for T1 and T2

will be unequal (i.e., nonparallel).

Insert Tables 4 and 5 about here

Statistical information required to conduct some aspects of the test

of parallelism presented in Equation 16 is displayed in section II of

Table 5. It is important to note that the VCxx and SS matrices are

the same for T1 and T2 (i.e., the same predictor scores are employed in

both time periods), the (unique) b-weight vectors (B1 and B2) imply non-

parallelism, and the vector of common b-weights (B ) is based on the

average of the B and B2 vectors (see Equation 11). (Exact replication

of some values is not possible due to round-off error.)

The results of the test of parallelism are shown in section III of

Table 5. Equation 15 was used to estimate QE and Equation 9 was em-

ployed to estimate QH * Division of QE by + Q. provided a

Sof .04 (2 < .01), which indicated rejection of the null hypothesis of

parallelism. Thus, the results implied that the relationships between

the criterion and the two predictors were a function of the time of

measurement on the criterion: that is, the Y on X regressions were

sequentially moderated.

Discussion

Analytic procedures have been presented which cast subgrouping moderator

analysis and sequential moderation in the roles of tests of parallelism

of regression slopes, planes, and hyperplanes. With respect to subgrouping

moderator analysis, when (separate) regression equations are to be compared

across independent subgroups for one or more criteria, the proposed methods
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provide a basis for (a) comparing multiple subgroups and multiple predictors

simultaneously, and (b) increasing statistical power, in relation to separate

comparisons of each predictor-criterion relationship, by taking into consid-

eration covariances among the variables, although this statement is qualified

below. Procedures for more in-depth analyses for a particular criterion

included a test to identify a general or salient predictor (i.e., a predictor

which led to the rejection of parallelism) and a post hoc multiple comparison

test for comparing the regression equations of two subgroups. Methods for pro-

tecting against Type I errors were also presented, and involved sequential

reduction in alpha levels and the use of error rates. It is noteworthy that

these methods might result in potentially severe losses of power for tests con-

ducted in the later phases of an analysis (e.g., multiple comparison tests),

especially in multivariate designs involving three or more subgroups. In

general, this is the price one must pay for "data-snooping", although the

methods employed in this paper were conservative and other investigators may

wish to use alternative procedures.

It is important to note that the usual caveats associated with sub-

grouping moderator analysis apply also to the analyses discussed here. The

moderator should be uncorrelated, or at least have very low correlations,

with the predictors and criteria; the reliabilities of all variables should

be within acceptable limits and highly similar across different subgroups;

relationships within subgroups should be linear; differences among re-

gressions should be of practical as well as statistical significance, espec-

ially if large samples are employed, although the subgroup sample sizes

should ii any case be of sufficient size to provide meaningful power for the

tests; and cross-validation of results is strongly recommended (Abrahams &

Alf, 1972; Guion, 1976; Linn, 1978; Schmidt & Hunter, 1977, 1978; Schmidt

et al., 1976; Zedeck, 1971). Problems associated with differential range
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restriction across subgroups is generally not a problem inasmuch as unstand-

ardized regression weights are employed.

It should also be mentioned that the usual caveats apply regarding

the use of multiple regression (cf. Cohen & Cohen, 1975). Of particular

concern is avoidance of problems resulting from multicollinearity, namely

the "bouncing" regression weight problem. Moreover, although the subgroup

sample sizes may vary, large differences in sample sizes are likely to

result in the same problem associated with comparisons of means, namely a

greater probability of committing a Type II error.

The caveats above generally apply to the test for sequential moderation,

although the same sample of subjects is required to conduct this test. The

sequential moderation test was designed to ascertain whether the regressions

of a criterion on a set of predictors could be considered nonparallel for

repeated measurements on the criterion. It is noteworthy that this test

does not provide a basis for causal inference; other methods are required

for this purpose. Nevertheless, descriptive studies of changes in predictor-

criterion relationships over time are important, especially in relation to

the dynamic nature of criteria and long-range test validity. It is also

important to reiterate the point that differences in relationships over time

may in part be due to statistical inadequacies and artifacts, such as differ-

ential stabilities among the predictors or differences in criterion reliabil-

ities at different times of measurement. Careful consideration should -le

given to both short-term reliabilities and long-term stabilities in tests of

sequential moderation.

In conclusion, the analytic procedures presented here do not exhaust

the tests that might be conducted in subgrouping or sequential moderator anal-

ysis. For example, tests for differences in intercepts were not addressed.



