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ABSTRACT

A comprehensive analyses of all radio-star calibration measurements made

since May 1975 with the Millstone Hill Tracking Antenna is described. No evi-

dence is found to indicate that mechanical offsets in the antenna structure

have changed during this period. Previous suspicions that such changes might

be continually occurring are shown to have arisen from acute mathematical

correlation ambiguities encountered in fitting models to the monthly results.

In addition, it is found that the high stability of the LED-type encoders in-

stalled in November 1977 has virtually eliminated this last source long-term

variation in pointing offset. Only known mechanical modifications, causing

discrete changes in pointing error model, have caused the pointing-error

model to change since this date.

Calibration of the octagonal rail/cam-follower system used by the Track-

ing Antenna as an off-axis azimuth encoder system is also investigated.

Evidence is presented that the primary pointing errors that arise from in-

accuracies in this system are due to an offset between the azimuth axis and

the geometric center of the rail octagon, an ellipticity of the tower

perimeter upon which the rails are mounted, and a slight bowing of the rails,

the center offset being an estimated 0.3 mm, the rail geometry being 0.05 mm

out of round, and the rails being bowed a maximum of 0.02 mm from straight-

ness. These deficiencies cause pointing errors on the order of 10 mdeg.
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FOREWORD

This report is one of a series prepared under the Satellite Tracking

Program. The series reports on a variety of subjects, including: deep space

satellite tracking operations and system improvement at the Millstone Hill

Radar; results of satellite data analysis; theoretical analyses of radar sig-

nal and signature processing; and system planning and concept studies.

The effort covered in this report was sponsored by the Aerospace Defense

Command (ADCOM) of the UJnited States Air Force.
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1. INTRODUCTION

The Millstone Hill Tracking Radar was constructed in 1956-1957 initially

as a UHF conical scanning test-bed for the Ballistic Missile Early Warning
1

System (BMEWS). The advent of the space age with the launching of Sputnik

in 1957 ushered in a period of redirected priorities and rapid advances in

radar technology, and as a part of this increased emphasis the Millstone fa-

cility has undergone several major and minor modifications to upgrade its

capabilities and accuracy. In 1962 the system was converted to monopulse

operation at L-band with a Cassegrain optical arrangement and a more accurate
2

surface. From 1969 to 1973, Millstone was engaged in a study of the limita-

tions imposed upon radar systems by naturally occurring propogation effects

(e.g., ionospheric and tropospheric refraction, auroral perturbations, ground

reflections). 3 The accuracy required for this study necessitated a wide

scope of system improvements never envisaged at the start of this study.

These included rebuilding the antenna servo control system, installing opti-

cal encoders for antenna position readout, stiffening the antenna feed tri-

pod support structure, balancing the antenna, installing antenna tower tilt

meters, reducing digital quantization error, installing a new solid-state

L-band exciter, using cryogenically-cooled receivers, and providing smooth

steering via computer. The product of this overhaul was a system with a

2.75-mdeg digital pointing precision (17-bit encoder) and an optimum attain-

able repeatability of about 1 mdeg as evidenced by tracks on celestial
3

radio sources. The attainment of such a relative pointing accuracy and

repeatability for the Millstone radar has made this instrument a powerful

tool for many exercises such as the acquisition and tracking of space objects.

There remain some applications, however, for which the additional requirement

of absolute accuracy is paramount. The prediction of satellite positions,

i.e., orbit-fitting, is a primary example of this need. An attempt to deduce

a satellite orbit from observation of only a fragment of its path may produce
3

grossly erroneous orbit predictions if pointing position biases are present.

Even for multi-pass solutions, instrumental offsets may cause an incorrect



solution. For such exercises it is necessary to have a measure of the system-

atic pointing biases in the system and to correct for these biases in pro-

cessing the observations. Accordingly, several programs have been instituted

for absolute calibration of the Millstone system.

Two main types of procedures are used for Millstone antenna calibration.

Direct-reading instruments are used where possible to measure time-varying

offsets. These include tower tilt, which has been shown to vary significantly

in the course of a day, and tropospheric refraction, which varies with atmos-
3

pheric conditions. Monthly radio star observations are used to determine

fixed biases, such as those due to mechanical offsets. This report is con-

cerned with these latter, fixed biases, and it is assumed hereafter that those

offsets which are compensated for in real time (tower tilt and refraction) are

accurately eliminated in the radio star observations. This report thus

considers the radio-star calibration program, concentrating primarily on the

information that may be deduced concerning mechanical offsets of the antenna's

pointing system.

Section 2 of this report concerns the nature of these fixed antenna

pointing biases with an eye toward deriving simple, physically-meaningful,

usable pointing error equations which may be easily incorporated for other

exercises with the Millstone antenna. Section 3 briefly describes the

development of the current radio-star observation program, its capabilities

and the data obtainable. Section 4 presents a comprehensive analysis of

several thousand radio-star measurements over the last few years and deter-

mines the numerical values of the mechanical offsets of the system. Section

5 is a summary.

2. THE NATURE OF ANTENNA POINTING OFFSETS

This section considers the systematic pointing errors to which the

Millstone Tracking Antenna is subject. It will be assumed that these are

due solely to mechanical offsets in the antenna structure. These offsets

are divided here into two categories. First, there is a general class of

pointing errors due to axis-misalignments, gravitational deflection,

2



and encoder biases, to which any antenna mounted in an elevation-aximuth

coordinate frame is subject. Second, there is a special type of error

peculiarly applicable to the Millstone antenna due to the unique manner

in which the azimuth encoding system is mounted off the azimuth axis. These

categories are discussed separately below.

2.1 General Class of Pointing Offsets

2.1.1 Axis Misalignments

Any antenna mounted in an elevation-azimuth coordinate frame is subject

to pointing errors due to the following axis misalignments4

i. Aximuth-axis tilt (failure of the azimuth plane to

be horozontal)

ii. Elevation-axis skew (failure of the elevation axis

to lie in the azimuth plane)

iii. Collimation error (failure of antenna beam to be per-

pendicular to elevation axis)

These are illustrated in Figure 1. Azimuth-axis tilt is measured and cor-

rected for in real-time at Millstone and is not discussed further. Elevation-

axis skew causes a traverse error

AT, = c sin E (1)

where E denotes elevation angle, while the collimation error is itself a

constant traverse error

AT = - (2)

Projected onto the azimuth plane, these traverse errors become azimuth errors

AA1 = tan E (3)

3
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Fig. 1. Illustrations of the pointing offsets due to (a) azimuth axis tilt
W4~, (b) elevation axis skew (E), and (c) collimation error
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AA = - sec E (4)

These two axis misalignments produce only negligible, second-order elevation

errors.

2.1.2 Gravitational Deflection

Massive antennas are subject to significant gravitational deflections
4

of their structures. The symmetry of the Millstone antenna implies that

only elevation errors should be produced by this deflection. By resolving

the vertical antenna weight vector into components parallel and perpendicular

to boresight, one finds a boresight deflection force proportional to the

cosine of the elevation angle. Measurements with the Haystack Antenna 4 how-

ever, indicated that the actual deflection angle was linearly related to

elevation angle

AE = K + E (5)E

Gravitational deflection is expected to constitute the largest source of

elevation errors in antennas of this size.

2.1.3 Encoder Offsets

Antenna position readout must be accomplished by some form of encoder

measurement of antenna position. There is necessarily some unwanted offset

in the positioning or sensor readout of these instruments. This leads to

a constant aximuth offset error

AA3 = KA  (6)

and a traverse offset of

AT3  KA cos E (7)

5



A similar offset applies in elevation, but such a term would be indistin-

quishable from the constant term already incorporated in the gravitational

deflection error (Equation 5).

2.2 The Millstone Off-Axis Azimuth Encoder System

The original Millstone encoder system consisted of a synchro transmitter/

receiver system and a train of gear boxes to transfer the antenna drive-
2

gear position information to a shaft encoder. Gear play and the inability of

the repeater to follow the transmitter with sufficient accuracy for purposes

of the "propagation experiments" (see Section 1) led to replacement of this

system by a new 17-bit digital system connected directly to measure antenna

shaft position. For the elevation axis this was accomplished by connecting a

"spider" inside the elevation axis torque-tube which drives a shaft coupled to

the encoder. The determination of the azimuth position presented considerably

more difficulty owing to the fact that the region along the aximuth axis in

the vicinity of the bearing is occupied by the waveguide rotary joint, slip

rings and R.F. "choke" joints. Thus to place the encoder on the azimuth axis

would have required major mechanical changes and much reengineering of the

rotary joint structure. To overcome these difficulties, Lincoln Laboratory

engineers proposed a novel cam-follower arrangement that allowed the encoder

to be mounted off axis.

A plan view of the cam-follower system is shown in Figure 2. The outer

cam is an octagon, consisting of eight precisely machined metal bars, or

"rails," attached to the rotating structure at the level of the main bearing.

Successive rails are mounted alternately above and below one another, so that

no true corners are produced where they meet. The angle included by any adja-

cent pair of rails is adjusted by micrometer to be exactly 1350. The follower

unit, shown in Figure 3, is attached to the sidewall of the antenna tower

and consists of a small rotating octagon which is held against the inner

surface of the larger octagon. In this configuration one rotation of the

small octagon is produced for each complete revolution of the antenna/iarge-

cam assembly. Accordingly, the digital encoder can be directly coupled to

6
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the shaft of the follower cam and will be turned one revolution for each

revolution of the antenna. In order to allow the follower'to move back and

forth as the large octagon moves by, the follower assembly slides on ball

bushings along a pair of cylindrical shafts. A metal tensioning spring was

originally used to hold the two surfaces in intimate contact, but was later

replaced with a more reliable pulley and gravity shot-bucket combination.

