This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-79-262 has been reviewed and is approved for publication.

APPROVED:
RICHARD W. TAYLOR
Project Engineer

APPROVED:
CLARENCE D. TURNER
Acting Director
Solid State Sciences Division

FOR THE COMMANDER:
JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (ESE), Hanscom AFB MA 01731. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
Signal Processing Circuit Development

This report covers the modification of an Air Force owned IR-CCD scanning system for one-dimensional scans. The modifications provide electronic instrumentation for two-dimensional scanning and horizontal and vertical sweep circuitry for video display.
This technical report was prepared by Northeastern University, Boston, Massachusetts, under contract No. F19628-77-0087. It describes work performed at the Dana Research Center, Electronics Research Laboratory, from 22 December, 1979 to 21 March, 1977. The principal investigator was B. L. Cochrun.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II 2D OPERATION</td>
<td>6</td>
</tr>
<tr>
<td>A. Overview</td>
<td>6</td>
</tr>
<tr>
<td>B. Function Partitioning</td>
<td>8</td>
</tr>
<tr>
<td>1. Module 2AC</td>
<td>8</td>
</tr>
<tr>
<td>2. Module A-3AC</td>
<td>17</td>
</tr>
<tr>
<td>3. Module 2AB</td>
<td>17</td>
</tr>
<tr>
<td>4. Module 3AB</td>
<td>29</td>
</tr>
<tr>
<td>III. VIDEO DISPLAY</td>
<td>33</td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>33</td>
</tr>
<tr>
<td>1. Horizontal Sweep Circuitry</td>
<td>33</td>
</tr>
<tr>
<td>2. Vertical Sweep Circuitry</td>
<td>33</td>
</tr>
<tr>
<td>3. Multiplex Circuitry</td>
<td>38</td>
</tr>
<tr>
<td>IV CONCLUSIONS</td>
<td>42</td>
</tr>
<tr>
<td>V REFERENCES</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure Page
1.0 Block diagram for capability (a), See RADC-TR-77-105 2
1.1 Block diagram for capability (b), ID Operation 3
1.2 Block diagram for capability (c), C register only 3
1.3 Block diagram for capability (d), 2D operation 4
2.0 Basic four-phase incoding circuitry for cannd B registers 7
2.1 Module 2AC diagram 9-10
2.2 Module 1AC diagram 11
2.3 Waveforms for Module 2AC 14-16
 (a) H Blank, J₁, J₂ and Source
 (b) H Blank, C-Ck(T), Φ₁c(T) and Φ₂c(T)
 (c) Φ₁c(T), Φ₂c(T), Φ₃c(T) and Φ₄c(T)
 (d) H Blank, J₁, J₂, and G₂
 (e) J₂, Φ₁c(T), Φ₂c(T) and Source
 (f) J₂, Φ₂c(T), Source and Reset
 (g) J₂, J₁, Source and Reset
2.4 Module 3A-3AC diagram 18-20
2.5 Module 3A-3AC Waveforms 21
 J₂, Φ₁c, Φ₂c and Φ₃c
2.6 Module 2AB diagram 22-24
2.7 Waveforms for Module 2AB 26-28
 (a) J₂, 7493F(Pin 9), Transfer and V Blank
 (b) Reset pulse for counters, Pin 8 of 7493F
 (c) J₁, J₂, 74S124 Pin 10 and B Ck(T)
LIST OF ILLUSTRATIONS (continued)

Figure

(d) J_1, B Ck(T), \(\phi_{1b}(T) \) and \(\phi_{2b}(T) \)
(e) \(\phi_{1b}(T), \phi_{2b}(T), \phi_{3b}(T) \) and \(\phi_{4b}(T) \)

2.8 Module 3AB diagram 30-31

2.9 Waveforms for Module 3AB, Top to bottom 32

\(\phi_{1b}, \phi_{2b}, \phi_{3b} \) and \(\phi_{4b} \)

3.1 Block diagram of Video display circuitry 34

3.2 Horizontal Sweep Circuitry diagram 35

3.3 Waveforms for H Sweep, Top to bottom 36

\(J_2, H \) Sweep and Z axis output

3.4 Waveforms for H Sweep 36

3.5 Vertical Sweep circuitry diagram 37

3.6 Waveforms for V Sweep 39

V Blank and V Sweep

3.7 Waveforms for V Sweep 39

V Blank and V Sweep
SECTION I
INTRODUCTION

This report covers the modification of an Air Force owned IRDSS scanning system previously reported on in report RADC TR-77-105 Section IV. The primary change involves the requirement for two four-phase clocking systems each controlled by a single master clock.¹

The modifications extend the initial system capability of single-line, or 1D, scanning to two-dimensional, 2D, scanning with provisions for a video display. The flexibility of the original system, achieved by modular construction with access to numerous test points, was incorporated in the modified system which will be referred to as IRDSS-2D Scanning System.