Moderator

26

Tests for differences in intercepts are available in Timm (1975) for the

overall tests on independent subgroups (analogues of Equations 1 and 4),

and with minor extension the logic can be applied to the multiple comparison

test (Equation 3). Other tests that might be of interest include (a) planned

comparisons for subgrouping moderator analysis, (b) tests of intercepts,

post hoc multiple comparisons, and planned comparisons for the sequential mod-

eration designs, (c) tests involving multiple criteria in sequential mod-

eration designs, and (d) tests which contrast the efficacy of different mod-

erators ini both subgrouping and sequential moderator analyses. Additional

work is required to develop these tests, although James, Hater, and Jones

(Note 1) have proposed a planned comparison test for subgrouping moderator

analysis.

iI
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1

The articles reviewed were as follows (a) job characteristics (Brief & Aldag,

1975; Dunham, 1977; Hackman & Lawler, 1971; Hackman & Oldham, 1976; Oldham,

Hackman, & Pearce, 1976; Sims & Szilagyi, 1976; Steers & Spencer, 1977; Wanous,

1974), and (b) role perceptions (Beehr, 1976; Beehr, Walsh, & Taber, 1976;

Brief & Aldag, 1976; Johnston & Stinson, 1975; Larocco & Jones, 1978; Lyons,

1971; Schuler, 1975; Tosi, 1971).

2
An exception is a study by Stone, Mowday, and Porter (1977), which employed

a chi-square test to assess the equality of three correlation coefficients

provided by three subgroups.

3
See also articles by Malgady and Huck (1978), McLaughlin (1975), and Werts,

Rock, Linn, and Joreskog (1976).
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'4

Our programs, which are written in APL and available from the authors, were

checked against data presented in Timm (1975). These data were not used

here because only two subgroups were employed, and it was our desire to

illustrate the procedures with more than two subgroups.

5

The authors are indebted to Michael K. Lindell for pointing out the

relevance of the "Lens Model" approach.

-------------------------------------------------------
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Table I

Illustrative Data and Descriptive Statistics for Three Subgroups

Two Criteria and Two Predictors

Subgroups, Data. and Statistics

Subgroup 1 Subgroup 2 Subgroup 3

Subjects X1  K2  Y! Y2 X1 X, YJ Y. M X Y, Y

1 1 2 1 13 1 1 5 4 2 I

2 1 4 2 4 1 . 4 5 2 2 4

3 2 4 1 1 3 1 1 2 1

4 2 3 2 3 2 3 5 5 4 3 2 3

5 2 2 3 3 2 2 3 4 4 4 3 4

6 3 2 1 4 3 2 4 5 3 4 1 4

7 3 1 2 1 3 1 1 1 3 5 2 1

8 3 3 3 3 3 3 1 5 3 3 3 3

9 3 3 4 5 3 4 5 5 3 3 4 5

10 4 2 3 5 4 5 5 2 4 3 5

11 4 4 4 4 4 - 2 2 3 2 4 4

12 4 4 5 5 4 4 5 5 2 2 5 5

13 5 3 4 5 5 5 5 5 1 2 4 5

14 5 5 4 4 5 5 4 1 1 4 4

15 5 4 5 4 5 4 4 1 2 5 4

Statistics

M 3.13 3.07 2.93 3.47 3.20 3.13 3.33 3.73 2.93 2.87 3.00 3.53

SD 1.36 1.10 1.39 1.46 1.32 1.06 1.68 1.62 1.33 1.13 1.31 1.46

ry .33 .29 .37
12

r .69* .83** .64*
YyYI2

r .76* .47 .32 .13 -.69* -.48x Yz

r .58* .34 .26 .02 -.53* -.35

R a .80* .60 .33 .27 .74* .55
Yi

Multiple correlation based on the regression of each criterion on two predictors in each subgroup.

.05
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Table 2

Statistical Information Required for Multivariate and Univariate

Tests of Parallelism on Three Independent Subgroups

Subgroups

Statistics Order Subgroup 1 Subgroup 2 Subgroup 3

SS JxJ 5.73 6.8 4.40 5.60 24.