An error will be present in the encoder output whenever there is an

unwanted rotation between the encoder shaft and the body being measured.

Angle-encoding errors, then, are of two general types: inaccuracies in the

mechanical construction of the system, and deformation occurring during

normal operation. Preliminary mathematical analysis sets the cam system's

allowable structural error to 0.00050. In that way, the accuracy of the

encoders (+0.002750) would be the dominant factor in any assessment of azimuth

angle-encoding accuracy.

To evaluate the accuracy of the prototype cam arrangement, laboratory

bench tests were carried out in which the system was supported on a rotating,

air-bearing table with a second 17-bit angle encoder connected directly to

the table axis. A digital comparison of the two encoder outputs, one driven

directly and the other via the cam system, provided a measure of the accuracy

of the cam system, along with information about backlash and other effects.

The tests quickly disclosed that several of the rails were distorted and

required regrinding. After the regrinding process, the encoders agreed to

within 2 encoder bits. This is the maximum resolution of the measure-

ment technique, and indicates that the coupling properly reproduces the

angular position of the bearing. These measurements were made with both for-

ward and reverse motion of the bearing in order to detect any backlash effects;

other than a one count shift introduced by the measurement system none could

be detected. In summary, the laboratory bench tests demonstrated that the

system was capable of achieving an rms angle error of about 0.0030 (see Ref. 3).
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Additional tests were conducted to assess performance as the cam-follower

transferred from one rail to the next. At normal tracking rates (-1 /sec) no

irregularities were encountered. However, when the rotation rate was increased

to 3 /sec, a 2- to 4-LSB error was generated as the corners were traversed.

Upon completion of the air-bearing table tests, the cam-follower system

and associated encoders were installed in the Millstone 84-ft tracking antenna.

This reconstruction was more difficult, of course, in the cramped confines of

the antenna tower. The reconstruction, the uncontrolled temperature environ-

ment of the tower, and the greater stresses incurred during antenna operation

have the potential of imparting significant rail structure distortions when

mounted in the antenna as opposed to laboratory operations.

Two programs were devised to check the accuracy of the installed rail

system, one to check the behavior at rail corners and the other to produce

a calibration of the rails. A computer program known as RAILROAD was devised

to explore the transient behavior of the azimuth encoder as it is rotated

through the corners. This program depends on the inertia of the antenna to

provide constant angular velocity over short time intervals. If the angular

velocity could be held truly constant, then an ideal encoder system would

report an antenna position that changed linearly in time, independent of

servo sytem action. In a normal sequence, the RAILROAD program fits a single

least-mean-squares straight line to all the azimuth values that are col-

lected and produces a plot showing the fitted straight line and deviations of

encoded position about the line (see Figure 4). Although some of the devia-

tions shown in Figure 4 may have been caused by actual variations in rotation

rate (arising, for example, from wind gusts), the figure nonetheless dem-

onstrates the need for a model of azimuth encoding errors.

Transient steps, caused by the cam's passage from one rail to the next,

are clearly visible in Figure 4. These corner-crossing transients may be

studied in greater detail employing an expanded version of the RAILROAD plot

such as that shown in Figure 5. In this figure the jumps in position at the

rail corners are clearly visible. In addition, Figure 5 demonstrates the

10
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presence of oscillations resulting from the cam's contact with a new rail.

Repeated measurements have confirmed that these oscillations display a fre-

quency of ~40 Hz and damp out in about 1 second. To date, there has been no

effort toward modeling these dynamic errors since they only occur at the

relatively infrequent corner crossings.

A second program was devised to determine azimuth errors due to inaccu-

racies in the overall rail system geometry. This was accomplished with the

aid of a precision theodolite to measure true azimuth. First, the theodolite

was mounted directly over the azimuth axis and used to measure the positions

of 54 selected targets (church steeples, storage tanks, telephone poles, the

New England telephone microwave tower in Littleton, etc.) in the vicinity

of Millstone. These angles were measured many times, edited, and numerically

averaged to obtain a single, best-estimate value for each target. The results

of this process may be seen in Figure 6, where we have plotted the deviations

of the individual theodolite measurements about the final averages for each

of the targets. The combined deviations for all 54 targets have an rms scatter

of 3.6 arc-sec (0.0010), which may be taken as an indication of the relative

accuracy of the set of final calibration bearings.

To calibrate the rail system employing these known reference .tcrgets,

provision was then made to view the targets from the azimuth deck through an

optical telescope fixed rigidly to the pedestal. On the upper azimuth deck,

roughly 4 meters fror' the azimuth axis, a telescope mounting fixture was

permanently attached to the rotating structure, and a telescope was rotating

mounted in this fixture and used to make optical sighting on the selected

targets. Optical back-sighting checks were also made to insure that the

telescope line-of-sight intersected the azimuth axis. The difference between

a target azimuth as measured by the theodolite and the azimuth indicated by

the azimuth encoder when the telescope was pointing at this target gave an

estimate of the azimuth error for that target azimuth. In this manner a

complete azimuth error versus azimuth model was formulated.

13
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Such telescope measurements were taken on five days in 1972 as listed in

Table 1. The September run was the first that was considered sufficiently

reliable to be included in the satellite-tracking software. This conclusion

was based on the reduced rms scatter of the raw data obtained with these

parameters. In contrast to the September observations, the October and

November runs were both beset by marginal weather and viewing conditions.

Two interesting points are raised by the 360-degree mean results of

Table I, first, that the mean is significantly different from zero, and,

second, that this mean may vary by several millidegrees in the course of a

month. Several factors may contribute to the mean, such as imprecise abso-

lute azimuth calibration of the theodolite, a slight rotation of the rail net-

work from its intended setting [the rail corners are nominally set at 30o11 ,

00 teefe](30.1833 ) and every 45 thereafter], imprecise alignment of the telescope,

or misalignment of the azimuth encoder shaft or its optical head sensor. As

long as all of the potential offsets do not vary during the course of a

telescope run, however, the relative azimuth calibration from azimuth to

azimuth remains unaffected with only a DC offset preventing absolute cali-

bration. This DC offset is provided by the radio-star observations, discussed

in Section 3. The fact that this DC offset drifts from month to month is

potentially more troublesome. As the radio qtar measurements show this same

drift, it is surmised that there is some real mechanical or encoder readout

variation. It was ascertained that continuous decay caused by darkening of the

incandescent lamps used in the optical encoder read-heads was probably the
3

prime contributor to these variations, but it was not possible to rule

out the possibility of discrete shifts from time to time in the mechanical

structure itself.

The acquisition of the azimuth calibration data from the theodolite and

telescope sightings provided the means of formulating an azimuth calibration

model. The first model to be devised considered an independent, constant

offset for each rail. This amounted to assuming that the rails were each

straight but not exactly at angles of 1350 apart. Further scrutiny,

15
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TABLE 1

PRELIMINARY LEAST-SQUARES ANALYSIS OF RAW CAM-FOLLOWER
ENCODING ERRORS

360-Degree rms About the Largest Individual
Mean 360-Degree Mean Rail rms

Date (mdeg) (mdeg) (mdeg)

8 June 7.26 6.58 10.08 (Only 28
targets)

12 June 7.60 6.58 10.85 (Only 28

targets)

11 Sept. 10.44 4.86 6.14

20 Oct. 3.75 5.87 5.33 (Hazy)

21 Nov. 4.14 4.09 5.16 (Windy)

16



however, revealed that there was significant variation along a rail, and

subsequently a linear variation along each rail was adopted. This amounted

to assuming that the rails were parabolic.

Three of these straight-line models have been produced from theodolite

and telescope sighting data, the 72 (or 72-H) model (11 September 1972), the

75 model (19 June 1975), and the 76 model (15 April 1976). The 75 model

was deemed to be superior to the 72 model, but the 76 model was deemed in-

ferior to the 75 model primarily due to the windy and hazy atmospheric

conditions existing on the days on which the 76 model data were acquired and

the accompanying increased data scatter. The 76 model was never actually

instituted into any real-time Millstone operation except FLOPET. These

models are tabulated in Table 2 and displayed along with the observations

in Figure 7. These biases and slopes are suitable for insertion in the

formula

A = A + (B. + S.AE ) i = 1, ... , 8 (8)
E 1 3

where A represent true azimuth, AE encoder azimuth, B.i the rail bias (ex-

trapolated to AE = 0) and S. the rail slope for rail i (azimuth must run from

30.1833 to 390.1833 in this equation). The negative of the term in paren-

theses has traditionally been called the "rail model," and this is what is

shown in Figure 7.