The IRDSS-2D system provides the following capabilities:

(a) Retention of the original system reported on in report RADC-TR-77-105.
(b) 1D operation of a test CCD register on the 2D chip
(c) 1D operation of the C register of the 2D chip by deactivating the B register.
(d) 2D operation
(e) X and Y sweep voltages multiplexed with a video output for Z axis modulation.

The physical system consists of three modular cabinets and a variety of modules. The listed capabilities are achieved by an appropriate combination of these modules. Figures 1.0 through 1.3 illustrate, in block form, the various modes of operation.

¹
Figure 1.0 Block diagram for capability (a). See RADC-TR-77-105 Section IV
Figure 1.1 Block diagram for capability (b), 1D operation

<table>
<thead>
<tr>
<th>Cabinet 1AC</th>
<th>1AC</th>
<th>2A</th>
<th>3A-3AC</th>
<th>*</th>
<th>5</th>
</tr>
</thead>
</table>

* Internal "1D-2D" switch set for "1D"

Figure 1.2 Block diagram for capability (c), C register operation only.

<table>
<thead>
<tr>
<th>Cabinet 1AC</th>
<th>1AC</th>
<th>2AC</th>
<th>3A-3AC</th>
<th>*</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>J₁ J₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabinet 1AE</th>
<th>1AE</th>
<th>2AB</th>
<th>3AB</th>
<th>#</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>J₁ J₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Internal switch set to "2D"

External "Frame-line" switch set to "line"
Figure 1.3 Block diagram for capability (d), 2D operation
Figure 1.0 indicates the setup for the original system. Figure 4.1 in the report referred to earlier is a photograph of the IRDSS and the IRDET Aux units. For operation in this mode refer to the earlier report. Figures 1.1 through 1.3 indicate the required modules for capabilities (b), (c) and (d).
SECTION II
2D OPERATION

A. OVERVIEW

2D operation requires two four phase CCD registers, one for the columns and one for rows. The column register will be referred to as the B register, and the row register will be referred to as the C register.

A master clock, MC, synchronizes the operation of the B and C registers by means of a horizontal blanking pulse, H Blank. The MC runs continuously with the H Blank pulses being counted for the purpose of controlling the staring time for the detectors, and synchronizing the shut down of the B Clock. The desired number of H Blank pulses is determined by a front panel switch which controls the reset timing for the bank of counters.

Two start-stop VCO's, SN74S124, provide the initial B and C clock signals. These run only when the input to the enabling gate is held at a TTL low level. The B clock runs only for a time interval dictated by the pulse width of the negative H Blank pulse. During this interval, the B clock output is encoded to produce only a single set of four phase B clock voltages. The C clock runs continuously in the absence of the H Blank pulse, i.e., when the H Blank pulse output is at a TTL high level. The output of the C clock is encoded to provide the four phase C clock voltages. See Figure 2.0 for the basic encoding circuitry.

The contents of one complete row of the B register is loaded into the initial wells of the C register during the time interval equal to the H Blank pulse width. Then, between the relatively long intervals
Figure 2.0 Basic four phase encoding circuitry for both CCD registers.
of the H Blank pulses the signal in the C register is read out serially. Total readout requires 50 B to C transfers plus readout time for each row. After 50 H Blank pulses the B clock is shut down. The C clock continues to run for a number of H Blank pulses depending upon the setting of the counter switch control.

The counter operates for \((2^n+4)\) H Blank pulses. Minimum count is for a switch setting of \(N = 6\), or 68 H Blank pulses. Thus, minimum starting time for the detectors is for \(n = 6\). The additional four H blank pulses are used to generate a vertical blanking pulse, V Blank. During the V blank pulse a transfer pulse is generated which allows the input wells of the B register to be loaded by the detectors. The counters are reset at the end of the V Blank pulse and the readout sequence is initiated again.

B. FUNCTION PARTITIONING

In the interest of flexibility and numerous front panel test points the various functions required for each register are allocated to two modular cabinets, each with individual power supplies. Cabinet 1AC contains the modules for the C register with the B register modules located in cabinet 1AB. Only two shielded interconnections between the cabinets are required for synchronization.

