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ABSTRACT

N
B The Doppler spectrum of radar return from the sea at HF contains two
narrow lines displaced upward and downward from the carrier frequency,
resulting from backscatter off ocean surface waves moving toward and away
from the radar, respectively. These Bragg lines indicate resonant back-
scatter which occurs for the ocean waves of length one-half the radio
wavelength. The phase velocity of these gravity waves consists of two
components; the first is determined by the wavelength and the second by
the current component in the direction of wave propagation averaged over
depth with an exponential weighting function that has a characteristic
scale proportional to the wavelength. The Doppler shift of the radar
carrier is determined by the wave phase velocity. Its variation with
carrier frequency is thus related to the vertical profile of the current
component in the radar direction by a Laplace transform; therein lies
the principle of radio measurement of ocean current and its vertical
shear.

Radioc backscatter experiments to verify the feasibility of such
measurements were conducted at—Pescadero-on-the..California .coast; using
the S&aﬂﬁgfé3Radar operating at four frequencies covering the range from
3 to 30 MHz. The depth-averaged radial current deduced from the centroid

of the Doppler-shifted sea echo #mrthe—JFamuary 1978, experiments at 6.8,
13.3, 21.7, and 29.8 MHz showed fluctuations on the order of\;bcm/sec
superimposed on temporal trends that reached maximum values g£{240 cm/
sec, Conigigigf,i?-situ measurements were obtained by tracking spar
buoys 1, 3, 6, and 12 m long, using a microwave ranging system. Both
radar- and buoy-inferred currents agree generally in their variation with
time and depth; the discrepancy between them was no larger than the dif-
ference in the currents measured by buoys deployed at different locations
within the same range cell, typically from a few to 10 cm/sec. Inversion
of the Laplace transform relating the radar-inferred Doppler velocity as
a function of frequency to the vertical profile of the current is achieved
numerically by seeking a solution that simultaneously minimizes a mean-
square error and a mean-square deviation from an initial estimate. Two
estimators of Bragg-line width based on the area of the spectral curve

and the second moment about its centroid, respectively, are applied to
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over 100 hours of radar data. The observed width in units of current is
found to vary in inverse proportion to frequency raised to a power of ap-
proximately 0.4. Its dependence on pulse width, range, and wind condi-

tions is significantly weaker.

2> It 1s cencluded that multifrequency backscatter ground-wave radar at

HF constitutes a powerful technique for mapping current and its vertical
profile in the top few meters of the ocean. Measurement resolution of a
few centimeters per second is attainable wigﬁ\ancoherent integration time
of ~15 minutes. Large areas of the ocean surface can be scanned by range

gating and beam forming, with grid resolution on the order of kilometers.
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Chapter I

INTRODUCTION

A. Motivation

This research investigates the feasibility of remotely monitoring
the ocean surface current and its vertical distribution using a four-fre-
quency pulsed radar operating in the High-Frequency (HF) region of 3 to
30 MHz. Both the theoretical and experimental aspects of this remote-
sensing technique will be studied in detail.

The term "current" as applied in this work refers to the bulk motion
of the water mass in the ocean. This motion is generated, in part, by
pressure and temperature differences and by tidal forces. It can also be
caused by local wind blowing over the sea surface, with the direct effect
of a wind-drag-generated shear currxent and the indirect effect of a wave-
drag-generated Stokes current [Wu, 1975]. Shear current is expected to
follow a logarithmic variation with depth, similar to the logarithmic wind
profile immediately above the sea surface [Bye, 1965; wWu, 1975]. Stokes
current is the result of nonlinearities in the dynamics of the wave, and
it decreases exponentially with depth [Phillips, 1966].

Measurements of current in the upper layers of the ocean are impor-
tant in the study of momentum and mass transfer across the air/sea inter-
face, and these processes significantly influence the global weather pat-
tern. Such measurements also have direct practical applications. For
example, to minimize the adverse effects of oil spills, the direction and
magnitude of the drift of these pollutants must be known. This drift is
partly the result of the underlying ocean current. Actually, any particle
that floats in the ocean waters will be advected by the bulk motion of
the water masses; some important examgles being fish larvae and food.

Conventional methods of current measurement rely on either moored
current meters or drifters. In the first measurement, the fluid velocity
at one fixed location is averaged over time which results in a Eulerian
estimate. The second measurement is Lagrangian in nature because each
drifter follows the mean drift of a group of water particles. When the
current field is not uniform over the ocean surface, a 1large number of

drifters or current meters must be deployed to obtain statistically
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significant measurements. The hostile sea environment renders such oper-
ations extremely difficult.

In the radio method, a radar is employed, covering distances up to
40 km. The ocean surface waves act as tracers, and their advection by
the underlying current is detectable by the radar. The radar-inferred
current is thus Lagrangian in nature. Operating with narrow pulses and
a small beam width, the spatial resolution of a given ocean-surface patch
illuminated by the radar is approximately 10 X 10 km. By range gating,
portions of the ocean surface at various radial distances from the radar
can be examined simultaneously. Concurrent coverage in the azimuthal
direction can be achieved by electronically steering the antenna beam
formed by an antenna array. After being proven feasible, this radio-

measurement technique can be of great utility to oceanographers.

B. Historical Background

Sea state here refers to ocean surface roughness. The ocean wave
slope at a given wavelength is commonly used as a perturbation parameter
in the analysis of both surface-wave dynamics and the scattering of radio
waves from the sea surface.

Since Crombie {1955] first identified the physical mechanism respon-
sible for the first-order HF sea echo, significant advances have been made
in the use of HF radar for the remote sensing of sea state. A closed-form
relation between the radar cross section and ocean wave-height spectrum
has been developed theoretically on the basis of perturbation analysis
[see, for example, Barrick, 1970; Barrick, 1972; Johnstone, 1975], and
the first-order results have been experimentally verified [Barrick et al,
1974; Teague et al, 1975)]. HF measurements of the wave-height directional
spectrum by a synthetic-aperture t<chnique [Tyler et al, 1974} and by in-
version of the second-order Doppler spectrum [Barrick, 1977a; Lipa, 1978}
compared favorably with in-situ buoy measurements. Mapping of wind fields
in the ocean at long ranges (a few thousand kilometers) by means of the
first-order Doppler spectrum has also proven possible [Long et al, 1973;
Barnum et al, 1977]. '

Use of the first-order sea echo to probe the ocean-surface current

depends on the fact that, in the absence of current, the echo Doppler
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spectrum consists of narrow lines symmetrically displaced from the radar

carrier frequency by a known amount. The observed small displacement of
the Bragg lines from the known position is attributed to current and is
referred to as current-induced Doppler frequency. Stewart and Joy [1974]
derived an integral relation between this measured Doppler fregquency at
any radar frequency and the actual ocean-current distribution with depth.
By simplifying the result to that for a linear current profile, they ob-
served that the measured current-induced Doppler frequency was egquivalent
to that produced by uniform ocean bulk motion at a velocity equal to the
actual nurrent at a depth of approximately 1/24 of the radio wavelength.
Based on this result, they obtained favorable comparisons between radar-
inferred ocean current and in-situ measurements by a parachute drogue.
Barrick et al [1976,1977b] described a current-mepping HF radar sys-
tem that measures the depth-averaged ocean current at one radar frequency.
They extended a novel approach of Crombie [1972] to measure the direction
of signal arrival by comparing the phases of the signal on adjacent re-
ceiving antennas. This method eliminates the need for a large antenna
array to obtain spatial resclution in the azimuthal direction. They have
been able to produce two-dimensional maps of radar-inferred ocean current
over a portion of the Gulf Stream [Barrick et al, 1977b] and at the lower

Cook Inlet in Alaska [Barrick, 1978a].

C. Contributions

The major contributions of this investigation are as follows:

* critical examination of the perturbation approach used by
Stewart and Joy [1974] to derive the ocean-wave dispersion
relationship in the presence of a current that varies with

depth; their first-order result is extended here to second
order for an exponential drift profile

* derivation of the first-order Bragg-scatter theory for a
pulsed monostatic radar, based on simple wave-propagation
concepts, to demonstrate the current-measuring capability
of backscatter radar and to investigate the limitations of
the radar technique in a straightforward manner

analysis of data collected at Pescadero on the California
coast in January 1978, using a four-frequency HF backscatter

e ——————
GebAE At ST i e

a1 s

WP RASTL o v AR AT L e Wt D E A 4R

;
3
i

5
: R
- E




radar to produce ocean-current estimates with a consistency
of a few centimeters per second, corresponding to an accu-
racy of typically a few percent

* deduction of the vertical profile of ocean current from the
radar data at four frequencies and comparison to the profile
estimated from in-situ drift measurements of spar buoys of
four different lengths, assuming that the profile is loga-
rithmic with depth; similar features in the deduced profiles
have been observed

*+ development of a stabilized numerical inversion algorithm
to obtain the vertical profile of ocean current from the
Doppler velocity measurements at four frequencies without
requiring the profile to be logarithmic in depth

*+ study of the behavior of the width of the Bragg lines based
on over 100 hours of data collected at Pescadero, using a
four-frequency HF backscatter radar, spanning a period of
four years
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D. Organijzation

Chapter II investigates the hydrodynamics of waves on an ocean cur-
rent that varies with depth. The ocean-wave dispersion relation is de-
rived, based on basic principles and the perturbation approach of Stewart
and Joy [1974]}. Their perturbation result is extended to second order
for an exponential current profile.

The concept of ocean-wave spectra is discussed in Chapter III. Vari-
ous definitions of the directional wave spectrum are examined and compare.d.

In Chapter 1V, the first-order Bragg scatter theory is derived, based
on simple wave-propagation concepts. The result is then used to consider
the effects of an ocean current that exhibits horizontal and vertical va-
riations.

Chapter V describes the Stanford four-frequency radar system and the
signal-processing procedure involved in producing Doppler spectra from the
radar data collected. A filtering scheme is developed to isolate the
first-order Bragg signal from the second-order effects and system noise.
Included is a discussion of possible system-introduced artifacts that are
shown to have negligible effects on the data. In-situ current measurements

obtaired by drifters are also described,
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The centroid estimator cf the current-induced Doppler velocity is
analyzed in Chapter VI. It is demonstrated that, under appropriate con-
ditions, the estimator produces an unbiased and consistent measure of the
ocean-current component in the direction of the radar averaged over depth
and over the radar range cell. The temporal characteristics of the aver-
aged current thus estimated will be examined from four days of data col-
lected at Pescadero in January 1978.

The problem of recovering the actual current distribution with depth

from the radar-inferred averaged current at the four radar frequencies is

studied in Chapter VII. A logarithmic current profile is assumed to fa-
cilitate comparisons between che radar-inferred and buoy-inferred profiles.

The instability problem in the numerical inversion of the integral equa-

o~ e st

tion needed to reconstruct the current profile from the radar-inferred
' depth~aver :d current is then examined; an algorithm constructed to re-~ :

1 solve this problem is computerized, and its performance is evaluated. :

o By

L Chapter VIII presents the estimated bandwidths of the Bragg lines
for the entire set of radar data obtained from May 1975 through January

1978. The behavior of the observed width as a function of radar frequency
and pulsewidth, range from radar, and wind speed and direction is studied
to achieve an understanding of the underlying causes of the finite Bragg

width.

AR LS AR PRI A

Chapter IX is a summary of the results of this work, and areas for
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Chapter II

PHASE VELOCITY OF FIRST-ORDER OCEAN GRAVITY WAVES IN
THE PRESENCE OF OCEAN CURRENTS WITH VERTICAL SHEAR

As will be demonstrated in Chapter IV, HF radars can detect ocean
surface waves having wavelengths from a few meters to a few tens of me-
ters. The characteristics of these waves are not significantly controlled
by capillary forces; their natural modes are determined only by gravity
and, for this reason, they are called "gravity waves."

This investigation is concerned primarily with graviiy waves whose
average height h (the height from crest to trough) is small compared
to their length L (crest-to-crest distance), especially those with
longer wavelengths because waves over a few meters high are not frequently
encountered. Ocean waves also break if h/L is larger than approximately
1/7 [Kinsman, 1965]. The discussion in this chapter, therefore, is lim-
ited to first-order waves, and all terms higher than first order in h/L
are neglected in the mathematical derivations to follow. Consequently,
the resulting equations are linear in the wave-perturbed quantities so
that the individual plane waves (called long-crested waves) can be con-
sidered. Only the effects of perturbations that have a single horizontal
wave-number vector Xk and one radian frequency w need be investigated.

This analysis is limited to deep-water waves. Because the ocean
depth is assumed to be much larger than the wavelength L of interest,
the ocean bottom is considered to be infinitely far away from the air/sea
interface.

The terms "fluid element" and "water particle" are used interchange-
ably. A fluid element is a volume element small enough to be considered
a particle and is large enough to contain sufficient molecules so that
the concepts of local density and local pressure are applicable.

Wind is one of the dominant forces that generates ocean waves. The
emphasis of this study, however, is not focused on the wave-generation
mechanisms but on the natural modes of gravity waves. On the other hand,
understanding of the wind generation of waves depends on the measurements
of relevant ocean parameters, among which is the wind-produced current
shear in the upper layers of the ocean. A mean horizontal current U(z)

is assumed to exist in the surface layers--produced by wind drag or
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otherwise. Herxe, 2z is the positive vertical axis, where z = 0 rep-
It will be demonstrated in

resents the mean sea surface (see Fig. 2.1).

Section A that only the component of current in the direction of wave
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propagation will influence the wave phase velocity.
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In the following calculations, U is assumed to be constant in time

X
£

t and in the horizontal coordinates (x,y). The results obtained under

this assumption are valid for a wave period short compared to the actual
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time scale of the ocean-current variation and for a wavelength small com-

pared to the scale length of the ocean-current variation.

Viscous effects are neglected; they are important only when the Rey-
nolds number R is comparable to or smaller than 50 (R = UL/V, where
U 1is a representative fluid velocity, L 1is a representative spatial
scale, and VvV 1is the kinematic viscosity). For water, R is very large

compared to unity in most flow systems of importance [Batchelor, 1970].

Based on the above assumptions, the expression for the ocean-wave
phase velocity c¢ is derived in the following section in terms of the
wave number k and ocean current U. Beginning with the equation of

motion, the inviscid Orr~-Sommerfeld equation for the vertical component




of the wave-induced fluid velocity will be derived. Boundary conditions
at the free surface will be linearized, and then a solution is obtained
for the case where the vertical profile of the ocean current is linear.
The problem of relating the wave phase velocity to a general current pro-
file is solved by a perturbation approach wherein the current profile is

assumed to have a small vertical shear.

A, Derivation of the Orr-Sommerfeld Equation

The restoring forces on gravity-wave systems are pressure gradients

and gravitational pull. The equation of motion for each water particle

is
vp
é%-gT = - —Ez-- V(gz) (2.1)

where

Vo = fluid velocity in an inertial frame

PT = scalar pressure in the water

g = gravitational acceleration

p = water density

V = vector gradient

z = vertical Cartesian coordinate of the water particle

Note that these restoring forces are all irrotational. The equation of

motion yields the following form when the curl of both sides is taken:

Vx(c{it ‘-’T) =0 (2.2)

Because YT describes the spatial velocity distribution in the water,

acceleration of the particle is

a P
v_ o+ (YT « V) Vir (2.3)
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The second term results from acceleration caused by the migration of

water particles to a region cf higher fluid velocity.

The velocity field can be separated into two additive parts--a con-

tribution U that is time independent and a contribution

not; therefore,

where U

or mean water drift.

v, = U+ v

-7

v

that is

is the time-averaged fluid velocity to be called ocean current

This discussion is also limited to ocean currents

of such large horizontal scales that their local variations in the x,y

directions are negligible and, as a result,

P_(XIY'Z)

= U(z)

The remaining contribution i is the wave-induced perturkation in

the fluid velocity decomposed into plane-wave components,

where

€ |=
I i}

I
It

e
It

v

io(z) exp[i(E_- r -~ wt)]

(2.4)

horizontal wave-number vector of a specific plane wave

radian frequency of the plane wave

horizontal vector xX+ y¥,
the x,y directions, respectively

V-1

where X,¥ are the unit vectors in

Here, the averaged wave height is small compared to wavelength so that

the terms in Eg. (2.2) of a higher order than Vv can be neglected.

cause this assumption linearizes Egs.

(2.2) and (2.3), the plane-wave

components can be considered individually.

In this section, the x coordinate axis is chosen to lie parallel

to the direction of the ocean current and, assuming purely horizontal

current,

v

2y
4

(2.5)
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where u,v,w are the three Cartesian components of §: After some alge-

braic manipulation, the linearized version of Eq. (2.2) is

-k U Vxv = (kv + fu’ (k - U") - if(wU" + w'U') - 2(k - §) wU'

(2.6)

where the primes indicate differentiation with respect to the vertical

coordinate z. This vector equation -ontains three scalar components,

and only two are independent. For convenience, the x end vy compc ~

nents are chosen,
(W-k Uk w-v'") +k U'v=20 (2.7a)
X V% X

(w=-k (' - ik w) -~ k U'u + i(wl" + w'U’) = 0 (2.7b)
X X X

where kx'ky are the components ¢f k in the x,y directions, respec-
tively.

The continuity condition is that the rate of change of density within
an infinitesimal volune rmust ke balanced by the net incoming mass flow,

and this condition is expressed as

which can be rewritten as

dp

— . =

ac tVYp Ty
where dp/dt is the rate of change of density of a fluid element moving
with the water particles. Because the fluid is essentially incompressible
under motions induced by gravity waves of decameter wavelength, tlis rate

of change is zero which results in the incompressibility condition,

The second part of this equation is a result of the assumption that the

current U is horizontal and varies with depth only. For each plane-wave
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ccmponent with wave number k = (kx,ky), the above incompressibility

condition can be expressed as
~ik u =ik v + w' {(2.8)
X Yy

Note that this is the continuity equation for incompressible fluid, used

here to eliminate U and U' from Egs. (2.7). After straightforward

manipulations,
k U'v
ikw-v +-2—=0 (2.9a)
y A
ik (k U'vw) k B“w
ik v' o+ w" - kw - —LX + X2 — =0 (2.9b)
y pY; A A

where A = w-—ka.
Equation (2.9a) is now multiplied by iky and the result is added
to Eq. (2.9b). Trhe resulting second-order differential equation for the

vertical component of the wave-induced velocity perturbation is

2

k Ull
X '} w=o0 (2.10)

" .. AN
whot w-X%kxU
b4

Because U and the % axis are parallel,

kU=%k .U
x > X

and Eg. (2.10) can be rewritten as

(E N E) "

w" + m -k w=20 (2.11)

which is a form of the Orr-Sommerfeld equation for inviscid fluid. Be-
cause the scalar product is invariant under coordinate rotation, it can
be concluded that, for an arbitrary ocean-current direction in the hori-

zontal plane, this equation is still valid. It should be noted that only
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the component of the mean horizontal drift in the direction of wave
prcpagation affects the coefficients of Eq. (2.11), which implies that
the ocean-wave dispersion relation w=w(k) 1is independent of currents
orthogonal to the propagation direction. It is thus possible to align
the wave-number vector k with one of the horizontal axes and reduce the

wave-propagation problem to two dimensions; such a reduction is attrib-
uted to Squires [1933].

B. Boundary Conditions at the Free Surface ‘

The dynamic boundary at the ocean surface can be determined by exam- i
ining the vertical component of Eq. (2.1). Based on the assumption of
purely horizontal mean drift with only a vertical gradient, this compo-

nent simplifies to ]

)
~ = L_ T
Siw-k D ws-S52-g (2.12)

for each plane wave.