17
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TABLE 2

THE THREE THEODOLITE-TELESCOPE RAIL MODELS

Rail Azimuth 1972 Model 1975 Model 1976 Model
No. (degrees) Bias Slope Bias Slope Bias Slope

1 30.1833 - 75.1833 -15.75 .1281 -7.41* -.0007* -2.51 .0689

2 75.1833 - 120.1833 - 4.40 .0000 -5.67 -.0226 -7.25 .0887

3 120.1833 - 165.1833 -26.37 .0796 -41.20 .1637 -7.61 .0101

4 165.1833 - 210.1833 0.38 -.0556 -7.65 -.0523 -2.65 -.0175

5 210.1833 - 255.1833 17.06 -.1438 -12.46 -.0164 24.41 -.1363

6 255.1833 - 300.1833 -43.09 .1016 -81.69 .2282 -19.26 .0523

7 300.1833 - 345.1833 -32.28 .0684 -25.41 .0636 -30.13 .1056
8 345.1833 - 390.1833 47,86 -.1419 23.43 -.0680 69.92 -.1817

Bias in mdeg

Slope in mdeg/degree

1972 Model used for May - June 1975 FLOPET runs

1975 Model used for July 1975 - July 1976 FLOPET runs

1976 Model used for August 1976 - to data FLOPET runs

Preliminary bias of 3.81 and slope of -.1786 used for July 1975
FLOPET run

21
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3. RADIO STAR CALIBRATION

3.1 General

Star positions are known through many observations, including inter-5
ferometer techniques, to perhaps 5 arc-sec accuracy. These absolute

reference points provide a very convenient and useful method for calibration

large antennas. The difference between the known ephemeris position of a

star and the encoder reading of an antenna pointing at that star is a measure

of antenna pointing error for that sky (elevation-azimuth) position. By

following a number of stars as they move through the sky, one may obtain a

complete azimuth-elevation pointing error map. At L-band the number of use-

ful stars is very limited, however, only three major sources being very use-

ful for the Millstone location. Listed below are the five brightest sources,

their temperatures and diameters.
6

Source Temperature Diameter
(K) Arc Min

Cassiopeia A 205 4

Cygnus A 135 2

Taurus A 84 4

Orion 38 6

Virgo 15 5

Virgo has been tracked in the past, but the results were deemed useless for

calibration purposes. To the author's knowledge Orion, has never been tracked

for this purpose. The star calibration program at Millstone is programmed to

locate and track any of these five stars, plus the star with catalog number

3C273B, upon request. Figure 8 shows the sky coverage afforded by the motions

of Cassiopeia A, Cygnus A, and Taurus A.
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3

3.2 MOPET Program

The standard L-band monopulse tracking receivers at Millstone will auto-

track strong radio sources. However, useful angle data cannot be collected

while simply autotracking for two reasons: the receivers are narrowband and

the star noise is weak (often less than the receiver system noise). Thus

the tracking is noisy (-0.010 rms) unless the tracking-loop time-constants

are increased to tens of minutes in some cases. This would give few inde-

pendent measurements during any period set aside as calibration time. Measure-

ments may be made in less time, however, by using wider predetector bandwidths.

Accordingly, a modified system, having a wider sum channel and auxiliary angle

detectors at the 30-MHz intermediate frequency point where the bandwidths

are approximately 1 MHz (2000 times wider than the normal L-band tracker), is

used for star tracking. Tests show that -0.002 changes can be observed in

a few seconds with the modified system.

The original star calibration program at Millstone incorporating these

modifications was known as MOno Pulse Error Tracking (MOPET). For MOPET

operations the antenna was placed under the control of the XDS computer, which

commanded it to follow the known position of one of a number of bright

celestial radio sources having small angular diameter (usually Cassiopeia A or

Cygnus A). The computer then superimposed on this sidereal motion a scan

in either azimuth or elevation.

For a monopulse receiver the error voltage during a scan across a source

changes from positive to negative (or vice versa) as the source is traversed,,

being ideally zero when the source is in the middle of the antenna beam and

falling to zero as the source moves out of the beam (Figure 9). Because of

a possible DC offset in the error voltage output, however, the source posi-

tion should be taken to be that position attained when the star is in the

beam and the error voltage is equal to the DC offset measured when the

source is completely out of the beam. This is achievable by fitting straight

lines to the error voltage versus scan position both along the base line and

in the transition region as shown in Figure 9. The intersection of these

lines is the desired source position estimate.
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DC offsets are, in fact, present in the system (contributed to by

mixer unbalance, operational amplifiers, pickup, etc.), causing much of the

MOPET scan time to be spent off the star to measure them. More detrimental,

however, was the discovery that this baseline drifted with gain fluctuations,

etc., to an extent that these source position estimates were significantly

biased. Overall, these problems caused the theoretical accuracy of the

system of 0.25 mdeg for 3 seconds integration time on Cassiopeia A to be

degraded to 3 mdeg at best.

3.3 FLOPET Program

As a cure for many of these shortcomings, it was decided to modulate

the error signals so that they might be distinguished from unwanted DC offsets.

This method was implemented by modulating the phase of one local oscillator
0 0

in the error channels between 0 and 180 . The component of the error signal

at the output of the angle error detectors due to a real error signal then

alternates in sign. Any other output voltage component that arises from the

sum channel or pickup after the phase "flipping" point will appear as before -

a DC voltage. After amplification, filtering, sampling, and analog-to-digital

conversion, the modulated component of the sampled voltage is readily ex-

tracted by computer processing. This system was termed Flipped Local

Oscillator Phase Error Tracking (FLOPET).

With this phase-switched receiver system, DC offset variations introduce

only second order effects. Moreover, it is no longer necessary to establish

"baselines" by scanning across the source; a small offset is indicated by a

small alternating voltage, zero offset ("boresight") by zero alternating

voltage. The boresight position may be estimated by error voltage readings

and angle encoder readings all taken with the radio star in the beam, per-

mitting more efficient use of available integration time. This also made a

reduction in bandwidth possible without sacrificing angle sensitivity.
3

The improvement due to the flipping process has enabled the L-band system

to produce repeatable results exhibiting an uncertainty of <0.0010 rms in

two-minute runs and clearly showing errors other than the thermal noise

limitations. For example, the azimuth encoder angle offsets at "rail"
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corners are apparent, and the tilting of the antenna tower was evident before

the real-time tiltmeter corrections were instituted.

The FLOPET program was developed as part of the Propagation Study

(see Section 1) to the point of having the program operate reliably and

obtaining a few test measurements, but it was not used in a routine manner

until much later, in May 1975, to attempt to monitor system pointing per-

formance on a regular basis. A major diagnostic improvement was implemented

at this time in the form of a real-time scope display of the error voltage

vectors, pointing positions, refraction and tilt corrections, etc., to

monitor the program performance. One result of this feature was the re-

cognition that many stray position estimates were the results of bursts of

interference, and an interference filter was subsequently implemented.

Another feature of FLOPET added at this time was the capability of

a "tracking" mode in addition to the "scanning" mode. In the scanning

mode, FLOPET determines the error voltage at three points along the error

voltage curve and fits a straight line to these points to estimate error null

position. This is similar to the MOPET type of scan as shown in Figure 9

but with only three points obtained in the transition region (and the DC

bias eliminated). If the error voltage curve is not precisely linear in

the transition region, however, an error in the null estimate could occur if

these three points were not centered closely around the null. Improper

initial estimates of the star position before a scan have, in fact, resulted

in frequent cases of an error of this nature. Nevertheless, information

from these faulty scans has always been adequate for a correction for the

second scan such that subsequent scans could produce valid null estimates.

To check the affect of the assumption of transition region linearity,

the tracking mode was implemented in which error signals were continually

used to keep the beam on the star. This method requires only an approximate

knowledge of the transition slope, as obtained from a prior scan, to allow

the error voltage information to be interpreted in terms of an angle error.
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The linearity restriction is removed in this case. A comparison of scanning

and tracking results has not shown any systematic differences, and it has been

concluded that except, perhaps, for an occasional bad first scan, FLOPET

operates on a linear portion of the error voltage curve. Both scanning and

tracking exercises have been retained in routine FLOPET operations.

3.4 FLOPET Observations

Since May 1975, the FLOPET program has been run routinely, nominally

monthly, to monitor system pointing performance. Normally, observations on

the three strong stars Cassiopeia, Cygnus, and Taurus are sequenced through

according to visibility. Sample Virgo observations have not proved useful;

Orion and 3C273B, through written into the software, have not been observed.

Generally, an azimuth scan followed by an elevation scan will be repeated

four times and five tracks will follow, each scan or track being on the order

of one minute duration. The operator, however, is free to choose the

source, integration times, and number and type of observation as he pleases.

Due to the overhead of program setup and checkout, operator intervention,

and antenna positioning, a typical FLOPET opt ation of 16 hours, from 1600 LT

to 0800 LT, accumulates on the average of some 300 independent elevation-

traverse offset measurements. The main daylight hours are avoided due to

possible solar sidelobe contributions.

4. MECHANICAL OFFSETS DETERMINED FROM FLOPET OBSERVATIONS

4.1 Monthly Results, May 1975-May 1978

FLOPET has been run nominally once a month since May 1975. Initial

consideration is given here only the period through May 1978 as hardware

changes made prior to the June 1978 run caused major departures in the

pointing-error models. The post-May 1978 period is considered in Section 4.4.