1. Module 2AC

Circuitry in Module 2AC provides the following functions at TTL levels: MC, H Blank, \(J_1, J_2\), C clock, \(\theta_{1c}(T)\) through \(\theta_{4c}(T)\), \(G_2\) and Source pulses. \(G_2\) and Source pulse driver amplifiers using M80026 IC's with controllable amplitude and bias offsets are also in this module.

The two outputs \(J_1\) and \(J_2\) link the two registers. \(J_1 = \overline{J_2}\) with \(J_2 = \overline{J_1}\).
Figure 2.1 Module 2AC diagram
Figure 2.1(Continued) Module 2AC diagram
Figure 2.2 Module IAC diagram
it Blank. All further discussion will be limited to referencing J_1 and J_2.

Circuit details for Module 2AC are shown in Figure 2.1. An asymmetric MC signal is obtained using an NE555 as an astable multivibrator. A buffered H Blank pulse is obtained by cascading two inverters. Two other inverters are used to obtain J_1 and J_2. The output of the first inverter is J_1 while the output of the second inverter gives $J_2 = \overline{J_1}$. See Figure 2.3a for waveforms.

With J_1 low the C clock is enabled. Its output is the CK input for the two 7474 D type flip flops. J_2 is the Pr input for these flip flops, and since J_2 is high when J_1 is low the flip flops are enabled during the interval between H Blank pulses. The divide down operation of the D type flip flops generates $\varphi_{1c}(T)$ through $\varphi_{4c}(T)$ as indicated in Figures 2.3b and 2.3c.

The toggling action of the Cl and Pr inputs of a D type flip flop is used to generate the G_2 pulse. \overline{Q} goes high when Cl goes low and low when Pr goes low. $\varphi_{1c}(T)$ serves as the Pr input with the Cl input being J_2. Thus, \overline{Q} goes high on the falling edge of J_2 and remains high until the first falling edge of $\varphi_{1c}(T)$. This positive pulse, slightly wider than J_2, is inverted by the M10026 driver amplifier to give a negative pulse, G_2, as indicated in Figure 2.3d.

The Reset and Source pulses originate at the output of the three input Nand gate 7410A. This output, a negative pulse, is generated by the high level coincidence of the $\varphi_{3c}(T)$, $\varphi_{4c}(T)$ and C clock inputs. The resultant pulse width is one half of the C clock period. This pulse from the 7410A is the active input to Nand gates 7410B and 7410C. The remain-
Figure 2.3a Top to bottom: H Blank, J_1, J_2 and Source

Figure 2.3b Top to bottom: H Blank, C-Ck(T), $\phi_{1c}(T)$ and $\phi_{2c}(T)$.

13
Figure 2.3c Top to bottom: $\phi_{1c}(T)$, $\phi_{2c}(T)$, $\phi_{3c}(T)$ and $\phi_{4c}(T)$.

Figure 2.3d Top to bottom: H Blank, J_1, J_2 and G_2
Figure 2.3e Top to bottom: J_2, $\phi_{1c}(T)$, $\phi_{2c}(T)$ and Source.

Figure 2.3f Top to bottom: J_2, $\phi_{2c}(T)$, Source and Reset.
Figure 2.3g Top to bottom: J_2, J_1, Source and Reset

Figure 2.3 Waveforms for Module 2AC
ing inputs are held high at 5 volts. Consequently, their outputs go high when the output of 7410A goes low. The positive pulse at the output of 7410B is inverted by the MH 0026 driver amplifier giving the negative source pulse.

The positive pulse at the output of 7410B and J1 are the inputs for a 7402 Nor gate. Since J1 is always low when the C clock is enabled a negative pulse is obtained at the output of the Nor gate. This pulse is inverted by an MH0026 driver amplifier, located in Module 1AC*, giving the desired positive Reset pulse. See Figures 2.3a, 2.3e, 2.3f and 2.3g for the Reset and Source pulse waveforms.

2. Module 3A-3AC

Module 3A-3AC contains the four phase CCD driver amplifiers, MH0026’s, amplitude and offset circuitry for the drivers, d-c bias supplies for the chip and a DVM for monitoring.

The gate drivers are capacitive coupled. Coupling for \(\phi_{2c} \) and \(\phi_{4c} \) is modified for 1D operation by a switch located on the module card. Circuit details are given in Figure 2.4. Waveforms for J2, \(\phi_{1c} \), \(\phi_{2c} \) and \(\phi_{3c} \) are shown in Figure 2.5

3. Module 2AB

Module 2AB contains the necessary circuitry for generating the four B clock phase voltages at TTL level, the counter for controlling the 50 B clock sequence, V Blank output pulse and Transfer pulse for the detectors. Circuit details are shown in Figure 2.6.