The pressure PT can be separated into two components,

where Po is the hydrostatic pressure in the absence of waves, and Pl
is the dyramic pressure induced by surface waves. The zeroth-order com-

ponent of Eq. (2.12), therefore, is

Po(z) = Pa ~ Ppgz

where 2z is measured from the mean sea surface (positive upward), and
Pa is the atmospheric pressure considered here as an ambient condition
because no attempt is made to analyze the generation of waves by wind
turbulence,

The first-order component can be obtained by multiplying each side

of Egq. (2.12) by n which is the surface height above the mean level

z = 0 (see Fig. 2.2) and dropping terms nonlinear in the wave-perturbed
quantities. The result is
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Pl = pgn (2.13)
z=0

which is the dynamic condition at the free surface z =17, where n is
assumed to be small enough for the vertical pressure gradient to be ap-
proximated linearly as

Pressure is continuous at the interface =z

N. Because no wind/sea in-

teraction is assumed, there is no first-order pressure at the surface.

SEA
SURFACE

2=
z=0 \\\‘_’//7//’—A=:E

Fig. 2.2. SEA SURFACE IN THE PLANE OF
WAVE PROPAGATION.

The second condition at the air/sea interface is the restriction of
an unbroken surface. If 2z describes the vertical coordinate of a water

particle, this condition can be stated [see Lamb, 1932] as

d _
[ag (z - n)] =0
z=n

Now, dz/dt is the vertical particle velocity w. This condition indi-
cates that the vertical velocity of any particle at the surface equals

the vertical velocity of the surface seen by the same particle,

wl,oo = -i[w -k - L] n
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This is called the kinermatic boundary condition wherein the terms nonlin-

ear in the wave-perturbed quantities have been dropped. Combining the

dynamic and kinematic conditions to eliminate the surface~height variable

N results in

mif -k - u@ 2| = pgu]

z=0

The x component in Eq. (2.1) is now used to eliminate the dynamic pres-

sure Pl. After some straightforward algebra,

-ifw-k- 9(0)]2 ul_o * v, 0 v (O [w-k-U@] = gk _w (2.15)

0 2= z2=0
For simplicity, the x axis is now chosen to lie parallel to the
wave-number vector k. The component of ocean current in the x direc-
tion is denoted by Ux'
The continuity equation for incompressible fluid [Eg. (2.8)] requires
that

iku = -w!

which, when substituted into (2.15), obtains the linearized boundary con-

dition at the free surface,

J2 . _ = k2
[m-ka(O)] w |z=0 + ka(O)[w ka(O)] w|Z=0 = gk'w| _, (2.16)

c. Wave Phase Velocity Determined from Solutions of the Orr-Sommerfeld
Equation

The phase velocity c¢ of the ocean surface wave with wave number k

and radian frequency w is

c=2
k

As in Section B, k is in the positive x direction and Ux is the x

camponent of the total current vector. The Orr-Sommerfeld equation [Eq.

(2.11)] for the vertical component w of the wave-induced particle mo-
tion can now be written as
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where the double primes indicate differentiation with respect to the dis-

. tance 2z above the mean sea level. The linearized boundary condition as

| defined in Egq. (2.16) is now

2 t
- + U -u
(c Ux ) wO Uxo(c Lx

0 ) Wy = 9w (2.18)

0 0
where 0 denotes evaluation at the mean sea level 2z = 0.
Equations (2.17) and (2.18) are solved below for the following cases.
It should be noted that, in cases 1 and 2, U; = 0 so that the solution :

to the Orr-Sommerfeld equation [(2.17)] is

B BRI Y eaRa n rs Y

. ; w = a exp(kz) (2.19)
' |
; : because w = 0 at the rigid ocean bottom 2z = -, §
; ; '
i x Case 1l: A Constant Current Profile Ux(z) = UO.
In this case, an expression is obtained for wave phase velocity cO ;
! :
; i in the absence of current, and the intuitively obvious Doppler shift in
! the phase velocity in the presence of a uniform current is introduced.
Based on the solution in Eg. (2.19), the linearized boundary condi- 3
tion becomes ;
2 g ;
c-— = = 3
( UO) X (2.20) i
If there is no mean drift, the gravity wave with wave number k has a 3
phase velocitv of
g 1/2 ]
= * .
c <, é (k) (2.21a) .

where + and - indicate waves propagating in the positive and negative x

directions, respectively.
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In the presence of a uniform horizontal drift U_., the wave radian

frequency is Doppler shifted by an amount equal to kUO-—a result obtain-
able from (2.20),

= + .
c co + UO (2.21b)

When waves move with the ocean current, the sum of c0 and U is ob-

served and, when they move opposite to the ocean current, the difference

of c0 and Uo is observed.

Case 2: A Linear Current Profile Ux(z) = U0 + (Ul/l) Z.

This is the only profile that yields an exact expression for the wave
velocity c.
Again, Egq. (2.19) is the general solution to the Orr-Sommerfeld equa-

tion. The boundary condition [(2.18)] reduces to the quadratic equation,

U
2 1 2
(c ~ UO) + ) (c - UO) - (CO) =
whose solution is
1/2
l 2
c = Uo - 2 (1 + s ) (2.22)

where s = [1/(2kQ)] - Ul/cO = [U;/(cho)].
If the term quadratic in Ul/cO is neglected, the result is identi-

cal to that obtained by Stewart and Joy [1974] who observed that the dif-

ference between ¢ and the still-water phase velocity c¢_ is the value

o]
of the current at depth 1/2k below the mean sea level. If the quadratic

term is dropped, the magnitude of this difference is the same for waves
propagating upstream and downstream relative to the current. Equation

{2.22) indicates that, for waves propagating downstream, this difference
is

1/2

2
§ =u +c. {1l +s -c
+ b'e z=-1/(2k) 0( ) 0

- f.n- .
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and, for waves propagating upstream, it is

1/2
§_=uU - co(l + sz> - (—co)
*1.1/(2x)
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Waves propagating downstream, therefore, are Doppler shifted more than

re i koS g T .

those propagating upstream by an amount A (rad/sec),

B Lot

172
b=k(, -6 = 2ke, {(1 +s ) - 1] (2.23)

Because the quadratic term in Eq. (2.22) always adds to c the waves

OI

are speeded up by that term.

Case 3: General Current Profile in the Weak-Interaction Regime.

In this case, the maximum magnitudes of Ux/co, U;/kc and U;/

OI
kzcO are all on the order of € where 0 £ € << 1. Following Stewart
and Joy [1974], the perturbation approach is adopted. Their first-order

result will be confirmed by the following independent derivations, and a

et b S R B T R S AN oA A IV 53 s ocra e 58 ot T2 e

second-order result will be obtained for an exponential profile.

Equation (2.17) will now be solved by perturbation expansion. Only
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cases are considered where the maximum magnitudes of Ux' U;/k, and U;/

RE:

%

2 . -
k are small compared to the wave phase velocity C, in the absence oif

current. The perturbation expansions for the phase velocity ¢ and for

A

it _12..1.%:-.'5‘3

the vertical component w of the wave-induced particle velocity are

c = c(O) + C(l) + C(z) + ...

S g g. &WE,‘ e

w = W(O) +W(l) +W(2) + ...

o
Y
At

and the perturbation parameter is

€ = max |r| 0<e<1

where r = Ux/co.
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The n h derivative of U 1s assumed to

kn€c0. Writing P, = c(l)

can be expressed as

2

have a magnitude of order

/¢qr with po =1, Egs. (2.17) and (2.18)

w' -k w= -r"[l - (pl -r) + ...] w (2.24a)

with the condition that

2
[l+ (pl—r) +p2+ ...] w'

+ r'[l + (pl-r)] w = kw (2.24b)

To first order in <€, Egs. (2.24) simplify to

L2

with the condition that

[ a): (1)

-EN ~ kw

= ~r"a exp(kz) (2.25a)

+ (r' - 2kr) a]

at

7ka (2,25b)

z = 0. The second-crder terms can be simitarly extracted:

W(2)" N k2w(2) = " [(pl -r) a exp(kz) - w(l)] (2.26a)

with the condition at 2z = 0 that

»[w(z)'-kw(z) + 2(pl-r) w(l)' + r'w(l) + ka(pl-'r)2 + ar'(Pl"r)J

Py, ==

First-Order Solutions

The general solution to Eq. (2.25a) is the sum of the complementary
solution 4 exp(kz) and the particular solution w(L)(z\

19
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(2.26b)

'\, where 4 is
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an arbitrary constant. The solution proportional to exp{-kz) is re-
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jected because it diverges at 2 = -, The particular solution can be

written as f
1
Wé ) = b(z) a exp(-kz) (2.27)

This is substituted into Eq. (2.25a) to arrive at the following differ-

ential equation for b(z):

b" - 2kb' - r" exp(2kz) = 0 !

whose solution

prap

b' = r' exp(2kz)

LONROPAE Ak 2 e

can be obtained by inspection.

The first-order solution to the Orr-Sommerfeld equation is

w(l) U}'{ (z)

z
= d exp(kz) - a exp(-kz) JF exp (2kz) dz
-00

o

The first term will not affect the first-order phase velocity c¢. Direct

substitution of the above expression for w(l) into the boundary condi- :

tion in Eq. (2.25a) yields

(1) 0
c = UxO - .f U;(z) exp(2kz) dz

-00

Alternately, after integration by parts,

(1) 0
c = ZkJ‘ Ux(z) exp(2kz) dz (2.28)

-00

which is the same result obtained by Stewart and Joy [1974] except that
their final result has misplaced parentheses and their U is the norma-
lized current r.

It can be concluded that the current-induced Doppler velocity is the

ocean-current component Ux averaged over depth with exp(2kz) as the
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weighting function. The integral in Eq.

(2.28) can also be interpreted

as a Laplace transform evaluated on the real axis. These observations

will be used to extract ocean-current and current-shear information from
HF backscatter data.

Second-Order Solutions

Because the general solution to Eg. (2.25b) is complicated and dif-

ficult, only a special case is presented to illustrate the method and
provide an interesting result.

A current profile

Ux(z) = U_ exp(mz)

0

decaying with depth and with a scale length of m-l

is assumed. After

much algebra,

2kU
0

2 k
0] * 2k + m

m+ k

cC =cC

c
+ ?? s (2.29)

where s = (UO/CO) -m/(2k+m), which is valid for waves propagating in

the direction of Uq (downstream) .

For waves propagating upstream, c0

is replaced by ~Cor and the phase velocity of these waves is

2kU0

e 4O 2k
07 2k +m

m+ k

“upstream

_ %0
2S

To verify this result, consider the case where the magnitude of m

is much smaller than k; in other words, the current profile varies

slowly (on the order of one wavelength) on the spatial scale. This pro-
file and the phase velocity can then he approximated by a Taylor series

expansion, thus yielding

c=U] ico(l—!-lsz)

v Ce

2.30
z=-1/(2k) 2 (2.30)
where s = U' 2kc ).
| =0/ (2ke,)
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For a linear current profile, Eg. (2.22) is an exact expression for
phase velocity c¢. If the square-root term is expanded, the result will

agree with Eq. (2.30) to order 52.

D. Summary

Still-water phase velocity of ocean surface waves of decameter wave-

c, = ;ﬁ% (2.31)

where g 1is gravitational acceleration and k is the wave number. The

iength has been shown to be

+ and - indicate propagation along the positive and negative x axes, re-

spectively (the x axis is aligned with the wave-number vector k).

In the presence of a uniform horizontal current whose component in
the directicn of the x axis is Uo, the waves are Doppler shifted so

that the phase velocity becomes

T Ak s Te <4+ an

(p]
]
&
+
(=}

'

When ocean current U varies linearly with depth, ¢ becomes

(172
c =10 + co(l + s )
Xlp=v1/(2k)

where s = U;/(2kc0). Here, Ux denotes the current component in the x
direction and Ué is its derivative with dept!. The signs are associated
with the propagation direction with respect to the x axis.

Comparison of the second-order solution [Eq. (2.30)] to the above
exact expression for c¢ (for linear U) suggests a scale length L*

where

2 -

(2.32) -

h
2
=]

for checking the validity of the perturbation approach. Here, min in-
dicates the minimum over an effective depth on the order of L. To

first order in 2*/L,

22
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0
. c = ico + 2k -{ Ux(z) exp(2kz) dz (2.33)
o0

which, from the definition of ¢, can be expressed in terms of the tem-

poral fregquency of oscillation £ = w/{27m). As a result,
K 0
= * — 34
f fB + [2ﬂ] 2k ‘[w Ux(z) exp(2kz) dz (2.34)
where
ke 1/2
T d
B 27 2%

is the frequency of oscillation of the ocean surface wave in the absence
of current. :
Roughly speaking, the effective Doppler shift is caused by current

in the uppermost ocean layer having a thickness on the order of one wave-

PRI

length, which is evident in the exponential weighting factor exp(2kz).
The requirements of incompressibility and continuity demand a divergence-
free wave-induced velccity field for the fluid. Because this velocity

field has a horizontal scale of variation equal to the wavelength L, its

&8 o Sine

vertical scale of variat.on must also be equal to L. This being true,

it is influenced by the ocean current within a depth cn the order of one
wavelength.

The ocean-current magnitudes encountered in this investigation are,
at most, approximately 40 cm/sec, and still-water wave phase velocity is
at least 280 m/sec. This implies that the effective scale length defined

in Eq. (2.31) is much larger than the vertical scale of variation of U(z).

‘ A
e L R A L S e g

As a result, the effects to second order in £*/L car be igrored in most

cases.
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Chapter III

STATISTICAL DESCRIPTION OF OCEAN WAVES

The purpose of this chapter is threefold: first, to discuss the
statistical nature of the ocean waves and the associated statistical
estimation problem, second, to introduce the concept of directional
spectra and, third, to compare their various definitions. The first
two are of direct relevance to this work; the third, however, requires
clarification and should be useful as a reference for radio oceanogra-
phers.

The highly irregular nature of the ocean surface makes detailed

measurements difficult to obtain. The standard approach is to model

the irregular temporal and spatial variations of any relevant quantity
pertaining to surface motion as realizations of an ergodic random pro-
cess. The ensemble average of a function of this quantity can be as-
- ymptotically approached by averaging the function over an increasing
number of time and space samples.
e The quantity of special interest is the long-crested wave compo-

nent A(k,w) of ocean-surface motion selected by the Bragg-scattering

b R e G b e e -

mechanism. If TN 1is the elevation of the surface above the mean sea

level z = 0, then

1 3 7
Alk,w) = (ﬁ) JI( dr 4t n(r,t) exp[i(l_<_ - r - wt)] (3.1) i
-0

where
k = wave-number vector
w = wave radian frequency
r = horizontal spatial vector defining the spatial location of any
surface element
t = time
This is a divergent integral, and the problem can be resolved by using o

the Dirac delta function. Note that, in practice, A(k,w) is a quan-

tity that cannot be determined exactly because measurements of n for -
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all temporal and sp. >. points are not available; at best, only a close

estimate of A(k,w) can be obtained.

Section A reviews the problems of spectral estimaticn and the rela-~
tionship between ensemble and actual averaging. The Wiener-Khinchin the-
orem is derived in Section B, and various power spectra used by oceanog-

raphers and radio oceanographers are c~mpared.

A. Practical Spectral Estimation

According to Eqg. (3.1l), it is not possible to measure A{X,w). This
long-crested wave component can be estimated, nowever, by observing the
surface elevation N over finite time duration T and finite spatial
extent L.

Without neglecting any salient characteristics of the problem, this

discussion is limited to a time series s(t) whose finite~time transform

at time T and frequency f is

T/2
gff,T) = 5; s{t + T) w(t) exp(-i2mft) dt (3.2)
-T/2

where w(t) is a window function that can be chosen to best fit this

finite~time transform to the theoretical transform

o

s(t) exp(-i2mft) dt (3.3)

"
N

S(£f)

Harris [1978] has reviewed the many cho’zes of w(t}. In the discussion
here, a rectangular window has been selected with widcth T, height

unity, and centered at t = 0, and Eq. (3.2) reduces to

. 1 T/2
S(f,1) = > s(t + T) exp(~-i2mwft) dt (3.4)
-T/2

Because tne phase of the signal s(t) is not known a priori, the
above Fourier-transform kernel does not adjust itself as d..fferent seg-
ments of the signal are examined. There are the following two major dif-

ferences between the theoretical transform (3.3) and its estimate (3.4).
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The rectangular time window leads to a transform that is
the convolution of the theoreticel transform and sin (WfT)/
(£7) whose first zeros are separated by 2/T.

* The estimate can be time-dependent.

To obtain average values of any function F(§) of the estimate §,
§ and F are computed for various values of T (T = nTa, n=20,1,...,
N~1), and the average is then taken. A function of S most commonly
used is its squared magnitude (power spectrum) and, to simplify the £fol-
lowing derivations, the function F 1is assumed to be S itself. writ-

ing the average value as S(f),

N-1
_ 1 1 T/2
S(f) = 1 z > f s{t + nT ) exp{-i27wft) 4t (3.5)
n=0 ~T/2 a

Bringing the summation sign through the integral, it is apparent that
averaging over S 1s equivalent to averaging ove: the time signal

+nT
s(t+n a),

T/2

S(f) = Elv?f s(t) exp(-i2mft: dt (3.6)
—r/2
where
N-1
_(t)—-l-z (t + nT )
S = N S n a

=0

It can be shown that the averaging process is equivalent to passing s(t)

through a filter with a transfer function H(f) such that

. 2

5 1 sin (ﬂfNTa)
D " = 5 —5——=
N~ sin™ (WET.)

a

and this filter function is illustrated in Fig. 3.l1. If the average sam-
pling time Ta is small so that the sampling rate is higher than twice
the bandwidth of the signal, this discrete averaging process is equiva-~

lent to passing the signal through a lowpass filter of width l/NTa.
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Fig. 3.1. MAGNITUDE SQUARED OF FILTER FUNCTION VS
NORMALIZED FREQUENCY fTa.

Statistically, the average over discrete sampies is a maximum-like-
lihood estimator of the ensemble mean if these samples are obtained from
a population with a gaussian distribution. If N is large enough for :
the confidence level to exceed the requirements, this estimator is con-
sidered the ensemble mean and is denoted by angular brackets ( ). Ap-

plying this operator to Eg. (3.4), -

144 e AN T S NN o >

S ACRNY SAW mEm e T

72
Ei,.n) = Eff {s(t + 1)) exp(-i2mft) at (3.7)
-T/2

PLE S L et

because s(t) is the random process. Note the similarity between the
S time-average operator (denoted by the overbar) in Eq. (3.6) and the en-
semble-average operator in Egq. (3.7). Both operate solely on the random
process s(t).

The above discussions have considered the problem of estimating the

ensemble mean in practice. In the following analysis, the statistical

approach is adopted for convenience.

RS B. Relationships among Various Power Spectra Used by Radio
Oceanographers .

In this section, the Wiener-Khinchin theorem is derived in a heuris-

tic manner, based on the following assumptions.
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* The random process Tn(r,t) has an ensemble mean h that
is time-independent and spatially uniform. For conveni-

ence, the coordinate system is adjusted so that this mean
value is =zero.

 The autocovariance function defined by

Cg(.r_lltl;EZItz) =<[r‘.(£_l:tl) - h][ﬂ(£2,t2) - h]>

{nzy ) niz,ep)

is invariant under time and space translation; that is,

Cg(g bzt = ClL

1757 ..t - t.)

1 T ') 2

These assumptions in the time (space) domain restrict the following con-
siderations to processes that are stationary (homogeneous) at least to
second order, and a power spectrum proportional to the mean-squared spec-
tral amplitude will be related to the autocovariance function of this
process.