After each FLOPET run the results are edited by hand, referring to a strip

chart recording of various system parameters (error voltages, sum channel

output, tilt corrections, antenna command, wind speed) and log book

notations as suspicious results arise. These results are then plotted and
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fitted separately in elevation and traverse according to the error model

formulations introduced in Section 2. In elevation the errors are primarily

due to gravitational deflection of the antenna structure in a manner difficult

to predict theoretically. A linear error versus elevation model has been

used for the Haystack antenna,4 but a parabolic model is necessary to fit the

Millstone results

AE = KE + BE + YE2  (9)

In traverse the fitted model is

AT = C sin E - + K cos E (10)

where c is the elevation-axis skew, 6 is the collimation error, and KA is

the azimuth encoder offset. The monthly results for K., , y, c, 6, and

KA are shown in Figures 10 and 11. These results merit careful consideration.

KA is an encoder offset and KE is the sum of an encoder offset and the

gravitational deflection error at E = 0. During maintenance checks on these

encoders, continual adjustments have been made to compensate for continuous decay

caused by darkening of the incandescent lamps (until November 1977, when LED

units were installed - see Section 4.4) such that some arbitrary variability

in K and KA could be expected. On the other hand, 8, y, c, and 6 should

represent fixed mechanical properties and therefore be relatively invariant

from month-to-month. In fact, great variability is seen in each of these

parameters, and, moreover, these variabilities are highly correlated. These

variabilities vare recognized early in the program, and suspicion arose that

they represented true variations in mechanical offsets. These monthly results

were not, however, routinely plotted as shown in Figures 10 and 11 nor were

the error statistics examined for each monthly run and the high correlation

between parameter variations was not recognized until very recently. Spot

checks of these error statistics show that correlation coefficients of 98%
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have occurred in these monthly analyses. A 100% correlation coefficient,

of course, would mean that any change in one of these parameter may be

precisely compensated for by an appropriate change in the other without

affecting the total model at all, such that the result for either parameter

is totally meaningless by itself. There must be strong suspicion, there-

fore, that the large monthly variations depicted in Figures 10 and 11 are

not real but rather result from mathematical ambiguities. If the month-

to-month correlations had been large but the correlation coefficients between

parameter had been small for each monthly run, then there would be evidence

of true monthly variations in the mechanical offsets.

For completeness, it should be mentioned that a high correlation

coefficient between two parameters is not always a sufficient test for

mathematical ambiguity. This only detects dependencies between pairs of

variables. There may be three variables having near mutual dependence

whereas no two of the variables are nearly dependent. Consider, for example,

the 3 x 3 matrix with unity diagonal and -.49 off diagonal, which could

possibly occur as a correlation coefficient matrix. As no off-diagonal

element is near 1 or -1, no two paramters are closely correlated, but

the matrix is near singularity. If the values -.49 are changed to -.50,

singularity does occur, and perfect mutual dependence of the three components

is attained. Thus, in our particular case with the FLOPET results, the

mutual dependence of c, 6, and K A in Figure 11 may be more detrimental than

the seemingly more pronounced mutual dependence between 8 and y in Figure 10.

In addtion to the mathematical arguments against the reality of

monthly variations appearing in Figures 10 and 11, physical arguments may

be invoked. Is is reasonable that three physically-meaningful and

independent parameters (such as E, 6, and K A ) should vary in well-coordinated

unison, especially when one of these parameters (K A ) is no more than a

technician's trim adjustment to an external slave mechanism?
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4.2 Comprehensive Analysis, May 1975 - May 1978

The present study began as an exercise to determine if the simultaneous

consideration of many months of FLOPET results could enable more useful

information concerning system pointing offsets to be deduced than the previous

method of considering each month's observations independently. To this end

all FLOPET measurements have been considered as one large set and a single

model fitted to thiL set. The May 1975 - May 1978 data set consists of 7073

offset measurements in each elevation and traverse.

The comprehensive analysis started with the assumption that the antenna

offset parameters were invariant with time with the exceptions of the encoder

offsets KE and KA, which might vary according to continual trim adjustments.

Thus parameters $, y, E, and 6 of Equations 9 and 10 were assumed to be

fixed while KE and KA were allowed independent monthly variations. It was

also hoped that the accumulated mass of data would be sufficient to allow

a rail model determination, though FLOPET was not designed for this purpose.

A linear rail model of the form of Equation 8 was also assumed to be fixed.

The elevation and traverse errors were then modeled as

2
AE =KEi + E + YE 2(11)

AT = sin E - + K cos E
Ai

+ (B. + S.A) cos E (12)
J J

for run index i covering the monthly FLOPET runs and rail index j = 1 ..., 8.

It should be mentioned that a rail model correction is routinely applied in

the FLOPET real-time program and that this correction (which took four

separate forms during the period under consideration) had to be undone be-

fore Equation 12 could be fitted to the data.
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One problem immediately arose with Equation 12. It can be easily seen

that if some constant is added to each of the KAi and subtracted from each of

the B., the model remains unchanged. That is, it is impossible to distinquish

between a rotation of the entire rail structure and a rotation of the encoder

connected to this structure. Thus, it was necessary to set some fixed

reference for this model, and KAl = 0 was arbitrarily chosen. All other KAi

and the rail model are then meaningful only with respect to this reference.

The mechanics of making this fit posed some problems due to the large

data set and number of free parameters involved. All available package

routines would overrun the XDS 9300 memory capacity. To alleviate this

problem, a technique utilizing the Givens transform was adopted. This method

allows the data to be fed sequentially to the fitting routine without any need

of subsequent storage. Computer core usage may thus be independent of data

set size. In addition, any fit may be updated by tfiis method as new data

becomes available simply by recalling the previous results and feeding in

the new data. Data may also be edited out of a fit simply by refeeding the

data to the program with the negative of the weight originally used. Further-

more, this method is as accurate and as fast as any other existing method.

This technique has proved so useful that Appendix B has been devoted to a

presentation of its use.

The results of the fit of the elevation error equation (11) to the

May 1975 - May 1978 data set are the va!"3s

= 20.17 mdeg/radian

y = -20.78 mdeg/radian2

P = -.972

s.d. = 4.57 mdeg

and the K. values as shown in Figure 12. p ,y is the correlation coefficient

between 6 and y, and s.d. is the standard deviation betwen the fitted model
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and the data. Comparing these results with the monthly results of Figure

10, we see that the KE variation is somewhat smoother for the comprehensive

analysis and the a and y from the comprehensive analysis could be fairly

well represented by averages of the monthly results. The magnitude of p ,Y

is so near unity, however, that the 8 and y results are not trustworthy as

measures of mechanical offsets. There is probably a sizable range of values

for either 8 or y within which the other parameter can be adjusted to give

a good fit to the data also.

Figure 13 shows all of the raw data points for the set after KE has
2

been subtracted for each run compared with the curve E + yE . The fit to

the data seems fairly uniform except, perhaps, for an inability of the

parabola to follow the dip of the data at the lowest elevation angles. Much

of the data for low elevations has, in fact, already been edited out due

to erratic behavior common for these near-ground observations. Much of this

is due to reflections of the source radiations from the ground into the

antenna, giving an apparently low position location. An overestimate of

tropospheric refraction would produce the same tendency. The pattern at

low elevation angles, however, is by no means consistent, and the quality

and quantity of these data do not provide hope that any useful conclusion

on thus topic may be drawn from the FLOPET program.

Figures 14, 15, and 16 break up Figure 13 star by star with the

same model being plotted in each case. The Taurus measurements near 69

degrees are separated from the curve by a significant amount. This anomoly

is unexplained (but see Section 4.5 concerning star background noise).

The results of the fit of the traverse error equation 12)to the May 1975 -

May 1978 data set are the values

= 8.79 mdeg

6 = -24.00 mdeg

PE6 
= 0.978

s.d. = 4.24 mdeg
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and the K A values as shown in Figure 12 (the rail results are discussed

in Section 4.3). Comparing these results with the monthly results of

Figure 11, we see that the KA variation is much smoother for the compre-

hensive analysis and that E and 6 from the comprehensive analysis could be

fairly well represented by averages of the monthly results. p ' is so

near unity that the 5 and E values cannot be taken as good estimates of

the actual mechanical offsets. Figure 17 shows all of the raw data points

for the set after KA cos E, the rail model correction, and -6 have been

subtracted, compared with the curve £ sin E, and Figures 18, 19, and 20

break this display up by star.

An additional exercise was made with these data to investigate

further the ambiguity in the K A - E - 6 determination. The model curve

8.79 sin E was evaluatedat 5 degree increments from 5 to 85 degrees elevation,

and this set of points was then fitted by a curve a + b cos E with the

results being a = 10.92 mdeg and b = -8.16 mdeg as shown in Figure 21. The

purpose of this exercise is to show that, at least away from the more

sparsely populated elevation limits, completely different values of KA, e,

and 5 are capable of producing a good fit to the data. This particular

exercise has, in fact, just dropped e out of the model and found that over

a 90 degree sector a constant may be approximated by a sinusoid within an

accuracy comparable with the scatter of the traverse error data. This

is a clear demonstration of the severity of the mathematical ambiguity

encountered in fitting these data.

4.3 Rqil Model Results, May 1975 - May 1978

The original rail model conception in 1970 - 1971 contained only an

offset per rail under the assumption that the rails were straight but per-

haps not set at precisely at 1350 at their corners. The theodolite-telescope

measurements (Section 2.2) showed that the offsets were not necessarily

constant within a rail sector, and a linear offset model along each rail

was then adopted. This latter type of rail model has been used to fit

the May 1975 - May 1978 data set with the results as shown in Figure 22.

41

J_ _ __1_J



C)

- 0

r K 1

f.