*Reset provisions in Module 1AC is used for both 1D and 2D operation.
Figure 2.4 Nodule 3A-3AC diagram
Figure 2.4 (Continued) Module 3A-3AC diagram
Figure 2.4 (Continued) Module 3A-3AC diagram

(c) Front Panel BNC (c) Card terminal
Figure 2.5 Module 3A-3AC waveforms, top to bottom:
J₂, \(\phi_{1c} \), \(\phi_{2c} \) and \(\phi_{3c} \).
Figure 2.6 Module 2AB diagram
Figure 2.6 (Continued) Module 2AB diagram
Figure 2.6 (Continued) Module 2AB diagram
The B clock, an SN74S124, operates when the enabling input gate at pin 11 is low. This enabling signal is obtained at the output of Nand gate 7400A. The inputs to 7400A are J_1 and Q of D type flip flop 7474B. 7474B is operated in a toggle mode with the Cl input obtained at the output of the three input Nand gate 7410A and the Pr input obtained at the inverted output of counter 7493F. J_1 pulses are counted by counters 7493 A, B, C, D, G and F. For 50 J_1 pulses Q of 7474B is high. Consequently, the B clock will run continuously during each J_1 pulse interval for 50 J_1 pulses. After the 50th J_1 pulse a Cl signal from Nand gate 7410A will toggle 7474B and shut down the B clock. B clock will remain off until the next PR input from counter 7493F toggles 7474B again.

The interval between Pr inputs to 7474B is determined by the setting of the counter switch. With this switch set for 2^N, counter 7493F will count, after the Nth pulse, an additional four J_1 pulses, or (2^N+4), and then reset all counters. At the end of the Nth pulse the output of counter 7493G goes high, initiating the V Blank pulse with a width of four J_1 pulses. During this interval a 74123 monostable multivibrator generates the Transfer pulse which connects the detectors to the input wells of the B CCD shift register. See Figure 2.7a and 2.7b for waveform details.

The B clock runs continuously during the first 50 J_1 pulse intervals, however, only one set of four phase B voltages are obtained for each of the 50 J_1 pulses. The B clock enabling signal is inverted to obtain the Pr inputs for the encoding D type flip flops 7474A. Ck inputs for the 7474A are the inverted output of the Nand gate 4400B. The inputs for the 7400B are the B clock output and the inverted output of the counter 7493E. The input to the counter is the direct output of the 7400B. Therefore
Figure 2.7a Top to bottom: J₂, 7493F (Pin 9), Transfer and V Blank.

Figure 2.7b Reset pulse for counters, Pin 8 of 7493F.
Figure 2.7c Top to bottom: J_1, J_2, 74s124 Pin 10 and B Ck(T).

Figure 2.7d Top to bottom: J_1, B Ck(T), $\phi_{1b}(T)$ and $\phi_{2b}(T)$.
Figure 2.7e Top to bottom: $\phi_{1b}(T)$, $\phi_{2b}(T)$, $\phi_{3b}(T)$ and $\phi_{4b}(T)$.

Figure 2.7 Waveforms for Module 2AB.
there will be a Ck input to the encoding 7474A only until the output of the 7493E goes high. This time interval is sufficient to generate one complete set of four phase B voltages at TTL levels. The counter is reset by the J₂ pulse. See Figures 2.7c through 2.7e for operating waveforms.

4. Module 3AB

Module 3AB contains the four phase B clock gate driver circuits, amplitude control and offset bias circuitry, DVM monitoring circuitry and provisions for either 1D or 2D operation. The latter provision is controlled by the frame-line switch. In the line switch position G₂ is connected to a fixed input of -10 volts. In the frame position G₂ is driven by Θ₄₀. Circuit details are shown in Figure 2.8. See Figure 2.9 for the four phase B driver waveforms.
Figure 2.8 Module 3AB diagram

* MH0026 □ BNC □ CARD TERMINAL
Figure 2.8 (Continued) Module 3AB diagram
Figure 2.9 Waveforms for Module 3AB, Top to bottom:
\(\phi_{1b}', \phi_{2b}', \phi_{3b} \) and \(\phi_{4b}' \).
SECTION III
VIDEO DISPLAY

A. INTRODUCTION

The Video Display circuitry provides Horizontal and Vertical sweep voltages and a multiplexing circuit for Z-axis modulation. The design was based upon the requirements for a monitor oscilloscope with the following sensitivities:

- Horizontal and Vertical: 0.1 volt/inch
- Z-axis: +1 volt for full blanking
- -1 volt for full intensity

A block diagram of the entire system is shown in Figure 3.1. A Horizontal sweep is generated for each \(J_2 \) pulse and synchronized with the \(J_2 \) pulse. \(2^{N_3} \) sweeps are generated for each Vertical sweep which is synchronized by the V Blank pulse. The multiplex circuit, synchronized by the \(J_2 \) pulse, provides the necessary gain and timing for blanking and analog signal intensity modulation at the Z-axis output.