Note that the first assumption implies that the spectral amplitude

defined by A(k,w) is also zero mean,

Atw) =0
The covariance of spectral amplitudes at points (k,w) and (k',w') is
thus
(Alk,w) A*(k',0"))
1\ (”
= (E) f drdtdr'dt' C(r-x',t-t') exp[itk-r-k'-r')-i(wt-w't))
-0

where the single integral represents the sixfold integral and the * indi-
cates a complex conjugate. The variable set (r,r’',t,t') is now trans-

formed to (r,p,t,T) where p=r-r' and T =t-t'. Recall that

29
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w
JA dt exp(*iwt) = 28 (w)

o0

where 6(w) is the Dirac delta function. This integral is only conver-
gent in the sense of a Cesaro limit, and the delta function has a symbolic
meaning, as discussed by Born and Wolf [1975]. Based on this relation-

ship, the covariance function above reduces to

(Alk,w) A*(K',0")

3 -]
= (2—117) J ap at ¢/p,1) expfitk - p - wD)] 8k - k') S(w - w')

It has been demonstrated, therefore, that spectral amplitudes at
different wave numbers or frequencies are uncorrelated. This result as

applied to a wide-sense stationary time series has been discussed in de-~

tail by Helstrom (1960]. A power spectrum P(k,w) is now defined by

P(k,w) 8(k - k") 6w~ w') = (A(_l_c_,w) A* (k' ,g')) (3.8)
frewm which
1\ (°
P(k,w) = (:,;) J dp dt c(p,1) expi(k - p - wD)] (3.9)

is obtained. This is the Wiener-Khinchin theorem wherein the power spec-
trum defined by Eq. (3.8) is the Fourier transform of the autocovariance
function of the homogeneous and stationary process. From the inverse re-
lation, the mean-squared height H2 of the ocean surface is determined

to be

oo

e = f dk dw P (k,w) (3.10)
-0

From the definition in Eq. (3.8), the power spectrum is positive real.

In addition, because the autocovariance function is real, it follows that

P(k,w) = P(-k,~w) (3.11)
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For first-order gravity waves in deep still water, the dispersion

relation has only two roots [Eq. (2.21a)],

so that the frequency dependence in the power spectrum P can be removed,
and a wave-height directional spectrum S(k) can be gererated. Because
there is no unique definition of s(k), however, various definitions
found in the literature are presented in sufficient detail for direct
comparisons.

As a result of the pioneering work of Rice [1951] on scattering from
random surfaces, a direct extension of his original wave-number spectrum
W(k) to include an added time dimension is frequently encountered. Be-
cause his spectrum is a Fourier analysis in space only, the complex-con-

jugate relation (3.11) reduces to

W(k) = W(-k) (3.12)

Mt A

Generally, P(k,w) is not symmetric about either of the two wave-number

axes ﬁx and ﬁy. To generate a directional spectrum that obeys Eg.

[L O

(3.12), it is necessary to add P to its mirror image about the origin

H
s
.
3
i
H
H
i
:
g

of the wave-number axes. The new directional spectrum Srl(E)’ there-

fore, is

P(-k,w) + P(k,w) =

o=

s, &) [G(w - wp)) + Slw + wBO)] (3.13)

The factor preceding Srl(E) is required so as to conform with the nor-

malization relation that Rice adopted,

o
2 1
B = 5 Lo dk s_, (k) (3.14)

which can be verified by substituting Eqg. (3.13) into (3.10).
To depict the various directional spectra simply, the following ideal =
sea conditions are assumed. A group of wave trains with a narrow spread

in wavelength is propagating in the +x direction while another group with

a lower energy density and a smaller spread in wavelength is propagating

31 %
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in the -x direction. The exact dependence on wave number k is assumed
to be triangular--an abrupt cutcff at the lower wave-number limii and a
linear rolloff from there to the higher wave-number limit. The directional

spectrum Sr (k) along the kx axis, illustrated in Fig. 3.2, describes

N .

Fig. 3.2. DIRECTIONAL WAVE-HEIGHT SPECTRUM
Sy1(k) FOR IDEAL SEA CONDITIONS. The
directional spectrum Sgj (k) is shown
only in the (kx,O) plane.

1
the ideal sea.
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The inverse relation can be obtained from Eq. (3.13) as .

POy ) o+ POt ) Moo= 3 S () (3.15)
by integrating over a narrow region in the frequency domain centered at
w = wBO' The choice of Aw (the infinitesimal frequency interval over
which P is constant) is determined by the limiting function from which
the delta function is derived. In comparison to a Fourier series in the
limit of infinite period T, Aw should be 271/T. From Egs. (3.11) and
(3.15),

k) = -k .
Srl(_) Srl( k) (3.16)
which is in accordance with Rice's constraint [Eq. (3.12)].

Because there is an awkward factor of 4 in the normalizing relation

in Eq. (3.14), attempts have been made to eliminate it by introducing a

modified spectrum Srz(E) as

=1
5., =78k (3.17)
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From this definition, the volume under the Sr2(5) surface is exactly
equal to the ocean mean-squared height.

The drawback of the above two definitions [Egs. (3.15) and (3.17)1
is that the energy in the waves propagating in the +k direction is
combined with the energy in the waves propagating in the -k direction
to determine the height of S(k). As a result, S(k) cannot be inter-
preted as energy associated exclusively with waves moving in the +k or
-k direction. To eliminate this plus-minus ambiguity, Barrick [1970]
introduced the spectra S (k) and s_(k) and defined the x axis as

the direction of propagation of the radio wave incident on the ocean

surface; therefore,

S, (k) = P(k,2w ) Aw (3.18)
where
+wBO k in the plus-x half-plane
ws ) -wBo k in the minus-x half-plane

These spectra are illustrated in Fig. 3.3 for the same ideal sea condi-
tions described for Fig. 3.2. This is an extremely awkward definition
because the energy associated with waves propagating in tlr.e positive kx

half-plane is contained in S+(5) and the energy for negative kx is

A N

0 X

a. s+(5) in the (kx,O) plane

AN

b. s_(g) in the (kx,O) plane

Fig. 3.3. DIRECTIONAL WAVE-HEIGHT SPECTRA
FOR IDEAL SEA CONDITIONS.
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contained in S_(k). 1c is not clear if a long-crested wave in the ty
direction (for which kx = 0) should be included in S+ or S .
A simple medification of Eg. (3.17) produces a directional spectrum

So free of the abnve ambiguities,

-1 \ - L -
Plk,w) =2 SO(EJ S (w wp) + 5 8, (k) S(w + wBO) (3.19a)

or, equivalently,

=1
Plkow ) B =S (k) (3.19b)

Again for the same ideal sea conditions described for Fig. 3.2, this def-

inition of the directional spectrum is illustrated in Fig. 3.4. It can

A

0

:kx

Fig. 3.4. DIRECTIONAL WAVE-HEIGHT SPEC-
TRUM S,(k) FOR IDEAL SEA CONDITIONS.
SO(E) is shown only in the (kx,O) plane.

be verified that the complex-conjugate relation [Eq. (3.11)] is not vio-

lated; it also follows that the mean-squared height is

i = f ax s_(k) (3.20)

Recalling that the Fourier-transform exponent is i(k-r-wt), Eq.

(3.19b) implies that SO(E) is the energy density associated with waves
propagating in the k direction and that So(-E) is associated with the
-k direction. The definition in Eq. (3.19a) is the corrected version
of that obtained by Phillips [1966,1978}, and it is identical to that of
longuet-Higgins et al [1961] except that the inverse of their power spec-
trum is the complex autocovariance function of a process that is the ana-

lytic-signal representation of the surface-height process n.
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Figure 3.5 compares various directional spectra in the kx-l< plane.

Referring to Fig. 3.2, these spectra may represent swells propagating in
opposite directions and with differant mean wave numbers; however, these

simplistic models serve as a basis fcx straightforward comparisons.

ky
| 2
= A o
= Q™
ky
S,(k)
A A
W 11118
kY
S_(k)
12 1/2
== —
S < x
kY
S, (k) I
4 2 2 4
AT A | A AN o
1111 S S W
: y
Sr,{K)
1 1/2 1/2 1
A =\ AN
w S < 111

Fig. 3.5. COMPARISONS OF VARIOUS WAVE-

HEIGHT DIRECTIONAL SPECTRA.

Numbers

beside the shaded area indicate heights

of pedestal above the kx-k
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Chapter IV

THEORETICAL STUDIES OF FIRST-ORDER BACKSCATTER
FROM OCEAN SURFACE WAVES OF DECAMETER WAVELENGTH

The physical processes occurring in the ocean as influenced by the
presence of current and the statistical nature of the ocean surface waves
have been analyzed in Chapters II and III. In this chapter, the problem
of remotely sensing these ocean waves by means of an HF pulsed radar is
discussed. This radar system consists of a transmitter and a receiver
located in proximity to one another so that they are colocated for the
theorsetical considerations to be presented here.

As shown in Fig. 4.1, the radar system is situated on the coast at
an elevation h much smaller than the distance rO from the ocean patch
it is designed to probe. (In the experiments, h is approximately 40 m
and r, is roughly 10 to 40 km.) To a good approximation, the radio wave
transmitted by the radar propagates at a zero elevation angle with respect
to the sea surface. The azimuthal extent L of the ocean patch is
established by the beamwidth of the radar system in the horizontal plane;

this beamwidth, in turn, is defined by the combined beam formed by the

RADAR

Fig. 4.1. RADAR ILLUMINATION OF THE OCEAN SURFACE.
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transmit and receive antennas. To obtain spatial resolution in the radial
direction, the radar is pulsed, and the width of each pulse determines
the size Lx of the ocean patch in the radial direction.

Resonant radio-weéve backscatter from the ocean surface occurs when
the surface has a specific spatial structure; its wavelength must be one-
half the wavelength of the radio wave, and its crests must be transverse
to the radio-wave propagation direction. This Bragg-scattering phenome- .
non has been explained by detailed formulation of the scattering problem
based on Rice's perturbation analysis of the boundary conditions [Rice,
1951] and the Stratton-Chu vector diffraction integral [Barrick, 1972]. .

To detect ccean current, the frequency of the backscattered signal but

PETTY

not its absolute amplitude is important. The following derivations based
on simple wave-propagation concepts will demonstrate how this frequency

is related to ocean current.

[y

A. Physical Theory of First-Order HF Backscatter -

BRI RN

Each pulse transmitted by the radar is represented by

A2 e

sn(t) = g(t - tn) exp\12ﬂfct)

wnere n signifies that the pulse is initiated at time t==tn, and g(t)

o b, hr 2

is the pulse envelope with the rising edge at t = 0. The complex expo-

nential is the analytic-sijynal representation of a sinusoidal waveform at
carrier frequency fc, and its phase is set arbitrarily to zero. Typi-
cally, many cycles of the sinusoid are contained in each pulse (a few
hundred in the experiments).

The pulsed signal will p:opagate along the radial direction r in
the horizontal plane (see Fig. 4.2) and will scatter in all directions
when it encounters the undulating sea surface denoted by 2z = n{r,t) where

2z 1is the vertical ordinate measured upward from the mean sea surface. The

IS O A S DT (0 I L AL I

strength of the signal component scattered back toward the radar must be a
function of the surface slope 9d1n/dr (henceforth denoted by n') along -
the general "look" direction of the radar. For small n', the functional
dependence of the backscattered signal on N' can be expressed as a Tay-

loxr series, and the leading term in this series expansion is 1n'. To
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first order, therefore, the backscat- RADAR BEAM CENTER,
ﬂ
tered signal strength is proportional

to n'. \7'//'/5 JRQ&BE

In Fig. 4.2, the angle 8§ is

measured from the beam axis of the

5]

radar, which is also the x axis.

At any time t, the signal returning

from the infinitesimal ocean-surface 8
patch located at distance r and

angle © 1is proportional to the

following factors: Z<_———R7\DAR

Fig. 4.2. DEFINITION OF
THE COORDINATE SYSTEM.

* transmitted signal at time ¢t -2r/c, where ¢ is the
speed of light in free space, which takes into account
the round-trip propagation delay of the radio wave

* ocean-wave slope n'(r,t-r/c), where time delay r/c
signifies that the scattering surface is located dis-
tance r away

* area of the infinitesimal ocean-surface patch--namely,
rdrd6

* combined directivity G(6) of the transmit and receive
antennas

* two-way propagation loss r experienced by the radio
wave

The received signal s(t) is the sum of contributions from all infini-

tesimal ocean-surface patches covered by the radar,

I o

2r\ 1 .
s(t) =] ae G(e)f rdr n' £,t-£ s /t--—- - )
- 0 ( c) p i c ) r2 ;

The cornistant of proportionality has been ignored. -7
In the above integral, integration over r actually has finite

limits as the result of the finite duration of the pulsed signal sn(t) -

whose pulsewidth is denoted by pr. Assume that sn(t) is zero fj
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outside the time interval (O,pr); this same signal delayed by 2r/c

will then have the following property:

exp(i21rf t - i2nf 2—5) g(t-t _2_r) t <t-Ect 47
( zr) ¢ c c n ¢ n c n pw
s -] =
n c
0] otherwise

The expression for the received s.gnal s(t), therefore, simplifies to

rO+Lx/2 -1 r
s({t) = exp(iZTrfct) fde G(9) f r dar n'(E_:t - g}
- 2
r, Lx/
i 9 2r
exp (-12Br) g<TDLY - -g-) (4.1)
where
r, = % (ﬁDLY - T w/2) = radial range of center of interrogated
i P ocean patch measured from the radar
L =37 = radial size of ocean patch
2 pw
B = 2ﬂfc/c = free-space radio-wave wave number
TDLY =t - tn = fixed time delay

As is evident above, the fixed time delay TDLY

s(t) measured from time tn at which the most recent signal sn(t) was

is the sampling time of

transmitted. The ocean patch located at range ry is also called the

radar range cell.

Typically, r, varies from tens to a few hundred kilometers, and
the linear dimension of the ocean patch is from a few to a few tens of
kilometers; therefore, the one-way propagation delay r/c 1is on the
order of milliseconds or less. Within this time period, no significant
variation in the ocean-surface slope is expected. As a result, n'(xz,
t~r/c) can be replaced by n'(r,t), and the slowly varying function

r_l can also be replaced by r;l. This yields
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-1 rO+Lx/2
s(t) = r, exp(izﬂfct) fae G(8) f dr ' (x,t) exp(-i2Br) w(r)
r.-L /2
0 x
(4.2)

where w(r) = g(T -2x/c).

DLY
For ease of interpretation of this result, the circular coordinates

(r,8) are transformed into rectangular coordinates (x,y) with X

pointing in the beam-center direction (see Fig. 4.2). The peamwidth is

assumed to ke small so that

2t
R”
%

(4.3)

If the half-width of the antenna beam is 80, the azimuthal extent LY
of the probed ocean patch is Ly = 2r0 sin 6
After integration by parts (see Appendix D),

_ L /2 r +L /2
s(t) = 2ir % exp(i2nf £) | ¥ ay f O X ax wix)
0 ¢ Ji 2 e -L /%
Y 0 x

« G(Y)B " (x¢,v,t) exp(-i28x) (4.4)

If antenna directivity G(y) and the radial weighting function w{x) are
assumed to be constant, this twofold integral is proportional to the two-
dimensional Fourier transform of the surface height at the wave-number
set (2B,0) convolved with a two-dimensional spectral window with widths
of approximately 27r/Lx X 2n/Ly.

In practice, both G(y) and w(x) are nonuniform functions and
vary relatively slowly with their respective arguments. Their effects
on the above integral are the same as the effects of the time window on
the Fourier transform of a time series. As a result, resolutions in the
spatial frequency domain are coarser than ZTT/Lx X 2ﬂ/Ly; the degrada-
tion can be as large as a factor of 2 [Harris, 1978, for example]. The
radar parameters can be chosen so that these resolution limits are much
smaller than the observable spectral width, as in the Stanford four-fre-
quency radar to be described in Chapter V. The resolution estimates

21T/Lx and 2n/Ly, however, are useful order-of-magnitude approximations.
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In the limits of large Lx and Ly' the integral in Eg. (4.4) rep-
resenting the backscattering process becomes an infinitely sharp spatial
filter at wave number (2B,0). Only one specific long-crested ocean-sur-
face wave component is selected by this electromagnetic process, and this
component has a wavelength L one-half the radio wavelength X = 27/B
and propagates along the radar beam axis. Because this radio-wave back-
scattering phenomenon is similar to Bragg scattering of x-rays from crys-
tals [Brillouin, 1953}, it is also called Bragg scattering.

At HF (3 to 30 MHz), the Bragg-selected ocean waves have wavelengths
in the decameter range, and their slope magnitudes are smaller than unity
even under fairly rough sea conditions. This, in turn, implies that Bn
is small and that the first-order effect investigated here is dominant.
This observation served as the basis for the perturbation calculations of
Rice [1951].

In the expansion of r in BEq. (4.3), all terms of order higher than
y/rO were neglected. The most important effect of these omitted higher
order terms is in the phase of exp(-2ifr) in Eq. (4.2). An estimate of
the upper bound on Ly above which Eq. (4.3) is not valid is obtained by
limiting the maximum phase excursion caused by the second-order term to
m/4. The result is approximately orne-third the Fresnel-zone size (rOA)l/%

When L 1is larger than the Fresnel-zone size, the above theory can
be modified gy breaking up the integratioa in 8 in Eg. (4.2) into a sum

of many integrations, each over a small
gégcﬁ range ot 0. The local Cartesian coordi-

AXIS nates are then defined for each of these

RANGE | LocAL . .
: X-AXIS small integration zones so that the local

x axis is aligned with the axis of the

zone (see Fig. 4.3). The azimuthal size
%\&EEGRA“ON of each zone is chosen to be small com-
pared to the Fresnel-zone size so that
the above theory is locally valid in each
integration. The modified Bragg-scatter-
ing theory then states that the backscat-

ter radar is sensitive to all ocean waves

X.
RADAR of length 1/2 and propagating in direc-

Fig. 4.3. INTEGRATION ZONES. tions that fall within the antenna beam.
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When Egq. (4.4) is valid and the width of the backscattering spatial
filter is zero, the radar will detect only two ocean wave trains--one
propagating toward the radar along its beam axis and the other propagat-
ing away from the radar. Both wave trains have a wavelength of L=2A/2,

and their wave height can be represented as

nix,y,t) = B+(28,0) exp(i2wf+t + i2Bx) + B_(ZB,O) exp (i2mf t + 12Rx)

(4.5)

Here, the subscripts + and - denote wave propagation toward and away from
the radar, respectively, and B+ and B_ designate the respective crest
heights of the wave trains above the mean sea level. The frequencies f+

and f_ are defined in Eq. (2.34) us

fi = ifB + A (4.6a)
172
_ (29B)
fB o (4.6Db)
5 0
A= X-(4B) ‘{ Ux(z) exp (4Bz) dz (4.6c)

As discussed in Chapter II, fB is the frequency of oscillation of the
gravity waves in the absence of ocean current, A is induced by the cur-
rent and, because the wave with positive frequency is propagating in the
negative x direction according to Eq. (4.5), Ux is the current compo-
nent in this same direction (pointing toward the radar).

Substituting the expression for the ocean wave height in Eq. (4.5)
into (4.4) and ignoring the finite-resolution effect and some constants
of proportionality, the following expression for the received signal is

obtained:

s(t) = exp[?Zﬂ(fc + A) t][B+(2B,0) exp(iZWth) + B_(ZB,O) exp(—iZHth)]

AN S pupon 2t Mo s
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First-Order Doppler Spectrum

The Doppler spectrum of tlie received signal s(t) is determined by

taking a finite-time Fourier transform [see Eq. (3.4)] over a coherent

integration time T

result. Here, T 1is chosen to be large so that T—l

of s(t) and forming the magnitude sgquared of the

ing resolution in the spectrum.

In the absence of ocean current.,, the Doppler spectrum consists of
two lines (of width T-l)
4.4a). Because the line at the higher frequency is the result of Bragg
scattering from ocean wave trains propagating toward the radar,

referred to as the approaching Bragg line and fB as Bragg frequency.

located at £ +f£ and f -f
(o} B e} B

(a)

NO CURRENT

(b)

UNIFORM CURRENT
TOWARD RADAR
SMALL BEAMWIDTH

& =2Up/N(1-c0s8,/2)

T

0

(c)

UNIFORM CURRENT
TOWARD RADAR
FINITE BEAMWIDTH

822U,/ Asirif,/2

hen cove wan) amm e o

(a)

UNIFORM CURRENT
ACROSS RADAR

Fig. 4.4.
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Based on the same reasoning, the line at the lower frequency is called
the receding Bragg line. The ratio of the strength of the first Rragg
line to that o. the second is the ratio of the mean-squared wave height
of the approaching wave train to that of the receding wave train.