L 6.87 16.93 [5.60 15.7 7.87 17.73

Ss JxJ .04 -. 02 .04 -. 01 .05 -.02

4-.02 .0 -.02 0 .02 .0

SSyy k  Ixi 6.93 19.4 9.33 30.3 24.00 17.0
19.47 29.73 0.33 36.9 17.00 29.71

SS JxI 20.13 16.0 0.00 7.80 -17.00-

L: 0.07 7.53] L3.33 .5 LO.O0 -7.93J

B k JXI F 70 .5 39 .3 5][ .22
.31  .2 .07 -.0 -.30 -.2

JxI 18 .14 18 .14 18 .1

.00 -.05] .00 05] L 0 -.0
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Table 3

Results of Tests of Parallelism, a General Predictor, and a Multiple

Comparison for Independent Subgroups

I. Test of Parallelism across Three Subgroups Based on Two Criteria

Source-Residual Determinant Value A df (U-test)

QE 2592.66 .63 (2,4, 36)

QC 4121.07

Il. Tests of Parallelism for Each of Two Criteria, Across Three Subgroups

Criterion

Degrees of Freedom Y Y

Common Weights 4 4

Unique Weights 36 Th

Mean Square-Residual

Common Weights 8.02 5.29

Unique Weights 1.55 2.05

F 5.17** 2.58

III. Test to Ascertain if predictor X1 Contributed to Nonparallelism for the Y! Criterion

Source-Residual df MS F

Weighted Mean 2 14.57 9.66

Unique Weights 36 1.51

IV. Comparison of Subgroup 1 and Subgroup 3 Based on b-weights for the Yj Criterion

Source-Residual d f MS F

Common Weights Based on Two Groups 2 15.00 9.66

Unique Weights 36 1.55

Note. The p-values are as follows: * .05..* .025, * .01, * .0017.
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I1lustrative Data for One Sample. Two Predictors,

and Two Repeated Measurements on One Criterion

a a b C

Subjects x x Y Y

1 2 1 2

1 1 1 1 1

2 6 2 4 2

3 1 4 2 6

4 2 2 3 2

5 2 3 2 4

6 2 6 1 6

7 3 8 2 7

8 3 5 6 5

9 3 7 2 6

10 4 7 3 8

11 4 5 4 7

12 4 9 3 7

13 5 4 6 6

14 5 8 5 7

15 5 9 6 8

16 4 5 5 7

17 3 8 2 8

18 6 10 6 9

19 5 6 6 8

20 7 8 7 9

21 7 4 8 9

12 6 7 7 9

8 8 8 10

24 8 7 9 5

25 9 3 8 -

26 7 9 9 8

27 9 6 4 7

28 10 9 7 3

29 10 7 9 7

3G 10 6 I) 7

Measured at time T
0

Y easured at time T

Y measured at time T
2



Moderator

Table 5 38

Descriptive Statistics, Statistical Information Required for Test of

Parallelism, and Results of Test of Parallelism for

Sequential Moderation

. Means, Stanaard Deviations, and Correlations

x x Y M SD
1 21

X 5.30 2.69

X .33 - 6.10 2.36
2

y .84** .28 - 5.17 2.63
1

Y .38* .78** .40* 6.57 2.17
2

ii. Statistical Information Required for Test of Parallelism

a -1-

S[ i ]07 VC [.16 .06

V [4.71]

0 2 . 2

III. Test of Parallelism for Two Predictor and Two Measurements on One Criterion

Source Determinant Value A df

Q .0003 .04** (2, 2, 25)
E

Q Q .0060
E4+ 4

a

Identical for s - 1. 2! SS - n VC and SS
1 

=I VC -I
X -- XX XX€ n XX

b
ased on average of B and B

1 2

* ' <.05

' .01
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Subgroup

Criterion Y1  Al A2

Predictor Xj rill r112

Predictor X2  rl2 l r122

Predictor X3  r 131  r132

Criterion Y2

Predictor Xj r2ll r212

Predictor X2  r221  r2 22

Predictor X3 r231 r232



Moderator

40

Subgroup

Criterion Y1  A1  A2  Ak AK

Predictor X1  b 1  bll2  bilk

Predictor X2  b12 1  b12 2  b12 k  b

Predictor XJ blil blj2  bl b*. K

Predictor Xj b1 J1 b~ 2 bllk bl
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Time

Predictors at TO  T1  T2  ... Ts .. TS

X1 bll b2 1  .. bsl.. bs

X2 b12  b2 2  s2 *.. bs 2

Xj bS bbs

b b b.. .
bi2J . sJ bSj

ZI
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Figure 1. An illustration of a typical analytic model for subgrouping

moderator analysis. Subscripts for the correlation coeffi-

cients, r , are: 1 - 1,2 criteria, . 1,2,3 predictors,
ijk

k - 1,2 subgroups.

Figure 2. An illustration of an analytic model for tests of independent

subgroups.

Figure 3. An illustration of an analytic model for a test of sequential

moderation. The b-weights refer to predictor-criterion

relationships for repeated measurements on the same criterion.