0 i

rj 44

0

-... Ks-

00 n- DoOh- 3l0i

1 ~~~ ~ ~ I )663- 3L6

42~.



-Q-7

00

C)0
0?

co

i C)

0

C3 z

4)

0 _j
~L±j

5 rz

C3

00-09 013 -O 00, z 00 0 DoOO - ooa-0- 00 09-
(633HU)J01-r1WJ UO14JJ 3SH3AbU1

43



- 0

0?
C3o8

C) t~

0 l .r

z; H

04

444

C9.LJ

- E0

*C

C3 :
ON~ U

-'44

0o
2

Az

00~~~~~~ ~ ~ ~ .0 owt 00- 0 * o-z 00"9
a-3H00M W UO-l3S3b

44 ~



0

C?

00

o

C)
_CD

to >1

LiU

Cl

o Lj iU

45U

4one"



- CC)

0
7 0

cm
0

W 0

- 0

-.4

I:

464(



STK-103(22)

cd

C)

-c --- -- -
30. 6 7 -16 120 18 613 is 10 is 55-8 30-1 3q -18 3,1. i

1 4



This model will be referred to as Model 1. The standard deviation between

the data and the fit for this model is 4.24 mdeg. There is no ideal way

to display the data for comparison with this model. Traverse errors are

measured whereas the rail model is an azimuth error. What has been done

in Figure 22 is first to subtract £ sin E - 5 + KA cos E from the measured

traverse errors and then divide these results by cos E to project them onto

the E = 0 plane. This effectively magnifies the data scatter by the factor

sec E, and traverse errors acquired at high elevation angles become grossly

misrepresented by this projection. It must be remembered, however, that

the rail model was not obtained from a fit to the data as shown in this

figure but directly from the traverse error measurements. A traverse error
2

obtained at elevation E is in effect weighted as cos E in determining the

rail model (e.g., there is no rail information available from a zenith

measurement). If error bars were placed on the "data" points in Figure 22,

they would be proportional to sec E (uniform weights were used in the

traverse fit). Thus this figure is distorted by the presence of many points

of small significance, such as those measurements obtained on Cygnus as it

reaches its maximum elevation of 88 degrees at 1800 azimuth (see Figure 8).

Unfortunately, all of the southern azimuth observations are obtained at

relatively high elevation angles on the stars Cygnus and Taurus, and the

rail information available on the southern sector rails is thus much inferior

to that obtainable to the north.

Figure 23 shows the residual traverse deviations for Model 1 after the

entire fitted model has been suppressed. This illustrates that the traverse

data are well-fitted and that the large scatter seen in Figure 22 is not an

indication of some shortcoming in the model.

A comparison of Model 1 with the three rail models derived from

theodolite-telescope measurements (Figure 7) shows some gross features in

common but some very different rail detail. The increase at southern

azimuths and possibly a secondary increase near north are consistent. But

some of the rail slopes are completely in disagreement.
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Model 1 appears to show some clearly observable structure in rail offset.

The rails certainly are not randomly placed independently of each other. Even

their slopes suggest some kind of overriding pattern. The trend seems to be

essentially sinusoidal with a smaller second harmonic term. These observations

led to further consideration of the rail structure and its offset model.

The cyclic nature of the rail model azimuth variation indicated that

there may be some deficiency in its circular geometry. R. H. Wand suggested

that perhaps the center of the rail structure was offset from the center of

rotation of the antenna azimuth shaft. A. Freed suggested that an overall

deformation of the rail geometry, such as a slight ellipticity of the structure,

could cause the harmonic term. Appendix A goes through the derivation of the

rail model pattern which would result from an offset elliptical rail structure.

In the hypothetical case in which the rail structure (and cam-follower) were

many sided instead of octagonal, we would have in the limit of a purely

elliptical structure a first harmonic sinusoidal rail model component due to

a center offset and a second harmonic due to the ellipticity, as originally

expected. Insertion of a rail model of the form

a cos A + b sin A + c cos 2A + d sin 2A

into Equation 12 in place of the linear rail model, and refitting the entire

set of data yielded the rail model shown in Figure 24 (Model 2). It should

be realized that all other parameters (6, 6, KA ) are also somewhat changed

by inclusion of new rail model, but these are not major changes. Since the

rail model now has zero mean for Model 2, it is possible to derive an

independent KA offset for each FLOPET run, including the first, which was

not possible for Model 1, or for any model with unrestricted mean. The

harmonic fit to the data appears fairly uniform except, perhaps, at the 30

degree rail corner, where a definite offset appears to occur. The standard

deviation between data and fit for Model 2 is 4.55 mdeg.

The next exercise took into account the true octogonal instead of

elliptical shape of the rail geometry. If the rails are straight and
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attached to an elliptical tower perimeter, then the offset incurred on a

particular rail will be a constant equal to the value attained by the con-

tinuous offset ellipse model somewhere in the rail's azimuth sector. While

this offset is generally not precisely equal to the value of the continuous

model at the rail midpoint, the 45 sectors and ellipticities are small

enough such that only a second-order error is incurred by this assumption.

Thus Model 3 is that of a constant offset per rail with the values of the

offsets being restrained to lie on a curve composed of the sum of first and

second harmonic sinusoids. The result of a fit of this type of rail model

to the data is shown in Figure 25. It was found that the fit in this case

had a standard deviation of 4.68 mdeg, more than resulted from Model 2 even

though a more physically reasonable formulation had been evoked. Apparently,

the rails are not quite straight.

Bench tests showed that a worst case error of only 5 mdeg, with a measure-
2

ment accuracy of 5 mdeg, was incurred due to rail curvature. In their

installed position inside the tower perimeter, however, the rail structure

may be subject to forces sufficient to cause additional deformation. Thus

a Model 4 was developed in which rail bow was also considered. Due to the

symmetry of the rails, the tangent to a bowed rail edge at the center of the

rail should be parallel to the line connecting the rail ends. Thus rail

bow will not affect the offset at rail center but impart a positive deviation

on one side of center and a negative deviation on the other. If we make the

simplest assumption of a parabolic rail with vertex at rail center, then the

rail tangent will vary linearly along the rail. Hence we arrive at a

straight-line rail model but with the centers of these lines restricted to

lie on the sinusoid harmonic curve once again. Imposition of this rail

model in the fit produced the result shown in Figure 26. The standard devia-

tion between the data and fit for this model is 4.38 mdeg. The only difference

between rail Models 1 and 4 is that for Model 1 the rail lines are com-

pletely independent whereas for Model 4 the line centers are required to lie

on this sinusoidal harmonic curve. Model 1 gives a smaller standard
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deviation, of course, as the rail centers are free to assume optimum

positions.

Table 3 summarizes the results of the four types of models fitted to

the data. It will be noticed that the rail centers for Models 2, 3, and 4

add to zero While those for Model 1 average -14 mdeg. This is due to the

previously explained (arbitrary) assumption for this model that KA= 0 for

the first FLOPET run, an assumption necessitated by the non-zero rail model

mean allowed by this model (and only this model).

The choice of which of the four rail models presented here to choose

for use is rather subjective. Models 2 and 3 require only four parameters

for their definition; Model 3 is more closely related to the physical

rail geometry, but Model 2 yields a better fit. Models 1 and 4 give

better fits than Models 2 and 3 but require 3 and 4 times as many parmeters

to describe. The best fit has the least relation to a physical model and

the largest number of free parameters. The standard deviation between the

data and the fit may be continually decreased, of course, by the addition

of more and more terms, but such a brute-force method does not really

provide any insight into the underlying structural problem, nor could the

degree of complexity of the model be decided upon in any reliable, objective

manner. The choice must ultimately be made in considering the effects upon

the primary tracking activities of the antenna.

It is interesting to interpret the rail model results in terms of

actual mechanical offsets. Model 4 yielded an offset elliptical rail

structure pointing bias of (-7.49 cos A -6.06 sin A -2.28 cos 2A + 5.88

sin 2A) mdeg. Appendix A derives the equations for the interpretation

of these components in terms of mechanical offsets. The offset between the

centers of rotation of the antenna azimuth axis and the rail structure is

(.007492 + .006062)1/2 ('/180) D = .000168D, where D is the diameter of the

rail circle. D is measured to be 1.825 meters such that this offset is

0.31 mm. The direction of this displacement is azimuth -tan -1 [7.49/(-6.06)],

or 231 degrees. The double harmonic term implies that this structure is

elongated by the factor 1 + (.002282 + .005882 )1/ 2 (i/180)/2 = 1.0000550

along the azimuth - 1/2 tan- 1 (2.28/5.88), or 159-339 degrees, and
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TABLE 3

COMPREHENSIVE ANALYSIS TRAVERSE MODEL SUMMARY

Rail No. Model 1 Model 2 Model 3 Model 4
Center Slope Center Center Center Slope

1 -17.51 -.1374 -1.93 -1.33 -3.09 -.1594

2 -23.62 -.0398 -7.22 -4.80 -4.36 .1490

3 -10.31 .1734 -7.37 -6.17 -3.99 .1103

4 - 0.65 -.0070 8.09 5.79 7.59 .2126

5 1.57 -.3275 17.90 15.07 15.63 -.2981

6 -10.37 -.3244 5.92 5.81 5.64 -.3321

7 -22.47 -.1912 -8.60 -7.57 -8.56 -.1465

8 -25.66 .1434 -6.80 -6.80 -8.87 .1357

Parameter

E (mdeg) -24.00 -20.15 -17.04 -21.53

6 (mdeg) 8.79 12.18 15.09 10.85

a (mdeg) -6.50 -5.53 -7.49

b (mdeg) -7.51 -6.10 -6.06

c (mdeg) -1.49 -2.31 -2.28

d (mdeg) 7.87 6.49 -5.88

s.d. (mdeg) 4.24 4.55 4.68 4.38

number of 16 4 4 12
rail para-
meters

NOTES: 1. Center is the value of the rail model at rail center (mdeg).