In the presence of ocean current, both Bragg lines are Doppler
shifted by the amount A which is proportional to the ocean-current
component Ux (in the direction toward the radar) averaged over depth
with an exponential weighting function. The problem of detecting ocean
current that varies with depth 2z will be discussed in Chapter VII. To
simplify in this section, UX is assumed to be uniform with depth, and
A= 2Ux/k. The displaced Bragg lines are i1llustrated in Fig. 4.4b.

As discussed in Section A, the abovz model is valid if Ly is

smaller than the Fresnel-zone size. It has been demonstrated that, when

Ly is many times this limiting size, s(t) is the sum total of all
contributions of backscatter from ocean waves of wavelength A/2 propa-

gating in all directions that fall within the antenna beam,

. s{t) = exp(i2nf t)fG(e)jB exp[i27.'(f + A) t] + B exp[—i21r(f - A) t] ae :
c ( + B - B

(4.8)

e b e ety ey |

Here, A = -2f:U/A, where ¢ is the unit vector along the radial di-
rection from the radar. The current vector U is the total horizontal

current which is considered uniform with depth. The ocean-wave directional

ks
R

2 spectrum (defined in Chapter III) is assumed to be omnidirectional within

the radar beam so that |B+|2 are independent of 9. :
If U is uniform witgin the ocean patch probed by the radar, the

shape of the broadened Bragg lines can be predicted if the direction of

current flow is known. For a uniform current of magnitude UO flowing |

down the radar beam (in the negative x direction in Fig. 4.2), the cur- !

rent-induced Doppler frequency A will take on values ranging from

(2UO/A) cos 60 to 2UO/A, where 6 is the half-width of the radar

0
beam. Assuming a gaussian beam, the Doppler spectrum is illustrated in

Fig. 4.4c. For the same current flowing across the radar beam (in the

y direction in Fig. 4.2), A then takes on values from —(2U0/A)sin80

[T

to (2UO/A) sin 60. The resulting spectrum is shown in Fig. 4.44.
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Observed with a finite radar beamwidth, the maximum width of each
Bragg line attributed to U is (4UO/A) sin 60. If the ocean current
is random and has a statistical standard deviation Ov’ the Bragg width
resulting from this random component is on the order of 20V/A.

Two other aspects of the ocean-surface processes that can cause
broadening of the Bragg lines are the coherent length of the long-crested

waves and higher order ocean-wave interactions.

1. Effects of Finite Coherent Length of Long-Crested Waves

As the pulsed radar interrogates the surface of an inhomogeneous
sea within a range cell of finite size for a finite duration T, long-
crested waves with different heights may move into view. For waves with
a wave number of 28, group velocity is Vg = 1/2(g/26)l/2 and the time
required for them to move through the entire patch of length Lx is tc=
Lx/Vg. During this interval, the radar essentially samples the same ocean

patch and the spectral amplitude B_ should be approx.mately constant;

that is, the ccrrelation time of the Bragg amplitude should be larger than
tc. The width of the Bragg line is therefore narrower than t;l if tC
is smaller than the coherent integration time T. Actually, t;l is the
limiting resolution of the finite-space transform because Vg is the
ratio of the resolution in radian frequency to the resolution in wave
number.

Implicit in the above discussion is the use of the first-order
dispersion relationship which states that, for a particular wavelength,
there can be only two frequenc.es th in the absence of current; the
variation of the Bragg-selected wave amplitude with time is determinis-
tically sinusoidal. It should be emphasized that this dispersion rela-
tionship is valid only for steady-state conditions. If the wind changes
significantly within the coherent integration time T, an additional

temporal variation in the wave amplitude can be expected.

2. Higher Order Ocean-Wave Interactions

The derivation of the ocean-wave dispersion relationship in
Chapter II considered only the terms linear in the wave height 1. Stokes

(1847}, Longuet-Higgins and Phillips [1962], Johnstone [1975], Huang and
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Tung ]1976), and Weber and Barrick [1977] have investigated the effects

of higher oxder terms in the hydrodynamic equations. Some of their rele-
vant results are summarized in this section.

Second-order interactions produce a dispersion relationship
w = w(k) that has a continuum of roots at the specific Bragg-selected
wave-number vector k = (2B,0). Fortunately, this continuum excludes a
region centered at the first-order Braqg fregquencies wy = i/iaﬁ' because
of the low-frequency cutoff in the wave-height spectrum of the ocean. The
second-order energies thus spread themselves in a continuous frequency
range outside the first-order Bragg lines.

Third-order interactions change the phase speed of all long-
crested waves, including the Bragg-selected wave of wave number (28,0).
The self-effect (the nonlinear effect in the presence of only the Bragg
wave itself) is an increase in its phase speed by a fraction equal to
l/2(28a)2 where a is its height. This is called "Stokes current."
Waves with various wave numbers moving in parallel or oppcsite to this
Bragg wave increase or reduce its phase velocity, respectively.

Barrick and Weber [1977c) postulate that, because this phase-
speed change is dependent on the ocean wave-height which can be considered
a random variable, it has a finite variance that will manifest itself as
the width of the Bragg line. By considering only the effects of colinear
waves (long-crested waves moving parallel or antiparailel to the Bragg-
selected wave), they simplified their general but complicated results to
a tractable form. For a 30 knot wind and a 5 m ocean wave, they obtained
a phase-velocity correction of 5 percent and a standard deviation (norma-
lized by the first-order velocity) of 0.05 percent. This correction based
on mutual interactions will have a sign that depends on the wave direction
relative to the wind; waves moving with the wind are speeded up, and waves
moving against the wind are slowed. The radar cannot distinguish this
correction from ocean current. The 0.05 percent standard deviation is

also too small to be resolvable by the radar.
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Chapter V

PESCADERO EXPERIMENTS

Since May 1975, ocean backscatter experiments have been conducted
at a site located near Pescadero on the northern California coast. From
May through December 1573, the experiments were run approximately four
times each month, and a typical day consisted of four half-hour runs,
each with a different radar pulse width. Similar experiments were car-
ried out during June 1976 and January 1977 with nominal radar frequencies
of 4.8, 6.6, 13.3, and 21.7 MHz. Based on the decision to examine sec-
ond-order interactions at higher fregquencies, 4.8 MHz was changed to 29.8
MHz. Several experiments followed during August and September 1977 and
January 1978 and, at that time, the radar pulse width was fixed at 50
Usec as a trade-off between the signal-to-noise ratio and spatial reso-
lution. Approximately four hours of data were collected daily, and con-
current in-situ measurements of ocean-current shear were obtained by de-
ploying spar buoys of various lengths and then tracking their motions.

The Stanford four-frequency radar system used for data collection
is described in Section A. The data-processing procedure by which the
sea-echo Doppler spectrum was obtained and the subsequent scheme devel-
oped to retain only the first-order Bragg signal are discussed in Section
B. Possible artifacts introduced by the radar system will be examined
in Section C, and the in-situ measurements are analyzed briefly in Sec-

tion D.

A. Stanford Four-Freguency Radar

The Stanford radar system is coherent in that both the transmitter
and receiver are driven by the same free-running stabilized oscillator
at a frequency of 30 MHz. Four separate phase-locked-loop frequency syn-
thesizers generate the transmitted radar frequencies which can be changed
in steps of 10 kHz from the front panel over a range of approximately 100
kHz. These frequencies can be adjusted to minimize man-made interference.

The transmit antenna is a vertical half-rhombic, approximately 250 m
long and 45 m high at the apex, supported by a helium-filled balloon. It

is located on a flat piece of land 40 m above sea level. The vertical
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plane containing the half-rhombic (referred to as the antenna plane) is
in the direction of 315°T, along which the radar system is about 1200 m
from shore. The antenna wire at its fixed ends has roughly 1 m of slack,
and the tension is taken up by surgical tubing; motion of this wire in
the antenna plane is thus limited. The half-rhombic is supported by two
guy wires transverse to the antenna plane. Motion in this transverse
plane is again limited; however, the lack of elastic support permits
larger motions here than in the antenna plane. The advantage of this
transmitter system is its relatively high gain and small beamwidth over
a wide range of frequencies.

The receive antenna is a 1 m wideband loop located 50 yards downhill
from the transmit antenna in the direction transverse to the plane of the
half-rhombic. The plane of the loop is approximately parallel to the
plane of the rhombic so that, coupled with shielding by the landscape,
the direct effect of the transmitted pulses is minimized although not
completely eliminated (see Section C).

In Fig. 5.1, the measured 3 dB beamwidth of the combined receive-
transmit system is plotted vs frequency. At 5 MHz, the beamwidth is
approximately 25 degrees; at 30 MHz, it is roughly 12 degrees. The mea-
sured beam center moves from 320° T at 30 MHz to 290° T at 4 MHz as the
result, most likely, of the wavelength-dependent guiding effect of the
surrounding landscape and the effective attenuation of the radio wave as
it propagates over land. As illustrated in Fig. 5.2, the radio wave
propagates over greater stretches of land on the north side of the an-
tenna beam axis than it does on the south side. At the lower frequency
where the antenna beamwidth is large which highly accentuates this asym-
metry, the direction of maximum antenna gain thus appears to have moved
south from 315° T.

The radar is pulsed; a trapezoidal pulse is transmitted every 400
Hsec. The nominal pulse width pr (defined as the width between the
half-power points) is selectable from the front panel to be 10, 25, 50,
100, or 200 usec. Four different carrier frequencies in the HF band of
3 to 30 MHz are time multiplexed in the pulse train so that a pulse of
the same frequency repeats every 1.6 msec (see Fig. 5.3). The peak RF

power output is approximately 40 W.
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The receiver system is shown in Fig. 5.4. The first stage of ampli-
fication and mixing requires four channels--one for each radar frequency.
The local-oscillator signal for each channel is turned off during a blank-
ing period lasting through the width of the transmitted pulse and is turned
on once every 1.6 msec when the preceding carrier frequency is 30 MHz below

the oscillator frequency.
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Fig. 5.4. RECEIVER SYSTEM FOR THE STANFORD FOUR-FREQUENCY RADAR.
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The signal at the intermediate frequency is then passed through an
amplifier chain and a crystal filter whose width is approximately 40 kHz.
The second conversion stage mixes the signal to the final intermediate
frequency of 0 MHz. Two parallel mixers driven by local oscillators that
differ in phase by 90° are used to distinguish between the return signal
Doppler shifted below and above the transmitted frequency. The two chan-
nels are designated the in-phase channel (I) and quadrature-phase channel
Q).

After passing through identical filters and amplifiers, these signals
are sampled simultaneously at time delays of typically 99, 130, 170, and
210 usec measured from the leading edge of the transmitted pulse. Each
delay corresponds to t-—tn, as discussed in Chapter IV. Based on Eq.
(4.1), the centers of the four range cells interrogated are at 9.75,
15.75, 21.25, and 27.75 km, respectively, from the radar, assuming a pulse
width of 50 usec.

The two samples at each range bin are digitized sequentially by an
8-bit A/D converter. Each sample is then stored in a 16-bit accumulator
designated for the in-phase or quadrature-phase channel and a specific
range bin and radar frequency. There are two sets of 32 accumulators
each; in each accumulator, N (typically 140, set from front panel) sam-
ples are added together. While one set is waiting for N time samples
to accumulate, the contents of the second set will be encoded into a dig-
ital waveform and recorded on an analog tape recorder. Included in the
data stream are the settings of all the front-panel selector switches and
an internal clock.

The summing of 140 time samples lowers the sampling rate to (140 X
1.6 X 10“3)“l = 4.464 Hz and reduces the effect of white noise because
the operation is equivalent to a lowpass filtering process. The filter
furiction is periodic with period (1.6 X 10'3)_l = 625 Hz. Each period
contains a sinc function with its first zeros at *4.464 Hz, and the sig-
nal falls within the mainlcbe of that function. The effect of this fil-
ter is thus to reduce the white-noise power by a factor of 140.

If the model in Eq. (4.7) is used to denote the signal arriving at
the receiver front end, the first-stage and final-stage IF signals sl(t)

and sz(t) can be written as
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sl(t) = exp[iZn(3x107) t} B+ exp[iZn’(fB+A) t] + B_ exp[—iZ'n(fB-A) t]
+ complex conjugate (5.1a)
sz(t) = B+ exp[}Zn(fB + A) t] + B_ exp[—iZn(fB - ) t] (5.1b)

Here, B+ and B_ are the amplitudes of the ocean wave train at wave-
length A/2 propagating toward and receding from the radar, respectively,
and A is the current-induced Doppler shift given by Eq. (4.6c¢). The
in~-phase channel is assumed to be the real part of a complex number and
the quadrature phase channel is the imaginary part.

From Eq. (4.6b), the Bragg frequency fB is
fB = 0.102023 Vfc Hz (5.2)

where fC is the radar carrier frequency in megahertz. The values of
fB for the five nominal radar freguencies used in the experiments are
tabulated in Table 5.1, together with the wavelength and phase velocity

of the Bragg-resonant ocean surface waves.

Table 5.1

CHARACTERISTICS OF BRAGG-SELECTED OCEAN WAVES.
Braqg frequency fB is from Eq. (5.2).

Radar Ocean-Wave Phase Bragg
Frequency Wavelength Velocity Frequency
(MHZ) (m) (m/sec) (Hz)
4.8 31.25 6.99 0.224
6.7 22.39 5.91 0.264
13.3 11.28 4.20 0.372
21.7 6.91 3.29 0.475
29.8 5.03 2.80 0.557
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B. Data Reduction

To obtain the first-order signal from the recorded data, these data

are reduced through the following steps.

Step 1

The recorded signal is played back through a PCM decoder that recov-
, ers the clock signals and converts the serial data stream into 8-bit data

words. These data worcis include, for example, front-panel settings, radar

frequencies, and pulse width. The decoded data are stored on a nine-track

magnetic tape.

Step 2

1 Depending on the frequency resolution desired, a corresponding num-

‘ ber of data samples are extracted from the magnetic tape for each range
bin and carrier frequency and are stored temporarily as 16 sets of data
on the disk. The observed current-induced Doppler shift ranges from a
few cm/sec to 40 cm/sec. To resolve the small current and still retain
reasonable time resolution requires a coherent integration time of 917.504

sec which corresponds to 212 = 4096 complex pairs of time samples for

N

A R MG ey

each Fourier transform. Because of computer-memory limitations, the

number of samples is reduced by a factor of 2 by replacing every two

adjacent time-sample pairs by their sum; the effective sampling rate

[PPSR O S

o therefore becomes 2.232 Hz. The data sets are then retrieved from the
disk storage, vne set at a time, and the following processing is per-

formed on the selected data set.

A oumudath i ac

Step 3

The temporary loss of synchronization in step 1 will result in erro-

neous data values. The frequency of occurrence of this event is minimized
by selecting a unique synchronization pattern. When this loss occurs, it
- affects only the associated data frame consisting of 16 time-~sample pairs=--
one for each range bin and each radar carrier frequency. To remove such
data spikes, an algorithm is devised whereby the mean s and standard

deviation O of the channel (in-phase or quadrature-phase) are computed,
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the data in that channel are searched, and all data points that deviate

from the mean s by more than 30 are eliminated. In this step, the

Fade it nay

mean is removed from each channel.

R Y

Step 4

A Hamming window is then applied to the in-phase and quadrature- .
phase channels in the data set of 2048 complex pairs. This window pro- ;
duces a spectral resolution of approximately one-half that of a rectan-

gular window (2.2 millihertz); however, the spectral sidelobes are lowexr

RN

than that of the rectangular window by 30 dB [Harris, 1978]. é

Step 5
This set of windowed data is then Fourier transfor:.ed, using the
Cooley-Tukey algorithm of the fast Fourier transform (see, for example,

Rabiner and Gold, p. 367). The power {Doppler) spectrum is obtained by

STHA ot e e T xS b ar o1 -

taking the sum of the squares of real and imaginary warts of the trans-

formed data. The results are stored on a nine-track magnetic tape.

A AR 1T

Step 6

PR

The processing steps 3 through 5 are repeated for each of the data

sets stored on the disk,

”.g Step 7

E Power spectra are obtained at time increments of one-half the coher-

5 ent integration time (approximately 7-1/2 min). This is possible because

of the 50 percent overlap in the data used in the transform; that is, the

latter half of the data used in obtaining the power spectrum of a previous
time interval becomes the first half of the data for the present time in-

terval. Preferential weighting of the Hamming window suppresses informa-

tion contained at the outer edges of the window, and the 50 percent time

- overlap recovers this lost information.

"
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The large variability (or jaggedness) of the individual power spectra
indicates the randomness of the ocean-surface process. In fact, the power
spectral estimate behaves as a chi-square with four degrees of freedom
(see Appendix A). To reduce this variability, a smoothed spectrum is
obtained by convolving it with a gaussian window whose width at 1/e (or
4.34 dB) is chosen to be proportional to the square root of the carrier
frequency. This frequency dependence is based on the observed behavior
of the Bragg width (see Chapter VII1I). In terms of frequency bins, each
1.09 millihertz in size, this window width is 8 bins at 4.8, 10 bins at
6.8, 12 bins at 13.3, 17 bins at 21.8, and 21 bins at 29.75 MHz. Because
the original unsmoothed spectrum is used in the actual determination of
the Bragg-line position, these smoothing widths are not critical.

In the typical smoothed spectra in Fig. 5.5, narrow bands of strong
sianals can be observed at frequencies Lo withi: a few percent of ifB.

As discussed in Chapter IV, the band of signals near +fB is energy scat-
teced from ocean waves propagating tward the radar and, for brevity, are
called the approaching Bragg line; che band near -f is called the re-
ceding Bragg line for similar reasons. In the immediate neighborhood of
each band, a continuum of lower level signals attributed to second-order
electromagnetic and hydrodyramic effects [Tyler et al, 1974; Barrick,
1972; Johnstone, 1975] is frequently found and, most often, it is sepa-
rated from the first-order band by a sharp null. On days of relatively
calm sea and particularly at the farthest range cells, this second-order
continuum is completely submerged in system noise which is approximately
white. In either case, further analysis of the first-order bands is nec-
essary, and this is made possible by a frequency-domain filtering scheme

that can be applied to either first-order band.

Step 9

Examination of the Doppler spectra derived from the entire Pescadero
data set reveals that the current-induced Doppler shift corresponds to an
effective uniform current having a magnitude of no more than 50 cm/sec.

This fact is used in the search for the peaks of the Bragg signals.
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Fig. 5.5. SHMOOTHED DCPPLER SPECTRA AT FOUR RADAR FREQUENCIES AND FOUR
RANGE CELLS. Data were collected on 25 January 1978.

The purpose of the frequency-domain filtering scheme is to determine
the cutoff points on either side of the band peak. An algorithm has been
developed that looks at the local slopes of the logarithm of the smoothed
spectrum. Each is computed as the slope of the linear fit to a number of
spectral points, and the number is the same as that for the smoothing
window. On one side of the peak, the slope must be positive and on the
other side it should be negative. This scheme establishes the point on
the positive-slope side at which the local slope becomes smaller than a
positive preselected cutoff value and the point con the negative-slope
side wheve the local slope becomes larger than a negative cutoff value.
These two points then define the limits of the first-order band. The

magnitude of the cutoff value is 0.3 dB/millihertz.
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Note that the smoothed spectrum is used to obtain the cutoff points.
These can then be considered as the iuwe. and upper frequency cutoffs of
a rectangular filter to be applied to the original unsmoothed spectrum;
that is, they define the first-order band in the unsmoothed spectrum.

Figure 5.6 is a block diagram of this process.

