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During the period 6.1.78 - 5.31.79 I was mainly engaged with
E. Tadmor in extending previous work [1,2] to obtain new stability criteria
for a wide family of difference epproximations to hyperbolic initial-
boundary value probvleus in the quarter plane x > 0, t > 0.

In our work, [2], the approximated differentizl system is of the fora
u(x,t)/3t = Axx,t)/3x,

where A 1is & Hermitian nonsingular matrix, and the inflow and outflow
unknowis interact at the boundary. For the difference approximation we
consider arbitrary stable basic schemes ~-dissipative or nondissipative,
explicit or implicit--together with general boundary conditions which
determine the boundary valves in terms of outflow values of internzl
grid points.

Using the statility theory of Gustafsson, Kreiss and Sundstrom [4]
we show that the entire approximation is stable if and only if the scalar
component of its outflow part are stable. We thus reduce the overall
stebility question to that of a scalar outflow problem, and from this
point on our purpcse becomes to obtain easily crheckable, sufficient stabil-
ity criteria for the reduced outflow problems.

Our results in this vein are essentially independent of the basic
scheme and are given entirely in terms of the boundary conditions. Hence,

these results are much more convenient than traditional criteria which

involve the basic difference scheme as well as the boundary conditions.

As in [2], the main results are for the case where the outflow
boundary conditions are translatory, i.e., determined at all boundary
points by the same procedure. Roughly speaking, our results assure
overall stability if the boundary conditions satisfy certain properties
such as solvability and the von Neumann condition, plus a single inequality
in one unknown which is usually verified without much effort.

Using the new results, numerous examples were worked out. For example,
we show that if the basic scheme is dissipative (explicit or implicii) and
two time leveled, and if the outflow boundary values are determined dy
horizontsl extrapolation, then the overall approximation is statle (compare
[5, 1, 2].) Surprisingly, it iilghgwn ?hgt Phis result is false if Fh?.
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basic scheme is of more than two time levels; namely, outflow dissipative
multi-step basic schemes extrapolated horizontally at the tourndary, are
not always statle.

For multi-level dissipative basic schemes we show that if the boundary
conditions are generated for example by oblique extrapolation (compare [,
2]), by the Box-Scheme (compare [%,7]), or by the right-sided weighted
Euler scheme (compare [8]), then overall stability ic assured. For general
(dissipative or nondissipative) basic schemes we prove that if the boundary
conditions are defined by the right-sided explicit or implicit Euler schemes
(compare [i, 7, 2]), then the entire approximation is stable.

At present Tadmore and I are extending the abtove results tc the case

where the differential system is of the general form
du(x,t)/at = A3u(x,t)/3x + Bu(x,t) + F(x,t),

and where A 1is Hermitian, B an arbitrary matrix, and F a given inhomo-
genity vector. This is the most general case studied by Gustafsson, Kreiss

and Sundstrdm in [4]. We expect to complete this work by the summer of 1980.
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