2. Slope is the rail model versus azimuth gradient (mdeg/degrees).

3. a, b, c, d are the values in the azimuth (A) equation a cos A

+ b sin A + c cos 2A + d sin 2A describing the pointing

error due to the offset elliptical distortion of the rail

geometry.

4. s.d. is the standard deviation between the data and the fit.
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compressed by the same factor along the 69-249 degree azimuth line. This

amounts to a 0.05 mm maximum deviation from the nominal circular geometry.

The largest rail curvature causes an 7.47 mdeg pointing bias (at the ends

of rail 6). It may be easily shown that if the parabolocity of a rail

causes a pointing error of +A degrees at its endpoints, then the maximum

deviation from straightness along the rail is 1/4 tan A times the rail

length. This amounts to about 0.02 mm for this 7.47 mdeg pointing error

for these rails of approximately 0.6985 meters in length.

4.4 Mechanical Modifications: Subreflector Change, Elevation Encoder
Realignment, LED Encoder Installation, Tiltmeter Bracket Tightening

The "propagation studies" conducted at Millstone from 1969 to 1973

(see Section 1) used the tracking antenna at both UHF and L-band. Because

the UHF capability is not used in the current operations, the frequency-

selective subreflector used for these studies was replaced in 1978 (between
the May and June FLOPET runs) by the metal Cassegrain subreflector pre-

viously used for L-band operation, affording a 1 db sensitivity gain. Such

a mechanical modification must necessarily be accompained by a pointing

bias chance. It is unlikely that the small change in weight would cause

important gravitational deflection changes in elevation pointing biases

(see Section 2.1.2), but a significant change in collimation error (see

Section 2.1.1) would be entirely expected. This will have the effect of

a step change in both 6 and in the monthly pattern of the Y variations

(Equations 11 and 12). The traverse error (Equation 12) was thus modified

to allow for different values of 6 to apply before and after the

subreflector change. In addition, an electrical realignment of the

elevation encoder was made between the January and February 1979 FLOPET

runs to try to eliminate the rather large bias (about 0.2 degree)

that had existed for many years. Thus the new bias (K. in Equation 11)

was then expected to be near zero.
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Inclusion of the post-May 1978 FLOPET runs through the May 1979 run in

the analyses described in Section 4.2 yielded a new collimation error

= -5.60 mdeg instead of the previously found 6 = -21.53 mdeg (for Model 4)

and KE and KA values as shown in Figure 27. The periods of 250, 180, and 0

mdeg K. offset are evident here. The last eight points on the 250-mdeg

plateau form a very stable trend. Between the October and November 1977

FLOPET runs (the first and second of these eight points), a new elevation

shaft encoder featuring light-emitting diodes was installed in lieu of the

previously used units with incandescent excitation lamps to eliminate the

constant adjustments these latter units needed due to continuous decay

caused by darkening of the lamps. The 180 and 0 mdeg plateaus are also

stable for this same reason, although some still-unexplained anomalous

results in theSeptimber 1978-February 1979 period (the last 5 points of the

180-mdeg plateau and the first point of the 0-mdeg plateau) caused some

increased scatter. The azimuth LED encoder was installed between the

November and December 1978 FLOPET runs, and Figure 27 shows KA to have

stabilized thereafter except for the April and May 1979 values which are

displaced. This shift was due to a tightening of the single orthogonal tilt-

meter bracket screw just prior to the April run. A drift in the output of

this tiltmeter had been noticed during preceding antenna tracking usage,

and its mounting screw was found to be loose.

4.5 Long-Term and Seasonal Variations, Relative Star Positions

As was mentioned earlier in Section 4.1, the large month-to-month varia-

bilities seen in all model parameters (KE, r, y, KA , C, 6) as determined

from the independent monthly analyses (Figure 10 and 11) led to a suspicion

that the "fixed" mechanical pointing offsets might be varying due to

continually changing environmental stresses. The comprehensive analysis

of Section 4.2, however, showed that three years of data could be fit

with better than a 5-mdeg rms residual with constant values of , , C,

and S applying throughout this period. Examination of the various correlation
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statistics led to the conclusion that there was no evidence that month-

to-month changes in these four parameters had occurred, with the exceptions

of the known step change in 6 caused by the subreflector change (Section 4.4).

In addition, comparison of the data month-by-month with the rail model has

failed to find any point in time after which a systematic difference

between the data and model consistently prevailed on any rail. It appears,

then, that the encoder offsets have comprised the only source of long-

term fluctuations in the pointing-error model. Since the LED-type encoders

have been installed, however, even this source has been largely mitigated

(Figure 27).

At the outset of the present study it was expected that a search for

seasonal variations in the antenna pointing-error model might prove fruit-

ful due to the sizable changes in thermal stresses which the antenna must

go through seasonally. Thus three additional exercises were undertaken in

which a and y, then C and 6, and then the rail model parameters were allowed

simple sinusoidal seasonal variations superimposed upon their constant

values. It was soon realized that this type of exercise could produce nothing

definitive because of the very high correlation coefficients encountered

in these fits. K A, E, and 6, for example, were found to be highly mutually

correlated in the analysis of Section 4.2. The allowance of a seasonal

variation in one of these parameters is seen to render large, compensating

seasonal variations in the others. But since K A is allowed independent

monthly values in these analyses, it is effectively already free to assume

a seasonal variation, and any subsequent attempt to find seasonal variations

in c, 6, or the rail model is immediately doomed.

It has already been mentioned in Section 3.1 that star positions are known
5

to an accuracy of about 5 arc-sec through interferometer techniques. Back-

ground contributions in these reports are generally subtracted out to give

the position of the center of the main star, and this could possibly lead to

a significant offset between the predicted ephemeris position of the star

and the measured error null position of the star plus its background, as
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determined by the radar measurements. An attempt was made to investigate

the possibility of such offsets by allowing the fit to the FLOPET data to

include an independent "collimation error" for each star. Unreasonably large

star position biases and a greatly changed rail model resulted from this

exercise. This was primarily due to the nearly exclusive determination of

the southerly rail sector offsets from Taurus data while these in a heavy

preponderance of Cassiopeia data to the north such that relative star

positions and the rail offsets could not be simultaneously investigated.

5. SUMMARY

The radio-star calibration program entitled FLOPET has been run monthly

since May 1975 to determine and monitor the pointing offsets of the tracking

antenna due to mechanical misalignments. The elevation offsets AE and

traverse offsets AT so determined from each of these runs have been fitted

by model function of the form

2
E =K + E + yE (13)

E

AT = KA cos E + c sin E - 6 (14)

where E is elevation, KE and KA are elevation and azimuth encoder offsets, E

is elevation-axis skew, and 6 is collimation error. The AE equation is a

purely empirical form found to describe adequately the effects of gravitational

deflection while the AT equation takes expected antenna axis-misalignments

into account. In analyses of the monthly observations, the parameters KE'

O, Y, KA, C, and 6 were seen to fluctuate considerably, arousing suspicion

'hat real changes were taking place in the antenna structure.

The present comprehensive analysis has attempted to combine all FLOPET

results collected since May 1975 into one data set to determine if their

simultaneous consideration could provide further enlightenment on the

antenna pointing offsets. Models of the form of Equations 13 and 14 have
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been fit to this data set of more than 10,000 values in each elevation and

traverse, maintaining fixed values of , , 6, and 6 to apply throughout the

period but allowing KE and KA to vary monthly to account for the known trim

adjustments continually made to the encoders. It was found that each of these

data sets could be fit to less than a 5 mdeg rms residual in this manner,

indicating that 6, y, c, and 6 had not varied substantially during this period.

Inspection of the correlation statistics of these analyses showed inter-

parameter correlations with magnitudes up to 98%, for the comprehensive as

well as the independent monthly analyses alike, indicating that the large

month-to-month variations originally observed resulted from simple mathematical

ambiguity instead of real antenna structural variations, and also that even

for the comprehensive analysis, the results were not reliable as measures of

unamibiguous mechanical offsets. In addition, the installation of LED-

type encoder units in November 1977 has virtually eliminated month-to-month

encoder variations such that the entire antenna pointing error model has

remained virtually unchanged since that time, with the exceptions of those

changes which resulted from modifications to the antenna hardware (subreflector

change, encoder realignment, tiltmeter tightening).

A second major goal of the comprehensive analysis was to determine if

the FLOPET data could aid in calibrating the octagonal rail/cam-follower

system used by the tracking antenna as an off-axis azimuth encoder system.