D e = -

DETERMINE
SMOOTHED _ - FREQUENCY
) SPECTRUM CUTOFFS FROM

LOCAL SLOPE

s 2
! ! *
: |

: , UNSMOOTHED | p| FECTANGULAR | = giﬁf{
‘ PECTRUM FILTER
S SIGNAL

Fig. 5.6. RETRIEVAL OF FIRST-ORDER SIGNAL FROM DOPPLER
i_m“ SPECTRUM OF SEA ECHO.

c. System-Introduced Artifacts

1. Effects of Transmit-Antenna Motion

A disadvantage of a balloon~-supported antenna is that its mo-
tions may broaden the spectral lines. To understand this, the following

extension of Eq. (5.1b) is used as a model for the postdetection signal:

S, (t) = Ap(t) }3+ exp[i2fc(fB + A) t] + B_ exp[—iZn(fB - A) t]

+ AD(t) + AL(t) + D (5.3)
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Gl el

2
1

RF s

59

e L

B < &l A =3 e T — e, oy T
i e O A I ey S, ’ﬁv,,—--_:yg-. ELRSAR TR Bor T T e - 7
R e RS T F R % Sty - 7 - s
N - N E B MERENE MR TR T *-tx-'-,,, 5, 'z‘_\: NESE TR X
r R AR .
i o




oy N

Here, Ao(t) is the transmitted signal whose amplitude slowly varies
with time because of the motions of the antenna in the vertical plane
containing the beam axis. The receive antenna is inevitably sensitive
to the tail of the transmitted pulse that continues through the receive
period. This results in a detected direct signal AD(t) whose time
variation is caused by the motion of the half-rhombic in a vertical
plane transverse to the beam axis. This signal is expected to decay
with range as the transmit pulse tapers off with time. The component
AL(t) is caused by the direct reflection from stationary targets; its
temporal variation follows the antenna motion along the line-of-sight
nath to the stationary target. The constant texrm D is entirely the
result of leakage of the 30 MHz local-oscillator frequency into the
signal path within the radar box; this appears as a line in the Doppler
spectrum at zero frequency, and its magnitude is several orders higher
than AD(t) and AL(t).

The general modulation function A(t) is proportiocnal to
exp[j27L(t) /A], where L(t) is the time-varying component of the path-
length from the source to the receiver, and A 1is the radio wavelength.
If L(t) has amplitude LO and frequency of oscillation fA then, for
small LO/X, the spectrum of A(t) consists of lines with amplitudes
on the order of (LO/)\)n at frequencies of fn = ian, n=20,1,...,°.
For actual random antenna motions, the spectral width of A(t) is roughly
(i/k) -l/TA, where L is the average amplitude and TA is a represen-
tative time scale. The effect of antenna motions, therefore, increases
with radar frequency.

The resulting Loppler spectrum from Eg. (5.3) will consist of
bands of energy at th and at dc where width is dictated by transverse
motions with higher amplitude, as discussed in Section A; this is very
apparent at higher radar frequencies under moderate-to-high wind condi-
tions (see Fig. 5.5). Note that the effect of D has been —emoved. At
ifB, there is a convolution of the antenna motion-induced spectrum and
the ocean wave-induced and current-induced spectrum. If the system arti-
fact is dominant, the bands at ifB are expected to exhibit structures
similar to that of the spectrum of antemma motions in the plane of the

half~rhombic, and the following statements should then be true of the

coserved eneiygy bands at ifB.
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* The structures of the spectral bands at th must be
similar.

¢ Band structures must not vary with range from the radar.

In Fig. 5.7, the fine-scale structures of the approaching and
receding Bragg lines are shown by plotting the portions of the unsmoothed
spectra centered at ifB. Note that, at either of the two radar frequen-
cies, the spectra are dissimilar at different ranges and that the ap-
proaching and receding lines do not exhibit the same characteristics. For
example, at 21.75 MHz, the widths of the receding Bragg lines are signif-
icantly larger than those of the approaching lines and, at 29.75 MHz, the

width of the approaching lines ai the near range is much smaller than

that at the farther range. Such dissimilarities between the receding and
approaching Bragg lines and between those at various range cells are

continuously observed in the Doppler spectra obtained from the Pescadero

T

data. As a result, it is unlikely that antenna motions in the plane of

the half-rhombic are large enough to increase significantly the width of

PVPREPN

the Bragg lines.

[ R

Even if antenna motions are large enough to increase the width

of the Bragg line, they cannot change the mean position of that line

P YR I S L AT ot ]

because they are zero-mean random motions.
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2. Local-Oscillator Instability
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It has been suggested that the spectral width of the land echo
is a measure of the local-oscillator (LO) stability. This echo, reflected
from a stationary object, is at the frequency of the transmitted signal.

It thus appears at zero frequency (dc) aftexr IF conversion, and its width

is determined by the stability of the local oscillator over its time of
flight which is on the order of tens of microseconds.

As evident from Egs. (5.1b) and (5.2}, the Bragg signal will be
affected by the variation of the oscillator frequency over the integration

time of 15 min required to produce the Doppler spectra. By differentiating

1

T

S p————

Eg. (5.2}, it can be shown that the percentage change in the carrier fre-~
quency is twice that in the Bragg frequency. Typical values for the Bragg

frequency and Bragg width are 500 and 10 millihertz, respectively. IXf this
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RECEDING LINES APPROACEING LINES

plﬁ 12 to 19.5 km

s

(Rl © to 13.5 km ll

a. At 21.75 MHz from first two range cells

l%

1 91

12 to 19.5 km
| J
6 to 13.5 km
l ¢

b. At 29.75 MHz from first. two range cells

Fig. 5.7, FINE-SCALE STRUCTURES OF RECEDING
AND APPROACHING BRAGG LINES. Frequency
spacing between adjacent points is 1.09
millihertz. Data taken on 20 January 1978
at approximately 12:00 local time.
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width is caused by LO instability, the oscillator frequency must have
drifted by 4 percent in 15 min, an amount exceeding typical LO stability
specifications by several orders of magnitude.

The long~-term frequency stability of the Stanford radar system
has actually been checked by feeding through it a CW signal generated by
an independent HP synthesizer. The resolution of the detected signal was

found to be limited by the finite transform length.

3. Nonlinear Amplification

During the initial experiments, spectra at the first range cell $

frequently displayed Bragg iines symmetrically positioned about dc (but

not at ifB) and of identical structures. This cannot be a real effect
because the receding waves are not expected to be highly correlated with
the approaching waves. Initially, an imbalance between the in-phase and :
quadrature-phase channels was suspected, but this imbalance was found to
be too small to be significant. The actual source was nonlinear amplifi-

cation in the first IF stage. The signal at the first range cell coupled

L e S T SPRY

with the directly received tail of the transmit pulse drove the second IF

]
3
H
1
b4

amplifier into the nonlinear region. Consider a signal sl(t) where

. * .
s (k) =2 exp(12ﬂfIFt) + A exp(—lZﬂfIFt)

WT LTS A A Bt Ak A s

. * -
+ B exp[%Zﬂ(fIF-+fB) tJ + B exp[ 12w(fIF-+fB) t] (5.4)

S BT R A NN, 2 I T8 5 hwbobs

- L e ¥

The second-order products of this nonlinear amplification will contain
terms that can be converted into a signal at 2fB in the final IF stage.

The third-order products include A2B* exp[iZﬂ(fIF-fB) t] which trans-

lates into a signal at -f_ after quadrature detection. This illustrates
how part of the energy of a signal that normally appears at +fB can leak
into —fB.

This problem has been corrected by modifying the IF amplifiers.
It affected only some data at the first range cell and, even then, the

higher energy Bragg line should not be influenced.

63

st b REOALRSM, .

oy e
RN RN [N N’— s 8 A0 g
S SRR R R e R e Y

—— g [P —




(RN

[

4, Finite Range-Cell Size

As discussed in Chapter IV, the finite range-cell size Lk)<L
implies that the width of the two-dimensional spatial Bragg filter is
Akx><Aky where, to a good approximation, Akx = 2Tr/Lx and Aky = 2w/Ly.
To translate this spatial-frequency width into Af = Aw/2m" in the fre-
quency domain, a small change Ak 1in the wave number is related to a
small change Aw in the wave freguency through the wave group velocity
V .

g9

bw = (Ak) V
g

where Ak is the magnitude of the vector with components Akx,Aky. If

_ _o\-1/2
L=(L2+L2)
X y

the expression for Af 1is

[UNPA

o1k
Af = i 1 (5.5)
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where Vp is the wave phase velocity tabulated in Table 5.1. The worst-

case Af occurs at the lowest radar frequency of 4.8 MHz and the short-

est pulse width of 25 usec. For a distance of 15 km and a beamwidth of

B Ry AHULLSN

30° (see Fig. 5.1), Ly ~ 7.5 km and Lx ~ 3.8 km so that £ =1 mil-

lihertz., This worst-case Af is slightly smaller than the resolution

»
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cell of the 918 sec transform. The effect of finite range-cell size,

er,

therefore, is not observable in the data.

D. In-Situ Measurements of Qcean Current by Spar Buoys

w

9

L5
Wi+

Concurrent in-situ drifter measurements of the ocean current were

obtained during several of the radar experiments. The drifters were four

4,

lengths of spar buoys built of plastic pipes loaded with an appropriate

'\

PRI
cLt ;
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amount of lead shot so that they immersed upright in water to predeter-

mined depths of 1, 3, 6, and 12 m, respectively.

The lccations of the buoys were determined by a microwave tracking

system whose range resolution was on the order of a few meters. As
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illustrated in Fig. 5.8, two microwave transponder (or range) stations
were located at Pillar Point and Pescadero, respectively. A boat used
to deploy the buoys also housed the master station that continuously
interrogated the two transponders on the coast and determined the dis-
tance of the boat from each range station by monitoring the round-trip
time delay of the microwave signals. The position of each buoy was mea-
sured by carefully pulling the boat to within a few meters of it and

then noting the distances displayed on the tracking system. These mea-
surements, taken at time intervals of an hour or longer, determined the

mean drift velocity of each buoy. Because this drift was typically on

the order of 1 km, the uncertainty introduced was less than 1 percent.

PACIFIC
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AND
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Fig. 5.8. LOCATIONS OF SPAR BUOYS AND RANGE STATIONS.
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The buoys were not completely immersed in water so that they would
be visible to the human eye. The length Qa remaining above the sea
surface is approximately 25 percent of the total length for the shortest
buoy and 10 percent for the longest. The effect of wind drag on the drift
velocity UD of the buoys is estimated as follows. The component of wind
in the direction of current flow 1s denoted by Ua' current speed by Uw,
air and water densities by pa and pw, respectively, and the immersed
buoy length by 2w. At eguilibrium, Uw < UD < Ua and, because the ac~-
celerating force from the wind is balanced by the retarding force from the

water,

2 2

LU -U)° = g - U}

paQa( D a) pwﬂ'w(JD Uw'

The ratio pw/pa is 1.2 % 103. The effect of wind drag is largest at th
shortest buoy where lw/ﬂa = 1/3. The buoy drift UDr relative to water

current, therefore, is

. _1_<£i_>l/2 ;
Dr 1.2 x 3 a
where UD is assumed to be small compared to Ua. The maximum wind speed
at a2 10 m height was approximately 5 m/sec (10 knots) during the January
1978 experiments. At the elevation of the exposed buoy, the wind speed
is expected to be lower by a factor of 2. The maximum UDr is thus =4
cm/sec which is smaller than the statistical uncertainty in the buoy-in-
ferred drift (see Chapter VII).

It will be demonstrated in Appendix B that, in a current that varies
with depth, a buoy immersed to depth 2 will drift with a speed equal to
the current at depth af, where o = 0.5 and 0.27 for current varying
linearly and logarithmicallyv with depth, respectively. With four buoy
lengths, current can be probed at four different depths if it has one of
the above profiles. There is no general solution to the nonlinear prob-
lem of determining the ocean-current profile from the buoy drifts.

To obtain some indication of the variation in ocean current over a
radar range cell, two sets of buoys separated by approximately 5 km were

deployed within the third range cell (see Fig. 5.8). Because only one
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boat was used, the measurements of current at these two points were also

separated by the time required by the boat to move from one location to

e U T

the next and to search for the buoys--typically, 30 to 60 min.

et Ammtaar e b i
'

RO TP TR P N O o

1

£

B

g

i &

1

s 3
4 4

4
RIS P A

ﬁ» o e R NLRD PRI BT LR Y S

LT

ek

67

Al T ST R S ey o

e e e it e




A

C Ay e e ST R

“~

Chapter VI

DETERMINATION OF AVERAGED OCEAN CURRENT FROM DOPFLER SPECTRA

In Chapter V, a procedure was described by which the Doppler spec-
trum of the sea-returned signal was obtained. An algorithm was developed
to determine the spectral points associated with first-order backscatter.
These spectral points from the first-order band at either the positive or
negative Bragg frequency fB are used in this chapter to determine the
averaged current at the various range cells probed by the HF radar at four
frequencies. The results obtained in the previous chapters indicated that
the first-order band at the positive Bragg freqguency is Bragg-scattered
energy from ocean waves moving toward the ocean. When this energy band
is of infinitesimal width, its displacement A from position f has

B s
been shown {Eg. (4.6b)] to be

A= U - .
5g 0 = 4B j(; g(2) exp(-4Bz) az (6.1)

L

where UB(Z) is the component of current in the dJdirection toward the

radar and z 1is depth below the ocean surface. The quantity on the

e

left-hand side is called the current-induced Doppler velocity ﬁ(B).
Introducing the nondimensional variable £ = 4Bz, Egq. (6.1) can be re-

written as

PR TE TSP e

© A
0(B) =f Uy (=) exp(-2) a2 (6.2)
A a(a)

0 afan

The measured Doppler velocity, therefore, is a weighted average of the
t varies with the
because the weighting function has a scale length inversely proportional
to B.

As has been demonstrated in Chapter V, the observed Bragg line is
always of finite width which is assumed to be a manifestation of the
turbulent character of the current field; that is, current varies nonde-
terministically both temporally and spatially within the radar range

cell. This assumption is experimentally verified in Chapters VII and VIII. g

S R e "'w’ RIS
Kk RS St S ‘:*‘w?i.ﬁ.n =5

--&h,@}.‘i 7

%y,ﬁ;i%;‘

al
R G




The centroid of the first-order energy band will be used as an estimate
of the position of the Bragg line, and its deviation from fB is an es-
timate of A. The Doppler velocity U(B) thus derived will be shown to
be the space-time average of the underlying current profile.

A similar argument applies to the first-~order band at —fB. A space-
time average of the current profile can also k2 obtained from energy scat-

tered by ocean waves receding from the radar.

A. Estimator of Current-Induced Doppler Velocity

The ~entroid of the first-order band is applied in this section to

estimate the position of the Bragg line., Specifically, if m_ and m.

are the upper and lower cutoff points as determined from the algorithm

in Chapter V, the Bragg position is

j{ £p
£ = =00 (6.3)

0 me

where the sums are taken from m

m. to m = m; and Pm is the spec-
tral value at the Doppler frequency fm. The current-induced Doppler

[PV S Suie RO SN

velocity UC(B) is obtained through

N>

UC(B) = [fo - (ifB)] (6.4)

where A 1is the radio-wave wavelength 27m/B, and the + or - aprlies to

O LT

the approaching line (first-order band near fB) or receding line, re-~

spectively.

Sl e AR AR 5

” E. Statistical Analysis of the Doppler-Velocity Estimator

| The purpose of this section is to determine whether the estimator
is unbiased (its expected value is the mean current) or consistent (its

o variance about the mean value diminishe. as the coherent integration time .

?gg T increases). Only the approaching line is analyzed because analysis

of the receding line is similar. Combining Egs. (6.3) and (6.4),
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where ﬁm is the powexr spectrum of Pm shifted down in frequency by the

amount fB. Extension of the Parseval theorem (see Appendix C for the

proof) yields

n . 08* (t)
£ —_—r

<S( ) i ot

(8(t) 8*(t))

A
Uc T 47

(6.5)
where the * denotes the complex conjugate and the angular brackets repre-
sent a time average over the coherent integration time T. Here, §(t)
is the Bragg signal near positive fB multiplied by exp(—i2ﬂth). From
Eg. (5.2), therefore,

"N

g(t) = B, exp (127At)

where A 1is the current-induced Doppler frequency and B+ is the ampli-
tude of the Bragg-selected wave component traveling toward the radar. As
has been observed, A is related to the actual depth-averaged current

component 8(B) through

_ 28
A=3
so that
8(t) = B exp[iam(G/0) t] (6.6)

The subscript of B has been dropped for simplicity.
Equation (6.6) can be extended to the condition wherein 6 varies
within the range cell probed by the radar by separating the cell into

various domains within each of which U is approximately constant. The
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linear dimension of each domain must be large compared to the Bragg-se-

lected wavelength L for the following reasons.

* The wave-number selectivity of each domain must remain
sharp; otherwise, the Doppler spectrum will be highly
smeared--a result contradicted by observation.

¢ If the size of each domain is smaller or comparable to
L, the horizontal shear of the current cannot be ne-
glected in the hydrodynamics and dispersion relationship
derived in Chapter II is not valid.

The signal $§(t) contains contributions from all the domzins,

S(t) = 1280 5.7
s(t) ji aQB2 exp(12BURt) (6.7)
L
where the dependence of each domain on area ap is explicit. Substitut-
ing this model of §(t) into the expression for the centroid estimatox

in Eq. (6.5) yields

U = (6.8)

Here, Ak replaces B exp(i266kt). Because the currents in the differ-

k
ent domains will impart a large differential phase to the product term

AlAﬁ’ the time-averaged result is negligible for &£ # k; therefore,

1/T f at z aipkﬁk

c 2
1/T f at y ap

U (6.9)

2
here P, = .
where P = ||
A straightforward interpretation of the current estimate is now the
weighted average of the depth-averaged current field over the range cell
and over the coherent integration time T. To make this interpretation

more explicit,
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Lc * T J‘dt wkUk (6.10)
k
where
a2P
m m
w =
m

1/T f dt z alchk

In a practical context, the answer to the question of an unbiased esti-
mator depends on the desired measurement of the current field; it is ap-
parent that this measurement should correspond to the current averaged

over the range cell and over T. If the mean wave-height spectrum is

rot uniform over the cell, the above weighted average will differ from
the desired average as the result of preferential weighting in areas of
is random

large mean-squared height. If the spatial variation of Pw

(uncorrelated with the temporal variation of Pm) then, over a long ob-~
servation period, UC will tend toward the desired quantity.

Reduction in the random variation of Uc from one m2asurement to
another as a result of the centroid estimator will now be demonstrated.
For this purpose, spatial averaging can be ignored which will greatly

simplify the following derivations; therefore,

1 (12 R
U == f at w(t) U(t) (6.11)

T/2
where
P(t)
/T ].P(t) at

wit) =

Assume that the random process U(t) is statistically independent

of the normalized spectral process w({t). Now, w(t} 1is a quotient of
two random variables; the denominator is a time-averaged version of the
numerator.

following definitions

S
ElP(t)] ¢ PO
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var(p(t)] & o°
2
E{[P(t) - )P+ - po]} 4 R (D)

and, after some standard manipulations,

1
F[E fP(t) dt] PO (6.12a)
1 2 (1 T
Var[? fP(t) dt] =7 J(; Rp('l‘) (1 - 5) at {6.12Db)

If P has a correlation time tp small compared to T, then

1 2 5%
Var[;r-fP(t) dt} =20, 3 (6.13)

Because the power spectrum of the gaussian process (with a rectangular
window) is a chi-square of two degrees of freedom, its variance-to-
squared-mean ratio is unity. The variance of the denominator of w(t),

. 2
therefore, is small compared to P

0 and, following Barrick [1978b],

P(t) _ P(t)

wi{t) = = (1 - D) (6.14)
Po(l + D) Po
where
1 11
D= ;(-)- [EJ‘P(t) dat - PO]

After some lenjthy but straightforward manipulations, aa expressionn

for ‘he variance of Uc is

R_{t)

T 1
[ (1 - %) R, (t) |1 + —P——J at (6.15)
0

2
P
0

BN
~~

Var[UC] =
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where RU(t) is the autocovariance functior at lag < of the random
process 0. If the correlation times TU'Tp for the processes U and

P, respectively, are small compared to T, then

t
~ U\ .2
Var[Uc] = 2 T OU

when tU > tp. If tU << tp' the variance of Uc is approximately
doubled.