1. Horizontal Sweep Circuitry

Circuit details of the H Sweep circuitry are shown in Figure 3.2. The basic circuit consists of an inverting integrator with the ramp output terminated by an active switch. This active switch, consisting of the 2N3905 and 2N3903 connected as shown, essentially shunts the integrating capacitor \(C_6 \). A narrow trigger pulse, synchronized with \(J_2 \), turns on the active switch thereby terminating the ramp and discharging \(C_6 \). See Figures 3.3 and 3.4 for operating waveforms.

2. Vertical Sweep Circuitry

Circuit details of the V Sweep circuitry are shown in Figure 3.5. \(J_2 \) is the input to counter 7493A. Counter 7493B is driven by \(Q_{D} \) - divide
Figure 3.1 Block diagram of Video display circuitry
Figure 3.2 Horizontal Sweep Circuitry Diagram

- Single ground point near pin 3 with leads as short as possible.
- Ceramic disc.

Circuit diagram with various components and connections.
Figure 3.3 Waveforms for H Sweep. Top to bottom: J_2, H Sweep and Z-axis output

Figure 3.4 Waveforms for H Sweep. Top, Z-axis output, Bottom, H Sweep
by 16 - of the 7493A. The six outputs from the two counters are the inputs to a multiplying A/D converter, AD7520. The vertical sweep, the output from the AD7520, is 2^N steps. After $2^N J_2$ pulses the V sweep is terminated by the V Blank pulse which resets the counters. The overall amplitude of the V sweep voltage is controlled by the amplitude of the individual steps. Operating waveforms for the V sweep voltage are shown in Figures 3.6 and 3.7.

3. Multiplex Circuitry

Circuit details of the multiplex circuitry are shown in Figure 3.8. The basic operation of this circuit takes advantage of the unique characteristics of Operational Transconductance Amplifiers, or OTA's. These amplifiers have an additional input current control which may be used for gating the amplifier off or on.

Two CA3080's, OTA's, are used, one for the analog input signal and the other for the blanking pulse during the H Sweep retrace time. The two outputs from the OTA's are summed at the input of a buffer output amplifier using amplifier 531C. CA3080A, the analog OTA, must be on for the duration of the interval between J_2 pulses. CA3080B, the blanking OTA, is on only for the time interval given by the J_2 pulse width.

The J_2 pulse voltage levels are not suitable for directly controlling the OTA's. Consequently, d-c voltage level shifting must occur between the J_2 pulse and the control input to the OTA's. This is accomplished by means of operational amplifiers 531A and 531B. The inverter, 7040A, at the inputs of 531A and CA3080B is necessary to satisfy two requirements. One is the difference in timing for the two
Figure 3.6 Waveforms for V Sweep. Top, V Blank, Bottom, V Sweep

Figure 3.7 Waveforms for V Sweep. Top, V Blank, Bottom, V Sweep
OTA's. The second is the necessary polarity of the blanking pulse at the Z-axis output, i.e., +1 volt for full blanking. Thus, the control pulse for CA3080A is a -5 volt pulse referenced to 0 volts with a pulse width of \(J_2 \). The control pulse for CA3080B is a 5 volt pulse referenced to -5 volts with the pulse width of \(J_2 \). See Figures 3.3 and 3.4 for operating waveforms at the Z-axis output for a sinusoidal analog input signal to CA3080A.
SECTION IV
CONCLUSIONS

The IRCCD-2D system was tested and found to function satisfactorily. Difficulties were encountered which were not anticipated in the original design. In optimizing the output from the on-chip source follower it was found that the resultant value of load resistance resulted in a quiescent d-c level in excess of +10 volts. This d-c level was not compatible with the operating level of the analog OTA of the multiplexer.

This problem could be resolved in a number of ways. One approach would be to ac couple the analog signal to the input of the multiplexer. Another approach would be to d-c level shift with a preamplifier at the output of the chip. A third approach would be the use of correlated double sampling techniques. The latter, while more important for the reduction of switching transients, lends itself to elimination of d-c offsets. In any case, final resolution of this problem will be delayed because of the possible desire to make the system TV compatible.
REFERENCES

MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C^3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.