To this end the model for the traverse error measurements was allowed to

assume a dependence upon rail position with offset allowed to vary linearly

along each rail but independently from rail to rail. The result was a

"rail model" showing the gross features previously determined by theodolite-

telescope measurement but with little of the same detail. It was clear

from these results that some overriding pattern prevailed in this rail model,

and a consideration of a possible offset between the centers of rotation of

the antenna azimuth axis and the rail structure plus a possible ellipticity

of the tower perimeter to which the rails were mounted led to the development

of a continuous rail model consisting of a first harmonic sinusoid to account

for the center offset and a second harmonic for the ellipticity. An
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additional exercise maintained this basic geometry but also considered a possible

bowing of each rail in a parabolic manner. All of these rail models enabled

the FLOPET data to be fit with an rms residual of between 4 and 5 mdeg. In

terms of the physical dimensions of these offsets, the model implied a 0.31

mm offset between the azimuth axis and rail octagon center and an out-of-round

of 0.05 mm due to tower ellipticity while the most warped rail was bowed

0.02 mm. These mechanical offsets cause maximum pointing offsets of 10, 6,

and 7 mdeg, respectively.

6,

6,3
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APPENDIX A

OFFSET ELLIPSE GEOMETRY

Consider an x,y rectangular coordinate system containing an ellipse

centered at (Ax, Ay) with its axes parallel to the coordinate system axes

(Figure A-l). This ellipse is described by the locus of (x,y) pairs

satisfying the equation

(xAx)2 +(y Ay) = 1 (A-)

where a and b are the half lengths of the ellipse axes in the x and y

directions, respectively. For any arbitrary point (x p, y p) on this ellipse

it is desired to find the angle between two lines passing through (x p, y p),

one line perpendicular to the ellipse and the other perpendicular to a

circle centered at (0,0) This second line must pass through (0,0)

Defining the counterclockwise angles that these lines make with the x axis

as a and 0, respectively, we have for 0

Ay + b V1 -x - Ax) 2/a 2

tanO = p (A-2)x x
p p

and, considering x as a function of y in Equation A-l, we have for a

d I /-( Ax) 21/a2
tan= + 1- (x (A-3)

pyp b(x - Ax)/a 2

Proper manipulation allows the tan a expression to be reformatted in terms

of tan 0
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Fig. Al. Offset ellipse geometry.
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tan a =b-(an - - / (A-4)

If Oi and e are nearly equal, it becomes useful to write the right hand side

of Equation A-4 as tan E times a quantity near unity

tan a = tan C - 1 - cot (A-5)

making use of the relation in Figure A-1 that x p r cos C, we haveP p

tan A. = tan a2 ) (A-6)
(b 1 - lx/r cos

This expression can be simplified no further without some assumptions. If

we assune our ellipse is only a slight perturbation of a centered circle

having radius r, i.e., r z r, then Ix << r, Ay << r, a = (1 + C)r, b = (1 - )rp

for some small c, and Equation A-6 simplifies to

tan a z tan E(1 + 4z) (1 - r :(1 + r co )]

tan ! + 4E rIV + Ax (A-7)
r rsin r cosj

Comparing this with the general relation for small A-

tan (3 + -7) tan + .:Ltai = tan S + 2as 2 .
Cos

=(i+ sin cos tan (A-8)
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we find

A = a- =(4c r 0n +r Axs sin 0 cos 0

= - Y cos 0 + x sin O + 2E sin 20 (A-9)
r r

This expression applies for the ellipse axes aligned with the coordinate axes.

For the more general case of arbitrary alignment of the major axis along

aximuth 0 - (00 + 1800 we may replace 0 by 0 - e0 in the second harmonic

term of the last equation.

AO = cos 0 + -sin 6 + 2C sin 2(0-0))
r r (A-10)

where 0 is the counterclockwise angle which the major ellipse axis makes with
0

the x axis (E is positive for the major axis along 0 0 ) .

To write Equation A-10 linearly in terms of E and 0 , it is necessary

to expand the second harmonic term

= cos e + x 0 sin 6 + A cos 20 + B sin 26 (A-il)
r r

where it may be verified that

A = -2E sin 20 (A-12)0

B = 2E cos 20 (A-13)0

E = I A 2+ (A-14)

0 = 1 tan-' -A (A-15)0 2 B
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The length of the center offset in terms of the rail radius r is

R-r (A-16)

and the direction of this offset counterclockwise from the x axis is

tan tan AY (A-17)R x
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APPENDIX B

PROCEDURE FOR LARGE, SPARSE, OR WEIGHTED
LINEAR LEAST SQUARES PROBLEMS USING GIVENS TRANSFORMS

The method of "least-squares" is a universally-used procedure for the

fitting of model functions to observations. In practice, various problems

of storage capacity, accuracy, usefulness, efficiency, weighting, model up-

dating, and data editing may be encountered for specific applications. This
7

appendix describes a method based upon Givens transforms as modified and
8,9

presented by Gentleman which provides the following advantages:

1. It is as accurate as any other method.

2. It is as efficient as any other method in the dense matrix

case and has provided up to 70% time savings in practical

sparse-matrix cases.

3. Zeroes in the matrices are readily exploited in obvious ways

to reduce arithmetic cost.

4. Observations may be processed one at a time, relieving the need

for large data storage in computer core.

5. The model may be updated by the addition of new observations

without redoing previous calculations.

6. Data may be edited out of the model simply by updating with

negative weights.

The following is a brief synopsis of the method and its advantages as

taken from the papers of Gentleman.

If an nxl vector of observations y and an nxp design matrix X are

given, then the model linear least squares problem is to compute a pxl

vector of regression coefficients 8 so as to minimize the sum of the

squares of the elements of the nxl residual vector r defined by

r = y -X (B-l)
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The solution to this problem is well known to satisfy the normal equations

T T
X Xa = X Y. (B-2)

Direct numerical calculations of the cross-product matrix xTx, however, con-

sists of a sequence of operations which is particularly susceptible to

quantization error. This defect is overcome by decomposing X into an orthogonal

matrix Q and an upper triangular matrix R

X = QR (B-3)

such that the normal equations are transformed to

x X0 = RT Q TQRO = RT R = RT Q Ty (B-4)

or

R8 = QT (B-5)

This triangular system is solvable for a without forming the cross-product

matrix X TX, and with more accurate results.

A particularly useful way to decompose X and y into R and 8 is to

apply a sequence of Givens transfromations (plane rotations). A Givens

transformation rotating two row vectors

0 ... 0 ri ri+ 1 ... rk ...

0 ... x.. ...

replaces them with two new row vectors
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K|
.... 0 r!. r! ....

where 0 .... 0 0 X!+ .. x

where

r' = crk + Sxk

X = -srk + cXk

2 2
C + S = 1 (B-6)

The requirement that x. transforms to zero indicates1

/r 2
c' = r .

1 ic =ri/ i + i I

r2 2 r

s = x/ r x x. /r! (B-7)
1 V i 1

Successive applications of this procedure yield an upper triangular matrix

R and a transformed data vector 6, illustrated below for the case p 4.
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R 0

x x x x x

x x x x

x x x

x x

X

X x x x x

new X row new Y element

After R has been augmented by a new X row, it can be retriangularized by

rotating the new row secessively with the first, second, third, etc., row

of R until the entire new row of X has been transformed to zero. If the

now-transformed new y element is then rotated with the root residual sum of

squares, this residual is updated with whatever is left in the new y element

(i.e., residual between data and fit). The new X row and y element are now

transformed to zero and may be discarded.

As this process stands, it is rather expensive compared with some

other known decomposition techniques (e.g., Householder transformations),

but this is just an artifact of the way in which the method is expressed.

The trick to avoid square roots altogether and reduce the number of multi-

plications by one half is to find not R itself but rather a diagonal matrix

D and a unit upper triangular matrix R such that

R R 1/ 2  (B-8)
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Similarly, we have

S= / 2  (B-9)

and the solution for 8 is obtained from

R= (B-10)

which is at least an easy to solve as Equation B-5. Consider rotating a row

of D R with a scaled row of X (scaling is discussed later).

0 .... 0 ; .... r k ....
o .... 0 6 x... x ....

The transformed rows may be written

0 .... 0 , ...;,r-'..
0 .... 0o o .... X ....

where

d' = d + 6x 2

i

2
= d6 / (d + 6xi) = d / d'

2
c =d 6 (d + x) = d/ d'

kX. d /d
1

= - xirk

rk  = c rk +s (B-il)
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That is, the transformed rows can be expressed as a row of a new DI/2R and

a new scaled row of X, the scaling factor having changed. Storing D and R

takes no more space than storing R, and the updating formulae (B-11) not only

avoid the square roots of (B-6) and(B-7) but upon optimum manipulation,

require only half as many multiplications. The retriangularization can thus

be done as before, but more cheaply, as cheaply, in fact, as by any other

known method.

Although the scaling of the newly included row appears in the formulae

to avoid square roots, this actually generalizes the problem to the weighted

least squares case, in which not the sum of squares of elements of the residual

vector but a weighted sum of squares of these elements is to be minimized,

each row having its own weight. The answer to the weighted problem is obtained

if each row of X and y is multiplied by the square root of its weight, then

the problem solved as in the unweighted case. But this is exactly what

happens if the scale factor 6 for each row is initialized as the weight in-

stead of unity. In addition, observations are removed simply by reincluding

them with their previous weights negated.