The above calculations demonstrate the varience reduction by the

centroid estimator. It has been assumed that the Bragg width is caused

by the statistical character of the current field and wave-height spec-

tral amplitude.

C. Experimental Results and Interpretations

It has been demonstrated tha* the centroid estimator in Eqg. (6.3)
can be used to produce estimates J(B) of the depth-averaged current in
the direction of the radar. Eacn U(B) is actually an average of the
current component over the coherent integration time T and over the
entire range cell prcbhed by the radar.

In Figs. 6.1 through 6.4, U is rlotted vs time. The data were
collected during four days in January 1978, and the estimates of § were
obtained using the approaching Bragg lines because the receding lines
during those days had much less signal strength. Data points derived
from Bragg lines with a signal-to-noise ratio lower than 6 4B are not
plotted. The symbols +, X, A, and P denote data obtained from the
four range cells centered at 9.75, 15.75, 21.75, and 27.75 km, respec-
tively. Note that the baselines (G = 0) for data from these range
cells are all different; each has bsen displaced upward by 10 cm/sec
for each increment in range, as indicated by the solid horizon%al lines.

On January 19, the estimated averaged current U was observed to
decrease consistently with time at all four range cells and radar fre-
quencies during the four hours of the expariment. Current Jagnitude
dropped from 5 cm/sec at 11:27 local time to zerc cm/sec at 15:27; su-

perimposed on this trené was a small statistical variation of 1to 3 cm/sec.
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The 6.8 MHz data were noisy because the transmitted pulse was reflected
from the ionosphere directly overhead and experienced Doppler shifts
caused by random ionospheric motions. The resulting Doppler spectrum
was relatively broad (a few tenths of a hertz) and, at times, the Bragg
lines were submerged in the ionospheric signals. 2t higher radar fre-
guencies, the ionosphere is transparent to the radio waves.

On January 20, the radar-inferred averaged-current increased stead-
ily with time at all range cells and radar frequencies; the total increase
was approximately 5 cn/sec over the four hours of the experinent. Iono-
spheric interference again cortaminated the data at 6.8 MHz. The statis-
tical fluctuation superimposed on the temporal trend was roughly 1 cm/sec.

On January 24 and 25, o again consistently increased with time at
all range cells and radar frequencies during the first two to three hours
and then remained constant to the end of the experiment; the total in-
crease was approximately 20 cm/sec on January 24 and 15 cm/sec on January
2. The increase of current with radar frequency was apparent za those
two days. The fluctuation superimposed on the temporal trends in the
estimated current was again roughly 1 cm/sec.

The observed temporal trend in the depth-averaged current is attrib-
uted to two sources--diurnal and semidiurnal variations in the tidal cur-
rent component (Sverdrup, 1942} and wind speed. On January 19, the wind
was less than 5 m/sec and came from the west; the most probable explana-
tion for the steady decrease in current, therefore, is tidal variation.

On January 24, the wind rose from 3 m/sec at 11:20 local time to 6 m/sec
at 15:40, and its direction shifted from 030° to 300° T. These measure-
ments were sporadic, but they were sufficient to indicate a rise in the
wind component toward the radar. The increasing wind drag on the ocean
surfaze may have been partly the cauce of the increase in current observed
by the radar. The same trend occurred on January 25; the wind rose from

4 m/sec at jl1:00 local time to 6 m/sec at 14:28, and its direction shifted
from 230° to 300° T.

To examine the correlation between tidal currents and the radar-mea-
sured current, local time can be converted into a phase angle from the
nearest tidal peak as recorded in the tide table at Point Fort in San
Francisco, assuming a tidal period of 12 hours. For example, the data

for January 19 covered phase angles from approximately 100° to 240° and
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the data for January 24 covered phase angles from 0° to 125°. 1It is
extremely difficult to relate water movement caused by tides to tidal

. current [Lisitzin, 1974]; however, the nonoverlapping phase-angle ranges
during January 19 and 24 may account for part of the observed reversal

in temporal trends in the currents.
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Chapter VII

ESTIMATION OF DRIFT PROFILE FROM CURRENT-INDUCED DOPPLER VELOCITIES

As has been discussed in the previous chapters, the estimated cur-
rent-induced Dopvler velocity is a weighted average of the ocean current
over depth. To be precise, the radar-inferred Doppler velocity G(B) at

radio-wave wave number B has been shown [Eq. (6.1)] to be
[oo]
U(B) = 4B f UB(z) exp(-4Bz) dz (7.1)
0

where UB(Z) 1s the component of the horizontal ocean current in the
direction down the radar beam at depth z. 1In this chapter, the depth
variation of this component will be deduced from 6(8) measured at four
radio-wave wave numbers (B).

Theoretical considerations and experimental observations {[Bye, 1965;
Shemdin, 1972; Wu, 1975] have indicated that the drift profile induced
by wind drag is logarithmic,

U*
Uy(z) =U_ - — fn (= (7.2)
B( ) s K z )
o
where

Us = surface drift

U, = friction velocity

K = universal Von Karman's constant

z = roughness length

This expression is not valid in the very top layer of the ocean where
viscous effects cannot be neglected. The thickness of this layer is on
the order of millimeters [Bye, 1965]}. The importance of this logarithmic
profile in the understanding of air/sea interactions leads to the assump-
tion of its validity in a first attempt to invert the relationship in Eq.
(7.1). This assumption also enables determination of the drift profile
from in-situ measurements (see Chapter V) so that comparisons to radar-

inferred current can be made.
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The data obtained from the experiments, however, indicate that such
assumptions are not always valid. An algorithm is derived, therefore,

for inversion of the Laplace relation in Eq. (7.1).

A. Comparisons between Radar-Inferred Drift Profile and In-Situ Drift
Measurements for Logarithmic Profile

The logarithmic profile in Egq. (7.2) is assumed to be valid except
for a very thin surface layer of thickness & £rom which the contribu-
tion to the integral in Eq. (7.1) is negligible. Introducing a variable

s = 48z,

U o]

Gy =u_ - = in L exp (-4B8) - n(s) exp(-s) ds
s K 48 486

2
()

Because 6 is much smaller than the radio wavelength, 4B§ is approxi-
mately zero and the integral (with the minus sign) in the above equation
is then a constant; actually, it is equal to the Euler constant Y=0.5772

fCarrier et al, p. 186]. If vy = n(r), then

. U (%
U(B) = US - in 2, (7.3)

B N LAy e s

where zp = 1/(4Br) = 0.022 X, and A is the radio-wave wavelength. In
other words, the radar probes the logarithmic current at a depth of ap-
proximately 2 percent of the radio-wave wavelength. If a linear profile
had been assumed as it was by Stewart and Joy [1974]}, the depth probed §
by the radar would be larger than zp by a factor of r = 1.78.

Based on this result, the current-induced Doppler-velocity estimates

~

U at four radar frequencies discussed in Chaptar VI can be interpreted

as the actual ocean current component U at four different depths. To
compare these estimates to the in-situ measurcments obtained by drifters,
the radar-inferred drifts available at 7-1/2 min intervals are averaged
over a time period covered by the available drifter measurements. The

results are plotted in Figs. 7.1, 7.2, 7.3, and 7.4 from data collected )

during January 1978. Note that these plots are derived from positive
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Fig. 7.1. COMPARISON OF RADAR-INIERRED DRIFT AND SPAR-
BUOY DRIFT (CLUSTER 2) OBTAINED ON 19 JANUARY 1978.
Horizontal axis is logarithmic inrn depth, and a loga-
rithmic profile is assumed. The approaching Bragg
line was used.

Bragg lines (approaching lines) because they were stronger than the re-
ceding lines. Superimposed on each figure are the currents inferred from
in-situ measurements by drifters at four depths of inmersion. By assuming
a logarithmic current profile, the measurel drifts can again be inter-
preted as the actual current at four different depths (see Appendix B)}.
From these plots, the following consistencies between the radar-in-

ferred drifts and the in-situ measurements can be observed.

* The same change of current with time (decreasing the first
day and increasing on the other days) is detected in both
measurepents at the various depths probed.

* The decrease of current with depth, in most cases, is seen
in both measurements.

* On January 25, the vertical gradient in the measured current
increases with time from both the radar and buoy data. This
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can be explained in part by the rise in wind in the direc-
tion toward the radar, as described in Chapter VI.

It is also apparent from these plots that the radar-inferred current
does not match the in-situ measurements in every detail; for example, the
discrepancy between the two types of measurements varies from less than 1

cm/sec to approximately 5 cm/sec. Possible reasons for this discrepancy

are explained below.

1. Resolution Limitations

The resolution of the radar measurements is limited by the fre- .

quency resolution of the Doppler spectra. As discussed in Chapter V, the
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nominal frequency resolution is approximately 1 millihertz which results
in a current resolution of 2.4, 1.2, 0.8, and 0.6 cm/sec for radar fre-
quencies at 6.8, 13.3, 21.7, and 9.8 MHz, respectively. This inability
to resolve smaller current may account for some of the differences ob-
served in the two types of measurements.

The resolution of the drifter measurements is determined by the
accuracy of the range measurements which are a few meters. Because, over
an interval of an hour, this range uncertainty results in a velocity un-
certainty very much less than 1 cm/sec, it is not the limiting factor in

the overall accuracy of the drifter measurements.

2. Statistical Uncertainties

Because of the temporal and spatial averaging inherent in the

radar~-inferred current estimator, the resulting estimator is highly
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: Fig. 7.4. COMPARISON OF RADAR-INFERRED DRIFT AND SPAR-
BUOY DRIFT (CLUSTER 1) OBTAINED ON 27 JANUARY 1978.
Horizontal axis is logarithmic in depth, and a loga-
rithmic profile is assumed.

consistent; the residual statistical fluctuation after the temporal trend
| is removed from the data plotted in Figs. 6.1 through 6.3 is on the order
of 1 cm/sec. The drifter, however, senses only the current field along a

specific trajectory. In a highly variable current fi~ld, drifter measure-

[T ST

ments can differ significantly from the averaged current measured by the

radar. An indication of current-field variability is the finite width of

[ T

the Bragg lines in the Doppler spectra. In-situ evidence of this varia-

bility is apparent in the discrepancy between the motions of buoys deployed

4
& i"t !
SYSSARECANE

T

:jq o
Gt 1

6 km apart in the experiments. The current profile measured by the two

e S

sets of spar buoys is plotted in Fig. 7.5. It can be seen that the cur-

il

rent magnitude at the nearer end of the range cell is smaller than that
at the farther end by at least 5 cm/sec. Larger variability in driftex
measurements and a greater discrepancy between radar-inferred and buoy-

inferred currents have been reported [Barrick et al, (977b].
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’ ; This current-field variability in the horizontal plane can 3
2 generate errors in estimating the vertical gradient (or shear) of the
current from the in-situ measurements. Assume that a wind-shear flow
; Ny produces a current shear that is uniform over the range cell. Buoys of
“ ’ varying lengths released at the same location will drift simultaneously
f ] with different velocities because of the current shear. As they drift
. % apart, theyv will be influenced by current at different locations and
i K
’ o F times. Variations in the drift of the buoys are then the result of
‘ current variability in the horizontal plane and vertical current shear.
L ' - . This may explain why the shear observed in the radar data differs from
! gD that in the drifter data.
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B. Estimate of Friction Velocity U,

It is evident from Eq. (7.2) that friction velocity U, can be

*
estimated from the slope of the curve UB vs fn(2z). The radar data
obtained from the closest range cell on 24 January 1978 are used here

as an illustration because, as can be seen in Fig. 7.6, they are es-

pecially consistent with the assumption of the logarithmic profile [Eq.
(7-2)}. The slope of the visual fit yields U, = 1.6 cm/sec based on
the value of 0.4 for the von Karman constant K.

WIND: 6 m/s NW

20

VISUAL FIT u,=1.6 CM/S

CURRENT, CM/S

0.22 0.31 0.5t 0.99 DEPTH, Meters

Fig. 7.6. LOGARITHMIC CURRENT SHEAR MEASURED BY THE
FOUR-FREQUENCY RADAR. Horizontal axis is togarithmic
in depth, and the logarithmic profile is assumed in
the inversion. Vertical bar indicates resolution
limited by a finite-time Fourier transform. Data
obtained at Pescadero at approximately 14:15 to 15:
15 LT on 24 January 1978; range 6 to 13.5 km.

During this particular experiment, the wind speed V down the radar
beam was approximately 6 m/sec which resulted in a wind stress of (1/2)
2 -
paV , Wwhere pa is the air density (*1.2 X 10 3 gm/cc). The drag coef-

ficient CD defined by
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2 2
pUs = CpV (7.4)

}
|
}
!

has been found experimentally to be approximately 1.3 X lO"3 {Stewart,

private communication], where §p is water density and V is wind speed

at an anemometer height of 10 m.w The anemometer was located on the top
of the mast of the boat used to deploy and track the buoys. 1Its height
was comparable to that required for the empirical formula (Eq. (7.4)].
If V = 6 m/sec, friction velocity is u, = 0.8 cm/sec which is one-
half that measured by the radar. This difference may be caused by the
uncertainties in the wind measurements and in the determination of the

drag coefficient.

C. Drift-Profile Estimation from Numerical Inversion

Inverting the integral relation in Eg. (7.1) without assuming any

T

specific functional form of current vs depth distribution is complicated
by two factors. First, the value of the current-induced Doppler velocity
ﬁ(B) is known only at four values of the argument 8 and, second, these
known values are inevitably contaminated with measurement noise. The

first factor constrains the number of quadrature points to four that can

be used to approximate the integral by a finite sum. To minimize ths

[P

truncation error resulting from this quadrature approximation, the gaus-
sian quadrature method [Lanczos, Chapter VI; Bellman et al, Chapter II]

is employed. Both truncation error and measurement noise will be severely
amplified in the inversion, and this always occurs when inverting the
Fredholm integral equation of the first kind, of which the Laplace rela-
tion here is an example {Phillips, 1962]. This problem is solved by a

stabilized inversion technique.

1. Reduction to Gaussian Quadratures

> An integral can be approximated by summing over a finite number

of terms; that is, e

- 1
[ fx) dx = z f(xi) ws (7.5) E
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where x, are the guadrature points and wi are the weights. 1In the

| method introduced by Gauss, both X, and W, are chosen by requiring

]

that Eq. (7.5) must be exact for any polynomial of order <2n-1.
An explicit formula for w, is first obtained by fitting a
polynomial pn_l(x) of order n-1 to the "data" f(x) at all n
) quadrature points. This can be accomplished by forming polynomials
; Qi(x) (i=1,2,...,n), each of order n-1 and having the property g

that it is zero at all quadrature points except xi; that is, :

Qi(xj) = Gij (7.6) é

where 6ij is the Kronecker delta. Then,

n
' pn-l(X) = 25 f(xi) Qi(x) (7.7)
i=1

will match f(x) at all quadrature points. The following expression

: for Qi(x) will have the desirable sampling property of Eq. (7.6):

i : q. (x)

IR s s £k SAREALIR S S DI P it S a2 R4 o T o5 8 N

-
Qi(x) 1 &) (7.8a)
171
i
i where qi(x) = (x-—xl)(x-xz)...(x-xi_l)(x-xi+l)...(x-xn). Note
24 3 that qi(x) is a polynomial of order n-1 because the term X=X, ;

is missing from the product chain. If the nth-order polynomial Fn(x)

is defineé as

¥ Fn(x) = (x - xi) qi(x)

an equivalent expression for Qi(x) is

1 Fn(x)

' —
Fn(xi) X - x,

Qi(x) = (7.8b)

which is the Lagrange interpolation formula that yields exact values of

£(x) at any point x if £(x) is a polynomial of order n-1. Here,
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the prime indicates differentiation with respect to x, and Fn(x) has
n zeros located at the n quadrature points xi.
Based on the condition that Eg. (7.5) must be exact for pn_ﬁx),

the following expression for the gaussian weights w, is obtained:

1
w, = ‘{ Q. (x) dx i=1,2, ..., n (7.9)
i i
-1
This equation depends on the exact form of Qi(x) which, in turn, depends
on the specification of the quadrature points xi. The precise wvalues
of these n points can now be optimally chosen hy requiring that Eq.
(7.5) is exact for all polynomials of order 2n-1. Equivalently, Qi(x)

should be such that

1
w, = -[ Q.(x) dx =0 i=n+1, ..., 2n
1t

which will result 1in an n-point quadrature formula whose accuracy equals
that of a 2n-point quadrature formula. This condition is analogous to

requiring [Bellman, 1966, Chapter II] that

]

1.
f x'F (x) dx = 0 i=0,1, ..., n-1
._l n

and this orthogonality condition is satisfied by the Legendre polynomial
of order n. The n quadrature points are thus identified as the n
zeros of the nth-order Legendre polynomial. With xi defined, Qi(x)
can be computed and used to determine W, . The results for both X and
w_.L are, in fact, well tabulated [see, for example, Abramowitz et al, p.

916].

To reduce the integral in Eg. (7.1) to quadratures, the trans-

formation x = 2 exp(-4koz)-l is first introduced to map the interval

[P

(0,*] into [-1,1}. Here, ho is an arbitrary wave number chosen to )
minimize the gquadrature error. The transformed integral can then be re- -
duced to quadratures as described above. The resulting matrix equation

is "

93

o N AR

e p—.
-




[P PTIR TI e

f=Aac (7.10a)
where
f is the vector wi:h components
20(s k)
£, = —— i=1,2,3,4 (7.10b)
i s,

1 :
¢ 1is the vector with components i

c. =1 z(x.)] W, j = 1,2,3,4 (7.10c)
3 B[ 3 3 ) ! ;
4 is the matrix with elements ;
s.-1 §
1 1 i 2
==+ = . H
ij (2 > xj) (7.104) :
i
é
s, is the normalized wave number Bi/k0 :
z(xj) is the depth defined as :

—.+ ——

fr) = - z*2%) (7.10e)

"3 ak ° ;

The guadrature points xj and weights wj are as follows:

. X, w,
A S -1 %
1l 0.8611363116 0.3478548451
2 0.3399810436 0.6521451548
3 -x2 w2
4 -xl wl

Because ko is chosen as the smallest of the four wave numbers used in -

the experiments, every matrix element aij is bounded. In all the ex-

S

periments discussed in this chapter, k0 = 0.568 m-1 which corresponds -

to the radar frequency of 6.78 MHz. From Eq. (7.12e), therefore, the
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depths corresponding to the gaussian quadrature points xj are 0.127,
0.705, 1.952, and 4.696 m.

The numerical integra.ion indicated in Eg. (7.10a) was pro-
grammed on a 32-bit computer for a few selected drift profiles, and the
results are listed in Table 7.1. It can be seen that the quadrature
errors are no more than 3 percent except when the rapidly varying linear
drift profile was detected to a relatively great depth at the lowest

radar frequency.

Table 7.1

COMPARISON OF NUMERICAL-INTEGRATION RESULTS OBTAINED
BY GAUSSIAN QUADRATURE AND EXACT CALCULATIONS

g (m-l) 6(B) by Exact Percent
’ Quadrature U(8) Error

Uniform Current
UB(Z) = 20 cm/sec

0.568 20.00 20.00 0 ;
1.118 20.00 20.00 0 §
1.824 20.00 20.00 0 :
2.492 20.00 20.00 0 z
Linear Profile

UB(z) = 20 * (1-2) cm/sec
0.568 ~14.10 ~15.21 7
1.118 2.05 2.10 3
1.824 9.04 9.03 0
2.492 11.98 11.98 0

Exponential Profile

UB(Z) = 20 *» exp(-z) cm/sec
0.568 7.24 7.24 0
1.118 10.56 10.56 0 i
1.824 12.92 12.92 0 ;
2.492 14.27 14.27 0 i

Logarithmic Profile
Ug(z) = 20 + 2.5 * n(10z) cm/sec ’

0.568 14.21 14.27 0 o
1.118 15.81 15.96 1
1.824 16.92 17.19 2
2.492 17.60 17.97 2 R

-
.

R

)

%

.51

Ut b e
BRI A
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2. Direct Inversion and the Instability Problem

In the absence of truncation errors and measurement noise, the
drift profile UB(Z) can be recovered from the measured Doppler veloci-
ties G(B) at the four radio wave numbers by directly inverting Eq.

(7.10a); if the inverse of the matrix A is found to be B, then

UB[z(xi)] == i=1, ..., 4 (7.11)

For the matrix inversion, the gaussian elimination method [Dahlquist and
Bjorck, 1974]) is applied and, to verify the algorithm, the numerical-in-
tegration results in Table 7.1 are used as simulated Doppler-velocity
data for the inversion. The results of the inversion are exactly the
assumed current data used as input to the integration routine, as ex-
pected, which indicates that the finite register length of the computer
does net intrcduce significant error.

The measured Doppler velocities can never be free of measure-
ment noise € which may be caused by the statistical fluctuations in-
herent in the random nature of the ocean superimposed on noise introduced
by the radar equipment. The quadrature error will also appear as a noise ;

component. The total € will be transmitted to the inferred profile

UB(z) through the matrix inversion. For all Fredholm integral equations ;
of the first kind, the matrix A associated wich the kernel is unstable
because, in f = Ac, the solution vector ¢ is very sensitive to small

perturbations in f [Phillips, 1962]. All measurement noise, therefore,

ph g e Wb ma o

will e highly amplified in the inversion process, and the inferred pro-

file will be severely distorted,

To demonstrate the instability problem, error is intentionally

05 kol ROPNAY b

introduced into the simulated Doppler velocities in the folliowing manner:

23T

£, = £, - [1 - error - (-1)3}
] ]

where the error is 0.01 in the first case and 0.1 in the second. As can

he seen in Table 7.2, 1 percent noise introduces error as large as 70 -
percent in the estimated profile, and 10 percent noise distorts the drift

profile beyond recognition.
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Table 7.2

EXAMPLES OF INSTABILITY IN DIRECT INVERSION. Logarithmic
profile UB(Z) = 20 - 2.5 * 2n(102) is assumed.

U from Direct Inversion
z Actual U B
(m) (cm/sec) Noise 1% 10%

Free Noise Noise
0.13 19.41 19.41 15.78 -16.91
0.71 15.12 15.12 21.34 77.36
1.95 12.57 12.57 3.66 ~76.50
4.70 10.38 10.38 19.85 105.16

3. Stabilized Inversion

The matrix equation to be inverted in the presence of measure-

ment noise € is

f=2a +¢

whose least-square-error solution is obtained by the inversion

A Ac = Atg

where t indicates that the matrix A 1is transposed. Because At is
a square matrix that has an inverse, this least-square solution is reduced
to solving £ = Ac--again an unstable procedure.

Further restrictions imposed on ¢ are required to produce a
stable solution. Phillips [1962] was the first to propose imposing the
condition of minimum second difference of ¢ in solving the Fredholm
integral equation of the first kind. Twomey [1963] simplified this ap-
proach and suggested minimizing the mean-squared difference between ¢
and a known a priori profile .- Bellman et al [1966] devised algorithms
for the above constraints but from a dynamic-programming standpoint based
on an iterative approach to inverting the matrix equations considered by
Phillips and Twomey. In a more recent survey, Westwater et al [1972] de-
scribed a statistical technique that requires as inputs the covariance

matrices of the unknown vector ¢ and measurement noise €.
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In the method employed here, a specific functional form (either

logarithmic or linear) is first assumed for the current vs depth distri-

bution, and a first estimate cf the current at four depths is obtained.

Based on a least-square fit, the current is then extrapolated at the four

depths dictated by the numerical quadrature method. This extrapolated

profile is then converted to a vector Eo according to Eq. (7.10c¢),

which is then used to stabilize the numerical inversion as described

below.
The formula for this stabilized inversion can be derived as

follows. A solution ¢ 1is sought wherein the transformed vector Ac

is as close to the measurement vector f as possible and the deviation

of ¢ from the initial solution S is small. This is achieved by

minimizing the weighted sum of the mean-squared errors,

2
2
Q“Z ZAijCj'fi *XZ (e; = c43)
i \j i

Here, the weighting factor X can be appropriately called a Lagrange

is a quadrature form whose minimum is attained by
of ¢ and setting

multiplier, and @
differentiating with respect to any component Cp

the result to zero. Therefore,

:{ ZE A,.c, - £,
1] 3 1

A - Aiﬁ,(slk + )\Z (c2 - coSL) GQk =0

where 62k is the Kronecker delta whose sampling property can be used

to remove the summation over 1. As a result,

t ‘z t
2 g ByiBiyCy t Ao = 4 At Aegy

In matrix form, the above system of linear ecuations can be

written as

(%A + A1) ¢ = A"E + A (7.12)
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Through gaussian elimination, ¢ can thus be obtained. Note that, when
A vanishes, Eq. (7.12) reduces to that of direct inversion; when A is
exceedingly large, ¢ approaches go. It is apparent that an interme-
diate value of A is required to stabilize the inversion to improve the
initial estimate of the solution. To obtain an optimal value of A,
Phillips {1962] proposed a method in which ¢ 1is determined from Eq.
{7.12) and the root-mean-squared error e = (Ag;-gjt(Ag;-g) is compared
to the root-mean-squared noise € in the measurement vector £. The
value of A that results in e closest to the noise level € is then
the optimal value. Phillips reported, however, that this technique was
not always effective.

In the approach taken here, after conversion to a Doppler-ve-
locity unit through Eq. (7.10b), e is never larger than 1 cm/sec in both
the simulated and real data; it increases slowly from zero at A =0 to
a saturation value of less than 1 cm/sec at A larger than unity. The
transition at A = 0.001 is fairly sharp. Although the inverted vector
solution ¢ may have undergone magnitude changes from a few to a few
hundred cm/sec as X drops rrom very large to very small values, the
deduced measurement Ac varies little from the actual measurement f£.
The reason for this behavior is the unstable nature of the matrix A. As
the inverse of A amplifies measurement noise, the matrix itself atten-
uates any variations in c¢. From the data presented in Chapter VI and
the resclution calculations in Section A, measurement noise here is also
on the order of 1 cm/sec. Based on Phillip's method, a value of A=0.1
or larger is required. The need for a value of A much larger than unity
implies that stabilized inversion will not significantly improve the ini-
tial estimates obtained by assuming a specific functional form for cur-
rent distribution vs depth.

To examine in detail the properties of the inversion algorithm,
the current-induced Doppler velocity 0(B) is simulated by using a log-
arithmic or linear current profile UB(z) in Eq. (7.1) for which the
induced Doppler velocities at the four radio-wave wave numbers are the
actual current at known depths, as discussed in Section A. A fixed-per-
centage noise can be added to the Doppler-velocity data by alternating
the sign of the percentage added to the data at the four wave numbers.

To generate c,r ©one of the two profiles is assumed and the relationships
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in Section A are applied to relate the data to current at four depths.
Least-square extrapolation then yields S, at the quadrature points.

In Fig. 7.7, the inversion algorithm is used iteratively to
check convergence when <, is intentionally chosen incorrectly by as-
suming the wrong profile. 1In Fig. 7.7a, the Doppler data contain no
noise and the convergence to the actual current profile is fairly rapid.
In Fig. 7.7b, 5 percent noise was added to the data, and the iterative
approach increased the deviation of the derived profile from the actual
profile. It is apparent, therefore, that the best approach is inversion
without iteration.

Figure 7.8a serves as a check for the algorithm. Because the
data are free of noise and e, has zero weight, the inversion is essen-
tially perfect; the small difference between the resulting current pro-
file and actual profile is caused by propagation of the quadrature errox
which must have been even smaller.

In Fig. 7.8b, 5 percent noise was introduced into the Doppler
data. Although Eo has the correct functional form, it is not a replica
of the actual current because of the added noise. The inversion output
for A = 0.1 does not improve the extrapolated profile; in fact, at the
last quadrature point (4.7 m), the extrapolated result is significantly
closer to the actual profile because it is based on a priori knowledge
of the functional form of the current distribution.

Figure 7.9 demonstrates how tlie correct choice of X can im-
prove the extrapolation results based on the assumption of a wrong pro-
file. This is encouraging because the purpose of the inversion approach
is to eliminate the need for a priori knowledge of the functional form
of current distribution vs depth.

In Fig. 7.10, the inversion method is applied to the Doppler-
velocity data derived from the radar backscatter signal. In both of these
figures, current is again assumed initially to be proportional to loga-
rithmic depth. 1In the January 20 data, the logarithmic assumption is
good, and the inversion result is highly consistent with the extrapolated
profile. 1In the January 24 data, however, there is a sudden depa-.ture
from the logarithmic trend at the longest wavelength, and the deduced
current profile increases slightly with depth after its initial sharp

decrease.
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CURRENT (cm/s)

30 4
A=04
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20 1 {

10 { 1

£

-20 { }
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2 3
DEPTH (m)

a. Noise-free data

30 ¢+

A=0.1
FIVE PERCENT NOISE

10 4

) Bt

0 1 2 3 4 5
DEPTH (m)

b. Five percent noise added

Fig. 7.7. INVERSION OF SIMULATED DOP-

PLER DATA, LINEAR PROFILE ASSUMED IN
THE INITIAL ESTIMATES. The plus de-
notes iterative stabilized inversion,
and the arrow indicates direction of
movement of results as iteration pro-
gresses,
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a. Noise-free data
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S 104 ;
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&€ O7  x ANALYTICAL INVERSION :
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- e + NUMERICAL INVERSION :
g -10 } SOLID CURVE: ACTUAL PROFILE
A=0.1; FIVE PERCENT NO!SE g
b3
-20 4
0 1 2 3 4 5 i
DEPTH (m) :

b. Five percent noise added and Lag-
range multiplier increased to 0.1

SRE A v

Fig. 7.8. INVERSION OF SIMULATED DOP-
PLER DATA., LOGARITHMIC PROFILE ASSUMED
IN THE INITIAY, ESTIMATES.
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. Fig. 7.9. 1INVERSION OF SIMULATED DOP-
PLER DATA WITH 5 PERCENT NOISE, LOGA-
RITHMIC PROFILE ASSUMED IN THE INITIAL
- ESTIMATES.
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Fig. 7.10. INVERSION OF RADAR DOPPLER-
VELOCITY DATA AVERAGED OVER TIME.
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Chapter VIII

BANDWIDTH OF THE BRAGG SIGNAL

PP L LAY NP PR T Y~

As has beer noted, the bandwidth of the first-order Bragg signal in
the radar return typically ranges in units of current from 5 to 15 cm/sec
which is significantly larger than the resolution limits of both the tem~
poral transform and spatial filtering that result from the backscattering
process. This chapter investigates two practical methods for computing
this bandwidth and analyzes its behavior as such radar parameters as
pulse width, frequency, and time of sampling and other uncontrolled con-
ditions (such as wind speed) vary. This study will yield valuable insight

into the ocean processes that lead to Bragg-line broadening.

nstn i gL Fhey S E WA v K S VSt ne D b 1L s vt v T

A. Bandwidth Estimators

384

The power spectral density of the Bragg signal is represented by Pi
at fi = 1i.Af, where Af 1is the frequency separation between adjacent
spectral points. This first-order signal is assumed to be nonnero only
all summations to 3

in the frequency region determined by m 2 < i < m

1 2
be discussed in this chapter will cover only this finite range. A sec-

ond-moment bandwidth wy can then be computed as follows:

s 1/2
Wy = 2(;) Af (Hz) (8.1) .
where ]
S = (i--c)2 Pi = second moment of the spectrum about the centroid

z
i
c=1321 Pi/A = centroid of the spectrum
i
z
i

Pi = area of power spectral density curve

This estimated width is the frequency separation between the points 2.17
dB dovn from the peak if the power spectrum is exactly gaussian in shape.
The major weakness in this estimate is its sensitivity to noise present

at the frequency bins located a long distance away from the signal peak.

This is evident in the weighting factor (i-c)z which increases as the

e pares

square of the distance from the centroid c.
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Area bandwidth w2 is a much less sensitive estimator,

- Af (Hz) (8.2)

wilere A 1is the area of the spectral curve and Pmax is the peak value
of the power spectrum. This estimate is the exact width of a rectangular

spectrum,

P m <1<m

max 1 2

0 otherwise

The principal drawback of this estimator is its sensitivity to the actual
spectral shape. For example, when a band of signals has an standing
b -uk, w, will be much less than the visual width; when the band is

2

fairly uniform, W, will be approximately equal to it.

The relation between Wy and w, can be derived for any given

spectrum. For example, in a gaussian curve,

W 1/2
;2—- (-"21) = 1.25
1
and, in a rectangular spectrum,
w
;2—= 2.45
1

In the gaussian spectrum, the 3 dB width is larger than w, by a factor

1
of 1.18 and, as a result, it is well approximated by w

2

B. Determination of First-Order Region

The method used here for determining the cutoff points my and m,
that define the first-order Bragg signal differs from that used in Chap-
ter V. It was chosen for its simplicity and because it yields cutoff
points that are less sensitive to spurious signals near the Bragg lines.

The algorithm on which this method is based is as follows.
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* Obtain a smoothed version of the Doppler spectrum by con-
volution with a rectangular window whose width is 10 fre-

quency bins.

* Search for the peak of the smoothed spectrum near the Bragg
frequencies #f , assuming a maximum current magnitude of

50 cm/sec.

* Locate the cutoff points 10 dB down on either side of the
peak.

As before, these cutoff points are then used to determine the desired
parameters from the unsmoothed spectrum. As a check, this algorithm was
applied to the data set discussed in Chapter VI to obtain the radar-in-
ferred current, and the resulting current estimates differed by no more
than 1 cm/sec from the estimated currents described in Chapter VI. Width

estimates, however, are more sensitive to the actual locations of the

cutoff points.

C. Results

The set of radar data available for this study is divided into the

following two groups:

* data collected from January 1975 through January 1977

*+ data collected during January 1978

In the first set, the four radar frequencies employed were 4.8, 6.8,
13.3, and 21.7 MHz cver approximately 50 days of experiments. During
each day, four 1/2 hr experiments were performed, one for each radar
pulse width of 25, 50, 100, and 200 psec. This large data set is used
to study the behavior of the Bragg width as a function of wind speed and
direction, radar pulse width, distance (range) of the illuminated ocean
patch from the radar, and the radar carrier frequency, respectively.

The second set has the same data base used in Chapters VI and VII.
The four carrier frequencies were 6.8, 13.3, 21.7, and 29.7 MHz over
five days of experiments (January 19, 20, 24, 25, and 27). Approximately
four hours of data were collected each day at a fixed radar pulse width

of 50 pysec. With the exception of January 20, these experiments were
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conducted in conjuinction with simultaneous in-situ measurements obtained

o RS - A

x This second smaller data set is used to determine the frequency de-

b

2 | ;
? l by spar buoys as described in Chapter V.

!

; pendence of the Bragg width over a slightly different range of frequen-

O

cies, and the temporal trend observed in the ocean-current estimate (see
Chapter VI) is compared to the temporal behavior of the Brayg width de-

duced from this data set. The in-situ measurements of the total current

PR Ry

FE vector are also employed to compute the Bragg width caused by the finite
; radar beamwidth, and compatibility between the computed and observed
widths is examined.

é The estimated width is denoted by w(a X J,Lk,r ). The arguments
are the variables defined below.

P L T

‘ . a, = wind speed classified in four categories

1

i=1 from O to 4 knots ;

e n s

i=2 from 5 to 9 knots
i=3 from 10 to 14 knots -

i=4 higher than 15 knots
f. = radar carrier frequencies, increasing with index j
Lk = radar pulse widths, increasing with index k

r = range of illuminated ocean patch from the radar, increasing
with index m

TR SRR DS RO I e 7

For convenience, the estimated width w in units of frequency is con-

F

; : verted to w, in units of current via

wc (cm/sec) = w (Hz) * 15000/fc (MHZz)

R

The wind conditions were measured at the Pescadero radar site whare

an anemometer was located approximately 5 m above ground level, at the

C
et

S.E. Farallon Island, and at Pigeon Point where they were normally re-

ported at two-hour intervals by the weather bureau (Fig. 8.1). The wind .
speeds at these three locations were averaged to approximate the prevail- &
ing winds in the open sea covered by the radar. Variability in the width -
estimates was reduced by averaging over those obtained on different days é
%
. 110 %
i R S s

‘ TUEE LR “*}g“uﬁm ’%}ifm:zzf:i‘% g




£ B BITAY RN RIS e e s 1

e

. ——,

*

v

i

S.E.
x FARALLON
ISLAND
RADAR
Axrs
PILLAR
oPOINT
O
% 0
A STANFORD
o)
2
7
PACIFIC v
OCEAN
XPESCADERO
| \ PIGEON POINT
10 km

Fig. 8.1. LOCATIONS OF ANEMOMETERS. These are
indicated by x at the Farallons, Pescadero, and
Pigeon Point.

but under the same classification; the resulting width is denoted by ;;.
To detect trends in the results, further analysis was based on the as-
sumption that the variation of width ;;(a,fc,L,r) with each of its ar-
guments was separable from its variation with the other arguments in the

following manner:

wc(a,f,L,r) = wa(a) wf(fc) wL(L) wr(r) (8.3)

Note that the exact functional dependence of w on each of the four va-
riables is not specified and, as will be demonstrated, this dependence
on most of the variables is very weak.

By normalizing and averaging, assumption (8.3) enables elimination
of the dependence of ;; on any three of its arguments so that its va-
riation with the remaining argument can be studied. For example, the

variation of Bragg width with radar frequency fj is
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wc(fj) = gz-i wikm(fj) (8.4)
where

A

w {(a.,f. r
_ c( i’ J'Lk' m)

w.. (£.) =
ikm j =
w (a.,f

c i

1M T
Normalization is always done with respect to the width at the index value
of 1 for the chosen variable. Associated with each of these width esti-
mates is a computed standard deviation s; for example, the value of s
at fj is
, 1/2
s(fj) =982 .jgln [Qikm(fj) - Qc(fj)] (8.5)

In Table 8.1, all the width estimates in the first column are equal
to unity because of the specific normalizing constant. The first entry
in each cell is the normalized area width derived from Eq. (8.2); the
second entry is the second-moment width derived from Eg. (8.1). The
bounds of each estimate are established by the standard deviation s,
Note that both the area and second-moment widths generally yield similar
values. The most outstanding exceptions are observed in the row for the
frequency-dependence calculation [third row for QCU%)]; these discrep-
ancies are presumably caused by the significant fine-scale differences
in the Bragg-line structures at the different carrier frequencies.

The standard deviations are large conpared to the width variations
with wind speed, range-cell size, and range. Conclusions to be drawn con-
cerning such variations are determined from the observed average behavior.
The statistical significance of these conclusions may ke limited; however,
width variation with radar frequency excgeds the associated standard de-
viation which indicates a conclusive trend.

The behavior of the Bragg width is determined from both data sets,

and the results are discussed below.
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Table 8.1

NORMALIZED WIDTHS OF BRAGG LINES. These widthe are derived from
the radar data collected from May 1975 through January 1977. All

. data with less than a 20 dB signal-to-noise ratio have been re-
jected. Eicner the receding or approaching Bragg line was used,
depending on which had a higher signal level. The first entry is
normalized area width, and the second entry is normalized second-
moment width. The bounds are set by the standard deviation in
each estimate.

i 1 2 3 4
4 (a )T 1.00 1.03 * 0.15 0.99 * 0.18 1.05 * 0.22
1.00 1.03 * 0.18 0.98 * §,22 1.11 = 0.26
4 (L )# 1.00 1.08 £ 0.18 1.04 * 0,17 1.03 % 0.22
c i 1.00 1.07 * 0.17 1.05 = 20 1.04 £ 0.28
o (£ )* 1.00 c.91 % 0.16 0.59 * 0.09 0.45 + 0.08
i 1.0C 0.97 * 0.17 0.76 * 0.14 0.62 * 0.11
. & )§ 1.00 1.01 £ 0.18 1.07 % 0.19 1.10 * 0.23
c i 1.00 1.02 * 0.17 1.07 * 0.18 1.13 £ 0.24
Tai = wind-speed categories (0 to 4, 5 to 9, 10 to 14, and >15
knots.
*Li = radial sizes of range cell (3.75, 7.5, 15, and 30 km).
*
fi = radar frequencies (6.8, 13.3, 21.8, and 29.8 MHz).
§ri = ranges from radar (=10, 15, 20, and 25 km).