Included below are FORTRAN algorithms as developed by Gentlemen 9 to

implement these least squares procedures. INCLUD accepts a new observation

and updates R and 6. REGRES may be called at any stage to give the current

solution . Algorithm COV, adapted from Lawson and Hanson, returns the

upper-triangular off-diagonal part of the solution covariance matrix in R

and the variance estimates for a in D. Also included below is a

test program to illustrate the use of these algorit-ms.
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1: C
2: C, ALGORITHM COV, ADAPTED FROM HANSON AND LAWSON, ISOCVING LEAST SQUARES
3: C PROBLEMS,' PRENTICEs-ALLP ENGLEWOOD CLIFFS# N. Jo (1974).

41 C
5: C GIVEN AN NwTH ORDER UPPER TRIANGULAR MATRIX R WHICH IS STORED SUCH THAT ARRAY
61 C 0 CONTAINS THE DIAGONAL ELEMENTS SQUARED AND ARRAY RBAR CONTAINS THE

71 C REMAINING UPPER TRIANGULAR ELEMENTS STORED ROWWISE AFTER DIVISION BY THE ROW
83 C DIAGONAL ELEMENT, ALGORITHM COV COMPUTES (Rt*-.)*(R.*.1)eeT WITH THE DIAGONA6
91 C ELEMENTS STORED ROWWISE IN D AND THE REMAINING UPPER TRIANGULAR ELEMENTS

101 C STORED ROWWISE IN RBARo
it; C

131 DIMENSION RBAR(I)s 0(1)

12: SURUIECV(aRA,0
IWI C
153 C INVERT THE UPPER TRIANGULAR MATRIX R ONTO ITSELF IN STORAGE*
16? DO 10 I.1tN
173 10 D(I) w 1./D()
1M? IF (N *EQ. 1) GO TO 90
19: NMleN-1
20! DO 30 Iu1,NMl
ellJ * (I-*(N.N-I)/2 * 

22: RBAR(IJ) a -RBAR(IJ)
23: IF (1+2 ,GT. N) GO TO WO
24: IP2,1+2
25: DO 30 .JIP2,N
26: IJ a (I-I)*(N+N-I)/2 * J - I
27: SM a -RBAR(IJ)
28 IP1.I.1
29: JMI-J-1
30: DO 20 LuIP1,JMI
31: IL - (I-I)*fN+N-I)/2 + L I
32? LJ a (L-I)*(N+N-L)/2 + J - L
33: 20 SM a SM - RBAR(IL).RBAR(LJ)
34: 30 RBAR(IJ) • SM
35: 4O CONTINUE
36: C
37% C FORM THE UPPER TRIANGULAR PART OF THE SYMMETRIC MATRIX (R...1)(Rbe.1)..T TO
35: C REPLACE Rt.-l IN STORAGE.

39: NMION-1
40: DO 80 IvsINPI
1: SM a DCI)

42: IPIDI+l
43? DO 50 LIPIAN
44? IL a (I-1)*(N+N.I)/2 + L v I

453 50 SM a SM * RBAR(IL)9RBAR(IL)*D(L)
46: rMp a SM
47: IPImI+I
48: DO 70 JIPlN

49: IJ a (I.I).(N+N.I)/2 + J - I

50 SM a RBAR(IJ)*O(J)
51: IF(J*1 *GT. N) GO TO 70
52: JP1-J.t
53? DO 60 LRJPIoN
54: IL w (t-I) (N*N-I)/2 + L " I
55: JL a (JtI1(N*N-J1/2 + L J 4
56: 60 SM a S4 + R6AR(IL)*RBAR(JL).C(L)
573 70 ROAR(i) a SM
551 80 OtI) TMP

59: C
60-1 90 RETURN
61: END
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2: C ALGORITHM REGRES SOLVES THE MATRIX EQUATION RBAROBETAmTHBAR FOR BETA FOR THE

3: C SPECIAL CASE Ik WHICH RBAR IS A PoTH ORDER UPPER.TRIANGULAR UNIT-DIAGONAL
Aet C MATRIX STORED ROWUISEo ONLY THE UPPEReTRIANGULAR OFF-DIAGONAL ELEMENTS ARE
5: C ACTUALLY STORED IN THE RBAR ARRAY. (SEE We M. GENTLEMAN# Jo INST9 MATH.

6: C APPLICS*o 12. 329-336 (1973) AND APPLe STATIST.* 23, 448-454 (1974))o
7: C
8: SUBROUTINE REGRES (Ps RBAR, THBAR, BETA)
9: DIMENSION RBAR(I), THBAR(1), BETAl)

101 INTEGER P
11s DO 10 JPIPP
12: 1 ap +to-J13: BETA(I) a THBAR(M)

j4: NR w Cr-1).iP.P.Z)/2 * 1
151 DO 10 KmI*1.P
16: BETA(I) * BETA(l) * RBAR(NR)*BETA(K)
171 10 NR * NR *I
181 RETURN
191 END
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is C
2: C GIVEN AN NXI VECTOR OF OBSERVATIONS Yo AN NXI VECTOR OF WEIGHTS Wo AND AN NXP
31 C DESIGN MATRIX X, THE MODEL LINEAR LEAST SQUARES PROBLEM IS TO COMPUTE THE PXI
4: C VECTOR OF REGRESSION COEFFICIENTS BETA SO AS TO MINIMIZE THE WEIGHTED SUM OF
5: C SQUARES SS OF THE ELEMENTS OF THE NXI RESIDUAL VECTOR Y-XeBETA. THIS MAY BE
6: C DONE BY FINDING THE DECOMPOSITION X*Q.Ro WHERE 0 IS ORTHOGONAL AND R UPPER
72 C TRIANGULAR# AND SOLVING THE EQUATION R*BETA.Q..T0YeTHETAo OR, MORE
3: : EFFICIENTLY, BY SOLVING THE RELATED EQUATION RBAROBETAYTHBAR, WHERE
92 C RD.**(1/2)*RBAR, THETAfD**(1/2)*THBAR, D IS DIAGONALs AND RBAR IS UPPER.
10: C TRIANGULAR UNIT-DIAGONAL. SUCESSIVE CALLS TO ALGORITHM INCLUD WITH A NEW Y
11: C ELEMENT , W ELEMENT# AND X ROW CALCULATES D, RBAR, THBAR, AND SS. Do RBAR,
12: C THBAR, AND SS SHOULD BE ZEROED PRIOR TI THE INITIAL CALL TO INCLUD.
13: C ALGORITHM REGRES MAY THEN BE CALLED TO FIND BETA AND ALGORITHM COY TO FIND
141 C THE BETA COVARIANCE MATRIX. (SEE w. Mo GENTLEMAN, Us INST. MATH. APPLICS.,
15: C 12t 329-336 (19732 AND APPL. STATIST. 23o 448-454 (1974))-
16: C
17: SUBROUTINE INCLUD(P, WVAL, X, YVAL, D, RBAR, THBAR, SS)
181 C
19: C INCLUDE UPDATES Do RBAR, THBAR AND SS BY THE INCLUSION OF X AND
201 C YVAL WITH THE SPECIFIED WEIGHT WVALe.
21: C
22: INTEGER P
23: DIMENSION X(c)i D(J), RBAR(1), THBAR(1)
241 W s WVAL
25: Y a YVAL
26: DO 20 IvliP
27: IF (W *EG 0.0) GO TO 9999
28: IF (X(I) *EQ 0.0) GO TO 20
29: XI P X(I;
30: DI P 0D()
31: DPI DI W*XIOXI
32: CBAR * DI/DPI
332 SBAR w*XI/DPI
34: W a CBAR*W
351 D(I) a DPI
36: xK w Y
37: Y a XK 9 XI.THBAR(I)
38: THBARCI) w CBAR.THBAR(I) 4 SBAR*XK
39: IF(I sEQ. P) GO TO 20
40: NR a (I.)*(P*P-I)/2 + 1
41: DO 10 K-I 1,P
421 XX * X(K)
43: X(K) a XK * XI*RBAR(NR)
441 RBAR(NRY * CBAR*RBAR(NR) * S$AR*XK
451 NR % NR + 1
461 20 CONTINUE
471 SS a S * WiY.y
481 9999 RETURN
491 END
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2: C TEST PROGRAM FOR 1LLUSTRATING THE USAGE OF ALGORITHMS INCLUDs REGRESs AND COy
31 C IN A LINEAR LEAST SQUARES PROBLEM.
4I C
51 C FIT A CUBIC TO DEPENDENT VARIABLE Y HAVING WEIGHTS W AS A FUNCTION OF
61 C INDEPENDENT VARIA5LE Ze
71 C

9: DIMENSION BETA(A2,X(Ab*D(4).THBAR(4),RBAR(6)
10: DATA Y/Ooo lop 3@j 6.,as 5.eSo If* as# 600 56/

12: DATA Z/0.' lop 2., 3os 4so So# 6.' 7 .s g.# 9o/
13: NY6IO

14: NP84
15: DO I jI#1NP
16- D(12.0.
17: 1 THSAR(I2.D.
Is.- NRBAQWNP*(NP.11/2
19: DO 2 Im1,NRBAR
20: a RBARCI)~o.
21: 95.0.
22! DO 3 l.1,NY
231 X(11014

24: X(22.ZdIl
25. X(3)mZUJ)002
26: X[42.ZCI1'*3
27: 3 CALL INCLUDcNPW(I),XYU)DRBARTH4BARosSS
283 CALL REGRES(NP#RBARPTIIBAR*BETA)
292 CALL COV(NPPRBARPDI
301 END
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