Y. Z2pendence on Wind Conditions (First Data Set)

Although the last wind-speed category (i = 4) was set asige
for all velocities higher than 15 knots, difficulty in maneuvering the
rhombic antenna at speeds higher than 20 knots set an upper limit on the
range of wind conditions observed. The results indicate that the width
of the Bragg line increases with wind speed except for an anomalous
small decrease in the range from 10 to 14 knots. The total variation
is actually only approximately 10 percent from category 1 (i =

4).

1) to
category 4 (i =
The data have also been reclassified according to wind direc-

tion, irrespective of its speed. The reference direction is the radar
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beam axis (approximately 315° T). 1In
RADAR

BEAM Fig. 8.2, a cross wind is indicated
N when the wind-velocity vector lies
in the two shaded quadrants, and an
w up/down wind is indicated when the
AN vector falls in the unshaded quadrants.
h \\\ Analysis of the large data set reveals
that the Bragg width for the wup/down
wind is approximately 2 percent larger
Fig. 8.2. WIND~DIRECTION than that for the cross wind.
CLASSIFICATIONS.

2. Dependence on Radar Pulse Width (First Data Set)

For the radar pulse widths used in the experiments, the corre-
sponding radial sizes of the illuminated ocean patch are 3.75, 7.5, 15,
and 30 km. The results in Table 8.1 show that the width of the first-
order lire increases by 8 percent when the radial extent of the illumi-
hated area increases from 3.75 to 7.5 km; a further increase apparently

causes a small reduction in the Bragg width.

3. Dependence on Range from Radar (First Data Set)

The four range cells sampled by the receiver are approximately
10, 15, 20, and 25 km away from the radar. BAnalyses indicate that the

Bragg width increases gradually with range.

4, Dependence on Radar Frequency

a. First Data Set

Both area and second-moment widths decrease sharply with
increasing radar frequency although the second-moment estimate indicates
a relatively weaker frequency dependence. Note that the width estimates
prior to normalization are in units of cm/sec. If the frequency depen-
dence of the Bragg width is approximated by a power law (wc ~ f;a), the
data in Table 8.1 can be used to estimate 0. Based on the tabulated

results, o = 0.5 for area width and 0.3 for the second-moment width.
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b. Second Data Set

The nominal values of the radar carrier frequencies used
in these experiments were 6.8, 13.3, 21.7, and 29.75 MHz. After analyz-
ing the data from the first range cell, an approximate power-law depen-

dence (wC ~ f;a) was observed with o = 0.4.

5. Correlation with Radar-Inferred Current (Second Data Set)

Although the radar-inferred current component examined in Chap-
ter VI showed a consistent trend with time during each of the five days
of experiments, the Bragg width did not exhibit the same behavior. For
example, on January 25, the estimated radial current increased from O to
20 cm/sec during the four hours of experiments, and the Bragg width [es-
timated using Eg. (8.2)] fluctuated about the mean value of 5.7 cm/sec

at the radar frequency of 13.3 MHz.

6. Correlation with Width Estimated from In-Situ Current
Measurements (Second Data Set)

If the ocean surface current is uniform within the area illum-
inated by the radar beam, the width of the Bragg line resulting entirely
from the finite beamwidth can be estimated. As illustrated in Fig. 8.3,
the x axis is directed down the radar boresight toward the radar system

and the y axis is transverse to that direction. The uniform current U

RADAR
BORESIGHT

QCEAN
CURRENT U

Fig. 8.3. BACKSCATTER GEOMETRY.
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has components Ux'Uy' 1f the 3 dB width of the radar beam is 6, then

the 3 dB width of the Bragg line in units of current is

2|u | sin 6 U | cos 8 + |Uu | sin 0 > lu_|
A = Y X y X
¢ |Ux|(l - cos 0) + lUyI sin © otherwise

(8.6)

Although the in-situ measurements of the ocean current did not
support the assumption of uniform current, they are used to calculate AC
for completeness. In January 1978, the in-situ measurements indicated
that the maximum magnitude of both Ux and Uy wac approximately 10 cm/
sec which, when combined with the beamwidth information in Fig. 5.1, can
be used to estimate the upper bounds of Ac at the various radar fre-
quencies. The results are presented in Table 8.2 plus the average width
;; of the Bragg line computed by means of the area estimator in Eq. (8.2).
If the actual spectral shape is assumed to be gaussian, the 3 dB width
will be larger than ;; by a factor of 1.06; the small difference intro-
duced by this factor will be ignored. The rapid decrease in Ac with
radar frequency is the result of the reduction in beamwidth. It can be
seen that the beamwidth effect cannot account for the observed width of
the Bragg line and that the observed variation with radar frequency is
also smaller than predicted.

The in-situ measurements obtained from the two sets of spar

buoys deployed at two different locations showed that the ocean current

Table 8.2

COMPARISON OF WIDTH Ac ESTIMATED FROM
BEAMWIDTH EFFECT (uniform current is as-
sumed) AND WIDTH w, ESTIMATED FROM RADAR
DATA (third range cell, 19 January 1978)

Frequency Gg A
(MHz) {cm/sec) (em/sec)
6.8 9.3 8.5
13.3 6.2 4.5
21.8 5.6 3.2
29.75 6.4 2.1
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in the area illuminated by the radar beam was not uniform (see Fig. 7.5);
the turbulent nature of these currents has also been reported by Sverdrup
[1942]). Assuming that the ocean current within a given range cell is

turbulent and that a standard deviation ov is associated with its prob-

ability distribution function, the width of the Bragg line is also ap-

SR o O A O YTt b ALY

proximately OV. The in-situ measurements did not provide sufficient
data from which a statistically significant estimate of Ov could be
extracted; however, the difference in the measurements by the twc sets
of buoys was of the same order of magnitude as the width of the Bragg

line.

I X PO A1k PO ARG T 8 59 I e SR

D. Summary

ot

This section summarizes the characteristics of the Bragg-line width
(in units of cm/sec) as obtained from processing the HF ocean-backscatter

radar data consisting of nearly 10,000 Doppler spectra.

* It is inversely proportional to radar carrier frequency fc;
a power-law fit to the data yielded a frequency dependence
of zf;0°4

* It is a weak function of the prevailing wind speed in the
range from O to 20 knots. Only up to a 10 percent increase
was observed when the wind speed rose at least threefold.

ww

* When wind blows across the radar beam, the Bragg width is
approximately 2 percent larger than when wind blows along
the beam.

* It increases by 8 percent when the radial extent of the il-
luminated ocean patch increases from 3.75 to 7.5 km; further
increases to 15 and then to 30 km apparently will reduce the
Bragg width by a few percent.

e It increases by approximately 10 percent as the center of
the range cell sampled by the radar recedes from 10 to 25
km as measured from the radar. This broadening is most
likely caused by a reduction in the signal.-to-noise ratio
with range which results in a higher probability of noise
corruption in the width estimator.

* It is uncorrelated with the radial component of the ocean
current detected by the radar.
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Any attempt to explain the above observed features of the Bragg

signal will require a model of the underlying processes that cause the
Bragg width. The possibility that broadening is the result of radar
system artifacts (such as antenna motion) has been considered in Chapter
V; however, experimental evidence indicated that very little broadening
could be accounted for in this manner. The effect of a finite beamwidth
illuminating a uniform current has also been examined, and experimental
evidence revealed that this accounted for part of the observed widtn and
also part of the width reduction with frequency.

In-situ measurements showed that the waters off the San Francisco
peninsula have an eddy-current component which is random in nature. If
this component does broaden the Bragg line, the following characteristics

must be inherent in the eddy-current structure.

* The radial correlation length of the random current field
must be much less than 3 km to account for the small change
in the Bragg width with the radial extent of the observed
ocean patch.

* The dependence of the Bragg width on carrier frequency in-
dicates one or both of the following possikilities.

~ The turbulent current field has a standard deviation
that increases with depth. As radar frequency drops,
the effective depth probed by the radar increases and
the Bragg line broadens.

- The azimuthal correlation length of the random current
field is comparable to the azimuthal size of the illum-~
inated ocean surface. At 15 km, the azimuthal size
ranges from 3 to 13 km for the radar frequencies used.

* The weak correlation of the Bragg width with wind <speed
suggests that the principal mechanism for the generation
of current turbulence is not interactions with the prevail-
ing wind.

Further experimental work is required to validate the above observations.
Theoretical studies of the effect of small-scale horizontal variations
of ocean current on wave phase velocity may also clarify the broadening

phenomenon of the Bragg line.
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

e

A. Conclusions

phot w4

The feasibility of remotely sensing ocean surface current and its
distribution with depth using a four-frequency HF backscatter radar has
been studied theoretically and experimentally. Theoretical investiga-~
tions indicated that the result obtained by Stewart and Joy [1974] for
ocean-wave phase velocity in the presence of surface current with a non- 3
zero vertical gradient is valid if the vertical gradient is small. Their

result was extended to second order for an exponential current profile;

however, for conditions prevailing during the experiments reported here,
this second-order effect was not important. A Bragg-scattering theory
base? on simple wave-propagation concepts was derived, and it was demon-
strated that the current component in the direction of the radar can be
estimated from the position of the Bragg signal in the ocean Doppler
spectrum.

Data collected by the Stanford four-frequency radar located at Pes-
cadero on the California coast were analyzed to generate an estimate of
the ocean current component in the direction of the radar. A 15 min cc-
herent integration time produced resolutions of 2.4, 1.2, 0.8, and 0.6 ;
cm/sec at the radar frequencies of 6.8, 13.3, 21.7, and 29.8 MHz. Exper-

iments during January 1978 revealed that fluctuations in the current

T

estimates were generally no more than 1 to 3 cm/sec superimposed on steady ;
temporal trends.

Spar buoys 1, 3, 6, and 12 m long were deployed and tracked by a

microwave system to obtain in-situ measurements of the ocean surface cur-

rent which were then compared to the radar-inferred current component by g

assuming that it varies in proportion to logarithmic depth. The discrep-

ancy between the two types of measurements was no larger than the dis-~
crepancy between the in-situ measurements made along two different tra-
jectories within the same range cell probed by the radar. The general
behavicr of the ocean current with time and depth measured by the spar

buoys agreed with that measured by the radar.
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Reconstruction of the ocean-current distribution with depth from the
radar Doppler measurements without assuming an explicit functional form
of the current profile requires inversion of a Fredholm integral equation
of the first kind. A numerical inversion technique was investigated,
using a stabilization scheme based on an initial estimate of the current
profile. The implemented algorithm indicated improvement of this esti-
mate when applied to simulated Doppler data.

From a large set of radar data collected from May 1975 through Jan-
uary 1978, several characteristics of the Bragg width were analyzed. This
width (in units of current) was observed to vary with radar frequency £
as f-a (with o = 0.3 to 0.5), and its dependence on radar pulsewidth,
wind speed, or wind direction was much weaker--up te a few percent change
for the various conditions encountered.

This research has shown that HF backscatter with average RF power of
a few watts can probe the radial component of horizontal current and its
distribution with depth in an ocean patch tens of kilometers away. Reso-
lutions of a few cm/sec can be obtained during time intervals of a few
minutes in an ocean patch of linear dimension on the order of kilometers.
The current ccmponent orthogonal to the radar beam can be monitored by a
similar radar deployed at a different location. The ocean surface can be
scanned by range gating and beam steering to achieve simultaneous coverage
of large areas. These features of the radio technique are very attractive

when compared to conventional oceanographic measurements.

B. Recommendations

The radar system considered here employed a fixed beam. To map ocean
current within a full 180° field of view, the radar has been modified to
receive the signal on an array of eight loop antennas, and data have been
collected by this new system [Teague et al, 1978]. A challenging area of
research is in devising an optimal scheme for combining the signals on
the eight antennas so that the antenna beam can be steered. Beam forming
by conventional spatial Fourier transform and by maximum entropy [Burg,
1975} should be compared. The method first suggested by Crombie {[1972]
and extended by Barrick [1976] to determine the angle of arrival by com-
paring the phases of signals from the various receiving-array antennas is
also applicable here.
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To further understand air/sea interactions, it is desirable to
measure the distributior of ocean current with depth, especially when
the prevailing wind speed is high (over 20 knots). Such data did not
become available partly because of the prevailing weather conditions on
the California coast during the experiments and partly because of the
difficulty in handling the rhombic transmit antenna during high winds.
The new system described by Teague [1978] replaces the balloon-supported
rhombic antenna with vertical whips supported by a fixed mast. The radar
system can now operate in high winds and obtain current-shear measure-
ments as a function of wind conditions.

In this work, it was assumed that the variation of ocean current in
the horizontal plane could be ignored. This assumption is violated when
the scale of variation is comparable to or smaller than the wavelength
of the ocean waves. To incorporate the effects of such horizontal cur-
rent structures into the dispersion relation, tedious derivations are
required; however, the results may account for part of the Bragg-line

broadening phenomenon.
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Appendix A

il

DEGREE OF FREEDOM OF HAMMING-WINDOWED SPECTRAL ESTIMATOR

o

Consider a real-time series s{(t) of duration T. Assume that

e R

s(t) 4is a zero mean stationary process with an autocovariance function

Beade

Y{(u) defined as

P

Y{u) = Efs(t) s(t + u)]

Denote the time window by q(t). This function is zero outside the in-

terval [-T/2,T/2]. The windowed power spectral density estimator T(f)
at frequency £ is

2

ch e S BT Y i v L de Y

=

P(f) = lJ-s(t) a(t) exp(~i2wft) 4t

The integration limits [-»,®] are assumed. Taking the ensemble aver-

oA S oo P

age,
E[P(f)] = %—J].E[s(t) s(t")] q(t) g(t') expl(-i27wf(t - t*)] 4t at'
=fv(u) W(u) exp(-i2mfu) du (a.1)
where

w(u) = % IQ(t) q(t - u) dt

The above manipulations establish the relationship between the lag
window w(u) used by Jenkins and Watts [1968] and the time window q(t).
By comparing Eg. (A.l1l) to their equations (6.3.28) and (6.3.29), it can
be seen that w(u) is simply #(u) normalized by (0). The equivalent

degree of freedom V can be computed, therefore, by using their equation

(6.4.17),
27
V=T
where
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The Hamming window is a complete cycle of a cosine waveform on an 8
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% percent pedestal,

0.54 + 0.46 cos (2mt/T) [t] < /2
q(t) =

0 otherwise

| The equivalent lag window #(u) can thus be calculated by numerical in-

: tegration, and the degree of freedom for the Hamming window is approxi-

mately 4.
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Appendix B

SPAR-BUOY DRIFT IN A CURRENT THAT VARIES WITH DEPTH

The following analysis is based on the work of Bye [1965]. It is
included here for completeness.

Let £ be the depth of immersion of the spar buoy and U(z) be the
horizontal current that varies with depth 2z below the ocean surface.

Assume that the buoy will drift along with the current at a speed denoted

by UD.

For the type of flow here, the Reynold number is on the order of a
few thousand, and the drag coefficient is independent of the velocities
involved over this range [Kaufmann, 1963]. The drag force acting on any
part of the spar buoy is thus proportional to [UD-U(z)]Z, with a sign
that follows the sign of [UD-U(z)].

For the buoy to remain in a vertical position (stable equilibrium),
the drag force should distribute itself so that its effect on the buoy
is zero. 1In this event, there must be a critical depth zC within the

interval [0,4] at which the drag force is zero; in other words,

U(zc) = UD (B.1)

The requirement for equilibrium can thus be written as

ZC 2 2, r 2
f [UD - U(z)] dz - f |_UD - U(z)] dz = 0 (B.2)

0 z
C

whose solutions are sought for both the linear and logarithmic profiles.

If the profile is linear ([U(z) = UO-Paz], direct substitution into

Eq. (B.2) yields

orxr
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The obvious solution is z = 2/2. (The other two solutions are imagi~ :
nary.) For a linear current profile, therefore, the buoy drifts with a .
velocity equal to the current at a depth one-half of its immersed length.

If the profile is logarithmic ([U(z) = U -+Ul- n(z)], direct sub-

0
stitution into Eg. (B.2) results in

4
c
which, if r = z/zc and ry = l/zc, becomes
z L :
fc n?(r) ar =f n(x) ar !
0 zc

Two integrations by parts obtain

A s T e e s b

= an(ro) [ﬁn(ro) - 2] + 2

cﬁ'*

e

. . ~1
Solving by successive iterations, ro = 0.2725 or zc = 0.2725 2. For

a logarithmic current profile, therefore, the buoy drifts with a velocity

equal to the current at a depth slightly over one-fourth of its immersed
length.
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Appendix C

e e aad

PARSEVAL'S THEOREM AND ITS EXTENSIONS :

Ay W~y

P~

Given a signal s(t) in the time interval ({-7/2,T/2], a conven-
tional assumption used in deriving its discrete Fourier transform (DFT) :
is that it repeats itself outside this interval. Based on this assump-
tion, the signal can be written as a Fourier series with a fundamental :
frequency Af = T_l. The sampling frequency fs is assumed to be larger

than twice the bandwidth of s(t). Within the Nyquist frequency interval

P

of [—fs/z,fs/2}, therefore, the Fourier series coefficients an are

pre

the same as the DFT coefficients S(nAf), and the summations below are

restricted to this interval. As a result,

PSR

s(t) = 2; S(nAf) exp(iZWnAft)

IOPUR

and

PRI

- i
S(nAf) =7 Jps(t) exp ( 12ﬂnAft) dt

where the integration limits are assumed to be from -T/2 to T/2.

WY iy o
t

Parseval's theorem relates the energy in s(t) to that in the DFT

coefficients. The average energy in s(t) is

m 7t f ls()|? at = T“lf at ZZ S(mA_) s*(nd,) exp[i2'n'(m - n) Aft]
4 m,n

where * denotes the complex conjugate. Because the complex exponentials

exp(i2wm£¥t) (m is an integer) are orthogonal in [-T/2,T/2], Parse-

T-lf lsce)]? at = z P(nd,)
n

follows, where P(nAf) = |s(nAf)|2 is the power spectral density.

val's theorem

A second theorem relates the first moment of the power spectrum tc

an integral in the time domain. If differentiation with respect to time

t is denoted by a prime, then
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ir'lf s(t) s*'(t) dt = T-lfdt zz 2mA S (mb.) S*(nd.)
m,n

exp[iZTT(m -~ n) Aft]

by direct manipulation of the Fourier expansion of s(t). Again using

the orthogonal relationship £for the complex exponentials,

z mb P (md,) = (2nm) "t fis(t) s*' (t) dt

m

A third theorem relates the second moment of the powar spactrum to
an integral in the time domain. The following relation can be obtained

from the above type of manipulations:

R .

Z (nAf)z P(nA,) = (2m) %77t fs'(t) s*' (t) dt

n
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Appendix D
RELATIONSHIP BETWEEN THE WINDOWED TRI.NSFORMS
OF A FUNCTION AND ITS DERIVATIVE

Let the function be f(x) and define the windowed Fourier transform

of its derivative f'(x) by
Fl(s) = J.w(x) f'(x) exp(-isx} 4x

Here, the window 1s assumed to be zero outside the intesval [-L/2,L/2].

The integration interval [-»,®] is assumed. Integrating by parts,
= <p(-isx) |7
Fi(s) = w(x) £(x) exp(-isx)|_,

+ is J.w(x) f(x) exp(-isx) dx
- J‘w'(x' f(x. exp(~isx) dx

The first term is zero because the wincow function w(x) is nonzero only
in [-L/2,L/2]. The third term is negl .gible compared to the second be-
cause the width uvZ w(x) 1is large compared to the wavelength 27W/s of

the complex sinusoid. As a result,
Fl(s) = isF(s)

where F(s) is the windowed Fourier transform of £(x).
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